
論文 / 著書情報
Article / Book Information

題目(和文)

Title(English) Supervised Machine Learning for Tensor Structured Models with
Scaled Latent Trace Norm Regularization

著者(和文) WimalawarneKishan

Author(English) Kishan Wimalawarne

出典(和文)  学位:博士(工学),
 学位授与機関:東京工業大学,
 報告番号:甲第10237号,
 授与年月日:2016年3月26日,
 学位の種別:課程博士,
 審査員:杉山 将,徳永 健伸,篠田 浩一,村田 剛志,藤井 敦

Citation(English)  Degree:Doctor (Engineering),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第10237号,
 Conferred date:2016/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文)  博士論文

Category(English)  Doctoral Thesis

種別(和文)  要約

Type(English)  Outline

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/


Supervised Machine Learning for Tensor
Structured Models with Scaled Latent

Trace Norm Regularization

Kishan Wimalawarne

February 2016

Department of Computer Science
Graduate School of Information Science and Engineering

Tokyo Institute of Technology

Thesis Committee:
Masashi Sugiyama, Chair

Koichi Shinoda
Takenobu Tokunaga

Tsuyoshi Murata
Atsushi Fujii

Submitted in partial fulfillment of
the requirements for the degree of

Doctor of Engineering

Copyright c⃝ 2016 Kishan Wimalawarne



Keywords: Tensor, multilinear rank, scaled latent trace norm, regularization,
regression, classification, multilinear multitask learning, excess risk bounds



To my parents



iv



Abstract

In machine learning the structure of the data and structure of relationships among
learning problems can play an important role. As the popularity of machine learn-
ing increases more and more challenging complex data structures are becoming
available and required to be analysed. In this thesis we study the importance of
learning by preserving structure of data and better ways of modelling relationships
among related learning tasks.

We focus on higher dimensional arrays or tensors that are frequently found in
many application domains. As with matrices, one of the important features of a
tensor is the multilinear rank. Estimation and exploitation of the multilinear rank
of tensors would allow us to build good learning models for tensors especially if
the tensor is low rank. Yet compared to matrices exploiting the low rankness of a
tensor is difficult due to the high dimensional structure of tensors. We look into
existing low rank inducing tensor norms such as the overlapped trace norm and
the latent trace norm that have been previously used to regularize learning models
to understand their limitations. We find that both of these norms have a limitation
that they do not consider the relative rank compared to mode dimensions. We
propose a new norm called the scaled latent trace norm which explicitly takes the
relative rank compared to mode dimensions when regularized.

The first problem that is investigated in this thesis is the fundamental ques-
tion of identifying the optimal way to learn with tensor data. We challenge the
common approach of converting data into vectors in order to use ordinary vector
based learning models. We demonstrate using simple regression and classifica-
tion models that by learning directly with tensor data without converting them
to vectors and by applying low rank regularization methods we can outperform
existing vector based learning models. To do this we extend regression and clas-
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sification models with different tensor norms such as the overlapped trace norm,
the latent trace norm and the scaled latent trace norm. Our theoretical analysis
based on the excess risk bounds for each of these tensor norms allows us to infer
how the the excess risk for each tensor norm is related to the multilinear rank of
the weight tensor. We propose to solve these regularized tensor learning prob-
lems using the state of art optimisation method of alternating direction method of
multipliers. Through toy experiments and real world experiments we demonstrate
that our theoretical results match with our experimental results and that the direct
learning with tensors is better than the vectorised learning.

The second topic that is studied in this thesis is multilinear multitask learn-
ing. In this topic we investigate how to structure multiple related tasks together
in tensor format such that the information sharing among the related tasks leads
to better performances among individual tasks. In order to study multilinear mul-
titask learning deeply we extend multilinear multitask learning with the latent
trace norm and the scaled latent trace norm regularizations. We derive excess risk
bounds to show how the multilinear rank of the task weight tensor is related to
the excess risk for each of the tensor norm regularizations. Using the alternating
direction method of multipliers we propose to solve multilinear multitask learning
problems. Through experiments on toy and real world problems, we show that the
scaled latent trace norm is more capable of giving better performances.

We believe that the research described in this thesis can lead to more inter-
esting research directions in the future. After stating our conclusions, we provide
many possible future investigations that can be interesting to many researchers.
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Chapter 1

Introduction

In this thesis we investigate learning with tensor data and tensor structured learn-
ing models based on their low rank properties. Our research focuses on tensor
norm regularization to exploit low rankness to learn with tensor data and tensor
structured problems. We explore weaknesses and limitations of existing tensor
norms and propose a new norm called the scaled latent trace norm that can over-
come limitations of existing tensor norms. As successful applications of this ten-
sor norm we explore tensor regression and classification and multilinear multitask
learning. In this chapter we give an overview of our motivations and contributions
we make on the above mentioned topics.

1.1 Machine Learning

Machine learning can be put forward as the process that takes data represent-
ing some experience as input and output some expertise as a computer program
which can improve itself with more experience (Mitchell, 1997; Shalev-Shwartz
and Ben-David, 2014). More simply we can think of machine learning as a process
of transforming experiences in some domain into an expertise. Machine learning
is a complex process involving many branches of mathematics such as statistics,
numerical optimisation and analysis and computer science such as software engi-
neering, databases and distributed computing.

There are many ways of learning depending on the characteristic of the data
and the acquisitions of data and some of the popular methods of learning are as
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2 Chapter 1. Introduction

follows (Shalev-Shwartz and Ben-David, 2014; Chapelle et al., 2006; Sutton and
Barto, 1998; Cesa-Bianchi and Lugosi, 2006).

• Supervised learning

• Semi-supervised learning

• Unsupervised learning

• Reinforcement and bandits learning

One major method of categorising learning is based on the availability of data.
If all the data instances have labels and available as a batch, learning from such
data can be categorised as supervised learning (Shalev-Shwartz and Ben-David,
2014) and regression and classification are popular examples of supervised learn-
ing . If none of the data instances have any labels then the learning from such data
is known as unsupervised learning (Shalev-Shwartz and Ben-David, 2014). Clus-
tering, principal component analysis and independent component analysis are ex-
amples of unsupervised learning. If data is partially labelled then learning can be
performed by benefiting from the data with labels while efficiently using the un-
labelled data. Semi-supervised learning (Chapelle et al., 2006) has been modelled
on several assumptions on the unlabelled data such as the smoothness assumption,
cluster assumption and manifold assumptions to extend supervised learning mod-
els. In some applications all the data instances may not be available as a batch for
learning and the data instances and their labels may become available when in-
teracting with the environment. Reinforcement learning (Sutton and Barto, 1998)
and bandits learning (Cesa-Bianchi and Lugosi, 2006) methods are able to effi-
ciently learn in these situations where other batch based learning methods would
not have the capacity to learn efficiently.

In machine learning data plays an important role and capturing the informa-
tion from data is often crucial in building efficient prediction models. Irrespective
of whether the data are labelled or not, the format of the data can also provide
additional information. In general data may come in formats of vectors, matrices
or tensors and their structural properties can also give additional information in
addition to the numerical values of their elements. Low rankness is an impor-
tant structural property of matrices and tensors which is utilised in many learning
problems such inductive learning (Signoretto et al., 2013b), data imputation (Cai



1.2 Supervised Learning 3

et al., 2010), robust principal component analysis (Candès et al., 2011) and sub-
space clustering (Liu et al., 2010).

In this thesis we focus on learning utilising the structural properties of data
with a focus on tensor data. In order to investigate the importance of the struc-
tural properties of tensors in learning we focus on supervised learning. More
specifically we look into supervised learning with tensor structured problems us-
ing regularization with low rank inducing norms. Next we look more deeply into
supervised learning.

1.2 Supervised Learning

Supervised learning is one of the popular methods of learning. The purpose of su-
pervised learning is to infer a function based on completely labelled training data.
What we mean by completely labelled training data in the machine learning jargon
is that each raw data instance acquired from the environment for training comes
with a label or a label is assigned by a domain expert. Regression, classification
and ranking are well known examples of supervised learning models.

Figure 1.1 shows the process of supervised learning. In supervised learning,
the labelled data goes through the process of training a model. The validation
process allows to finds the optimal parameters of the model to fit the training data.
Once a model has been learned and when new unseen test data are available the
prediction process is able to predict the labels of the test data using the trained
model.

Many of the supervised learning models employ regularization methods and a
heap of norms that can be used for regularization have been invented to acquire the
best performance out of learning models and training data. Additionally training
data also comes in many formats such as vectors, matrices and tensors. Depending
on the format of data such as vector, matrix or tensor and also the properties of
data such as sparseness and low rankness we many have to formulate different
supervised learning models using appropriate regularization methods. We will
distinguish these models in the next subsections.
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Figure 1.1: Supervised learning
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1.2.1 Supervised Learning with Vector Data

The most common approach to model supervised learning problems is with vector
formatted data. This could be due to the abundance of vector formatted data and
the simplicity of designing learning models. A typical learning model for a data
set (xi, yi) ∈ RD × R, i = 1, . . . ,m can be modelled as follows:

R(w) = min
w

m∑
i=1

l(⟨xi, w⟩ , yi) + λ∥w∥vnorm,

where l(., .) can be any loss function, λ is a regularization parameter and ∥ ·∥vnorm
can be any vector based norm such as the l2, l1 or any structured norms (Jenat-
ton et al., 2011). Vector norm regularizations have many applications such as to
learn from ill-posed problems (Tikhonov and Arsenin, 1977), learn from sparse
data (Tibshirani, 1996) and feature selection (Jenatton et al., 2011). Using cross
validation (James et al., 2014) an optimal λ can be obtained to best fit the data
into the model.

Supervised learning with vector based data has been extensively studied theo-
retically in machine learning (Bunea et al., 2007; Kakade et al., 2009; Maurer and
Pontil, 2012). Most fundamentally the excess risk bounds (Bartlett et al., 2006) are
useful in understanding how different vector based regularization methods behave
based on the different properties of data. Given a supervised learning model, the
excess risk bound can be defined as the difference of the empirical training loss
for a specific data set of finite samples and the expected training loss provided
data samples can be acquired from a data distribution. In recent years analysis
using Rademacher complxities (Bartlett and Mendelson, 2002) has become pop-
ular with deriving excess risk bounds since it allows us to derive data dependent
bounds. Employing the Rademacher complexity, data dependent bounds have
been derived for many vector based norms such as l2, l1 and lp/lq (Kakade et al.,
2009) and structured norms such as Lasso, group Lasso, overlapping group norms
(Maurer and Pontil, 2012).

It is a common practice to convert data to vectors irrespective of their original
format and apply vector based models for learning. Though this process enables
us to reduce the learning with any data format into a vector based learning which
provides convenience, it can also lead to loss of critical information about the
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data. This is especially relevant with matrix or tensor structured data since con-
sidering their structural properties in learning can provide additional information
that would lead to better learning and predictions.

1.2.2 Supervised Learning with Matrix Data

Many real world data exists naturally in the format of matrices (e.g., images and
recommendation data). When learning with these matrix data it is a common
practice to convert these data into vectors and apply vector based learning models
as described previously. This process of converting to vectors can often lead to
loss of important structural properties such as the low rankness.

Matrix based supervised learning has been proposed by several researchers
(e.g., (Tomioka and Aihara, 2007; Zhou and Li, 2014)) to directly learn from
matrix data without converting them to vectors. For instance the loss function
for matrix based regression for data (X, y) ∈ Rn1×n2 × R can be represented
as l(⟨X,W ⟩ , y) where W ∈ Rn1×n2 and ⟨X,W ⟩ =

∑n1

i=1

∑n2

j=1Xi,jWi,j . As a
consequence learning coefficient matrix W can be regularized as a matrix using
matrix regularization methods such as the matrix trace norm (Recht et al., 2010).

The trace norm or the nuclear norm of a matrix X ∈ Rn1×n2 is defined as

∥X∥tr =
J∑

j=1

σj, (1.1)

where σj ≥ 0 is the jth singular value and J is the number of non-zero singular
values (J ≤ min(n1, n2)). A matrix is called law rank if J < min(n1, n2). The
matrix trace norm (1.1) is a convex envelope to the matrix rank and it is commonly
used in matrix low-rank approximation (Recht et al., 2010).

To formally define matrix based supervised learning let us consider training
data (Xi, yi) ∈ Rn1×n2 × R, i = 1, . . . ,m and a learning model can be expressed
as follows:

R(W ) = min
W

m∑
i=1

l(⟨Xi,W ⟩ , yi) + λ∥W∥tr,

where l(., .) is any loss function. It has been shown that better prediction accura-
cies can be achieved with this matrix based learning model for EEG classification
(Tomioka and Aihara, 2007). In addition (Tomioka and Aihara, 2007) has also
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shown that low rank regularization in the context of EEG data analysis allows us
to analyse the singular value spectra of learning coefficients that help understand
the activities of brain regions.

1.2.3 Supervised Learning with Tensor Data

A much less studied but a commonly found format of real world data is tensor
data. Sequence data (Liu et al., 2013), spatio-temporal data (Bahadori et al., 2014)
and brain-computer interface (BCI) data (Onishi et al., 2012) are few examples of
tensor data. Similarly to matrices tensor data can also be used directly in learning
models without converting them to vectors and the learning coefficients can be
regularized using suitable low rank tensor norms. Recently tensor based induc-
tive learning has received some attention (Signoretto et al., 2013b) but it has not
been studied in depth with latest developments of low rank tensor norms and no
theoretical analysis on tensor based supervised learning has been performed.

In order to model tensor based learning let us consider a dataset (Xi, yi) ∈
Rn1×···×nK×R, i = 1, . . . ,m and similarly to the matrix based supervised learning
we can define the tensor inductive learning models as follows:

R(W) = min
W

m∑
i=1

l(⟨Xi,W⟩ , yi) + λ∥W∥tnorm, (1.2)

where ⟨X ,W⟩ =
∑n1

i1=1 · · ·
∑nK

iK=1 Xi1,...,iKWi1,...,iK and ∥ · ∥tnorm is any low rank
tensor norm. The ∥ · ∥tnorm can be either the overlapped trace norm (Liu et al.,
2009; Tomioka and Suzuki, 2013) or the latent trace norm (Tomioka and Suzuki,
2013).

In Signoretto et al. (2013b) it has been proposed to use the overlapped trace
norm (Liu et al., 2009; Tomioka and Suzuki, 2013) as the low rank tensor regular-
ization method. Theoretical studies by Tomioka and Suzuki (2013) on application
of the overlapped trace norm for tensor decomposition has shown that it can result
in good performances when the multilinear ranks of the tensor have less variation.
Further research by Tomioka and Suzuki (2013) with the latent trace norm has
shown that it can produce better performances with tensors that have high varia-
tions in multilinear ranks. Depending on the training data and its tensor structure
it will result in a learning coefficient tensor with some specific multilinear ranks
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which the overlapped trace norm alone may not be sufficiently optimise. This
makes it necessary to explore tensor based supervised learning in detail in relation
to other tensor norms. Also the non-existence of theoretical study on tensor based
learning for different norms is another limitation in acquiring understanding how
these different tensor norms would behave.

1.3 Multitask Learning

In this section we overview multitask learning (Caruana, 1997; Baxter, 2000;
Ando and Zhang, 2005). Multitask learning is a popular learning approach that
learns multiple related learning tasks together by allowing to share information
among tasks. We focus our attention on low rank based multitask learning mod-
els.

1.3.1 Matrix based Multitask Learning

The matrix based multitask learning based on spectral properties or low rank struc-
ture was first developed in Argyriou et al. (2007) and it was further studied in Chen
et al. (2012). The basic idea behind these methods was to arrange all the learning
coefficients of tasks as a matrix and regularize it using the matrix trace norm. The
application of the trace norm allow us to find a low rank subspace in the coefficient
matrix which allows information sharing among tasks.

Let us define the trace norm regularized matrix multitask learning more for-
mally. We consider T tasks with each task having training data as (xit, yit) ∈
Rn × R, t = 1, . . . , T, i = 1, . . . ,mt and the matrix multitask learning models
can be formulated as follows:

R(W ) = min
w1,...,wT

T∑
t=1

mt∑
i=1

l(⟨xit, wt⟩ , yit) + λ∥W∥tr,

where W = [w1; · · · ;wT ].
Advances in theoretical machine learning has been moving along the direction

of multitask learning as well (Baxter, 2000). Recently theoretical analysis based
on excess risk bounds for trace norm based matrix multitask learning has been
conducted using the Rademacher complexity (Maurer and Pontil, 2013) and it has
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brought forward that the the collective excess risk of all tasks is bounded with the
rank of the coefficient matrix. This is a significant result since it has shown that
information sharing can occur among tasks provided the coefficient matrix is low
rank. Additionally theoretical aspects of matrix online based multitask learning
(Kakade et al., 2012; Cavallanti et al., 2010) and multitask dictionary learning
(Maurer et al., 2014) have been well studies.

1.3.2 Tensor based Multitask Learning

Recently the multilinear multitask learning (Romera-Paredes et al., 2013) has been
proposed which extends the matrix based multitask learning model to tensor struc-
tured multitask learning models. Multilinear multitask learning is able to exploit
the structural information more than the matrix based multitask learning due to
the higher dimensional structure of tensors. An advantage of multilinear multi-
task learning is that it allows imputation of missing tasks (Romera-Paredes et al.,
2013).

As an example of a multilinear multitask learning problem, let us consider a
recommendation system where customers give ratings to different aspects (qual-
ity of food, service,...,etc) of different restaurants (Romera-Paredes et al., 2013).
If we consider single task learning problems we can learn a model for each cus-
tomer for predicting his ratings for each aspect. But among different customers
and among different aspects there may be shared information which cannot be
utilised when considering tasks in isolation. In order to take advantage of such
shared information learning all the tasks together as a multitask learning problem
can be used. If we consider the matrix based multitask learning we discussed
previously we can arrange all learning coefficients of customers and ratings along
a dimension of a matrix as in Figure 1.2 (a) and apply low rank regularization.
But this arrangement does not take the full structural information since it does not
separate the relationship with customer and aspects. In order to fully utilize these
structural information the most optimised approach would be to have customers
on one mode and ratings on another mode of a tensor as shown in the Figure 1.2
(b).

The multilinear multitask learning with three dimensional (3-mode) tensor
structure can be defined for n1n2 tasks with training data (xipq, yipq) ∈ Rd ×
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(a) Matrix multitask learning (b) Multilinear multitask learning
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Figure 1.2: (a) Matrix structured multitask learning and (b) multilinear multitask
learning.

R, p = 1, . . . , n1, q = 1, . . . , n2, i = 1, . . . ,mpq as follows:

R(W ) = min
W

n1∑
p=1

n2∑
q=1

mpq∑
i=1

l(⟨xipq, wpq⟩ , yipq) + λ∥W∥tnorm, (1.3)

where W = Rd×n1×n2 and wpq = W(:, p, q). Similarly to the supervised learning
model setting different tensor trace norms can be applied to ∥ · ∥tnorm .

The original multilinear multitask learning (Romera-Paredes et al., 2013) has
been modelled with regularization using the overlapped trace norm. Multilinear
multitask learning problems may often result in irregular ”flat” tensors due to
smaller number of tasks compared to a larger feature space. Due to this reason
original proposal of the application of the overlapped norm regularization may
not capture the true low rankness of many multilinear multitask learning prob-
lems. Due to its recent development, multilinear multitask learning has not been
analysed theoretically prior to our investigations that we elucidate in later chap-
ters.

1.4 Low Rank Tensor Norms

Let us inspect low rank regularization more closely. The rank of a matrix is
defined as the maximum number of independent rows or columns (Golub and
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Van Loan, 1996). Though there are different ways to define the rank of a tensor
(as we will discuss in Chapter 2) such as by CP decomposition (Kiers, 2000b) or
Tucker decomposition (Tucker, 1966c), the rank of a tensor can also be viewed
as the maximum number of independent components that a tensor can be decom-
posed. If the rank of a matrix or a tensor is less than the maximum number of
possible independent components or in other words less than the mode dimen-
sions then that matrix or the tensor is low rank.

The low rankness of a matrix or a tensor is an important structural property.
Similarly to matrices (Recht et al., 2010), constraining the rank of tensor is also a
NP hard problem (Hillar and Lim, 2013). It is a standard practice to use the convex
envelope of the matrix trace norm (1.1) to approximate the rank of a matrix which
can also be used with tensor norms (Liu et al., 2009). Due to the higher dimensions
of tensors compared to matrices, estimating the ranks of a tensor can be more
difficult computationally and also designing norms to find the low rankness among
multiple modes can be challenging. In many applications such as missing data
imputation (Cai et al., 2010), robust principal component analysis (Candès et al.,
2011), and subspace clustering (Liu et al., 2010) low rank structure of data has
been successfully utilized. The problems that we discuss in this thesis, the tensor
based regression and classification and the multilinear multitask learning consider
the low rankness of the dual of data which are the learning coefficients. In these
settings the low rankness of the data is not necessary.

As we discussed in the previous sections tensor based learning problems have
been modelled in previous researches solely using the overlapped trace norm. This
is a major limitation since the learning coefficient tensors can result with high vari-
ations in multilinear ranks. The recently proposed latent trace norm (Tomioka and
Suzuki, 2013) has shown to be more robust when working with tensors with high
variations in multilinear ranks. Application of the latent trace norm regularization
to supervised learning with tensor data and multilinear multitask learning may
help to overcome limitations of the overlapped trace norm regularization.

A common limitation that both the overlapped trace norm and the latent trace
norm have is that both of these norms do not consider the relative rank with respect
to mode dimensions. This limitation becomes significant with irregular ”flat” ten-
sors with some modes having high dimensions and some modes having signif-
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icantly small dimensions compared to others. In these tensors it is possible that
along some of modes with small dimensions their ranks can be close to their mode
dimension while along high dimensional modes their ranks can be much smaller
than their mode dimensions. In some instances it may arise that the ranks of the
small dimensional modes are smaller than the ranks of high dimensional modes.
For tensors with the above mentioned behaviour the relative rank compared to the
mode dimensions can be crucial in understanding their true low rankness. Since
both the overlapped trace norm and the latent trace norm do not consider the rela-
tive low rankness they may perform inaccurately with tensors with high variations
in multilinear ranks and mode dimensions.

1.5 Contribution of This Thesis

The most important contribution of our work is the development of a new tensor
norm called the scaled latent trace norm. The scaled latent trace norm is an ex-
tension of the latent trace norm with scaling of each trace norm by the square root
of the mode dimension. The motivation to define this norm is to overcome limita-
tions of exiting norms such as the overlapped trace norm and the latent trace norm
when regularising tensors with high variations in multilinear ranks and mode di-
mensions. From a mathematical point of view we identify that in order to specify
the low rankness of a tensor based on its multilinear rank it is important to com-
pare the ranks relative to the mode dimensions. More specifically we claim that
the true low rankness of a tensor is along the mode with the minimum of relative
rank with respect to the mode dimensions and not on the mode with lowest of the
multilinear rank. We show that the proposed norm is able to identify the modes
with lowest rank relative to its mode dimensions which makes it perform better
with tensor regularized problems compared to other norms.

We investigate supervised learning with tensor data extensively by applying
our newly proposed scaled latent trace norm along with the latent trace norm
and the overlapped trace norm. We derive excess risk bounds for all the tensor
norm regularized learning models which is missing in existing research literature.
Our theoretical bounds derived using Rademacher complexity analysis are able to
show the relationship of multilinear ranks and tensor dimensions with the excess
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risk bounds for each tensor norm. We show that for the overlapped trace norm
regularization, the excess risk is bounded with the sum of the square root of mul-
tilinear ranks of the tensor, for the latent trace norm regularization the excess risk
is bounded with the minimum of the multilinear ranks and for the scaled latent
trace norm the excess risk is bounded with the ratio of minimum rank to mode di-
mension. We show that the scaled latent trace norm is superior compared to other
norms with tensors having high variation in multilinear ranks and mode dimen-
sions since it considers the relative rank with respect to the mode dimension. We
also propose optimisation methods for solve the dual problems of tensor based
inductive learning models using the alternating direction method of multipliers
(ADMM) (Gabay and Mercier, 1976; Boyd et al., 2011). Through simulation ex-
periments on tensor based regression and tensor based classification on real world
data such as image sequences and brain computer interface (BCI) data we validate
our theoretical results and show the efficiency of tensor based learning compared
to vector and matrix based learning. An important conclusion that we arrive when
learning with tensor data is that learning from tensor data without converting to
vectors and exploiting low rankness lead to better performances.

We also extend multilinear multitask learning by applying the scaled latent
trace norm and the latent trace norm regularizations. We derive excess risk bounds
for multilinear multitask learning to understand the theoretical properties of reg-
ularization with tensor norms. Based on the bounds we derive we show that for
the overlapped trace norm regularization, the excess risk is bounded with aver-
age of the square root of multilinear ranks of the tensor, for the latent trace norm
regularization the excess risk is bounded with the minimum of multilinear ranks
and for the scaled latent trace norm the excess risk is bounded with the ratio of the
minimum rank to mode dimension. Similarly to supervised learning, these bounds
show that the scaled latent trace norm is superior compared to other norms in mul-
tilinear multitask learning with tensors having high variation in multilinear ranks
and mode dimensions due to the consideration of the relative rank with respect
to the mode dimension. Similarly to the proposed optimisation methods used for
tensor based supervised learning we propose to solve the dual problems for mul-
tilinear multitask learning using the alternating direction method of multipliers.
As in the supervised learning with tensor data we provide excess risk bounds for
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all regularizations with tensor norms. Our experiments with real world data show
that our proposed scaled latent trace norm performs the best compared to other
tensor norms.

1.6 Organization of This Thesis

This thesis is organised in the following structure.
In Chapter 2, we first provide an overview on tensors which is needed to under-

stand our contributions we make in this thesis. We review existing tensor norms,
the overlapped trace norm and the latent trace norm. We next move on to de-
fine the scaled latent trace norm as published in Wimalawarne et al. (2014) and
describe its properties.

In Chapter 3, we focus on supervised learning with tensor data using tensor
norm regularizations. First we propose regression and classification of tensor data
with all tensor norms such as the overlapped trace norm, the latent trace norm
and the newly defined scaled latent trace norm. Next we provide optimisation
methods to solve tenor based regression and classification for each of the tensor
norms using the ADMM. We next analyse the excess risk bounds for supervised
learning setting for all tensor norm regularizations. In the experiments section we
first provide simulation experiments with tensor based regression to understand
how different tensor norms perform under different multilinear ranks and tensor
mode dimensions. Next we demonstrate real data experiments with hand gesture
recognition data and BCI data. Finally we have the conclusions of the chapter.

In Chapter 4, we describe our proposed extensions of the multilinear multi-
task learning with the latent trace norm and the scaled latent trace norm. First
we describe the proposed models and provide the details of optimisation proce-
dures. Next we provide excess risk bounds related to all the multilinear multitask
learning problems with all the tensor norms. Next we describe our simulation and
real world experiments for multilinear multitask learning. Finally we have the
conclusions.

In Chapter 5, we describe the conclusion of our research and discusses future
research directions.



Chapter 2

Scaled Latent Trace Norm

The main purpose of this chapter is to introduce a new tensor norm called the
scaled latent trace norm. First we discuss basic concepts of tensors and tensor
norms which is essential in understanding research described in this thesis. After
the brief introduction to fundamental concepts of tensors we review existing tensor
norms such as the overlapped trace norm and the latent trace norm. Next we define
our new norm, the scaled latent trace norm which is an extension of the latent
trace norm. Further we describe basic properties such as the duality of the scaled
latent trace norm.

2.1 Tensors

A tensor is a multi-dimensional array (Kolda and Bader, 2009). Let us consider
X ∈ Rn1×···×nK which is a K-way or Kth order tensor. If K is equal to 1 or 2 it
will result in a vector or a matrix respectively and if K is more than or equal to 3

it results in a high dimensional tensor. The total number of elements of a tensor
X ∈ Rn1×···×nK is N =

∏K
k=1 nk. Extending the convention of denoting elements

in vectors and matrices an element of the tensor can be represented as Xi1,...,iK for
(i1, . . . , iK) ∈ [n1] × · · · × [nK ]. An example of a visualisation possibly 3-mode
tensor X ∈ Rn1×n2×n3 is shown in Figure 2.1.

A fiber of a tensor is the vector obtained after fixing all indexes except one
(Figure 2.2). Fibers are analogous to rows and columns of a matrix. For a tensor
X ∈ Rn1×n2×n3 its fibers can be represented as X:,j,k, Xi,:,k and Xi,j,:.

15
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i     = 1,...,n1

j=
1
,.
..
,n

2

k =
1,..

.,n 3

X    
n1 x  n2 x  n3

∈R

Figure 2.1: An example of a 3-mode tensor X ∈ Rn1×n2×n3

(a) (b) (c)

Figure 2.2: Fibers of a 3-mode tensor. In (a), all fibers denoted as X (:, j, k),
in (b),all fibers denoted as X (i, :, k) and in (c), all fibers denoted as
X (i, j, :)

A slice of a tensor is any matrix that can be obtained by fixing all indices
except two (Figure 2.3). For a tensor X ∈ Rn1×n2×n3 slices can be represented as
X:,:,k, Xi,:,: and X:,j,:.

2.2 Tensor Unfolding

A very useful operation associated with tensors is the tensor unfolding. The mode-
k unfolding (also known as matricization or flattening) of tensor X is represented
as X(k) ∈ Rnk×N/nk which is obtained by concatenating all the N/nk mode-k
fibers along its columns.
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(a) (b) (c)

Figure 2.3: Slices of a 3-mode tensor. In (a), all slices denoted as X (:, :, k), in
(b),all slices denoted as X (i, :, :) and in (c), all slices denoted as X (:

, j, :)

In order to understand tensor unfolding easily let us consider an example. We
consider a 3-mode tensor W ∈ R4×3×2 which is made by slices X (:, :, 1) = X1

and X (:, :, 2) = X2 which are

X1 =


u1 u2 u3

u4 u5 u6

u7 u8 u9

u10 u11 u12

 ,

X2 =


v1 v2 v3

v4 v5 v6

v7 v8 v9

v10 v11 v12

 .

The unfolding of X on each of the modes can be represented as X(1), X(2) and
X(3) as follows:

X(1) =


u1 u2 u3 v1 v2 v3

u4 u5 u6 v4 v5 v6

u7 u8 u9 v7 v8 v9

u10 u11 u12 v10 v11 v12

 ,

X(2) =

 u1 u4 u7 u10 v1 v4 v7 v10

u2 u5 u8 u11 v2 v5 v8 v11

u3 u6 u9 u12 v3 v6 v9 v12

 ,
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X(3) =

[
u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

]
.

2.3 Basic Tensor Algebra

We review few basic tensor algebraic methods related to tensors in this section.

The k-mode product of a tensor X ∈ Rn1×n2···×nK with a matrix U ∈ Rm×nk

is defined as X ×k U ∈ Rn1×···nk−1×m×nk+1···×nK

Y = X ×k U ⇔ Y(k) = UX(k).

We denote the outer product using an operator ◦ for v(1) ∈ Rn1 , . . . , v(K) ∈ RnK

which leads to a tensor X ∈ Rn1×···×nK as

X = v(1) ◦ v(2) ◦ · · · ◦ v(K),

where each element xi1,i2,...,iK , i1 ∈ [n1], . . . , iK ∈ [nK ] is

xi1,i2,...,iK = v
(1)
i1
v
(2)
i2

· · · v(K)
iK

.

The inner product of two tensors X ,Y ∈ Rn1×n2···×nK is defined as

⟨X ,Y⟩ =
n1∑

i1=1

· · ·
nK∑

iK=1

xi1,...,iKyi1,...,iK ,

and the Frobenius norm of a tensor W can be expressed as

∥X∥F =
√
⟨X ,X⟩.

2.4 Tensor Decompositions and Tensor Rank

In this section we discuss two popular tensor decomposition methods namely the
CANDECOMP/PARAFAC decomposition and the Tucker decomposition.
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b1

c1
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b2

c2
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bR

cR

+ + +....X  ≈

Figure 2.4: CP decomposition of a 3-mode tensor.

2.4.1 CANDECOMP/PARAFAC Decomposition

The CANDECOMP/PARAFAC decomposition (Kiers, 2000b) or commonly known
as CP decomposition decomposes a tensor into a sum of finite number of rank one
tensors. Given a 3-mode tensor X ∈ Rn1×n2×n3 we can write its CP decomposi-
tion as

X ≈
R∑

r=1

ar ◦ br ◦ cr,

where ar ∈ Rn1 , br ∈ Rn2 and cr ∈ Rn3 . In Figure 2.4, a graphical description
of a CP decomposition is given. The CP decomposition can be extended for any
K-mode tensor.

The smallest number R of rank one tensors that can generate X as their sum
based on the CP decomposition is defined as the rank, R = Rank(X ) of that
tensor.

2.4.2 Tucker Decomposition

A more commonly used method of tensor decomposition is the Tucker decom-
position (Tucker, 1966c; Kolda and Bader, 2009). For illustrative purposes we
consider a 3-way tensor X ∈ Rn1×n2×n3 and its tucker decomposition can be
shown as in the Figure 2.5.

As shown in Figure 2.5, the Tucker decomposition decomposes a tensor into
a core tensor C ∈ Rm1×m2×m3 and component matrices U (1) ∈ Rn1×m1 , U (2) ∈
Rn2×m2 and U (3) ∈ Rn3×m3 . Formally the Tucker decomposition can be written
as

X = C ×1 U
(1) ×2 U

(2) ×3 U
(3), (2.1)
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X

C

U(1)

U(2)

U(3)

 ≈

Figure 2.5: Tucker decomposition of tensor X ∈ Rn1×n2×n3 . The tensor C is the
core tensor and matrices U (1), U (2) and U (3) are component matrices.

or as element-wise computation as

xi,j,k =

m1∑
i1=1

m2∑
j1=1

m3∑
k1=1

ci,j,ku
(1)
i,i1

u
(2)
j,j1

u
(3)
k,k1

. (2.2)

Based on the Tucker decomposition we can define the multilienar rank also
known as n-rank for a tensor. The mode-k rank rk of a tensor X ∈ Rn1×···×nK

is defined as the rank of mode-k unfolding that is X(k) and the multilinear rank
of X is given as (r1, . . . , rK). The CP decomposition can be viewed as a special
case of the Tucker decomposition when m1 = . . . = mK and the core tensor is
superdiagonal (Kolda and Bader, 2009). This indicated that the multilinear rank
based on the Tucker decomposition is a more general definition to capture the
ranks of a tensor.

2.5 Low Rank Tensor Norms

One of the main concepts that we discuss in this thesis is the low-rankness of
tensors. Before we consider tensors we first discuss the low rankness of matrices.
When considering a matrix X ∈ Rn1×n2 its trace norm (Recht et al., 2010) is
defined as

∥X∥tr =
J∑

j=1

σj, (2.3)
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where σj is the jth singular value and J is the number of non-zero singular values
(J ≤ min(n1, n2)). A matrix is called a low rank matrix if J < min(n1, n2).
The matrix trace norm (2.3) is a convex envelope of the rank of a matrix and it is
commonly used in matrix low rank approximation (Recht et al., 2010).

As in matrices, the rank property is also available for tensors but it is more
complicated due to its multidimensional structure. In order to define the low rank-
ness of a tensor X ∈ Rn1×···×nK we can consider its multilinear rank (r1, . . . , rK)

and if rk < nk for any mode-k then the tensor is a low rank tensor. In recent years
much effort has been put to develop convex envelopes of the tensor ranks that can
be used in tensor regularizations. Some of the previously developed tensor norm
are the overlapped trace norm and the latent trace norm. We will discuss them in
the next two subsections.

2.5.1 Overlapped Tensor Trace Norm

One of the earliest definitions of a tensor norm is the tensor nuclear norm (Liu
et al., 2009) or the overlapped trace norm (Tomioka and Suzuki, 2013), which
can be represented for a tensor W ∈ Rn1×···×nK as

∥W∥overlap =
K∑
k=1

∥W(k)∥tr. (2.4)

The overlapped trace norm can be viewed as a direct extension of the matrix trace
norm since it unfolds a tensor on each of its modes and computes the sum of trace
norms of the unfolded matrices. Regularization with the overlapped trace norm
can also be seen as an overlapped group regularization method due to the fact that
the same tensor is unfolded over different modes and regularized with the trace
norm.

The following inequality is important for theoretical analysis in next chapters
and it captures how the overlapped norm of a tensor can be related to its Forbenous
norm,

∥W∥overlap ≤

(
K∑
k=1

√
rk

)
∥W∥F . (2.5)

One of the popular applications of the overlapped trace norm is tensor com-
pletion (Gandy et al.; Liu et al., 2009), where missing entries of a tensor are
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imputed. Another application is multilinear multitask learning (Romera-Paredes
et al., 2013), where multiple vector-based linear learning tasks with a common
feature space are arranged as a tensor feature structure and the multiple tasks are
solved together with constraints to minimize the multilinear ranks of the tensor
feature.

Theoretical analyses on the overlapped norm have been carried out for ten-
sor decomposition (Tomioka et al., 2011b). Based on their research when recov-
ering a tensor W from a noisy tensor Ŵ of mode dimensions n1 × · · · × nK

with multilinear rank (r1, . . . , rK), the recovery error (∥Ŵ − W∥F) scales as
O(( 1

K

∑K
k=1

√
rk)

2( 1
K

∑K
k=1 1/

√
nk)

2). We can see that the recovery error of
overlapped trace norm regularization is bounded by the average mode-k ranks
(Tomioka et al., 2011b) which can be large if some modes are close to full rank
even if there are low-rank modes. Thus, these studies imply that the overlapped
trace norm performs well when the multilinear ranks have small variations, and it
may result in a poor performance when the multilinear ranks have high variations.

To overcome the weakness of the overlapped trace norm, recent research in
tensor norms has lead to new norms such as the latent trace norm (Tomioka and
Suzuki, 2013).

2.5.2 Latent Trace Norm

Recently the latent trace norm (Tomioka and Suzuki, 2013) has been proposed
which is defined as

∥W∥latent = inf
W(1)+W(2)+···+W(K)=W

K∑
k=1

∥W (k)
(k) ∥tr.

The latent trace norm takes a mixture of K latent tensors which is equal to the
number of modes, and regularizes each of them separately. In contrast to the
overlapped trace norm, the latent tensor trace norm regularizes different latent
tensors for each unfolded mode and this gives the tendency that the latent tensor
trace norm picks the latent tensor with the lowest rank.

Following inequality is also useful in theoretical analysis and it shows how the
latent trace norm can be bounded with the Frobenius norm,

∥W∥latent ≤ min
k

√
rk∥W∥F . (2.6)
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In general, the latent trace norm results in a mixture of latent tensors and the
content of each latent tensor would depend on the rank of its unfolding. In an
extreme case, for a tensor with all its modes full except one mode, regularization
with the latent tensor trace norm would result in making the latent tensor with the
lowest mode become prominent while others become zero. When recovering a
tensor W from a noisy tensor Ŵ of mode dimensions n1 × · · · × nK with mul-
tilinear rank (r1, . . . , rK) with the latent trace norm regularization, the recovery
error (∥Ŵ − W∥F) (Tomioka and Suzuki, 2013) scales as O(mink rk

mink nk
). This also

shows that latent trace norm can select the mode with lowest multilinear rank.

2.6 New Norm: Scaled Latent Trace Norm

As we discussed in the introduction a major limitation of the overlapped trace
norm and the latent trace norm is that both of these norms do not consider the
relative low rankness with respect to mode dimensions. We define a new norm
called the scaled latent trace norm to overcome these limitations as published in
Wimalawarne et al. (2014). Our proposal is to extend the latent trace norm by
scaling each mode wise trace norm of matrix unfolding with inverse of its mode
dimension as follows

∥W∥scaled = inf
W(1)+W(2)+···+W(K)=W

K∑
k=1

1
√
nk

∥W (k)
(k) ∥tr.

Compared to the latent trace norm, the scaled latent trace norm takes the rank
relative to the mode dimension. A major drawback of the latent trace norm is its
inability to identify the rank of a mode relative to its dimension. If a tensor has
a mode where its dimension is smaller than other modes yet its relative rank with
respect to its mode dimension is high compared to other modes, the latent trace
norm could incorrectly pick the smallest mode.

For a given tensor W ∈ Rn1×···×nK with multilinear rank (r1, . . . , rK), the
relative rank with respect to its dimensions can be defined as (r1/n1, . . . , rK/nK).
Due to the scaling of the trace norm of each unfolding with the inverse of its mode
dimension, the scaled latent trace norm is able to find the relative rank on each
mode. This fact will be demonstrated in excess risk bounds that we derive in the
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next two chapters. The following theorem gives an useful inequality between the
scaled latent trace norm and the Frobenius norm of a tensor and it shows that the
scaled latent trace norm is bounded with the minimum of the relative rank with
respect to its Frobenius norm.

Theorem 2.1. For a tensor W ∈ Rn1×···×nK following inequality holds

∥W∥scaled ≤

(
min
k

√
rk
nk

)
∥W∥F , (2.7)

where (r1, . . . , rK) is its multilinear rank.

Proof. We again use the singleton decomposition argument used in Tomioka and
Suzuki (2013), where we assume that the scaled latent trace norm find the correct
low rank mode k such that W = W (k) and W (i) = 0 for all i ̸= k.

∥W∥scaled = inf
W(1)+W(2)+···+W(K)=W

K∑
k=1

1
√
nk

∥W (k)
(k) ∥tr

= min
k

1
√
nk

∥W(k)∥tr (Singleton decomposition)

= min
k

1
√
nk

J∑
i=1

σi (σi − non zero singular values J ≤ min (nk, n\k))

≤ min
k

1
√
nk

√√√√ J∑
i=1

12

√√√√ J∑
i=1

σ2
i (Cauchy − Schwarz inequality)

=

(
min
k

√
rk
nk

)
∥W∥F .

Next theorem put forward the dual of the scaled latent trace norm.

Theorem 2.2. The dual of the scaled latent trace norm of a tensor W ∈ Rn1×···×nK

is

∥W∥scaled∗ = max
k

√
nk∥W(k)∥op. (2.8)
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Proof. Let

∥Y∥scaled = inf
Y(1)+Y(2)+···+Y(K)=Y

K∑
k=1

1
√
nk

∥Y (k)
(k) ∥tr.

In order to derive the duality we use the singleton decomposition argument
used in Tomioka and Suzuki (2013), where we assume that the scaled latent trace
norm find the correct low rank mode k such that W = W(k) and W(i) = 0 for all
i ̸= k.

Let the dual of ∥W∥scaled be ∥W∥scaled∗ and then,

∥W∥scaled∗ = sup
W

⟨W ,Y⟩ s.t. ∥Y∥scaled ≤ 1

= sup
W

K∑
k=1

⟨
W(k), Y

(k)
(k)

⟩
s.t. inf

Y(1)+···+Y(K)=Y

K∑
k=1

1
√
nk

∥Y (k)
(k) ∥tr ≤ 1

= sup
W(k)

⟨
W(k), Y(k)

⟩
s.t.

1
√
nk

∥Y(k)∥tr ≤ 1 (Singleton decomposition)

= sup
W(k)

⟨
√
nkW(k),

Y(k)√
nk

⟩
s.t.

∥∥∥∥ Y(k)√
nk

∥∥∥∥
tr

≤ 1 (Rescaling)

= max
k

√
nk∥W(k)∥op.

2.7 Conclusion

In this chapter we reviewed basic concepts in tensors and existing tensor norms
such as the overlapped trace norm and latent trace norm. We described how each
of those norms is defined and explained their usage in regularization in machine
learning problems and also their limitations. To overcome the limitations with
the overlapped norm and the latent trace norm we proposed our new norm the
scaled latent trace norm and described its properties such as duality and an impor-
tant inequality with respect to the Frobenius norm. In the next two chapters we
apply these norms to regression and classification of tensor data and multilinear
multitask learning.
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Chapter 3

Tensor based Multitask Learning

In this chapter we discuss multilinear multitask learning. We extend multilinear
multitask learning with tensor regularizations with the latent trace norm and the
scaled latent trace norm and derive excess risk bounds for all tensor norm regu-
larizations. With toy experiments and real world data experiments we show that
the scaled latent trace norm performs well in many situations especially when the
multilinear rank and mode dimensions of coefficient tensors have high variations.

3.1 Introduction

Multilinear multitask learning (Romera-Paredes et al., 2013) is a recently devel-
oped multitask learning method that has started gaining attention by researchers.
The advantage of multilinear multitask learning is that it arranges tasks in a tensor
structure allowing to model relationships along tasks better than its counterpart
matrix based multitask learning. As we discussed in Chapter 1, most of the mul-
tilinear multitask learning models may have a ”flat” structure due to large feature
spaces and smaller number of tasks which make it important to consider the rel-
ative rank with respect to the mode dimensions when applying low rank tensor
regularizations. The originally proposed multilinear multitask learning model by
Romera-Paredes et al. (2013) was only based on the overlapped norm regulariza-
tion which may not be appropriate for ”flat” structured tensor models. The lack of
theoretical analysis of multilinear multitask learning with different tensor norms
is another limitation in understanding how the low rankness of tensors are related

27
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to the information sharing and performance improvement among tasks.

In this chapter, we propose to extend multilinear multitask learning with the
latent trace norm and the scaled latent trace norm. We study the excess risk of the
three norms through their Rademacher complexities in various settings including
matrix completion, matrix multitask learning, and multilinear multitask learning.
Our analysis allows us to also study the tensor completion setting, which was
only empirically studied in Tomioka et al. (2011a,b). Our analysis consistently
shows the advantage of the scaled latent trace norm in various settings in which
the dimensions or ranks are heterogeneous. Experiments on both synthetic and
real data sets are also consistent with our theoretical findings.

This chapter is organised as follows. First in Section 4.2 we propose our exten-
sions to the multilinear multitask learning. In Section 4.3 we discuss optimisation
methods for multilinear multitask learning with the overlapped trace norm and the
scaled latent trace norm. Next in Section 4.4 we derive and discuss excess risk
bounds for multilinear multitask learning and in Section 4.5 we discuss experi-
mental results. Finally in Section 4.6 we have our conclusions.

3.2 Multilinear Multitask Leanring

In multilinear multitask learning, M -dimensional task space is considered, i.e.,
the parameters of R = T2 × · · · × TM+1 tasks form a (M + 1)-mode tensor
W ∈ RT1×T2×···×TM+1 , and the parameter vector of task r = (t2, . . . , tM+1) is
given by wr = W:,t2,...,tM+1

. For each task r we may have training data (Xr ∈
Rmr×T1 , yr ∈ Rmr) where mr is the number of training samples and some tasks
may not have any training data.

The first proposal of the multilinear multitask learning (Romera-Paredes et al.,
2013) has been developed using the overlapped trace norm regularization to re-
gression tasks as follows:

min
W

R∑
r=1

∥Xrwr − yr∥2 + λ

M+1∑
k=1

∥W(k)∥tr. (3.1)

In this chapter we propose to extend (3.1) by applying the latent trace norm
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and the scaled latent trace norm as follows:

min
W(1)+...+W(M+1)=W

R∑
r=1

∥∥∥∥Xr

(M+1∑
k=1

(
w(k)

r

))
− yr

∥∥∥∥2 + M+1∑
k=1

λk∥W (k)
(k) ∥tr, (3.2)

where for the latent trace norm, λk = λ and for the scaled latent trace norm,
λk =

λ√
Tk

for k = 1, . . . ,M + 1 for any given regularization parameter λ.
In the next section we discuss optimisation strategies for solving above two

multilinear multitask learning problems.

3.3 Optimisation

In this section we discuss optimisation of (3.1) and (3.2).

3.3.1 Optimisation with Latent Trace Norms

We first discuss optimisation procedure for our proposed approach (3.2). Similarly
to the optimisation methods that we used in the previous chapter we solve the
dual formulation of (3.2) using the alternating direction method of multipliers
(ADMM).

First we express the (3.2) with the introduction of auxiliary variables Z(k), k =

1, . . . ,M + 1 as follows:

min
W(1)+···+W(M+1)=W

R∑
r=1

∥∥∥∥Xr

(M+1∑
k=1

(
w(k)

r

))
− yr

∥∥∥∥2 + M+1∑
k=1

λk∥Z(k)
(k)∥tr,

s.t. W (k) = Z(k), k = 1, . . . ,M + 1. (3.3)

The dual problem for the above problem (3.3) can be written as follows:

min
α

R∑
r=1

(
λ

2
∥αr∥2 − α⊤

r yr

)
+

M+1∑
k=1

δγk(Z
(k)
(k)),

X⊤
(1)(α) = [X⊤

1 α1, . . . , X
⊤
RαR]

Z(k) = X⊤(α), k = 1, . . . ,M + 1,
(3.4)

where α = [α1, . . . , αR], the δγk(V ) function is the indicator function such that
δγk(V ) = 0 if ∥V ∥op ≤ γk and δγk(V ) = +∞ otherwise (∥V ∥op is the maximum
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singular value of V ). To obtain the solution for the latent trace norm, we have to
make γk = 1 and to obtain the solution for the scaled latent trace norm we have
to set γk =

√
Tk for k = 1, . . . ,M + 1.

By introducing W (k) ∈ RT1×T2×···×TM+1 , k = 1, . . . ,M + 1 as dual variables
the augmented Lagrangian for dual problem (3.4) can be written as follows:

L =
R∑

r=1

(
λ

2
∥αr∥2 − α⊤

r yr

)
+

(M+1∑
k=1

δγk(Z
(k)
(k))

+
M+1∑
k=1

⟨W (k)
(k) , Z

(k)
(k) − X⊤

(k)(α)⟩+ β

2

M+1∑
k=1

R∑
r=1

∥z(k)r −X⊤
r αr∥2

)
,

where z
(k)
r is the fiber corresponding to the task r in Z(k). Note that the dual

variables in the above dual problem lead to the solutions for W (k) k = 1, . . . ,M+

1 in primal problem (3.2).
The solution for αr for iteration t+ 1 results in the following,

αt+1
r = (βXrX

⊤
k + λI)−1

(
yr +

M+1∑
k=1

Xrw
(k)t
r +

M+1∑
k=1

βXrz
(k)t
r

)
,

where w
(k)
r is the task r of W (k). For tasks with no training instances, αr = 0.

Solutions for each Z(k) at iteration t+ 1 can be obtained by solving

δγk(Z
(k)t+1
(k) )− β

2

∥∥∥∥Z(k)t
(k) +

(
X⊤

(k)(α
t)−

W
(k)t
(k)

β

)∥∥∥∥2,
which results in

Z
(k)t+1
(k) = projγk

(
X⊤

(k)(α
t)−

W
(k)t
(k)

β

)
,

where projµ(W) = Umin(S, µ)VT for a given matrix W = USV ⊤.
Finally the update for each W(k) at iteration t+ 1 is as follows:

W
(k)t+1
(k) = W

(k)t
(k) + β(Z

(k)t+1
(k) − X⊤

(k)(α
t)).

Stopping Condition

The relative duality gap (Tomioka et al., 2011a) can be used as the stopping
condition for above dual problem. Let p(W t) be the primal objective (3.2) and
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D(−αt) =
R∑

r=1

(
λ
2
∥αr∥2 − α⊤

r yr

)
be the computable dual objective (3.4) at the

iteration step t. The computation of the D(−αt) dual objective requires αt to sat-
isfy the constraints ∥Z(k)

(k)∥op ≤ γk for each k = 1, ...,M +1 as given in (3.4). Let

σk,1 be the maximum eigenvalue of Z(k)
(k) and let a shrinkage factor c be defined as

c = min

(
1, γ1

σ1,1
, γ2
σ1,2

, . . . , γM+1

σ1,M+1

)
. Then the scaling α∗ = cα makes sure that

each ∥Z(k)
(k)∥op ≤ γk for each k = 1, . . . ,M + 1. The relative duality gap stopping

condition at step t is given as follows,

p(W t)−D(−α∗t)

p(W t)
≤ ϵ,

where ϵ is a tolerance.

3.3.2 Optimisation with the Overlapped Trace Norm

We now look at the optimisation of the primal problem of multilinear multi-
task learning with the overlapped trace norm regularization (3.1). The primal
problem for the multilinear multitask learning with the overlapped trace norm
regularization (3.1) can be reexpressed with introduction of auxiliary variables
Z(k), k = 1, . . . ,M + 1 as follows,

min
W

R∑
r=1

1

2
∥Xrwr − yr∥2 + λ

M+1∑
k=1

∥Z(k)
(k)∥tr

s.t. W = Z(k), k = 1, . . . ,M + 1. (3.5)

Formulating the above problem as an ADMM problem with introduction of
Legrangian multipliers C(k) ∈ RT1×T2···×TM+1 and parameter β > 0, the aug-
mented Legrangian function is defined as follows:

L =
R∑

r=1

1

2λ
∥Xrwr−yr∥2+

M+1∑
k=1

(
∥Z(k)∥tr+⟨C(k)

(k) ,W(k)−Z
(k)
(k)⟩+

β

2
∥W(k)−Z

(k)
(k)∥

2
F

)
.

Differentiating with respect to wr and solving for each update at iteration t+1,
we obtain the following:

wt+1
r =

(
XT

r Xr

λ
+ (M + 1)βI

)−1(
X⊤

r yr
λ

−
M+1∑
k=1

c(k)tr + β

M+1∑
k=1

z(k)tr

)
,
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where c
(k)
r is the fiber with respect to the task r in C(k) and z

(k)
r is the fiber with

respect to the task r in Z(k).
For tasks without any training instances, the wr update at iteration t + 1 is

given as follows:

wt+1
r =

1

(M + 1)β

(
−

M+1∑
k=1

c(k)tr + β
M+1∑
k=1

z(k)tr

)
.

The update for each Z(k) at iteration t+ 1 can be obtained by solving

Z
(k)t+1
(k) = min

Z(k)
∥Z(k)t

(k) ∥tr +
β

2

∥∥∥∥∥Z(k)t
(k) −

(
C

(k)t+1
(k)

β
+W t+1

(k)

)∥∥∥∥∥
2

F

,

which results in

Z
(k)t+1
(k) = S1/β

(
W t+1

(k) +
C

(k)t+1
(k)

β

)
,

where Sα(X) = Udiag((µ− α)+)V
⊤ for a matrix X with singular value decom-

position of X = Udiag(µ)V⊤.
The updates for each C(k) at iteration t+ 1 are as follows:

C
(k)t+1
(k) = C

(k)t
(k) + β(W t+1

(k) − Z
(k)t+1
(k) ).

Optimality Condition

We propose to use the subgradient (Boyd and Vandenberghe, 2004) as the stopping
criterion for the primal solution. Let us write (3.5) by introducing Lagrangian
multipliers C(k) without the proximity terms as follows:

L = min
W

R∑
r=1

1

2λ
∥Xrwr − yr∥2 +

M+1∑
k=1

(
∥Z(k)

(k)∥tr + ⟨C(k)
(k) ,W(k) − Z

(k)
(k)⟩
)
. (3.6)

By differentiating the above L with respect to each Z(k) we get,

∂L = ∂∥Z(k)
(k)∥tr − C

(k)
(k) ∋ 0.

Taking the differentiation of the objective function (3.5) with respect to W(k) and
substituting the subgradient of C(k)

(k) ∈ ∂∥Z(k)
(k)∥tr in place of ∂∥W(k)∥tr, we can
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have the following stopping condition:∥∥∥∥ R∑
r=1

(
XT

r (Xrwr − yr) +
M+1∑
k=1

C(k)r

)∥∥∥∥2 ≤ ϵ1,

where ϵ1 is some tolerance value. In addition we also have to check

∥W(k) − Z
(k)
(k)∥F ≤ ϵ2 k = 1, ...,M + 1,

where ϵ2 is a tolerance value.

3.4 Theory

In order to develop theoretical analysis we consider only 3-mode tensors but our
theoretical results can be extended to any tensor. Let us consider T = PQ super-
vised learning tasks. Training samples (xipq, yipq)

mpq

i=1 ((p, q) ∈ S) are provided
for a relatively small fraction of the task index pairs S ⊂ [P ] × [Q]. Each task is
parametrized by a weight vector wpq ∈ Rd, which can be collected into a 3-way
tensor W = (wpq) ∈ Rd×P×Q whose (p, q) fiber is wpq. We define the learning
problem as follows:

Ŵ = argmin
W∈Rd×P×Q

L̂(W), subject to |||W|||⋆ ≤ B0, (3.7)

where the norm |||·|||⋆ is either the overlapped trace norm, latent trace norm, or the
scaled latent trace norm, and the empirical risk L̂ is defined as follows:

L̂(W) =
1

|S|
∑

(p,q)∈S

1

mpq

mpq∑
i=1

ℓ (⟨xipq,wpq⟩ − yipq) .

The true risk we are interested in minimizing is defined as follows:

L(W) =
1

PQ

∑
p,q

E(x,y)∼Ppqℓ (⟨x,wpq⟩ − y) ,

where Ppq is the distribution from which the samples (xipq, yipq)
mpq

i=1 are drawn
from.

The next lemma relates the excess risk L(Ŵ)−L(W∗) with the expected dual
norm E |||D|||⋆∗ through Rademacher complexity.
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Lemma 3.1. We assume that the output yipq is bounded as |yipq| ≤ b, and the
number of samples mpq ≥ m > 0 for the observed tasks. We also assume that the
loss function ℓ is Lipschitz continuous with the constant Λ, bounded in [0, c] and
ℓ(0) = 0. Let W∗ be any tensor such that |||W∗|||⋆ ≤ B0. Then with probability at
least 1− δ, any minimizer of (3.7) satisfies the following bound:

L(Ŵ)− L(W∗) ≤ 2Λ

(
2B0

|S|
E |||D|||⋆∗ +

b
√
ρ√

|S|m

)
+ c′

√
log(2/δ)

2|S|m
,

where c′ = c+1, |||·|||⋆∗ is the dual norm of |||·|||⋆, ρ := 1
|S|
∑

(p,q)∈S
mpq

m
. The tensor

D ∈ Rd×P×Q is defined as the sum D =
∑

(p,q)∈S
∑mpq

i=1 Z ipq, where Z ipq ∈
Rd×P×Q is defined as

(p′, q′)th fiber ofZ ipq =

 1
mpq

σipqxipq, if p = p′ and q = q′,

0, otherwise.

Here σipq ∈ {−1,+1} are Rademacher random variables and the expectation in
the above inequality is with respect to σipq, the random draw of tasks S, and the
training samples (xipq, yipq)

mpq

i=1 .

Proof. The proof follows a standard argument, which can be found in Bartlett and
Mendelson (Bartlett and Mendelson, 2002, Theorem 8).

L(Ŵ)− L(W∗) ≤
(
L(Ŵ)− L̂(Ŵ)

)
+
(
L̂(Ŵ)− L̂(W∗)

)
+
(
L̂(W∗)− L(W∗)

)
≤ sup

|||W|||⋆≤B0

(
L(W)− L̂(W)

)
+

√
log(2/δ)

2ρ|S|m
(w/ probability

at least 1− δ/2)

≤ R(ℓ ◦ LB0) +

(
c+

1
√
ρ

)√
log(2/δ)

2|S|m
(w/ probability

at least 1− δ),

where

R(ℓ ◦ LB0) := E sup
|||W|||⋆≤B0

2

|S|
∑

(p,q)∈S

1

mpq

mpq∑
i=1

σipqℓ (⟨xipq,wpq⟩ − yipq) .
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In the third line, we used McDiarmid’s inequality and introduced Rademacher
random variables σipq ∈ {−1,+1}; the expectation is over both the Rademacher
random variables and the training samples (xipq, yipq). Using the fact that c +
1/
√
ρ ≤ c + 1 =: c′, the last term can be upper bounded by the last term in the

statement.

We further analyze the first term. Using the Lipschitz continuity of ℓ and the
bound on |yipq|, we have

R(ℓ ◦ LB0) ≤ 2Λ

R(LB0) +
b
√∑

(p,q)∈S mp,q

|S|m

 ,

where

R(LB) =
2

|S|
E sup

|||W|||⋆≤B0

∑
(p,q)∈S

1

mpq

mpq∑
i=1

σipq ⟨xipq,wpq⟩ .

Finally, using the definition of D and Hölder’s inequality, we have

R(LB0) ≤
2B0

|S|
E |||D|||⋆∗ ,

which concludes the proof.

The next theorem computes the expected dual norm E |||D|||⋆∗ for the three
norms for tensors.

Theorem 3.2. We assume that Cpq := E[xipqxipq
⊤] ⪯ κ

d
Id and there is a constant

R > 0 such that ∥xipq∥ ≤ R almost surely. Let us define

D1 := d+ PQ, D2 := P + dQ, D3 := Q+ dP.

In order to simplify the presentation, we assume that maxk Dk ≥ 3 and dPQ ≥
max(d2, P 2, Q2). For the overlapped trace norm, the latent trace norm, and the
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scaled latent trace norm, the expectation E |||D|||⋆∗ can be bounded as follows:

1

|S|
E |||D|||overlap∗ ≤ Cmin

k

(√
κ

m|S|dPQ
Dk logDk +

R

m|S|
logDk

)
, (3.8)

1

|S|
E |||D|||latent∗ ≤ C ′

(√
κ

m|S|dPQ
max

k
(Dk logDk) +

R

m|S|
log(max

k
Dk)

)
,

(3.9)

1

|S|
E |||D|||scaled∗ ≤ C ′′

(√
κ

m|S|
log(max

k
Dk) +

R
√
maxk nk

m|S|
log(max

k
Dk)

)
,

(3.10)

where C,C ′, C ′′ are constants, n1 = d, n2 = P , and n3 = Q. Furthermore,
if m|S| ≥ R2(maxk nk) log(maxk Dk)/κ, the O(1/m|S|) terms in the above in-
equalities can be dropped.

Proof of inequality (3.8): From Tomioka et al. (Tomioka et al., 2011b, Lemma
1), we have

|||D|||overlap∗ = inf
D(1)+D(2)+D(3)=D

max
k

∥D(k)
(k)∥op,

where the infimum is over three tensors D(1), D(2), and D(3) that sum to the origi-
nal tensor D, and ∥ · ∥op is the operator norm (maximal singular value). Since we
can take any D(k) to equal D, the norm can be upper bounded as follows:

|||D|||overlap∗ ≤ min
k

∥D(k)∥op.

Since the expectation of minimum over k can be upper bounded by the minimum
of expectations, we have

E |||D|||overlap∗ ≤ Emin
k

∥D(k)∥op ≤ min
k

E∥D(k)∥op.

Now we upper bound each expectation using Theorem 6.1 in Tropp (Tropp, 2012,
see also Remarks 6.3 and 6.5), which states that

Pr
{
∥D(k)∥op ≥ t

}
≤

Dk exp(−3t2/8σ2
k), for t ≤ σ2

k/Rk,

Dk exp(−3t/8Rk), for t ≥ σ2
k/Rk,

(3.11)
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and

E∥D(k)∥op ≤ C(σk

√
logDk +Rk logDk), (3.12)

where C is an absolute constant, and

σ2
k := max

∥∥∥∥∥ ∑
(p,q)∈S

mpq∑
i=1

E
[
Zipq

(k)

(
Zipq

(k)

)
⊤
]∥∥∥∥∥

op

,

∥∥∥∥∥ ∑
(p,q)∈S

mpq∑
i=1

E
[(

Zipq
(k)

)
⊤Zipq

(k)

]∥∥∥∥∥
op

 ,

Rk ≥
∥∥∥Zipq

(k)

∥∥∥
op

(almost surely).

Due to our assumption ∥xipq∥ ≤ R, we can take Rk = R/m. Thus the remaining
task is to compute σ2

k for k = 1, 2, 3.
First for k = 1, the unfolding Zipq

(1) is a d×PQ matrix that contains σipqxipq/mpq

in the column specified by (p, q). Therefore, using mpq ≥ m and ∥Cpq∥ ≤ κ/d,
we obtain

mpq∑
i=1

E
[
Zipq

(1)

(
Zipq

(1)

)
⊤
]
=

1

mpq

Cpq ⪯
κ

md
Id,

from which we have∥∥∥∥∥ ∑
(p,q)∈S

mpq∑
i=1

E
[
Zipq

(1)

(
Zipq

(1)

)
⊤
]∥∥∥∥∥

op

≤ κ|S|
md

. (3.13)

Similarly, since the choice of (p, q) is uniform over [P ]× [Q], we have

mpq∑
i=1

E
[(

Zipq
(1)

)
⊤Zipq

(1)

]
=

1

PQ
diag

(
TrCpq

mpq

)
⪯ κ

mPQ
IPQ,

from which we have∥∥∥∥∥ ∑
(p,q)∈S

mpq∑
i=1

E
[(

Zipq
(1)

)
⊤Zipq

(1)

]∥∥∥∥∥
op

≤ κ|S|
mPQ

. (3.14)

Substituting inequalities (3.13) and (3.14) into (3.12), we have

E∥D(1)∥op ≤ C

(√
κ|S|

mdPQ
D1 logD1 +

R

m
logD1

)
.
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Following a similar line of argument, we have

E∥D(2)∥op ≤ C

(√
κ|S|

mdPQ
D2 logD2 +

R

m
logD2,

)
,

E∥D(3)∥op ≤ C

(√
κ|S|

mdPQ
D3 logD3 +

R

m
logD3,

)
.

Taking the minimum over k and dividing by |S|, we obtain inequality (3.8). □
Note that the assumption that the norm of xipq is bounded is natural because

the target yipq is also bounded. The parameter κ in the assumption Cpq ⪯ κ/dId

controls the amount of correlation in the data. Since Tr(C) = E∥xipq∥2 ≤ R2,
we have κ = O(1) when the features are uncorrelated; on the other hand, we have
κ = O(d), if they lie in a one dimensional subspace. The number of samples
m|S| = Õ(maxk nk) is enough to drop the O(1/m|S|) term even if κ = O(1).

Now we state the consequences of Theorem 3.2 for the three norms for tensors.
The common assumptions are the same as in Lemma 3.1 and Theorem 3.2. We
also assume m|S| ≥ R2(maxk nk) log(maxk Dk)/κ to drop the O(1/m|S|) terms.
Let W∗ be any d × P × Q tensor with multilinear-rank (r1, r2, r3) and bounded
element-wise as |||W∗|||ℓ∞ ≤ B.

Corollary 3.3 (Overlapped trace norm). With probability at least 1− δ, any mini-
mizer of (3.7) with |||W|||overlap ≤ B

√
∥r∥1/2dPQ satisfies the following inequal-

ity:

L(Ŵ)− L(W∗) ≤ c1ΛB

√
κ

m|S|
∥r∥1/2min

k
(Dk logDk) + c2Λb

√
ρ

m|S|

+c3

√
log(2/δ)

m|S|
,

where ∥r∥1/2 = (
∑3

k=1

√
rk/3)

2 and c1, c2, c3 are constants.

Note that Tomioka et al. (Tomioka et al., 2011b) obtained a bound that de-
pends on (

∑3
k=1

√
Dk/3)

2 instead of min(Dk logDk). Although the minimum
may look better than the average, our bound has the worse constant K = 3 hidden
in c1. The logDk factor allows us to apply the above result to the setting of tensor
completion as we show below.
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Corollary 3.4 (Latent trace norm). With probability at least 1− δ, any minimizer
of (3.7) with |||W|||latent ≤ B

√
mink rkdPQ satisfies the following inequality:

L(Ŵ)− L(W∗) ≤ c′1ΛB

√
κ

m|S|
min
k

rk max
k

(Dk logDk) + c2Λb

√
ρ

m|S|

+c3

√
log(2/δ)

m|S|
,

where c′1, c2, c3 are constants.

Proof of inequality (3.9): From Tomioka et al. (Tomioka and Suzuki, 2013,
Lemma 1), we know that

|||D|||latent∗ = max
k

∥D(k)∥op.

Combining inequality (3.11) with a union bound, we have

Pr {|||D|||latent∗ ≥ t} ≤ 3(max
k

Dk)max

(
exp

(
− 3t2

8maxk σ2
k

)
, exp

(
− 3t

8maxk Rk

))
,

from which we have

E |||D|||latent∗ ≤ C

(
max

k
σk

√
log(max

k
Dk) + log 3 + max

k
Rk(log(max

k
Dk) + log 3)

)
(3.15)

≤ C ′
(
max

k
σk

√
log(max

k
Dk) +

R

m
log(max

k
Dk)

)
.

Here we used Rk = R/m and the simplifying assumption that maxk Dk ≥ 3 in
the second inequality. Finally, using σk ≤

√
κ|S|Dk/(mdPQ) as in the proof of

inequality (3.8), we obtain inequality (3.9).

Corollary 3.5 (Scaled latent trace norm). With probability at least 1 − δ, any
minimizer of (3.7) with |||W|||scaled ≤ B

√
mink(rk/nk)dPQ satisfies the following

inequality:

L(Ŵ)− L(W∗) ≤ c′′1ΛB

√
κ

m|S|
min
k

(
rk
nk

)
dPQ log(max

k
Dk) + c2Λb

√
ρ

m|S|

+c3

√
log(2/δ)

m|S|
,

where n1 = d, n2 = P , n3 = Q, and c′′1, c2, c3 are constants.
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Proof of inequality (3.10): Following the proof of (Tomioka and Suzuki, 2013,
Lemma 1), we have

|||D|||scaled∗ = max
k

√
nk∥D(k)∥op,

where n1 = d, n2 = P , and n3 = Q. Thus, replacing σk and Rk with
√
nkσk and

√
nkR/m in inequality (3.15), respectively, we have

E |||D|||scaled∗ ≤ C ′
(
max

k
(
√
nkσk)

√
log(max

k
Dk) +

R
√
maxk nk

m
log(max

k
Dk)

)
.

Finally, since nkDk = n2
k + dPQ ≤ 2dPQ, we have

√
nkσk ≤

√
κ|S|nkDk

mdPQ
≤
√

2κ|S|
m

,

which gives inequality (3.10).
The last claim of the theorem is true, because m|S| ≥ R2(maxk nk)(logk Dk)/κ

implies

m|S| ≥ R2

κ

dPQ

n2
k + dPQ

nk logDk =
R2

κ

dPQ

Dk

logDk,

which gives √
κ

m|S|dPQ
Dk logDk ≥

R

m|S|
logDk.

We summarize the implications of the above corollaries for different settings
in Table 3.1 and Table 3.2. We almost recover the settings for matrix comple-
tion (Foygel and Srebro, 2011) and multitask learning (MTL) (Maurer and Pon-
til, 2013). Note that these simpler problems sometimes disguise themselves as
the more general tensor completion or multilinear multitask learning problems.
Therefore it is important that the new tensor based norms adapts to the simplicity
of the problems in these cases.

Matrix completion is when d = κ = m = r1 = 1, and we assume that
r2 = r3 = r < P,Q. The sample complexities are the number of samples |S| that
we need to make the leading term in Corollaries 3.3, 3.4, and 3.5 equal ϵ. We can
see that the overlapped trace norm and the scaled latent trace norm recover the



3.4 Theory 41

known result for matrix completion (Foygel and Srebro, 2011). The plain latent
trace norm requires O(PQ) samples because it recognizes the first mode as the
mode with the lowest rank 1. Although the rank r of the last two modes are low
relative to their dimensions, the latent trace norm fails to recognize this. Note
that ∥r∥1/2 ≤ r. This is not a contradiction, because in Cor. 3.3, we assume that
the overlapped trace norm is bounded, which may or may not be true for matrix
completion. In fact, in this case, the overlapped trace norm is an Elastic-net-type
regularizer (trace norm + Frobenius norm).

In multitask learning (MTL), we set P = T (the number of tasks) and Q = 1.
The first and the second modes have a low rank r. We also assume that all the
pairs (p, q) are observed (|S| = T ) as in (Maurer and Pontil, 2013). The sample
complexities are defined the same way as above with respect to the number of
samples m because |S| is fixed. Our bound for the overlapped trace norm is
almost as good as the one in (Maurer and Pontil, 2013) but has an multiplicative
log(d + T ) factor (as oppose to their additive log(mT ) term). Also note that the
results in (Maurer and Pontil, 2013) can be applied when d is much larger than
T . Turning back to our bounds, the scaled latent trace norm performs as well as
knowing the mode with the lowest rank (the first and the second modes; see also
(Tomioka and Suzuki, 2013)). However, similarly to the matrix completion case
above, the plain latent trace norm fails to recognize the low-rank-ness of the first
two modes, and requires O(d) samples, because the third mode has the lowest
rank.

In multilinear multitask learning (MLMTL) (Romera-Paredes et al., 2013),
any mode could possibly be low rank but it is a priori unknown. The sample
complexities are defined the same way as above with respect to m|S|. The ho-
mogeneous case is when d = P = Q. The heterogeneous case is when the first
mode or the third mode is low rank but P ≤ r < d. Similarly to the above two
settings, the overlapped trace norm has a mild dependence on the dimensions but
a higher dependence on the rank ∥r∥1/2 ≥ mink rk. The latent trace norm per-
forms as well as knowing the mode that has the lowest rank in the homogeneous
case. However, it fails to recognize the mode with the lowest rank relative to its
dimension. The scaled latent trace norm does this and although it has a higher
logarithmic dependence, it is competitive in both cases.
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Finally, our bounds also hold for tensor completion. Although Tomioka et
al. (Tomioka et al., 2011a,b) studied tensor completion algorithms, their analysis
assumed that the inputs xipq are drawn from a Gaussian distribution, which does
not hold for tensor completion. Note that in our setting xipq can be an indicator
vector that has one in the jth position uniformly over 1, . . . , d. In this case, κ = 1.
The sample complexities of different norms with respect to m|S| is shown in the
last row of Table 3.2. The sample complexity for the overlapped trace norm is the
same as the one in (Tomioka et al., 2011b) with a logarithmic factor. The sample
complexities for the latent and scaled latent trace norms are new. Again we can
see that while the latent trace norm recognize the mode with the lowest rank, the
scaled latent trace norm is able to recognize the mode with the lowest rank relative
to its dimension.

3.5 Experimental Results

We conducted several experiments to evaluate performances of tensor based mul-
titask learning setting we have discussed in Section 3.4. In Section 3.5.1, we
discuss simulation we conducted using synthetic data sets. In Sections 3.5.2 and
3.5.3, we discuss experiments on two real world data sets, namely the Restaurant
data set (Vargas-Govea et al., 2011) and School Effectiveness data set (Bakker
and Heskes, 2003; Argyriou et al., 2008). Both of our real world data sets have
heterogeneous dimensions (see Figure 3.2) and it is a priori unclear across which
mode has the most amount of information sharing.

3.5.1 Synthetic data sets

For simplicity we consider 3-mode tensor based multi-task learning problems for
simulations with synthetic data. The true d× P ×Q tensor W ∗ was generated by
first sampling a r1×r2×r3 core tensor and then multiplying random orthonormal
matrix to each of its modes. For each task (p, q) ∈ [P ] × [Q], we generated
training set of m a zero-mean normal distribution with variance 0.1. We used the
penalty formulation of (3.7) with the squared loss and selected the regularization
parameter λ using two-fold cross validation on the training set from the range 0.01
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to 10 with the interval 0.1.

In addition to the three norms for tensors we discussed in the previous sec-
tion, we evaluated the matrix-based multitask learning approaches that penalizes
the trace norm of the unfolding of W at specific modes. The conventional convex
multitask learning (Argyriou et al., 2006, 2008; Maurer and Pontil, 2013) corre-
sponds to one of these approaches that penalizes the trace norm of the first unfold-
ing ∥W(1)∥tr. The convex MLMTL in (Romera-Paredes et al., 2013) corresponds
to the overlapped trace norm.

In the first experiment, we chose d = P = Q = 10 and r1 = r2 = r3 = 3.
Therefore, both the dimensions and the multilinear rank are homogeneous. The
result is shown in Figure 3.1(a). The overlapped trace norm performed the best,
the matrix-based approaches performed next, and the latent trace norm and the
scaled latent trace norm were the worst. The scaling of the latent trace norm had
no effect because the dimensions were homogeneous. Since the sample complexi-
ties for all the methods were the same in this setting (see Table 3.2), the difference
in the performances could be explained by a constant factor K(= 3) that is not
shown in the sample complexities.

In the second experiment, we chose the dimensions to be homogeneous as
d = P = Q = 10, but (r1, r2, r3) = (3, 6, 8). The result is shown in Figure
3.1(b). In this setting, the (scaled) latent trace norm and the mode-1 regularization
performed the best. The lower the rank of the corresponding mode, the lower were
the error of the matrix-based MTL approaches. The overlapped trace norm was
somewhat in the middle of the three matrix-based approaches.

In the last experiment, we chose both the dimensions and the multilinear rank
to be inhomogeneous as (d, P,Q) = (10, 3, 10) and (r1, r2, r3) = (3, 3, 8). The
result is shown in Figure 3.1(c). Clearly the first mode had the lowest rank rela-
tive to its dimension. However, the latent trace norm recognizes the second mode
as the mode with the lowest rank and performed similarly to the mode-2 regular-
ization. The overlapped trace norm performed better but it was worse than the
mode-1 regularization. The scaled latent trace norm performed comparably to the
mode-1 regularization.
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(a) Synthetic experiment for the case when
both the dimensions and the ranks are ho-
mogeneous. The true tensor is 10× 10× 10

with multilinear rank (3, 3, 3).
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(b) Synthetic experiment for the case when
the dimensions are homogeneous but the
ranks are heterogeneous. The true tensor is
10× 10× 10 with multilinear rank (3, 6, 8).
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Figure 3.1: Results for the synthetic data sets.
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3.5.2 Restaurant data set

The Restaurant data set contains data for a recommendation system for restau-
rants where different customers have given ratings to different aspects of each
restaurant. Three different ratings are given as general rating, rating of food and
rating of service with ratings numerically varying from 0,1 and 2. Features that
are considered for learning are 45 features of restaurants such as its geograph-
ical location, cuisine type and price bands. Following the same approach as in
(Romera-Paredes et al., 2013) we modelled the problem as a MLMTL problem
with d = 45 features, P = 3 aspects, and Q = 138 customers.

The total number of instances for all the tasks were 3483 and we randomly
selected training set of sizes 400, 800, 1200, 1600, 2000, 2400, and 2800. When
the size was small many tasks contained no training example. We also selected
250 instances as the validation set and the rest was used as the test set. The regu-
larization parameter for each norm was selected by minimizing the mean squared
error on the validation set from the candidate values in the interval [50, 1000] for
the overlapped, [0.5, 40] for the latent, [6000, 20000] for the scaled latent norms,
respectively.

We also evaluated matrix-based MTL approaches on different modes and ridge
regression (Frobenius norm regularization; abbreviated as RR) as baselines. The
convex MLMTL in (Romera-Paredes et al., 2013) corresponds to the overlapped
trace norm.

The result is shown in Figure 3.2(a). We found the multilinear rank of the
solution obtained by the overlapped trace norm to be typically (1, 3, 3). This was
consistent with the fact that the performances of the mode-1 regularization and
the ridge regression were equal. In other words, the effective dimension of the
first mode (features) was one instead of 45. The latent trace norm recognized
the first mode as the mode with the lowest rank and it failed to take advantage
of the low-rank-ness of the second and the third modes. The scaled latent trace
norm was able to perform the best matching with the performances of mode-2
and mode-3 regularization. When the number of samples was above 2400, the
latent trace norm caught up with other methods, probably because the effective
dimension became higher in this regime.
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(a) Result for the 45×3×138 Restaurant data set.
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(b) Result for the 24× 139× 3 School data set.

Figure 3.2: Results for the real world data sets.

3.5.3 School data set

The data set comes from the inner London Education Authority (ILEA) consist-
ing of examination records from 15362 students at 139 schools in years 1985,
1986, and 1987. We followed (Bakker and Heskes, 2003) for the preprocess-
ing of categorical attributes and obtained 24 features. Previously Argyriou et al.
(Argyriou et al., 2008) modeled this data set as a 27 × 139 matrix-based MTL
problem in which the year was modeled as a trinomial attributes. Instead here we
model this data set as a 24 × 139 × 3 MLMTL problem in which the third mode
corresponds to the year. Following earlier papers, (Bakker and Heskes, 2003;
Argyriou et al., 2008), we used the percentage of explained variance, defined as
100 · (1− (test MSE)/(variance of y)) as the evaluation metric.

The results are shown in Figure 3.2(b). First, ridge regression performed the
worst because it was not able to take advantage of the low-rank-ness of any mode.
Second, the plain latent trace norm performed similarly to the mode-3 regulariza-
tion probably because the dimension 3 was lower than the rank of the other two
modes. Clearly the scaled latent trace norm performed the best matching with
the performance of the mode-2 regularization; probably the second mode had the
most redundancy. The performance of the overlapped trace norm was comparable
or slightly better than the mode-1 regularization. The percentage of the explained
variance of the latent trace norm exceeds 30 % around sample size 4000 (around
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30 samples per school), which is higher than the Hierarchical Bayes (Bakker and
Heskes, 2003) (around 29.5 %) and matrix-based MTL (Argyriou et al., 2008)
(around 26.7 %) that used around 80 samples per school.

3.6 Conclusion

In this chapter we extended multilinear multitask learning with the latent trace
norm and the scaled latent trace norm. We derived optimisation methods and ex-
cess risk bounds for multilinear multitask learning. Through experiments we show
that our theory agrees with our experimental results. Most importantly we show
that the scaled latent trace norm is best suited for multilinear multitask learning
due to their ”flat” structure of tensors. In addition to multilinear multitask learning
we have derived bounds for matrix multitask learning and tensor completion.
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Chapter 4

Conclusions and Future Work

In this thesis we studied tensor norms and applications of tensor norm regular-
ization in machine learning problems. Our most important contribution is the
proposal of the scaled latent trace norm which is capable of obtaining better per-
formances when regularizing tensors with high variations in both multilinear ranks
and mode dimensions. In this thesis we extensively studied tensor based regres-
sion and classification covering optimisation methods, theoretically analysis and
experiments. Similarly we have explored tensor based multilinear multitask learn-
ing extending previous research (Romera-Paredes et al., 2013) by applying latent
trace norm and scaled latent trace norm regularizations with discussion on theo-
retical analysis and experiments. Learning with tensors is still in its early stages
and we believe that research in this thesis opens many interesting future research
directions.

An important future direction is to find domains where tensor based learning
can be applied. In Chapter 3, we saw that image sequences classification and BCI
data classification are well suited for tensor based supervised learning. One of
the interesting domains is spatio-temporal data (Benetos and Kotropoulos, 2010)
which naturally are tensor formatted data. Similarly to BCI data, data that are in
frequency domains such as video and audio data (Bahadori et al., 2014) could also
be good applications. When considering multilinear multitask learning popular
recommendation systems (Karatzoglou et al., 2010) and web advertising (Ahmed
et al., 2012) can be considered since relationships among multiple users, multiple
products and multiple actions (click, buy, recommend) would require higher order

51
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tensor structures.

One major observation that we can derive from our work is that no single ten-
sor norm is superior in performance and our theoretical analysis and experimental
results show that different tensor norms give better performances depending on
the multilinear rank and the structure of the tensor that is regularized. We also
observed that unfolded matrices of tensors can lead to better performances com-
parable to tensor norms provided that the unfolded matrix has the lowest rank.
Though we experimented unfolded matrix regularization with cross validation in
Chapter 3 it was not reliable with classification since cross validation could fail
when using a binary loss function. Recently it has been established that better
sample complexities in tensor completion of higher order tensors with number of
modes above three can be achieved by square reshaping of tenors to create a bal-
anced matrix (Mu et al., 2013). These factors can be considered when designing
improved tensor norms in the future.

There are several further theoretical analysis possible by extending our re-
search. One of the open theoretical questions that have not been addressed in this
thesis is why the low rank regularization can be better than the vector based norms.
As we have seen in the simulation results with tensor regression it is evident that
when the number of training samples is small the low rank tensor regularizations
lead to higher accuracies compared to vector based regularizations. However, this
is a difficult problem to analyse theoretically using the excess risk bounds used in
this thesis. One approach to solve this could be to formulate oracle inequalities
(Gaiffas and Lecue, 2011) for tensor and vector norm regularizations. We may
prove better bounds on regularizations using combinations of tensor low rank reg-
ularizations and vector based regularizations (l2, l1) and show that usage of both
these norms together could lead to better accuracies. Such analysis would im-
ply that under different conditions such as low rankness and sparseness of data
suitable norms must be applied to obtain the best result.

Another major future improvement can be on optimization specially exten-
sion of stochastic optimization to tensor regularized learning problems. Many of
the existing stochastic optimisation methods such as the regularized dual aver-
aging (RDA) (Xiao, 2010) and the stochastic ADMM (Ouyang et al., 2013) can
be directly applied to tensor based regression and classification but they may be
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inadequate for speeding up learning since they are only stochastic in terms of
selecting data samples. A major drawback in speed could occur in the update
steps involving singular values since our implementation requires full singular
value decomposition for each mode unfolding. For tensors with large mode di-
mensions this could be highly computationally expensive and better alternative
approaches could be useful when applying to real world implementations. One
strategy could be to apply sketching methods and random projections directly to
tensors or unfolded matrices to transform them into lower dimensions preserving
original ranks (Nguyen et al., 2009). These approaches would lead to designing
of new algorithms with two-fold stochastic optimisations which are stochastic on
both data and singular value computations capable of giving faster training.

Developing online learning algorithms with tensor norms is another relatively
interesting question at least from a theoretical view point. Slightly different from
stochastic optimisation, online algorithms such as Perceptron algorithms for vec-
tors (Gentile, 2003) and matrices (Cavallanti et al., 2010) have been designed such
that a single training data instance is used only once. As a future work a tensor
Perceptron could be developed by exploiting the duality relationship between the
overlapped trace norm and the latent trace norm (Tomioka and Suzuki, 2013).

Tensor regularization in the reproducible kernel Hilbert spaces has also been
proposed recently (Signoretto et al., 2013a) with applications to multilinear mul-
titask learning and inductive learning settings. In their study the tensor norm that
is used for regularization in reproducible kernel Hilbert spaces is the overlapped
trace norm and none of the latent trace norms has been considered. Also no the-
oretical analysis is available for any of the tensor norms in reproducible kernel
Hilbert spaces. It is an open research question to understand how the mulitilin-
ear rank would behave in reproducible kernel Hilbert space relative to its original
data domain. Intuitively if the mulitilinear rank of the tensor based kernel Hilbert
space has higher variations, similar approaches such as the latent trace norm and
the scaled latent trace norm may be applicable. It would be an interesting future
research direction to explore tensor regularization in reproducible kernel Hilbert
space both theoretically and experimentally.
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