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VISCOELASTIC DAMPERS CONSIDERING HEAT TRANSFER 
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＊２
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1. Introduction 
1.1 Background 

One of the widely-used devices to control vibration of 
structures is viscoelastic damper (Fig. 1). It works by 
dissipating energy induced by the seismic or wind 
excitations. In the process of energy dissipation, heat is 
generated within the viscoelastic (VE) material, 
affecting its dynamic mechanical properties. The heat 
will flow through the material and will then be 
dispersed to the surrounding air by convection (Fig. 2). 

A time-history analysis model based on fractional 
time-derivatives of strain and stress was formulated by 
Kasai et al 1). It considered the heat generation and 
consequent softening of the VE material.  The model is 
accurate enough specifically for short duration 
excitation, during which heat convection is negligible, 
and will be called as the “short duration model”. 

 
1.2 Long Duration Model 

On the other hand, for 
longer duration loading 
such as wind, heat 
conduction and convection 
(Fig. 2) greatly affect the 
temperature distribution 
in the damper. 

Kasai et al in 2006 2) conducted steady-state heat 
transfer analysis by using three-dimensional (3-D) finite 

elements for the VE damper experimented under long 
duration loading applying harmonic displacement (Fig. 
1). The analysis accurately simulated the distributions 
of temperature as well as corresponding stiffness and 
damping in the VE material at the steady-state. The 
temperature distribution is found to be uniform within 
the VE material except for the thickness direction.  

Based on the findings, Kasai et al proposed the “long 
duration model”, the time-history model combining the 
simplified one-dimensional (1-D) heat transfer analysis 
with the viscoelastic constitutive rule2). The model 
predicts lower temperature and less shear strain near 
the interface with the steel plate, and predicts higher 
temperature and more strain at inner locations, (Fig. 2). 
As Fig. 3 shows, however, analytically obtained 
deformed shape of the VE material are almost straight, 
suggesting approximately uniform strain.  

The present study therefore proposes a simplified long 
duration (SLD) model idealizing the shear strain to be 
uniform in the VE material, in contrast to the original 
and detailed long duration (DLD) model. The former is 
much more computationally-efficient than the latter. 
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2. Formulation 
2.1 Damper Stress and Strain 

Fig. 4a shows a VE damper model subjected to 
dynamic loading, where𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑

(𝑛𝑛𝑛𝑛) and 𝑢𝑢𝑢𝑢𝑑𝑑𝑑𝑑
(𝑛𝑛𝑛𝑛) are damper force 

and deformation at time step 𝑛𝑛𝑛𝑛. By equilibrium, stress 
𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) is uniform along the thickness direction. For node𝑗𝑗𝑗𝑗 
of the VE material (Fig. 4b), the constitutive equation of 
the DLD model was given as 2):  

𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) + 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗
(𝑛𝑛𝑛𝑛)𝐷𝐷𝐷𝐷𝛼𝛼𝛼𝛼𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) = 𝐺𝐺𝐺𝐺 ∙ �𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛) + 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗
(𝑛𝑛𝑛𝑛)𝐷𝐷𝐷𝐷𝛼𝛼𝛼𝛼𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛)�

where 𝐺𝐺𝐺𝐺 = static shear modulus (N/cm2); 𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) = shear 
stress (N/cm2); 𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛) = shear strain; and 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗
(𝑛𝑛𝑛𝑛) and 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛) = 
temperature-dependent constants at node 𝑗𝑗𝑗𝑗, and; 𝐷𝐷𝐷𝐷𝛼𝛼𝛼𝛼 = 
fractional derivative operator1), 2) of order 𝛼𝛼𝛼𝛼. 
 As for the SLD model, the above shear strain 𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛) is 
approximated by uniform strain 𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛). This also implies 
that 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛) and 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗
(𝑛𝑛𝑛𝑛) are approximated by uniform values 

𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛)  and 𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛),  respectively. Thus, one obtains the 
constitutive equation like that of the short duration 
model (1993) mentioned earlier, i.e.,  
  
𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) + 𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛)𝐷𝐷𝐷𝐷𝛼𝛼𝛼𝛼𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) = 𝐺𝐺𝐺𝐺 ∙ [𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛) + 𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛)𝐷𝐷𝐷𝐷𝛼𝛼𝛼𝛼𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛)]

    
where for the given damper displacement 𝑢𝑢𝑢𝑢𝑑𝑑𝑑𝑑

(𝑛𝑛𝑛𝑛)  and 
thickness 𝐻𝐻𝐻𝐻 of the VE material, 
  
𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛) = 𝑢𝑢𝑢𝑢𝑑𝑑𝑑𝑑

(𝑛𝑛𝑛𝑛) 𝐻𝐻𝐻𝐻⁄   
  
Also, the 𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛) and 𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛) vary due to the change of the 
temperature as follows:    
 
𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛) = 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝜆𝜆𝜆𝜆(𝑛𝑛𝑛𝑛) ,    𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛) = 𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝜆𝜆𝜆𝜆(𝑛𝑛𝑛𝑛) 

 
where 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = values at reference temperature 
𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and 𝜆𝜆𝜆𝜆(𝑛𝑛𝑛𝑛) = shift factor defined below: 
 

𝜆𝜆𝜆𝜆(𝑛𝑛𝑛𝑛) = exp
−𝑃𝑃𝑃𝑃1�𝜃̅𝜃𝜃𝜃(𝑛𝑛𝑛𝑛) − 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�
�𝑃𝑃𝑃𝑃2 + 𝜃̅𝜃𝜃𝜃(𝑛𝑛𝑛𝑛) − 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�

  

 

 
Note that 𝜃̅𝜃𝜃𝜃(𝑛𝑛𝑛𝑛) is the average of the nodal temperature 
𝜃𝜃𝜃𝜃𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛) to be explained in Sec. 2.2.  
Considering step-by-step integration scheme 

𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) +
𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛)

(∆𝑡𝑡𝑡𝑡)𝛼𝛼𝛼𝛼�𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖)𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖)
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=0

= 𝐺𝐺𝐺𝐺 ∙ �𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛) +
𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛)

(∆𝑡𝑡𝑡𝑡)𝛼𝛼𝛼𝛼�𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖)𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖)
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=0

�

where ∆𝑡𝑡𝑡𝑡 =time step size, 𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖) =weight function1) 2), and 
𝑁𝑁𝑁𝑁 =number of integration steps. Substituting Eq. 3 into 
Eq. 6, and rearranging the terms, the stress at time step 
can then be calculated by Eq. 7. 

𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) =
𝑢𝑢𝑢𝑢𝑑𝑑𝑑𝑑

(𝑛𝑛𝑛𝑛)

𝐻𝐻𝐻𝐻 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐺𝐺𝐺𝐺𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛) � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖)𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 − 𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛) � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖)𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1
𝐴𝐴𝐴𝐴

 
where 𝐴𝐴𝐴𝐴 = [(∆𝑡𝑡𝑡𝑡)𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛)𝑤𝑤𝑤𝑤(0)] and 𝐺𝐺𝐺𝐺 = [(∆𝑡𝑡𝑡𝑡)𝛼𝛼𝛼𝛼 + 𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛)𝑤𝑤𝑤𝑤(0)]. 

Damper force 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑
(𝑛𝑛𝑛𝑛) can then be calculated by  

 
𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑

(𝑛𝑛𝑛𝑛) = 𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) ∙ 𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣 
 
where 𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣 = shear area of the VE material. 
 
2.2 Temperature Rise and Heat Transfer 

Since the strain distribution is considered to be 
uniform, the energy dissipated at any node in the VE 
material is also uniform at each time step, i.e. 

 

∆𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑
(𝑛𝑛𝑛𝑛) =

(𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) + 𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛−1))(𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛) − 𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛−1))
2

 
Then the temperature rise due to dissipated energy 

will also be uniform for each element, and 

∆𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛) =
∆𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑

(𝑛𝑛𝑛𝑛)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
where  𝑠𝑠𝑠𝑠  and 𝑠𝑠𝑠𝑠  = specific heat capacity (N ∙ cm/kg/℃) 
and mass density (kg/cm3) of the VE material. Eqs. 9 and 
10 are similar those used in the short duration model1). 

The temperature of the VE damper at time step 𝑛𝑛𝑛𝑛 + 1 
at node 𝑗𝑗𝑗𝑗, however, is not necessarily uniform, since it 
depends on the temperature rise due to energy 
dissipated ∆𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛) and the temperature 𝜃𝜃𝜃𝜃�𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛)rises or falls 
due to the transfer of heat via conduction and 
convection, i.e. 

𝜃𝜃𝜃𝜃𝑗𝑗𝑗𝑗
(𝑛𝑛𝑛𝑛+1) = 𝜃𝜃𝜃𝜃�𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛) + ∆𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛)

where  𝜃𝜃𝜃𝜃�𝑗𝑗𝑗𝑗
(𝑛𝑛𝑛𝑛)  is calculated by the 1-D heat transfer 

analysis method used for the DLD model2). 
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2. Formulation 
2.1 Damper Stress and Strain 

Fig. 4a shows a VE damper model subjected to 
dynamic loading, where𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑
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(𝑛𝑛𝑛𝑛) are damper force 

and deformation at time step 𝑛𝑛𝑛𝑛. By equilibrium, stress 
𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) is uniform along the thickness direction. For node𝑗𝑗𝑗𝑗 
of the VE material (Fig. 4b), the constitutive equation of 
the DLD model was given as 2):  
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(𝑛𝑛𝑛𝑛)�

where 𝐺𝐺𝐺𝐺 = static shear modulus (N/cm2); 𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) = shear 
stress (N/cm2); 𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛) = shear strain; and 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗
(𝑛𝑛𝑛𝑛) and 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛) = 
temperature-dependent constants at node 𝑗𝑗𝑗𝑗, and; 𝐷𝐷𝐷𝐷𝛼𝛼𝛼𝛼 = 
fractional derivative operator1), 2) of order 𝛼𝛼𝛼𝛼. 
 As for the SLD model, the above shear strain 𝛾𝛾𝛾𝛾𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛) is 
approximated by uniform strain 𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛). This also implies 
that 𝑎𝑎𝑎𝑎𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛) and 𝑏𝑏𝑏𝑏𝑗𝑗𝑗𝑗
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𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛)  and 𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛),  respectively. Thus, one obtains the 
constitutive equation like that of the short duration 
model (1993) mentioned earlier, i.e.,  
  
𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) + 𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛)𝐷𝐷𝐷𝐷𝛼𝛼𝛼𝛼𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) = 𝐺𝐺𝐺𝐺 ∙ [𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛) + 𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛)𝐷𝐷𝐷𝐷𝛼𝛼𝛼𝛼𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛)]

    
where for the given damper displacement 𝑢𝑢𝑢𝑢𝑑𝑑𝑑𝑑

(𝑛𝑛𝑛𝑛)  and 
thickness 𝐻𝐻𝐻𝐻 of the VE material, 
  
𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛) = 𝑢𝑢𝑢𝑢𝑑𝑑𝑑𝑑

(𝑛𝑛𝑛𝑛) 𝐻𝐻𝐻𝐻⁄   
  
Also, the 𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛) and 𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛) vary due to the change of the 
temperature as follows:    
 
𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛) = 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝜆𝜆𝜆𝜆(𝑛𝑛𝑛𝑛) ,    𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛) = 𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ∙ 𝜆𝜆𝜆𝜆(𝑛𝑛𝑛𝑛) 

 
where 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = values at reference temperature 
𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and 𝜆𝜆𝜆𝜆(𝑛𝑛𝑛𝑛) = shift factor defined below: 
 

𝜆𝜆𝜆𝜆(𝑛𝑛𝑛𝑛) = exp
−𝑃𝑃𝑃𝑃1�𝜃̅𝜃𝜃𝜃(𝑛𝑛𝑛𝑛) − 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�
�𝑃𝑃𝑃𝑃2 + 𝜃̅𝜃𝜃𝜃(𝑛𝑛𝑛𝑛) − 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�

  

 

 
Note that 𝜃̅𝜃𝜃𝜃(𝑛𝑛𝑛𝑛) is the average of the nodal temperature 
𝜃𝜃𝜃𝜃𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛) to be explained in Sec. 2.2.  
Considering step-by-step integration scheme 

𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) +
𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛)

(∆𝑡𝑡𝑡𝑡)𝛼𝛼𝛼𝛼�𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖)𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖)
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=0

= 𝐺𝐺𝐺𝐺 ∙ �𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛) +
𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛)

(∆𝑡𝑡𝑡𝑡)𝛼𝛼𝛼𝛼�𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖)𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖)
𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=0

�

where ∆𝑡𝑡𝑡𝑡 =time step size, 𝑤𝑤𝑤𝑤(𝑖𝑖𝑖𝑖) =weight function1) 2), and 
𝑁𝑁𝑁𝑁 =number of integration steps. Substituting Eq. 3 into 
Eq. 6, and rearranging the terms, the stress at time step 
can then be calculated by Eq. 7. 

𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) =
𝑢𝑢𝑢𝑢𝑑𝑑𝑑𝑑

(𝑛𝑛𝑛𝑛)

𝐻𝐻𝐻𝐻 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐺𝐺𝐺𝐺𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛) � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖)𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖=1 − 𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛) � 𝑤𝑤𝑤𝑤𝑖𝑖𝑖𝑖𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛−𝑖𝑖𝑖𝑖)𝑁𝑁𝑁𝑁

𝑖𝑖𝑖𝑖=1
𝐴𝐴𝐴𝐴

 
where 𝐴𝐴𝐴𝐴 = [(∆𝑡𝑡𝑡𝑡)𝛼𝛼𝛼𝛼 + 𝑎𝑎𝑎𝑎(𝑛𝑛𝑛𝑛)𝑤𝑤𝑤𝑤(0)] and 𝐺𝐺𝐺𝐺 = [(∆𝑡𝑡𝑡𝑡)𝛼𝛼𝛼𝛼 + 𝑏𝑏𝑏𝑏(𝑛𝑛𝑛𝑛)𝑤𝑤𝑤𝑤(0)]. 

Damper force 𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑
(𝑛𝑛𝑛𝑛) can then be calculated by  

 
𝐹𝐹𝐹𝐹𝑑𝑑𝑑𝑑

(𝑛𝑛𝑛𝑛) = 𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) ∙ 𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣 
 
where 𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣 = shear area of the VE material. 
 
2.2 Temperature Rise and Heat Transfer 

Since the strain distribution is considered to be 
uniform, the energy dissipated at any node in the VE 
material is also uniform at each time step, i.e. 

 

∆𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑
(𝑛𝑛𝑛𝑛) =

(𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛) + 𝜏𝜏𝜏𝜏(𝑛𝑛𝑛𝑛−1))(𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛) − 𝛾𝛾𝛾𝛾(𝑛𝑛𝑛𝑛−1))
2

 
Then the temperature rise due to dissipated energy 

will also be uniform for each element, and 

∆𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛) =
∆𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑

(𝑛𝑛𝑛𝑛)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
where  𝑠𝑠𝑠𝑠  and 𝑠𝑠𝑠𝑠  = specific heat capacity (N ∙ cm/kg/℃) 
and mass density (kg/cm3) of the VE material. Eqs. 9 and 
10 are similar those used in the short duration model1). 

The temperature of the VE damper at time step 𝑛𝑛𝑛𝑛 + 1 
at node 𝑗𝑗𝑗𝑗, however, is not necessarily uniform, since it 
depends on the temperature rise due to energy 
dissipated ∆𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛) and the temperature 𝜃𝜃𝜃𝜃�𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛)rises or falls 
due to the transfer of heat via conduction and 
convection, i.e. 

𝜃𝜃𝜃𝜃𝑗𝑗𝑗𝑗
(𝑛𝑛𝑛𝑛+1) = 𝜃𝜃𝜃𝜃�𝑗𝑗𝑗𝑗

(𝑛𝑛𝑛𝑛) + ∆𝜃𝜃𝜃𝜃(𝑛𝑛𝑛𝑛)

where  𝜃𝜃𝜃𝜃�𝑗𝑗𝑗𝑗
(𝑛𝑛𝑛𝑛)  is calculated by the 1-D heat transfer 

analysis method used for the DLD model2). 
 
 

Fd(n)

ud(n)

zv

H

τ(n)

γ(n)

(a) (b) Example of discretizing a VE damper

Inner 
Plate 

Outer 
Plate 

zvz
d2 d3 d4

VE

d5 d6 d7 d8 d9d1

0 1 2(=j1) 3 87(=j2) 9(=m)4 5 6

j = node number; d = length of an element 
m = number of elements 

Fig. 4. Damper model 
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3. Implementation 
The experimental results and analytical results by 

using the DLD model (2006) will be compared with the 
analytical prediction by the proposed SLD model. 

 
3.1 Damper Properties 

The viscoelastic material used was a 3M-ISD110 type 
with dimensions  𝑊𝑊𝑊𝑊 = 3.76 cm ,  𝐿𝐿𝐿𝐿 = 5.08 cm , and 𝐻𝐻𝐻𝐻 =
1.33 cm (Fig. 5). Thickness of steel plates 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 = 0.48 cm. 
Total shear area 𝐴𝐴𝐴𝐴𝑣𝑣𝑣𝑣 = 38.17 cm2. 

The VE material properties were provided by the 
manufacturer as follows: 𝐺𝐺𝐺𝐺 = 6.519 N/cm2; 𝛼𝛼𝛼𝛼 = 0.609; at 
reference temperature 𝜃𝜃𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0.2 ℃ , 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0.0115 and  
𝑏𝑏𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 21.157, and; 𝑃𝑃𝑃𝑃1 = 19.5 and 𝑃𝑃𝑃𝑃2 = 80.2 

Additional properties such thermal conductivity κ, 
specific heat capacity s, and mass density ρ of steel 
plates and VE material are indicated in Table 1. 

Furthermore, from the 3D finite element analysis (Sec 
1.2), the heat transfer coefficients 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  and 𝛼𝛼𝛼𝛼𝑐𝑐𝑐𝑐,𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛 , for 
the outer and inner plates, were  0.956 and 0.524 N/s/
cm/℃, respectively. 

 
 
 
 
 
 
 
 
 
 
Table 1. Material Properties of Steel and VE 

 Steel VE 
κ (N/s/°C) 43.128 0.188 
s (N⋅cm/kg/°C) 46.63 x 103 19.40 x 104 
ρ (kg/cm3)  7.80 x 10-3  1.00 x 10-3 

1 N/s/cm/°C = 100 W/m2/°C 
3.2 Loading Conditions 

Damper was subjected to harmonic displacement of 
peak value 0.66 cm (50% maximum strain level) at a 
frequency of 0.33 Hz. Loading duration was from 𝑡𝑡𝑡𝑡 = 0 
to 3000 s  but analysis continued up to 𝑡𝑡𝑡𝑡 = 5000 s. 
Ambient temperature for the test was 24°C. 

 
3.3 Damper Model 

For SLD model, VE material was discretized into 16 
elements, and outer and inner plates were divide in to 4 

and 2 elements, respectively.  
Temperature at points A, B, C and D (Fig5b) were 

investigated. Their locations are defined as: A at 𝑧𝑧𝑧𝑧 = 0 
(at outer plate surface); B at 𝑧𝑧𝑧𝑧 = 0.48cm + 0.25𝐻𝐻𝐻𝐻; C at 
𝑧𝑧𝑧𝑧 = 0.48cm + 0.50𝐻𝐻𝐻𝐻 , and; D at 𝑧𝑧𝑧𝑧 = 2.29cm  (center of 
inner plate).  
 
4. Results 
4.1 Temperature Rise 

Fig. 6 compares temperatures predicted by DLD and 
SLD models. The latter agrees well with the former. 

Noting that the mid-portion of the VE material has 
the greatest rise in temperature. By convection process, 
heat in the steel plates are transferred to the air, and 
with steel conducting heat much faster, the VE near the 
steel plates loses heat faster than the mid-portion. Thus, 
heat is accumulated more in the mid-portion.  

 
4.2 Stiffness 

As shown by Fig. 7, the storage stiffness Kd
′  and loss 

stiffness Kd
′′  of the SLD model also agrees well with 

those of the DLD model, indicating that the damper 
force and the stress of the two models are almost equal. 

Both models were in steady-state when thermal 
equilibrium was reached (i.e. the amount of heat 
produced is equal to the heat transferred). 

Fig. 6. (a) Temperature time history and  
(b) Temperature distribution 

(a)                                (b)

Fig. 7. (a) Storage stiffness and (b) Loss Stiffness 

K’d (N/cm) K’’d (N/cm)(a) (b)

W

L

Fig. 5. Damper dimension 

(a)                         (b)

dsH

x xxx
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z
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4.3 Strain Distribution and Dissipated Energy 
The strain distribution of the DLD model varied along 

the thickness of the VE material (Fig. 8). Mid-portion 
(elements 12 & 16) had the highest strain while those 
nearest the steel plates (elements 5 & 20) had the lowest, 
respectively. 

However, the strain varied from 44% to 52%, which 
are within ±12% of the average strain of 50%. This could 
justify the idealization of uniform strain considered by 
the SLD model. 

Fig. 9(a) shows the histories of the energy dissipated 
by the SLD and DLD models, respectively, and Fig. 9(b) 
shows those by element 5 (Fig. 8) where the largest 
discrepancy of the strain occurs between the two models.  

However, the sum of energy at each element does not  
differ much for the two models. Both, DLD and SLD 
models show almost the same amount of total energy 
even where the maximum difference is expected 
(element 5). 

 
4.4 Hysteresis Loop 

Fig. 10 shows that the hysteresis loops for the DLD 
and SLD models are almost identical. For 𝑡𝑡𝑡𝑡 = 0~1000 s, 
the damper was in transient-state as manifested by 
changing hysteresis. After long time (Figs 10c & d), the 
thermal equilibrium was reached and the VE damper 
was stable and had responded steadily (in steady-state). 
This is the greatest advantage of the long duration 
models since inclusion of heat transfer and convection 
in the analysis greatly defines the real behavior or VE 
damper when subjected to long duration loading.  

 
5. Conclusion 

The simplified long duration (SLD) model based on 
fractional time-derivative and idealized uniform strain 
distribution of the VE material were proposed for 
analysis of VE damper. The analytical results from the 
SLD and those from the DLD (detailed long duration) 
model showed high congruency.  
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Fig 10. Hysteresis loop at different time 
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Fig. 9. Energy dissipated by the VE damper 
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Fig. 8. Strain distribution 
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