## T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository ## 論文 / 著書情報 Article / Book Information | 題目(和文) | バイポーラ電気化学に基づく導電性高分子および材料表面の傾斜的機<br>能化 | | | |-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | Title(English) | Gradient Modification of Conducting Polymers and Material Surfaces Based on Bipolar Electrochemistry | | | | 著者(和文) | | | | | Author(English) | Naoki Shida | | | | 出典(和文) | 学位:博士(工学),<br>学位授与機関:東京工業大学,<br>報告番号:甲第10188号,<br>授与年月日:2016年3月26日,<br>学位の種別:課程博士,<br>審査員:稲木 信介,冨田 育義,大坂 武男,福島 孝典,布施 新一郎,淵上 寿雄 | | | | Citation(English) | Degree:,<br>Conferring organization: Tokyo Institute of Technology,<br>Report number:甲第10188号,<br>Conferred date:2016/3/26,<br>Degree Type:Course doctor,<br>Examiner:,,,, | | | | <br>学位種別(和文) | 博士論文 | | | | Category(English) | Doctoral Thesis | | | | 種別(和文) | 論文要旨 | | | | Type(English) | Summary | | | Doctoral Program ## 論 文 要 旨 THESIS SUMMARY | 専攻: | 物質電子化学 | 専攻 | 申請学位(専攻分野): 博士 (工学 ) | |----------------|----------|----|-------------------------------------| | Department of | 以黄电1101 | | Academic Degree Requested Doctor of | | 学生氏名: | 信田尚毅 | | 指導教員(主): 稲木 信介 | | Student's Name | 10 田 円 郊 | | Academic Advisor(main) | | | | | 指導教員(副): 富田 育義 | | | | | Academic Advisor(sub)<br>田口 月我 | 要旨(和文 2000 字程度) Thesis Summary (approx.2000 Japanese Characters ) 本論文は「Gradient Modification of Conducting Polymers and Material Surfaces Based on Bipolar Electrochemistry (バイポーラ電気化学に基づく導電性高分子および材料表面の傾斜的機能化)」と題し、英語で書かれ、全7章から構成されている。 第1章「General Introduction」では、傾斜材料の応用例とその代表的な作成方法を概略するとともに、 有機電気化学、高分子電解反応、バイポーラ電気化学の駆動原理とその応用例についてそれぞれ説明 し、研究の意義と目的について概説するとともに、本論文の構成について述べている。 第2章「Electro-click Modification of Conducting Polymer Surface Using Cu<sup>I</sup> Species Generated on a Bipolar Electrode in a Gradient Manner」では、近年有機化学分野で注目されるクリックケミストリーに基づき、多彩な傾斜材料の創成を行った。一価銅触媒の電解発生を利用した Electro-click 反応を取り入れ、バイポーラ電解により触媒の濃度勾配を作成することで基板表面における機能団の傾斜的な導入を達成した。各種分光分析および表面物性評価により、本系を用いることでフッ素性官能基、色素、ヒドロキシ基など、多彩な機能団が傾斜導入可能であることを示した。 第3章「Signal-Amplified Analysis of Molecular Layers Made by Bipolar Electrochemistry」では、電気化学的な表面修飾法であるアリールジアゾニウム化合物のエレクトログラフティングをバイポーラ電極上の電位勾配中で行い、得られる有機膜の密度勾配を詳細に分析した。得られる有機膜層は非常に薄く、その密度変化を詳細に議論することは困難であるため、表面開始重合に基づく表面官能基の密度情報の増幅を行い、基板の評価を行った。得られたポリマーブラシはバイポーラ電極に印加する電圧の増加に伴い膜厚が飽和するという特異な挙動を示した。このことから、エレクトログラフティングにより得られる有機膜層の修飾密度が、高電圧条件では飽和していることが示唆された。 第4章「Electrochemically Mediated Atom Transfer Radical Polymerization from a Substrate Surface Manipulated by Bipolar Electrolysis: Fabrication of Gradient Polymer Brushes」では、電気化学的に制御される原子移動ラジカル重合(eATRP)を鍵反応とし、バイポーラ電解により重合度が位置依存的に傾斜的に変化する傾斜ポリマーブラシの作成を行った。本系は一時間の電解により数百 nm の膜厚を有する傾斜ポリマーブラシを与え、また様々な極性のモノマーに適用可能であることが明らかとなった。また、高分子反応により高分子電解質ブラシの作成にも成功した。 第5章「Fabrication of Gradient Multilayers Based on Layer-by-layer Deposition of Polyelectrolytes onto a Gradient Anionic Polymer Brush」では、第4章で得られた高分子電解質ブラシ上に、カチオン性ポリマーとアニオン性ポリマーを交互積層させることで、多層膜からなる傾斜材料の作成を行った。多層膜の膜厚増加は、下地となるポリマーブラシの膜厚に依存することが示され、積層に伴い傾斜表面の傾きが増幅する様子が観測された。また、金ナノ粒子を積層することにも成功した。 第6章「Bipolar Patterning Based on Reactions Mediated by Electrogenerated Cu<sup>I</sup> Catalysts」では、バイポーラパターニングの適用範囲の拡大を目指し、一価銅が触媒する Electro-click 反応、eATRP それぞれの反応を用いてパターニングを行った。いずれの場合も所望のパターニングが達成され、バイポーラパターニングが触媒反応にも適用可能であることを明らかとした。 第7章「General Conclusion」では、本研究を総括するとともに、今後の展望について述べた。 備考:論文要旨は、和文2000字と英文300語を1部ずつ提出するか、もしくは英文800語を1部提出してください。 Note: Thesis Summary should be submitted in either a copy of 2000 Japanese Characters and 300 Words (English) or 1copy of 800 Words (English). 注意:論文要旨は、東工大リサーチリポジトリ(T2R2)にてインターネット公表されますので、公表可能な範囲の内容で作成してください。 Attention: Thesis Summary will be published on Tokyo Tech Research Repository Website (T2R2). (博士課程) Doctoral Program ## 論 文 要 旨 THESIS SUMMARY 専攻: 申請学位(専攻分野): 博士 工学 ) 物質電子化学 専攻 Department of Academic Degree Requested Doctor of 学生氏名: 指導教員(主): 信田 尚毅 信介 稲木 Student's Name Academic Advisor(main) 指導教員(副): 冨田 育義 Academic Advisor(sub) 要旨(英文300語程度) Thesis Summary (approx.300 English Words ) Bipolar electrochemistry enables the facile generation and control of potential gradients. This thesis focuses on the expansion of the usage of bipolar electrochemistry for gradient surface modification. In Chapter 1, the author explained the background of this thesis, i.e., conventional gradient materials and their application, electroorganic synthesis, electrochemical polymer reaction, and bipolar electrochemistry. In Chapter 2, electro-click reaction was applied into bipolar electrolysis to access various molecular gradients with different functionalities. The author demonstrated the facile preparation of molecular gradients of fluorine-containing groups, dye and hydroxyl groups. The surface properties were measured by contact angle measurement with water droplets, and the gradient change of surface-free energy was confirmed. In Chapter 3, the author focused on the electrografting in a potential gradient on a bipolar electrode (BPE). Based on the idea of signal-amplification by surface-initiated polymerization, the author successfully showed the mechanism of electrografting of aryl diazonium compounds in a potential gradient. In Chapter 4, electrochemically mediated atom transfer radical polymerization (eATRP) using BPE. By using *N*-isopropylacrylamide (NIPAM) as a monomer, the author demonstrated the facile synthesis and height-control of gradient polyNIPAM brushes on a glass substrate. The author also found that monomers with a wide range of polarity were applicable to this methodology. In Chapter 5, layer-by-layer deposition of polyelectrolytes onto a gradient polymer brush was conducted. The author has successfully demonstrated the increment of film thickness was larger when the underlying polymer brush layer was thicker. Additionally, the author succeeded the deposition of gold nanoparticles. In Chapter 6, the author developed the bipolar patterning using a cylinder-type shielding wall. Electro-click reaction and eATRP was applied to the bipolar patterning, to give successfully the well-defined molecular patternings. In Chapter 7, the author summarized this thesis. 備考: 論文要旨は、和文 2000 字と英文 300 語を 1 部ずつ提出するか、もしくは英文 800 語を 1 部提出してください。 Note: Thesis Summary should be submitted in either a copy of 2000 Japanese Characters and 300 Words (English) or 1copy of 800 Words (English). 注意:論文要旨は、東工大リサーチリポジトリ(T2R2)にてインターネット公表されますので、公表可能な範囲の内容で作成してください。 Attention: Thesis Summary will be published on Tokyo Tech Research Repository Website (T2R2).