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Abstract
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Statistical mechanics approach to 1-bit compressed sensing

by Yingying XU

The 1-bit compressed sensing framework enables the recovery of a sparse
vector from the sign information of each entry of its linear transformation.
Discarding the amplitude information can significantly reduce the amount
of data, which is highly beneficial in practical applications. For simplicity,
we consider the case that the measuring matrix has i.i.d entries, and the
measurements are noiseless.

First, we analyze the typical performance of an l1-norm based signal
recovery scheme for the 1-bit compressed sensing using statistical mechan-
ics methods. We also develop another approximate recovery algorithm in-
spired by the cavity method of statistical mechanics.

To further develop the study of l1-norm based signal recovery scheme
for 1-bit compressed sensing, we suggest a strategy that captures scale in-
formation by introducing a threshold parameter to the quantization pro-
cess. For practical use, we develop a heuristic that adaptively tunes the
threshold parameter based on measurement results.

Besides l1-norm minimization, we present a Bayesian approach to sig-
nal reconstruction for 1-bit compressed sensing, which provides the opti-
mal bound of the recovery performance of 1-bit measurements. Utilizing
the replica method of statistical mechanics to analyze the typical perfor-
mance, we show that the Bayesian approach enables better reconstruction
than the l1-norm minimization approach, asymptotically saturating the per-
formance obtained when the non-zero entries positions of the signal are
known under an appropriate condition. We also test a message passing
algorithm for signal reconstruction on the basis of belief propagation. The
results of numerical experiments are consistent with those of the theoretical
analysis.
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Chapter 1

Introduction

A big picture of the compressed sensing problem is presented in this chap-
ter, including the historical background rooted in linear algebra, the mod-
ern focus on the sparse nature of signal in appropriate domain and the
breakthrough of the conventional sampling rate limit, which has been tremen-
dously effected many fields in science and technology. Important results
from the theoretical and practical sides on compressed sensing are also in-
troduced. Then the aim and outline of this thesis are provided.

1.1 Linear Algebra – the foundamental

The history of mathematics can be seen as an ever-increasing series of ab-
stractions in human development. As the concept of equation appears, a
foundmental form ax + b = 0 came in to the stage. The simple equation is
an ancient question worked on by people from all walks of lives.

1.1.1 History[8]

Around 4000 years ago, the people of Babylon knew how to solve a simpe
2 × 2 system of linear equations with two unknowns. Around 200 BC, the
Chinese publishes that “Nine Chapters of the Mathematical Art” which dis-
played the ability to solve a 3× 3 system of equations. However, the power
and progress in Linear Algebra did not come to fruition until the late 17th

century.
Interestingly, Linear Algebra has become more relevant since the emer-

gence of calculus. In the late 17th century, Leibnits brought up the study
of determinants. Lagrange came out his work of Lagrange multipliers.
Cramer presented his idea of solving systems of linear equations based on
determinants. Euler then suggested the idea that a system of equations
doesn’t neccessarily have to have a solution. And many discussions around
the concept of unique solution have been made. In 19th century, Gauss in-
troduced a procedure which termed Gaussian elimination to be used for
solving a system of liear equations. This method combining , swapping,
or multiplying rows with each other in order to eliminate variables from
certain equations. In 1848, a proper notation of describing the process was
suggested by J. J. Sylvester who introduced the term “matrix”, the Latin
word for womb, as a name for an array of numbers. Arthur Cayley de-
fined matrix multiplication or matrix algebra, and he used the letter “A” to
represent a matrix, which is a tradition till now.

Matrices at the end of the 19th century were heavily connected with
Physics issues and for mathematicians. For a time, however, interest in a
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lot of linear algebra slowed until the end of World War II brought on the
development of computers.Instead of having to break down an enormous
n × n matrix, computers could quickly and accurately solve there systems
of linear algera. Regardless of the technology though. Gaussian elimination
still proves the best way known to solve a system of linear equations.

The influence of Linear Algebra in the mathematical world is spread
wide because it provides and important base to many of the principles and
practices. For example, some of the applications are to solve systems of
linear format, to find least-square best fit lines of the data points to predict
future outcomes, and the use of the Fourier series expansion as a means to
solving partial differential equations. Even for broader topics like to solve
questions of energy in quantum mechanics or everyday household games
Sudoku, Linear Algebra supplied the basics. In this chapter, some detailed
examples will be shown.

Technology continues to push the use further and further, but the his-
tory of Linear Algebra continues to provide the foundation.

1.1.2 General formulation

Expressing Linear Equations in a general form is

y = Ax (1.1)

where,A is aM×N dimensional matrix, x is aN×1 dimensionl unknown
vector, and y is a M × 1 dimensionl observed vector. Mordern Linear alge-
bra is the branch of mathematics concerning vector spaces and linear map-
pings between such spaces. It includes the study of lines, planes, and sub-
spaces, but is also concerned with properties common to all vector spaces.
Techniques from linear algebra are also used in analytic geometry, engi-
neering, physics, natural sciences, computer science, computer animation,
and the social sciences (particularly in economics). Because linear algebra
is such a well-developed theory, nonlinear mathematical models are some-
times approximated by linear models.

1.2 A story from signal processing point of view [25]

A typical example of the powerful use of Linear Algebra is in the field of
signal processing, which provides the core technology of modern human
lives. In signal processing, we sample a contiuous-time signal (often called
”analog signal") Ns times then send the discrete-time signal (often called
”digital signal"). The reciever needs to recover the original signal from the
sampled data. This process can be called Analog-Digital conversion.

Assume that the analog signal y(t) is periodic with period T and can be
expressed as Fourier series

y(t) = a0 +

km∑
k=1

(
ak cos

2πkt

T
+ bk sin

2πkt

T

)
(1.2)

where km is the maximum wave number and the corresponding maximum
frequency in the Fourier domain is fm = km/T (finite region of frequencies).
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FIGURE 1.1: An example of analog-signal in time. The line
represents the signal y(t), and the red dots correspond to

the sampled values by y(nTs).

To perfectly recover the analog signal, we need to know all the coefficients,
which are 2km + 1 unknown variables a0, {ak}, {bk}.

Sampling of a fixed period Ts provides a set of independent linear equa-
tions

y(nTs) = a0 +

km∑
k=1

(
ak cos

(
2πknTs
T

)
+ bk sin

(
2πknTs
T

))
(1.3)

for determining the Fourier coefficients in 1.2. Here, Ts = T/Ns, and n =
1, 2, . . . , Ns.

When Ns = 2km + 1, we can express the problem in matrix as

y
(
T
Ns

)
y
(

2T
Ns

)
y
(

3T
Ns

)
y
(

4T
Ns

)
...

y (T ))


=



1 cos
(

2π 1
Ns

)
sin
(

2π 1
Ns

)
cos
(

4π 1
Ns

)
· · · sin

(
2kmπ

1
Ns

)
1 cos

(
2π 2

Ns

)
sin
(

2π 2
Ns

)
cos
(

4π 2
Ns

)
· · · sin

(
2kmπ

2
Ns

)
1 cos

(
2π 3

Ns
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
·



a0

a1

b1
a2
...
bkm


.(1.4)

This is the exactly same form of high demensional Linear Algebra 1.1, where
the unknown matrix x is (a0, a1, b1, a2, b2, · · · , bkm)T. Therefore, an AD con-
version problem can be seen as finding solution for a linear equation set.

To determining a unique solution for the unknown variables, the rela-
tion between the equation number M and the number of unknown vari-
ables N is intensely discussed. It is known that condition for getting a
unique solution is that M ≥ N . Therefore, for perfectly determine the ana-
log signal, the condition is

Ns ≥ 2km + 1. (1.5)

Devide the both side by T , and take T →∞ as considering arbitrary signals,
we obtain

fs ≥ 2fm. (1.6)
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This is the result of sampling theorem, also termed as Nyquist-Shannon
sampling theorem.

Theorem 1.2.1. Sampling theorem [45]
If a function x(t) contains no frequencies higher than B hertz, it is com-
pletely determined by giving its ordinates at a series of points spaced
1/(2B) seconds apart. A sufficient sample-rate is therefore 2B samples
per second, or anything larger. Equivalently, for a given sample rate fs,
perfect reconstruction is guaranteed possible for a bandlimit B < fs

2 .

Here, 2B and fs/2 are respectively called the Nyquist rate and Nyquist
frequency. In the field of digital signal processing, the sampling theorem,
establishes a sufficient condition for a sample rate that permits a discrete
sequence of samples to capture all the information from a continuous-time
signal of finite bandwidth, and it was a important conventional limit found
in the late 20th century. Much effort has been made in the mordern technol-
ogy to achieve this limit in the appearance of noise.

Note that the sampling theorem is the worst case condition. If addi-
tional condition for the signal is available, one can solve the problem by a
fewer samples than that sampling theorem require. Next section, we will in-
troduce an well noticed condition, sparsity, in modern information science.
By noticing sparsity of the signal representation, we could break through
the conventional limit of Nyquist rate.

1.3 Sparse representation
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FIGURE 1.2: Left: Original JPG picture. Right: Plot of the
coefficients of Haar wavelet conversion of the left picture

(arranged in random order for enhanced visibility).

Typically, smooth signals, such as natural images and communications
signals, can be represented by a sparsity-inducing basis, such as a Fourier
or wavelet basis [17, 48]. Here is a example of sparse representation of a
known picture, fig. 1.2. From the plot of the coefficients we can see that
the biggest coefficiets which is only few percentatge of the whole number
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of coefficients, are carrying most of the information of the original picture.
Therefore, we can almost reconstruct the picture by only the value of few
largest coeffients and seeing other small enough coeffients as zero.

The purpose of CS is to enhance signal processing performance by uti-
lizing the notion of the sparsity of signals [16]–[48].

1.4 Compressed sensing

Compressed (or compressive) sensing (CS) is a technique for recovering a high-
dimensional signal from lower-dimensional data, whose components rep-
resent partial information about the signal, by utilizing prior knowledge on
the sparsity of the signal [7]. For the last decade, CS has received consid-
erable attention as a novel technology in information science. It has been
intensively investigated from the theoretical point of view [10, 6, 30, 19, 33],
and has also been used in various engineering fields [9]. Many studies in
CS research have shown that the sparsity of signals makes it possible to
perfectly reconstruct the signal at a viable computational cost, even in the
region of α = M/N < 1 [6]–[33]. This results in time, cost, and precision
advantages. It has led to the hardware-level realization of accurate signal
reconstruction that had hitherto been regarded as out of reach due to limi-
tations on sampling rates [51] and/or the number of sensors [15].

1.4.1 Problem setting

Mathematically, the compressed sensing problem can be expressed as fol-
lows: a sparse vector x0 ∈ RN , many components of which are zero, is
linearly transformed into vector y ∈ RM by an M ×N measurement matrix
A, where

y = Ax0. (1.7)

The observer is free to choose the measurement protocol. For a given pair
ofA and y, the reconstruction of x0 is required [7]. The goal of CS is to find
a solution of 1.7 in the region of

M < N. (1.8)

When M < N , due to the loss of information, the inverse problem has
infinitely many solutions. However, when it is guaranteed that x0 has only
K < M nonzero entries in some convenient basis (i.e., when the signal is
sparse enough) and the measurement matrix is incoherent with that basis,
there is a high probability that the inverse problem has a unique and exact
solution. Considerable efforts have been made to clarify the condition for
the uniqueness and correctness of the solution, and to develop practically
feasible signal reconstruction algorithms [10, 6, 30, 19, 33].

According to sparsity, the idea of CS is only sample or measure the
signal M -times, in which M < N , even we do not know the position of
the zeros we can still reconstruct the signal. Different from the traditional
data compression, which usually obtain the full data then compress it to a
smaller amount, CS compress the sampling precess itself to reduce the cost
greatly.
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FIGURE 1.3: A CT projection example. Blue doted lines rep-
resent the process of CT scan.

1.4.2 Applications

Compressed sensing has been tremendously effected many fields in science
and technology, such as audio and visual electronics, medical imaging de-
vices, and astronomical observations, etc.[9]. Here we introduce some ex-
amples of the applications of compressed sensing.

• CT scan [31]
A CT scan, also called X-ray computed tomography (X-ray CT) or
computerized axial tomography scan (CAT scan), makes use of computer-
processed combinations of many X-ray images taken from different
angles to produce cross-sectional (tomographic) images (virtual ’slices’)
of specific areas of a scanned object, allowing the user to see inside the
object without cutting.

In fig. 1.3, x = (x1, x2, · · · , xN ) represents the X-ray absorption coef-
ficients vector. y = (y1, y2, · · · , yM ) represents the projection data. A
carrys the projecting angle information. Assume that X-ray absorp-
tion coefficients are the same in the same parts of the body, they only
change in the boundary of the parts. The gradient of the slice im-
age can be expressed as a sparse vector. Utilizing this sparsity, we
can apply the technology of CS to reduce the needed sample number,
therefore, to keep the damage to the patient’s body as small as possi-
ble. Also, we can design smaller scan devices to save the space and
make it convenient to carry. The similar application also works for
other medical imaging technology, for example MRI.

• Astronomical observations [22]
In order to proof the existence of black hole in the universe, an inter-
national cooperated research project about black hole direct imaging
is builted. Such a big scale experiment cost a huge amount of effort
to get the sampling data, and still the data is not fully enough for di-
rectly solving the basic equations. In this situation, CS technology can
help to solve the ill-posed problem and reconstruct the image of black
hole.
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• Wireless channel estimation [21]
Channel estimation is one of the most important techniques in wire-
less communications systems, because a lot of modern communica-
tion technologies assume availability of channel state information.
Reduction of the required amount of training signals while keeping a
sufficient estimation accuracy has been one of the main scopes of the
study on channel estimation. It s known that the impulse response of
wirless channel tends to be sparse for larger bandwidth. Therefore,
several works have tried to utilize the saprsity for the channel estima-
tion. CS is one of the most resent example. Here, we briefly review a
simple approach to sparse channel estimation with a naive assump-
tion that the channel impulse response itself is sparse in time domain.
Let a = [a1, a2, · · · , ap]T ∈ RP denote a vector of training signals for
the channel estimation, which is inserted between data signals, and
x = [x1, x2, · · · , xL]T ∈ RL be a vector of finite channel impulse re-
sponse wth ||x||0 << L. Assuming P > L, the corresponding re-
ceived signal vector y = [y1, y2, · · · , yP−L+1]T, which is not contami-
nated by data signals. Definding the Toeplitz channel matrix T of size
(P − L+ 1)× P as

T =


xL · · · x1 0 · · · 0

0 xL · · · x1 · · ·
...

...
. . . · · · 0

0 · · · 0 xL · · · x1

 , (1.9)

y can be written as
y = Ta+ v, (1.10)

where v is an additive white noise vector. By using the channel im-
pulse response vector x, y can be alternatively be written as

y = Ax+ v, (1.11)

whereA is a Toeplitz matrix of size (P − L+ 1)× L defined as

A =


aL aL−1 · · · a1

aL+1 aL · · · a2
...

...
...

aP aP−1 · · · aP−l+1

 . (1.12)

Thus, by regarding A to be a sensing matrix and assuming P − L +
1 < L in order to achieve higher spectral efficiency, the problem to
obtain x from y in 1.11 can be considered as a problem of CS with
observation noise.

1.5 Algorithms for compressed sensing[17]

Intuitively, we see the additional condition to x as a sparse vector make
this problem solvable. However, how to solve it is not trivial. Here are two
questions we need to ask:
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• Does the problem have solutions? If yes, is the solution unique or
not?

• How to make sure that the solution is sparse?

The following part of this section will answer these two qustions.

1.5.1 Regularization

The system 1.7 with M < N has more unknowns than equations, which
is termed underdetermined linear system. Thus it has either no solution,
if y is not in the span of the columns of the matrix A, or infinitely many
solutions. In order to avoid the anomany of having no solution, we shall
hereafter assume thatA is a full-rank matrix, impling that its columns span
the entire space RM .

In most underdetermined linear system, we desire a signle solution,
however, the fact that there are infinitely many of those stands as a ma-
jor obstacle. In order to narrow the solution space, additional criteria are
needed. A familiar way to do this is regularization which also called as the
penalty term, where a function J(x) that evaluates a candidate solution x,
with smaller values being preferred. The linear equaltion problem then is
transformed to a optimization problem

min
x
J(x) subject to y = Ax. (1.13)

l2-norm

First, let us look at a historically widely used example of norm penalty, the
l2-norm. The optimization problem becomes

min
x
||x||2 subject to y = Ax, (1.14)

where ||x||2 =
√
x2

1 + · · ·+ x2
N .

Here is the process to solve 1.14. Introducing Lagrange multipliers λ for
the constraint set, we define the Lagrangian

L(x) = ||x||22 + λT (Ax− y). (1.15)

To solve the optimization problem, we require ∂L(x)
∂x = 0. Thus the solution

is obtained as x̂opt = −1
2A

Tλ. Plugging this solution into the constraint
y = Ax leads to

λ = −2(AAT )−1y. (1.16)

Assigning this to x̂opt gives the pseudo-inverse solution

x̂opt = AT (AAT )−1y = A+y. (1.17)

Note that since we have assumed that A is full-rank, the matrix AAT is
positive-definite and thus invertible.

Due to its simplicity as manifested by the above closed-form and unique
solution, the l2-norm is widespread in various fields of engineering, such as
signal and image processing. However, this is by no means a declaration
that l2 is the truly best choice for the various problems. In many cases,
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the mathematical simplicity of l2 is a misleading fact that diverts engineers
from a making better choice for the regularization.

l0-norm

The most direct way to put sparsity in the problem is using the l0-norm as
the penalty

min
x
||x||0 subject to y = Ax, (1.18)

where ||x||0 = lim
p→0
||x||pp = #{i : xi 6= 0}, which means the number of

non-zerol entries in x. However, due to the decrete and discontinuous na-
ture of l0-norm, the standard convex analysis ideas do not apply. More-
over, many of the basic questions about 1.18 remain unclear, such as the
existence of the unique solution and the way to varify a solution is actu-
ally the global minimizer of 1.18 or not. Besides these conceptual issues,
the computational difficulty cannot be underestimated. It is well know that
1.18 is NP-hard in general. Assume we know that the sparsest solution to
1.18 has K non-zeros. The number of possible solutions is CKN , which is
a extreamly huge number in the as the dimention increases. For example,
when N = 500,K = 20, the combination number CKN ≈ 3.9 × 1047. And
for each test we need to solve the linear equation as well. Suppose each test
of such system cost 1× 10−9 seconds, the whole search will take more than
1.2× 1031 years. Therefore, we need to find a replacement penalty function
to solve the sparse signal optimization problems.

1.5.2 Convex relaxation

The idea of convexity can help us to find the proper penalty function. Let
us recall the definition of convexity for sets and for functions

Definition 1.5.1. A set Ω is convex if ∀x1,x2 ∈ Ω and ∀t ∈ [0, 1], the convex
combination x = tx1 + (1− t)x2 is also in Ω.

Definition 1.5.2. A function f(x) : Ω → R is convex if ∀x1,x2 ∈ Ω and
∀t ∈ [0, 1], the convex combination point x = tx1 + (1− t)x2 satisfies

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2). (1.19)

If f(·) is twice continuously differentialble, its derivatives can be used
for alternative definitions of convexity:

Definition 1.5.3. A function f(x) : Ω → R is convex if ∀x1,x2 ∈ Ω if and
only if

f(x2) ≥ f(x1) +∇f(x1)T (x2 − x1), (1.20)

or alternatively, if and only if∇2f(x1) is positive-definite.
We can verfy the set Ω = {x|y = Ax} is convex using the definition of

1.5.1. Thus, the feasible set of solutions of the problem 1.13 is convex. In
order for this optimization problem to be convex as a whole, the penalty
need to be convex as well.
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FIGURE 1.4: A demonstration of intersection for two di-
mensional x and several p values: 2, 1.5, 1, and 0.5, for lp-
norm minimization problem. Black solid lines represent the

linear constraint.

An intensively discussed form of penalty is lp-norms

||x||p ≡

(
N∑
i

|xi|p
)1/p

. (1.21)

For any p ∈ N, the lp-norm are convex. This can be proved by the defini-
tion 1.5.3. Take l2-norm as an example, using the definition of 1.5.3, since
∇2||x||22 = 2I � 0 for all x, the l2-norm is strictly convex. Therefore, the
costraint-set and the penalty are both strictly convex in optimization prob-
lem 1.14, a unique slution is guaranteed.

Besides the requirment of convexity, the penalty function should have
a tendency to promote the sparsity of x. Geometrical way of looking at the
constrained lp-norm minimization problem

min
x
||x||p subject to y = Ax, (1.22)

where we exand p ∈ R, may help us. The linear equation constraint defined
a set of solutions that appears as a hyperplane of dimensionality RN−M
embedded in the RN space. With in this space, we seek the minimum of the
lp-norm. This search is done by “blowing” an lp balloon centered around
the origin, and stopping its inflation when it first touches the feasible set of
the constraint-set. Fig.1.4 present a simple demonstration of this process for
two dimentional x and several p values: 2, 1.5, 1, and 0.5. One can see that
norms with p ≤ 1 tend to give that the intersection point on the on the axes,
which is a sparse solution. On the other hand, l2 and l1.5 give non-sparse
solutions. Note that such lp for p < 1 are no longer norms, as the traiangle
inequality is no longer satisfied. Nevertheless, we shall use the term norm
for these funtions a well.
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FIGURE 1.5: Demonstrating the fact that a unit-length lp-
norm vector becomes shortest in lq (p > q) when it is the
sparsest possible. The blue, red and green lines represent

p = 0.5, p = 1, p = 2 unit-length lp-norm respectively.

Another way to show this is fig.1.5, which is demonstrating the fact that
a unit-length lp-norm vector becomes shortest in lq (p > q) when it is the
sparsest possible. The blue, red and green lines represent p = 0.5, p =
1, p = 2 unit-length lp-norm respectively, in two dimentional world.

Therefore, the widely used l2-norm is not suitable for CS as it fails to
give us sparse solution. The region of 0 < P ≤ 1 becomes our concern
of interst. Unfortunately, each choice 0 < p < 1 leads to a non-convexs
optimization problem, which raises many difficulties. Naturally, l1-norm
become our first choice of prefernce to promoting sparsity and holding con-
vexity in the same time.

l1-norm

Let us look at l1-norm more closely. The choice f(x) = ||x||1 is convex but
not strictly so. Thus the problem

min
x
||x||1 subject to y = Ax (1.23)

may have more than one solutions. Nevertheless, we can claim that all
solution are nearby. In other words, these solutions are gathered in a set
that is bounded and convex [17].

The cardinality function is a non-decreasing submodular function. It
has been proven that, the l1-norm is the convex envelop of the l0-norm [3].
Therefore, l1-norm is a reasonable choice of convex relaxation of combina-
torial penalty. Typical l1 based algorithm are Basis Persuit algorithm and
Lasso, which have been widely used in engineering.

1.5.3 Greedy algorithms

Another way to avoid the exhaustive search in l0-norm minimization is a
type of algorithm that called greedy algorithms. The basic idea is that to see
the sample vector y as a linear combination of columns ai (i = 1, 2 · · ·N ) of
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FIGURE 1.6: Sample vector y projects on column vector.
Here we only show a1 and a2 as examples. Dashed lines
represent vertical projections. The largest projection will be

choosen as a support.

matrixA,
y = x1a1 + x2a2 + · · ·+ xNaN . (1.24)

The goal is to construct an appropriate set of columns whose coefficients
are non-zero, which is termed support S, by updating the support set one
by one in each iteration.

Here, we inroduce a typical greedy algorithm, Orthogonal Matching
Pursuit (OMP), for the CS problem. In the first iteration of OMP, we evalu-
ate the quality of approximation of the column ai by

ε(i) = min
xi
|y − xiai|2 = |y|2 − (ai · y)2

|ai|2
. (1.25)

Then we select the column that has the smallest εi to put in to the sup-
port set S. This can be also seen as the column that has the largest projection
from y, see fig.1.6. The solution of this approximation by the support set of
the moment can be obtained by

x̂ = argmin
xS

|y −ASxS |2, (1.26)

where AS represents matrix only keep the columns in the support set and
xS stands for a vector that only contains the elements that corresponding
to elements in S. Remove the approximated part in {ai} and continue the
same procedure iteratively to the residual

r = y −ASx̂. (1.27)

In other words, we use r instead of y in 1.25 in later iterations. We set a
stopping threshold ε0 to measure the norm of the residual till

|r| < ε0 (1.28)

holds.
A summery of the OMP algorithm is shown in fig.1.7.
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Algorithm 1: ORTHOGONAL MATCHING PURSUIT ALGORITHM(x0, r0, S0, ε0)

1) Initialization :
Solution seed : x0 ← 0
Residual seed : r0 ← y
Support set seed : S0 ← ∅
Counter : k ← 0

2) Counter increase :
k ← k + 1

3) Sweep :
Compute

ε(i) = min
xi
|rk−1 − xiai|2 = |rk−1|2 − (ai·rk−1)

2

|ai|2

for all i /∈ Sk−1

4) Update Support :
i0 = argmin

i/∈Sk−1

{ε(i)}, Sk = Sk−1 ∪ {i0}

5) Update Solution :

x̂k = argmin
x
Sk

|y −ASkxSk |2

6) Update Residual :

rk = y −ASk x̂
k

7) Stopping Rule :
Stop if |rk| < ε0 holds.
Otherwise, apply another iteration.

FIGURE 1.7: OMP algorithm. A typical greedy algorithm.
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There are also many varieties of greedy algorithms of the similer spirit.
For example,

• Matching Pursuit (MP)
Get lazy in approximating solution by using privious solution

x̂k = x̂k−1 +

(
ai0 · rk−1

)
|ai0 |2

ai0 (1.29)

for saving cost.

• Week-MP
In sweep, get lazy in optimizing ε(i). Instead of compute for all i, stop
the sweep when the condition(

ai · rk−1
)

|ai|2
≥ t|rk−1|2 (1.30)

where r ∈ [0, 1], is satisfied.

• Least Squars OMP (LS-OMP)
In sweep, approximation error εi is evaluated for Sk−1∪{i}, which can
provide more accurate evaluation than OMP although cost increases.

• Thresholding algorithm
Given a sopport size T and fix Support by the result of the first quality
evaluation. In other words, S is a set of indices of T lowest values of
εi.

Although greedy algorithms only lead to a local minimum in general in-
stead of the optimal solution for 1.18, it may outperform the l1 optimization
in some cases.

There are another branch of approach using probabilistic inference to
this reconstruction problem. We will discuss it in later chapters as the main
part of this thesis.

1.6 Performance guarantee for compressed sensing al-
gorithms

1.6.1 The worst-case study

For the underdetermined linear system of equations, Ax = y (a full-rank
matrixA ∈ RM×N with M < N ), we pose the following questions:

• When can we claim the uniqueness of the sparsest solution?

• Can a candidate solution be tested to verify its global optimality?

In this section, we show theoretical studies that answer these questions.
A key property for the study of uniqueness is the spark of the matrix A,

a term defined by Donoho and Elad in 2003. The definition of spark is

Definition 1.6.1. The spark of a given matrix A is the smallest number of
columns fromA that are linearly-dependent.
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By definition, the vectors in the null-space of the matrix Ax = 0 must
satisfy ||x||0 ≥ spark(A). Let us suppose that the underdetermined linear
equation y = Ax has two solutions x1 and x2. This implies that x1 − x2

must be in the null space of A, i.e., A(x1 − x2) = 0. By employing the
triangle inqueality and the definition of spark, we obtain

||x1||0 + ||x2||0 ≥ ||x1 − x2||0 ≥ spark(A). (1.31)

This means that the underdetermined linear equation cannot have two so-
lutions of ||x||0 ≤ spark(A)

2 simultaneously, which gives a simple criterion
for uniqueness of sparse solutions:

Theorem 1.6.1. If a system of linear equationsAx = y has a solution x obeying

||x||0 <
spark(A)

2
, (1.32)

this solution is necessarily the sparsest possible.

When we have a solution satisfying this condition, we can conclude that
any alternative solution necessarily has more than spark(A)/2 non-zeros.

This seemingly simple result is wonderful and powerful. We have a
complete answer for the two questions we have posed at the begining of
this section. Namely, we can certainly claim uniqueness for sparse enough
solutions, and once such a solution is found, we can immediately claim its
global optimality. Notice that l0 optimization is a highly complicated opti-
mization task of cominatorial flavor. In general combinatorial optimization
problems, a given solution can at best be verified as being locally optimal,
that no simple modificatons gives a better result. Here, we have the ability
to verify its optimality globally.

Clearly, the value of spark is very informative and larger values are more
useful. By definition, spark must be in the range

2 ≤ spark(A) ≤M + 1. (1.33)

When elements of A are random independent and identically distributed
from standard Gaussian distribution, then we have

spark(A) = M + 1, (1.34)

implying that noM columns are linearly-dependent. Similarly, for the two-
ortho identity-Fourier matrix [I,F ], the spark is 2

√
M .

Unfortunately, in genneral, the computation of spark of a given matrix
A is difficult, as it calls for a combinatorial search over all possible subset of
columns fromA. For practically overcoming this difficulty, lower bounding
spark by mutual coherence is proposed. The definition of mutual cohenrence
is as follows:

Definition 1.6.2. The mutual-coherence of a given matrix A is the largest
absolute normalized inner product between different columns fromA.Denoting
the k-th column inA by ak, the mutual-coherence is given by

µ(A) = min
1≤i,j≤N,i6=j

|aTi aj |
||ai||2||aj ||2

. (1.35)
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Mutual-coherence is a way to characterize the dependence between columns
of the matrix A. The evaluation of 1.35 is computationally feasible, and as
such, it allows us to lower-bound the spark.

Lemma 1.6.2. For any matrixA ∈ RM×N , the following relationship holds:

spark(A) ≥ 1 +
1

µ(A)
. (1.36)

The proof of this lemma can be found in book [17]. Therefore, We have
the following theorem on uniqueness based on mutual-coherence.

Theorem 1.6.3. If a system of linear equationsAx = y has a solution x obeying

||x||0 <
1

2

(
1 +

1

µ(A)

)
, (1.37)

this solution is necessarily the sparsest possible.

Unfortunately, this replacement of the bound generally loosens the as-
sessment accuracy considerably. When each entry of A is chosen from a
Gaussian distribution of zero mean and a fixed variance, the typical value
of the mutual-coherence can never be smaller than 1/

√
M , while the spark

can easily be as large as M .

These theoretical studies provide the guaratees of many algorithms. For
example,

Theorem 1.6.4. (Equivalence - Orthogonal Greedy Algorithm): For a sys-
tem of linear equationsAx = y (A ∈ RM×N full-rank withM < N ), if a solution
x exists obeying

||x||0 <
1

2

(
1 +

1

µ(A)

)
, (1.38)

OMP run with threshold parameter ε0 = 0 is guaranteed to find it exactly.

Theorem 1.6.5. (Equivalence - Basis Pursuit): For a system of linear equations
Ax = y (A ∈ RM×N full-rank with M < N ), if a solution x exists obeying

||x||0 <
1

2

(
1 +

1

µ(A)

)
, (1.39)

that solution is both the unique solution of l1-norm minimization problem and the
unique solution of l0-norm minimization problem.

The proof of these theorem can be found in book [17].
The above-discribed theorems motivate using OMP and Basis Persuit

to approximate the solution of l0-norm minimization problem. However,
note that, these results are the worst-case study, they are week and lead to
overly pessimistic prediction of performance. In other words, they guaran-
tee success only when the object is extremely sparse, with fewer than

√
M

non-zeros out of M . In many cases such sparsity is out of the question.
Actually, in the case of random matrices A, much more favorable re-

sults are possible. Empirical evidence shows that OMP and Basis Persuit
perform well even in situations violating the above bounds. Naturally, con-
sidering a probabilistic viewpont that yields reasonable and more optiistic
bounds are needed.
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FIGURE 1.8: Comparison of typical reconstruction limits of
the lp-reconstruction for p = 0, 1. The blue curve represents

p = 1 and the black line represents p = 0.

1.6.2 The statistical evaluation

In the 19th century, the discovery of atoms and molecules has opened the
door of the microscopic world. A theory to connect the microscopic and the
macroscopic worlds was needed, which gave birth to statistical mechanics.
Statistical mechanics was the first foundational physical theory in which
probabilistic concepts and probabilistic explanation played a fundamental
role. A common use of statistical mechanics is in explaining the thermody-
namic behaviour of large systems.The benefit of using statistical mechan-
ics is that it provides exact methods to connect thermodynamic quantities
(such as heat capacity) to microscopic behavior. Since the framework of
statistical mechanics is general, its application domains are wide-ranging.
Nowadays, it starts to come in to the world of information, which is ab-
stract and different from the traditional physical object. The connection
between microscopic and macroscopic behaviors is the core of the so-called
"big data" research, which is also the essence of statistical mechanics. The
common goal of physics and information science is to infer the behaviour
of the system from the observed data. Realizing the same essence, can crash
down the barrier between different research areas and enhance the ability
of the whole. This thesis is an example of how method developed in physics
can empower the theory and algorithm in information science.

To statistically evaluate the performance, we need to assume the prob-
abilistic distribution for signal x and measurement matrix A. The recon-
struction performance avaraged by the probabilistic distribution of the mea-
surement matrix and the signal is called the typical preformance.

A typical reconstruction limit for CS with standard Gaussian signals and
Guassian random measurement matrices based on lp-norm minimization is
presented in [30]. In fig.1.8, each curve represents the Replica Symmetric es-
timate of the typical critical compression rate αc(ρ) for the signal density ρ
of the original signal for the lp-reconstruction scheme. Correct reconstruc-
tion is typically possible for α > αc(ρ). After submitting letter [30], the
authors noticed that the typical criticality of the l1-reconstruction was ex-
plored in [11, 13] for compression matrices consisting of i.i.d. zero-mean
Gaussian random column vectors utilizing techniques of combinatorial ge-
ometry. It turns out that [11, 13]’s weak threshold corresponds to [30]’s
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result for αc(ρ) with p = 1. In view of [11, 13]’s criterion of reconstruc-
tion success, in which no errors are allowed, [30]’s result implies that the
criticality of l1-reconstruction is ‘tight’ in the sense that it does not change
irrespective of whether or not we allow small errors which are vanishing
asymptotically as N →∞. The connection between [30]’s analysis and [11,
13]’s further suggests a possibility of wide application of statistical mechan-
ics tools to problems in large-dimensional random combinatorial geometry.

1.7 1-bit compressed sensing

Quantizing continuous data is unavoidable in most real-world applications,
particularly those in which the measurement is accompanied by digital in-
formation transmission [34]. In the signal processing context, the CS frame-
work eases the burden on analog-to-digital converters (ADCs) by reducing
the sampling rate required to acquire and recover sparse signals. However,
in practice, ADCs not only sample, but also quantize each measurement to
a finite number of bits; moreover, there is an inverse relationship between
achievable sampling rate and bit depth. Therefore, many discussions on CS
have shifted emphasis from sampling rate to number of bits per measure-
ment [43, 18]. Also, there are many researches about how to find a satis-
factory quantized representation of real number measurement and requires
preprocessing based on real number measurements. However, in this the-
sis, we are more interested of directly minimize MSE instead of minimize
the residual between quantized representation and real number measure-
ment.

The extream case of quantization is to only keep the sign information.
Addressing the practical relevance of CS in such operation, Boufounos and
Baraniuk proposed and examined a CS scheme, often called 1-bit compressed
sensing (1-bit CS), in which the signal is recovered from only the sign data
of the linear measurements

y = sign(Ax0), (1.40)

where sign(x) = x/|x| for x 6= 0 operates for vectors in the component-wise
manner [49]. Thus, the measurement operator is a mapping from RN to the
Boolean cube BM := {−1, 1}M . Since the linear constraint becomes a sign
information, when yi = 1, we have∑

j

Aijxj > 0, (1.41)

and yi = −1 means the opposite. In fig.1.4, black solid lines represent the
linear constraint in CS for two dimensional case, instead of that, the 1-bit
CS measurement 1.40 is not giving us a line, but a half space which cutted
from the line. Therefore, we need more measurements to tell us a small
region of consist set of all the 1-bit constraints.

Note that, here what we have compressed is the measurement data,
which is different form reduce the measuring process in CS that we have
talked so on. In other words, for 1-bit CS problem, we are working in the
region of M > N , and the application is different from CS. The reason why
I started from introducing CS is because of the historical reason and the
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background that 1-bit CS can rely on. The scheme of 1-bit CS is considered
practical relevant in situations where measurements are inexpensive and
precise quantization is expensive, for example wirless communication, in
which the cost of measurements should be quantified by the number of to-
tal bits needed to store the data instead of by the number of measurements.
Discarding the amplitude information can significantly reduce the amount
of data that needs to be stored and/or transmitted. This is highly advan-
tageous when perfect recovery is not required. In addition, quantization to
the 1-bit (sign) information is appealing in hardware implementations be-
cause 1-bit quantizer takes the form of a comparator to zero and does not
suffer from dynamic range issues.

1.8 Aim and outline of this thesis

The aim of this thesis is to clarify the typical performance of several ap-
proaches to 1-bit compressed sensing and to develop fast and practically
feasible signal reconstruction algorithms for the problem.

In chapter 2, we analyze the typical performance of an l1-norm based
signal recovery scheme for the 1-bit compressed sensing using statistical
mechanics methods. We also develop another approximate recovery algo-
rithm inspired by the cavity method. In chapter 3, to further develop the
study of l1-norm based signal recovery scheme for 1-bit compressed sens-
ing, we suggest a strategy that captures scale information by introducing
a threshold parameter to the quantization process. For practical use, we
develop a heuristic that adaptively tunes the threshold parameter based on
measurement results. In chapter 4, we present a Bayesian approach to sig-
nal reconstruction for 1-bit compressed sensing, which is a statistical lower
bound of the recovery performance of 1-bit measurements. We also test a
message passing algorithm for signal reconstruction on the basis of belief
propagation. Conclusion, appendix and bibliography are stated in the end.
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Chapter 2

l1-norm minimization approach

The purpose of this chapter is to explore the abilities and limitations of
a 1-bit CS scheme utilizing statistical mechanics methods. In [49] an ap-
proximate signal recovery algorithm based on minimization of the l1-norm
||x||1 =

∑N
i=1 |xi| under the constraint of sign (Φx) = y was proposed and

its utility was shown by numerical experiments. Quantization to the sign
information, however, leads to the loss of the convexity of the resulting
optimization problem, which makes it difficult to mathematically examine
how well the obtained solution approximates the correct solution. Compar-
ing (in terms of the mean square error) the results of numerical experiments
with the theoretical prediction evaluated by the replica method [14], we will
show that the performance of the approximate algorithm is nearly as good
as that potentially achievable by the l1-based scheme. We will also develop
another approximate algorithm inspired by the cavity method [38, 37] and
will show that when the density of nonzero entries of the original signal is
relatively high the new algorithm offers better recovery performance with
much lower computational cost.

This chapter is organized as follows. The next section sets up the prob-
lem that we will focus on when explaining the 1-bit CS scheme. Section 3
uses the replica method to examine the signal recovery performance achieved
by the scheme. In section 4 an approximate signal recovery algorithm based
on the cavity method is developed and evaluated, and the final section is
devoted to a summary.

The result in this chapter is published in [56].

2.1 Problem setup

Let us suppose that entry x0
i (i = 1, 2, . . . , N) of N -dimensional signal (vec-

tor) x0 ∈ RN is independently generated from an identical sparse distribu-
tion:

P (x) = (1− ρ) δ (x) + ρP̃ (x) , (2.1)

where ρ ∈ [0, 1] represents the density of nonzero entries in the signal and
P̃ (x) is a distribution function of x ∈ R that does not have finite mass at
x = 0. In 1-bit CS the measurement is performed as

y = sign
(
Φx0

)
, (2.2)

where for simplicity we assume that each entry of M × N measurement
matrix Φ is provided as an independent sample from an identical Gaussian
distribution of zero mean and variance N−1.
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Given y and Φ, the signal reconstruction is carried out by searching for
a sparse vector x = (xi) ∈ RN under the constraint of sign (Φx) = y. For
this task the authors of [49] proposed a scheme of

min
x
{||x||1} subj. to sign (Φx) = y and ||x||2 =

√
N, (2.3)

based on the l1-recovery method widely used and studied for standard CS

problems [7]. Here ||x||1 =
∑N

i=1 |xi| and ||x||2 = |x| =
√∑N

i=1 x
2
i denote

the l1- and l2-norms of x, respectively. The measurement process of (2.2)
completely erases the information of length |x0|, which makes it impossible
to recover the signal uniquely. We therefore introduce an extra normaliza-
tion constraint |x̂| =

√
N for the recovered signal x̂, and we consider the

recovery successful when the direction cosine x0 · x̂/(|x0||x̂|) is sufficiently
large.

Unlike the standard CS problem, finding a solution of (2.3) is non-trivial
because the norm constraint |x| =

√
N keeps it from being a convex opti-

mization problem (Figures 2.1 (a) and (b)). The authors of [49] also de-
veloped, as a practically feasible solution, a double-loop algorithm called
Renormalized Fixed Point Iteration (RFPI) that combines a gradient descent
method and enforcement to a sphere of a fixed radius. It is summarized in
Figure 2.2.

The practical utility of RFPI was shown by numerical experiments, but
how good solutions are actually obtained is unclear because in general the
algorithm can be trapped at various local optima. One of our main concerns
is therefore to theoretically evaluate the typical performance of the global
minimum solution of (2.3) for examining the possibility of performance im-
provement.

2.2 Performance assessment by the replica method

The partition function

Z
(
β; Φ,x0

)
=

∫
dxδ

(
|x|2 −N

)
e−β||x||1

M∏
µ=1

Θ
(
(Φx0)µ(Φx)µ

)
, (2.4)

where Θ (x) = 1 and 0 for x > 0 and x < 0, respectively, offers the basis
for our analysis. As β tends to infinity, the integral of (2.4) is dominated by
the correct solution of (2.3). One therefore can evaluate the performance of
the solution by examining the macroscopic behavior of equation (2.4) in the
limit of β →∞.

A characteristic feature of the current problem is that (2.4) depends on
the predetermined random variables Φ and x0, which requires us to assess
the average of free energy density f ≡ −(βN)−1

[
lnZ(β; Φ,x0)

]
Φ,x0 when

evaluating the performance for typical samples of Φ and x0. Here, [· · · ]Φ,x0

denotes the configurational average concerning Φ and x0. Because directly
averaging the logarithm of the partition function is technically difficult, we
here resort to the replica method [14].
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FIGURE 2.1: Graphical representations of (a) standard and
(b) 1-bit CS problems in the case of N = 2, M = 1, and
K = ρN = 1. (a): A thick line and a square of thin lines
represent a measurement result y = Φ1x1 + Φ2x2 and a
contour of l1-norm |x1| + |x2|, respectively. The optimal
solution denoted by a circle is uniquely determined since
both the set of feasible solutions y = Φ1x1 + Φ2x2 and the
cost function |x1| + |x2| are convex. (b): The shaded area
y× (Φ1x1 + Φ2x2) > 0 represents the region that is compat-
ible with the sign information of the linear measurement
y = Φ1x1 + Φ2x2 (dotted broken line). This and the l2-norm
constraint x21 + x22 = 2 yield the set of feasible solutions as
a semicircle (thick curve), which is not a convex set. As a
consequence, the constraint optimization problem of (2.3)
generally has multiple solutions (two circles). This graph is

cited from [56] R©IOP Publishing Ltd.

For this we first evaluate n-th moment of the partition function
[
Zn
(
β; Φ,x0

)]
Φ,x0

for n = 1, 2, . . . ∈ N, using the formula

Zn
(
β; Φ,x0

)
=

∫ n∏
a=1

(
dxaδ

(
|xa|2 −N

)
× e−β||xa||1

)
×

n∏
a=1

M∏
µ=1

Θ
(
(Φx0)µ(Φxa)µ

)
, (2.5)

which holds only for n = 1, 2, . . . ∈ N. Here, xa (a = 1, 2, . . . , n) denotes
a-th replicated signal. Averaging (2.5) with respect to Φ and x0 results in
the saddle point evaluation concerning macroscopic variables q0a = qa0 ≡
N−1x0 · xa and qab = qba ≡ N−1xa · xb (a, b = 0, 1, 2, . . . , n). Although (2.5)
holds only for n ∈ N, the expression of N−1 ln

[
Zn
(
β; Φ,x0

)]
Φ,x0 obtained

by the saddle point evaluation under a certain assumption concerning the
permutation symmetry with respect to the replica indices a, b = 1, 2, . . . n is
obtained as an analytic function of n, which is likely to also hold for n ∈ R.
Therefore, we next utilize the analytic function for evaluating the average
of the logarithm of the partition function as

N−1 ln
[
lnZ(β; Φ,x0)

]
Φ,x0 lim

n→0
N−1 ln

[
Zn
(
β; Φ,x0

)]
Φ,x0 . (2.6)
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Algorithm 1: RENORMALIZED FIXED POINT ITERATION(δ, λ)

1) Initialization :

Seed : x̂0 s.t ||x̂0||2 =
√
N,

Descent step size : δ
Counter : k ← 0

2) Counter Increase :
k ← k + 1

3) One-sided quadratic gradient :

fk ← (YΦ)Tf ′(YΦx̂k−1)
4) Gradient projection on sphere surface :

f̃k ← fk − 〈fk, x̂k−1〉x̂k−1/N
5) One-sided quadratic gradient descent :

h← x̂k−1 − δf̃k
6) Shrinkage (l1-gradient descent) :

(u)i ← sign((h)i)max{|(h)i| − δ
λ , 0} for all i

7) Normalization :

x̂k ←
√
N u
||u||2

8) Iteration : Repeat from 2) until convergence.

FIGURE 2.2: Pseudocode for the inner loop of the Renor-
malized Fixed Point Iteration (RFPI) proposed in [49]. The
function f ′(x) in step 3 is defined as f ′(x) = x for x ≤ 0 and
0, otherwise, and it operates on a vector in a component-
wise manner. In the original expression in [49] the nor-
malization constraint is introduced as ||x̂k||2 = 1, but we
here use ||x̂k||2 =

√
N for convenience in considering the

large system limit of N → ∞. RFPI is a double-loop al-
gorithm. In the outer loop the parameter λ is increased as
λn = cλn−1, where c > 1 and n are a certain constant and
the counter of the outer loop, respectively. The convergent
solution of i − 1th outer loop is used for the initial state of
the inner loop of the ith outer loop. The algorithm termi-
nates when difference between the convergent solutions of
two successive outer loops become sufficiently small.This

figure is cited from [56] R©IOP Publishing Ltd.
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In particular, under the replica symmetric (RS) ansatz where the domi-
nant saddle point is assumed to be of the form of

qab = qba =


ρ (a = b = 0)
m (a = 1, 2, . . . , n; b = 0)
1 (a = b = 1, 2, . . . , n)
q (a 6= b = 1, 2, . . . , n)

, (2.7)

when the distribution of nonzero entries in (2.1) is given as the standard
Gaussian P̃ (x) = exp(−x2/2)/

√
2π, the above procedure offers an expres-

sion of the average free energy density as

f̄ = extr
ω

{[
φ
(√

q̂z + m̂x0; Q̂
)]
x0,z
− 1

2
Q̂+

1

2
q̂χ+ m̂m

+
α

2πχ

(
arctan

(√
ρ−m2

m

)
− m

ρ

√
ρ−m2

)}
(2.8)

in the limit of β → ∞. Here α = M/N , extrX{g(X)} denotes extrem-
ization of a function g(X) with respect to X , ω = {χ,m, Q̂, q̂, m̂}, Dz =
dzexp(−z2/2)/

√
2π is a Gaussian measure, and

φ
(√

q̂z + m̂x0; Q̂
)

= min
x

{
Q̂

2
x2 −

(√
q̂z + m̂x0

)
x+ |x|

}
= − 1

2Q̂

(∣∣∣√q̂z + m̂x0
∣∣∣− 1

)2
Θ
(∣∣∣√q̂z + m̂x0

∣∣∣− 1
)
. (2.9)

The derivation of (2.8) is provided in A.
The extremization problem of (2.8) yields the following saddle point

equations:

q̂ =
α

πχ2

(
arctan

(√
ρ−m2

m

)
− m

ρ

√
ρ−m2

)
, (2.10)

m̂ =
α

πχρ

√
ρ−m2, (2.11)

Q̂2 = 2

{
(1− ρ)

[
(q̂ + 1)Q

(
1√
q̂

)
−
√

q̂

2π
e
− 1

2q̂

]

+ρ

[(̂
q + m̂2 + 1

)
Q

(
1√

q̂ + m̂2

)
−
√
q̂ + m̂2

2π
e
− 1

2(q̂+m̂2)

]}
,(2.12)

χ =
2

Q̂

[
(1− ρ)Q

(
1√
q̂

)
+ ρQ

(
1√

q̂ + m̂2

)]
, (2.13)

m =
2ρm̂

Q̂
Q

(
1√

q̂ + m̂2

)
, (2.14)

where Q(x) =
∫ +∞
x Dz. The value of m determined by these equations

physically means the typical overlap N−1
[
x0 · x̂

]
Φ,x0 between the original

signal x0 and the solution x̂ of (2.3). Therefore the typical value of the di-
rection cosine between x0 and x̂, which serves as a performance measure
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of the current recovery problem, is evaluated as
[
(x0 · x̂)/|x0||x̂|

]
Φ,x0 =

Nm/(
√
Nρ ×

√
N) = m/

√
ρ. Alternatively, we may also use as a perfor-

mance measure the mean square error (MSE) between the normalized vec-
tors:

MSE =

[∣∣∣∣ x̂|x̂| − x0

|x0|

∣∣∣∣2
]

Φ,x0

= 2

(
1− m
√
ρ

)
. (2.15)

We solved the saddle point equations for various sets of α and ρ. The
curves in figures 2.3 (a)–(d) show the theoretical prediction of MSE eval-
uated by (2.15) plotted against the measurement bit ratio α = M/N for
ρ = 1/32, 1/16, 1/8, and 1/4. To examine the validity of the RS ansatz, we
also evaluated the local stability of the RS solutions against the disturbances
that break the replica symmetry [2], which offers

α

π(Q̂χ)2
arctan

(√
ρ−m2

m

)

×2

(
(1− ρ)Q

(
1√
q̂

)
+ ρQ

(
1√

q̂ + m̂2

))
− 1 < 0, (2.16)

as the stability condition. A brief sketch of the derivation of this condition
is shown in B. Unfortunately, (2.16) is not satisfied for any regions in figures
2.3 (a)–(d). This is presumably because the optimization problem for (2.3)
has many local optima reflecting the fact that the constraint of ||x||2 =

√
N

loses the convexity. This indicates that taking the replica symmetry break-
ing (RSB) into account is necessary for evaluating the exact performance of
the signal recovery scheme defined by (2.3).

We nonetheless think that the RS analysis offers considerably accurate
approximates of the exact performance in terms of MSE. The (×) symbols in
figures 2.3 (a)–(d) stand for MSE experimentally achieved by RFPI, which
were assessed as the arithmetic averages over 1000 samples for each con-
dition of N = 128 systems. Excellent consistency between the curves and
symbols suggests that even if (2.3) has many local optima, they are close
to one another in terms of the l2-norm yielding similar values of MSE. This
also implies that RFPI, which is guaranteed to find one of the local optima,
performs nearly saturates as well (as measured by the MSE) as the signal
recovery scheme based on (2.3).

Of course, we have to keep in mind that the consistency between the
theory and experiments depends highly on the performance measure used.
Figures 2.4 (a)–(d) show the probabilities of wrongly predicting sites of
nonzero and zero entries, which are sometimes referred to as false posi-
tive (FP) and false negative (FN), respectively. These indicate that there
are considerably large discrepancies between the theory and experiments
in terms of these performance measures, which is probably due to the in-
fluence of RSB. Nevertheless, the RS-based theoretical predictions are still
qualitatively consistent with the experimental results in the way that the
probability of a FP remains finite even when the measurement bit ratio
α = M/N tends to infinity for any values of ρ. This implies that the l1-
based scheme is intrinsically unable to correctly identify sites of nonzero
and zero entries.
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FIGURE 2.3: MSE versus the measurement bit ratio α for
the signal recovery scheme using (2.3). (a), (b), (c), and (d)
correspond to the ρ = 1/32, 1/16, 1/8, and 1/4 cases, respec-
tively. Curves represent the theoretical prediction evalu-
ated by the RS solution, which is locally unstable for dis-
turbances that break the replica symmetry for all regions of
(a)–(d). Each symbol (×) stands for the experimental esti-
mate obtained for RFPI in [49] from 1000 experiments with
N = 128 systems. This figure is cited from [56] R©IOP Pub-

lishing Ltd.
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FIGURE 2.4: FP and FN probabilities versus the mea-
surement bit ratio α = M/N . (a), (b), (c), and (d) corre-
sponds to the ρ = 1/32, 1/16, 1/8, and 1/4 cases, respec-
tively. Solid and dashed curves represent theoretical pre-
dictions obtained by the RS solution for FP and FN, respec-
tively. Asterisks and squares denote experimental results
for FP and FN, respectively. The experimental results were
obtained by RFPI from 1000 samples for each condition of
N = 128 systems. This figure is cited from [56] R©IOP Pub-

lishing Ltd.
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2.3 Cavity-inspired signal recovery algorithm

The analysis so far indicates that the performance of RFPI is good enough
in the sense that there is little room for improvement in achievable MSE.
RFPI requires tuning of two parameters δ and λ, however, which is rather
laborious. In addition, the convergence of the inner loop of Figure 2.2 is rel-
atively slow, which may limit its application range to systems of relatively
small sizes. We therefore developed another recovery algorithm follow-
ing the framework of the cavity method of statistical mechanics [38, 37], or
equivalently, the belief propagation of probabilistic inference [35, 36, 26].

For simplicity of notations, let us first convert all the measurement re-
sults to +1 by multiplying yµ (µ = 1, 2, . . . , N) to each row of the measure-
ment matrix Φ = (Φµi) as (Φµi) → (yµΦµi), and newly denote the resul-
tant matrix as Φ = (Φµi). In the new notation, introduction of Lagrange
multipliers a = (aµ) and surplus variables z = (zµ) converts (2.3) to an
unconstrained optimization problem:

min
x,z>0

max
a,Λ


N∑
i=1

|xi|+
M∑
µ=1

aµ

(
N∑
i=1

Φµixi − zµ

)
+

Λ

2

(
N∑
i=1

x2
i −N

)
= min
x,z>0

max
a,Λ


N∑
i=1

(
Λ

2
x2
i + |xi|

)
−

M∑
µ=1

aµzµ+
∑
µ,i

Φµiaµxi −
NΛ

2

,(2.17)

where z > 0 means that each entry of z is restricted to be positive.
Coupling terms

∑
µi Φµiaµxi make the optimization of (2.17) a nontriv-

ial problem. In statistical mechanics, a standard approach to resolving such
a difficulty is to approximate (2.17) with a bunch of optimizations for single-
body cost functions parameterized as

Li(xi) =
Ai
2
x2
i −Hixi + |xi|, (2.18)

and

Lµ(aµ, zµ) = −Bµ
2
a2
µ +Kµaµ − zµaµ, (2.19)

whereAi, Bµ, Hi, andKµ are parameters to be determined in a self-consistent
manner.

In the cavity method this is done by introducing virtual systems that are
defined by removing a single variable xi or a single pair of variables (aµ, zµ)
from the original system [38]. When N is sufficiently large, the law of large
numbers allows us to assume that the values of Ai and Bµ are constant
independently of their indices; that is, that A and B are constants. Under
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this simplification, this method yields a set of self-consistent equations:

Kµ =

N∑
i=1

Φµix̂i −Bâµ, (2.20)

âµ = − 1

B
f ′ (Kµ) , (2.21)

Hi =

M∑
µ=1

Φµiâµ + Γx̂i, (2.22)

x̂i =
1

A
g′ (Hi) , (2.23)

where µ = 1, 2, . . . ,M , i = 1, 2, . . . , N , f(u) ≡ (u2/2)Θ(−u), and g(u) ≡(
(|u| − 1)2/2

)
Θ (|u| − 1). Γ is evaluated using {Kµ} and B as

Γ = B−1

N−1
M∑
µ=1

f ′′ (Kµ)

 = B−1

N−1
M∑
µ=1

Θ (|Kµ| − 1)

 . (2.24)

A is determined so that
∑N

i=1 x̂
2
i = N holds in (2.23), which provides

B as

B = A−1

(
N−1

N∑
i=1

g′′ (Hi)

)
= A−1

(
N−1

N∑
i=1

Θ (|Hi| − 1)

)
. (2.25)

Γx̂i on the right-hand side of (2.22) is often referred to as the Onsager re-
action term [50, 46]. Equation (2.23) offers the recovered signal. The deriva-
tions of these equations are provided in C.

A distinctive feature of the above set of equations is that they are free
from tuning parameters such as λ and δ in RFPI, which is highly beneficial
in practical use. It is therefore unfortunate that in most cases the naive iter-
ations of (2.20)→(2.21), (2.24)→(2.22)→(2.23), (2.25)→(2.20)· · · hardly con-
verge, which is considered a consequence of RSB [24], while a similar ap-
proach offers successful results for various other problems of compressed
sensing [41, 4].

We found, however, that instead of updating B by (2.25) at each itera-
tion, handling B as a parameter to be controlled in the outer loop, in con-
junction with modifying (2.20) and (2.21) to

âµ = âµ −
1

B
f ′

(
N∑
i=1

Φµix̂i

)
, (2.26)

results in a fairly good approximate signal recovery algorithm.
The necessity of controlling B in the outer loop, which is essential for

having good convergence in the inner loop, means that our algorithm still
requires one tuning parameter. Nonetheless, the reduction in the number
of the tuning parameters from two to one is considerably advantageous for
practical use. In practice, the initial value of B should be set so that only
a single entry becomes nonzero. This is easily done by the Binary Iterative
Hard Thresholding algorithm [23], which requires the number of nonzero
entries as extra prior knowledge. After the initial value is set, B is reduced
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Algorithm 2: CAVITY-INSPIRED SIGNAL RECOVERY(B,x∗,H∗)

1) Initialization :
X seed : x̂0 ← x̂∗

H seed : H0 ← H∗

Counter : k ← 0
2) Counter increase :

k ← k + 1
3) One-sided quadratic gradient descent :

Hk ← Hk−1 − B−1(YΦ)Tf ′ (YΦx̂k−1)
4) Assessment of Onsager coefficient :

Γ← (NB)−11Tf ′′ (YΦx̂k−1)
5) Self-feedback cancellation :

H̃k ← Hk + Γx̂k−1

6) Shrinkage (l1-gradient descent) :

(u)i ← sign((H̃)i)max{|(H̃)i| − 1, 0} for all i
7) Normalization :

x̂k ←
√
N u
||u||2

8) Iteration : Repeat from 2) until convergence.

FIGURE 2.5: Pseudocode for the inner loop of the cavity-
inspired signal recovery (CISR) algorithm. x∗ and H∗ are
the convergent vectors of x̂k and Ĥk obtained by the previ-
ous outer loop. The 1 in step 4) is the N -dimensional vector
all entries of which are unity. If (u)i = 0 eventually holds
for ∀i in step 6), B is reduced so that only maxi{|(u)i|} be-
comes nonzero, and the procedure is restarted from step 3).

This figure is cited from [56] R©IOP Publishing Ltd.

as Bn = rBn−1 with an appropriate constant 0 < r < 1, where n is the
counter of the outer loop. The algorithm terminates when the difference be-
tween the convergent solutions of two successive outer loops is sufficiently
small.

The resultant algorithm is somewhat similar to RFPI as the combination
of (2.22) and (2.26) roughly acts as the One-sided quadratic gradient de-
scent step in Figure 2.2. However, as the length of H = (Hi) = ΦTâ is not
restricted to a fixed value, the current algorithm does not need a small step
size δ for the convergence. Another significant difference from RFPI is the
existence of the Onsager reaction term in (2.22). This term effectively can-
cels the self-feedback effects included in Hi of (2.22), and this is expected
to accelerate the convergence of the algorithm. A pseudocode for the inner
loop is summarized in Figure 2.5.
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FIGURE 2.6: MSE versus measurement bit ratio α for the
cavity-inspired signal recovery (CISR) algorithm. Experi-
mental conditions are the same as in Figures 2.3 (a)–(d).This

figure is cited from [56] R©IOP Publishing Ltd.

The MSE results obtained in numerical experiments with the cavity-
inspired signal recovery (CISR) algorithm are shown in Figures 2.6 (a)–(d).
They indicate that except in the case in which the nonzero density ρ of the
original signals is significantly low, CISR provides MSE values almost equal
to or lower than those of RFPI. Figures 2.7 (a)–(d) show the FP and FN prob-
abilities for CISR. The discrepancies from the theoretical prediction are not
unexpected because the modification of (2.21) to (2.26) means that CISR is
no longer based on (2.3) or (2.17). The FN probabilities for CISR are higher
than those for RFPI, while the FP probabilities are lower. This implies that
CISR has a capability of yielding sparser signals than RFPI, which is pre-
sumably because parameter B of CISR is initially set so that only a single
entry of x̂ is nonzero while such a tuning is not taken into account in RFPI.

The run times actually required for performing the experiments in a
MATLAB R© environment for the cases of N = 128 and M = 3N = 384
are listed in Table 2.1. Although the run times of RFPI may be reduced
by optimally tuning the descent step size δ, CISR is several hundreds of
times faster than RFPI. This shows the significant computational efficiency
of CISR. The NORT values in Table 2.1 are the run times when the On-
sager reaction term in (2.22) was removed from CISR. Their being 1.13–2.37
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FIGURE 2.7: FP and FN probabilities of versus measure-
ment bit ratio α for the CISR. Experimental conditions are
the same as in Figures 2.4 (a)–(d). This figure is cited from

[56] R©IOP Publishing Ltd.
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times longer than those for CISR indicates that the cancellation of the self-
feedback effects by adding the Onsager reaction term speeds the conver-
gence of CISR significantly.

TABLE 2.1: Comparison of computational costs for the
N = 128 and M = 3N = 384 cases. The values listed here
are the average run times (in seconds) evaluated in 1000 ex-
periments, and the numbers in parentheses are the standard
deviations. In RFPI, δ was roughly tuned as 0.01, and λ was
enlarged as λn = 2λn−1 with the initial value λ0 = 0.005 in
the outer loop. On the other hand, B of CISR was reduced
as Bn = 0.9Bn−1. The NORT values are the run times re-
quired for performing the same experiments when the On-
sager reaction term was removed from CISR. In all cases
the algorithms terminated when the difference per entry, in
terms of l1-norm, between the convergent solutions of two
successive outer loops was less than 10−8. This table is cited

from [56] R©IOP Publishing Ltd.

K = 4 K = 8 K = 16 K = 32

RFPI 25.7636(10.0799)s 27.8293(3.3566)s 33.3552(3.2914)s 35.4574(3.3869)s
CISR 0.0385(0.0583)s 0.0705(0.1058)s 0.0245(0.0346)s 0.0247(0.0207) s
NORT 0.0557(0.0889)s 0.0795(0.1095)s 0.0581(0.0566)s 0.0369(0.0316)s

2.4 Summary

In summary, we have examined typical properties of 1-bit compresses sens-
ing (CS) proposed in [49] utilizing methods of statistical mechanics. Signal
recovery based on the l1-norm minimization is a standard approach in CS
research. Unlike the normal CS scheme, however, the l1-based signal recov-
ery cannot be formulated as a convex optimization problem, which makes
practically performing it nontrivial.

We have shown that the theoretical prediction of the performance of
the l1-based scheme, which is obtained by the replica method under the
replica symmetric (RS) ansatz, exhibits a fairly good accordance (in terms of
MSE) with experimental results obtained using for an approximate signal
recovery algorithm, RFPI, proposed in [49]. The replica symmetry of the
RS solution turned out to be broken, however, which implies that there are
many local optima for the optimization problem of the signal recovery. Our
results suggest that the local optima, which can be searched by RFPI, yield
similar values of MSE representing the potential performance limit of l1-
based recovery scheme.

We have also developed an approximate signal recovery algorithm uti-
lizing the cavity method. Naive iterations of self-consistent equations de-
rived directly from the cavity method hardly converge in most cases, which
can be regarded as a consequence of the replica symmetry breaking. How-
ever, we have shown that modification of one equation in an appropriate
manner, in conjunction with controlling a macroscopic variable in the outer
loop, results in a fairly good signal recovery algorithm. Compared with
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RFPI, the resultant algorithm is beneficial in that the number of tuning pa-
rameters is reduced from two to one. Numerical experiments have also
shown that whenever the density of nonzero entries of the original signal
is not considerably small the cavity-inspired algorithm performs as well as
or better than RFPI (in terms of MSE) and has a lower computational cost.

We here focused on the l1-based recovery scheme since it was proposed
and examined in the seminal paper on 1-bit CS [49]. However, the sig-
nificance of the l1-based scheme may be rather weak for 1-bit CS because
the loss of convexity it entails keeps it from leading to the development of
mathematically guaranteed and practically feasible algorithms. Therefore,
much effort should be devoted to developing recovery algorithms follow-
ing various principles. In the next chapter, we will suggest a strategy to
solve the convexity problem. And in chapter 4, we will propose a idea
based on the Bayesian inference for 1-bit CS.
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Chapter 3

Thresholding l1-norm
minimization

It is obvious that the scale (absolute amplitude) of the signal is lost in 1-bit
CS measurements. To compensate for this, past studies, as in the previous
chapter, have proposed the imposition of an additional constraint whereby
the l2-norm of the signal is normalized to a fixed constant [49, 56]. In other
words, this can only reconstruct the directional information but not the true
scale information of the signal. Moreover, it yields another drawback such
that solving the reconstruction problem becomes nontrivial, since the prob-
lem is no longer formulated as a convex optimization. In order to address
these issues, we propose introducing a set of finite thresholds λ = (λµ)
(µ = 1, 2, . . . ,M) to the quantizer as

y = sign(Φx+ λ). (3.1)

Combining the knowledge of the thresholds and frequencies of the binary
outputs allows us to estimate the scale of the signal. Furthermore, as the
feasible set provided by the constraint of (3.1) for given measurements y is
a convex region of x, one can reconstruct a sparse signal in polynomial time
by solving the l1-norm minimization problem

x̂ = argmin
x∈RN

||x||1 subject to y = sign(Φx+ λ) (3.2)

by using versatile convex optimization algorithms [20].
A lingering, natural question is how we should set the values of λµ. To

partially answer this, we compare two strategies: one involves fixing the
thresholds at a constant value λµ = λ for all measurements, and the other
consists of independently selecting λµ from an identical Gaussian distribu-
tion. We will show that the fixing-value strategy yields better mean squared
error (MSE) performance than the random strategy when adjustable pa-
rameters are optimally tuned using the replica method [14] of statistical
mechanics.

Unfortunately, the value of the optimal threshold depends on the statis-
tical property of the target signal. However, experimental results indicate
that MSEs are typically minimized when the frequency of positive (or neg-
ative) output, which can be statistically estimated from the measurements,
is placed in a relatively narrow range. By relying on this empirical obser-
vation, we will develop an online learning algorithm to tune λµ based on
the results of past measurements. Numerical experiments show that our al-
gorithm exhibits satisfactory comparable to that achieved by the optimally
tuned threshold.
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The rest of this chaper is organized as follows: In Section 3.1, we formu-
late the problem to be addressed in this study. In Section 3.2, we evaluate
the performance of the reconstruction method of (3.2). Section 3.3 is de-
voted to a description of our learning algorithm to tune the threshold value,
whereas last section summarizes our work in this chapter.

The work in this chapter has been submitted to the IEEE for possible
publication. Copyright may be transferred without notice, after which this
version may no longer be accessible.

3.1 Problem set up

Let us suppose a situation where entry x0
i (i = 1, 2, . . . , N) ofN -dimensional

signal (vector)x0 ∈ RN is independently generated from an identical sparse
distribution:

P (x) = (1− ρ) δ (x) + ρP̃ (x) , (3.3)

where ρ ∈ [0, 1] represents the density of nonzero entries in the signal, and
P̃ (x) is a distribution function of x ∈ R that does not have finite mass at
x = 0. In the thresholding 1-bit CS, the measurement is performed as

y = sign
(
Φx0 + λ

)
, (3.4)

where we assume that each entry of the M × N measurement matrix Φ is
provided as an independent sample from a Gaussian distribution of mean
zero and variance N−1.

We consider two strategies for setting the thresholding vector λ = (λµ).
Case 1: entry λµ = λ is fixed for all µ = 1, 2, . . . ,M . Case 2: λµ is indepen-
dently sampled from a Gaussian distribution N (0, σ2

λ). For both cases, the
feasible set consistent with given outputs y is provided by a set of inequal-
ities

yµ

(
N∑
i=1

Φµixi + λµ

)
> 0 (3.5)

(µ = 1, 2, . . . ,M), which defines a convex region of x. Therefore, a sparse
signal is reconstructed by the l1-norm minimization (3.2) utilizing a certain
convex optimization algorithm.

3.2 Analysis

3.2.1 Method

The key to finding the statistical properties of reconstruction (3.2) is the
average free energy density

f̄ ≡ − lim
β,N→∞

1

βN

[
lnZ(β; Φ,x0,λ)

]
Φ,x0,λ

, (3.6)
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where

Z
(
β; Φ,x0,λ

)
=

∫
dxe−β||x||1

M∏
µ=1

Θ
(
(Φx0 + λ)µ(Φx+ λ)µ

)
(3.7)

is the partition function. Here, Θ (x) = 1 and 0 for x > 0 and x < 0,
respectively, offers the basis for our analysis. [· · · ]X generally denotes the
operation of the average with respect to the random variable X . As β tends
to infinity, the integral of (3.7) is dominated by the correct solution of (3.2).
One can therefore evaluate the performance of the solution by examining
the macroscopic behavior of (3.7) in the limit of β → ∞. Because directly
averaging the logarithm of the partition function is difficult, we employ the
replica method [14], which allows us to calculate the average free energy
density as

f̄ = − lim
n→+0

∂

∂n
lim

β,N→∞

1

βN
ln
[
Zn(β; Φ,x0,λ)

]
Φ,x0,λ

. (3.8)

For this, we first evaluate the n-th moment of the partition function[
Zn
(
β; Φ,x0,λ

)]
Φ,x0,λ

for n = 1, 2, . . . ∈ N by using the formula

Zn
(
β; Φ,x0,λ

)
=

∫ n∏
a=1

(
dxae−β||x

a||1
)

×
n∏
a=1

M∏
µ=1

Θ
(
(Φx0 + λ)µ(Φxa + λ)µ

)
, (3.9)

which holds only for n = 1, 2, . . . ∈ N. Here, xa (a = 1, 2, . . . , n) denotes the
a-th replicated signal. Averaging (3.9) with respect to Φ and x0 results in
the saddle point evaluation concerning macroscopic variables q0a = qa0 ≡
N−1x0 · xa and qab = qba ≡ N−1xa · xb (a, b = 1, 2, . . . , n). Although (3.9)
holds only for n ∈ N, the expression (βN)−1 ln

[
Zn
(
β; Φ,x0,λ

)]
Φ,x0,λ

ob-
tained by the saddle point evaluation, under a certain assumption concern-
ing the permutation symmetry with respect to the replica indices a, b, is
obtained as an analytic function of n, which is likely to also hold for n ∈ R.
Therefore, we utilize the analytic function to evaluate the average of the
logarithm of the partition function to obtain f̄ .

In particular, under the replica symmetric (RS) ansatz, where the domi-
nant saddle point is assumed to be of the form

qab = qba =


Q0 (a = b = 0)
m (a = 1, 2, . . . , n; b = 0)
Q (a = b = 1, 2, . . . , n)
q (a 6= b = 1, 2, . . . , n)

. (3.10)

For simplicity, we hereafter assume that x0 is distributed from (3.3) with
P̃ (x) = N (0, σ2

0); therefore Q0 = ρσ2
0 .
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3.2.2 Resulting equations

The above procedure (3.10) offers an expression of the average free-energy
density as

f̄ = extr
ω

{∫
DzP (x0)φ

(√
q̂z + m̂x0; Q̂

)
−1

2
Q̂q +

1

2
q̂χ+ m̂mσ2

0

+
α

2χ

Q
− m√

q t+ λ√
ρσ2

0 − m2

q

 (
√
qt+ λ)2 Θ (−√qt− λ)

+Q

 m√
q t+ λ√
ρσ2

0 − m2

q

 (
√
qt+ λ)2 Θ (

√
qt+λ)


t,λ

}
(3.11)

in the limit of β → ∞. Here, α = M/N , extrX{g(X)} denotes the extrem-
ization of function g(X) with respect to X , ω = {χ,m, q, Q̂, q̂, m̂}, Q(x) =∫ +∞
x Dz, Dz = dzexp(−z2/2)/

√
2π is a Gaussian measure, t and z are inde-

pendent and identically distributed (i.i.d) random variables from N (0, 1).
The function φ(h; Q̂) is defined as

φ(h; Q̂) = min
x

{
Q̂

2
x2 − hx+ |x|

}
= − 1

2Q̂
(|h| − 1)2 Θ (|h| − 1) . (3.12)

The derivation of (3.11) is provided in Appendix D.
For Case 1, which fixes the threshold for all measurements to a constant

λ as λµ = λ (µ = 1, 2, . . . ,M), the extremization of (3.11) is reduced to the
following saddle point equations:
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q̂ =
α

χ2


Q

− mt√
q + λ√

ρσ2
0 − m2

q

u (−√qt− λ)


t

+

Q
 mt√

q + λ√
ρσ2

0 − m2

q

u (
√
qt+ λ)


t

 , (3.13)

Q̂ =
α

χ


Q

− mt√
q + λ√

ρσ2
0 − m2

q

u′′ (−√qt− λ)


t

+

Q
 mt√

q + λ√
ρσ2

0 − m2

q

u′′ (
√
qt+ λ)


t

 , (3.14)

m̂ =
α

χ

√
2π
(
ρσ2

0 − m2

q

)
exp

−
(
mt√
q + λ

)2

2
(
ρσ2

0 − m2

q

)


×
(
u′ (
√
qt+ λ)− u′ (−√qt− λ)

)]
t
, (3.15)

q =
2

Q̂2

{
(1− ρ)

(
(q̂ + 1)Q

(
1√
q̂

)
−
√

q̂

2π
e
− 1

2q̂

)

+ρ

((
q̂ + m̂2σ2

0 + 1
)
Q

(
1√

q̂ + m̂2σ2
0

)

−
√
q̂ + m̂2σ2

0

2π
e
− 1

2(q̂+m̂2σ20)

)}
, (3.16)

χ =
2

Q̂

{
(1− ρ)Q

(
1√
q̂

)
+ρQ

(
1√

q̂ + m̂2σ2
0

)}
, (3.17)

m =
2ρm̂σ2

0

Q̂
Q

(
1√

q̂ + m̂2σ2
0

)
, (3.18)

where u(x) = x2Θ(x), and t obeys the standard normal distributionN (0, 1).
On the other hand, for Case 2, where λµ is sampled independently from

N (0, σ2
λ) for µ = 1, 2, . . . ,M , the saddle point equations of q̂, Q̂, and m̂ are
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modified to

q̂ =
2α

χ2

Q
 mt√

q + σλr√
ρσ2

0 − m2

q

u (
√
qt+ σλr)


r,t

, (3.19)

Q̂ =
2α

χ

Q
 mt√

q + σλr√
ρσ2

0 − m2

q

u′′ (
√
qt+ σλr)


r,t

, (3.20)

m̂ =
2α

χ

√
2π
(
ρσ2

0 − m2

q

)
exp

−
(
mt√
q + σλr

)2

2
(
ρσ2

0 − m2

q

)


× u′ (√qt+ σλr)
]
r,t
, (3.21)

where r is a variable sampled from the standard normal distributionN (0, 1).
The remaining equations for q, χ, and m are identical to (3.16), (3.17), and
(3.18), respectively.

3.2.3 Simulations and observations

The value of m determined by these equations physically represents the
typical overlap N−1

[
x0 · x̂

]
Φ,x0,λ

between the original signal x0 and the
solution x̂ of (3.2). Therefore, the typical value of MSE between x0 and x̂,
which serves as the performance measure of the reconstruction problem, is
evaluated as

MSE = N−1
[∣∣x̂− x0

∣∣2]
Φ,x0,λ

= q + ρσ2
0 − 2m. (3.22)

Note that in past studies on 1-bit CS, reconstruction performance was eval-
uated through directional MSE, which is defined by | x̂|x̂| −

x0

|x0| |
2 as scale
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FIGURE 3.1: Replica prediction of MSE (in decibel) versus
fixed threshold λ for signal distribution ρ = 0.25, σ2

0 = 1,
and ratio α = 3.

We solved the saddle point equations for signal sparsity ρ = 0.25 and
variance σ2

0 = 1 when ratio α = 3. The curve in Fig. 3.1 denotes the theoret-
ical predictions of MSE as evaluated by (3.13)–(3.18) (strategy 1) and (3.22)
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FIGURE 3.2: Replica prediction of MSE (in decibel) versus
σλ for signal ρ = 0.25, σ2

0 = 1, and ratio α = 3.
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FIGURE 3.3: Lowest MSE [dB] (envelop) for each ratio α of
signal ρ = 0.25, σ2

0 = 1. The blue and red curves represent
threshold strategies 1 and 2, respectively. The circles stand
for the experimental estimate obtained using the CVX algo-
rithm [20] averaged over 1, 000 experiments with signal size

N = 128 for each parameter set.

plotted against the threshold λ. Fig. 3.2 represents the theoretical predic-
tions of MSE evaluated by (3.19)–(3.21), (3.16)–(3.18) (strategy 2), and (3.22)
plotted against the standard deviation σλ of the threshold. Figures 3.1 and
3.2 show that there is an optimal threshold distribution (red circle symbol)
that minimizes MSE for each set of parameters. Similar features hold for
various sets of values of α, ρ, σ2

0 for both strategies 1 and 2.
To compare the optimal MSE (changing threshold distribution) of strat-

egy 1 and strategy 2, we plot the optimal MSE for the same signal distri-
bution in Fig. 3.1 and Fig. 3.2 against α in Fig. 3.3, which is referred to
the envelope curve of MSE. The blue and red curves represent the envelope
curves for strategies 1 and 2, respectively. From Fig. 3.3, we can see that
strategy 1 outperforms strategy 2 when parameters are optimally tuned.
Therefore, we hereafter focus on strategy 1, for which the thresholds are
fixed.

The optimal value of λ depends on ρ and σ2
0 , which are not necessarily

available in practice. To cope with such situations, we focus here on the
distribution of binary output y, which indirectly conveys the information of
ρσ2

0 and can be estimated from measurements. Fig. 3.4 shows the relation
between the optimal MSE and P (y = +1) for eight signal distributions. For
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FIGURE 3.4: Optimal MSE: MSE/(ρσ2
0) in decibel versus the

probability of +1 in y for fixed threshold 1-bit CS model.
Different colors represent varying signal sparsity. For each
color, from left to right, the plot represents the result for

α = 1, 2, . . . , 6.

given λ, the probability of positive output y = +1 is evaluated as

P (y = +1) =
1

M

 M∏
µ=1

Θ (Φx0 + λ)µ


Φ,x0

=
[
Θ (Φx0 + λ)µ

]
Φ,x0

=

∫ ∞
−∞

DtΘ (
√
ρσ0t+ λ)

= Q
(
− λ
√
ρσ0

)
. (3.23)

The horizontal axis in Fig. 3.4 is calculated from (3.23) by inserting the
optimal value of λ. MSE is normalized by ρσ2

0 in order to eliminate its
dependence on the scale of the original signal. For each color, from left to
right, the plot represents the result for α = 1, 2, . . . , 6, respectively. Different
colors represent varying signal sparsity. For each value of signal sparsity,
we tested two values of signal variance. All circles have identical values of
ρσ2

0 , and all crosses have different values of ρσ2
0 , which can be seen as the

“power” of the signal. From these results, we can see that the normalized
MSE, MSE/(ρσ2

0), is the same when signal sparsity is the same. Besides, the
data indicate that when the signal is sparser, the corresponding P (y = +1)
is greater. The data also show that the P (y = +1) that yields the optimal
MSE monotonically increases with α when the signal distribution is fixed.
Although the optimal MSE depends on all system parameters ρ, σ2

0 , and
compression rate α, we can see that the corresponding P (y = +1) is always
placed in the range of 0.75 ∼ 0.85 for modest values of 1 ≤ α ≤ 6. In
addition, the data imply that although the optimal value of P (y = +1)
monotonically increases as α grows, it tends to converge to a value close to
0.85.
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Algorithm 1: ADAPTIVE THRESHOLDING(γ, δ, λ0, U0, V0)

1) Initialization :
λ seed : λ0

Useed : U0 ← 0
V seed : V0 ← 0
Counter : k ← 0

2) Counter increase :
k ← k + 1

3) Measurement of signal :
yk = sign (

∑
i Φkix0i + λk)

4) Update Tk :
Uk ← (yk > 0) + γUk−1

Vk ← 1 + γVk−1

Tk ← Uk/Vk
5) Update λ :

λk ← λk−1 + δsign(T − Tk)
6) Iteration : Repeat from 2) until k = M .

FIGURE 3.5: Pseudocode for adaptive thresholding of 1-bit
CS measurements. Here, yk and λk for k = 1, 2, ...,M rep-
resent each element of vector y and λ, respectively. Signal
reconstruction can be carried out by versatile convex opti-

mization algorithms.

3.3 Learning algorithm for threshold

The results of the last section suggest that for each parameter set, the opti-
mal threshold that minimizes MSE is loosely characterized by the value of
P (y = +1), which can be statistically estimated from the outputs of mea-
surements. This property may be utilized to adaptively tune the threshold
for each measurement based on the results of previous measurements.

A few studies have been conducted in the past on adaptive tuning of
the threshold to improve signal reconstruction performance. For exam-
ple, in [32], given past measurements, a threshold value was determined
to partition the consistent region along its centroid computed by gener-
alized approximate message passing [41, 57]. However, in many realistic
situations, precise knowledge of the prior distribution is unavailable, even
if we might reasonably expect the signal to be sparse. Therefore, we will
here develop a learning algorithm that can be executed without knowledge
of the prior distribution of the signal. There is another general adaptive
algorithm called Σ∆ quantization [5]. However, its goal is to find a satis-
factory quantized representation of real number measurement and requires
preprocessing based on real number measurements. Instead, the algorithm
we develop aims to directly minimize MSE, and needs no preprocessing.

As shown in Fig. 3.4, MSE is minimized when P (y = +1) takes a value
of 0.75 ∼ 0.85 for various sets of parameters. To incorporate this property,
we propose a strategy that first fixes a target value of T for P (y = +1), and
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FIGURE 3.6: Experimental result from the adaptive thresh-
olding algorithm for signal ρ = 0.0625, σ2

0 = 2, and N =
128. The circles denote the average of 1, 000 experiments.
The parameter settings were T = 0.8, γ = 0.8, λ0 = 0.5, and
δ = 0.01. The broken line represents the replica prediction
when λ is set to offer P (y = +1) = 0.8 while the full curve

denotes this for optimally tuned λ.

tunes λ so that an empirical distribution of P (y = +1) approaches T . As
we see in Fig. 3.4, for larger values of α or sparser signals, we should set
T as greater in the relevant range. There are various ways of estimating
P (y = +1) from the results of measurements. Of these, we use the damped
average

Tµ =

∑µ−1
n=0 γ

nδyµ−n,+1∑k−1
n=0 γ

n
, (3.24)

since it can be computed in an online manner as

Tµ+1 =
γ (1− γµ)Tµ + (1− γ)δyµ+1,+1

1− γµ+1
, (3.25)

which does not require referring to the details of previous measurements.
Here, the damping factor γ is a parameter that we have to set. In experi-
ments, we set γ = 0.8; but as long as we tested it, the obtained performance
was not particularly sensitive to the choice of this parameter. (3.4) indicates
that P (y = +1) monotonically increases as λµ grows. This implies that λµ
should be increased when T > Tµ−1, and decreased otherwise. To imple-
ment this idea, we design the learning algorithm of λµ as

λµ = λµ−1 + δsign(T − Tµ−1), (3.26)

where δ denotes the step size that is also set by users. The pseudocode for
adaptive thresholding 1-bit CS measurements is shown in Fig. 3.5. Fol-
lowing measurement, signal reconstruction can be carried out by versatile
convex optimization algorithms [20] by solving (3.2).

Since we plan to apply the adaptive algorithm in situations involving a
finite number of measurements, the extent to which the initial threshold λ0

is remote from the optimal threshold λopt, which is unknown beforehand,
and the variation in the step size δ may significantly influence reconstruc-
tion performance. In order to set an appropriate value of λ0, we propose
testing it by measuring the signal a few times. If the outputs are limited



3.4. Summary 47

almost exclusively to +1 or −1, we change the threshold through the bisec-
tion method, which involves dividing or multiplying it by 2 until the out-
puts are adequately mixed with +1 and−1. The resulting threshold should
yield an appropriate value of λ0 close to λopt. Having set λ0, an appropriate
value of δ should be in smaller order in order to tweak it to λopt.

The results of our numerical experiments are shown in Fig. 3.6 as circles.
Each circle denotes the average of 1, 000 experiments for systems where
N = 128. The parameter settings of the experiments were T = 0.8, γ = 0.8,
λ0 = 0.5, and δ = 0.01 for signal distribution ρ = 0.0625 and σ2

0 = 2. The
solid line in Fig. 3.6 represents the envelop for MSE (dB) for each α. On the
other hand, the dashed curve represents the prediction of MSE (dB) using
replica analysis when P (y = +1) = 0.8, which was achieved by λ = 0.2976
according to (3.23). Fig.3.6 shows that the adaptive thresholding algorithm
in conjunction with the employment of CVX for signal reconstruction can
achieve nearly the same performance in terms of MSE as the statistical pre-
diction for P (y = +1) = 0.8, and the result is reasonably close to the enve-
lope MSE.

Note that we have also examed the possibility to develep a message
passing algorithm. However, the algorithms doesn’t converge well because
of the replica symmetric assumption is not stable in the model 3.2. A brief
sketch of the derivation of this condition is shown in E.

3.4 Summary

Prevalent schemes of 1-bit compressed sensing can only reconstruct the di-
rectional information of signals. While maintaining the advantage of 1-
bit measurement, we proposed in this study a method that can reconstruct
both the scaling and the directional information of the signal by imposing
a threshold prior to quantization. Considering the most general situation,
where no detailed prior knowledge of sparse signals is available, we em-
ployed the l1-norm minimization approach. By utilizing the replica method
from statistical mechanics, the mean squared error behavior of reconstruc-
tion for standard i.i.d measurement matrix and i.i.d Bernoulli-Gaussian sig-
nal was derived in the large system size limit. We compared two design
strategies for the elements of the threshold vector, which corresponded to
setting a fixed or random value as threshold. Our analysis showed that the
fixed threshold strategy can achieve lower MSE than the random threshold
strategy.

Another observation from the replica results was that there is an optimal
threshold that minimizes MSE for a set of signal distributions and measure-
ment ratios. However, in order to evaluate the optimal threshold, we need
to know the prior distribution of the signal, which is not necessarily avail-
able in practical situations. Therefore, we shifted our focus to the relation
between the optimal threshold and the distribution of the binary outputs,
which can be empirically evaluated from signal measurements. The replica
analysis indicated that the MSE is minimized when P (y = +1) is set in the
vicinity of 0.75 ∼ 0.85 for a wide region of system parameters.

On the basis of this observation, an algorithm that adaptively tunes the
threshold at each measurement in order to obtain P (y = +1) close to our
target value was proposed. Combined with versatile convex optimization
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algorithms, the adaptive thresholding algorithm offers a computationally
feasible and widely applicable 1-bit CS scheme. Numerical experiments
showed that it can yield nearly optimal performance, even when no de-
tailed prior knowledge of sparse signals is available.

Improvements on the adaptive thresholding algorithm as well as the
application of the algorithm to practical problems form part of our future
research in the area.
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Chapter 4

Bayesian inference

The most widely used signal reconstruction scheme in CS is l1-norm min-
imization, which searches for the vector with the smallest l1-norm ||x||1 =∑N

i=1 |xi| under the constraint y = Φx. This is based on the work of Can-
dès et al. [7]–[6], who also suggested the use of a random measurement
matrix Φ with independent and identically distributed entries. Because
the optimization problem is convex and can be solved using efficient linear
programming techniques, these ideas have led to various fast and efficient
algorithms. The l1-reconstruction is now widely used, and is responsible
for the surge of interest in CS over the past few years. Against this back-
ground, l1-reconstruction was the first technique attempted in the devel-
opment of the 1-bit CS problem. In [49], an approximate signal recovery
algorithm was proposed based on the minimization of the l1-norm under
the constraint sign (Φx) = y, and its utility was demonstrated by numeri-
cal experiments. The capabilities of this method were analyzed, and a new
algorithm based on the cavity method was presented[56]. However, as we
mentioned before, the significance of the l1-based scheme may be rather
weak for 1-bit CS, because the loss of convexity prevents the development
of mathematically guaranteed and practically feasible algorithms.

In this chapter, we propose another approach based on Bayesian infer-
ence for 1-bit CS, focused on the case that each entry of Φ is independently
generated from a standard Gaussian distribution, and the output y is nois-
less. Although the Bayesian approach is guaranteed to achieve the optimal
performance when the actual signal distribution is given, quantifying the
performance gain is a nontrivial task. We accomplish this task utilizing the
replica method, which shows that the Bayesian optimal inference asymptot-
ically saturates the mean squared error (MSE) performance obtained when
the positions of non-zero signal entries are known as α = M/N → ∞.
This means that, at least in terms of MSEs, the correct prior knowledge
of the sparsity asymptotically becomes as informative as the knowledge
of the exact positions of the non-zero entries. Unfortunately, performing
the exact Bayesian inference is computationally difficult. This difficulty is
resolved by employing the generalized approximate message passing tech-
nique, which is regarded as a variation of belief propagation or the cavity
method [41, 27].

The content in this chapter is publish in [57].

4.1 Problem setup and Bayesian optimality

Let us suppose that entry x0
i (i = 1, 2, . . . , N) of an N -dimensional sig-

nal (vector) x0 = (x0
i ) ∈ RN is independently generated from an identical
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sparse distribution:

P (x) = (1− ρ) δ (x) + ρP̃ (x) , (4.1)

where ρ ∈ [0, 1] represents the density of nonzero entries in the signal, and
P̃ (x) is a distribution function of x ∈ R that has a finite second moment
and does not have finite mass at x = 0. In 1-bit CS, the measurement is
performed as

y = sign
(
Φx0

)
, (4.2)

where sign(x) = x/|x| operates in a component-wise manner, and for sim-
plicity we assume that each entry of the M × N measurement matrix Φ is
provided as a sample of a Gaussian distribution of zero mean and variance
N−1.

We shall adopt the Bayesian approach to reconstruct the signal from the
1-bit measurement y assuming that Φ is correctly known in the recovery
stage. Let us denote an arbitrary recovery scheme for the measurement y
as x̂(y), where we impose a normalization constraint |x̂(y)|2 = Nρ to com-
pensate for the loss of amplitude information by the 1-bit measurement.
Equations (4.1) and (4.2) indicate that, for a given Φ, the joint distribution
of the sparse vector and its 1-bit measurement is

P (x,y|Φ) =
M∏
µ=1

Θ (yµ(Φx)µ)×
N∏
i=1

(
(1− ρ) δ (xi) + ρP̃ (xi)

)
, (4.3)

where Θ(x) = 1 for x > 0, and vanishes otherwise. This generally pro-
vides x̂(·) with the mean square error, which is hereafter handled as the
performance measure for the signal reconstruction, as follows:

MSE(x̂(·)) =
∑
y

∫
dxP (x,y|Φ)

∣∣∣∣ x̂(y)

|x̂(y)|
− x

|x|

∣∣∣∣2 . (4.4)

The following theorem forms the basis of our Bayesian approach.

Theorem 1. MSE(x̂(·)) is lower bounded as

MSE(x̂(·)) ≥ 2
∑
y

P (y|Φ)

(
1−

∣∣∣∣∣
〈
x

|x|

〉
|y,Φ

∣∣∣∣∣
)
, (4.5)

where

P (y|Φ) =

∫
dxP (x,y|Φ)

=

∫
dx

M∏
µ=1

Θ (yµ(Φx)µ)×
N∏
i=1

(
(1− ρ) δ (xi) + ρP̃ (xi)

)
(4.6)

is the marginal distribution of the 1-bit measurement y and

〈f(x)〉|y,Φ =

∫
dxf(x)P (x|y,Φ) =

∫
dxf(x)P (x,y|Φ)/P (y|Φ) (4.7)
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generally denotes the posterior mean of an arbitrary function of x, f(x), given y.
The equality holds for the Bayesian optimal signal reconstruction

x̂Bayes(y) =
√
Nρ

∣∣∣∣∣
〈
x

|x|

〉
|y,Φ

∣∣∣∣∣
−1〈

x

|x|

〉
|y,Φ

. (4.8)

Proof. Employing the Bayes formula P (x,y|Φ) = P (x|y,Φ)P (y|Φ) in (4.4)
yields the expression

MSE(x̂(·)) =
∑
y

∫
dxP (x,y|Φ)

∣∣∣∣ x̂(y)

|x̂(y)|
− x

|x|

∣∣∣∣2
=

∑
y

∫
dxP (x|y,Φ)P (y|Φ)

(∣∣∣∣ x̂(y)

|x̂(y)|

∣∣∣∣2 +

∣∣∣∣ x|x|
∣∣∣∣2 − 2

x̂(y) · x
|x̂(y)||x|

)

= 2
∑
y

P (y|Φ)

(
1− x̂(y)

|x̂(y)|
·
〈
x

|x|

〉
|y,Φ

)
. (4.9)

Inserting the Cauchy–Schwarz inequality

x̂(y) ·
〈
x

|x|

〉
|y,Φ
≤ |x̂(y)|

∣∣∣∣∣
〈
x

|x|

〉
|y,Φ

∣∣∣∣∣ (4.10)

into the right-hand side of (4.9) yields the lower bound of (4.5), where the
equality holds when x̂(y) is parallel to

〈
x
|x|

〉
|y,Φ

. This, in conjunction with

the normalization constraint of x̂(y), leads to (4.8).

The above theorem guarantees that the Bayesian approach achieves the
best possible performance in terms of MSE. Therefore, we hereafter focus on
the reconstruction scheme of (4.8), quantitatively evaluate its performance,
and develop a computationally feasible approximate algorithm.

4.2 Performance assessment by the replica method

In statistical mechanics, the macroscopic behavior of the system is gener-
ally analyzed by evaluating the partition function or its negative logarithm,
free energy. In our signal reconstruction problem, the marginal likelihood
P (y|Φ) of (4.6) plays the role of the partition function. However, this still
depends on the quenched random variables y and Φ. Therefore, we must
further average the free energy as f̄ ≡ −N−1 [logP (y|Φ)]y,Φ to evaluate
the typical performance, where [· · · ]y,Φ denotes the configurational aver-
age concerning y and Φ.

Unfortunately, directly averaging the logarithm of random variables is,
in general, technically difficult. Thus, we resort to the replica method to
practically resolve this difficulty [14]. For this, we first evaluate the n-th
moment of the marginal likelihood [Pn (y|Φ)]Φ,y for n = 1, 2, . . . ∈ N using
the formula

Pn (y|Φ) =

∫ n∏
a=1

(dxaP (xa))
n∏
a=1

M∏
µ=1

Θ ((y)µ(Φxa)µ) , (4.11)
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which holds only for n = 1, 2, . . . ∈ N. Here, xa (a = 1, 2, . . . , n) denotes
the a-th replicated signal. Averaging (4.11) with respect to Φ and y results
in the saddle-point evaluation concerning the macroscopic variables q0a =
qa0 ≡ N−1x0 · xa and qab = qba ≡ N−1xa · xb (a, b = 1, 2, . . . , n).

Although (4.11) holds only for n ∈ N, the expressionN−1 log [Pn (y|Φ)]Φ,y
obtained by the saddle-point evaluation under a certain assumption con-
cerning the permutation symmetry with respect to the replica indices a, b =
1, 2, . . . n is obtained as an analytic function of n, which is likely to also hold
for n ∈ R. Therefore, we next utilize the analytic function to evaluate the
average of the logarithm of the partition function as

f̄ = − lim
n→0

(∂/∂n)N−1 log [Pn (y|Φ)]y,Φ . (4.12)

In particular, under the replica symmetric ansatz, where the dominant saddle-
point is assumed to be of the form

qab = qba =


ρ (a = b = 0)
m (a = 1, 2, . . . , n; b = 0)
Q (a = b = 1, 2, . . . , n)
q (a 6= b = 1, 2, . . . , n)

, (4.13)

when the distribution of nonzero entries in (4.1) is given as the standard
Gaussian P̃ (x) = exp(−x2/2)/

√
2π, the above procedure expresses the av-

erage free energy density as

f̄ = − extr
ω

{∫
dx0P

(
x0
) ∫

Dzφ
(√

q̂z + m̂x0; Q̂
)

+
1

2
QQ̂+

1

2
qq̂ −mm̂

+2α

∫
DtQ

(
m√

ρq −m2
t

)
logQ

(√
q

Q− q
t

)}
. (4.14)

Here, α = M/N , Q(x) =
∫ +∞
x Dz, Dz = dz exp−z2/2/

√
2π is a Gaussian

measure, extrX{g(X)} denotes the extremization of a function g(X) with
respect to X , ω = {Q, q,m, Q̂, q̂, m̂}, and

φ
(√

q̂z + m̂x0; Q̂
)

= log

{∫
dxP (x) exp

(
−Q̂+ q̂

2
x2 + (

√
q̂z + m̂x0)x

)}
. (4.15)

The derivation of (4.14) is provided in F.
In evaluating the right-hand side of (4.12), P (y|Φ) not only gives the

marginal likelihood (the partition function), but also the conditional den-
sity of y for taking the configurational average. This accordance between
the partition function and the distribution of the quenched random vari-
ables is generally known as the Nishimori condition in spin glass theory
[39], and yields the identity [Pn (y|Φ)]y,Φ =

∫
dΦP (Φ)

(∑
y P

n+1(y|Φ)
)

,

which indicates that the true signal, x0, can be handled on an equal footing
with the other n replicated signals x1,x2, . . . ,xn in the replica computa-
tion. As n → 0, this higher replica symmetry among the n + 1 replicated
variables allows us to further simplify the replica symmetric ansatz (4.13)
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by imposing four extra constraints: Q = ρ, q = m, Q̂ = 0, and q̂ = m̂. As
a consequence, the extremization condition of (4.14) is summarized by the
non-linear equations

m =

∫
Dt

(∫
dxxe−

m̂
2
x2+
√
m̂txP (x)

)2

∫
dxe−

m̂
2
x2+
√
m̂txP (x)

(4.16)

m̂ =
α

π
√

2π (ρ−m)

∫
dt

exp
{
− ρ+m

2(ρ−m) t
2
}

Q
(√

m
ρ−m t

) . (4.17)

In physical terms, the value of m determined by these equations is the
typical overlapN−1

[
x0 · 〈x〉|y,Φ

]
y,Φ

between the original signal x0 and the

posterior mean 〈x〉|y,Φ. The law of large numbers and the self-averaging
property guarantee that both N−1|x|2 and N−1|x0|2 converge to ρ with a
probability of unity for typical samples. This indicates that the typical value
of the direction cosine between x0 and x̂Bayes(y) can be evaluated as[

(x0 · x̂Bayes(y))/(|x0||x̂Bayes(y)|)
]
y,Φ

'
[
(x0 · 〈x〉|y,Φ)

]
y,Φ

/

([∣∣x0
∣∣]
x0

[∣∣∣〈x〉|y,Φ∣∣∣]
y,Φ

)
= Nm/(

√
Nρ
√
Nm)

=
√
m/ρ. (4.18)

Therefore, the MSE in (4.4) can be expressed using m and ρ as

MSE = 2

(
1−

√
m

ρ

)
. (4.19)

The symmetry between x0 and the other replicated variables xa (a =
1, 2 . . . , n) provides f̄ with further information-theoretic meanings. Insert-
ing P (y,Φ) = P (y|Φ)P (Φ) into the definition of f̄ gives

f̄ = N−1

∫
dΦP (Φ)

(
−
∑
y

P (y|Φ) logP (y|Φ)

)
, (4.20)

which indicates that f̄ accords with the entropy density of y for typical
measurement matrices Φ. The expression

P (y|x,Φ) =
M∏
µ=1

Θ (yµ(Φx)µ) ∈ {0, 1} (4.21)

guarantees that the conditional entropy of y given x and Φ,
−
∑
y P (y|x,Φ) logP (y|x,Φ), always vanishes. These indicate that f̄ also

implies a mutual information density between y and x. This physically
quantifies the optimal information gain (per entry) of x that can be ex-
tracted from the 1-bit measurement y for typical Φ.



54 Chapter 4. Bayesian inference

4.3 Bayesian optimal signal reconstruction by GAMP

Equation (4.19) represents the potential performance of the Bayesian opti-
mal signal reconstruction of 1-bit CS. However, in practice, exploiting this
performance is a non-trivial task, because performing the exact Bayesian
reconstruction (4.8) is computationally difficult. To resolve this difficulty,
we now develop an approximate reconstruction algorithm following the
framework of belief propagation (BP). Actually, BP has been successfully
employed for standard CS problems with linear measurements, showing
excellent performance in terms of both reconstruction accuracy and com-
putational efficiency [12]. To incorporate the non-linearity of the 1-bit mea-
surement, we employ a variant of BP known as generalized approximate
message passing (GAMP) [41], which can also be regarded as an approxi-
mate Bayesian inference algorithm for perceptron-type networks [27].

In general, the canonical BP equations for the probability measure
P (x|Φ,y) are expressed in terms of 2MN messages, mi→µ (xi) and
mµ→i (xi) (i = 1, 2, · · · , N ;µ = 1, 2, · · · ,M), which represent probability
distribution functions that carry posterior information and output measure-
ment information, respectively. They can be written as

mµ→i (xi) =
1

Zµ→i

∫ ∏
j 6=i

dxjP (yµ|uµ)
∏
j 6=i

mj→µ (xj) (4.22)

mi→µ (xi) =
1

Zi→µ
P (xi)

∏
γ 6=µ

mγ→i (xi) (4.23)

Here, Zµ→i and Zi→µ are normalization factors ensuring that∫
dximµ→i(xi) =

∫
dximi→µ(xi) = 1, (4.24)

and we also define uµ ≡ (Φx)µ. Using (4.22), the approximation of marginal
distributions P (xi|Φ,y) =

∫ ∏
j 6=i dxjP (x|Φ,y), which are often termed

beliefs, are evaluated as

mi (xi) =
1

Zi
P (xi)

M∏
µ=1

mµ→i (xi) , (4.25)

where Zi is a normalization factor for
∫

dximi (xi) = 1. To simplify the no-
tation, we hereafter convert all measurement results to +1 by multiplying
each row of the measurement matrix Φ = (Φµi) by yµ (µ = 1, 2, . . . , N),
giving (Φµi) → (yµΦµi), and denote the resultant matrix as Φ = (Φµi). In
the new notation, P (yµ|uµ) = Θ (uµ).

Next, we introduce means and variances of xi in the posterior informa-
tion message distributions as

ai→µ ≡
∫

dxiximi→µ (xi) (4.26)

νi→µ ≡
∫

dxix2
imi→µ (xi)− a2

i→µ. (4.27)
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We also define ωµ ≡
∑

i Φµiai→µ and Vµ ≡
∑

i Φ2
µiνi→µ for notational con-

venience. Similarly, the means and variances of the beliefs, ai and νi, are in-
troduced as ai ≡

∫
dxiximi (xi) and νi ≡

∫
dxix2

imi (xi)−a2
i . Note that a =

(ai) represents the approximation of the posterior mean 〈x〉|y,Φ. This, in
conjunction with a consequence of the law of large numbers 〈x/|x|〉|y,Φ '
〈x〉|y,Φ /

√
Nρ, indicates that the Bayesian optimal reconstruction is approx-

imately performed as x̂Bayes(y) '
√
Nρa/|a|.

To enhance the computational tractability, let us rewrite the functional
equations of (4.22) and (4.23) into algebraic equations using sets of ai→µ and
νi→µ. To do this, we insert the identity

1 =

∫
duµδ

(
uµ −

N∑
i=1

Φµixi

)

=

∫
duµ

1

2π

∫
dûµ exp

{
−iûµ

(
uµ −

N∑
i=1

Φµixi

)}
(4.28)

into (4.22), which yields

mµ→i (xi) =
1

2πZµ→i

∫
duµP (yµ|uµ)

∫
dûµ exp

{
−iûµ (uµ − Φµixi)

}

×
∏
j 6=i

{∫
dxjmj→µ (xj) exp

{
iûµΦµjxj

}}
. (4.29)

The smallness of Φµi allows us to truncate the Taylor series of the last ex-
ponential in equation (4.29) up to the second order of iûµΦµjxj . Integrating∫

dxjmj→µ(xj) (. . .) for j 6= i, we obtain the expression

mµ→i (xi) =
1

2πZµ→i

∫
duµP (yµ|uµ)

∫
dûµ exp

{
−iûµ (uµ − Φµixi)

}

× exp

{
iûµ(ωµ − Φµiai→µ)−

û2
µ

2
(Vµ − Φ2

µiνi→µ)

}
, (4.30)

and carrying out the resulting Gaussian intergral of ûµ, we obtain

mµ→i (xi) =
1

Zµ→i
√

2π(Vµ − Φ2
µiνi→µ)

∫
duµP (yµ|uµ)

× exp

{
−(uµ − ωµ − Φµi(xi − ai→µ))2

2(Vµ − Φ2
µiνi→µ)

}
. (4.31)

Since Φ2
µi vanishes as O(N−1) while νi→µ ∼ O(1), we can omit Φ2

µiνi→µ in
(4.31). In addition, we replace Φ2

µj in Vµ =
∑

i Φ2
µjνi→µ with its expectation

N−1, utilizing the law of large numbers. This removes the dependence on
the index µ, making all Vµ equal to their average

V ≡ 1

N

N∑
i=1

νi. (4.32)
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The smallness of Φµi(xi − ai→µ) again allows us to truncate the Taylor se-
ries of the exponential in (4.31) up to the second order. Thus, we have a
parameterized expression of mµ→i (xi):

mµ→i (xi) ∝ exp

{
−Aµ→i

2
x2
i +Bµ→ixi

}
, (4.33)

where the parameters Aµ→i and Bµ→i are evaluated as

Aµ→i = (g′out)µΦ2
µi (4.34)

Bµ→i = (gout)µΦµi + (g′out)µΦ2
µiai→µ (4.35)

using

(gout)µ ≡ ∂

∂ωµ
log

(∫
duµP (yµ|uµ) exp

(
−(uµ − ωµ)2

2V

))
(4.36)

(g′out)µ ≡ − ∂2

∂ω2
µ

log

(∫
duµP (yµ|uµ) exp

(
−(uµ − ωµ)2

2V

))
. (4.37)

The derivation of these is given in G. Equations (4.34) and (4.35) act as
the algebraic expression of (4.22). In the sign output channel, inserting
P (yµ|uµ) = Θ (uµ) into (4.36) gives (gout)µ and (g′out)µ for 1-bit CS as

(gout)µ =
exp

(
− ω2

µ

2V

)
√

2πVQ
(
− ωµ√

V

) (4.38)

(g′out)µ = (gout)
2
µ +

ωµ
V

(gout)µ. (4.39)

To obtain a similar expression for (4.23), we substitute the last expres-
sion of (4.33) into (4.23), which leads to

mi→µ(xi) =
1

Z̃i→µ

[
(1− ρ)δ(xi) + ρP̃ (xi)

]
e
−(x2i /2)

∑
γ 6=µ

Aγ→i+xi
∑
γ 6=µ

Bγ→i
.(4.40)

This indicates that
∏
γ 6=µmγ→i (xi) in (4.23) can be expressed as a Gaussian

distribution with mean (
∑

γ 6=µBγ→i)/(
∑

γ 6=µAγ→i) and variance (
∑

γ 6=µAγ→i)
−1.

Inserting these into (4.26) and (4.27) provides the algebraic expression of
(4.23) as

ai→µ = fa

(
1∑

γ 6=µAγ→i
,

∑
γ 6=µBγ→i∑
γ 6=µAγ→i

)
, (4.41)

νi→µ = fc

(
1∑

γ 6=µAγ→i
,

∑
γ 6=µBγ→i∑
γ 6=µAγ→i

)
, (4.42)
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where we define

fa(Σ
2, R) ≡ x̄Σ2 +Rσ2

(1−ρ)(σ2+Σ2)3/2

ρΣ exp
{
− R2

2Σ2 + (R−x̄)2

2(σ2+Σ2)

}
+ (σ2 + Σ2)

, (4.43)

fc(Σ
2, R) ≡

{
ρ(1− ρ)Σ

(
σ2 + Σ2

)−5/2
[
σ2Σ2

(
σ2 + Σ2

)
+
(
x̄Σ2 +Rσ2

)2]
× exp

{
− R2

2Σ2
− (R− x̄)2

2(σ2 + Σ2)

}
+ ρ2 exp

{
−(R− x̄)2

σ2 + Σ2

} σ2Σ4

(σ2 + Σ2)2

}

×

{
(1− ρ) exp

{
− R2

2Σ2

}
+ ρ

Σ√
σ2 + Σ2

exp
{
− (R− x̄)2

2(σ2 + Σ2)

}}−2

.(4.44)

x̄ and σ2 represent the average and variance of P̃ (xi). In our case, we set
x̄ = 0 and σ2 = 1. Note that the form of fa and fc depend only on the prior
distribution P̃ (x).

For the signal reconstruction, we need to evaluate the moments ofmi(xi).
This can be performed by simply adding back the µ dependent part to (4.41)
and (4.42) as

ai = fa(Σ
2
i , Ri), (4.45)

νi = fc(Σ
2
i , Ri), (4.46)

where Σ2
i =

(∑
µAµ→i

)−1
, Ri =

∑
µBµ→i∑
µ Aµ→i

. For large N , Σ2
i typically con-

verges to a constant, independent of the index, as Σ2. This, in conjunction
with (4.34) and (4.35), yields

Σ2 =

(
1

N

∑
µ

(g′out)µ

)−1

, (4.47)

Ri =

(∑
µ

(gout)µΦµi

)
Σ2 + ai. (4.48)

BP updates 2MN messages using (4.34), (4.35), (4.41), and (4.42) (i =
1, 2, · · ·N,µ = 1, 2, · · ·M ) in each iteration. This requires a computational
cost of O(M2 × N + M × N2) per iteration, which may limit the practical
utility of BP to systems of relatively small size. To enhance the practical
utility, let us rewrite the BP equations into those ofM+N messages for large
N , which will result in a significant reduction of computational complexity
toO(M×N) per iteration. To do this, we express ai→µ by applying Taylor’s
expansion to (4.41) around Ri as

ai→µ = fa

(
1∑

γ Aγ→i −Aµ→i
,

∑
γ Bγ→i −Bµ→i∑
γ Aγ→i −Aµ→i

)

' ai +
∂fa(Σ

2, Ri)

∂Ri
(−Bµ→iΣ2) +O(N−1), (4.49)

whereBµ→i ∼ O(N−1/2) and
∑

γ Aγ→i−Aµ→i is approximated as
∑

γ Aγ→i =

Σ−2, because of the smallness of Aµ→i ∝ Φ2
µi ∼ O(N−1). Multiplying this
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by Φµi and summing the resultant expressions over i yields

ωµ =
∑
i

Φµiai − (gout)µV, (4.50)

where we have used νi = fc = Σ2 ∂fa
∂Ri

, which can be confirmed by (4.43)
and (4.44).

Let us assume that {(ai, νi)} and {((gout)µ, (g
′
out)µ)} are initially set to

certain values. Inserting these into (4.32) and (4.50) gives V and {ωµ}. Sub-
stituting these into equations (4.38) and (4.39) yields a set of {((gout)µ, (g

′
out)µ)},

which, in conjunction with {ai}, offers Σ2 and {Ri} through (4.47) and
(4.48). Inserting these into (4.45) and (4.46) offers a new set of {(ai, νi)}.
In this way, the iteration of (4.32), (4.50)→ (4.38), (4.39)→ (4.47), (4.48)→
(4.45), (4.46)→ (4.32), (4.50)→ . . . constitutes a closed set of equations to up-
date the sets of {(ai, νi)} and {((gout)µ, (g

′
out)µ)}. This is the generic GAMP

algorithm given a likelihood function P (y|u) and a prior distribution P (x)
[41].

We term the entire procedure the Approximate Message Passing for 1-
bit Compressed Sensing (1bitAMP) algorithm. The pseudocode of this al-
gorithm is summarized in Figure 4.1. Three issues are noteworthy. First, for
relatively large systems, e.g., N = 1024, the iterative procedure converges
easily in most cases. Nevertheless, since it relies on the law of large num-
bers, some divergent behavior appears asN becomes smaller. Even for such
cases, however, employing an appropriate damping factor in conjunction
with a normalization of |a| at each update considerably improves the con-
vergence property. Second, the most time-consuming parts of this iteration
are the matrix-vector multiplications

∑
µ(gout)µΦµi in (4.48) and

∑
i Φµiai

in (4.50). This indicates that the computational complexity is O(NM) per
iteration. Finally, ai in equation (4.48) and (gout)µV in equation (4.50) corre-
spond to what is known as the Onsager reaction term in the spin glass litera-
ture [50, 46]. These terms stabilize the convergence of 1bitAMP, effectively
canceling the self-feedback effects.

4.4 Results

To examine the utility of 1bitAMP, we carried out numerical experiments
for N = 1024 systems. We set initial conditions of a = 01,ν = ρ1, and
ω = 1, where 1 is theN -dimensional vector whose entries are all unity, and
stopped the algorithm after 20 iterations (Figure 4.3). The MSE results for
various sets of α and ρ are shown as crosses in Figures 4.2 (a)–(d). Each
cross denotes an experimental estimate obtained from 1000 experiments.
The standard deviations are omitted, as they are smaller than the size of
the symbols. The convergence time is short, which verifies the significant
computational efficiency of 1bitAMP. For example, in a MATLAB R© envi-
ronment, for α = 3, ρ = 0.0625, one experiment takes around 0.2 s.

To test the consistency of 1bitAMP with respect to replica theory, we
solved the saddle-point equations (4.16) and (4.17) for each set of α and ρ.
The blue curves in Figures 4.2 (a)–(d) show the theoretical MSE evaluated
by (4.19) against α for ρ = 0.03125, 0.0625, 0.125, and 0.25. The excellent
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Algorithm 1: APPROXIMATE MESSAGE PASSING FOR 1-BIT CS(a∗, ν∗, ω∗)

1) Initialization :
a seed : a0 ← a∗

ν seed : ν0 ← ν∗

ω seed : ω0 ← ω∗

Counter : k ← 0
2) Counter increase :

k ← k + 1
3) Mean of variances of posterior information message distributions :

Vk ← N−1(sum(νk−1))1
4) Self-feedback cancellation :

ωk ← Φak−1 −Vkgout(ωk−1,Vk)
5) Variances of output information message distributions :

Σ2
k ← N(sum(g′out(ωk,Vk)))

−1

6) Average of output information message distributions :
(R)k ← ak−1 + (gout(ωk,Vk)Φ)Σ2

k

7) Posterior mean :
ak ← fa(Σ

2
k1,Rk)

8) Posterior variance :
νk ← fc(Σ

2
k1,Rk)

9) Iteration : Repeat from step 2 until convergence.

FIGURE 4.1: Pseudocode for 1-bitAMP. a∗, ν∗, and ω∗ are
the convergent vectors of ak, νk, and ωk obtained in the pre-
vious loop. 1 is the N -dimensional vector whose entries are
all unity. This figure is cited from [57] R©IOP Publishing Ltd.
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FIGURE 4.2: MSE (in decibels) versus measurement bit ra-
tio α for 1-bit CS. (a), (b), (c), and (d) correspond to ρ =
0.03125, 0.0625, 0.125, and 0.25, respectively. Red curves
represent the theoretical prediction of l1-norm minimiza-
tion [56]; blue curves represent the theoretical prediction
of the Bayesian optimal approach; green curves represent
the theoretical prediction of the Bayesian optimal approach
when the positions of all nonzero components in the sig-
nal are known, which is obtained by setting α → α/ρ and
ρ → 1 in (4.16) and (4.17). Crosses represent the average
of 1000 experimental results by the 1bitAMP algorithm in
Figure 4.1 for a system size of N = 1024. Circles show the
average of 1000 experimental results by an l1-based algo-
rithm RFPI proposed in [49] for 1-bit CS in the system size of
N = 128. Although the replica symmetric prediction for the
l1-based approach is thermodynamically unstable, the ex-
perimental results of RFPI are numerically consistent with
it very well.This figure is cited from [57] R©IOP Publishing

Ltd.
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FIGURE 4.3: Mean square differences between estimated
signals on two successive iterative update of 1bitAMP for
a signal size of N = 1024 and α = 6, which are evaluated
from 100 experiments. Red, blue, magenta, and green rep-
resent ρ = 0.03125, 0.0625, 0.125, and 0.25, respectively. The
cross between the blue and the magenta lines are consid-
ered as a result of the small number of experiment. This

figure is cited from [57] R©IOP Publishing Ltd.

agreement between the numerical experiments and the theoretical predic-
tion indicates that 1bitAMP nearly saturates the potentially achievable MSE
of the signal recovery scheme based on the Bayesian optimal approach.

For comparison, Figures 4.2 (a)–(d) also plot the replica symmetric pre-
diction of MSEs for the l1-norm minimization approach (red curves), which
was examined in an earlier study [56]. Although the replica symmetric
prediction is thermodynamically unstable, it is numerically consistent with
the experimental results (circles) given by the algorithm proposed in [49].
Therefore, the prediction at least serves as a good approximation.

We also plot the MSEs of the Bayesian optimal approach when the po-
sitions of the non-zero components of x are known (green curves). These
act as lower bounds for the MSEs of the Bayesian optimal approach. When
the positions of non-zero components of x are known, we need not con-
sider the part containing zero components. Therefore, the problem can be
seen as that defined when a ρN -dimensional signal x is measured by an
αN × ρN -dimensional matrix. In such situations, performance can be eval-
uated by setting ρ = 1 and replacing α with α/ρ in (4.16) and (4.17), as
the dimensionality of x is reduced from N to Nρ. Solving (4.16) and (4.17)
for α � 1 shows that the MSEs of the Bayesian optimal approach can be
asymptotically expressed as

MSEBayes ' 1.9258ρ2

α2
= 1.9258×

(
Nρ

M

)2

(4.51)

for α � 1, which accords exactly with the asymptotic form of the green
curves (Figure 4.4: left panel, see H). On the other hand, the asymptotic
form of the MSE for the l1-norm approach is evaluated as

MSEl1 '
π2
[
2(1− ρ)H

(
1/
√
q̂∞l1 (ρ)

)
+ ρ
]2

α2
, (4.52)
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where q̂∞l1 (ρ) is the value of q̂ for the l1-norm approach obtained for α→∞
(see I).
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FIGURE 4.4: Left: MSE (in decibels) versus measurement
bit ratio α for Bayesian optimal signal reconstruction of
1-bit CS. Red, blue, magenta, and green correspond to
ρ = 0.03125, 0.0625, 0.125, and 0.25, respectively. The
solid curves represent the theoretical prediction obtained
by (4.16) and (4.17); dashed curves show the performance
when the positions of non-zero entries are known, and
dotted curves denote the asymptotic forms (4.51), which
are indistinguishable from the dashed curves because they
closely overlap. Right: Ratio of MSE between l1-norm and
Bayesian approaches when α � 1 versus sparsity ρ of the
signal. The inset shows a log-log plot for 0 < ρ < 0.1. The
least-squares fit implies that the ratio diverges as O(ρ−0.33)
as ρ → 0. This figure is cited from [57] R©IOP Publishing

Ltd.

Equation (4.51) means that, at least in terms of MSEs, correct prior knowl-
edge of the sparsity asymptotically becomes as informative as the knowl-
edge of the exact positions of the non-zero components. In most statistical
models, the accuracy of asymptotic inference is expressed as a function of
the ratio α = M/N between the number of data M and the dimensionality
of the variables to be inferred N [44, 54]. Equation (4.51) indicates that, in
the current problem, the dimensionality N is replaced with the actual de-
gree of the non-zero components Nρ, which originates from the singularity
of the prior distribution (4.1). This implies that caution is necessary in test-
ing the validity of statistical models when sparse priors are employed, since
conventional information criteria such as Akaike’s information criterion [1]
and the minimum description length [42] mostly handle objective statistical
models that are free of singularities, so that the model complexity is naively
incorporated as the number of parameters N [53].

Equation (4.52) indicates that, even if prior knowledge of the sparsity is
not available, optimal convergence can be achieved in terms of the “expo-
nent” as α → ∞ using the l1-norm approach. However, the performance
can differ considerably in terms of the “pre-factor.” The right panel of
Figure 4.4 plots the ratio MSEl1/MSEBayes, which diverges as O(ρ−0.33) as
ρ → 0. This indicates that prior knowledge of the sparsity of the objective
signal is more beneficial as ρ becomes smaller.
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4.5 Summary

In this chapter, we have examined the typical performance of the Bayesian
optimal signal recovery for 1-bit CS using methods from statistical mechan-
ics. Using the replica method to compare the performance of the Bayesian
optimal approach to the l1-norm minimization, we have shown that the
utility of correct prior knowledge on the objective signal, which is incor-
porated in the Bayesian optimal scheme, becomes more significant as the
density of non-zero entries ρ in the signal decreases. In addition, we have
clarified that the MSE performance asymptotically saturates that obtained
when the exact positions of non-zero entries are exactly known as the num-
ber of 1-bit measurements increases. We have also developed a practically
feasible approximate algorithm for Bayesian signal recovery, which can be
regarded as a special case of the GAMP algorithm. The algorithm has a
computational cost of the square of the system size per update, exhibiting a
fairly good convergence property as the system size becomes larger. The ex-
perimental results show excellent agreement with the predictions made by
the replica method. These indicate that almost-optimal reconstruction per-
formance can be attained with a computational complexity of the square of
the signal length per update, which is highly beneficial in practice.

Obtaining the correct prior distribution of the sparse signal may be an
obstacle to applying the current approach in practical problems. One pos-
sible solution is to estimate hyper-parameters that characterize the prior
distribution in the reconstruction stage, as has been proposed for nonquan-
tized CS [33]. It was reported that orthogonal measurement matrices, rather
than those of statistically independent entries, enhance the signal recon-
struction performance for several problems related to CS [47, 29, 52, 28, 40,
55]. Such devices may also be effective for 1-bit CS.
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Chapter 5

Conclusion

5.1 Summary of this thesis

In this thesis, we have analyzied typical performance of several differnt
schemes of 1-bit compressed sensing using statistical mechanics methods.
For each scheme, we also have developed efficient algorithms using statis-
tical techniques. For simplicity, we consider the case that the measuring
matrix has i.i.d entries, and the measurements are noiseless.

Main results of this thesis are summarized as follows:

• Analyzing the typical performance of an l1-norm based signal recov-
ery scheme for 1-bit CS for i.i.d Gaussian sparse signals (chapter 2).

• Developing an approximate recovery algorithm inspired by the cavity
method for l1-norm based 1-bit CS and numerically testing the recon-
struction performance (chapter 3).

• Suggesting a strategy that introduce a threshold parameter to the quan-
tization process in order to captures scale information for l1-norm
based signal recovery for 1-bit CS and analyzing the typical perfor-
mance of it ( chapter 3).

• Develop a heuristic that adaptively tunes the threshold parameter
based on measurement results for l1-norm based signal recovery for
1-bit CS and numerically checking the behaviour (chapter 3).

• Clarifying the statistical lower bound of the recovery performance of
1-bit CS by analyzing Bayesian inference approach (chapter 4).

• Showing that the Bayesian approach enables better reconstruction than
the l1-norm minimization approach, asymptotically saturating the per-
formance obtained when the non-zero entries positions of the signal
are known (chapter 4).

• Developing a message passing algorithm for signal reconstruction on
the basis of belief propagation for Bayesian approach of 1-bit CS, and
testing numerical experiments are consistent with those of the theo-
retical analysis (chapter 4).

We believe that our work has contributed to provide a deeper under-
standing and to the practical development to this field.
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5.2 Future directions

Inspired by the study for non-quantized compressed sensing, we suggest
some future research directions on 1-bit compressed sensing as follows:

• Improving the adaptive thresholding algorithm as well as the appli-
cation of the algorithm to practical problems.

• Estimating hyper-parameters that characterize the prior distribution
in the reconstruction stage when we do not know the exact prior dis-
tribution of the signal.

• Using orthogonal measurement matrices instead of those of statisti-
cally independent entries.

Of course it is not necessary to only focus on the extreem 1-bit case, it is
also important to study the behaviour of multi-bits compressed sensing and
clearify the relation between bits number and reconstruction performance.
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Appendix A

Derivation of (2.8)

A.1 Assessment of
[
Zn
(
β; Φ,x0

)]
Φ,x0 for n ∈ N

Averaging (2.5) with respect to Φ and x0 offers the following expression of
the n-th moment of the partition function:

[
Zn
(
β; Φ,x0

)]
Φ,x0 =

∫ n∏
a=1

(
dxaδ

(
|xa|2 −N

)
× e−β||xa||1

)
×

 n∏
a=1

M∏
µ=1

Θ
(
(Φx0)µ(Φxa)µ

)
Φ,x0

. (A.1)

We insert n(n+ 1)/2 trivial identities

1 = N

∫
dqabδ

(
xa · xb −Nqab

)
, (A.2)

where a > b = 0, 1, 2, . . . , n, into (A.1). Furthermore, we define a joint
distribution of n+ 1 vectors {xa} = {x0,x1,x2, . . . ,xn} as

P ({xa}|Q) =
1

V (Q)
P (x0)×

n∏
a=1

(
δ
(
|xa|2 −N

)
× e−β||xa||1

)
×
∏
a>b

δ
(
xa · xb −Nqab

)
, (A.3)

whereQ = (qab) is an (n+ 1)× (n+ 1) symmetric matrix whose 00 and the
other diagonal entries are fixed as ρ and 1, respectively.

P (x0) =

N∏
i=1

(
(1− ρ)δ(x0

i ) + ρP̃ (x0
i )
)

(A.4)

denotes the distribution of the original signal x0, and V (Q) is the normal-
ization constant that makes

∫ ∏n
a=0 dx

aP ({xa}|Q) = 1 hold. These indi-
cate that (A.1) can also be expressed as

[
Zn
(
β; Φ,x0

)]
Φ,x0 =

∫
dQ (V (Q)× Ξ (Q)) , (A.5)
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where dQ ≡
∏
a>b dqab and

Ξ (Q) =

∫ n∏
a=0

dxaP ({xa}|Q)

 n∏
a=1

M∏
µ=1

Θ
(
(Φx0)µ(Φxa)µ

)
Φ

. (A.6)

Equation (A.6) can be regarded as the average of
∏n
a=1

∏M
µ=1 Θ

(
(Φx0)µ(Φxa)µ

)
with respect to {xa} and Φ over distributions of P ({xa}) and P (Φ) ≡(√

2π/N
)−MN

exp
(
−(N/2)

∑
µ,i Φ2

µi

)
. In computing this, it is noteworthy

that the central limit theorem guarantees that uaµ ≡ (Φxa)µ =
∑N

i=1 Φµix
a
i

can be handled as zero-mean multivariate Gaussian random numbers whose
variance and covariance are provided by[

uaµu
b
ν

]
Φ,{xa}

= δµνqab, (A.7)

when Φ and {xa} are generated independently from P (Φ) and P ({xa}),
respectively. This means that (A.6) can be evaluated as

Ξ(Q) =

(∫
du exp

(
−1

2u
TQ−1u

)∏n
a=1 Θ

(
u0ua

)
(2π)(n+1)/2(detQ)1/2

)M

=

(
2

∫
du exp

(
−1

2u
TQ−1u

)
Θ
(
u0
)∏n

a=1 Θ (ua)

(2π)(n+1)/2(detQ)1/2

)M
. (A.8)

On the other hand, expressions

δ
(
|xa|2 −N

)
=

1

4π

∫ +i∞

−i∞
dq̂aa exp

(
−1

2
q̂aa
(
|xa|2 −N

))
(A.9)

and

δ
(
xa · xb −Nqab

)
=

1

2π

∫ +i∞

−i∞
dq̂ab exp

(
q̂ab

(
xa · xb −Nqab

))
, (A.10)

and use of the saddle point method offer

1

N
lnV (Q) = extr

Q̂

{
−1

2
TrQ̂Q

+ ln

(∫
dxP (x0) exp

(
1

2
xTQ̂x− β

n∑
a=1

β|xa|

))}
.(A.11)

Here x = (x0, x1, . . . , xn)T and Q̂ is an (n + 1) × (n + 1) symmetric matrix
whose 00 and other diagonal components are given as 0 and −q̂aa, respec-
tively, while off-diagonal entries are offered as q̂ab. Equations (A.8) and
(A.11) indicate that N−1 ln

[
Zn(β; Φ,x0)

]
Φ,x0 is correctly evaluated by us-

ing the saddle point method with respect to Q in the assessment of the
right-hand side of (A.5) when N and M tend to infinity keeping α = M/N
finite.
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A.2 Treatment under the replica symmetric ansatz

Let us assume that the relevant saddle point in assessing (A.5) is of the form
of (2.7) and, accordingly,

q̂ab = q̂ba =


0, (a = b = 0)
m̂, (a = 1, 2, . . . , n; b = 0)

Q̂, (a = b = 1, 2, . . . , n)
q̂, (a 6= b = 1, 2, . . . , n)

. (A.12)

n+ 1 dimensional Gaussian random variables u0, u1, . . . un whose variance
and covariance are provided as (2.7) can be expressed as

u0 =

√
ρ− m2

q
s0 +

m
√
q
z, (A.13)

ua =
√

1− qsa +
√
qz, (a = 1, 2, . . . , n) (A.14)

utilizing n + 2 independent standard Gaussian random variables z and
s0, s1, . . . , sn. This indicates that (A.8) is evaluated as

Ξ(Q) =

(
2

∫
DzQ

(
m√

ρq −m2
z

)
Qn
(√

q

1− q
z

))M
. (A.15)

On the other hand, substituting (A.12) into (A.11), in conjunction with the
identity

exp

q̂ ∑
a>b(≥1)

xaxb

 =

∫
Dz exp

(
n∑
a=1

(
− q̂

2
(xa)2 +

√
q̂zxa

))
(A.16)

provides

1

N
lnV (Q) = extr

Q̂,q̂,m̂

{
n

2
Q̂− n(n− 1)

2
q̂q − m̂m

+ ln

[(∫
dx exp

(
−Q̂+q̂

2
x2+

(√
q̂z+m̂x0

)
x−β|x|

))n]
x0,z

 .(A.17)

Although we have assumed that n ∈ N, the expressions of (A.15) and (A.17)
are likely to hold for n ∈ R as well. Therefore the average free energy f
can be evaluated by substituting these expressions into the formula f =

− limn→0(∂/∂n)
(

(βN)−1 ln
[
Zn(β; Φ,x0)

]
Φ,x0

)
.

In the limit of β → ∞, a nontrivial saddle point is obtained only when
χ ≡ β(1 − q) is kept finite. Accordingly, we change the notations of the
auxiliary variables as Q̂ + q̂ → βQ̂, q̂ → β2q̂, and m̂ → βm̂. Furthermore,
we use the asymptotic forms

lim
β→∞

1

β

∫
DzQ

(
m√

ρq −m2
z

)
lnQ

(√
q

1− q
z

)
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=

∫
DzQ

(
m√
ρ−m2

z

)(
− z

2

2χ
Θ(z)

)
= − 1

4πχ

(
arctan

(√
ρ−m2

m

)
− m

ρ

√
ρ−m2

)
(A.18)

and

lim
β→∞

1

β
ln

(∫
dx exp

(
β

(
−Q̂

2
x2+

(√
q̂z+m̂x0

)
x−|x|

)))
= −φ

(√
q̂z + m̂x0; Q̂

)
. (A.19)

Using these in the resultant expression of f offers (2.8).
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Appendix B

Stability of the RS solution for
l1 approach

The 1-step replica symmetry breaking (1RSB) ansatz means that, at the rele-
vant saddle point, n replica indices 1, 2, . . . , n are classified into n/p groups
of an equal size p, and qab = q1 holds if a and b belong to an identical group
and q0(≤ q1), otherwise. This yields the following expression of the average
free energy of finite temperature:

f = extr
ω

{
− 1

β

[
ln

(∫
Dt exp (−pY0)

)]
x0,z

− 1

2β
(Q̂+ q̂1) +

q̂1

2β
(1− q1) +

p

2β
(q̂1q1 − q̂0q0) +

1

β
m̂m

−2α

βp

∫
DzQ

(
m√

ρq −m2
z

)
ln

(∫
Dt exp (−pY1)

)}
, (B.1)

whereY0 ≡ − ln
(∫

dx exp
(
−(Q̂+ q̂1)x2/2 + (

√
q̂1 − q̂0t+

√
q̂0z + m̂x0)x− β|x|

))
,

Y1 ≡ − ln
(∫

DxΘ
(
−
(√

1− q1x+
√
q1 − q0t+

√
q

0
z
)))

, ω = {q1, q0,m, Q̂, q̂1, q̂0, m̂},
and [· · · ]x0,z =

∫
dx0P (x0)

∫
Dz (· · · ). The RS solution is regarded as a spe-

cial case of the 1RSB solution for which q1 = q0 holds. Therefore one can
check the thermodynamical validity of the RS solution by examining the
stability of the solution of q1 = q0 under the 1RSB ansatz.

The extremization condition of (B.1) indicates that

q1 − q0 =

[∫
Dte−pY0

(
∂Y0/∂(

√
q̂0z)

)2∫
Dte−pY0

−

(∫
Dte−pY0

(
∂Y0/∂(

√
q̂0z)

)∫
Dte−pY0

)2

x0,z

'

[(
∂2YRS

0

∂(
√
q̂0z)2

)2
(∫

Dte−pY0t2∫
Dte−pY0

−
(∫

Dte−pY0t∫
Dte−pY0

)2
)]

x0,z

(q̂1 − q̂0)

'

[(
∂2YRS

0

∂(
√
q̂0z)2

)2
]
x0,z

(q̂1 − q̂0) (B.2)

and

q̂1 − q̂0 = 2α

∫
DzQ

(
m√

ρq −m2
z

)(∫
Dte−pY1

(
∂Y1/∂(

√
q0z)

)2∫
Dte−pY1
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−

(∫
Dte−pY1

(
∂Y1/∂(

√
q0z)

)∫
Dte−pY1

)2


' 2α

∫
DzQ

(
m√

ρq −m2
z

)(
∂2YRS

1

∂(
√
q0z)2

)2

×

(∫
Dte−pY1t2∫
Dte−pY1

−
(∫

Dte−pY1t∫
Dte−pY1

)2
)

(q1 − q0)

' 2α

∫
DzQ

(
m√

ρq −m2
z

)(
∂2YRS

1

∂(
√
q0z)2

)2

(q1 − q0) (B.3)

hold for |q1− q0| � 1 and |q̂1− q̂0| � 1 irrespectively of the value of p. Here
YRS

0 and YRS
1 represent assessments of Y0 and Y1 under the assumptions

of q̂1 = q̂0 and q1 = q0, respectively. In (B.2) and (B.3) we used the Taylor
expansion expressions

∂Y0/∂(
√
q̂0z) ∼ ∂YRS

0 /∂(
√
q̂0z) + ∂2YRS

0 /∂(
√
q̂0z)

2
√
q̂1 − q̂0t (B.4)

and

∂Y1/∂(
√
q0z) ∼ ∂YRS

1 /∂(
√
q0z) + ∂2YRS

1 /∂(
√
q0z)

2√q1 − q0t, (B.5)

and the fact that the variances of t for the measures Dte−pY0/
∫

Dte−pY0 and
Dte−pY1/

∫
Dte−pY1 become unity as q̂1−q̂0 and q1−q0 vanish, irrespectively

of the value of p.
To examine the stability of the RS solution in the limit of β → ∞, let us

change the variable notations as χ = β(1−q), Q̂+ q̂1 → βQ̂, q̂1 → β2q̂1, q̂0 →
β2q̂0, and m̂ → βm̂ and set q0 = q and q̂0 = q̂. This yields expressions of
YRS

0 ' βφ(
√
q̂z+ m̂x0; Q̂) = −βg(

√
q̂z+ m̂x0)/Q̂ and YRS

1 ' (β/χ)f(−√qz)
for β � 1. Substituting these into (B.2) and (B.3) leads to

∆ ' 1

Q̂2

[(
g′′(
√
q̂z + m̂x0)

)2
]
x0,z

∆̂ (B.6)

and

∆̂ ' 2α

χ2

∫
DzQ

(
m√
ρ−m2

z

)(
f ′′(−z)

)2
∆, (B.7)

where we set ∆ = q1 − q and ∆̂ = q̂1 − q̂, and used q → 1. The condition
that (B.6) and (B.7) allow a solution of (∆, ∆̂) 6= (0, 0) offers (2.16).
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Appendix C

Derivation of the cavity
equations

We refer to the system in which xi and (aµ, zµ) are kept out as the i-cavity
and µ-cavity systems, respectively. In addition, we denote Li→µ(xi), Ai→µ
and Hi→µ as the single-body cost function for the µ-cavity system and its
parameters, respectively, and similarly for Lµ→i(aµ, zµ), Bµ→i and Kµ→i.
Self-consistent equations are derived from the following arguments.

Vertical step:
Let us suppose that xi is put into the i-cavity system, which yields an ap-
proximation of the cost function of (2.17) as

(Λ/2)x2
i + |xi|+

M∑
ν=1

(Lν→i(aν , zν) + Φνiaνxi) . (C.1)

From this function we remove all terms that are related to (aµ, zµ) of a cer-
tain index µ ∈ {1, 2, . . . ,M}, which leads to an approximate cost function
of the µ-cavity system. Li→µ(xi) must be obtained by partially optimizing
the resulting µ-cavity cost function with respect to (aν , zν) of the remaining
indices ∀ν ∈ {1, 2, . . . ,M}\µ, where S\a generally denotes the set provided
by removing an element a from a set S. This offers the relation

Li→µ(xi) =
Λ

2
x2
i + |xi|+

∑
ν 6=µ

{
min
zν>0

max
aν
{Lν→i(aν , zν) + Φνiaνxi}

}
. (C.2)

This relation and the fact that Φµi is a negligibly small independent sam-
ple from an identical Gaussian distribution with zero mean and variance
N−1 yield the following equations evaluating Ai→µ and Hi→µ from a set of
{Bν→i} and {Kν→i}:

Ai→µ = Λ +
∑
ν 6=µ

Φ2
νi

Bν→i
f ′′(Kν→i), (C.3)

Hi→µ = −
∑
ν 6=µ

Φνi

Bν→i
f ′(Kν→i). (C.4)

Horizontal step:
Similarly, putting (aµ, zµ) into the µ-cavity system and removing xi yields
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another relation,

Lµ→i(aµ, zµ) = −zµaµ +
∑
j 6=i

{
min
xj
{Lj→µ(xj) + Φµjaµxj}

}
, (C.5)

which offers

Bµ→i =
∑
j 6=i

Φ2
µj

Aj→µ
g′′(Hj→µ), (C.6)

Kµ→i =
∑
j 6=i

Φµj

Aj→µ
g′(Hj→µ). (C.7)

Recovery step:
Ai and Hi are evaluated from (C.6) and (C.7) as

Ai = Λ +

M∑
µ=1

Φ2
µi

Bµ→i
f ′′(Kµ→i), (C.8)

Hi = −
M∑
µ=1

Φµi

Bµ→i
f ′(Kµ→i). (C.9)

This means that the recovered signal is provided as

x̂i =
1

Ai
g′(Hi), (C.10)

where Λ is determined in such a way that
∑N

i=1 x̂
2
i = N holds. Similarly,

Bµ =
N∑
i=1

Φ2
µi

Ai→µ
g′′(Hi→µ), (C.11)

Kµ =
N∑
i=1

Φµi

Ai→µ
g′(Hi→µ), (C.12)

are obtained from (C.3) and (C.4). These offer the (approximate) optimal
value of the Lagrange multiplier aµ as

âµ = − 1

Bµ
f ′(Kµ). (C.13)

Equations (C.4) and (C.9) indicate the difference between
Hi→µ and Hi

is vanishingly small for N → ∞ as Φµi scales as O
(
N−1/2

)
, and simi-

larly for
Kµ→i and Kµ.
This also allows us to handle Ai and Ai→µ as a single site-independent
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parameter A, and we similarly deal with Bµ and Bµ→i as B. These consid-
erations, in conjunction with (C.8) and (C.11), offer

A = Λ +
1

NB

M∑
µ=1

f ′′(Kµ), (C.14)

B =
1

NA

N∑
i=1

g′′(Hi), (C.15)

where we replaced Φ2
µi in (C.8) and (C.11) with its expectation N−1 by

utilizing the law of large numbers. Furthermore, inserting f ′(Kµ→i) '
f ′(Kµ − Φµix̂i) ' f ′(Kµ) − Φµif

′′(Kµ)x̂i and g′(Hi→µ) ' g′(Hi + Φµiâµ) '
g′(Hi) + Φµig

′′(Hi)âµ into (C.9) and (C.12), respectively, yields

Hi '
M∑
µ=1

Φµiâµ +

 1

B

M∑
µ=1

Φ2
µif
′′(Kµ)

 x̂i

'
M∑
µ=1

Φµiâµ +

 1

NB

M∑
µ=1

f ′′(Kµ)

 x̂i

=
M∑
µ=1

Φµiâµ + Γx̂i (C.16)

and

Kµ '
N∑
i=1

Φµix̂i −

(
1

A

N∑
i=1

Φ2
µig
′′(Hi)

)
âµ

'
N∑
i=1

Φµix̂i −

(
1

NA

N∑
i=1

g′′(Hi)

)
âµ

=
N∑
i=1

Φµix̂i −Bâµ, (C.17)

where we set Γ = (NB)−1
∑M

µ=1 f
′′(Kµ). Equations (C.10), (C.13), and

(C.14)–(C.17) lead to (2.20)–(2.23).
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Appendix D

Derivation of (3.11)

D.0.1 Assessment of [Zn (β;Φ,x0,λ)]Φ,x0,λ for n ∈ N

Averaging (3.9) with respect to Φ and x0 offers the following expression of
the n-th moment of the partition function:

[
Zn
(
β; Φ,x0,λ

)]
Φ,x0,λ

=

∫ n∏
a=1

(
dxae−β||x

a||1
)

×

 n∏
a=1

M∏
µ=1

Θ
(
(Φx0 + λ)µ(Φxa + λ)µ

)
Φ,x0,λ

. (D.1)

We insert n(n+ 1)/2 trivial identities

1 = N

∫
dqabδ

(
xa · xb −Nqab

)
, (D.2)

where a > b = 0, 1, 2, . . . , n, into (D.1). Furthermore, we define a joint
distribution of n+ 1 vectors {xa} = {x0,x1,x2, . . . ,xn} as

P ({xa}|Q) =
1

V (Q)
P (x0)×

n∏
a=1

(
e−β||x

a||1
)

×
∏
a>b

δ
(
xa · xb −Nqab

)
, (D.3)

where Q = (qab) is an (n + 1) × (n + 1) symmetric matrix whose 00 and
the other diagonal entries are fixed as ρ and qaa, respectively. P (x0) =∏N
i=1

(
(1− ρ)δ(x0

i ) + ρP̃ (x0
i )
)

denotes the distribution of the original signal

x0, and V (Q) is the normalization constant that makes∫ n∏
a=0

dxaP ({xa}|Q) = 1 (D.4)

hold. These indicate that (D.1) can also be expressed as

[
Zn
(
β; Φ,x0,λ

)]
Φ,x0,λ

=

∫
dQ (V (Q)× [Ξ (Q)]λ) , (D.5)

where dQ ≡
∏
a>b dqab and

Ξ (Q)=

∫ n∏
a=0

dxaP ({xa}|Q)
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×

 n∏
a=1

M∏
µ=1

Θ
(
(Φx0 + λ)µ(Φxa + λ)µ

)
Φ

. (D.6)

Equation (D.6) can be regarded as the average of∏n
a=1

∏M
µ=1 Θ

(
(Φx0 + λ)µ(Φxa + λ)µ

)
with respect to {xa} and Φ over

distributions ofP ({xa}) andP (Φ) ≡
(√

2π/N
)−MN

exp
(
−(N/2)

∑
µ,i Φ2

µi

)
.

In computing this, it is noteworthy that when N and M tend to infinity
while keeping α = M

N finite, the Central Limit Theorem guarantees that
uaµ ≡ (Φxa)µ =

∑N
i=1 Φµix

a
i can be handled as zero-mean multivariate

Gaussian random numbers whose variance and covariance are provided
by [

uaµu
b
ν

]
Φ,{xa}

= δµνqab, (D.7)

when Φ and {xa} are generated independently from P (Φ) and P ({xa}),
respectively. This means that (D.6) can be evaluated as

Ξ(Q) =


∫
du exp

(
−1

2u
TQ−1u

) n∏
a=1

Θ
(
(u0+λ)(ua+λ)

)
(2π)(n+1)/2(detQ)1/2


M

, (D.8)

where u0, ua, and λ represent the typical elements of u0, ua and λ, respec-
tively, since each µ is independently distributed.

On the other hand, expression

δ
(
xa · xb−Nqab

)
=

1

2π

∫ +i∞

−i∞
dq̂abe

q̂ab(xa·xb−Nqab), (D.9)

and use of the saddle point method offer

1

N
lnV (Q)= extr

Q̂

{
−1

2
TrQ̂Q

+ln

(∫
dxP (x0) exp

(
1

2
xTQ̂x−β

n∑
a=1

β|xa|

))}
. (D.10)

Here, x = (x0, x1, . . . , xn)T, and xa represents the typical element of xa,
since each xai is independently distributed. Q̂ is an (n+1)×(n+1) symmet-
ric matrix whose 00 and other diagonal components are given as 0 and−q̂aa,
respectively, while off-diagonal entries are offered as q̂ab. Equations (D.8)
and (D.10) indicate thatN−1 ln

[
Zn(β; Φ,x0,λ)

]
Φ,x0,λ

is correctly evaluated
by using the saddle point method with respect to Q in the assessment of
the right-hand side of (D.5), when N and M tend to infinity while keeping
α = M/N finite.
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D.0.2 Treatment under the replica symmetric ansatz

Let us assume that the relevant saddle point in assessing (D.5) is of the form
of (3.10) and, accordingly,

q̂ab = q̂ba =


0, (a = b = 0)
m̂, (a = 1, 2, . . . , n; b = 0)

Q̂, (a = b = 1, 2, . . . , n)
q̂, (a 6= b = 1, 2, . . . , n)

. (D.11)

The n + 1-dimensional Gaussian random variables u0, u1, . . . , un, whose
variance and covariance are provided as (3.10), can be expressed as

u0 =

√
ρσ2

0 −
m2

q
s0 +

m
√
q
t, (D.12)

ua =
√
Q− qsa +

√
qt, (a = 1, 2, . . . , n) (D.13)

by utilizing n + 2 independent standard Gaussian random variables t and
s0, s1, . . . , sn. This indicates that (D.8) is evaluated as

Ξ(Q) =

∫ DtQ

− m√
q t+ λ√
ρσ2

0 − m2

q

Qn(−√qt+ λ
√
Q− q

)

+Q

 m√
q t+ λ√
ρσ2

0 − m2

q

Qn(√qt+ λ
√
Q− q

)M

. (D.14)

On the other hand, substituting (D.11) into (D.10), in conjunction with the
identity,

exp

q̂ ∑
a>b(≥1)

xaxb


=

∫
Dzexp

(
n∑
a=1

(
− q̂

2
(xa)2+

√
q̂zxa

))
(D.15)

where z is a standard Gaussian random variable, yields

1

N
lnV (Q) = extr

Q̂,q̂,m̂

{
n

2
Q̂Q− n(n− 1)

2
q̂q − m̂mσ2

0

+ ln

[(∫
dx exp

(
−Q̂+q̂

2
x2+

(√
q̂z+m̂x0

)
x

−β|x|))n]x0,z
}
. (D.16)

Although we have assumed that n ∈ N, the expressions of (D.14) and (D.16)
are likely to hold for n ∈ R as well. Therefore the average free energy f
can be evaluated by substituting these expressions into the formula f =

− limn→0(∂/∂n)
(

(βN)−1 ln
[
Zn(β; Φ,x0,λ)

]
Φ,x0 ,λ

)
.

In the limit of β → ∞, a nontrivial saddle point is obtained only when
χ ≡ β(Q − q) is kept finite. Accordingly, we change the notations of the
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auxiliary variables as Q̂ + q̂ → βQ̂, q̂ → β2q̂, and m̂ → βm̂. Furthermore,
we use the asymptotic forms

lim
β→∞

1

β

∫
DtQ

 m√
q t+ λ√
ρσ2

0 − m2

q

 lnQ
(√

qt+ λ
√
Q− q

)

=

∫
DtQ

 m√
q t+ λ√
ρσ2

0 − m2

q

(−(
√
qt+ λ)2

2χ
Θ(
√
qt+ λ)

)
(D.17)

and

lim
β→∞

1

β
ln

(∫
dx exp

(
β

(
−Q̂

2
x2+

(√
q̂z+m̂x0

)
x−|x|

)))
= −φ

(√
q̂z + m̂x0; Q̂

)
. (D.18)

Using these in the resultant expression of f offers (3.11).



81

Appendix E

RS stability of thresholding
1-bit compressive sensing

To examine the validity of the RS ansatz, we also evaluated the local stabil-
ity of the RS solutions against the disturbances that break the replica sym-
metry [2], which offers

α

Q̂2χ2

Q
− mt√

q + λ√
ρσ2

0 − m2

q

u′′ (−√qt− λ)

+Q

 mt√
q + λ√

ρσ2
0 − m2

q

u′′ (
√
qt+ λ)


t,λ

×2

(
(1− ρ)Q

(
1√
q̂

)
+ ρQ

(
1√

q̂ + m̂2σ2
0

))
−1 < 0, (E.1)

as the stability condition. Unfortunately, the left handside of equation (E.1)
is always zero, therefore it is not satisfied. This indicates that taking the
replica symmetry breaking (RSB) into account is necessary for evaluating
the exact performance of the signal recovery scheme defined by (3.2). Here
we provid a brief sketch of the derivation of this condition by the 1-step
replica symmetry breaking (1RSB) calculation.

1RSB ansatz means that, at the relevant saddle point, n replica indices
1, 2, . . . , n are classified into n/p groups of an equal size p, and qab = q1

holds if a and b belong to an identical group and q0(≤ q1), otherwise. This
yields the following expression of the average free energy of finite temper-
ature:

f = extr
ω

{
− 1

β

[
ln

(∫
Dt exp (−pY0)

)]
x0,z

− 1

2β
(Q̂+ q̂1)Q+

q̂1

2β
(Q− q1) +

p

2β
(q̂1q1 − q̂0q0) +

1

β
m̂mσ2

0

− α

βp

∫ Dz

Q
− m√

qz + λ√
ρσ2

0 − m2

q

 ln

(∫
Dz exp (−pY1)

)

+Q

 m√
q t+ λ√
ρσ2

0 − m2

q

 ln

(∫
Dz exp (−pY2)

)
λ

 , (E.2)
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where

Y0 ≡ − ln

(∫
dx exp

(
−(Q̂+ q̂1)x2/2 + (

√
q̂1 − q̂0t+√

q̂0z + m̂x0)x− β|x|
))

,

Y1≡−ln

(∫
DxΘ

(√
Q− q1x+

√
q1 − q0t+

√
q0z+ λ

))
,

Y2≡−ln

(∫
DxΘ

(
−
(√

Q− q1x+
√
q1 − q0t+

√
q0z+ λ

)))
,

ω = {q1, q0, Q,m, Q̂, q̂1, q̂0, m̂}, [· · · ]x0,z =
∫
dx0P (x0)

∫
Dz (· · · ), and [· · · ]λ =∫

dλP (λ) (· · · ). The RS solution is regarded as a special case of the 1RSB so-
lution for which q1 = q0 holds. Therefore one can check the thermodynam-
ical validity of the RS solution by examining the stability of the solution of
q1 = q0 under the 1RSB ansatz.

The extremization condition of (E.2) indicates that

q1 − q0

=

[[(
∂Y0/∂(

√
q̂0z)

)2
]
|Y0
−
[(
∂Y0/∂(

√
q̂0z)

)]2

|Y0

]
x0,z

'

[(
∂2YRS

0

∂(
√
q̂0z)2

)2 ([
t2
]
|Y0−[t]2|Y0

)]
x0,z

(̂q1−q̂0)

'

[(
∂2YRS

0

∂(
√
q̂0z)2

)2
]
x0,z

(q̂1 − q̂0) (E.3)

and

q̂1 − q̂0

= α

∫
DzQ

− m√
qz + λ√
ρσ2

0 − m2

q


×

[( ∂Y1

∂(
√
q̂0z)

)2
]
|Y1

−
[

∂Y1

∂(
√
q̂0z)

]2

|Y1


+α

∫
DzQ

 m√
qz + λ√
ρσ2

0 − m2

q


×

[( ∂Y2

∂(
√
q̂0z)

)2
]
|Y2

−
[

∂Y2

∂(
√
q̂0z)

]2

|Y2


' α


∫

DzQ

− m√
qz + λ√
ρσ2

0 − m2

q

( ∂2YRS
1

∂(
√
q0z)2

)2

×
([
t2
]
|Y1−[t]2|Y1

)
+

∫
DzQ

 m√
qz + λ√
ρσ2

0 − m2

q

( ∂2YRS
2

∂(
√
q0z)2

)2

×
([
t2
]
|Y2−[t]2|Y2

)}
(q1 − q0)
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' α


∫

DzQ

− m√
qz + λ√
ρσ2

0 − m2

q

( ∂2YRS
1

∂(
√
q0z)2

)2

+

∫
DzQ

 m√
qz + λ√
ρσ2

0 − m2

q

( ∂2YRS
2

∂(
√
q0z)2

)2


×(q1−q0) (E.4)

hold for |q1−q0| � 1 and |q̂1− q̂0| � 1 irrespectively of the value of p, where

[· · · ]|Y =
∫

Dte−pY (··· )∫
Dte−pY

. HereYRS
0 andYRS

1 represent assessments ofY0 andY1

under the assumptions of q̂1 = q̂0 and q1 = q0, respectively. In (E.3) and (E.4)
we used the Taylor expansion expressions ∂Y0/∂(

√
q̂0z) ∼ ∂YRS

0 /∂(
√
q̂0z)+

∂2YRS
0 /∂(

√
q̂0z)

2
√
q̂1 − q̂0t and ∂Y1/∂(

√
q0z) ∼ ∂YRS

1 /∂(
√
q0z)+∂

2YRS
1 /∂(

√
q0z)

2√q1 − q0t,
and the fact that the variances of t for the measures Dte−pY0/

∫
Dte−pY0 and

Dte−pY1/
∫

Dte−pY1 become unity as q̂1−q̂0 and q1−q0 vanish, irrespectively
of the value of p.

To examine the stability of the RS solution in the limit of β → ∞, let us
change the variable notations as χ = β(Q − q), Q̂ + q̂1 → βQ̂, q̂1 → β2q̂1,
q̂0 → β2q̂0, and m̂→ βm̂ and set q0 = q and q̂0 = q̂. This yields expressions
of YRS

0 ' βφ(
√
q̂z+m̂x0; Q̂) = −βg(

√
q̂z+m̂x0)/Q̂, YRS

1 ' (β/χ)u(
√
qz+λ)

and YRS
2 ' (β/χ)u(−√qz−λ) for β � 1, where g(x) = 1

2(|x|−1)2Θ(|x|−1),
u(x) = x2Θ(x). Substituting these into (E.3) and (E.4) leads to

∆ ' 1

Q̂2

[(
g′′(
√
q̂z + m̂x0)

)2
]
x0,z

∆̂ (E.5)

and

∆̂ ' α

χ2


∫

DzQ

− m√
qz + λ√
ρσ2

0 − m2

q

(u′′(√qz + λ)
)2

+

∫
DzQ

 m√
qz + λ√
ρσ2

0 − m2

q

(u′′(−√qz−λ)
)2∆, (E.6)

where we set ∆ = q1 − q and ∆̂ = q̂1 − q̂, and used q → Q. The condition
that (E.5) and (E.6) allow a solution of (∆, ∆̂) 6= (0, 0) offers (E.1).

We nonetheless think that the RS analysis offers considerably accurate
approximates of the exact performance in terms of MSE. Excellent consis-
tency between the numerical experiments and the RS analysis suggests that
even if (3.2) has many local optima, they are close to one another in terms
of the l2-norm yielding similar values of MSE.
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Appendix F

Derivation of (4.14)

F.1 Assessment of [P n (y|Φ)]Φ,y for n ∈ N

Averaging (4.11) with respect to Φ and y gives the following expression for
the n-th moment of the partition function:

[Pn (y|Φ)]Φ,y =

∫ n∏
a=1

(dxaP (xa))×

 n∏
a=1

M∏
µ=1

Θ ((y)µ(Φxa)µ)


Φ,y

. (F.1)

We insert n(n+ 1)/2 trivial identities

1 = N

∫
dqabδ

(
xa · xb −Nqab

)
, (F.2)

where a > b = 0, 1, 2, . . . , n, into (F.1). Furthermore, we define a joint distri-
bution of n+ 1 vectors {xa} = {x0,x1,x2, . . . ,xn} as

P ({xa}|Q) =
1

V (Q)
P (x0)×

n∏
a=1

(P (xa))×
∏
a>b

δ
(
xa · xb −Nqab

)
, (F.3)

where Q = (qab) is an (n + 1) × (n + 1) symmetric matrix whose 00 and
other diagonal entries are fixed as ρ and Q, respectively.

P (x0) =
N∏
i=1

(
(1− ρ)δ(x0

i ) + ρP̃ (x0
i )
)

(F.4)

denotes the distribution of the original signal x0, and V (Q) is the normal-
ization constant that ensures

∫ ∏n
a=0 dx

aP ({xa}|Q) = 1 holds. These indi-
cate that (F.1) can also be expressed as

[Pn (y|Φ)]Φ,y =

∫
dQ (V (Q)× Ξ (Q)) , (F.5)

where dQ ≡
∏
a>b dqab and

Ξ (Q) =

∫ n∏
a=0

dxaP ({xa}|Q)

 n∏
a=1

M∏
µ=1

Θ
(
(Φx0)µ(Φxa)µ

)
Φ

. (F.6)

Equation (F.6) can be regarded as the average of
∏n
a=1

∏M
µ=1 Θ ((y)µ(Φxa)µ)

with respect to {xa} and Φ over distributions of P ({xa}) and P (Φ) ≡
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(√
2π/N

)−MN
exp

(
−(N/2)

∑
µ,i Φ2

µi

)
. Notice that, here we replaced the

average over y by the average over x0, since y = Φx0. In computing
this, note that the central limit theorem guarantees that uaµ ≡ (Φxa)µ =∑N

i=1 Φµix
a
i can be handled as zero-mean multivariate Gaussian random

numbers whose variance and covariance are given by[
uaµu

b
ν

]
Φ,{xa}

= δµνqab, (F.7)

when Φ and {xa} are generated independently from P (Φ) and P ({xa}),
respectively. This means that (F.6) can be evaluated as

Ξ(Q) =

(∫
du exp

(
−1

2u
TQ−1u

)∏n
a=1 Θ

(
u0ua

)
(2π)(n+1)/2(detQ)1/2

)M

=

(
2

∫
du exp

(
−1

2u
TQ−1u

)
Θ
(
u0
)∏n

a=1 Θ (ua)

(2π)(n+1)/2(detQ)1/2

)M
. (F.8)

On the other hand, expressions

δ
(
|xa|2 −NQ

)
=

1

4π

∫ +i∞

−i∞
dq̂aa exp

(
−1

2
q̂aa
(
|xa|2 −NQ

))
(F.9)

and

δ
(
xa · xb −Nqab

)
=

1

2π

∫ +i∞

−i∞
dq̂ab exp

(
q̂ab

(
xa · xb −Nqab

))
, (F.10)

and use of the saddle-point method, offer

1

N
log V (Q) = extr

Q̂

{
−1

2
TrQ̂Q

+ log

(∫
dxP (x0)

n∏
a=1

P (xa) exp

(
1

2
xTQ̂x

))}
. (F.11)

Here, x = (x0, x1, . . . , xn)T and Q̂ is an (n + 1) × (n + 1) symmetric ma-
trix whose 00 and other diagonal components are given as 0 and −q̂aa, re-
spectively. The off-diagonal entries are q̂ab. Equations (F.8) and (F.11) in-
dicate that N−1 log [Pn (y|Φ)]Φ,y is correctly evaluated by the saddle-point
method with respect to Q in the assessment of the right-hand side of (F.5),
when N and M tend to infinity and α = M/N remains finite.

F.2 Treatment under the replica symmetric ansatz

Let us assume that the relevant saddle-point for assessing (F.5) is of the form
(4.13) and, accordingly,

q̂ab = q̂ba =


0, (a = b = 0)
m̂, (a = 1, 2, . . . , n; b = 0)

Q̂, (a = b = 1, 2, . . . , n)
q̂, (a 6= b = 1, 2, . . . , n)

. (F.12)
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The n+1-dimensional Gaussian random variables u0, u1, . . . un whose vari-
ance and covariance are given by (4.13) can be expressed as

u0 =

√
ρ− m2

q
s0 +

m
√
q
z, (F.13)

ua =
√
Q− qsa +

√
qz, (a = 1, 2, . . . , n) (F.14)

utilizing n + 2 independent standard Gaussian random variables z and
s0, s1, . . . , sn. This indicates that (F.8) is evaluated as

Ξ(Q) =

(
2

∫
DzQ

(
m√

ρq −m2
z

)
Qn
(√

q

Q− q
z

))M
. (F.15)

On the other hand, substituting (F.12) into (F.11), in conjunction with the
identity

exp

q̂ ∑
a>b(≥1)

xaxb

 =

∫
Dz exp

(
n∑
a=1

(
− q̂

2
(xa)2 +

√
q̂zxa

))
, (F.16)

provides

1

N
log V (Q) = extr

Q̂,q̂,m̂

{
n

2
Q̂Q− n(n− 1)

2
q̂q − m̂m

+ log

[(∫
dxP (x) exp

(
−Q̂+q̂

2
x2+

(√
q̂z+m̂x0

)
x

))n]
x0,z

 .(F.17)

Although we have assumed that n ∈ N, the expressions of (F.15) and (F.17)
are likely to hold for n ∈ R as well. Therefore, the average free energy f
can be evaluated by substituting these expressions into the formula f =

limn→0(∂/∂n)
(

(N)−1 log [Pn (y|Φ)]Φ,y

)
.

Furthermore, employing the approximate expressions

lim
n→0
Qn(x) = lim

n→0
exp (n logQ(x)) ≈ 1 + n logQ(x), (F.18)

lim
n→0

log (1 + nC(·)) ≈ nC(·), (F.19)

where C(·) is an arbitrary function, we obtain the form

lim
n→0

∂

∂n

1

N
log Ξ(Q) = 2α

∫
DzQ

(
m√

ρq −m2
z

)
Q
(√

q

Q− q
z

)
. (F.20)

And we have

lim
n→0

∂

∂n

1

N
log V (Q) = extr

Q̂,q̂,m̂

{∫
dx0P

(
x0
) ∫

Dzφ
(√

q̂z + m̂x0; Q̂
)

+
1

2
QQ̂+

1

2
qq̂ −mm̂

}
. (F.21)

Using these in the resultant expression of f gives (4.14).
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Appendix G

Derivation of (4.33)–(4.37)

Expanding the exponential in (4.31) up to the second order of Φµi(xi−ai→µ)
and performing the integration with respect to uµ gives

mµ→i (xi) ' c0 + c1Φµi (xi − ai→µ) +
1

2
c2Φ2

µi (xi − ai→µ)2

' exp

{
lnc0 +

c1

c0
Φµi (xi − ai→µ) +

c0c2 − c2
1

2c2
0

Φ2
µi (xi − ai→µ)2

}

∝ exp

{
−Aµ→i

2
x2
i +Bµ→ixi

}
, (G.1)

where

c0 ≡
∫

duµP (yµ|uµ)exp
(
−(uµ − ωµ)2

2V

)
, (G.2)

c1 ≡
∫

duµP (yµ|uµ)

(
uµ − ωµ

V

)
exp

(
−(uµ − ωµ)2

2V

)
, (G.3)

c2 ≡
∫

duµP (yµ|uµ)

((
uµ − ωµ

V

)2

− 1

V

)
exp

(
−(uµ − ωµ)2

2V

)
,(G.4)

and

Aµ→i =
c2

1 − c0c2

c2
0

Φ2
µi, (G.5)

Bµ→i =
c1

c0
Φµi +

c2
1 − c0c2

c2
0

Φ2
µiai→µ. (G.6)

Equations (G.3) and (G.4) imply that c1 and c2 can be expressed as c1 =
∂c0/∂ωµ and c2 = ∂2c0/∂ω

2
µ, respectively. Inserting this into (G.5) and (G.6),

we obtain (4.33)–(4.37).
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Appendix H

Asymptotic form of MSEBayes

The behavior as m → ρ and m̂ → ∞ is obtained as α → ∞. This implies
that equations (4.16) and (4.17) can be evaluated as

m =

∫
Dt

ρ2(1 + m̂)−1e
m̂

1+m̂
t2 m̂

(1+m̂)2
t2

1− ρ+ ρ(1 + m̂)−1/2e
m̂

2(1+m̂)
t2

=
ρ2m̂

(1 + m̂)

∫
Dzz2

[
(1− ρ)(1 + m̂)1/2e−

m̂
2
z2 + ρ

]−1

' ρ(1− m̂−1) (H.1)

and

m̂ =
2α

ρ−m

∫
Dt
e
− m
ρ−m t

2

/(2π)

Q
(√

m
ρ−m t

) =
2α√

m(ρ−m)

∫
dz

(2π)3/2

e−
ρ+m
2m

z2

Q(z)

' 2Cα√
m(ρ−m)

, (H.2)

respectively. Here, the integration variables have been changed to (1 +
m̂)−1/2t = z and

√
m/(ρ−m)t = z in (H.1) and (H.2), respectively, and

we set C ≡
∫

dz(2π)−3/2e−z
2
/Q(z) = 0.3603 . . .. Equations (H.1) and (H.2)

yield an asymptotic expression for m:

m ' ρ
(

1−
( ρ

2Cα

)2
)
. (H.3)

Inserting this into (4.19) gives (4.51).
The performance when the positions of non-zero entries are known can

be evaluated by setting ρ = 1 and replacing α with α/ρ in (4.16) and (4.17)
as the dimensionality of x is reduced from N to Nρ. This reproduces (4.51)
in the asymptotic region of α� 1.
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Appendix I

Asymptotic form of MSEl1

The saddle-point equations of the l1-norm minimization approach under a
normalization constraint of |x|2 = N are as follows [56]:

q̂ =
α

πχ2

(
arctan

(√
ρ−m2

m

)
−m
ρ

√
ρ−m2

)
, (I.1)

m̂ =
α

πχρ

√
ρ−m2, (I.2)

Q̂2 = 2

{
(1−ρ)

[
(q̂ + 1)Q

(
1√
q̂

)
−
√

q̂

2π
e
− 1

2q̂

]

+ρ

[(
q̂ + m̂2 + 1

)
Q

(
1√

q̂ + m̂2

)

−
√
q̂ + m̂2

2π
e
− 1

2(q̂+m̂2)

]}
, (I.3)

χ =
2

Q̂

[
(1−ρ)Q

(
1√
q̂

)
+ρQ

(
1√
q̂+m̂2

)]
, (I.4)

m =
2ρm̂

Q̂
Q

(
1√

q̂ + m̂2

)
. (I.5)

The behavior as m → √ρ and m̂ → ∞ is obtained as α → ∞. This
implies that (I.3) can be evaluated as

Q̂ '
(
ρm̂2− 4m̂√

2π
+B(q̂, ρ)

)1/2

' √
ρm̂

[
1− 2√

2πm̂
+

(
B(q̂, ρ)

2ρ
− 3

π

)]
, (I.6)

where B(q̂, ρ) ≡ ρ (q̂+1) + 2 (1−ρ)

[
(q̂ + 1)Q

(
1√
q̂

)
−
√

q̂
2πe
− 1

2q̂

]
. Insert-

ing (I.6) into (I.5), we obtain

m ' √ρ (1− δ) , (I.7)

where

δ ≡
(
B(q̂, ρ)

2ρ
− 1

π

)
/m̂2 = π2

[
2(1− ρ)Q

(
1/
√
q̂
)

+ ρ
]2
/(2α2). (I.8)
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Inserting (I.2), (I.6), (I.7), and χ '
[
2(1− ρ)Q(1/

√
q̂)
]
/Q̂ into (I.1) yields a

closed equation with respect to q̂:

q̂ ' 2

3

(
B(q̂, ρ)− 2ρ

π

)[
2(1− ρ)Q(1/

√
q̂) + ρ

]−1
. (I.9)

This determines the value of q̂ for α→∞, q̂∞l1 (ρ). Combining (I.8) and

MSEl1 = 2

(
1− m
√
ρ

)
' 2δ (I.10)

gives (4.52) in the asymptotic region of α� 1.
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