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Abstract

Computer systems have been continuously improved throughout the years, and they tend to employ fab-

rics such as FPGAs and GPUs to accelerate some computing tasks that normally run on general-purpose

CPUs. FPGA-based accelerators can achieve higher performance and better power efficiency than im-

plementations on CPUs and GPUs because designers can implement circuits that realize application-

specific pipelined hardware and data supply systems. This thesis presents a novel infrastructure sup-

porting efficient development of FPGA-based accelerators. This shows how to build high-performance

accelerators targeting several fundamental applications, and enables high-speed RTL simulation to ver-

ify that a designed accelerator works as intended.

The first contribution of this work is to propose a high performance FPGA-based accelerator for

2D stencil computation. In the last several decades, stencil computation has been accelerated by us-

ing multicore microprocessors and GPUs. However, sustained performance is limited due to memory

bandwidth restriction, and also because the computation kernel has small arithmetic intensity. To ad-

dress this problem, I propose a high performance architecture for 2D stencil computation employing

multiple small FPGAs. In this architecture, the data set is divided into multiple blocks and each block

is assigned to each FPGA, which means that the data set is stored in FPGA internal memory instead of

in an external DRAM. This also means that the according to this architecture, the number of connected

FPGAs scales with the size of the data set. The proposed stencil computation hardware was imple-

mented with HDL, and I confirmed that the developed hardware accurately worked. The evaluation

result shows that the proposed accelerator achieves even better power efficiency than a typical GPU.

The second contribution of this work is to propose an FPGA-based sorting accelerator, which com-

bines the sorting network and the merge sorter tree. The proposed sorting hardware is customizable

by means of tuning design parameters. I also provide an analytical model that accurately estimates the

sorting performance depending on the hardware configuration. In other words, designers can estimate

sorting accelerator performance in advance and can implement the best one that fulfills cost and perfor-

mance constraints. I also propose a data compression mechanism for the sorting accelerator to mitigate

memory bandwidth limitation. Similar to the stencil-computation accelerator, I developed the proposed

sorting accelerator with HDL, and confirmed that the developed hardware actually achieved the esti-

mated performance and higher performance than a typical desktop computer. In order to allow every
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designer to easily and freely use this accelerator, the RTL source code is released as an open-source

hardware.

Finally I summarized important points for the efficient development infrastructure of FPGA-based

accelerators according to the two previous contributions. For development of FPGA accelerators, de-

signers implement logic circuits with HDL and verify the circuit behavior. However, designing large-

scale circuits leads to long RTL simulation times, which means that traditional RTL simulators cannot

finish the circuit behavior verification within a realistic time frame. To address this problem, I propose

a high-speed RTL simulator employing two prior studies. I evaluated it in terms of the RTL simulation

speed by using the designs of the two proposed accelerators, and confirmed that it could do the RTL

simulation much faster than a commercial one. Also, I discussed that the findings obtained from the de-

velopment of the two FPGA-based accelerators are useful in other hardware platforms and computation

kernels.



iii

Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Outline of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 FPGA-based Accelerators 6
2.1 FPGA: Field Programmable Gate Array . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 FPGA Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 FPGA Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Points of Interest for developing FPGA-based Accelerators . . . . . . . . . . . . . . 10
2.3 Development Frameworks for FPGA-based Accelerators . . . . . . . . . . . . . . . 12

2.3.1 High-Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 System Development Using Domain Specific Language . . . . . . . . . . . . 13
2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Throughput Computing Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 A Scalable Stencil-computation Accelerator by Employing Multiple Small FP-
GAs 19

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Stencil Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Key Issues of FPGA Array System . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 ScalableCore System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Preliminary Evaluation regarding Clock Variation Problem . . . . . . . . . . . 22

3.4 Scalable Stencil-computation Methodology Employing Multiple Small FPGAs . . . . 24
3.4.1 Data Set Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.2 Computation Order Optimization . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Design of Scalable Stencil-computation Architecture . . . . . . . . . . . . . . . . . . 27
3.5.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Implementation of Scalable Stencil-computation Accelerator . . . . . . . . . . . . . 31
3.6.1 Development Flow of Scalable Stencil-computation Accelerator . . . . . . . . 31
3.6.2 Identification of Location Information . . . . . . . . . . . . . . . . . . . . . . 32



Contents iv

3.6.3 Synchronization Mechanism to Address Clock Variation Problem . . . . . . . 33
3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7.2 Hardware Resource Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.7.3 Stencil Computation Performance . . . . . . . . . . . . . . . . . . . . . . . . 36

3.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 A High Performance FPGA-based Sorting Accelerator with a Data Compres-
sion Mechanism 43

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Sorting Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Sorting Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Merge Sorter Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Proposed Sorting Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.1 Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Performance Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.4 Improvement by Duplication of the Merge Sorter Tree . . . . . . . . . . . . . 53

4.4 Data Compression for the Sorting Accelerator . . . . . . . . . . . . . . . . . . . . . 54
4.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.2 Adoption of the Data Compression against the Proposed Sorting Accelerator . 55
4.4.3 Data Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.4 Control Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.2 Memory Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.5.3 Sorting Performance without Data Compression . . . . . . . . . . . . . . . . 62
4.5.4 Sorting Performance with Data Compression . . . . . . . . . . . . . . . . . . 65
4.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5 Essential Components for Efficient Development Infrastructure 73
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 High-speed RTL Simulation Overview . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Pyverilog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 ArchHDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 ArchHDL Code Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



Contents v

5.4.1 Sorting Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.4.2 Stencil-computation Accelerator . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6.1 SimVerilog Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.6.2 Finding Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Conclusion 90
6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Open Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Acknowledgement 93

Bibliography 95

Publication 104
6.3 Journal Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.4 International Conference Paper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.5 Domestic Conference Paper (with Review) . . . . . . . . . . . . . . . . . . . . . . . 104
6.6 Technical Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.7 Other Presentation and Poster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



vi

List of Figures

2.1 SRAM-based FPGA architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 4-input LUT realizing X=(A&B)|(C&D) . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 FPGA design flow overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 This figure depicts how to implement a logic circuit on an FPGA using an EDA

tool, which is composed of (a) Synthesis, (b) Technology Mapping, and (c) Place

and Route. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Peak performance of FPGA and CPU relative to GPU for (a) single precision and (b)

double precision cited from [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Stencil computation and sorting are fundamental operations for many applications. . . 16

3.1 The pseudo code of kernel part for stencil computation . . . . . . . . . . . . . . . . 20

3.2 Photo of ScalableCore system with 100 units (a) and Scalable Core unit (b) . . . . . . 21

3.3 Clock variations by measuring 20 seconds . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 Data set decomposition for stencil computation with many FPGAs . . . . . . . . . . 24

3.5 Calculation order of conventional method (a) and proposed method (b) for the two

FPGA stencil computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 System architecture of a single FPGA node for the scalable stencil-computation ac-

celerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 Relationship of Block RAM and values in a single FPGA node . . . . . . . . . . . . 29

3.8 Pipelining of multiply and add unit for floating-point numbers . . . . . . . . . . . . . 29

3.9 The configuration of the implemented scalable stencil-computation accelerator . . . . 32

3.10 The mechanism to identify odd/even row FPGAs . . . . . . . . . . . . . . . . . . . . 33

3.11 Synchronization mechanism to deal with the variation of clock oscillators . . . . . . 34

3.12 Implementation of synchronization mechanism to deal with the variation of clock

oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.13 Sustained performance and peak performance of stencil calculation in the FPGA array

of 16 nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.14 Computation performance per watt in FPGA array of 16 nodes . . . . . . . . . . . . 37

3.15 Sustained performance and peak performance of stencil calculation running 60MHz . 38

3.16 Computation performance per watt in FPGA array running 60MHz . . . . . . . . . . 39



List of Figures vii

4.1 Bubble sort network with 4-inputs and 4-outputs . . . . . . . . . . . . . . . . . . . . 45

4.2 Pipelined synchronous Batcher’s odd-even merge sort network with 16-inputs and

16-outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Sorting process in merge sorter tree . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 The merge sorter tree and off-chip memory. The tree sorts the initial data sequence

{8, 5, 2, 1} by using the memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Data path of the baseline sorting accelerator of FACE . . . . . . . . . . . . . . . . . 48

4.6 Example: sorting 256 elements from 256 to 1 . . . . . . . . . . . . . . . . . . . . . 48

4.7 Wrong sorting and correct sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Two input buffers and one sorter cell . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.9 How to generate reset signal from output buffer . . . . . . . . . . . . . . . . . . . . 51

4.10 Data path of the proposed sorting accelerator with the duplicated merge sorter trees . 53

4.11 Example of the compressor and decompressor method that is described in [91]. In

this example, 4Bytes values are compressed into a 4Bytes base and an array of 1Byte ∆. 55

4.12 Adoption of the data compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.13 Data path of the proposed sorting accelerator with the compressor and decompressor . 57

4.14 The encoding format for the 2x compression . . . . . . . . . . . . . . . . . . . . . . 57

4.15 Modified compression and decompression designs based on the prior work. In this

diagram, 4Bytes values are compressed into a 4Bytes base and an array of 1Byte ∆. . 58

4.16 Data path of the compressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.17 Data path of the decompressor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.18 The data emitted from the merge sorter tree is sequentially written into the head of the

Write Area, without (a) and with (b) the data compression. . . . . . . . . . . . . . . 60

4.19 Writing the data emitted from the merge sorter tree by Throttling . . . . . . . . . . . 61

4.20 The memory bandwidth when randomly reading and writing 4GB data, depending on

grain size of the read and written data . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.21 Sorting performance comparison between the software and the proposed sorting ac-

celerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.22 Hardware resource usage of the proposed sorting accelerator . . . . . . . . . . . . . 64

4.23 The sorting performance of 8-way/8-parallel with and without the data compression

mechanism when the initial data-sequence types is a reverse-order sorted data sequence 65

4.24 The sorting performance of 8-way/8-parallel with and without the data compression

mechanism when the initial data-sequence types is a random data sequence using

Xorshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.25 The data compression ratio in each Phase of 8-way/8-parallel . . . . . . . . . . . . . 67

4.26 The sorting process time and average compression ratio using a random data sequence

with small deltas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



List of Figures viii

4.27 The hardware resource usage of 8-way/8-parallel with and without the data compres-

sion mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.28 Relationship between the performance and the hardware resource usage . . . . . . . 70

5.1 The capacity increase in Xilinx FPGAs cited from [110] . . . . . . . . . . . . . . . . 74

5.2 SimVerilog overview. I implement Code Generator to produce ArchHDL code from

the generated abstract syntax tree by analyzing Verilog HDL source code with Parser. 75

5.3 The correspondence relationship between Verilog HDL and ArchHDL . . . . . . . . 75

5.4 Pyverilog analyzes (a) the Verilog HDL source code of AND gate and generates (b)

the Abstract Syntax Tree (AST). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Xorshift pseudo random value generator and test bench in ArchHDL . . . . . . . . . 78

5.6 Simulation flow chart of ArchHDL . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7 Simulation kernel of ArchHDL using OpenMP . . . . . . . . . . . . . . . . . . . . . 79

5.8 The overview of ArchHDL code generation from Verilog HDL source code. . . . . . 80

5.9 The visitor pattern for the generated AST from Verilog HDL source code in Python . 80

5.10 The implementation of ArchHDL code generator inheriting ASTNodeVisitor illus-

trated in Figure 5.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.11 The proposed sorting accelerator with 4-way merge sorter tree . . . . . . . . . . . . . 82

5.12 Simulation time of VCS and SimVerilog using OpenMP, depending on each hardware

running 256K elements sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.13 Speed-up ratio compared with g++ single thread in each hardware running 256K

elements sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.14 The proposed stencil-computation accelerator composed of 4 × 4 nodes . . . . . . . . 84

5.15 Simulation time of VCS and SimVerilog using OpenMP, depending on each hardware

configuration for stencil computation . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.16 Speed-up ratio compared with g++ single thread in each hardware configuration for

stencil computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.17 Hardware platform example: an FPGA and two DRAMs . . . . . . . . . . . . . . . . 87



ix

List of Tables

2.1 Programming technology characteristics . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Throughput computing kernel characteristics cited from [68] . . . . . . . . . . . . . 15

3.1 Worst value and standard deviation of measured clock variations. . . . . . . . . . . . 22

3.2 Hardware resources usage in a single FPGA . . . . . . . . . . . . . . . . . . . . . . 35

5.1 Evaluation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



1

Chapter 1

Introduction

1.1 Motivation
Computer systems are essential components to sustain the information age, and are nowadays used for

lots of fields from scientific technologies to those we use in daily life, like weather forecast, drug devel-

opment, financial engineering, artificial intelligence, automotive, smart phones, gaming machines, etc.

Human beings have received these benefits that are thanks to performance improvements of computer

systems. To make the future of the world more bright and prosperous, it is the key to research how to

build innovative computer systems and how to apply them to practical matters.

To achieve high performance computer systems, one of the key components is a microprocessor,

which is also called Central Processing Unit (CPU). In the past, a microprocessor consists of a single-

core, and the performance improvements of microprocessors had relied on high clock rates and hard-

ware features exploiting inherent instruction-level parallelism (ILP). However the performance im-

provements reached the limit in the late of 2000s. This is mainly because the power consumption and

calorific value are not trivial. Besides it has been challenging to improve ILP by complex hardware

components and this approach can cause more power consumption. Therefore, instead of a single-core

processor, multi-core and many-core processors have become mainstream, accelerating applications by

parallel processing like exploiting thread-level parallelism. The number of cores has been increased

year after year due to improvements of semiconductor integration technologies depending on Moore’s

Law [1], and many-core processors with up to 256 cores begin to appear [2, 3, 4].

Not only CPUs but also other components like memory systems have also been advanced. In partic-

ular, graphics performance has been significantly improved thanks to technology evolution of Graphics

Processing Unit (GPU). Although GPUs are originally specialized in image processing, in recent years

they have been used for the high performance computing, known as General-Purpose computing on

GPU (GPGPU). This is because GPU has even more parallel processing elements than CPU, and the

high-performance computing kernels frequently have inherent data-level parallelism that GPUs can

efficiently exploit. Their large parallel computing capability enables powerful scientific simulations
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like linear algebra [5]. In modern supercomputers, GPUs have been seriously employed such as in

TSUBAME2.5 [6], HA-PACS [7], etc.

CPU and GPU computation capabilities have been improved year by year, but their performance

cannot be 100% delivered depending on application characteristics. For instance, authors in [8] can

only exploit 21.8% of peak performance of two Intel Xeon E5220 CPUs for stencil computation used

in fluid dynamics. Phillips et al. [9] propose a stencil computation approach using NVIDIA TESLA

C1060 GPU, and the sustained performance of a single GPU is 65.6% of the peak performance, and

worse, a GPU cluster composed of 16 GPUs can work at only 42.2% of the cluster peak performance.

These low performance efficiencies are due to multicores and GPUs architectural aspects including

memory bandwidth limitations. Besides CPUs and GPUs are prone to face power efficiency problems

[10, 11] in not only stencil computation, and it is necessary to tackle these problems in order to realize

computer systems of the future.

To address them, Field-Programmable Gate Array (FPGA) based accelerators have been attractive

in recent years. FPGA is a programmable LSI on which designers can implement any desired digital

circuit, and FPGA-based accelerators can achieve higher performance and better power efficiency than

implementations on CPUs and GPUs because designers can implement circuits that realize application-

specific pipelined hardware and data supply systems. For instance, in [12], an FPGA-based system to

accelerate data center tasks is proposed. This system improves PageRank throughput of “Bing” as much

as 195%. [13] presents a dedicated hardware to accelerate stencil computation that is used in several

fields, such as fluid calculation, weather calculation, molecular simulation, etc. The proposed hard-

ware is implemented by using multiple FPGA boards. The accelerator obtains higher computational

performance at up to 13.7x compared with Intel Core i7-3930K with six cores operating at 3.2GHz,

and the power efficiency is about 7x better than [10]. In June 2015 Intel Corporation announced the

acquisition of Altera Corporation that is one of the biggest FPGA vendors in the world. Intel aims to

accelerate database operations using FPGA integrated into Xeon processors [14], and will ship its first

Xeon server chip with a programmable FPGA from Altera in the first quarter 2016. A lot of compa-

nies and research institutes have given considerable attention to FPGAs, and from now on the hybrid

computing model based on CPUs, GPUs and FPGAs seriously begins [15].

To exploit the remarkable potentials of FPGA-based accelerators, it is truly necessary to consider

how to build them. In other words, designers have to pay attention to an appropriate FPGA device,

hardware design, and implementation depending on application characteristics. Another obstacle is to

need long simulation times for circuit behavior verification. For development of FPGA accelerators,

designers usually implement logic circuits with Hardware Description Language (HDL) and verify that

the circuit behavior is as intended. However, designing large-scale circuits leads to long Register Trans-

fer Level (RTL) simulation times, which means that traditional RTL simulators cannot finish the circuit
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behavior verification within a realistic time frame. Besides, FPGAs have become larger and larger

due to transistor scaling and stacking, and it enables implementation of larger hardware on FPGAs.

However the simulation time is also larger, and that is why high-speed simulation environments are

required.

This thesis presents a novel infrastructure supporting efficient development of FPGA-based accel-

erators. The proposed infrastructure shows how to build high-performance FPGA-based accelerators

targeting fundamental applications and enables high-speed RTL simulation to verify whether or not a

designed accelerator works as intended. The evaluation results show that designed FPGA-based accel-

erators outperform corresponding implementation on CPUs and GPUs in terms of both performance

and power efficiency.

1.2 Contribution
The contributions of this thesis are as follows:

• I propose a high performance FPGA-based accelerator for 2D stencil computation employing

multiple small FPGAs.

– In this architecture, the data set is divided into multiple blocks and each block is assigned to

each FPGA, which means that the data set is stored in FPGA internal memory instead of in

an external DRAM. This also means that the according to this architecture, the number of

connected FPGAs scales with the size of the data set. To realize the proposed accelerator,

I developed a computation order optimization mechanism considering location information

of each FPGA, a deeply pipelined stream computation unit, and a synchronization mecha-

nism to absorb clock variations between FPGAs. The proposed stencil computation hard-

ware was implemented with Hardware Description Language (HDL), and I confirmed that

the developed hardware accurately worked. The evaluation result shows that the proposed

accelerator achieves even better power efficiency than a typical GPU.

• I propose an FPGA-based sorting accelerator that combines the sorting network and the merge

sorter tree.

– The proposed sorting hardware is customizable by means of tuning design parameters. I

also provide an analytical model that accurately estimates the sorting performance depend-

ing on the hardware configuration. In other words, designers can estimate sorting accel-

erator performance in advance and can implement the best one that fulfills cost and per-

formance constraints. Similar to stencil-computation accelerator, I developed the proposed

sorting accelerator with HDL, and confirmed that the developed hardware actually achieved

the estimated performance and higher performance than a typical desktop computer. Be-



Chapter 1 Introduction 4

sides, I propose a data compression mechanism for the sorting accelerator to mitigate mem-

ory bandwidth limitation, and the evaluation results show that the sorting accelerator with

the mechanism achieves better performance than without it. In order to allow every designer

to easily and freely use this accelerator, the RTL source code is released as an open-source

hardware.

• I propose a novel infrastructure to show how to build high-performance FPGA-based accelera-

tors targeting fundamental applications and to enable high-speed RTL simulation to verify that

developed hardware works as intended.

– Based on the two previous contributions, I summarized important points for the efficient

development infrastructure of FPGA-based accelerators. To shorten long RTL simulation

times required to verify a designed circuit behavior, I propose a high-speed RTL simulator.

I evaluated it in terms of the RTL simulation speed by using the designs of the two pro-

posed accelerators, and confirmed that it could do the RTL simulation much faster than a

commercial one. Also, I discussed that the findings obtained from the development of the

two FPGA-based accelerators are beneficial in other hardware platforms and computation

kernels.

1.3 Outline of This Thesis
This thesis consists of six chapters and is organized as follows.

In Chapter 2, I describe the fundamental knowledge of the FPGA-based accelerator and the back-

ground of my work. At first I briefly introduce the FPGA history, architecture and how to develop

desired hardware on FPGAs and then discuss the point of interest for developing FPGA accelerators

and the pros and cons of previously proposed development frameworks. Besides, I look into impor-

tant computation kernels and explain that stencil computation and sorting are appropriate ones to be

accelerated.

In Chapter 3, I describe the first main contribution of this work, which is to propose a high perfor-

mance FPGA-based accelerator for 2D stencil computation employing multiple small FPGAs. In this

architecture, the number of connected FPGAs scales with the size of the data set. I detail the design

and implementation, and the evaluation results show that the proposed accelerator achieves even better

power efficiency than a typical GPU.

In Chapter 4, I propose an FPGA-based sorting accelerator that combines the sorting network and the

merge sorter tree, which is the second main contribution of this work. The proposed sorting hardware

is customizable by means of tuning design parameters and I also provide an analytical model that accu-

rately estimates the sorting performance depending on the hardware configuration. I detail the design
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and implementation, and the evaluation result shows that the developed hardware actually achieves

the estimated performance and higher performance than a typical desktop computer. Additionally,

I propose a data compression mechanism for the sorting accelerator to mitigate memory bandwidth

limitation.

In Chapter 5, I describe a novel infrastructure to show how to build high-performance FPGA-based

accelerators targeting fundamental applications and to enable high-speed RTL simulation to verify that

developed hardware works as intended. Based on the two previous contributions, I list important points

for efficient development infrastructure for FPGA-based accelerators. To realize the high-speed RTL

simulation, I employ two previously proposed tools; these are Pyverilog and ArchHDL. I briefly intro-

duce the two tools and describe how to use them in the Proposed RTL simulator. The evaluation results

show that it is possible to simulate faster the proposed stencil-computation and sorting accelerators

behavior compared with a commercial simulator. Also, I discuss that the findings obtained from the de-

velopment of the two FPGA-based accelerators are useful in other hardware platforms and computation

kernels.

Finally in Chapter 6, I conclude this thesis with the discussion of open-research areas.
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Chapter 2

FPGA-based Accelerators

This chapter provides the fundamental knowledge for the FPGA-based accelerator. First I briefly intro-

duce the FPGA history, architecture and how to develop desired hardware on FPGAs and then discuss

points of interest for developing FPGA-based accelerators. I also present development frameworks for

FPGA-based accelerators previously proposed around the world, along with their pros and cons. Fi-

nally, I look into important computation kernels and explain why stencil computation and sorting are

appropriate ones to be accelerated, and summarize the motivation of this work.

2.1 FPGA: Field Programmable Gate Array
The FPGA is a semiconductor device on which designers can program/reprogram any digital circuit. In

1985, Xilinx invented the first commercially viable FPGA (the XC2064), and engineers paid attention

to it. This is because it is attractive to freely reprogram digital circuits since it was commonly accepted

that hardware changes are difficult at that time. However these initial FPGAs were small and costly, and

were used for only research prototyping and educational system rather than for commercial products.

After several decades, FPGA capabilities have been significantly improved thanks to improvements

of semiconductor integration technologies and research outcomes of FPGA architecture, and many

companies and research institutes have begun to examine the FPGA availability. Given the FPGA

characteristic features, FPGAs are mainly used in the three following cases

1. as a platform for design and verification of Application Specific Integrated Circuits (ASICs) like

CPUs,

2. as a hardware component dealing with systems having frequent design changes like image pro-

cessing systems, network servers, etc.,

3. as a hardware accelerator in order to reduce power consumption while increasing performance.

As mentioned before, I focus on and describe the third case in this thesis.
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Table 2.1 Programming technology characteristics

Programming Technology Volatile Reprogrammable Operating Speed
SRAM-based FPGA Yes Yes Fast

Antifuse-based FPGA No No Fast
Flash-based FPGA No Yes Slow

2.1.1 FPGA Architecture

FPGAs are composed of programmable logic blocks and interconnection, which means that designers

can electrically rewrite logic block contents and their interconnection configuration. Table 2.1 shows

programming technologies for FPGAs [16].

SRAM programming technology is based on static memory cells storing a stream of configuration

bits for logic block contents and their interconnection. The advantage of this technology is to strongly

receive benefits of the semiconductor processes refinement, since this technology can be implemented

under the standard CMOS process. Designers can reprogram desired digital circuits a number of times,

but once the device is powered down, the configuration data is lost because SRAM is volatile memory.

Therefore, this technology needs to reload the configuration data from external flash or EEPROM

devices.

Antifuse programming technology is based on structures that exhibit very high-resistance under

normal circumstances. By applying a voltage, these high resistances can be ’blown’ to create a low

resistance link, and this technology can form digital circuits based on the blown connection. Unlike

SRAM programming technology, the configuration data is never lost and the implemented circuit is

small and works at high speeds and low energy because this technology does not employ SRAM.

However, the largest disadvantage is that antifuse-based FPGAs are one-time programmable devices.

Flash programming technology is based not on static memory cells but flash memory cells storing

a stream of configuration bits for logic block contents and their interconnection. Unlike SRAM and

antifuse programming technologies, this technology does not lose the configuration data and can repro-

gram digital circuits any times. However, the manufacturing process is complicated and the operating

speed is slow since the read speed from the memory is slower than SRAM.

Given these advantages and disadvantages, SRAM-based FPGAs have nowadays become main-

stream. Figure 2.1 shows the SRAM-based FPGA architecture. Most of the today’s FPGAs consist of

arrays of programmable Logic Blocks (LBs) and hard blocks with fixed functionality, like memory and

Digital Signal Processor (DSP), which can work faster and can offer more compact implementations of

hardware functions than using LBs. The arrays are surrounded by I/O blocks, which connect the FPGA

chip to the outside world. These programmable logic blocks, hard blocks, and I/O blocks are all in-
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Figure 2.1 SRAM-based FPGA architecture
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Figure 2.2 4-input LUT realizing X=(A&B)|(C&D)

terconnected using programmable routing fabrics that are Switch Boxes (SBs) and Connection Blocks

(CBs). These routing fabrics are composed of 1-bit SRAM cells, and by storing the proper bits in these

fabrics, SBs and CBs determine which wire should be connected to another wire and LB/hard block.

This two-dimensional mesh interconnected routing architecture is called island-style [17, 18]. Another

routing architecture, which is hierarchical [19], was proposed but designers employ island-style for

most of the today’s FPGAs development because hierarchical usually incurs a significant delay penalty

[16].
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The programmable logic block is basically composed of Look-Up Tables (LUTs) and D-type Flip

Flops (DFF) [18]. LUTs are also composed of 1-bit SRAM cells, and by storing the proper bits in

the SRAM cells, various combinational logic functions could be implemented. Figure 2.2 shows one

of the examples. The LUT in this figure consists of 16 1-bit SRAM cells and returns a 1-bit value

set in an SRAM cell according to the four inputs, which is called 4-input LUT. It realizes a boolean

function, which is equal to X=(A&B)|(C&D) where X represents a 1-bit value set in an SRAM cell.

To implement sequential circuits like Finite State Machines (FSMs), a DFF is connected to the output

of LUTs. The multiplexer is also based on 1-bit SRAM cells, and determines which signal should be

emitted depending on the set values.

SRAM-based FPGAs can realize a desired logic circuit by storing proper bits in 1-bit SRAM cells

in LBs, SBs, and CBs. To implement a high performance FPGA-based accelerator, it is important to

efficiently utilize and connect hard blocks like memory and DSP in addition to LBs.

2.1.2 FPGA Design Flow

Figure 2.3 shows a typical FPGA design flow. At first, designers develop a Register Transfer Level

(RTL) design after the hardware specifications are determined. To develop the RTL design, Hardware

Description Languages (HDLs) like VHDL and Verilog HDL are mostly used. After that, the RTL

design can be verified by using commercial [20, 21, 22, 23, 24] or open-source [25, 26, 27, 28] RTL

simulators. This is a truly important step to confirm that the design behavior works as intended.

The next step is to create the FPGA circuit image (bitstream) file the RTL design. This step requires

a unique Electronic Design Automation (EDA) tool depending on the targeted FPGA device. For

instance using Xilinx, Altera, or Lattice FPGAs require ISE/Vivado Design Suite [29, 30], Quartus

Prime (Quartus II) [31], or Lattice Diamond [32] respectively. Although this step needs these FPGA

vendor’s own development tools, it consists of four processes that are Synthesis, Technology Mapping,

Place and Route, and Bitstream Generation shown in the dotted line region in Figure 2.3.

In Synthesis, the developed RTL design is translated into the gate-level netlist shown in Figure 2.4

(a), and designers can simulate the logic circuit behavior in more detail (Gate Level Simulation). The

next process, Technology Mapping, fits the synthesized design into targeted FPGA primitives. In Figure

2.4 (b), the design is mapped into the two primitives that is a single LUT and flip flop. This is because

the combinational logic composed of two AND gates and an OR gate can be translated into an LUT

as described in Figure 2.2. After this process, these mapped FPGA primitives are placed and routed

to satisfy the required timing performance, which is illustrated in Figure 2.4 (c). Using the timing

information generated by Place and Route, designers can more accurately verify the design behavior

in Timing Simulation, compared with RTL and Gate Level Simulation. Finally, the placed and routed

design information is used to generate the bitstream for the targeted FPGA configuration.
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Figure 2.3 FPGA design flow overview

After the EDA flow, designers can program the developed design by downloading the generated

bitstream to the targeted FPGA. To confirm that the implemented design on the FPGA correctly works

as intended (In-Circuit Verification), designers can use logic analyzers provided by FPGA vendors.

2.2 Points of Interest for developing FPGA-based Accelerators
In this section, I explain the points of interest for developing FPGA-based accelerators. Figure 2.5

shows peak floating-point performance of the three devices for single precision and double precision.

This figure is cited from [15]. According to Figure 2.5 (a), GPUs are always GPUs have always the

best performance for single precision. The most interesting points of Figure 2.5 (a) is that in 2011

both FPGAs and CPUs have increased their relative performance, but in 2013 relative performance of

FPGAs is degraded while CPUs keep improving. This is because many-core CPUs like Intel Xeon

Phi began to appear. In Figure 2.5 (b), GPUs have dominated the peak performances, except for the

first years and the CPUs started to dominate FPGAs from 2011 for double precision. In 2013 the peak
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Figure 2.4 This figure depicts how to implement a logic circuit on an FPGA using an
EDA tool, which is composed of (a) Synthesis, (b) Technology Mapping, and (c) Place
and Route.
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Figure 2.5 Peak performance of FPGA and CPU relative to GPU for (a) single precision
and (b) double precision cited from [15]

performances of both GPUs and many-core CPUs came close with about 5%.

Peak performance just gives a theoretical comparison. The sustained performance, which is perfor-

mance achieved when running a particular application, can vary with each particular application and

the power efficiency is similar to it. This is because these computing devices have different architectural

aspects including the memory architecture with its external memory bandwidth and the communication

network, which are more appropriate for specific applications.

For instance, [33] compares sustained performance between NVIDIA Tesla C2090 GPU, Xilinx

ZYNQ XC7Z020 FPGA, and Intel Xeon processor in different encryption algorithms. The authors re-

port that the GPU outperforms the CPU by 13x and the FPGA provides a throughput speed-up of 6∼9

over the GPU for 8KB and 16KB plaintext blocks. This is because the FPGA has enough capacities to

do streaming computation. For larger plaintext sizes, the GPU and FPGA provide similar throughput.

[34] compares the implementation of a quasi-Monte Carlo simulation between Xilinx Virtex-4 FPGA,
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NVIDIA 8800GTX GPU and a 2.8 MHz Intel Xeon CPU. According to the results, the FPGA out-

performs the CPU-based implementation by 2 orders of magnitude. Also, the FPGA achieves around

3x speed-up compared to equivalent the GPU-based implementation. The Power consumption of the

FPGA is 336x more energy efficient than the CPU, and 16x more energy efficient than the GPU.

However, depending on application algorithms, hardware designs, and implementation, FPGAs are

not always effective. Authors in [5] compare implementations of Black-Scholes between Intel i7-960

CPU, NVIDIA GTX480 GPU and Xilinx Virtex-6 FPGA and conclude that the GPU is about 1.4x

faster than the FPGA and 22x faster than the CPU. In power efficiency, the GPU is about 1.3x more

power efficient than the FPGA and almost 40x compared to the CPU. The authors also compare imple-

mentation dense matrix multiplication between the computing devices and conclude that the GPU with

a sustained performance of 541 GFlop/s is about 3x faster than the FPGA and 6x faster than the CPU.

Considering power efficiency, both FPGA and GPU are 3x better than that of the CPU. Therefore, it

is necessary to consider an appropriate FPGA device, hardware design, and implementation depend-

ing on application characteristics, such as a sequential algorithm, an iterative algorithm, data-parallel

algorithm or memory intensive algorithm, etc.

2.3 Development Frameworks for FPGA-based Accelerators
As mentioned before, in order to develop the RTL design, HDLs like VHDL and Verilog HDL are

mostly used. However unfortunately, these HDLs hardly have the high-level and abstraction facilities

commonly found in modern mainstream languages. Because of this, the FPGA development can be

tedious, inefficient and error-prone for non-expert designers, what is worse, it might also affect ex-

pert FPGA designers from the productivity point of view [35, 36]. To address this problem, many

development approaches have been proposed by many companies and research institutes in the world.

2.3.1 High-Level Synthesis

High-Level Synthesis (HLS) languages and tools are emerging as the most promising technique to

provide higher the programmability for FPGA-based hardware development and to make FPGAs more

accessible to software developers. HLS techniques translate software languages like C language into

RTL designs [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49].

These days, there are a lot of available commercial HLS languages and tools. Xilinx Vivado HLS

[37] can accelerate IP cores creation by enabling C, C++ and SystemC specifications to be directly

targeted into Xilinx FPGAs without the need to manually create RTL. This tool has been a commercial

product so far, but becomes free of charge and gets included in all Vivado software editions from Vivado

Design Suite 2015.4 [50]. Altera OpenCL [38] enables the easy implementation of applications onto

FPGAs by abstracting away the complexities of FPGA design, allowing software programmers to write
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hardware-accelerated kernel functions in OpenCL C. Not only FPGA vendors but also other companies

provide HLS languages and tools. CyberWorkBench [39] is C-based integrated environment for System

LSI design developed by NEC Corporation. Impulse C [40] is also a C-based HLS tool developed by

Impulse Accelerated Technologies, which is specialized in dataflow-oriented streaming applications.

Calypto Catapult C [41] can accept C++ and SystemC and can generate RTL code targeted to FPGAs

and ASICs. Lime [42] is a Java-based language that is designed to be executable across a broad range

of architectures from FPGAs to conventional CPUs. This language is developed by IBM Research and

is used in the Liquid Metal project as a single unified programming language.

Several open-source HLS frameworks also proposed. LegUp [43, 44] is an open source HLS tool

being developed at the University of Toronto. This tool accepts a standard C program as input and

automatically compiles the program to a hybrid architecture containing an FPGA-based MIPS soft

processor and custom hardware accelerators that communicate through a standard bus interface. The

Riverside Optimizing Compiler for Configurable Computing (ROCCC) [45] a C to VHDL compiler,

which is specifically designed to automatically generate FPGA-based accelerators. Unlike LegUp, this

tool aims to compile only critical regions of an application. Synthesijer [46] is a HLS tool that generates

VHDL and Verilog HDL code from Java code. This tool does not need any hardware-aware description

manner, but some syntax like dynamic memory and recursive functions are unsupported. CoRAM,

CoRAM++, PyCoRAM [47, 48, 49] are slightly different from other HLS tools. These tools virtualize

the communication and control infrastructure that interfaces the in-fabric hardware acceleration kernels

with external memory (DRAM) to improve portability of hardware accelerators. Designers implement

the hardware kernels in any hardware design methodology and describe control threads for memory

access pattern in software. The designed control threads are translated into control circuits of memory

operations. In [47, 48], the control threads are written in C-based language and in [49], Python is used

to do this.

2.3.2 System Development Using Domain Specific Language

In addition to HLS techniques, lots of Domain Specific Languages (DSLs) are proposed and published

year after year. The most difference from HLS techniques is that designers develop hardware, more or

less considering the hardware details like clock timing and interconnection than HLS techniques.

Hardware design DSLs using software language like C++, Java, Python, Haskell, etc. have been

proposed before. ArchHDL [51] is a C++11-based library for RTL modeling and simulation. MyHDL

[52] is an Python-based DSL that can translate a source code in MyHDL into Verilog or VHDL code.

JHDL [53] is a Java-based DSL for reconfigurable systems that allows designers to express circuit

organizations that dynamically change over time. Chisel [54] is a Scala-based DSL and hardware

designs in Chisel can be translated into C++ simulators or Verilog RTL descriptions. [55] proposes
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Veriloggen, which is a library for constructing a Verilog HDL source code in Python. Unlike MyHDL,

this tool provides a lightweight abstraction of Verilog HDL AST, and designers can build up a hardware

design written in Verilog HDL by using the AST abstraction and the entire functionality of Python.

Lava [56] is a Haskell based DSL and has several distributions such as Chalmers Lava, Xilinx Lava,

Kansas Lava, and York Lava. Similar to MyHDL and Veriloggen, PyMTL [57] is also a Python-based

DSL but can do multi-level hardware modeling composed of functional level, cycle level, and register

transfer level. Except for ArchHDL, these DSLs are already open-source.

Some application-specific DSLs have been proposed. Authors in [58] propose a hardware generation

framework and system for linear transforms. This approach uses SPIRAL proposed in [59] to automat-

ically produce software implementations of signal transforms, including automatic parallelization and

vectorization. HDL Coder [60] generates portable and synthesizable HDL code from MATLAB func-

tions and Simulink blocks. The generated HDL code can be used for FPGA programming or ASIC

prototyping and design. Optimus [61] is an optimizing synthesis compiler for streaming applications,

which compiles programs written in StreamIt [62] to either software or hardware implementations.

Some companies and research institutes have proposed hardware design DSLs supporting specific

programming models. Bluespec SystemVerilog (BSV) [63] is an extended SystemVerilog developed

by Massachusetts Institute of Technology, which enhances fine-grained parallel programming approach

while abstracting hardware details. MaxCompiler [64] is developed by Maxeler Technologies in order

to build high-performance dataflow hardware accelerator. This tool supports stream-oriented program-

ming model using Java. FloPoCo [65] is developed by Institut National de Recherche en Informa-

tique et en Automatique (INRIA), which automatically generates pipelined floating-point units. Using

FloPoCo as a back-end, [66, 67] proposes a framework to generate high-throughput pipelined stream

processors using their DSL. [66, 67] mentions that unlike MAXCompiler, this tool is designed to eas-

ily generate IP cores of stream processors that can be embedded into a common SoC platform on an

FPGA.

2.3.3 Discussion

A lot of development frameworks for FPGA-based accelerator have been proposed, but the ease of

programmability, performance, resource usage and efficiency can vary from one technology to another,

and there is usually a tradeoff between these characteristics [35]. Also, it is not easy to choose the best

development framework for implemented applications and this is mostly dependent on programmer

experience. These frameworks can verify the designed hardware behavior at higher abstraction layer

but it is necessary to verify the behavior at low abstraction layer like RTL or gate-level in order to

accurately detect the hardware errata. Therefore development frameworks based on HLS tools and

DSLs have been attractive, nevertheless it is common that HDL-based circuit design and the circuit
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Table 2.2 Throughput computing kernel characteristics cited from [68]

Kernel Application SIMD Thread Level Parallelism Characteristic
SGEMM Linear algebra Regular Across 2D tiles Compute bound after tiling
Monte Carlo Computational finance Regular Across paths Compute bound
Convolution Image analysis Regular Across pixels Compute bound; BW bound

for small filters
FFT Signal processing Regular Across smaller FFTs Compute bound or BW bound

for small filters
SAXPY Dot product Regular Across vector BW bound for large vectors
LBM Time migration Regular Across cells BW bound
Constant solver Rigid body physics Gather/Scatter Across constraints Synchronization bound
SpMV Sparse solver Gather Across non-zero BW bound for typical large

matrices
GJK Collision detection Gather/Scatter Across objects Compute bound
Sort Database Gather/Scatter Across elements Compute bound
Ray casting Volume rendering Gather Across rays 4-8MB first level working set;

over 500MB last level working
set

Search Database Gather Across queries Compute bound for small tree,
BW bound at bottom of tree
for large tree

Histogram Image analysis Requires conflict detection Across pixels Reduction/synchronization
bound

behavior verification are repeated as required for development of FPGA-based accelerators. However,

designing large-scale circuits leads to long RTL simulation times, which means that traditional RTL

simulators cannot finish the circuit behavior verification within a realistic time frame. In the future,

FPGAs will be larger thanks to transistor scaling and stacking, leading to more RTL simulation times.

Therefore high-speed simulation environments are required.

2.4 Throughput Computing Kernels
In this section, I look into important computation kernels and explain why stencil computation and

sorting are appropriate ones to be accelerated.

Recent information technology advances in the past decade have led to an explosion in the amounts

of data being generated such as digital documents, stock market data, personal records, electronic

commerce sales data, news, etc. As digital data continues to grow rapidly, it is important to process the

ever-growing data in a reasonable duration of time.

Authors in [68] mention that processing huge amount of data to distill and deliver appropriate content

to users in a timely manner has made throughput computing an important aspect for emerging applica-

tions, and they rigorously analyzed CPU and GPU performance differences between a set of important

throughput computing kernels. They also analyzed the computational and memory characteristics of

four recently proposed benchmark suites and formulated the set of throughput computing kernels that

capture these characteristics. Table 2.2 summarizes the throughput computing kernel characteristics.

The authors classify these kernels according to (1) their computational and memory requirements, (2)

regularity of memory accesses that determines the ease of exploiting data-level parallelism, which
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Figure 2.6 Stencil computation and sorting are fundamental operations for many applications.

means the use of Single Instruction Multiple Data (SIMD), and (3) the granularity of tasks, which de-

termines the impact of synchronization. They mention that these characteristics provide insights into

the architectural features that are required to achieve good performance.

In this thesis, I select Lattice Boltzmann method (LBM) and Sort as a kernel to be accelerated by

FPGAs and discuss that the findings obtained from the two designed FPGA-based accelerators can

be applied to the other kernels. As shown in Table 2.2, almost all of the kernels are either compute-

bound or bandwidth bound. To demonstrate that FPGA-based acceleration approaches are valuable, it

is necessary to clarify that the approaches can achieve better performance than CPUs and GPUs in both

compute and bandwidth-bound kernels. Besides, the two kernels are applied to lots of applications

shown in Figure 2.6. That is why it is valuable to try to accelerate them, and as a representative of

bandwidth and compute-bound kernels, LBM and Sort are selected respectively.

LBM is a class of computational fluid dynamics based on stencil computation whose algorithm

updates values associated with points on a multidimensional grid using weighted contributions from a

subset of its neighbors in both time and space. Stencil computation plays a crucial role in a variety of

different fields of application, ranging from partial differential equation solving, to computer simulation

of particles’ interaction, to image processing and computer vision [69]. Basically, stencil computation

is bandwidth bound due to the algorithm characteristic, which requires to load several data from an
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external memory to update a value in each time step.

As already known, sorting is used in a lot of fields, especially databases. [68] picks up radix sort

and describes the trendy implementation for CPUs and GPUs. At the time, the best implementation on

CPUs is to use SIMD instructions and implement a scatter-oriented rearrangement within cache. On

GPUs, radix sort is implemented using the SIMD-friendly 1-bit split algorithm described in [70]. How-

ever, the split-based implementation executes even more instructions than a scalar sort, and therefore

the overall efficiency of SIMD use relative to optimized scalar code is not high. The authors in [68]

mention that totally radix sort has O(n) bandwidth and compute requirements, where n is the number

of elements to be sorted, but is usually compute bound because of the inefficiency of SIMD use.

2.5 Summary
In this chapter, I described the fundamental knowledge of the FPGA-based accelerator and the back-

ground of my work.

FPGA-based accelerators have been attractive as an alternative computing device in recent years.

Although the peak performance is low compared with the other two devices, FPGA-based accelerators

can achieve higher performance and better power efficiency than implementations on CPUs and GPUs

because designers can implement circuits that realize application-specific pipelined hardware and data

supply systems. However in order to receive the remarkable potentials, designers have to decide on an

appropriate FPGA device, hardware design, and implementation depending on application characteris-

tics, such as a sequential algorithm, an iterative algorithm, data-parallel algorithm or memory intensive

algorithm, etc.

Moreover, many companies and research institutes in the world have proposed development frame-

works for FPGA-based accelerator. However there is a tradeoff between the ease of programmability,

performance, resource usage and efficiency. Besides their characteristics can vary among the frame-

works and it is not easy to choose the best development framework for implemented applications.

Therefore it is still common that designers implement logic circuits with HDL and verify the circuit

behavior in order to develop FPGA-based accelerators. However, designing large-scale circuits leads

to long RTL simulation times, which means that traditional RTL simulators cannot finish the circuit be-

havior verification within a realistic time frame. In the future, FPGAs will be larger thanks to transistor

scaling and stacking, leading to more RTL simulation times. Therefore high-speed simulation environ-

ments are required. To address this problem, I propose a novel infrastructure enabling high-speed RTL

simulation to verify whether or not the developed hardware works as intended.

Finally I discuss a set of important throughput computing kernels and explain that stencil computa-

tion and sorting are appropriate ones to be accelerated by FPGAs. In this thesis, I propose two high

performance FPGA-based accelerators targeting them. In order to show that the acceleration methods
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are promising, I evaluate the designed accelerators performance in the compute and bandwidth-bound

kernel and discuss the applicability of the findings obtained from the development of the proposed

accelerators against the other kernels.
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Chapter 3

A Scalable Stencil-computation
Accelerator by Employing Multiple
Small FPGAs

3.1 Motivation
Stencil computation is one of the typical scientific computing kernels. It is applied to diverse areas such

as earthquake simulation, digital signal processing and fluid calculation. In the last several decades,

stencil computation has been accelerated by using multicore microprocessors and GPUs. However,

sustained performance is limited due to memory bandwidth restriction, and also because the compu-

tation kernel has small arithmetic intensity. To address this problem, I propose a high performance

architecture for 2D stencil computation employing multiple small FPGAs. In this architecture, the data

set is divided into multiple blocks and each block is assigned to each FPGA, which means that the

data set is stored in FPGA internal memory instead of in an external DRAM. This also means that the

according to this architecture, the number of connected FPGAs scales with the size of the data set. I

detail the design and implementation of the proposed FPGA-based accelerator, and evaluate it in terms

of the sustained performance, scalability, and power efficiency.

The main contributions of this chapter are:

• to propose a high performance computation architecture for 2D stencil computation using mul-

tiple small FPGAs,

• to develop an FPGA-based scalable stencil-computation accelerator to realize my proposed ar-

chitecture,

• to show the architecture usability on the 100-FPGA array system in terms of the sustained per-

formance, scalability, and power efficiency.
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1 float v0[N][N], v1[N][N];
2
3 for (k = 0; k < IterNum; k++) {
4 for (i = 1; i < N-1; i++) {
5 for (j = 1; j < N-1; j++) {
6 v1[i][j] = (C0 * v0[i-1][j]) + (C1 * v0[i][j-1]) + (C2 * v0[i1][j+1]) + (C3 * v0[i+1][j]);
7 }
8 }
9 for (i = 1; i < N-1; i++)

10 for (j = 1; j < N-1; j++) v0[i][j] = v1[i][j];
11 }

Figure 3.1 The pseudo code of kernel part for stencil computation

3.2 Stencil Computation
In the area of scientific computation a class of iterative kernels is frequently used, which uses some

values of a time step and calculate a result associated with those values of the next time step. In the

class, stencil computation [10] updates values according to some fixed pattern. Stencil computation is

one of the approaches to calculate an approximate solution of partial differential equations, and is used

in lots of areas like earthquake simulation, digital signal processing and fluid calculation.

In this thesis I focus on the 2D Jacobi iteration kernel [71] and the formula is given by

vk+1
i, j = c0vk

i−1, j + c1vk
i, j−1 + c2vk

i, j+1 + c3vk
i+1, j (3.1)

where vk
x,y and vk+1

x,y are values of x, y at time step k and k + 1 respectively, and c0, c1, c2, and c3 stand

for weighting factor. In this thesis, the data type of the weighting factor and values are single precision

floating-point. As shown in the formula, a value vk+1
x,y is calculated from the summation of the left, up,

right and down values multiplied by each weighting factor. If all weighting factors are 0.25, updating

values of the next time step stands for the arithmetic mean of the four values of the current time step.

Figure 3.1 shows the pseudo code of kernel part for stencil computation. k and (i, j) are a time step

and value coordinate. The two vectors v0 and v1, which are declared at line 1, are used to store the

two-dimensional N × N data set. A value at (i, j) is represented as v0[i][j] or v1[i][j]. At line 6 in

Figure 3.1, v1[i][j] is calculated from the summation of v0[i-1][j], v0[i][j-1], v0[i][j+1], and v0[i+1][j]

multiplied by each weighting factor. At line 9 and 10 in Figure 3.1, all values of v1 are copied into v0.

In this thesis, the process at a time step k (line 4 ∼ 10) is called Iteration. IterNum at line 3 in Figure

3.1 is constant that stands for the number of executed Iterations.

As shown in Figure 3.1, the kernel part for stencil computation is simple, yet needs large computa-

tion time since the computation kernel has small arithmetic intensity [72] and the number of Iterations

is large. Arithmetic intensity is defined as the number of floating-point operations (Flops) per data

size (bytes) read from an external DRAM for cache misses. As described above, stencil computation

requires multiple data accesses per unit operation. In a practical application, because the number of

memory accesses is even larger than this example, microprocessors and GPUs cannot achieve high
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(a) ScalableCore system with 100 units (b) ScalableCore unit 

Figure 3.2 Photo of ScalableCore system with 100 units (a) and Scalable Core unit (b)

sustained performance due to memory bandwidth restriction. According to [72], straightforward im-

plementation of stencil computation can achieve only 10% of the peak performance of AMD Opteron

microprocessors because of its small arithmetic intensity of 0.5 Flop/Byte. Therefore, several research

institutes have proposed FPGA-based accelerators for stencil computation [73, 74].

In this chapter, I propose a scalable stencil-computation accelerator by employing multiple small

FPGAs [75]. To realize this proposal, I use ScalableCore system [76] that we have developed. I

detail the design and implementation that efficiently executes 2D stencil computation, and evaluate the

proposed accelerator in terms of the sustained performance and power efficiency.

3.3 Key Issues of FPGA Array System
In this section, I describe ScalableCore system that is a hardware platform for design and implementa-

tion of the proposed stencil-computation accelerator, and discuss a clock variation problem that is due

to a different clock oscillator on each FPGA node.

3.3.1 ScalableCore System

Figure 3.2 (a) shows ScalableCore system using 100 FPGAs. ScalableCore system is an FPGA array

system employing multiple small FPGAs. Figure 3.2 (b) shows an FPGA node called ScalableCore

unit. The board size is 4.67cm × 6.0cm. The FPGA node works as a stand-alone FPGA board and has
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Table 3.1 Worst value and standard deviation of measured clock variations.

Time [sec] Worst Value [ppm] Standard Deviation
20 20.47 (x=5, y=3) 4.73
40 20.47 (x=5, y=3) 4.68
80 20.47 (x=5, y=3) 4.73
160 20.59 (x=5, y=3) 4.77
320 20.66 (x=5, y=3) 4.79

an FPGA (Xilinx Spartan-6 XC6SLX16), 512KB SRAM*1, 40MHz clock oscillator, and configuration

ROM. Connection between the FPGA nodes is realized via the external I/O pins on the left, right, top

and bottom side.

The leftmost nodes in Figure 3.2 (a) have a DC5V power supply and USB-UART IC chip. Ap-

plication programs are loaded from a Linux host PC and are transferred to ScalableCore system via

USB-UART IC chip on the upper left board. After that, ScalableCore system executes the programs

and displays the execution result on the host PC.

ScalableCore system is originally developed for high speed many-core processor simulation. The

power consumption of an FPGA is about 1 Watt [76]. Based on the power consumption, I estimate the

power efficiency of the proposed stencil-computation accelerator and the estimated power efficiency is

1.7x better than a previous study [77] that uses several large FPGAs to accelerate stencil computation.

Because of the examination result, I decide to use ScalableCore system as a hardware platform for the

proposed stencil-computation accelerator.

3.3.2 Preliminary Evaluation regarding Clock Variation Problem

As shown in Figure 3.1, stencil computation uses the four adjacent values to calculate the center value

of the next time step. Therefore data transfer between FPGA nodes is necessary if the divided tasks are

assigned to each FPGA. Besides, the data transfer has to be executed at an appropriate timing because

updating values at an Iteration needs the neighborhood values calculated at the previous Iteration.

On the other hand, each FPGA constituting ScalableCore system has an individual clock oscillator

that is 40MHz CSX-750PB. The frequency stability of the clock oscillator is ±50ppm. The frequency

stability ±50 means that it is guaranteed that the number of deviated cycles per 1 million cycles is ±50

based on the perfect clock. However even if ±50ppm, it may generate a gap of 120,000 cycles per

minute because 40MHz CSX-750PB may generate a gap of 2,000 cycles per second. This gap is not

trivial and it is necessary to design a robust system that can absorb the clock variation.

In this section, I quantitatively evaluate clock variation of each FPGA node. The original Scal-

*1 The proposed stencil-computation accelerator does not use it.
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Figure 3.3 Clock variations by measuring 20 seconds

ableCore system emulates many-core processor behavior and the emulated many-core processor works

while synchronized under Virtual Cycle proposed in [76]. Using this mechanism, I implement a C

application to measure the frequency stability. In this preliminary evaluation, the C program runs on

8 × 8 ScalableCore system and I evaluate the clock variation of each FPGA node depending on the

measurement time.

Figure 3.3 shows clock variation of each FPGA node by measuring 20 seconds. The points on x-axis

and y-axis stand for each FPGA coordinate. The z-axis represents the absolute value of the number of

deviated cycles per 1 million cycles. This result shows that the all deviated cycles are within 50 cycles

according to the clock oscillator specification. The worst deviated cycle is 20.47, which is generated

from the FPGA node located at (x=5, y=3).

Table 3.1 shows the worst value and standard deviation of measured clock variations. Time, Worst

Value, and Standard Deviation in this table stand for the measurement time, the worst deviated cycle

with the FPGA node coordinate, and standard deviation of all clock variations in 8 × 8 ScalableCore

system. The worst deviated cycle and standard deviation hardly change depending on the measurement

time. It means that the clock variation is larger at a constant rate depending on the operating time.
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(a) data set of 16 x 16 elements (b) block decomposition to 4 x 4 FPGAs 

Figure 3.4 Data set decomposition for stencil computation with many FPGAs

As shown in these results, this clock variation is not trivial problem and it is impossible to design the

proposed hardware ignoring this important matter. Therefore, it is necessary to design a robust system

that can absorb the clock variation.

3.4 Scalable Stencil-computation Methodology Employing
Multiple Small FPGAs

Many types of FPGAs are provided from FPGA vendors, and there are some design choices to build a

large system that cannot be implemented on a single FPGA. They are (1) to use a few large FPGAs or

(2) to use multiple small FPGAs.

In the former, using a few large FPGAs, the designed system can work at high speeds. However this

approach requires very long time and to verify the system behavior and to generate an FPGA circuit

image file (bitstream), because the implemented digital circuits are larger than using small FPGAs.

Fortunately, the proposed architecture for stencil computation consists of numerous redundant com-

ponents. This means that it is possible to build the proposed system by downloading the identical circuit

data into multiple FPGAs. I detail the design overview in the following sections. Additionally, even if

an FPGA node is broken, the system can work successfully by replacing the broken FPGA node with

new one. Although the system operation speed is inferior to the former approach, the system can be

built at lower cost. Given these advantages, I choose a multi-FPGA based approach.



Chapter 3 A Scalable Stencil-computation Accelerator by Employing Multiple Small FPGAs 25

3.4.1 Data Set Decomposition

Figure 3.4 shows data set decomposition for stencil computation with many FPGAs. The white circles

stands for data values. Connection line between values represents each value via the line is neighbor-

hood. Figure 3.4 (a) shows a pre-divided data set for stencil computation that is composed of 16 × 16

data values. Figure 3.4 (b) shows the data set decomposition to 4 × 4 FPGAs.

Stencil-computation data set is divided and stored in FPGA internal memory. Figure 3.4 (b) shows

that an assigned data set into an FPGA is 4× 4 data values. In the practical system, an assigned data set

is composed of 64× 128 data values, which is the capacity limitation of an FPGA used in my proposed

method. The size of the assigned data set is fixed, in other words stencil computation data set can be

changed according to the number of FPGA nodes. For instance, 4 × 4 FPGA array system can execute

256 × 512 stencil computation.

A data value calculated at a time step k is used for calculating the neighborhood value at the next

time step k+ 1. If the neighborhood value is stored in not same FPGA internal memory but an adjacent

FPGA, the values used for calculating the neighborhood value have to be sent by the neighborhood

value calculation at the next time step. The arrow and gray-toned shaded area represent the data com-

munication between FPGAs and the data values transferred to an adjacent FPGA. As mentioned, the

data values have to be sent to an adjacent FPGA in an appropriate timing that is not too late and not too

soon.

3.4.2 Computation Order Optimization

To mitigate computation stall, I propose a computation order optimization approach based on the in-

crease in the data communication slack. Figure 3.5 shows calculation order of conventional method

(a) and proposed method (b) for the two FPGA stencil computation. Here, the assigned data set to an

FPGA are 4 × 4 data values. In this example, the assigned 16 data values are updated in each Iteration.

To simplify the explanation, the data value calculation and update can be done within a single cycle in

this example. The practical required cycles are discussed in the following sections.

In Figure 3.5 (a), FPGA (A) and FPGA (B) execute stencil computation in same order. The dotted

line region stands for an assigned data set to an FPGA. The circles are data values and the alphabet in

the circle stands for an FPGA ID. For instance, FPGA (A) execute stencil computation in the order like

A0, A1, A2, ... , A14, A15. As shown in Figure 3.5 (a), computation order of each FPGA is downward

directed along with the arrow. FPGA (A) calculates A0 value at 0th cycle and A1 value at 1st cycle.

Similar to this, FPGA (B) calculates B0 value at 0th cycle and B1 value at 1st cycle. In this example,

each FPGA can obtain the result within a single cycle. After stencil computation at a time step, the

computation is moved to the next time step. In this example, stencil computation in each Iteration
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Figure 3.5 Calculation order of conventional method (a) and proposed method (b) for the
two FPGA stencil computation

requires 16 cycles. The first Iteration begins at 0th cycle, the second does at 16th cycle, and the third

does at 32nd cycle.

In Figure 3.5 (a), the data value B1 calculation requires the data values that are A13, B5, B0, and

B2. Therefore A13 has to be sent from FPGA (A) to FPGA (B) for B1 calculation. In this computation

order, A13 is calculated at 13th cycle in the first Iteration, and in the second Iteration B1 is calculated

at 17th cycle using A13, B5, B0, and B2. It means that A13 has to be sent within three cycles (14th,

15th, and 16th cycle). Similar to A13, it is mandatory for A12, A14, and A15 to be sent within three

cycles. In other words, if N ×M data values are assigned to an FPGA, values in the boundary area have

to be sent within N − 1 cycles after they are calculated.

Figure 3.5 (b) shows the proposed method to address this problem. Here, computation orders of

FPGA (C) and FPGA (D) are reverse each other. It means that the computation order of FPGA (C) is

upward directed against FPGA (A). In this example, in order not to stall D1 calculation at the second

Iteration, C1 has to be sent within 15 cycles (2∼16). In other words, the data communication slack is

increased from 3 cycles to 15 cycles due to the computation order modification. If N × M data values

are assigned to an FPGA, the slack is N × M − 1 cycles.
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Due to this proposed method, it is increased that the data communication slack between FPGAs that

is almost equal to the cycles required to calculate all data values at an Iteration. If two computation

orders are face-to-face, the slack is same. In other words, if computation orders of FPGA (C) and

FPGA (D) are face-to-face, the slack is same as Figure 3.5 (b).

The data communication is necessary between right and left sides. If two FPGA (C) are placed in

the left and right, C3 at the left and C0 at the right are neighborhood and the data communication slack

is 12 cycles. This slack is given by (N × M − M) if N × M data values are assigned to an FPGA.

Therefore, the proposed method gives the sufficient data communication slack that is about an It-

eration required cycles. Figure 3.5 shows stencil computation on two FPGAs. If stencil computation

is executed on multiple FPGAs, the computation can be realized by placing a pair of FPGA(C) and

FPGA (D) as many as required. In Figure 3.5, the number of cycles required to calculate a data value is

defined as a single cycle to simplify the explanation of the proposed method. In general, if the number

of cycles is k, the data communication slack is (N × M − M) × k.

3.5 Design of Scalable Stencil-computation Architecture
3.5.1 System Architecture

Figure 3.6 shows the system architecture of an FPGA node for the proposed scalable stencil-

computation accelerator.

The system architecture has eight multiply-adder units and a synchronization hardware represented

in MADD and Sync in the figure. SER and DES stand for a serializer and deserializer for the data

communication between FPGAs respectively. The center numbered blocks from 0 to 9 are FPGA

internal memory blocks.

Figure 3.6 also shows the MADD detail. The squares in the MADD are registers, and the multiplier

and adder are floating-point arithmetic units with IEEE 754 Standard for single precision, which both

have seven pipeline stages. Adding design parameters like the number of pipeline stages, the multiplier

and adder can be automatically created from an IP core generator provided by FPGA vendors. The

MADD data path consists of 16 pipeline stages because the MADD has two registers, which identical

to a data path composed of a multiplier and adder that both have eight pipeline stages.

FIFOs store calculated values at MADDs that have to be sent to adjacent FPGA nodes. After that,

the stored data is sent to an adjacent FPGA node via the multiplexer (mux8) and a serializer. For

implementation of the serializer and deserializer, two techniques are used that are Clock and Data

Recovery (CDR) and NRZI Data Encoding.

Figure 3.7 shows relationship of internal memory blocks and values in an FPGA node. The numbered

blocks in Figure 3.7 correspond to those in Figure 3.6.
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Figure 3.6 System architecture of a single FPGA node for the scalable stencil-
computation accelerator

The 2D data set assigned to each FPGA is split along with a vertical direction and is stored in each

internal memory from 0 to 7, which is in the dotted line area. In other words, 64×128 data values

are assigned to an FPGA, each internal memory stores 8×128 data values split along with a vertical

direction. The remained internal memory blocks, which are 8 and 9, are used to store transferred data

values from an adjacent FPGA node.

Figure 3.8 shows the pipelined operation of multiply and adder unit for floating-point numbers. The

circles and squares in the figure stand for data values and the multiplier calculation results using data

values and weighting factor. As described before, it can be seen that the multiplier and adder both have

eight pipeline stages. Figure 3.8 (a) and (b) show the numbered data set from 0 to 29 and hardware

component names including the multiplier, adder, multiplexer, and wires. In this figure, it is illustrated

that the pipelined operation to calculate data values from 11 to 18.

At 0∼7 cycles, data values 1∼8 read from an internal memory block are input to the multiplier cycle

by cycle. The row of Mul input depicted in Figure 3.8 (c) is a data value input to the multiplier at each
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Figure 3.8 Pipelining of multiply and add unit for floating-point numbers

cycle. In other words, the circles numbered from 1 to 8 in the row of Mul input at 0∼7 cycles means

that the data values 1∼8 are input to the multiplier cycle by cycle.

In the next, the data values 10∼17 are input to the multiplier and simultaneously the multiplier

calculation results are emitted from it. The row of Add input1 depicted in Figure 3.8 (c) is the multiplier

calculation results that are input to the adder, and the data values are illustrated in the square form that

means the multiplication results using a data value and weighting factor input to the multiplier. For

instance, the numbered data value 1 and weighting factor are input to the multiplier at cycle 1, and then

the multiplication result is emitted from it at cycle 8.

At 16∼23 cycles, the three operations occur at the same time, which are the data values 12∼19 are

input to the multiplier, and the feedback data values 1∼8 and the multiplier calculation results 10∼17

are summed at the adder.

At 24∼31 cycles, two data values are in the row of Add input2 depicted in Figure 3.8 (c), for instance

the numbered squares 1 and 10 are in the row. This means the summation result of the feedback data 1

and multiplication result 10.
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Similar to this, MADD calculation results are in the row of MADD output, here the four squares are

in there. For instance, the data values 1, 10, 12, and 21 are in there at cycle 40, and this means the

calculation result for the data value 11.

Finally the MADD calculation result using the left, right, top and bottom data values, which is

multiplied and accumulated, are emitted at cycle 40∼47.

When the calculation results are stored in an internal memory block, it has to be careful not to

overwrite the data that is used for another calculation at the same time step. In general, temporary

buffers like FIFO are used to address this problem, but the proposed architecture has no need to prepare

them because the pipeline stages of MADD plays a role as the temporary buffer.

In Figure 3.8, the data values 11∼18 are updated at 40∼47. These data values are input to the mul-

tiplier at 32∼39 and then never used for the rest of the MADD calculation at the time step. Therefore,

it is guaranteed to correctly update the data values 11∼18 without temporary buffers like FIFO. This

pipeline scheduling is valid only when the width of data set is equal to the number of pipeline stages of

the multiplier and adder. In other words, the proposed architecture employs eight pipeline stages, and

that is why the width of data set calculated at MADD is eight.

The pipeline filling rate can be given by (C − 8/C) × 100 where C is the number of required cycles

for stencil computation. This architecture can almost achieve 100% of the pipeline filling rate because

C is basically massive. Besides, this architecture has no need for temporary buffers to accommodate

the update timing, which can save the hardware resource usage. In other words, this architecture can

achieve high performance computation with the appropriate hardware resources.

The data communication slack with the pipeline operation can be quantitatively expressed. At first, I

define the number of cycles required to calculate a data value, the number of pipeline stages, the height

of data set stored in an internal memory block as k, n, and m respectively. In this architecture, these

values are given by the following equation.

• k = 5 × n + 1 = 41

• n = 8

• m = 128

Because in this architecture an internal memory block has 8 × 128 data values, n and m are 8 and 128

respectively. The number of cycles required to calculate all data values assigned to an FPGA and to

store the calculation result in the memory can be given by the following formula.

(k − 1) + n + 4n × (m − 1) = 4112 (3.2)

MADD begins to calculate data values for the next Iteration 16 cycles before the calculation result for

the lower right data value located in the data set is emitted from MADD. Therefore, the number of
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required cycles for an Iteration is given by the following formula.

(k − 1) + n + 4n × (m − 1) − 16 = 4096 (3.3)

Using the number of cycles required cycles for an Iteration, the slack to upward or to downward

communicate MADD calculation results can be given by the following formula.

(k − 1) + n + 4n × (m − 1) − 16 − k = 4096 − 41
= 4055 (3.4)

In the next, I explain the data communication slack along with a horizontal direction. The data

communication slack from right to left side can be given by the following formula.

(k − 1)+n + 4n × (m − 1) − 16 − k + 3n − 1
= 4096 − 41 + 23
= 4078 (3.5)

Also, the slack from left to right side can be given by the following formula.

(k − 1) + n + 4n × (m − 1) − 16 − k + 1 = 4096 − 41 + 1
= 4056 (3.6)

Therefore, the data communication slack with the pipeline operation is equal to the number of re-

quired cycles for an Iteration, as described in Section 3.4.2.

As shown in the above formulas, the data communication slack is dependent on the number of data

values stored in an internal memory block. In other words, higher speed data communication hardware

is necessary as the internal memory capacity is smaller. In this work, I use the data communication

hardware used in ScalableCore system. It is tough work to implement and verify data communication

hardware operating at high clock frequencies from scratch. Therefore, in this research existing IP cores

are used in order to mitigate the design and verification complication.

3.6 Implementation of Scalable Stencil-computation Accelerator
3.6.1 Development Flow of Scalable Stencil-computation Accelerator

Scalable stencil-computation accelerator is developed in the following three steps.

At first, I implement a software simulator in C++. This software simulates stencil computation on

multiple FPGAs with cycle level accuracy. I verify the simulator behavior comparing the simulation

results with the execution results of a stencil computation program with function level accuracy.

In the next, I implement the stencil-computation hardware in Verilog HDL, based on the software

simulator behavior. To verify that the implemented hardware works as intended, I use Icarus Verilog
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Figure 3.9 The configuration of the implemented scalable stencil-computation accelerator

[25] that is an open-source RTL simulator and compare the RTL simulation results with the cycle-

accurate software simulation results.

After the verification, the designed hardware for stencil computation is implemented on ScalableCore

system.

Figure 3.9 shows the configuration of the implemented scalable stencil-computation accelerator. The

accelerator computation results are displayed on the connected host PC via a USB cable and are com-

pared with a stencil computation program in C language. In this verification, a data value assigned to

the upper left FPGA node is sent to the host PC Iteration by Iteration, and then compared with the pro-

gram results. The verification can be done without displaying all data values calculated in the system

by comparing the results for massive Iterations. This is because the computation kernel simulates fluid

dynamics like wave or heat propagation, which means that all values eventually become incorrect if a

calculation result for a data value is wrong.

3.6.2 Identification of Location Information

As described in Section 3.4.2, the data communication slack is increased by changing the computation

order according to FPGA positions. It is necessary to identify that each FPGA is on an odd or even row

so that each FPGA decides that its computation order is upward or downward. To deal with the matter,

I implement hardware logic to set each FPGA computation order.

Figure 3.10 shows the mechanism to identify odd/even row FPGAs. The arrow in the figure stands for

the computation order described in Figure 3.5. The implemented hardware is a simple combinational
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Figure 3.10 The mechanism to identify odd/even row FPGAs

circuit. Each FPGA is connected via a single wire along with a vertical direction. Each FPGA has a

NOT gate whose input is downside and output is connected with an upside FPGA.

All FPGA nodes have an identification feature for adjacent FPGA nodes existence. Using this fea-

ture, FPGA nodes that have no connection to downward direction identify that they are on the bottom

row, and then emit 0 value to upward FPGA nodes. The other FPGA nodes receive the downward input

values and emit the inverted values to upward FPGA nodes. As a result, the odd and even row FPGA

nodes hold 1 and 0 respectively. Using the information, each FPGA identifies the own location. The

benefit of the mechanism is significant small hardware resource usage because each FPGA has only an

inverter.

3.6.3 Synchronization Mechanism to Address Clock Variation Problem

The implemented stencil-computation accelerator has no global clock. This means that a synchroniza-

tion mechanism is mandatory to address the clock variation problem described in Section 3.3.2.

Figure 3.11 shows the synchronization mechanism to deal with the variation of clock oscillators. For

this mechanism, FPGA A is defined as the master. The other FPGAs B, C, and D are synchronized with

the signal sent from the master, and execute stencil computation. Until they receive the synchronization

signal, stencil computation on them is stalled.

The master generate and send the synchronization signal with a period of α+β where α and β are the

number of required cycles for an Iteration and a margin to absorb the clock variations of FPGA nodes

respectively. This margin β is set to absorb them in α.

Figure 3.12 shows the implementation of synchronization mechanism to deal with the variation of

clock oscillators. The α and β in Figure 3.12 are same as those of Figure 3.11. The other FPGA
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Figure 3.12 Implementation of synchronization mechanism to deal with the variation of
clock oscillators

nodes, which are B, C, and D, send the synchronization signal to the right and down FPGA nodes and

all FPGA nodes are eventually synchronized with the master node. As mentioned before, The FPGA

nodes that receive the synchronization signal restart stencil computation.

The synchronization signal is sent for tens of cycles in order to prevent communication failure to

send and receive it. FPGA nodes identify the synchronization signal if they continuously receive the

signal asserted at high level for several cycles.
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Table 3.2 Hardware resources usage in a single FPGA

Hardware element Used / Available Utilization
Slices 2,271 / 2,278 99%
LUTs 7,805 / 9,112 85%

Block RAM 28 / 32 87%
DSP48A1 32 / 32 100%

3.7 Evaluation
3.7.1 Setup

I implement the stencil-computation accelerator in Verilog HDL and synthesize the implemented hard-

ware with Xilinx ISE 14.2. The generated bitstream is downloaded into Xilinx Spartan-6 XC6SLX16

with 64KB internal memory on each node. As mentioned before, in order to implement MADD, I use a

generated IP core using Xilinx CORE Generator. For one MADD implementation, four DSP hardware

blocks in the FPGA are used. The FPGA has 32 DSP blocks, in other words eight MADDs can be

implemented on the FPGA.

For behavior verification of the accelerator, I use a stencil-computation C program using a Softfloat

library that has same precision with MADD floating-point operation, and evaluate the computation

performance using a C program without the library.

In this evaluation, the number of Iterations is 5,800,000, and the computation results are displayed

on the connected host PC via a USB cable in each Iteration and are compared with the C program with

the library. As a result, I confirm the computation results are identical to those of the program in all

Iterations.

3.7.2 Hardware Resource Usage

Table 3.2 shows hardware resources usage of an FPGA to implement the stencil-computation acceler-

ator. The leftmost, center, and rightmost columns stands for hardware component types, the number of

used and available components, and hardware resource utilization.

The LUT and Block RAM utilization are 85% and 87% respectively. Block RAM is internal mem-

ory in the Xilinx FPGA. The utilization of Slice is 99%, this is because the serializer, deserializer,

identification feature, and synchronization hardware are implemented, in addition to MADD. All DSP

hardware blocks (DSP48A1) are used to implement eight MADDs as mentioned before, and that is

why the hardware resource utilization is 100%.
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Figure 3.13 Sustained performance and peak performance of stencil calculation in the
FPGA array of 16 nodes

3.7.3 Stencil Computation Performance

I define the operating frequency, the number of MADDs implemented on each FPGA, and the num-

ber of FPGAs as F GHz, NMADD, and NFPGA respectively. Each MADD can simultaneously execute

multiplication and addition cycle by cycle. Due to this, a single MADD can achieve 2 × F GFlop/s

peak performance. Using NMADD and NFPGA in addition the peak performance of a single MADD, the

hardware peak performance Phpeak GFlop/s of the FPGA array system is given by

Phpeak = 2 × F × NMADD × NFPGA (3.7)

where NMADD is 8. For instance, Phpeak of the accelerator using 100 FPGA nodes operating at 0.06GHz

(60MHz) is 96GFlop/s given by the above formula.

In the next, I define the peak performance for stencil computation. As shown in Figure 3.1, stencil

computation requires four multiplications and three additions, which is unbalance between the two

operations. Therefore, the average utilization of the multipliers and the adders in MADD is given by
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Figure 3.14 Computation performance per watt in FPGA array of 16 nodes

100 × (4 + 3)/8 = 87.5%. In other words, the peak performance Ppeak for stencil computation is given

by the following formula.
Ppeak = Phpead × 0.875 (3.8)

I evaluate the peak and sustained performance of the stencil-computation accelerator using 16 FPGA

nodes, according to the operating frequency. The data set for stencil computation is 256×512 data

values. The sustained performance is given by dividing the number of floating-point operations by the

computation time. The number of floating-point operations is given by

OPs ×GRID × IterNum = 7 × 256 × 512 × 5, 800, 000

where the number of floating-point operations required to calculate a data value is OPs, and the number

of data values and iterations GRID are IterNum.

In this evaluation, the computation time is measured using a stopwatch. The number of Iterations

5,800,000 requires about 10 minutes computation time for stencil computation if the operating fre-

quency is 40MHz. The 10 minutes is very long execution time, therefore the measurement error of the

stopwatch can be ignored. The computation time is from the initialization completion of the data set
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Figure 3.15 Sustained performance and peak performance of stencil calculation running 60MHz

to the computation termination. In this system when the data set initialization is done, Light-Emitting

Diodes (LEDs) is luminous, which is the measurement start sign. After that, when the computation is

terminated, the computation results are displayed on the host PC, which is the measurement finish sign.

Figure 3.13 shows the peak and sustained performance of the FPGA array system composed of 16

nodes. The peak and sustained performance are almost identical as shown in the figure and it is that

obvious the proposed computation methodology has little performance overhead.

In general, a gap between the peak and sustained performance is due to the data preparation like

initial load instructions. However, stencil computation requires massive execution time, and that is

why the data preparation overhead can be ignored. Authors in [77] states that this performance gap

shown in [8, 9] is due to multicores and GPUs architectural aspects including memory bandwidth

limitations. To address this problem, I implement the appropriate stencil-computation hardware with

pipelined operation. Besides I use FPGA internal memory instead of an external memory DRAM to

avoid the performance bottleneck because of the memory bandwidth limitation.

The implemented C program for the performance comparison is compiled with -O3 optimization

option. A single thread of Intel Core i7-2700K operating at 3.5GHz executes the compiled program
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Figure 3.16 Computation performance per watt in FPGA array running 60MHz

and achieves 3.31GFlop/s sustained performance. This result is almost same as 2.8GFlop/s sustained

performance reported in [8]. The FPGA array composed of 16 nodes achieves 13.42GFlop/s, which is

about 4x better than the single thread result of Intel Core i7-2700K.

Figure 3.14 shows the power efficiency of FPGA array system composed of 16 nodes, according to

the operating frequency. The leftmost boards of the FPGA array system play a role of power supply for

all FPGA nodes. These boards have AC adapters that are connected to a single power tap. I evaluate

the entire power consumption of the system by connecting the tap to Watt Checker (SANWA SUPPLY

TAP-TST5). This means that the power consumption includes that of the power supply boards in

addition to the FPGA nodes. The power consumption is always constant when the system executes

stencil computation.

Figure 3.14 also shows that the power efficiency becomes better as the operating frequency is raised.

In general, each FPGA has own sweet spot for the operating frequency. Due to this, the lower operating

frequency compared with the sweet spot degrades the power efficiency, and that is why the graph is

illustrated in the positively sloped curve.

Figure 3.15 shows the peak and sustained performance of the FPGA array system operating at
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60MHz according to the number of FPGA nodes. As mentioned before, the proposed accelerator

can change the data set that can be computed in the same computation time by increasing the number

of FPGA nodes. An FPGA node has 64×128 data values, in other words the 10×10 FPGA array system

can compute 640×1280 data values.

Figure 3.15 also shows that the peak and sustained performance is almost identical. The 100-FPGA

array system can compute 640×1280 data values in 396 seconds, but a single thread of Intel Corei7-

2700K spends 10,053 seconds. In other words, The 100-FPGA array system achieves about 25x sus-

tained performance compared with a single thread of Intel Corei7-2700K. Compared with a single

GPU NVIDIA Tesla C1016 [9], my proposed accelerator using 100 FPGA nodes achieves 83.9GFlop/s,

while the GPU achieves 51GFlop/s. In other words, the sustained performance of my proposed accel-

erator is 1.65x better than a single GPU NVIDIA Tesla C1016.

The stencil-computation accelerator is based on ScalableCore system. Because of the amperage rat-

ing restriction, ScalableCore system connects up to 16 nodes along with a horizontal direction. How-

ever along with a vertical direction, it is possible to place two-fold FPGA nodes as desired, as long as

the power supply boards can be also placed. The two-fold comes from the computation order optimiza-

tion described in Section 3.4.2. To improve the FPGA array system, one of the effective approaches is

to modify how to supply the power to all FPGA nodes. For instance the current FPGA array system

only has the leftmost power supply boards, but 32 FPGA nodes connection along with a horizontal

direction can be realize and improve the entire performance if the power supply boards can be placed

at the rightmost side.

Figure 3.16 shows the power efficiency of the FPGA array system operating at 60MHz, according to

the number of FPGA nodes. This evaluation result demonstrates that the power efficiency is better as

the number of FPGA nodes is increased. This is because the power consumption of the system includes

that of the power supply boards and the power tap overhead in addition to the FPGA nodes. Therefore

if the FPGA array is composed of lots of nodes, the power overhead due to the leftmost boards and

power tap can be ignored, but if not, the overhead is not trivial. Because the power efficiency becomes

worse as the number of FPGA nodes is decreased, the graph is illustrated in the positively sloped curve.

In other words, the power overhead is decreased as the number of FPGA nodes is increased, and then

the power efficiency is close to the constant value. The stencil-computation accelerator with 100 FPGA

nodes achieves about 0.57GFlop/sW, which is 3.8x better power efficiency than NVIDIA GTX280

graphics card [10].

3.8 Related Work
Some research institutes have reported previous studies to aim to optimize stencil computation for

multicore microprocessors and GPUs.
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Augustin et al. [8] reported stencil computation using Intel Xeon E5220 quad-core processor oper-

ating at 2.26GHz. If a single core is used, 2.8GFlop/s is achieved that is 31% of the peak performance

9GFlop/s. Also two E5220 processors can achieve 15.9GFlop/s that is 21.8% of the peak performance

72GFlop/s

Phillips et al. [9] reported stencil computation with NVIDIA TESLA C1060 GPU. A single GPU

achieves 51.2GFlop/s that is 65.6% of the peak performance for double precision. The sustained per-

formance is degraded if a GPU cluster is used. In stencil computation for 256 × 256 × 512 data values,

the cluster composed of 16 GPUs achieves 42.2% of the peak performance.

Some FPGA-based accelerators for stencil computation have been proposed. [13, 77, 73] propose

stencil computation hardware based on programmable systolic array architecture using several Terasic

DE3 evaluation boards with ALTERA Stratix III EP3SL150 FPGA. Stratix FPGAIII EP3SL150 FPGA

is a large FPGA that has 142K logic elements and massive internal memory. The memory capacity

is 12.4x compared with the Xilinx Spartan-6 FPGA and the cost of the evaluation board is about 34x

compared with an FPGA node in my accelerator. The systolic array architecture is based on a pipeline

scheduling method used for the cellular automata. As a result, the proposed accelerator achieves linear

scalability for multiple devices with a constant memory bandwidth. There are several differences in

terms of the proposed architecture and employed FPGA. In [77], the stencil-computation accelerator

using nine Terasic DE3 evaluation boards is implemented and achieves 1.3GFlop/sW that is 2.28x

better compared with my 100 FPGA nodes accelerator. However the development cost is 3x than my

proposal. It means that [77] is better in the power efficiency but my accelerator is better in terms of the

development cost. Also, [78] proposes an FPGA array system for the Poisson’s equation.

Similar to my work, Mencer et al. [79] developed a scientific computation accelerator called CUBE

using 512 FPGAs. These FPGAs are unidimensionally connected. Yoshimi et al. [80] discuss the

CUBE effectiveness with edit distance computation algorithm that is a typical stream-oriented applica-

tion mainly composed of integer calculations.

3.9 Summary
I proposed the scalable stencil-computation methodology employing multiple small FPGAs and the

hardware architecture, and demonstrated that it is possible to realize the FPGA array system by using

the three key techniques; these are the computation order optimization mechanism considering location

information of each FPGA, the deeply pipelined stream computation unit, and the synchronization

mechanism to absorb clock variations between FPGAs.

I detailed the design and implementation process. At first, I developed the cycle-accurate software

simulator for the hardware architecture in C++, and then implemented the computation unit in Verilog

HDL, verifying the computation unit behavior using the software simulator.
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The designed hardware was based on 100 FPGAs and I evaluated the FPGA-based accelerator in

terms of the sustained performance, scalability, and power consumption. As a result, my proposed ac-

celerator accurately worked and achieved about 0.6GFlop/sW, which is about 3.8 better than a NVIDIA

GTX280 graphics card.
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Chapter 4

A High Performance FPGA-based
Sorting Accelerator with a Data
Compression Mechanism

4.1 Motivation
Sorting is one of the most fundamental computation kernels in data management, and lots of approaches

to accelerate the kernel have been proposed [81, 82, 83, 84, 85, 86, 87, 88]. These approaches offer

significant results, but mostly these studies utilize SIMD instructions of Intel processors [81, 87, 88]

to exploit data-level parallelism or experiment on rich hardware environments such as supercomputers

[85] or clusters [87]. It is unclear that these approaches are available on low computational performance

machines like embedded systems. Besides, Internet of Things (IoT) era is about to seriously begin due

to mobile technology progressions, and large amounts of information are more and more generated

from mobile devices, wireless sensors, and others. Therefore the future needs a sorting method that is

available on any environment from embedded systems to high performance systems like servers.

To address the problem, I propose an FPGA-based sorting hardware called FACE [89], which com-

bines Sorting Network and Merge Sorter Tree. The proposed sorting hardware is customizable by

means of tuning design parameters, and I also provide an analytical model that accurately estimates the

sorting performance depending on the hardware configuration. In other words, due to these characteris-

tics designers can estimate sorting accelerator performance in advance and can implement the best one

that fulfills cost and performance constraints. In this chapter I detail the design and implementation,

and evaluate the proposed sorting accelerator in terms of the sorting performance and the hardware

resource usage. To allow every designer to easily and freely use this accelerator, the Register Transfer

Level (RTL) source code is available at [90].

My proposed sorting accelerator can be high performance by tuning design parameters, in that case,

not only the hardware resource usage but also the memory bandwidth has to be considered. In fact, the
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highest performance configuration in [89] suffers from the memory bandwidth limitation. To address

this problem, I propose a data compression mechanism for the sorting accelerator. Among lots of data

compression algorithms, I use an algorithm using the relative difference between values of continuous

locations, which is based on [91]. As sorting is proceeded, the relative difference between them be-

comes smaller. This means that the algorithm is quite suitable for sorting. Besides, the algorithm can

be implemented by a simple vector subtraction and addition. That is why I introduce this algorithm,

and the data compression mechanism can improve the memory bandwidth utilization while keeping the

operating frequency high.

The main contributions of this chapter are:

• To propose a high performance and customizable sorting accelerator with two sorting architec-

tures and also to propose a detailed analytical model, therefore designers can estimate sorting

accelerator performance in advance and can implement the best one that fulfills cost and perfor-

mance constraints,

• To propose a data compression mechanism for the sorting accelerator in order to mitigate the

bandwidth limitation of accessing the off-chip memory, and to show that the sorting accelerator

with the mechanism achieves better performance than without it,

• To release the RTL source code in Verilog HDL as an open-source hardware in order to allow

every designer to easily and freely use this accelerator, and to the best of my knowledge, this is

the first open-source sorting accelerator in the world that is high performance, is customizable,

and improves the memory bandwidth utilization.

4.2 Sorting Architectures
My proposed sorting accelerator takes advantage of the sorting network and the merge sorter tree. I

describe these sorting architectures.

4.2.1 Sorting Network

A sorting network [92] is an algorithm that sorts a fixed sequence of numbers by using a fixed sequence

of comparisons. The sorting network consists of two types of items, which are wires and comparators.

The wires are running from left to right, carrying values (one per wire) that traverse the network all

at the same time. Each comparator connects two wires. When a pair of values, traveling through a

pair of wires, encounters a comparator, the comparator swaps the values only if the top wire’s value is

greater than the bottom wire’s value. The sorting network benefits are to sort values in parallel and to be

implemented without complicated hardware. That is why the sorting network is a desirable component

for building high performance sorting hardware [93, 94, 95].
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Figure 4.1 shows a sorting network with 4-inputs and 4-outputs. This network realizes bubble sort,

since the largest value is carried to the bottom at first. By changing the connection of the comparators,

sorting networks can realize lots of sorting algorithms, such as even-odd merge sort, bitonic sort, bubble

sort, insertion sort, etc. In [93], authors implement several sorting networks on an FPGA and conclude

that Batcher’s even-odd merge sort network is the most efficient in terms of hardware resource usage

and throughput. Consequently, our proposed hardware uses this sorting network.

Figure 4.2 shows Batcher’s even-odd merge sort network [96] with 16-inputs and 16-outputs. This

sorting network consists of 63 comparators and 10 stages. Although it is possible to be implemented as

a purely combinational circuit, this case probably causes performance reduction because of large net-

work delay. To address this problem, it is a common way to implement this network as a pipelined cir-

cuit by inserting registers between each stage, which prevents a degradation of the operating frequency

and improves the network throughput [93]. This network is embedded in our proposed hardware.

4.2.2 Merge Sorter Tree

The merge sorter tree [97] has highly effective performance and good hardware resource usage. The

merge sorter tree is a data path that executes merge process and the data path consists of connecting

sorter cells as a perfect binary tree. Sorter cells compare two input-values and output one of them,
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depending on its comparison result.

Figure 4.3 shows how elements are sorted in the merge sorter tree. The merge sorter tree in Figure

4.3 has two input ports. I define the tree in Figure 4.3 as 2-way merge sorter tree. If a merge sorter tree

has k input ports, the tree is called k-way merge sorter tree. Now, I explain how elements are sorted in

this 2-way merge sorter tree.

First, at Cycle N, each way outputs integers of 2, and 1. Then, 2 and 1 are compared. The data

sequences in the leftmost FIFOs must be sorted. I define these data sequences as Units. In this example,

the sorted element 8 and 2 in the upper FIFO is a Unit, and the element 5 and 1 in the lower FIFO is

another Unit. The sorter cell outputs the smaller element depending on the comparison result, unless

the output FIFO of the sorter cell is full. At Cycle N+1, 1 is emitted from the root. At the same time,

2 and 5 are compared, and then the sorter cell outputs 2. At Cycle N+2, 2 is emitted from the root. At

the same time, the sorter cell outputs 5 depending on the comparison result between 8 and 5.

As shown in Figure 4.3, the Units are merged in the tree, and then the root of the tree emits the

sorted data sequence. In other words, the tree merges the two Units, and then generates the one Unit

composed of 1, 2, 5, and 8. If k-way merge sorter tree executes this process, the tree can merge k Units

and generate a larger Unit.

However, if the number of the Units to be merged is more than k, the data sequence passed through

the tree is not fully sorted yet. If so, the tree uses a buffer like off-chip memory in order to store the
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Figure 4.4 The merge sorter tree and off-chip memory. The tree sorts the initial data
sequence {8, 5, 2, 1} by using the memory.

data sequence. I explain this using a simple example shown in Figure 4.4.

In Figure 4.4, the off-chip memory is divided into two areas, which are Read Area and Write Area.

Read Area is used to hold the data sequence that is sent to the merge sorter tree. If k-way merge sorter

tree is used, this area is further divided into k areas and each divided area is allocated to each way. Here

k is 2, therefore Read Area is divided into two areas. Write Area is used to buffer the data sequence

emitted from the tree.

In Figure 4.4 (a), Read Area has an unsorted data sequence, which is {8, 5, 2, 1}. This data sequence

consists of 4 Units shown in Figure 4.4 (a). As mentioned above, Read Area is divided into two areas.

Hence, one has {8, 5}, the other has {2, 1}. First, 8 and 2 are sent to each way. These elements are

merged into one Unit, and then the Unit {2, 8} is written into the head of the Write Area, as shown in

Figure 4.4 (b).

After that, in Figure 4.4 (c), 5 and 1 are sent and merged. Then, as shown in Figure 4.4 (d), the Unit

{1, 5} is stored in Write area. This means that the entire data sequence in Read Area is passed through

the merge sorter tree and stored in Write Area. As shown in Figure 4.4 (d), the data sequence {2, 8, 1, 5}
in Write Area is not fully sorted, and has to be passed through the tree again. That is why if the number

of the Units to be merged is more than k, the data sequence passed through the tree is not fully sorted

yet.
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In Figure 4.4 (e) the 2 Units, {2, 8} and {1, 5}, are sent to the ways and are merged in the tree. The

operation of the tree is same as Figure 4.3. As shown in Figure 4.4 (f), the data sequence emitted from

the tree is fully sorted, which is {1, 2, 5, 8}.

4.3 Proposed Sorting Accelerator
4.3.1 Data Path

Figure 4.5 shows a data path of the baseline sorting accelerator of FACE. I implement it on an FPGA,

and verify that it accurately works by using a host PC. I design two modules of Initial Data Generator

and UART Controller for the verification and the performance evaluation.

I explain how the hardware sorts data sequences using Figure 4.6. For simplicity, the initial data
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sequence of 256 elements is a reverse-order data sequence from 256 to 1.

A data sequence for sorting is generated from Initial Data Generator. The module can support three

data-generation types, which are a random data sequence using Xorshift [98], a sorted data sequence,

and a reverse-order sorted data sequence. The data type is 32-bits integer. At first, a data sequence

emitted from the module is stored in the external memory via DRAM Controller.

After that initialization, the data sequence in the external memory is loaded and is sent to Sorting

Network via DRAM Controller. Sorting Network is Batcher’s even-odd merge sort network [96] with

16-inputs and 16-outputs. This means that this network can sort 16 elements. Thus, the initial data

sequence turns into 16 sorted data sequences by passed through this network. In other words, the

number of Units is 16 and one Unit has 16 elements as shown in Figure 4.6.

The data sequence passed through Sorting Network is stored in Input Buffer that consists of FIFO.

The stored elements must already be sorted. The data sequence stored in Input Buffer is sent to 512-bit

shift register. This shift register breaks down a 512-bits data into 16 elements, and then sends them to

Merge Sorter Tree.

For simplicity, I draw 4-way merge sorter tree in Figure 4.5. By comparing elements at every sorter

cell and storing outputs in the FIFOs in each cycle, the merged data sequence is emitted from the root

of the merge sorter tree. After passed through the tree, the data sequence composed of 16 Units turns

into 4 Units, each of which has 64 elements.

The data sequence emitted from the root of the merge sorter tree is sent to 512-bit shift register, and

then is packed into a 512-bits data. After packed, the data sequence is sent to Output Buffer, and then

is stored in the external memory via DRAM Controller. However, the data sequence is not fully sorted

yet. Thus, it is read from the memory, and then is sent to Sorting Network again. In this time, the

network is a mere data path because portions of the data sequence are already sorted.

The data sequence passed through the network is sent to the tree. In the tree, 4 Units are merged into

one Unit and then elements of the Unit are emitted from the root of the tree cycle by cycle. This means

that all of the emitted elements are fully sorted. The data sequence is stored in the external memory via

DRAM Controller, after passed through 512-bit shift register and Output Buffer.

To verify the result, the fully sorted data sequence in the external memory is loaded and is sent to

UART Controller via DRAM Controller. UART Controller sends it to the host PC by serial communi-

cation. The transferred data sequence is checked, using typical sorting software.

By passing the data sequence through Sorting Network and Merge Sorter Tree twice in this case, it

can be fully sorted. I define the process that passes the data sequence through Sorting Network and

Merge Sorter Tree as Phase. The number of required Phases for fully sorting the data sequence is

given by log# o f ways
# o f elements

16 where 16 is the number of sorted elements at Sorting Network in the

first Phase. For instance, in Figure 4.6 the number of required Phases is 2, because the number of ways
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and elements to be sorted is 4 and 256 respectively.

4.3.2 Control Logic

I describe a control mechanism to sort data sequences.

Depending on the number of ways and elements to be sorted, the number of required Phases is

decided. When Units are merged in the merge sorter tree, each Unit needs to be treated separately. If

not be separated, that sorting cannot be executed successfully, because invalid elements are mixed into

Units.

In Figure 4.7 (a), this example is demonstrated. Figure 4.7 shows a wrong case (a) and a correct case

(b) of merging Units (i.e. merging 3 and 4). I define Valid elements as the elements which should be

merged into one Unit in the merge sorter tree (i.e. 3 and 4). At Cycle N+1, 4 should be emitted from

the sorter cell, because 4 is a Valid element. However, in (a) 2 is emitted, which is an Invalid element,

hence this sorting cannot be done successfully.

To address this problem, we have proposed that the maximum value, which depends on the bit width

of elements, is inserted after Valid elements [99]. Figure 4.7 (b) shows how this method is applied. By

doing so, this sorting can be executed successfully, because 4 is emitted from the sorter cell at Cycle

N+1.

To realize this (Figure 4.7 (b)), a circuit that generates the maximum value to separate Units is

implemented in Input Buffer as shown in Figure 4.8. Each Input Buffer has a counter, which counts the
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number of emitted elements from this buffer. I define the number of elements in each Unit in Phase p

as Ep. When the counter value exceeds Ep, the maximum value is emitted from this buffer, and this

buffer keeps holding subsequent Units.

Output Buffer also has a counter, which counts the number of stored elements in Output Buffer as

shown in Figure 4.9. When the counter value exceeds Ep+1, all FIFOs in the merge sorter tree, the

counter of Input Buffer, and the counter of Output Buffer are reset. After this, the tree begins to merge

subsequent Units. Exceeding Ep+1 means that all elements of a Unit, which is generated in the merge

sorter tree, are stored in Output Buffer.

Due to this mechanism, each Unit is treated separately and it can be guaranteed that elements are

sorted successfully. In Figure 4.6, in the 1st Phase Ep is 16, Ep+1 is 64, and in the 2nd Phase Ep is 64,
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Ep+1 is 256.

4.3.3 Performance Model

I analyze theoretical performance of the proposed sorting accelerator. To analyze it, I assume that the

DRAM bandwidth is infinity and the latency is 1 cycle. Depending on the number of ways and elements

to be sorted, I calculate the number of required cycles to fully sort them. This can be calculated by

summation of the number of cycles in each Phase.

As described in Section 4.3.1 and Section 4.3.2, multiple Units are merged into one Unit in the merge

sorter tree. I call this process Iteration. In Figure 4.6, 16 Units generated from the sorting network turn

into 4 Units by passed through the merge sorter tree in the 1st Phase. This means that four Iterations

are executed in the 1st Phase. In other words, the number of Iterations in the 1st Phase is 4, and that

is 1 in 2nd Phase. I define the number of Iterations, ways, and elements to be sorted by the proposed

system as I, k, and N respectively. In nth Phase, the number of Iterations for nth Phase is given by

In =
N

16kn (4.1)

where 16 is the number of sorted elements at the sorting network in the 1st Phase.

After Iteration, all FIFOs in the merge sorter tree are reset (Section 4.3.2). Therefore, a few cycles

overhead exists between each Iteration. This overhead OHiter is given by

OHiter = log2 k + 1 (4.2)

and OHiter is equal to the number of stages of the merge sorter tree.

The beginning of each Phase also has an overhead. The merge sorter tree cannot sort data sequences

unless elements are stored in all of the leftmost FIFOs. Elements have to be stored in these FIFOs im-

mediately, because they are empty at the beginning of each Phase. In other words, this is the overhead.

I define the number of required cycles for this buffering as α, and then the overhead OHphase is given

by
OHphase = kα (4.3)

where α is tens of cycles at most.

I define the number of required cycles for nth Phase as Cn. This is given by the following formula.

Cn = N + In × OHiter + OHphase (4.4)

I explain this formula in three parts. First, the throughput of the merge sorter tree is one element per

cycle. Thus, it takes N cycles to emit all elements from the merge sorter tree. Second, in nth Phase, the

number of Iterations is In. Thus, the number of cycles for the overhead of all Iterations is In × OHiter,

because OHiter cycles overhead exists between each Iteration. Third, the beginning of each Phase
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Figure 4.10 Data path of the proposed sorting accelerator with the duplicated merge sorter trees

has OHphase cycles overhead as mentioned. Consequently, Cn can be calculated by summation of the

number of these cycles.

Hence, C f ully, which is the number of required cycles to fully sort the data sequence, is given by

C f ully =

n∑
i=1

Ci (4.5)

where n is the number of required Phases. As described in Section 4.3.1, the number of required Phases

to fully sort the data sequence is logk
N
16 . In other words, C f ully can be also given by the following

formula.

C f ully =

logk
N
16∑

i=1

{N + N
16ki (log2 k + 1) + kα} (4.6)

The sorting process time can be estimated by means of dividing C f ully by the operating frequency.

4.3.4 Improvement by Duplication of the Merge Sorter Tree

I describe how to improve the proposed sorting accelerator. One of the approaches to achieve this is to

improve the sorting logic throughput. I propose duplication of the merge sorter tree. This approach is

simple, yet effective for the throughput improvement.

Figure 4.10 shows a data path of the sorting accelerator with the duplicated merge sorter trees. The

duplicated trees work in parallel. Thus, the more the tree is duplicated, the higher the sorting logic

throughput is.

By taking advantage of the performance model described in Section 4.3.3, it is possible to analyze

theoretical performance of the sorting accelerator with the duplicated trees. If the number of duplicated
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trees is defined as P, the number of required cycles for nth Phase is given by Cn
P . This is because the

duplicated trees sort data sequences in parallel. In the last Phase, the parallelism benefit cannot be

obtained. Thus, Clast, which is the number of required cycles for the last Phase, is given by

Clast = N + 1 × OHiter + OHphase (4.7)

where the number of Iterations for the last Phase is definitely one. Therefore C f ully_dup, which is the

number of required cycles to fully sort the data sequence by the sorting accelerator with the duplicated

trees, is given by the following formula.

C f ully_dup = Clast +

(logk
N
16 )−1∑

i=1

Ci

P
(4.8)

Hence, the sorting process time is estimated, depending on the number of ways, duplicated trees, and

elements to be sorted by the sorting accelerator. Besides, designers can implement a sorting accelerator

composed of required hardware resources, by means of tuning the number of ways and duplicated trees.

As mentioned before, the higher the sorting logic throughput is, the higher performance the ac-

celerator achieves. Using the operating frequency F and P, the sorting logic throughput is given by

F × 4Bytes × P × 2 where F × 4Bytes depends on the throughput of the merge sorter tree. The tree op-

erates at F, and emits one element per cycle from the root, whose data size is 4Bytes. And the constant

2 comes from DRAM read and write.

However, as the sorting logic throughput is higher, the sorting performance becomes sensitive to

the memory bandwidth. This means that the memory bandwidth becomes the performance bottleneck.

Therefore, it is truly important to consider approaches which can improve the memory bandwidth

utilization while keeping the operating frequency high. I present an effective way to realize this in the

next section.

4.4 Data Compression for the Sorting Accelerator
4.4.1 Algorithm

To mitigate the bandwidth limitation of accessing the off-chip memory, I adopt data compression.

Data compression has been successfully adopted in a number of different contexts in modern computer

systems as a way to conserve storage capacity and/or data bandwidth (e.g., downloading compressed

files over the Internet or compressing off-chip memory) for several decades. Many data compression

algorithms are proposed in prior works, but it is necessary to decide the most appropriate algorithm

according to data types, applications, and hardware.

In general, data compression algorithms take advantage of redundancy in the data used by appli-

cations [100, 101, 102]. However the data handled in sorting is generally random, and there is little
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redundancy in the data used by the application. Therefore such algorithms like [100, 101, 102] are not

effective against sorting. Well then, which algorithm is promising for the application?

I focus on a data compression algorithm based on [91], which uses the relative difference between

values of continuous locations. As sorting is proceeded, the relative difference between them becomes

smaller. That is why the algorithm is quite suitable for sorting. The data compressed by the algorithm is

represented in a compact form using a common base value and an array of relative differences (deltas).

Figure 4.11 shows the example diagram of the compression and decompression method described in

[91]. As shown in Figure 4.11, the compression and decompression method can be implemented by a

simple vector subtraction and addition. In Figure 4.11 (a), the compressed data is represented in Base

V0 and the array of ∆1 ∼ ∆3, using 7Bytes instead of 16Bytes. This results in saving 9Bytes of the

originally used space. The compressed data can be easily decompressed by the addition of each delta

to Base shown in Figure 4.11 (b).

4.4.2 Adoption of the Data Compression against the Proposed Sorting Acceler-
ator

Figure 4.12 shows the adoption of the data compression against the proposed sorting accelerator. As

described in Section 4.3.1, 512-bit shift register packs 32-bits elements emitted from the root of the

merge sorter tree into a 512-bits data. In Figure 4.12 if two compressible 512-bits data are successive,

the two data are packed into a 512-bits data. For instance, if all 512-bits data packed by the shift
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Figure 4.12 Adoption of the data compression

register are compressible, the data amount transferred to the external memory is a half of the original

one. This means that it is possible to theoretically obtain double performance if the memory bandwidth

is the performance bottleneck. In other words, it is possible to estimate the performance improvement

ratio by calculation of the compression ratio against all 512-bits data packed by the shift register under

such situation. I define the process to pack two compressible 512-bits data into a 512-bits data as 2x

compression if the two data are successive. The 2x compression is given by

2xCompRatio = 1.0 + (2.0 − 1.0) × incidence (4.9)

where ”incidence” is the occurrence rate of consecutive two compressible 512-bits data against all

512-bits data packed by the shift register.

4.4.3 Data Path

Figure 4.13 shows the data path of the proposed sorting accelerator with the compressor and decom-

pressor. The compressor packs two compressible 512-bits data into a 512-bits data like Figure 4.14,

and the decompressor unpacks compressed data read from the external memory.

The encoding format for the 2x compression consists of four parts, which are Base, Compressed,

Void, and Flag shown in Figure 4.14. Base and Compressed represent a base value and an array of

deltas. The region of Base and Compressed stands for a compressed original data emitted from 512-

bit shift register shown in Figure 4.12. The data emitted from the shift register consists of 16 sorted

elements. For instance, in Figure 4.12 the 16 elements from V0 to V15 are sorted, and V0 is the smallest
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Figure 4.13 Data path of the proposed sorting accelerator with the compressor and decompressor

Base0 Base1 Compressed0 Compressed1 Void Flag 

512bits 

32bits 195bits 33bits 25bits 

Name Description 

Base A base value 

Compressed An array of 15 deltas.  
The delta size is 13bits.  

Void Unused space 

Flag The marker to check whether 
or not this data is compressed.  
The marker is 0x0000_0000_1 

Figure 4.14 The encoding format for the 2x compression

and V15 is the largest in the 16 elements. The most simple way is to choose the smallest one as Base and

is that the other 15 elements are converted into the 15 13-bits deltas if ∆ls, which is a difference between

the largest and the smallest, ≤ 0x1fff. And then, if a subsequent 512-bits data is also compressible, the

compressor converts the two original data into a 512-bits data shown in Figure 4.14. On this occasion,

Flag is set to 0x0000_0000_1 in order to identify that the 512-bits data is encoded. If the compressor

cannot convert two original data into a 512-bits data, this module outputs the two original data one by

one. The region corresponding to Flag of the two data is never 0x0000_0000_1, because the elements
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in the two data are sorted in descending order from the Most Significant Bit (MSB). Due to this,

the decompressor can identify whether or not the data read from the external memory is encoded by

checking the region. I define the remained part in the encoding format as Void that is unused space.

The simple way to generate Compressed cannot efficiently work if a gap between the largest and

the smallest is too large. To address this problem, I propose modified compression and decompression

designs based on the prior approach shown in Figure 4.11. Unlike Figure 4.11 (a) the compression

design subtracts the neighbor value from each value in order to generate the array of ∆1 ∼ ∆3. Due to



Chapter 4 A High Performance FPGA-based Sorting Accelerator with a Data Compression Mechanism59

this, in the 16 elements from V0 to V15 shown in Figure 4.12, V0 is Base and the other 15 elements are

converted into the 15 13-bits deltas if all deltas ≤ 0x1fff. Because each delta is smaller than ∆ls, this

approach has more likelihood to generate Compressed than the simple way. In the decompression, the

pipelined addition is executed unlike the simple vector addition shown in Figure 4.11 (b). Although the

decompression design can be implemented as a purely combinational circuit, this probably causes the

operating frequency reduction due to the large delay. That is why I choose the pipelined design like the

sorting network described in Section 4.2.1.

Figure 4.16 shows the data path of the compressor. This module consists of three components, which

are Base+Delta Compressor, Data Packer, and temp FIFO. Base+Delta Compressor executes a simple

vector subtraction to compress a 512-bit data emitted from the 512-bit shift register. At the same time,

the original data is stored in temp FIFO. If the original data is not compressible, temp FIFO outputs all

stored data immediately. Data Packer generates a formatted 512-bits data shown in Figure 4.14 if two

compressible 512-bits data are successive. On this occasion, temp FIFO is reset.

Figure 4.17 shows the data path of the decompressor. This module has three components, which are

FIFO, temp FIFO, and Base+Delta Decompressor. The FIFO consists of internal memory resources

(hard macros) of the FPGA, and the data read from the external memory is stored in the component.

The stored data in the FIFO is sent to temp FIFO, and then this component keeps holding the data

unless the dequeue signal is asserted. If the data is compressed one, the data splits into two parts, and

then Base+Delta Decompressor picks up and decompresses the parts one by one, at the same time the

dequeue signal is asserted. If not, the data is sent to Sorting Network or UART Controller directly, and

the dequeue is done simultaneously. As mentioned before, the decompressor can identify whether or

not the data is compressed by checking Flag shown in Figure 4.14.

4.4.4 Control Logic

As described in Section 4.2.2, the data emitted from the merge sorter tree is sequentially written into

the head of the Write Area like Figure 4.18 (a). The figure shows that the data emitted from 4-way

merge sorter tree is written into the external memory via DRAM Controller. The buffered data is sent

to each way of the tree through Sorting Network in the next Phase. Without the data compression in

Figure 4.18 (a), the data sent to each way in the next Phase is correctly written into each region of the

memory by tuning data size of each way and grain size of data written into the memory. With the data

compression in Figure 4.18 (b), simple sequential write can mixes each region data that should be sent

to each way, because each region data can be non-uniform due to the data compression. In that case,

sorting cannot be accurately performed because incorrect data is sent to each way.

To address this problem, I present a mechanism named Throttling, which tunes grain size of the data

written into the external memory. Figure 4.19 shows the overview of Throttling. DRAM Controller



Chapter 4 A High Performance FPGA-based Sorting Accelerator with a Data Compression Mechanism60

Store 

from DRAM Controller 

Data 

(a) w/o Compression 

Store 

from DRAM Controller 

Data 

(b) w/ Compression 

Way0  
Region 

Way1  
Region 

Way2  
Region 

Way3  
Region 

Each data is mixed in a region!! 
Each data has to be stored in each region. 

DRAM DRAM 

Figure 4.18 The data emitted from the merge sorter tree is sequentially written into the
head of the Write Area, without (a) and with (b) the data compression.

writes the data emitted from the tree into the head of the Write Area. At the last of completion of

writing data sent to a way in the next Phase, DRAM Controller gradually throttles the grain size. By

doing this, emitted data is correctly written into a corresponding region without mixing each region

data. The flag to alert that writing data almost finishes is asserted when writing data address crosses

Threshold of a region.

After writing data into a corresponding region finishes, DRAM Controller sets the writing address

as the head of the next region and then sequentially writes the data emitted from the tree. By repeating

this process, all of emitted data is correctly written into the external memory. When setting the writing

address as the head of the next region, the writing address is preserved. The address is used as a pointer

to identify how much data each way should read in the next Phase.

4.5 Evaluation
4.5.1 Implementation

As a platform for the proposed FPGA accelerator, I use the Xilinx Virtex-7 FPGA VC707 eval-

uation kit [103]. This kit originally has the Virtex-7 XC7VX485T and 1GB DDR3 SO-DIMM

(800MHz/1600Mbps) memory, but I replace this memory with 4GB DDR3 SO-DIMM memory in

order to sort larger data sequences.

The sorting logic is implemented in Verilog HDL. To implement DRAM Controller, I use an IP core

provided by Xilinx [104]. As a synthesis tool, I use Vivado 2014.4 [30]. In the accelerator without the
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Figure 4.19 Writing the data emitted from the merge sorter tree by Throttling

data compression, I set the synthesis options as default, and set the synthesis options as performance-

specific when the accelerator uses the data compression. The placed and routed logic meets all timing

constraints. All implemented logics on the FPGA operate at 200MHz and the memory bus operates

at 800MHz. Consequently, between the FPGA and the DRAM, the maximum data-transfer speed is

12.8GB/s.

4.5.2 Memory Bandwidth

As mentioned above, in order to achieve high sorting performance, it is necessary to maintain memory

bandwidth that can tolerate the sorting logic throughput. The memory bandwidth is tunable by changing

grain size of the read and written data from/into the external memory. I evaluate how much memory

bandwidth the hardware platform for the sorting accelerator can ensure.

Figure 4.20 shows the memory bandwidth when randomly reading and writing 4GB data. The x-axis

shows the grain size of the read and written data from/into the external memory. As shown in Figure

4.20, the larger the grain size is, the larger the memory bandwidth of both cases is. However, as the

grain size is larger, the FIFO depth to receive and send data from/to the memory is also larger. This

leads to the increase in the hardware resource usage. Therefore, I consider the balance between the

memory bandwidth and the hardware resource usage, and set DRAM Write per 8k Bytes and DRAM
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Figure 4.20 The memory bandwidth when randomly reading and writing 4GB data, de-
pending on grain size of the read and written data

read per 4k Bytes as the maximum.

4.5.3 Sorting Performance without Data Compression

I compare the sorting performance of the proposed hardware with Intel Core i7-4770 operating at

3.4GHz. The data-sequence size is 256M elements, whose data type is 32-bits integer. I use merge

sort and quick sort for the software running on Intel Core i7-4770, implement them in C language,

and compile them with gcc 4.8.2 (-O3 optimization). These two applications are executed as single

thread of Intel Core i7-4770. For measurement of the sorting process time, in the case of the sorting

accelerator I get sorting execution cycles stored in the hardware counter and calculate the time, and I

use gettimeofday in case of the applications.

Figure 4.21 shows the sorting performance comparison between the software and the proposed sort-

ing accelerator. In Figure 4.21, 8-way represents the sorting accelerator with 8-way merge sorter tree

and 8-way/2-parallel represents the hardware with two 8-way merge sorter trees. xorshift, sorted, and

reverse represent that the initial data-sequence types are a random data sequence, a sorted data se-

quence, and a reverse-order sorted data sequence respectively. Moreover, Estimated stands for the

theoretical performance obtained from the performance model described in Section 4.3.3 and Section

4.3.4.

In xorshift, the 4-way performance is 2.03x and 1.61x, compared with merge sort and quick sort
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Figure 4.21 Sorting performance comparison between the software and the proposed
sorting accelerator

respectively. The 8-way performance is 3.05x and 2.42x; the 16-way performance is 4.07x and 3.24x

than the two applications. This shows that the more the number of ways is increased, the higher the

sorting performance is. This is because the number of required Phases to fully sort the data sequence

is decreased since the more the number of ways is increased, the more the number of elements to be

sorted in the merge sorter tree is increased.

Besides, the more the merge sorter tree is duplicated, the higher the sorting performance is. For

instance, the 4-way/2-parallel performance is 1.88x and the 4-way/4-parallel performance is 3.21x by

compared with 4-way. This is because the duplicated trees sort a data sequence in parallel. In this

chapter, 8-way/8-parallel results in the highest performance that is 10.06x and 8.01x compared with

merge sort and quick sort respectively.

Although the increase in the number of duplicated trees leads to higher sorting performance, the

required memory bandwidth is increased. In other words, to improve the sorting logic throughput,

the required memory bandwidth becomes larger. Using P, the sorting logic throughput is given by

200MHz × 4Bytes × P × 2 = 1.6P GB/s, which is described in Section 4.3.4,

If the merge sorter tree is not duplicated (4-way, 8-way, and 16-way), the sorting performance is

equal to the estimated one, because the sorting performance is insensitive to the memory bandwidth. In

this case, the sorting logic throughput is 200MHz×4Bytes×1×2 = 1.6GB/s. The memory bandwidth

utilization of this hardware is 12.5% of the maximum memory bandwidth. This means that there is
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Figure 4.22 Hardware resource usage of the proposed sorting accelerator

sufficient margin in the memory bandwidth, and the sorting logic operates with an efficiency of 100%.

However, the more the merge sorter tree is duplicated, the more the memory bandwidth utilization

is close to 100%. This means the sorting performance becomes sensitive to the memory bandwidth. In

particular, the sorting logic throughput of 8-way/8-parallel is 200MHz × 4Bytes × 8 × 2 = 12.8 GB/s,

which is equal to the maximum memory bandwidth. However, the practical memory bandwidth is

lower than the maximum due to the overhead of DRAM Controller. When this configuration, I set the

maximum grain sizes that represent DRAM Write per 8k Bytes and DRAM read per 4k Bytes shown

in Figure 4.20, in order to sustain the highest memory bandwidth. The harmonic mean of the read and

write memory bandwidth is 8.62GB/s, which means that the average memory bandwidth is insufficient

to tolerate the sorting logic throughput. That is why the sorting performance degradation occurs, which

is 70.2% of the estimated one, and the ratio is almost same as that of the average memory bandwidth

to the sorting logic throughput.

As shown in Figure 4.21, the performance of xorshift, sorted, and reverse of the sorting accelerator

are almost same. This means that the sorting accelerator is independent on the data-sequence type. On

the other hand, the software considerably depends on it. Especially, the results of sorted and reverse of

quick sort clearly show this aspect because of the worst-case complexity of O(n2).

Figure 4.22 shows the hardware resource usage of the sorting accelerator. In Figure 4.22, FF, LUT

Logic, LUT RAM, and Block RAM represent a flip-flop (FF), a lookup table (LUT) for combinational

logic, LUT for distributed memory, and an internal memory (hard macro) of the FPGA. As shown in
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Figure 4.23 The sorting performance of 8-way/8-parallel with and without the data com-
pression mechanism when the initial data-sequence types is a reverse-order sorted data
sequence

Figure 4.22, the logic usage except Block RAM is almost within 20%. Because Block RAM is used

to implement Input Buffer and Output Buffer, the more the number of ways and duplicated trees is

increased, the larger the Block RAM usage is. Also, as the number of duplicated trees is increased,

the depth of Input Buffer and Output Buffer is also larger to sustain the required memory bandwidth.

Therefore, the Block RAM usage optimization has to carefully consider the balance of the memory

bandwidth and the hardware cost.

4.5.4 Sorting Performance with Data Compression

I demonstrate that performance of the sorting accelerator with the data compression. To evaluate how

the data compression is effective, I use 8-way/8-parallel suffering from the memory bandwidth bottle-

neck. 8-way/8-parallel with the data compression operates at 200MHz, and the memory bus operates

at 800MHz. The data set is same as Section 4.5.3.

Figure 4.23 shows the sorting performance of 8-way/8-parallel with and without the data compres-

sion mechanism when the initial data-sequence types is a reverse-order sorted data sequence. The

estimated performance shown in Figure 4.23 is same as 8-way/8-parallel estimated performance shown

in Figure 4.21. In this data set, all data is compressed because each delta is very small, which means

that Figure 4.23 shows the sorting performance when all data is compressible. While 8-way/8-parallel

without the data compression mechanism achieves 74% of the estimated sorting performance, 8-way/8-
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Figure 4.24 The sorting performance of 8-way/8-parallel with and without the data com-
pression mechanism when the initial data-sequence types is a random data sequence using
Xorshift

parallel with it does 95% due to alleviation of the memory bandwidth limitation. The small gap between

sustained and estimated arises from Throttling overhead, because Throttling gradually reduces the grain

size of the data, which leads to the memory bandwidth reduction. Besides, in the first Phase the sorting

accelerator reads uncompressed data from the external memory, which is also a part of the gap.

Figure 4.24 shows the sorting performance of 8-way/8-parallel with and without the data compres-

sion mechanism when the initial data-sequence types is a random data sequence using Xorshift. With

the data compression mechanism, the sorting performance is slightly improved. In order to investigate

the reason why the improvement ratio is small, I implement a software simulator to evaluate the data

compression ratio in each Phase. Figure 4.25 shows that result. The number of required Phases of

8-way/8-parallel is 8, which is calculated by using the formula described in Section 4.3.1. The com-

pression ratio shown in Figure 4.25 is calculated by using the formula described in Section 4.4.2, for

instance if all data is compressible, the compression ratio is 2. Gmean shown in Figure 4.25 represents

the geometric mean of all compression ratios from Phase 0 to Phase 7. As shown in Figure 4.25, while

no data is compressed in early Phases, the compression ratio is improved as sorting is proceeded. By

repeating Phase, each delta becomes smaller and compressible data begins to appear from Phase 4.

Gmean is 1.301, and it is clear that in xorshift the performance improvement of 8-way/8-parallel with

the data compression is due to the data compression in the latter half of the Phases. In other words,

the improvement is not quite because the average compression ratio is low. Besides, Throttling is exe-
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Figure 4.25 The data compression ratio in each Phase of 8-way/8-parallel

cuted in all Phases even if no data is compressed in the early Phases. This overhead also prevents the

performance improvement.

Well then, is the data compression mechanism truly effective against a random data sequence with

high compression ratio? I investigate it by using data sets with small deltas, which are generated by

narrowing values. Figure 4.26 shows that result. The x-axis in Figure 4.26 represents bit width of a

value, and the y-axis represents sorting process time and average compression ratio (Gmean) respec-

tively. For instance, when the bit width is 31, the sorting process time and the average compression

ratio are same as that of 8-way/8-parallel with the data compression shown in Figure 4.24 and Gmean

shown in Figure 4.25. As shown in Figure 4.26, average compression ratio is improved as bit width is

reduced. This is because compressible data is increased as each delta becomes smaller by narrowing

values. Also, it is obvious that as average compression ratio is improved, sorting process time is shorter.

Given that result, the data compression mechanism can improve the sorting performance in a random

data set if the average compression ratio is high.

Figure 4.27 shows the hardware resource usage of 8-way/8-parallel with and without the data com-

pression mechanism. The hardware resource usage of 8-way/8-parallel without the data compression

mechanism is same as that of 8-way/8-parallel shown in Figure 4.22. With the data compression mech-

anism, the increase rates of FF, LUT Logic, LUT RAM, and Block RAM are 3.17%, 12.4%, 3.01%,

and 1.46% respectively. In particular, the increase rate of LUT Logic is largest between them in order

to implement subtractors and adders for the compressor and decompressor. The increase rates of FF
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Figure 4.26 The sorting process time and average compression ratio using a random data
sequence with small deltas

and LUT RAM are due to implementation of temp FIFO and state machines for the data compression

mechanism. The increase rate of Block RAM depends on FIFO of the decompressor. The increase rate

of Slice is 14.55%. A Slice is a term used by Xilinx, and it is a logic component including several

LUTs and FFs. In other words, the increase rate of LUT Logic is dominant of that of Slice.

4.5.5 Discussion

I evaluated the sorting accelerator in terms of the sorting process time and the hardware resource usage.

These results show that the more the number of ways and duplicated trees is increased, the higher

the sorting performance is, although it needs more hardware resources. Well then, if same hardware

resource usage, which customized hardware achieves the highest sorting performance?

Figure 4.22 shows that the hardware resource usage is almost same among three configurations,

which are 4-way/4-parallel, 8-way/2-parallel, and 16-way. This means that if the total number of Input

Buffers is same, the hardware resource usage is almost same. In the three customized hardware, the

results of 4-way/4-parallel, 8-way/2-parallel, and 16-way are 5.05sec, 5.93sec, and 8.08sec. Thus,

4-way/4-parallel achieves the highest sorting performance. This result means that if same hardware

resources are used, the hardware that has more duplicated trees can achieve higher performance. This

is due to the sorting logic throughput described in Section 4.5.3.

Figure 4.28 shows relationship between the performance and the hardware resource usage. The x-
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Figure 4.27 The hardware resource usage of 8-way/8-parallel with and without the data
compression mechanism

axis and y-axis stand for the number of consumed slices and the speed-up ratio compared with merge

sort. As mentioned before, if the total number of Input Buffers is same, the hardware resource usage

is almost same — (4-way/2-parallel and 8-way), (4-way/4-parallel, 8-way/2-parallel, and 16-way),

(16-way/2-parallel and 8-way/4-parallel), and (16-way/4-parallel and 8-way/8-parallel). However, it

is found that the hardware, which has more duplicated trees, consumes slightly more slices. This is

because control logics for the duplicated trees are also duplicated.

I draw three areas in Figure 4.28. The left is for cost aware systems. I define the borderline of this

area as the number of available slices on the Artix-7 XC7A100T that is used in the Digilent Nexys4

board [105]. The middle is for cost-performance aware systems. I define the upper border of this

area as the number of available slices on the Kintex-7 XC7K325T that is used in the Xilinx Kintex-

7 FPGA KC705 Evaluation Kit [106]. If more performance-aware systems are required, they need

larger devices like the Virtex-7 FPGAs. As shown in Figure 4.28, the designs except 16-way/4-parallel

and 8-way/8-parallel are within the left area, and the other designs are within the middle area. This

means that most of the presented designs in this chapter can be implemented on low-end devices and

our proposed accelerator is available on various environments depending on constraints of the cost and

performance. In [107], the proposed sorting accelerator is implemented on a low-end FPGA, and the

system achieves 1.28x sorting performance than a desktop computer. I release the RTL source code as

an open-source hardware. Hence, designers can customize a sorting accelerator composed of required
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Figure 4.28 Relationship between the performance and the hardware resource usage

hardware resources by means of tuning the number of ways and duplicated trees. However, note that if

the number of duplicated trees is increased, it is crucial to consider the memory bandwidth utilization

like 8-way/8-parallel.

8-way/8-parallel achieves up to 10.06x speed-up compared with single thread of Intel Core i7-4770

operating at 3.4GHz. In comparison with the systems using the sorting network [93, 94, 95], our pro-

posed system can sort more elements at higher speeds. However, the sorting performance is limited

because of the insufficient average memory bandwidth. To overcome it, the data compression mecha-

nism is proposed and attached to 8-way/8-parallel. The experimental result show that 8-way/8-parallel

with it achieves 95% of the estimated performance because of alleviation of the memory bandwidth

limitation. To implement the data compression mechanism, several hardware resources, especially

LUT Logic, are utilized because of the subtractors and adders for the decompressor and compressor

respectively.

I rebuild the analytical model according to the sorting throughput, the memory bandwidth, and the

average compression ratio. If the memory bandwidth is insufficient against the sorting throughput, I

define the number of required cycles to fully sort the data sequence by the sorting accelerator as x.

Using the sorting throughput, the memory bandwidth, and x, the ratio m of the memory bandwidth

against the sorting throughput is given the following formula.

m = 1 −
(x −C f ully_dup)

C f ully_dup
=

memory bandwidth
sorting throughput

(4.10)
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The formula can be solved for x and shown as the following formula.

x = 2 ×C f ully_dup − m ×C f ully_dup (4.11)

With the data compression mechanism, the memory bandwidth utilization is improved and x can be

given by
x = 2 ×C f ully_dup − c × m ×C f ully_dup (4.12)

where c is the average compression ratio.

4.6 Related Work
In recent years, FPGAs have benefited from technology process advances to become significant alter-

natives to ASICs, and lots of companies and research institutes have been interested in them. Due to

the trend, several studies have proposed sorting hardware with FPGAs [95, 94, 108, 109, 93, 97].

The sorting network is one of the most famous sorting architectures, and most studies focuses on it

[95, 94, 108, 109, 93]. In [93, 94, 95], FPGA-based systems with sorting networks are implemented and

evaluated in terms of circuit areas, throughputs, and power consumptions. [109] proposes a Domain

Specific Language (DSL) and a compiler to automatically generate sorting networks with optimized

throughput and area efficiency. As mentioned before, a sorting network is easy to be implemented

in hardware due to simplicity of the architecture, but is unsuitable for larger data sequences. This is

because more comparators are required to sort them, and this causes the circuit area increase and the

operating frequency degradation. Therefore, the sizes of these data sequences are small. In [93], if the

data-sequence size is less than 8, it can be fully sorted only in the sorting network. However if not, the

CPU merges these sorted portions.

In addition to the sorting network, the merge sorter tree is proposed in [97, 108]. In particular, [108]

proposes a special merge sorter tree that can handle 6 elements per cycle, while our system can do only

one element per cycle. Due to this, the system performance is about 7x than our system. However, the

merge sorter tree, which can handle multiple values per cycle, is truly difficult to be operated at high

clock frequencies. I also implement the tree that can handle 4 elements per cycle, and then in the RTL

simulation the sorting accelerator with the tree works successfully. However, the logic can operate at

most 140MHz according to the post-place and route timing report. Therefore, to realize the method

proposed in [108], it definitely needs high-level optimization techniques. Unlike [108], our sorting

accelerator is simple, relatively high speed, customizable, and the RTL source code is released as an

open-source hardware. These are significant differences with the prior work and I have never seen such

a sorting hardware.

As mentioned before, as the sorting logic throughput is higher, it is truly important consider ap-

proaches which can improve the memory bandwidth utilization while keeping the operating frequency
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high. However in [108], the proposed hardware has massive memory bandwidth and the authors do not

consider that problem. In contrast to [108], I propose a data compression mechanism for the sorting

accelerator to mitigate the bandwidth limitation of accessing the off-chip memory. The experimental

results show that the sorting accelerator with the mechanism achieves better performance than without

it. To the best of our knowledge, no related work proposes data compression mechanisms for sort-

ing hardware and evaluates the effectiveness. This is also a significant difference with these previous

studies.

4.7 Summary
In this chapter, I presented the acceleration approach for sorting application. My proposed accelerator

uses two sorting architectures that are the sorting network and the merge sorter tree, and I detailed the

design and implementation. The most characteristic point of the proposed system is customizable, and

I also provided a detailed analytical model that accurately estimates the sorting performance depending

on the hardware configuration. Due to these characteristics, designers can estimate sorting accelerator

performance in advance and can implement the best one that fulfills cost and performance constraints.

The highest performance configuration, 8-way/8-parallel, sorts 256M 32-bits integer elements at

10.06x and 8.01x faster than merge sort and quick sort respectively. However, the sorting performance

is limited because of the insufficient memory bandwidth. To address this problem, I proposed the

data compression mechanism based on the algorithm using a base value and an array of deltas. As a

result, 8-way/8-parallel with the data compression mechanism can achieve up to 95% of the estimated

performance, while 8-way/8-parallel without it does about 70%.

In order to allow every designer to easily and freely use this accelerator, the RTL source code is

released as an open-source hardware. To the best of our knowledge, this is the first open-source

sorting accelerator in the world that is high performance, is customizable, and improves the mem-

ory bandwidth utilization. All the code used to obtain the results in this chapter is also available at

https://github.com/monotone-RK/FACE.
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Chapter 5

Essential Components for Efficient
Development Infrastructure

5.1 Motivation
In this chapter, I describe what is important for efficiently developing FPGA-based accelerators.

As mentioned before, in order to develop FPGA-based hardware, designers get to work on the RTL

modeling with HDL like VHDL or Verilog HDL after the design specification is determined. Al-

though development toolkits like HLS are proposed to mitigate the design stress and to improve the

productivity, the ease of programmability, performance, resource usage and efficiency can vary from

one technology to another, and there is usually a tradeoff between these characteristics as described in

Chapter 2. Besides, it is not easy to choose the best development framework for implemented appli-

cations and this is mostly dependent on programmer experience. That is why designers still have to

do RTL modeling using HDL, and RTL simulation is an important step in ensuring that the designed

hardware behavior meets the design specification.

However, designing large-scale circuits and using large data sets for applications running on the

circuits can lead to long RTL simulation times, which means that traditional RTL simulators cannot

finish the circuit behavior verification within a realistic time frame. Besides, FPGA capacity has been

increased year after year, for instance [110] reports that Xilinx FPGA capacity has increased over 6x

in less than 5 years. Figure 5.1 shows the graph cited from [110]. FPGAs will be larger thanks to

transistor scaling and stacking, which leads to more RTL simulation time. Therefore high-speed RTL

simulation environments are essential in the future.

Another important point is that designers have to consider how to efficiently utilize and connect hard

blocks like memory and DSP in addition to LBs in order to implement lots of stream computation units

on an FPGA that can work at high speeds in parallel. This is mentioned in Chapter 2 and I demonstrated

the validity from the development of the two proposed accelerators. In stencil computation and sorting,

computation units like MADD and the merge sorter tree are pipelined and duplicated to exploit the
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Figure 5.1 The capacity increase in Xilinx FP-
GAs cited from [110]

computation throughput and parallelism. In particular, stencil-computation accelerator uses the tiling

technique, which decomposes the data set, in order to further exploit parallelism. In this chapter, I

discuss that these findings are valid on other hardware platforms and in the other computation kernels

described in Chapter 2.

5.2 High-speed RTL Simulation Overview
In this chapter, I propose an efficient verification environment enabling high-speed RTL simulation for

development of FPGA accelerators called SimVerilog. Figure 5.2 shows the SimVerilog overview. To

build SimVerilog I used two previously proposed tools, which are ArchHDL [51] and Pyverilog [111].

To make the RTL simulation more efficient, there are several prior studies that focus on building

high-speed RTL simulation environments and C/C++ are often used to build them. Authors in [51]

propose ArchHDL, which is a C++11-based library for RTL modeling and simulation, and evaluate

the effectiveness under multicore environment. ArchHDL is implemented in C++ yet the coding style

is similar to Verilog HDL, and the authors also propose a code translator that converts ArchHDL code

into Verilog HDL code. However, hardware is mostly designed in Verilog HDL because it is still the

de facto standard. Therefore, I focus on translating Verilog HDL source code into ArchHDL code in
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Figure 5.3 The correspondence relationship between Verilog HDL and ArchHDL

order to use ArchHDL’s simulation capability.

To achieve the approach, there are two options: string replacement, or syntactic analysis. The former

is simpler, but is too difficult to handle all Verilog HDL source code. Figure 5.3 shows the corre-

spondence relationship between Verilog HDL and ArchHDL. For instance, designers have to expressly

describe port connections to show that which port of the instanced sub module is connected to which

wire or register, while the Verilog HDL method is similar to a software function call. In order to address

the problem, it is necessary to analyze Verilog HDL source code using software tools like compilers, but
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Figure 5.4 Pyverilog analyzes (a) the Verilog HDL source code of AND gate and gener-
ates (b) the Abstract Syntax Tree (AST).

there is a lot of cost and effort to develop such tools from scratch. Therefore, I develop a code translator

from Verilog HDL to ArchHDL employing a previously proposed tool called Pyverilog [111].

Pyverilog is an open-source hardware design analysis toolkit for Verilog HDL that is implemented in

Python. To realize the Pyverilog-based code translator, I use the code-parsing feature that is originally

provided by Pyverilog and implement a code generator to produce ArchHDL code from the generated

Abstract Syntax Tree (AST) from the feature shown in Figure 5.2.

Combining the translator and ArchHDL, I built SimVerilog. At first the Pyverilog-based translator

analyzes the RTL designs described in Verilog HDL, and then generates the AST. It is then used in

Code Generator to produce ArchHDL code illustrated in Figure 5.2, and then The generated ArchHDL

source code can be compiled with standard GNU or Intel Compiler to generate a simulation binary.

Finally designers can do the RTL simulation by running the binary.

In the following section, I present the two previously proposed tools that are fundamental features of

SimVerilog.

5.2.1 Pyverilog

Pyverilog [111] offers (1) code parser, (2) dataflow analyzer, (3) control-flow analyzer, (4) visualizer

and (5) code generator for Verilog HDL. To implement the front-end of SimVerilog, I use (1) code

parser and describe the function and design alternatives for it as follows.
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Code Parser

The parser of Pyverilog is a fundamental tool to analyze a source code written in Verilog HDL. The

parser generates an abstract syntax tree (AST) from the code of Verilog HDL for later analysis and

external tools. In SimVerilog, the generated AST is used in the code generator for ArchHDL. At first,

Pyverilog calls Icarus Verilog [25] with -E option as the preprocessor, and then all macros like define

and ifdef are extracted and the fabricated source code in the form of text are available. After that, the

parser of Pyverilog reads the source code and builds up an AST in the form of nested class objects

in Python. Finally the generated AST is ready for the next analysis step. To build the parser, the

author chooses PLY (Python Lex-Yacc) [112] as the parser generator (compiler-compiler), which is a

lightweight implementation of a lexical analyzer and an LR-parser.

Figure 5.4 shows the code parsing and AST generation by Pyverilog. It can be seen that the source

code of AND gate is parsed and the AST is generated. In this example, an AND gate is used in Figure

5.4 (a), and it is correctly analyzed and converted into an appropriate AST representation illustrated in

Figure 5.4 (b).

5.2.2 ArchHDL
Basic Concept

ArchHDL [51] is a hardware description language based on C++11. The characteristics of ArchHDL

are:

1. To describe combinational circuit as a lambda function,

2. To support non-blocking assignment,

3. To support user-defined datatypes and object-oriented programming style,

4. Cycle based simulation (not event driven),

5. Parallel simulation using OpenMP without decreasing the accuracy,

6. Similar coding style to Verilog HDL,

7. Simple library implementation (only about 300 lines in total).

Figure 5.5 shows the code of xorshift pseudo random value generator [98] and its test bench. This is

an example design written in ArchHDL.

ArchHDL library implements Module class and wire/reg class templates. As shown in Figure 5.5,

hardware designs can be expressed by inheriting or specializing those templates. An instance of wire

and reg class can be regarded as a wire and reg in Verilog HDL and designers can handle user-defined

datatypes for specialization of wire and reg.

Wire class has a member variable of a lambda function which represents combinational circuit (to be

set in Assign function, line 17-20). Its operator "()" returns evaluation results of the lambda.
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1 #include <stdio.h>
2 #include "arch_hdl.h"
3
4 class Xorshift : public Module {
5 public:
6 wire<uint_1> i_rst_x;
7 wire<uint_1> i_enable;
8 wire<uint_32> i_seed;
9 wire<uint_32> o_out;

10
11 reg<uint_32> x;
12 reg<uint_32> y;
13 reg<uint_32> z;
14 reg<uint_32> w;
15 wire<uint_32> t;
16
17 void Assign() {
18 t = [=]() { return x() ^ (x() << 11); };
19 o_out = w;
20 }
21 void Always() {
22 if (!i_rst_x()) {
23 x <<= 123456789;
24 y <<= 362436069;
25 z <<= 521288629;
26 w <<= 88675123 ^ i_seed();
27 } else {
28 if (i_enable()) {
29 x <<= y();
30 y <<= z();
31 z <<= w();
32 w <<= (w() ^ (w() >> 19)) ^ (t() ^ (t() >> 8));
33 }
34 }
35 }
36 };
37
38 class TestTop : public Module {
39 public:
40 static const uint_32 HALT_CYCLE = 30;
41
42 reg<uint_1> HALT;
43 reg<uint_32> cycle;
44
45 wire<uint_1> rst_x;
46
47 wire<uint_32> seed;
48 wire<uint_32> rand;
49 Xorshift xorshift;
50
51 void PortConnect() {
52 xorshift.i_rst_x = rst_x;
53 xorshift.i_enable = rst_x;
54 xorshift.i_seed = seed;
55 rand = xorshift.o_out;
56 }
57 void Assign() {
58 rst_x = [=]() { return (cycle() < 1) ? 0 : 1; };
59 seed = [=]() { return 1; };
60 }
61 void Initial() {
62 HALT = 0;
63 cycle = 0;
64 }
65 void Always() {
66 cycle <<= cycle() + 1;
67 HALT <<= (cycle() >= HALT_CYCLE);
68
69 if (!rst_x()) {
70 } else {
71 printf("%08x\n", rand());
72 }
73 }
74 };
75
76 int main() {
77 TestTop testtop;
78 do {
79 ArchHDL::Step();
80 } while (!testtop.HALT());
81
82 return 0;
83 }

Figure 5.5 Xorshift pseudo random value generator and test bench in ArchHDL

On the other hand, reg class has two member variables named ’current’ and ’next’ and its operator

"()" returns the value of ’current’. Overloaded operator "<<=" assigns right-hand value to ’next’, and

by calling a member function ’Update’, a value of ’next’ will be copied to ’current’. Calling an Update

function after calculating all ’next’ of regs realizes non-blocking assignments like Verilog HDL or

VHDL. In the current version, Always function of modules corresponds to always@(posedge) notation

in Verilog HDL (line 21-35).

Design files written in ArchHDL can be compiled with standard GNU or Intel Compiler to generate

a simulation binary. Figure 5.6 shows the simulation flow of ArchHDL. First, it assigns a lambda

function to each wire and initial value to each reg. After that, a simulation enters the main loop which

executes simulation one cycle by one cycle. The execution of one cycle is divided into two parts. First
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Figure 5.6 Simulation flow chart of ArchHDL

1 #pragma omp parallel
2 {
3 update_registers_[thread_num].clear();
4 #pragma omp for
5 for (size_t i = 0; i < modules_size; ++i) {
6 modules_[i]->Always();
7 }
8
9 for (auto reg : update_registers_[thread_num]) {

10 reg->Update();
11 }
12 }

Figure 5.7 Simulation kernel of ArchHDL using OpenMP

part computes the ’next’ of all regs (call Always function of all module classes), and second part copies

the ’next’ to ’current’ by calling Update function of each reg.

Parallelization using OpenMP

In main loop (light-green area in Figure 5.6), both parts can be calculated in parallel respectively by

OpenMP. The accuracy of the simulation is not changed by parallelization. Figure 5.7 shows this part

of ArchHDL library code.

In Figure 5.7, vector modules_ holds all pointers to module classes in the design. First for-loop

calls Always function of every module in parallel by using OpenMP, which calculate ’next’ of regs.

At this time, if ’next’ has different value from ’current’, a pointer to the reg is added to vector up-

date_registers_. Second for-loop calls Update function of the regs in update_registers_. Those regs are

reset in every step (line 3).

Vector update_registers_ is prepared for each thread. Due to this, it is possible to eliminate the

critical section that adds the pointer of reg to be updated to one vector, which leads the simulation

speed-up.
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Figure 5.8 The overview of ArchHDL code generation from Verilog HDL source code.

1 class ASTNodeVisitor(object):
2 def visit(self, node):
3 method = ’visit_’+ node.__class__.__name__
4 visitor = getattr(self, method, self.generic_visit)
5 return visitor(node)
6 def generic_visit(self, node):
7 for c in node.children():
8 self.visit(c)

Figure 5.9 The visitor pattern for the generated AST from Verilog HDL source code in Python

1 class ArchHDLCodeGenerator(ASTNodeVisitor):
2 def __init__(self, init_data):
3 self.init_data = init_data
4
5 def visit_ModuleDef(self, node):
6 """␣executes␣a␣specific␣feature␣for␣the␣node␣of␣ModuleDef␣and␣return␣the␣result␣"""
7 rslt = self.visit(node.child)
8 return rslt
9

10 def visit_Portlist(self, node):
11 """␣executes␣a␣specific␣feature␣for␣the␣node␣of␣Portlist␣and␣return␣the␣result␣"""
12 rslt = self.visit(node.child)
13 return rslt
14
15 def visit_Ioport(self, node):
16 """␣executes␣a␣specific␣feature␣for␣the␣node␣of␣Ioport␣and␣return␣the␣result␣"""
17 rslt = self.visit(node.child)
18 return rslt
19
20 def visit_Assign(self, node):
21 """␣executes␣a␣specific␣feature␣for␣the␣node␣of␣Assign␣and␣return␣the␣result␣"""
22 rslt = self.visit(node.child)
23 return rslt
24
25 def visit_And(self, node):
26 """␣executes␣a␣specific␣feature␣for␣the␣node␣of␣And␣and␣return␣the␣result␣"""
27 return node.operator
28
29 def visit_Identifier(self, node):
30 """␣executes␣a␣specific␣feature␣for␣the␣node␣of␣Identifier␣and␣return␣the␣result␣"""
31 return node.name

Figure 5.10 The implementation of ArchHDL code generator inheriting ASTNodeVisitor illus-
trated in Figure 5.9

5.3 ArchHDL Code Generator
ArchHDL code generator in the front-end of SimVerilog is used for generating a source code written in

ArchHDL from the intermediate representation of an AST. Figure 5.8 shows the overview of ArchHDL

code generation from Verilog HDL source code. Figure 5.8 (a) and (b) are same as Figure 5.4, and the

ArchHDL code (c) is generated from the AST. The feature is implemented in Python using a standard

visitor pattern that is to visit each AST node and to call a specific function for each visited AST node
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Table 5.1 Evaluation setup

CPU Intel Xeon E5-2687W (8 cores/16 threads) @ 3.1GHz
Memory 64GB

OS Ubuntu 14.04.1 LTS x86_64
C++ Compiler g++ 4.8.2 (-Ofast), icpc 15.0.3 20150407 (-Ofast)
Synopsys VCS Version H-2013.06_Full64

using its class name recursively.

Figure 5.9 shows the implementation of the visitor pattern to traverse the generated AST nodes

and Figure 5.10 shows the implementation of ArchHDL code generator inheriting ASTNodeVisitor

illustrated in Figure 5.9. ASTNodeVisitor has two methods: visit and generic_visit. At first ASTNode-

Visitor visits an AST node and calls the visit method to search the specific function for the node using

its class name (line 3 and 4). If it exists, the function executes its process and returns the result, but

if not, the generic_visit method is called (line 5). Existing the corresponding function means whether

or not there are the methods having same name as ’method’ in line 3 of Figure 5.9 in Figure 5.10. By

searching and executing the appropriate function for each AST node recursively, ASTCodeGenerator

can get all information of the module.

Using this information, ArchHDL code can be generated. Common source code generators in any

language contain a set of template texts of output codes in their internal source codes. Therefore, the

amount of the source codes is usually larger than the other parts. In order to separate the implementation

of the entire code generator into the code write parts using template texts and the control parts, I use a

template engine. In this implementation, I choose Jinja2 [113], a major template engine used in various

web applications with Python. Using the template engine, all template texts of ArchHDL codes are

removed from the source code in Python. It simplifies the software structure of the code generator.

5.4 Evaluation
In this section, I evaluate RTL simulation speed of SimVerilog compared with Synopsys Verilog Com-

piler Simulator (VCS) [20]. For this evaluation, I use the stencil and sorting accelerator described in

Chapters 3 and 4 as simulated test circuits. To measure the accurate simulation time, I use the chrono

library included in C++11 and time command for SimVerilog and VCS respectively, and SimVerilog

and VCS are executed 10 times in each RTL simulation and I take the arithmetic mean. Table 5.1 shows

the evaluation setup.

5.4.1 Sorting Accelerator

Figure 5.11 shows the proposed sorting accelerator with 4-way merge sorter tree. As described in

Chapter 4, this accelerator is customizable by means of tuning the number of ways and duplicated
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Figure 5.11 The proposed sorting accelerator with 4-way merge sorter tree
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Figure 5.12 Simulation time of VCS and SimVerilog using OpenMP, depending on each
hardware running 256K elements sorting

trees. In this evaluation, I measure the simulation time according to the number of ways.

Figure 5.12 shows the simulation time of VCS and SimVerilog using OpenMP, depending on each

hardware running 256K elements sorting. The number of threads used in SimVerilog is 1, 8, and 16.

8 and 16 are equal to the number of physical and logical (due to Intel Hyper-Threading Technology)

cores. As shown in Figure 5.12, the results using g++ are slightly better than those of icpc. The elapsed

time with g++ 16 thread is almost equal to that of VCS.

Figure 5.13 shows SimVerilog simulation speed-up ratio compared with g++ single thread in each
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Figure 5.13 Speed-up ratio compared with g++ single thread in each hardware running
256K elements sorting

hardware running 256K elements sorting. The RTL simulation with g++ is slightly better than icpc, and

that is why g++ is used for the speed-up ratio comparison. As shown in Figure 5.13, all cases except

4-way achieve higher speed simulations compared with g++ single thread if the number of threads is

from 2 to 8. In 4-way, the speed-up is achieved if the number of threads is 2 and 4, but the speed-up

is degraded from 6 threads. This is because the parallelized parts are fewer than the other hardware

configurations, which means that the number of Modules and regs is insufficient relative to the number

of threads. In other words, even if the number of threads is increased, the task parallelism cannot be

exploited, and worse, the synchronization overhead between the threads is exposed. From 8 threads,

the speed-up ratio of larger hardware basically becomes better. The RTL simulation for the sorting

accelerator with 32-way merge sorter tree shows the best speed-up ratio when the number of threads is

16, which is 6.4x speed-up.

It is possible for SimVerilog to achieve high-speed RTL simulations with OpenMP, but even the

16 threads performance is almost equal to VCS because the single thread performance is significantly

lower. This is because the sorting accelerator mostly consists of combinational logics like a comparator

and wires propagating values depending on the comparison result, in other words the wire components

are dominant in the sorting accelerator. This means that the accesses to ’current’ in a reg class are

large, in other words, memory access is frequent. For instance the speed-up ratio of 128-way is worse

than that of 32-way. This is because the memory access overhead becomes dominant even if the RTL
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Figure 5.14 The proposed stencil-computation accelerator composed of 4 × 4 nodes

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

1x1 2x2 4x4 6x6 8x8 10x10 

E
la
p
s
e
d
 T
im
e
[s
e
c
] 

Stencil Computation Node Size 

VCS 

g++ 1 thread 

g++ 8 thread 

g++ 16 thread 

icpc 1 thread 

icpc 8 thread 

icpc 16 thread 

Figure 5.15 Simulation time of VCS and SimVerilog using OpenMP, depending on each
hardware configuration for stencil computation

simulation with OpenMP is effective, since the number of wire components is increased according to

the number of ways. Given the results, the sorting accelerator is not suitable to SimVerilog.

5.4.2 Stencil-computation Accelerator

Figure 5.14 shows the proposed stencil-computation accelerator composed of 4 × 4 nodes. As described

in Chapter 3, the stencil-computation accelerator can be scaled according to the number of FPGA nodes.
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In this evaluation, I measure the simulation time according to the number of FPGA nodes.

Figure 5.15 shows the simulation time of VCS and SimVerilog using OpenMP, depending on each

hardware configuration for stencil computation. For instance 2x2 stands for the accelerator composed

of four FPGA nodes. Similar to the sorting accelerator, SimVerilog uses 1, 8, and 16 threads, and it

can be seen that the results using g++ are slightly better than those of icpc. As shown in Figure 5.15,

SimVerilog using g++ and icpc can both overcome VCS in 8 and 16 threads. Using g++ 16 threads

can achieve higher speed simulation from 1.2x to 5.8x compared with VCS. The speed-up ratio against

VCS is larger according to the hardware size of the stencil-computation accelerator.

Figure 5.16 shows SimVerilog’s speed-up ratio compared with g++ single thread in each hardware

configuration for stencil computation. Similar to the sorting accelerator, the compiler is g++. As shown

in Figure 5.16, all cases except 1x1 achieve higher speed simulations compared with g++ single thread

if the number of threads is from 2 to 8. Similar to 4-way in Figure 5.13, the 1x1 configuration has

insufficient Modules and regs that can be parallelized with OpenMP, and there is the synchronization

overhead between the threads. From 8 threads, the speed-up ratio becomes better according to the

number of nodes in the stencil-computation accelerator. The speed-up ratio in the 10x10 configuration

is the largest, which is 7.4x compared with the single thread when 16 threads are used.

Unlike the sorting accelerator, SimVerilog can do considerably faster RTL simulations for the

stencil-computation accelerator compared with VCS. This is because the stencil-computation accel-
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erator mostly consists of sequential logics such as pipelined multipliers and adders, FIFOs, memory

blocks. This means that the stencil-computation accelerator has lots of hardware components that can

be parallelized. Of course the memory access overhead exists in this simulation, but SimVerilog can

simulate it faster because the effectiveness of parallelization is dominant.

5.5 Related Work
A number of works have studied parallel RTL simulation and some works used GPUs or many-core.

In [114, 115], authors investigate the parallel RTL simulation of SystemC using GPUs. SystemC is a

hardware description language implemented as a C++ class library. They are based on discrete event-

driven simulation and [115] proposes a method whose aim is to reduce synchronization events. On the

other hand, [116] translates Verilog files into GPU source code. The simulation method is based on

Chandy-Misra-Bryant (CMB) algorithm, which is an asynchronous parallel simulation protocol. Al-

though these works achieve high speed-up as much as 10 to 100 times, the simulated circuits are simple

such as AES or 8b/10b decoding/encoding, and they do not evaluate the methods with practical hard-

ware designs. In contrast, I use complex and large hardware designs such as the stencil-computation

accelerator and sorting accelerator, and the evaluation results shows that my proposal is better than the

commercial RTL simulator.

In [117], authors studied parallel simulation of SystemC using Intel Single-chip Cloud Computer

(SCC) [118] that has 48 cores connected by a 2D mesh network. The simulation algorithm is also

based on CMB. They used several sizes of Hermes Multi-Processor System [119] models running

MPEG applications for evaluation. It showed that simulation on 48 SCC cores achieved up to 30x

speed-up compared to that on 1 SCC core.

5.6 Discussion
In this section, I discuss that my proposals satisfy the key issues for efficient development infrastructure.

5.6.1 SimVerilog Usability

As shown above, SimVerilog can do RTL simulation faster than the commercial tool. However, the

current implementation of SimVerilog supports little Verilog HDL syntax, which cannot execute RTL

simulations including some syntax such as bit manipulations, multiple clocking, for-loop statements,

etc. because ArchHDL cannot directly analyze these statements.

Even if SimVerilog is lacking in this regard, nevertheless SimVerilog can still work correctly unless

such statements are used, which means the implemented Pyverilog-based code translator works suc-

cessfully. If so, SimVerilog behavior is same as traditional RTL simulators like Icarus Verilog [25]
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Figure 5.17 Hardware platform example: an FPGA and two DRAMs

or Synopsys VCS [20], which means that the standard output RTL simulation logs on a console are

identical. Therefore, SimVerilog is used not only to do high-speed RTL simulations but also to debug

Verilog HDL source code.

SimVerilog plays an important role of efficient development infrastructure for FPGA accelerators,

but there is space to improve the usability. This is moved into open research topics.

5.6.2 Finding Applicability

As mentioned in Chapter 2, in order to implement a high performance FPGA-based accelerator, it is

important to efficiently utilize and connect hard blocks like memory and DSP in addition to LBs. For

instance, DSP blocks are 100% used to implement the stencil-computation accelerator and memory

blocks are used in both accelerators to store computation data. It is also obvious to build lots of stream

computation units on an FPGA that can work at high speeds in parallel. These are findings obtained

from developing the stencil-computation and sorting accelerators. In this section, I discuss that the

findings are available on other hardware platforms and in the other computation kernels described in

Chapter 2.

For instance, the tiling approach described in Chapter 3 can be the most available on SGEMM. Ma-

trices can be broken into sub-blocks that can be calculated on each FPGA in parallel. Also, building lots

of computation hardware is effective to improve performance by parallel processing like the duplicated

MADD and merge sorter trees described in Chapters 3 and 4 respectively. Authors in [120] propose a

high performance FPGA-based accelerator for deep convolutional neural network. The core computa-

tion of the application is convolution. The authors propose a efficient computation logic circuit based

on the nested residue number system and duplicate the circuit to improve the computation throughput.

Of course, the data path is pipelined.
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It is essential to consider not only how to implement high performance logic circuits on an FPGA but

also hardware platform like FPGA grade, the number of FPGAs, interconnect and memory bandwidth,

etc. Figure 5.17 shows a hardware platform example that has an FPGA and two DRAMs. As described

in before, memory bandwidth limitation can restrict computation throughput. One of the options to

overcome the problem is to “physically” increase the memory bandwidth, which means use of high-

end memory modules like Hybrid Memory Cube (HMC) or memory module addition. In the case of

sorting in Chapter 4, the sorting throughput against the memory bandwidth becomes half because the

two DRAMs can be used for the read and write independently, which means that there is space to

improve the sorting performance.

5.7 Summary
In this chapter, in order to address the FPGA accelerator development problem, I proposed an efficient

verification environment enabling high-speed RTL simulation for development of FPGA accelerators.

This environment is based on the two previously proposed tools, Pyverilog and ArchHDL.

Pyverilog is used for the implementation of the front-end of SimVerilog, which is a code translator

from Verilog HDL source code to ArchHDL source code. Pyverilog originally offers (1) code parser, (2)

dataflow analyzer, (3) control-flow analyzer, (4) visualizer and (5) code generator for Verilog HDL, and

I use (1) code parser to implement the translator. In the front-end, Pyverilog parses Verilog HDL source

code and generates the AST, and then ArchHDL code generator uses the AST to generate ArchHDL

source code. I implemented the code generator based on the standard visitor pattern in Python, and

used a major template engine Jinja2 used in various web applications with Python in order to simplify

the software structure of the code generator.

In the back-end, ArchHDL is used as the RTL simulation engine of SimVerilog. ArchHDL is a

C++11-based library for RTL modeling and simulation, which has an especially remarkable feature

offering the parallelized RTL simulation with OpenMP. The generated ArchHDL source code can be

compiled with standard GNU or Intel Compiler to generate a simulation binary. Finally designers can

do the RTL simulation by running the binary.

I evaluate RTL simulation speed of SimVerilog compared with Synopsys VCS. For this evaluation,

I use the stencil-computation and sorting accelerator described in Chapters 3 and 4 as simulated test

circuits. As a result, although in the sorting accelerator the parallelized SimVerilog performance is

almost equal to VCS, SimVerilog achieved the considerable speed-up that is up to 5.8x compared with

VCS if the stencil-computation accelerator is used. The speed-up ratio compared with the single thread

using g++ is improved according to the number of threads and the hardware size. The speed-up ratio of

the 10x10 configuration has the largest speed-up, which is 7.4x compared with the single thread when

16 threads are used.



Chapter 5 Essential Components for Efficient Development Infrastructure 89

Also, I discuss that the findings from Chapters 3 and 4 is valid in other hardware platforms and

computation kernels. As mentioned before, in order to implement a high performance FPGA-based ac-

celerator, it is important to efficiently utilize and connect hard blocks like memory and DSP in addition

to LBs, in other words it is essential to build lots of computation units that can work at high speeds

in parallel. I show that the findings are promising in other kernels like SGEMM and convolution, and

discuss how my proposed accelerator can accommodate hardware platform changes.
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Chapter 6

Conclusion

6.1 Concluding Remarks
In this thesis, I proposed high performance FPGA-based accelerators for the two computation kernels,

and a novel infrastructure supporting the efficient development of FPGA-based accelerators based on

the findings obtained from the development of the two FPGA-based accelerators. This infrastructure

shows how to build high-performance accelerators targeting several fundamental applications and en-

ables high-speed RTL simulation to verify the developed hardware. The evaluation results showed that

the proposed FPGA-based accelerators outperformed the corresponding implementation on CPUs and

GPUs in terms of both performance and power efficiency.

The contributions of this thesis are as follows:

• I proposed a high performance FPGA-based accelerator for 2D stencil computation employing

multiple small FPGAs.

• I proposed an FPGA-based sorting accelerator that combines the sorting network and the merge

sorter tree.

• I proposed a novel infrastructure to show how to build high-performance FPGA-based acceler-

ators targeting fundamental applications and to enable high-speed RTL simulation to verify the

developed hardware.

The first contribution of this work is to propose a high performance FPGA-based accelerator for 2D

stencil computation. Because the computation kernel has small arithmetic intensity, the sustained per-

formance is limited due to memory bandwidth restriction under multicore microprocessors and GPUs.

To address this, I proposed a high performance architecture for 2D stencil computation employing mul-

tiple small FPGAs and demonstrated that it is possible to implement the FPGA array system by using

the three key techniques. The evaluation results showed that the development system correctly worked

and achieved even better power efficiency than a typical GPU.

The second contribution of this work is to propose an FPGA-based sorting accelerator, which com-
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bines the sorting network and the merge sorter tree. The proposed sorting hardware is customizable by

means of tuning design parameters, and I also provided an analytical model that accurately estimates

the sorting performance depending on the hardware configuration. The evaluation results showed that

the proposed sorting accelerator achieved the estimated performance as long as the memory bandwidth

requirement was trivial. Even if it was not, I also proposed a data compression mechanism for the

sorting accelerator to mitigate memory bandwidth limitations and the evaluation results showed that

the sorting accelerator with the mechanism achieved better performance than without it.

Finally I summarized important points of the efficient development infrastructure for FPGA-based

accelerators according to the two previous contributions, which are an efficient verification environment

and to consider how to efficiently utilize and connect hard blocks like memory and DSP in addition to

LBs in order to implement lots of stream computation units on an FPGA that can work at high speeds

in parallel. To build the efficient verification environment, I proposed SimVerilog that is based on

the two previously proposed tools. The evaluation results showed that SimVerilog could do the RTL

simulation faster than the commercial RTL simulator, and I discussed SimVerilog usability in terms of

the RTL simulation speed and debuggability. Also, I discussed the finding applicability, which means

that the findings obtained from the development of the two FPGA-based accelerators are valid in other

hardware platforms and computation kernels.

6.2 Open Research Topics
There are several remaining topics from this research. I describe some of them as follows:

• to develop higher performance sorting hardware than the prior work and to evaluate the sorting

performance including the data transfer,

• to make SimVerilog more practical so that the tool can support more Verilog HDL syntax,

• to automatically generate RTL simulation libraries for SimVerilog so that the tool can run on

any environment.

The sorting performance of the proposed accelerator is lower than that of the prior work. To over-

come it, I have to develop the merge sorter tree that can handle multiple values at high operating

frequencies. Also, the sorting accelerator evaluation does not include the data transfer overhead, which

is conducted under ideal situation. To accurately evaluate the usability of the sorting accelerator, I have

to evaluate sorting performance including data transfer, such as AXI4, Avalon, NoC, PCIe, etc.

The second and third topics mean that SimVerilog is to be made more practical.

The current implementation of SimVerilog supports little Verilog HDL syntax, which cannot execute

RTL simulations including some syntax, e.g. bit manipulations, multiple clocking, for-loop statements,

etc. because ArchHDL cannot directly analyze these statements. For instance ArchHDL can express
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bit manipulation features with the structure, but it is difficult to translate Verilog HDL code into the

form. I have to reconsider and refine the implementation.

Currently I am trying to make SimVerilog automatically generate RTL simulation libraries for

SimVerilog so that the tool can run on any environment. Some previous studies proposed RTL

simulation methods on GPUs. The simulation library of ArchHDL is based on C++11 standard

library functions, which means that it is not easy to port the simulation library to GPU programming

environments like CUDA. However, GPUs have significant potential to achieve high-throughput

parallel computing as mentioned before. To realize the concept, I try to examine the simulation library

implementation referring to the previous studies. This is the third remaining topic.

This thesis presented the point of interest for developing FPGA accelerators and the novel verification

environment for efficiently developing them. The RTL source code of the proposed sorting accelerator

is available online and I will also publish SimVerilog as an open-source software. I believe that these

open-source products and the knowledge provided from this study will advance the hybrid-computing

era with CPUs, GPUs, and FPGAs.



93

Acknowledgement

This work has been supported in part by Core Research for Evolutional Science and Technology

(CREST), JST.

Since 2011, I enrolled in this university as a master course student, and have been able to live a

meaningful research life thanks to the support of a lot of people, for 5 years composed of 2 years of my

master course and 3 years of my doctor course.

First of all, I would like to express my heartfelt gratitude to Associate Professor Kenji Kise. He has

been my supervisor and has supported me for 5 years. When I enrolled in this university, I did not

know even The LaTeX in spite of a computer science student. However, he has never abandoned me.

His constant support, guidance, and encouragement have been radical for me to complete this thesis.

Thanks to precious chances he gave me and his popularity, I have met a lot of distinguished researchers

in both in domestic and international, and really have enjoyed my research life. Additionally, he has

aggressively invited me to play tennis in order to make me healthy. Precisely because I could meet him

at a graduate school admission guidance fair held in May 2010, I have been able to have invaluable

experience. I would like to appreciate him again.

I also would like to thank all the members at Kise Laboratory. First, I appreciate Mr. Shintaro Sano.

Because he took care of me entirely, I could complete this thesis in addition to my master thesis. Dr.

Shinya Takamaeda-Yamazaki developed Pyverilog and gave me a lot of precious advice like FPGA

knowledge, implementation techniques, researcher attitudes, etc. I am glad to be his junior, but I will

surpass him someday. Dr. Shimpei Sato developed ArchHDL, and also took care of me and gave me

a lot of advice in terms of both research and private lives. Dr. Naoki Fujieda gave me valuable advice

and sometimes softened my heart by talking about our hometowns. Mr. Takayuki Matsumura often

made a great mentor for me because our circumstances are same. Mr. Takakazu Ikeda is the first tie

that I could have since I enrolled in this university. If he had not been in this laboratory, I might have

dropped out. Mr. Tatsuya Kaneko gave me a Mac mini he used, which made my research life more

comfortable. Mr. Hiroshi Nakatsuka often went out for a drink with me, because he gave me a rest

appropriately, but sometimes interrupted me. Mr. Immanuel Victoria Encarnacion proofread this thesis

in terms of English. Mr. Tomohiro Misono explained ArchHDL in detail. Because all of the laboratory

members supported me, I have finally made it to the submission of this thesis. I would like to deeply



Acknowledgement 94

appreciate them again.

I would like to sincerely thank Professor Haruo Yokota, Professor Jun Miyazaki, Associate Professor

Haruhiko Kaneko and Associate Professor Takuo Watanabe for many exact indications and suggestions

as members of the thesis committee.

Dr. Yoshitaka Arahori and Dr. Atsushi Keyaki encouraged me when I was in a terrible slump. I

appreciate them.

I would like to thank all those whom I met through TKT CAMPUS Asia Program, particularly

Associate Professor John Kim, his laboratory members, and those whom I met at Korea Institute of

Science and Technology. I could reaffirm my inexperience thanks to this program, and eventually

submit this thesis.

I would like to thank all those whom I met at IEICE SIG-RECONF, IEICE SIG-CPSY, and Summer

Workshop for their aggressive discussion with me. I am looking forward to doing so again.

I would like to thank those who work at Showa University Hospital, because I had appendicitis and

got hospitalized in there when I was a third-year doctor’s degree student.
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