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SPEECH SYNTHESIS USING FEATURE SPACE TRANSFORM
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Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, Japan
{koriyama, takao.kobayashi}@ip.titech.ac.jp

ABSTRACT

In this paper, we propose a speaker adaptation technique for sta-
tistical parametric speech synthesis based on Gaussian process re-
gression (GPR). Although it is reported that the GPR-based speech
synthesis improves the naturalness of synthetic speech compared
with the HMM-based speech synthesis, any speaker adaptation tech-
niques for the GPR-based one have not been established. This is
because GPR is a nonparametric model and hence it is impossible
to directly apply linear transforms to model parameters. In the pro-
posed technique, we introduce feature-space transform to achieve
model adaptation in the framework of GPR-based speech synthe-
sis. Experimental results of objective and subjective tests show that
the proposed technique outperforms the conventional HMM-based
speaker adaptation framework.

Index Terms— speaker adaptation, statistical parametric speech
synthesis, Gaussian process regression, feature-space transform

1. INTRODUCTION

Speaker adaptation is an essential technique for statistical paramet-
ric speech synthesis (SPSS) with diverse voices based on hidden
Markov model (HMM). It is true that a large amount of speech data
of a target speaker promises to give synthetic speech very similar to
that speaker, however, it is also true that it is not always possible to
prepare a sufficient amount of his/her data. In such a case, speaker
adaptation enables us to train a target speaker’s model using only a
small amount of speech data of the target speaker.

HMM-based speech synthesis [1] has been studied widely and
shown that various speaker adaptation techniques, originally devel-
oped for automatic speech recognition, still work well in speech syn-
thesis. Maximum likelihood linear regression (MLLR) [2–4] is one
of such approaches, in which mean vectors of state output distribu-
tions of HMMs are transformed into a target speaker’s model using
a linear transform. Other approaches, such as constrained MLLR
(CMLLR) [5, 6] and CSMAPLR [6], transform not only mean vec-
tors but also covariance matrices.

One of limitations of the HMM-based speech synthesis is that
it can generate speech with satisfactory intelligibility but not always
high quality in naturalness. In this context, various approaches to
SPSS have been proposed as alternatives to the HMM-based speech
synthesis in recent years [7–10]. SPSS based on Gaussian process
regression (GPR) [10, 11] is one of the alternative approaches. We
have shown that GPR-based speech synthesis improves the natural-
ness of synthetic speech, and moreover, it gives comparable with, or
higher performance than the DNN-based one [12].

A part of this work was supported by KAKENHI Grant Number
15H02724.

In this paper, we propose a speaker adaptation technique for
GPR-based speech synthesis, which enables the GPR-based speech
synthesis to be more flexible and useful as the speaker adaptation
for the HMM-based speech synthesis does. However, it is impossi-
ble to directly apply linear transform techniques such as MLLR and
CMLLR because GPR is a nonparametric model, in other words,
there are no mean vectors or covariance matrices to be transformed.
DNN-based speech synthesis also has the problem similar to the
GPR-based synthesis. To overcome this problem, Fan et al. [13]
introduced transform parameters from a hidden layer of neural net-
work to target speaker’s feature space. In [14], Wu et al. investigated
speaker adaptation in different levels, such as i-vector input, learn-
ing hidden unit contribution (LHUC) and feature space transform
from an average voice to target speaker’s voice. In these studies, it
is reported that feature-space transform yields good performance for
speaker adaptation.

In the proposed speaker adaptation for GPR-based speech syn-
thesis, we utilize feature-space transform from source speakers to the
target speaker, whereas MLLR/CMLLR in the HMM-based frame-
work uses model-space transform from average voice model to the
target speaker’s one. Then, we define joint distribution among source
and target speakers using Gaussian process, and derive optimal trans-
form parameters for speaker adaptation. We show the effectiveness
of the proposed technique through objective and subjective evalua-
tions using a small amount of adaptation data.

2. GPR-BASED SPEECH SYNTHESIS

Let N and D are the numbers of frames in training data and di-
mensions of acoustic feature, respectively. In the GPR-based speech
synthesis [10, 11], we assume that speech parameter sequences are
outputs sampled from a Gaussian process. This assumption can be
expressed by following joint distribution:

YN ∼ MN
`

O,KN + σ2I,V
´

(1)

where Y is N × D matrix that consists of all speech parameters
included in training data given by

YN = [y1, . . . ,yN ]> . (2)

MN (·) denotes matrix variate normal distribution and V =
diag[v1, . . . , vD] is a variance matrix which represents variances
of respective dimensions. KN is a Gram matrix that represents
the relationship of frame-level contexts. All speech parameters are
normalized to zero mean.

Using this assumption, we obtain a predictive distribution of
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Figure 1: Outline of training of adaptation parameters.

synthetic speech parameters YT as follows:

p(YT |YN ) = MN (YT ;MT ,ΣT ,V) (3)

MT = KTN

`

KN + σ2IN

´−1
YN (4)

ΣT = KT − KTN

`

KN + σ2IN

´−1
KNT + σ2IT . (5)

Since direct calculation of GPR is computationally unrealizable, we
employ partially independent conditional (PIC) approximation [15]
as in the previous study [10].

3. SPEAKER ADAPTATION FOR GPR-BASED SYNTHESIS

3.1. Speaker adaptation framework

Suppose that there exists P speakers’ speech data for model train-
ing. Let Yi (i = 1, . . . , P ) be a speech parameter sequence of
source speaker i included in training data. In this study, we as-
sume that transformed speech parameters from source speakers, Ỹi

(i = 1, . . . , P ), can be regarded as the training data of GPR-based
speech synthesis in target speaker’s space. This assumption leads
to following joint probability distribution of speech parameters of
source speakers (1, . . . , P ) and target speaker T .
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(8)

KNT =
ˆ

K1T · · · KPT

˜

. (9)

Kij (i, j = 1, . . . , P or T ) represents a Gram matrix between
speaker i and j. In accordance with the estimation procedure in

GPR, the predictive distribution of target speaker’s speech parame-
ters is obtained as follows:

p(YT |Ỹ1, . . . , ỸP ) = MN (YT ;MT ,ΣT ,V) (10)

MT = KTN

`

KN + σ2IN

´−1

2
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(11)

ΣT = KT − KTN

`

KN + σ2IN

´−1
KTN + σ2IT . (12)

In this study, we employ a simple affine transform to target
speaker’s feature space as the model adaptation in GPR-based
speech synthesis:

ỹ = A>
i y + bi (13)

where Ai and bi are a transform matrix and a bias vector, re-
spectively. Using these definitions, the matrix form of transformed
speech parameters is represented by

Ỹi = YiAi + 1ib
>
i . (14)

The proposed adaptation framework is shown in Figs. 1 and 2.
In the training phase, we estimate optimal transform Âi and b̂i by
maximizing predictive likelihood of adaptation data. The estima-
tion method is described in the next section. In the synthesis phase,
source speakers’ data are transformed using the optimal transform
parameters and then the predictive distribution is calculated by GPR.
After that, we generate speech parameters by maximizing predictive
likelihood in the same way as the speaker dependent GPR-based syn-
thesis [12].

3.2. Estimation of transform parameters

We define

L ,
ˆ

L1, . . . ,LP

˜

, KTN

`

KN + σ2IN

´−1
(15)

which appears in (11) and (12). Then the log predictive distribution
of speech parameters of adaptation data YA is given by

L = log p(YA|Ỹ1, . . . , ỸP )

= −TAD

2
log(2π) − TA

2
log |V| − D

2
log |ΣT |

− 1

2
Tr

"

V−1

 

YA −
P
X

i=1

LiỸi

!>

Σ−1
T

 

YA −
P
X

i=1

LiỸi

!#

(16)
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Figure 2: Outline of inference of predictive distribution in synthesis phase.

where TA represents the number of frames in adaptation data.
Here, we train optimal transform parameters Âi and b̂i by max-

imizing the predictive likelihood of (16). The optimal transform pa-
rameters can be obtained by setting following derivatives to zero.

∂L
∂Ai

= V−1

 

YA −
P
X

j=1

LjỸj

!>

Σ−1
T LiYi (17)

∂L
∂bi

= V−1

 

YA −
P
X

j=1

LjỸj

!>

Σ−1
T Li1i. (18)

This corresponds to solving the following equations:

P
X
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>
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j Σ−1
T LiYi +

P
X

j=1

bj1
>
j L>

j Σ−1
T LiYi

= Y>
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T LiYi (19)
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>
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j Σ−1
T Li1i

= Y>
AΣ−1

T Li1i. (20)

As a result, we can obtain the optimal parameters analytically.

4. EXPERIMENTS

4.1. Experimental conditions

We used ATR Japanese speech database set B [16] as speech data
for evaluation. Source speakers were two males (MHO and MMY)
and 450 utterances (about 35 to 40 minutes) for each speaker were
used for training. Target speakers were two males (MHT and MSH)
and the number of adaptation utterances varied from 5 to 50, which
corresponds to about 20 sec to 4 min. The sentences for adapta-
tion were included in the utterances of source speakers. 53 utter-
ances, which were not included in neither source nor adaptation ut-
terances, were used for synthesis. Speech signals were sampled at
16kHz and spectral envelope, aperiodicity, and F0 were extracted
using STRAIGHT [17]. We used 0–39th mel-cepstrum, 5-band ape-
riodicity feature, and log F0, and their delta and delta-delta features.

We used partially independent conditional (PIC) approximation
[15] for feasible computation of GPR, where the maximum number
of frames in clusters was set to 1024 and pseudo data size was 1024.

Phone-level clustering [12] was employed for the PIC approxima-
tion. The number of transforms was fixed to one for each speaker
and we estimated the transform parameters for each acoustic feature
individually.

We compared the proposed framework (GPR-SA) with HMM-
based speaker adaptation using CSMAPLR with MAP modifica-
tion [6]. HMM topology was 5-state hidden semi-Markov model
(HSMM) with single mixture and a diagonal covariance matrix.
Shared context decision tree clustering (STC) [18] and speaker
adaptive training (SAT) [19] were employed to improve the perfor-
mance. The number of transforms for the HMM-based method was
determined according to the amount of adaptation data.

4.2. Objective evaluation

To evaluate the performance of proposed technique, we calculated
acoustic feature distortions between original and synthetic speech.
Figure 3 shows the average distortions of mel-cepstrum, log F0, and
phone duration for the 53 test utterances as a function of the num-
ber of adaptation utterances. In the figure, the results of speaker
dependent (SD) models, HMM-SD and GPR-SD, trained by 450 ut-
terances are also shown. From the figure, we see that the proposed
GPR-SA consistently gave lower distortions than HMM-SA for both
speakers. Moreover, it is noted that the proposed technique using
only 5 adaptation utterances reduced F0 and phone duration distor-
tions compared with HMM-SD that used 450 utterances of the target
speaker.

4.3. Subjective evaluation

To evaluate the perceptual quality of synthetic speech, we performed
three subjective tests: MOS and preference test in terms of natural-
ness and XAB test for speaker similarity1. We compared HMM-SA
and GPR-SA using 10 adaptation utterances. Synthetic speech sam-
ples were generated using global variance (GV) constraint [20] . In
the MOS test, the listeners rated the naturalness of synthetic speech
on a five-point scale: 5: excellent, 4: good, 3: fair, 2: poor, and 1:
bad. In the preference test, participants could choose neutral if there
was no preference between two methods. In the XAB test, vocoded
speech samples were used as the reference. Seven participants lis-
tened to twenty speech samples in the MOS test, whereas eight par-
ticipants listened to ten speech samples in the other tests. Speech

1Some synthetic speech samples used in the subjective evaluation are
available at http://www.kbys.ip.titech.ac.jp/demo/gpradapt/koriyama/
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Figure 3: Acoustic feature distortions between original and synthetic speech. Upper and lower rows show the results of speaker MHT and
MSH, respectively.
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Figure 4: Results of MOS test in terms of naturalness.

samples were randomly chosen from the test sentences, for each tar-
get speaker. The results are shown in Figs. 4 to 6. It is seen from the
figure that the proposed GPR-SA had significantly higher scores than
the conventional HMM-SA in both naturalness and speaker similar-
ity for the two target speakers.

5. CONCLUSIONS

In this paper, we have proposed a speaker adaptation technique for
GPR-based speech synthesis. In the proposed technique, feature-
space transform matrices to target speaker’s acoustic feature space
are introduced. We derived optimum transformation parameter es-
timation algorithm in a GPR framework for speech synthesis. Ob-
jective and subjective evaluation results showed that the proposed
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Figure 5: Results of preference test in terms of naturalness.
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Figure 6: Results of XAB test in terms of speaker similarity.

method outperformed the conventional HMM-based speaker adap-
tation. In future work, we should investigate the effect of speech
data for training because we performed experiments under only lim-
ited conditions as the first step for establishing speaker adaptation in
GPR-based synthesis.
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