
論文 / 著書情報
Article / Book Information

Title Fast Coding of Feature Vectors using Neighbor-To-Neighbor Search

Author Nakamasa Inoue, Koichi Shinoda

Journal/Book name IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), vol. 38, no. 6, pp. 1170-1184

Issue date 2015, 9

DOI http://dx.doi.org/10.1109/TPAMI.2015.2481390

URL http://www.ieee.org/index.html

Copyright (c)2015 IEEE. Personal　use of this material is permitted. Permission
from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/10.1109/TPAMI.2015.2481390
http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Fast Coding of Feature Vectors using
Neighbor-To-Neighbor Search

Nakamasa Inoue, Member, IEEE, and Koichi Shinoda, Senior Member, IEEE,

Abstract—Searching for matches to high-dimensional vectors using hard/soft vector quantization is the most computationally
expensive part of various computer vision algorithms including the bag of visual word (BoW). This paper proposes a fast computation
method, Neighbor-to-Neighbor (NTN) search [1], which skips some calculations based on the similarity of input vectors. For example, in
image classification using dense SIFT descriptors, the NTN search seeks similar descriptors from a point on a grid to an adjacent point.
Applications of the NTN search to vector quantization, a Gaussian mixture model, sparse coding, and a kernel codebook for extracting
image or video representation are presented in this paper. We evaluated the proposed method on image and video benchmarks: the
PASCAL VOC 2007 Classification Challenge and the TRECVID 2010 Semantic Indexing Task. NTN-VQ reduced the coding cost by
77.4%, and NTN-GMM reduced it by 89.3%, without any significant degradation in classification performance.

Index Terms—Neighbor-to-Neighbor Search, Image Classification, Video Semantic Indexing, Vector Quantization, Gaussian Mixture
Model

!

1 INTRODUCTION

Searching for matches to high-dimensional vectors is the most
computationally expensive part of various computer vision
algorithms. Examples of these algorithms include coding of
feature vectors in image classification [2], image mosaicing
[3], event detection in video [4], [5], [6], action recognition
with 3D cameras [7], [8], and 3D shape modeling [9].

Most of them are simplified into either one of two prob-
lems: a hard-vector-quantization (VQ) problem or a soft-VQ
problem [10], [11]. In hard VQ, each input vector is assigned
to its closest codeword [12], [13]. In soft VQ, each input
vector is assigned to more than one codewords in a soft
weighting manner typically depending on distance between the
input vector and a codeword [14], [15]. Probabilistic models
are often used for soft weighting. A typical example is a
Gaussian mixture model (GMM) in which each codeword has
a covariance matrix and a weighting coefficient [15]. Soft VQ
has smaller quantization errors but it is computationally costly
[16].

Many studies have been done to develop fast hard/soft
VQ algorithms. Most of them use a tree structure to reduce
the computational cost. For hard VQ, approximate nearest
neighbor (ANN) algorithms such as the best bin first search
[18], randomized kd-trees [19], hierarchical k-means tree [20]
are known to provide speed-ups with only minor loss in
accuracy. Some other studies extend them to a probabilistic
model for soft VQ. For example, Tree-structured GMM in
[16], [17] extends hierarchical k-means to a GMM framework.

These previous studies assume input feature vectors are
independent from each other. In contrast, our motivation is in
the fact that input vectors are often dependent on each other.

• N. Inoue and K. Shinoda are with the Department of Computer Science,
Tokyo Institute of Technology, Japan.
E-mail: inoue@ks.cs.titech.ac.jp, shinoda@cs.titech.ac.jp

Fig. 1. Neighbor-to-neighbor (NTN) search. NTN search
assigns a code to an input vector from a neighbor vector
to a neighbor vector. A typical example of a neighbor
vector is a descriptor xj adjacent to a descriptor xj−1

where image descriptors are densely sampled from an
image. The red path on the image shows the ordering of
computation.

Their typical examples are time-series features in video and
spatially related features such as dense SIFT [21], [22]. In
dense SIFT, two adjacent descriptors are often assigned to the
same codeword since they are similar to each other. This brings
us to an idea to speed up coding by skipping calculations for
such similar input vectors.

For large-scale image retrieval, deep architectures such as
deep convolutional neural networks [23] and deep Fisher
networks/kernel [24], [25] have shown to be effective to learn
features in a supervised way. Recent studies have introduced
coding techniques to deep architectures. For example, image
representation based on aggregation of deep learned features
is obtained by applying VQ or GMMs in [26], [27]. A hybrid
architecture of GMM-based Fisher vectors and deep neural
networks has been proposed in [28]. Since deep learning and
bag-of-words with dense sampling have a lot in common as

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

shown in [25], [28], it is also important for deep architectures
to improve the speed of coding features.

For video retrieval, it has shown that deep neural networks
and bag-of-words benefit from each other [29]. For example, to
capture human actions from video, bag-of-words using dense
sampling of local descriptors on multiple frames has shown to
be effective.

This paper proposes a fast computation method for coding
of feature vectors, which we call Neighbor-to-Neighbor (NTN)
search [1]. This algorithm, assuming that 1) a set of neighbor
vectors of each input vector are defined and 2) an input
vector and its neighbor vector are similar, skips some dis-
tance calculations between a neighbor vector and a codeword.
This algorithm effectively utilizes a triangle inequality for
the distances between neighbor vectors. In addition to NTN
search for hard VQ (NTN-VQ) and for GMM based soft VQ
(NTN-GMM) presented in our previous work [1], we apply
NTN search to sparse coding using using locality-constrained
linear coding (NTN-LLC) [30] and a kernel codebook (NTN-
KCB) [14] in this paper. We demonstrate the effectiveness of
the NTN search methods in our experiments on image and
video benchmarks of the PASCAL VOC 2007 Classification
Challenge and the TRECVID 2010 Semantic Indexing Task.

This paper is organized as follows. The next section reviews
the related studies. Section 3 explains the NTN algorithm in a
simple framework, hard VQ. Sections 4 to 6 describe how to
extend it to soft VQ using a GMM, sparse coding and a kernel
codebook. Section 7 reports the results of our evaluation, and
Section 8 concludes the paper.

2 RELATED WORK
2.1 Hard VQ
Hard VQ is a classical technique to compress signals such as
image, video, and speech [12]. It is used in many computer
vision algorithms including bag-of-visual-words (BoW) [2].
A codebook is typically trained by using k-means algorithm
[13]. Hard VQ costs O(K) to assign one of K codewords to
an input vector in a straightforward way.

Many previous studies reduce the costs from O(K) to
O(log K) by using tree structure. The kd-tree [31], [32], which
splits a vector space into rectangular regions, is a traditional
way to construct a tree structure on given data. Metric trees
[33], [34] and ball trees [35], [36] construct a tree structure,
whose nodes represent spherical regions. They are effective for
range search to find samples within a given radius around an
input query vector, since triangle inequalities are effectively
applied to vectors in a database with them. Note that since
our NTN search applies triangle inequalities to input vectors
in contrast with them, NTN search and tree-based methods are
complementary to each other.

In computer vision, Lowe [3] uses a kd-tree for near-
est neighbor search of SIFT descriptors. Nistér et al. [37]
propose a “vocabulary tree” which uses a hierarchical k-
means tree. Muja and Lowe [20] have proposed an automatic
selection method from the recent two approximate nearest
neighbor (ANN) algorithms: randomized kd-trees [19], and
a hierarchical k-means tree [20]. They have provided it as a

fast software library for approximate nearest neighbor search
(FLANN). To construct a more precise tree structure, random
forests [38], [39] are effective since they learn a tree structure
in a supervised way. These tree based methods effectively
represent data structure of image descriptors. However, since
they assume that input vectors are independent from each
other, re-calculation cannot be avoided even if input vectors
are the same or similar to the previous ones.

For high dimensional vectors, dimension reduction tech-
niques such as principal component analysis (PCA) [40] and
linear discriminant analysis (LDA) [41] are often applied as
preprocessing of the above methods. Product quantization [42],
which divide a input vector into several sub-vectors in VQ
process, is also known to be effective for high dimensional
vectors. Note these dimension reduction techniques can be
introduced to our proposed NTN search by applying them
to input vectors, since our idea to skip calculation based on
dependency of input vectors is independent from them.

2.2 Soft VQ
To reduce quantization errors in hard VQ, soft VQ assigns
more than one codewords to an input vector. For example, a
Gaussian mixture model (GMM) [15] provides soft weighting
based on the ratios of Gaussian probabilities. The kernel
codebook (KCB) [14] uses kernel density estimation for soft
VQ. Sparse coding [43] assigns several tens of codewords to
an input vector by solving a constrained least square fitting
problem. Bag-of-visual-words frameworks incorporated with
these methods improves the accuracy in object recognition and
scene classification.

Some studies have proposed techniques to reduce the com-
putational cost of soft VQ while keeping the accuracy. Tree-
GMM [16] extends the hierarchical k-means to a GMM
framework to calculate Gaussian probabilities quickly. Wang
el al. [30] introduced k-nearest neighbor (k-NN) search as the
preprocessing to the sparse coding. Fast sparse coding algo-
rithms which simplify the fitting problem, are also proposed
for learning image filters [44] and action recognition [45], [46].

2.3 Image representation
Here we review recent image representation based on hard or
soft VQ. Bag-of-visual-words (BoW) [2] represents an image
by a histogram of visual words. Visual words are obtained
by applying hard VQ or soft VQ to image descriptors such
as SIFT [3], HOG [47], Color SIFT [48], and LBP [49]. In
locality-constrained linear (LLC) coding [30], max pooling
with sparse coding is used instead of taking a histogram of
visual words.

Super-vector representation (SV) [21] uses the first order
differences between input vectors and codewords in addition
to the histogram. Hard VQ is often used in SV. Fisher-vector
representation (FV) [22] based on a Fisher kernel [50], [51] on
a GMM represents an image by a vector of derivation of a log-
likelihood function. The final representation of FV is similar
to that of SV with the exception that it captures not only the
first order but also the second order differences between input

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

Notation Description
X ⊂ Rd A set of input vectors
d Dimensionality of input vectors
xj ∈ X An input vector (j = 1, 2, · · · , N)
N The number of input vectors
B(xj) A set of neighbor vectors of xj ∈ X
µk A codeword vector (k = 1, 2, · · · ,K)
K The number of codewords
δ A parameter to control speed
cjk A code of xj for the codeword µk

TABLE 1
Summary of notation.

vectors and codewords in a probabilistic framework. GMM-
based soft VQ is used in FV.

K. Chatfield et al. [52] compared recent image representa-
tion and reported that the FV representation [22] is the best
and the SV representation [21] is the second in terms of image
classification accuracy on the PASCAL VOC Classification
Challenge. They have noticed that FV and SV are efficient
since they work well with a relatively small (256 ≤ K ≤
1024) codebook. However, the coding step using hard/soft VQ
is still the time-bottleneck of a pipeline for extracting image
representation.

2.4 Video representation
Recent studies have shown that the above image representation
methods are also effective for video classification [53], [54].
For example, GMM supervector representation [55], which can
be viewed as a simplification of the Fisher-vector representa-
tion, have been proven to be effective for semantic indexing
of video data [54]. It uses a robust parameter estimation tech-
nique, maximum-a-posteriori (MAP) estimation, for a GMM.

By extracting a key-frame from a video clip, a video
classification problem can be solved as an image classifica-
tion problem. However, analyzing multiple frames in video
significantly improves the performance of video classification.
For example, extracting low-level image descriptors from
several hundreds of image frames in video to make a BoW
representation of video with hard/soft VQ is effective for
semantic concept detection on video data [53]. This shows that
improving the speed of hard/soft VQ is an important issue in
video classification.

3 NEIGHBOR-TO-NEIGHBOR (NTN) SEARCH
FOR VECTOR QUANTIZATION

3.1 Outline
This section presents our neighbor-to-neighbor (NTN) search
in a simple framework, hard VQ. Let X be a set of input vec-
tors. The NTN search assumes that a set of neighbor vectors
B(x) ⊂ X for each input vector x ∈ X is given. For example,
B(x) is defined as a set of the four descriptors adjacent to a
descriptor x for densely-sampled image descriptors (Figure 1
and Figure 6). We expect that a neighbor vector in B(x) is

similar to x, and that the number of neighbor vectors is smaller
than the codebook size.

Let {µk}K
k=1 be a codebook for VQ. The goal here is to

compute codes cjk of each input vector xj for each codeword
µk. Codes are given by

cjk =

1, if k = argmax

k
djk,

0, otherwise.
(1)

where

djk = ‖xj − µk‖, (2)

is the the Euclidean distance between an input vector xj and
a codeword µk. The mathematical notification is summarized
in the Table 1.

3.2 Algorithm

In NTN search, input vectors are ordered from a neighbor
vector to a neighbor vector to skip distance calculations for
some input vectors based on a triangle inequality. We first
explain the structure of our algorithm and then explain our
speeding-up idea.

In the initialization step for j = 1, xj is randomly selected
from X . To obtain its code cjk, distance djk in Eq. (2) is
exhaustively calculated for each k = 1, 2, · · · ,K. This process
is the same as the straightforward hard VQ.

For j = 2, 3, · · · , N , the following three steps are iterated
(Figure 2).
(STEP 1: Select the next input vector)
For each x ∈ B(xj−1), calculate ∆(x) = ‖x−xj−1‖, and set

xj = argmin
x∈B(xj−1)∩X̄

∆(x), (3)

where X̄ = X \ {x1, · · · , xj−1} is a set of remaining input
vectors. If B(xj−1)∩X̄ = ∅ then xj is randomly picked from
X̄ .
(STEP 2: Calculate distance)
Set k∗ = argmax

k
cj−1,k.

2-1) Calculate distance djk∗ .
2-2) For k = 1, 2, · · · , k∗−1, k∗+1, · · · ,K, calculate a lower
bound djk for djk as follows.

djk = dik − δ∆ij , (4)

where i is the index of the input vector whose distance dik has
been calculated, δ is a parameter, and ∆ij is an accumulated
distance from xi to xj . This process will be explained in detail
in the next paragraph. If djk ≥ djk∗ then skip calculation of
djk, otherwise calculate djk.
(STEP 3: Output a code)
Calculate

cjk =

1, if k = argmax

k∈E
djk,

0, otherwise.
(5)

where E is a set of indices of codewords whose distance to
xj is calculated in STEP 2.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

(b) STEP1, j=2

: input vector

: codeword

: calculated distance

(a) INIT, j=1 (c) STEP2-1, j=2 (d) STEP2-2, j=2

(e) STEP1 (f) STEP2-1 (g) STEP2-2

Fig. 2. Algorithm overview. (a) Initialization step: distance from an input vector x1 to each codeword is calculated.
(b) STEP 1: the next input vector x2 which minimizes ∆12 is selected from neighbor vectors. (c) STEP 2-1: d2k∗ is
calculated where k∗ is the code for x1. (d) STEP 2-2: a lower bound d21 = d11 − δ∆12 is calculated where δ is a
parameter, calculation of d21 is skipped if d21 ≥ d2k∗ . (e),(f),(g): STEP 1, 2-1, and 2-2 for xj(j > 2), respectively. In (g),
accumulated distance ∆ij between xi and xj is used to obtain a lower bound djk = dik − δ∆ij in Eq. (4).

Here we explain Eq. (4) in STEP 2. For a given xj , let’s go
back to the previous input vector xi (i < j) whose distance
dik has been calculated (Figure 2 (g)). Take the maximum
such index i and let ∆ij be an accumulated distance between
xi and xj given by

∆ij =
j∑

p=i+1

‖xp − xp−1‖. (6)

The triangle inequality gives

dik −∆ij ≤ djk ≤ dik + ∆ij . (7)

It implies

∃δ∗ ∈ [−1, 1] s.t. djk = dik − δ∗∆ij . (8)

Thus, for δ ≥ δ∗, djk in Eq. (4) is a lower bound of distance
djk. Note that the result of coding by this algorithm is exactly
the same as that by the original hard VQ in this case.

3.3 The parameter δ
Our idea to improve the speed of the algorithm is to regard δ
as a constant and use it as a parameter. Then, the lower bound
is efficiently updated from the previous lower bound by

djk = dj−1,k − δ‖xj − xj−1‖. (9)

The lower bound is obtained by only one distance calculation
from xj−1 to xj , which is already calculated in STEP 1.
By relaxing the restriction δ ≥ δ∗, we can further reduce
the computational cost though the exact solution may not be
obtained in such cases. To optimize the parameter δ, cross
validation is used in practice.

Alg. 1 summarizes the neighbor-to-neighbor search for hard
VQ (NTN-VQ) which outputs assigned codes for each input
vector quickly.

4 NTN SEARCH FOR GAUSSIAN MIXTURE
MODELS
A Gaussian mixture model (GMM) is an extension of hard VQ
to a probabilistic framework since it provides a soft assignment
of codewords to an input vector. Here we extend the NTN
search to a GMM framework (NTN-GMM). The algorithm
structure of NTN-GMM is the same as NTN-VQ, but instead
of a lower bound of distance for NTN-VQ, an upper bound
of a Gaussian probability is calculated for NTN-GMM.

Let µk,Σk and wk (k = 1, 2, · · ·K) be the mean vector, the
covariance matrix, and the mixture weight of the k-th mixture
component (codeword) of a GMM, respectively. A code cjk

for an input vector xj(j = 1, 2, · · · , N) to the k-th codeword
is given by

cjk =
pjk∑K

k′=1 pjk′
. (10)

Here pjk is a Gaussian probability given by

pjk =
wk

(2π) 2
d |Σk|

1
2

exp
(
−1

2
‖xj − µk‖2

Σ−1
k

)
, (11)

where ‖x‖A =
√

xT Ax. Note that NK probability calcula-
tions are required in the standard GMM.

Empirical observation in [22], [17] shows that the dis-
tribution of pjk over all the codewords is peaky on the
PASCAL VOC image dataset and the TRECVID video dataset,
respectively, i.e., for each input vector xj , a few pjk’s have

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

Algorithm 1 NTN-VQ
Input: input vectors X (N = |X|),

codebook {µk}K
k=1, parameter δ.

Output: codes {cik}N
i=1

x1 ← Rand(X)
dk ← ‖x1 − µk‖ for all k
cik ← 0 for all i, k
k∗ ← argmin

k
dk; c1k ← 1

for i = 2, · · · , N do
xi ← argmin

x∈B(xi−1)∩X̄

‖x − xi−1‖

dk∗ ← ‖xi − µk∗‖
for all k ,= k∗ do

dk ← dk − δ‖xi − xi−1‖
if dk∗ > dk then

dk ← ‖xi − µk‖
if dk∗ > dk then k∗ ← k end if

end if
end for
cik∗ ← 1

end for

a large value and the others do not. We also confirm this
observation in Figure 3. If xj is similar to xj−1, the “peak” is
shifting gradually as j increments. Conversely, the changes in
the “bottom (no-peak)” of the distribution are generally small.
This observation brings us to an idea that we may ignore
the change of Gaussian probabilities in the “bottom” of the
distribution.

For a given xj , let xi (i < j) be the previous input vector
whose Gaussian probability pik has been calculated. The idea
is to ignore the difference between pjk and pik and assume
pjk = pik for k ∈ G(b)

i ∩G(b)
j to skip calculation of pjk. Here,

G(b)
j is a set of mixture components in the “bottom” of the

distribution, which we call a bottom set, given by

G(b)
j = {k : pjk < pth}. (12)

where pth is a threshold to categorize the mixture components
into “peak” and “bottom”.

A bottom set G(b)
j cannot be directly observed without

computing pjk. Thus, we introduce an upper bound pjk of
a probability pjk (see Appendix for details) given by

pjk = pik exp (δik∆ij) . (13)

Here, ∆ij is the accumulated distance given by Eq. (6) and
δik is given by

δik = Skδ‖xi − µk‖Σ−1
k

, (14)

where δ ∈ [0, 1] is a parameter to control the speed of our
algorithm (as Subsec. 3.3) and Sk is the square root of the
spectral radius of Σ−1

k . Note that this upper bound is obtained
efficiently from a previous upper bound by

pjk = pj−1,k exp (δik‖xj − xj−1‖) . (15)

Finally, instead of the intersection of bottom sets G(b)
i ∩G(b)

j ,

Fig. 3. Values of Gaussian probability pjk. The indexes
of Gaussian components on the horizontal axis are sorted
by the probability values, e.g., the maximum value of pjk

over k is plotted on k̂ = 1. Results for the top 25 of
512 components are used for illustration. On average,
five components have a probability value larger than 0.01.
This result is obtained on randomly sampled 100 thou-
sand descriptors on PASCAL VOC 2007 training images.

Fig. 4. Distribution of pik and pjk(i < j). Calculation
of a Gaussian probability pjk is skipped for k ∈ Uik.

its subset Uij given by

Uij = {k : pjk < pth}, (16)

is used for determining mixture components to skip calculation
of pjk (Figure 4).

The threshold pth should depend on the maximum value
of Gaussian probabilities at j, i.e., maxk pjk. However, this
value also cannot be observed without computing all Gaussian
probabilities at j. Since two adjacent descriptors are expected
to be similar to each other, the value at the previous maximum
point is used to determine the threshold as

pth = pjk∗ , k∗ = argmax
k

pj−1,k. (17)

Note that, by this thresholding, Gaussian probabilities at the
previous maximum point and the current maximum point (at
least) will be calculated for each input vector.

Alg. 2 summarizes the NTN search for a GMM (NTN-
GMM) which outputs soft codes for each input vector quickly.

To further improve the speed of NTN-GMM, avoiding the
exp computation is effective since our observation shows that
63.0% of the computational cost in coding using a GMM
is spent for it. An exp operator is deleted by taking a
log of Gaussian probabilities and introducing log-max (LM)
approximation to approximate Eq. (10) by

cjk -

1, if k = argmax

k
log pjk,

0, otherwise.
(18)

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

Algorithm 2 NTN-GMM
Input: input vectors X (N = |X|),

GMM {wk, µk,Σk}K
k=1, parameter δ.

Output: soft codes {cik}N
i=1

K
k=1

x1 ← Rand(X)
pk, pk ← wkN (x1|µk,Σk) for all k
δk ← Skδ‖x1 − µk‖Σ−1

k
for all k

c1k ← pkPK
k′=1 pk′

for all k; k∗ ← argmax
k

pk

for i = 2, · · · , N do
xi ← argmin

x∈B(xi−1)∩X̄

‖x − xi−1‖

pk∗ , pk∗ ← wk∗N (xi|µk∗ ,Σk∗)
for all k ,= k∗ do

pk ← pk exp(δk‖xi − xi−1‖)
if pk∗ < pk then

pk, pk ← wkN (xi|µk,Σk)
δk ← Skδ‖xi − µk‖Σ−1

k

end if
end for
cik ← pkPK

k′=1 pk′
for all k; k∗ ← argmax

k
pk

end for

5 NTN SEARCH FOR SPARSE CODING
This section presents NTN search for locality-constrained lin-
ear (LLC) coding [30], which is a fast sparse coding algorithm
proposed for image classification. In [30], a fast approximation
algorithm for LLC using nearest neighbor search is also
proposed. Here, our NTN-LLC replaces its nearest neighbor
search step with NTN search. In the following, we first review
the LLC and its approximation, and then explain our NTN-
LLC algorithm.

Let {µk}K
k=1 be a codebook. LLC assigns codewords to an

input vector xj by solving the following fitting problem

cj = argmin
cj

‖xj − Bcj‖2 + λ‖dj . cj‖2 s.t.
∑

k

cjk = 1

(19)

where B = [µ1, · · · , µK] is a codeword matrix, cj ∈ RK is
a code vector, cjk is the k-th element of cj , . denotes the
element-wise multiplication, and di ∈ RK is given by

dik = exp
(
‖xi − µk‖

σ

)
. (20)

As shown in [30], since a code obtained by solving Eq.(19)
has a significant value only for several nearest codewords of
xj , the fast approximation of LLC simply uses the M nearest
codewords of xj and solves the following simplified problem

cj = argmin
cj

‖xj − Bjcj‖2 s.t.
∑

k

cjk = 1 (21)

where Bj is a matrix of M -nearest codewords of xj given by

Bj = [µσ1 , µσ2 , · · · , µσM] . (22)

Here, σ1, · · · ,σM are indices of the M -nearest codewords.
Since the computational cost of approximated LLC is O(K +
M2), we assume M / K in practice.

Algorithm 3 NTN-LLC
Input: input vectors X (N = |X|), parameterM

codebook {µk}K
k=1, parameter δ.

Output: code vectors {ci}N
i=1

x1 ← Rand(X)
dk, dk ← ‖x1 − µk‖ for all k
B1 ← [µσ1 , µσ2 , · · · , µσM] by sorting dk

c1 = argmin
c

‖xi − B1c‖2 s.t.
∑

k c1k = 1
k∗ ← argmax

k
c1k

for i = 2, · · · , N do
xi ← argmin

x∈B(xi−1)∩X̄

‖x − xi−1‖

dk∗ , dk∗ ← ‖xi − µk∗‖
for all k ,= k∗ do

dk ← dk − δ‖xi − xi−1‖
dk ← dk + δ‖xi − xi−1‖
if dk∗ > dk then

dk, dk ← ‖xi − µk‖
if dk∗ > dk then k∗ ← k end if

end if
end for
Bi ← [µσ1 , µσ2 , · · · , µσM] by sorting dk

ci = argmin
ci

‖xi − Bici‖2 s.t.
∑

k cik = 1

end for

Our idea of NTN-LLC is to use approximate M -nearest
codewords based on NTN search instead of the exact M -
nearest codewords. The algorithm structure of NTN-LLC is
the same as NTN-VQ, but it finds not only the nearest
codeword but also M -nearest codewords by approximating
distance between a codeword and an input vector by its upper
bound.

The following is the NTN-LLC algorithm. The initialization
step for j = 1 uses the exact M -nearest neighbors to obtain
a code in Eq. (21). The following three steps are iterated for
j = 2, 3, · · · , N .
(STEP 1: Select the next input vector)
Select xj in the same way as STEP 1 of NTN-VQ.
(STEP 2: Calculate distance)
Set k∗ = argmax

k
cj−1,k.

2-1) Calculate distance djk∗ .
2-2) For k = 1, 2, · · · , k∗−1, k∗+1, · · · ,K, calculate a lower
bound djk and an upper bound djk for djk as follows.

djk = dik − δ∆ij , (23)
djk = dik + δ∆ij , (24)

where i is the index of the input vector whose distance dik has
been calculated, δ is a parameter, and ∆ij is an accumulated
distance from xi to xj . If djk ≥ djk∗ then skip calculation of
djk, otherwise calculate djk.
(STEP 3: Output a code)

Let

B̃j = [µσ1 , µσ2 , · · · , µσM] . (25)

be a matrix of approximated M -nearest codewords of xj in

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

Algorithm 4 NTN-KCB
Input: input vectors X (N = |X|),

codebook {µk}K
k=1, parameter δ.

Output: soft codes {cik}N
i=1

K
k=1

x1 ← Rand(X)
Kk,Kk ← K(x1, µk) for all k
c1k ← KkPK

k′=1 Kk′
for all k; k∗ ← argmax

k
pk

for i = 2, · · · , N do
xi ← argmin

x∈B(xi−1)∩X̄

‖x − xi−1‖

Kk∗ ,Kk∗ ← K(xi, µk∗)
for all k ,= k∗ do

Kk ← K(xi, µk)
if Kk∗ < Kk then
Kk,Kk ← K(xi, µk)

end if
end for
cik ← KkPK

k′=1 Kk′
for all k; k∗ ← argmax

k
Kk

end for

terms of the following approximated distance

d̃jk =

{
djk k ∈ E

djk k ,∈ E.
(26)

Here, E is a set of indices of codewords whose distance to xj

is calculated in STEP 2.
Solve

cj = argmin
cj

‖xj − B̃jcj‖2 s.t.
∑

k

cjk = 1 (27)

to obtain a code vector.
NTN-LLC also has a parameter δ as NTN-VQ in Sec.3.3 to

control the trade-off between speed and accuracy: the number
of exact nearest codewords increases as δ increases, and the
speed increases as δ decreases. Note that, since exact distance
is obtained in the STEP 3 for |E| codewords in Eq. (26), NTN-
LLC returns the exact solution if |E| ≥ M . Alg. 3 summarizes
the NTN-LLC algorithm.

6 NTN SEARCH FOR A KERNEL CODEBOOK

The kernel codebook (KCB) [14] uses kernel density estima-
tion to obtain a code of a image descriptor in the bag-of-visual-
words framework. Here, we present an NTN search algorithm
for KCB (NTN-KCB).

Let {µk}K
k=1 be a codebook. A code obtained from KCB is

given by

cjk =
K(xj , µk)

∑K
k′=1 K(xj , µk′)

. (28)

where K(·, ·) is a kernel function.
Since Eq. (28) replaces the probability pjk in Eq. (11)

in NTN-GMM by a kernel function, NTN-KCB utilizes the
same algorithm structure as NTN-GMM, in which we replace
pjk and pjk by K(xj , µk) and K(xj , µk), respectively. Here,
K(xj , µk) is an upper bound of the kernel function.

As in NTN-GMM (Eq. (15)), having the upper bound
K(xj , µk), which can be calculated from 1) the previous
upper bound K(xj−1, µk) and 2) the distance between the
current and the previous inputs ‖xj −xj−1‖ without any other
computation with xj , is effective to speed-up the NTN-KCB
algorithm.

For instance, for the following Gaussian-shaped kernel

K(xj , µk) = exp
(
−γ

2
‖xj − µk‖2

)
, (29)

which is shown to be effective in [14], its upper bound is given
by

K(xj , µk) = K(xi, µk) exp
(
δγ−1‖xi − µk‖‖xi − xj‖

)

(30)
= K(xj−1, µk) exp

(
δγ−1‖xi − µk‖‖xj − xj−1‖

)
.

(31)

where γ is a parameter of the kernel and δ is the parameter
to control the trade-off between speed and accuracy.

Alg. 4 summarizes the NTN-KCB algorithm.

7 EXPERIMENTAL EVALUATION
We perform image and video classification experiments on
the PASCAL VOC 2007 Classification Challenge [56] and the
TRECVID 2010 Semantic Indexing Task, respectively.

7.1 Experiments on PASCAL VOC 2007
7.1.1 Experimental setup
The dataset of PASCAL VOC 2007 consists of 9,963 images,
which are divided into a training set (5011 images) and a test-
ing set (4952 images). We use Mean Average Precision (Mean
AP) over the 20 object categories for evaluating classification
accuracies.

We implement 1) NTN-VQ (Alg. 1) with histogram repre-
sentation and super-vector (SV) representation [21], 2) NTN-
GMM (Alg. 2) with Fisher-vector (FV) representation [22], 3)
NTN-LLC (Alg. 3) with LLC representation [30], and 4) NTN-
KCB (Alg. 4) with Histogram representation. The definition
of each representation is summarized in Appendix.

We compare our NTN methods with standard VQ, GMM,
LLC and KCB, and tree-based ANN-VQ, RF-VQ and Tree-
GMM. The ANN-VQ uses a fast library for approximate
nearest neighbor (ANN) search [20], [52]. The RF-VQ uses
random forests used in [38], [39]. The Tree-GMM [16] is an
extension of the hierarchical k-means to a GMM framework.
In addition, NTN-LM-GMM applies the LM approximation to
NTN-GMM. The parameter δ for NTN methods and parame-
ters for random forests and kernel codebooks are optimized on
the validation set, where half of training images are used for
training models and others are used for validating the models.

The following are our standard settings in all experiments.
2 × 2 SIFT descriptors are extracted from every 4 pixels at 5
scales. We set a set of neighbor vectors B(x) to a set of the
four SIFT descriptors adjacent to a descriptor x. The averaged
number of descriptors per image is 49580. We omit Gaussian
weighting for SIFT descriptors. A codebook is trained on
randomly sampled 1 million descriptors by using the k-means

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

Method Representation δ Mean AP |E| Time (msec) Reduction rate (%)
VQ SV - *0.568 512.0 856.2 0.0
ANN-VQ [20] SV - 0.563 - 475.7 44.4
RF-VQ [38], [39] SV - 0.559 - 292.6 65.8
NTN-VQ SV 0.20 0.563 57.8 193.2 77.4
GMM FV - *0.582 512.0 2595.7 0.0
Tree-GMM [16] FV - 0.582 295.2 1496.8 42.3
NTN-GMM FV 0.09 0.580 88.0 642.0 75.3
NTN-LM-GMM FV 0.09 0.579 88.0 276.8 89.3
VQ Hist - *0.404 512.0 856.2 0.0
NTN-VQ Hist 0.20 0.405 57.8 193.2 77.4
LLC LLC - *0.439 - 2428.8 0.0
NTN-LLC LLC 0.50 0.429 - 688.8 71.6
KCB Hist - *0.469 512.0 2757.1 0.0
NTN-KCB Hist 0.20 0.469 214.9 681.8 75.3

TABLE 2
Speed comparison at the fixed accuracy level. VQ: standard hard vector quantization (VQ), ANN-VQ: approximate

nearest neighbor search [20], RF-VQ: random forests [38], [39], NTN-VQ: our neighbor-to-neighbor (NTN) search for
VQ (Alg. 1), GMM: standard Gaussian mixture model (GMM), Tree-GMM: an extension of the hierarchical k-means to

a GMM framework in [16] NTN-GMM: NTN search for a GMM (Alg. 2), NTN-LM-GMM: NTN-GMM with log-max
approximation, LLC: Locality-constrained linear (LLC) coding [30], NTN-LLC: NTN search for LLC (Alg. 3), KCB:

Kernel codebook (KCB) [14], NTN-KCB: NTN search for KCB (Alg. 4). SV: Super-vector representation, FV:
Fisher-vector representation, Hist: Histogram representation. δ: a parameter of our NTN methods, Mean AP: image

classification accuracy on the testing set of the PASCAL VOC 2007 Classification Challenge. |E|: the number of
distance or probability calculations per input vector, Time: coding time in msec, Reduction rate: reduction rate of the
coding cost. Note that there are no statistically significant differences in Mean AP between the method marked “*”

and each other method in the same split table on randomization test (p < 0.05).

Fig. 5. Cumulative histogram of δ∗. Statistics of the true
δ∗ in Eq. (8) on PASCAL VOC 2007 training images is
reported for NTN-VQ.

algorithm or the EM algorithm. Covariance matrices for a
GMM are assumed to be diagonal. The codebook size is set to
512. A one-vs-rest linear SVM is used for a classifier for each
of 20 object categories, where the regularization parameter is
fixed to 1.0. A single core of a 2.93 GHz Intel Xeon CPU
with an 8 GB memory is used for measuring computational
costs. Note that some influence on changing these settings is
reported in the following experimental results.

7.1.2 Speed of coding
In Table 2, we compare speed of coding at the fixed accuracy
level. Overall, our NTN methods are faster than the others
while keeping the classification accuracy. For example, we
observe that NTN-VQ and NTN-LM-GMM reduce the coding

cost by 77.4% and by 89.3%, respectively. It is also confirmed
that FV representation and SV representation perform signifi-
cantly better than the others as reported in [52]. Note that there
are no significant differences in Mean AP on randomization
test (p < 0.05) between methods in the same split table in
Table 2.

Here, a parameter δ is optimized on the validation set, where
half of training images are used for training models and others
are used for validating the models. As described in Subsec. 3.3,
the restriction of δ ≥ δ∗ is relaxed in our methods. However,
more than 90% of djk gives a correct lower bound when δ =
0.20 for NTN-VQ as shown in Figure 5. Note that 61.3% of
two adjacent descriptors have the same visual word as shown
in Figure 6.

Figure 7 shows the speed-accuracy trade-off for NTN meth-
ods for different values of δ. We observe that NTN-LM-
GMM outperforms NTN-GMM and NTN-VQ in terms of
both speed and accuracy. This is because NTN-LM-GMM has
the advantages of both of NTN-VQ and NTN-GMM: it only
requires distance calculations without using an exp operator
as NTN-VQ, but it has a weight coefficient and a covariance
matrix for each codeword as NTN-GMM.

Compared with tree-based methods, a disadvantage of NTN
methods is that they are not very effective if neighbor vectors
are not similar to each other. We confirm this in Figure 8:
tree-based ANN-VQ and RF-VQ perform better than RAND-

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

(a) (b) (c) (d) (e) (f) (g)
Neighbors B(x)

|B(x)| 1 2 4 8 12 ALL 4 (random)
min∆(x) 173.6 154.2 132.8 132.7 131.1 120.8 443.9
Time (msec) 223.7 210.3 193.2 195.0 201.0 12330.6 476.5
Reduction (%) 73.9 75.4 77.4 77.2 76.5 - 44.4

TABLE 3
Speed comparison using different types of neighbor vectors on PASCAL VOC 2007. The row of “Neighbors B(x)”

illustrates the definition of neighbor vectors. A white node and black nodes denote a point on a grid for a descriptor x
and its neighbor points, respectively. (a) to (e) use points adjacent to x, (f) uses all grid points on an image, (g) uses
randomly sampled 4 points. |B(x)|: the number of neighbor vectors, min∆(x): the minimum distance between x and
its neighbor vector, Time: coding time in msec, Reduction: reduction rate of the coding cost by NTN-VQ compared

with the standard VQ (856.2 msec).

Stride S Mean AP Number of descriptors
Time using

GMM (msec)
Time using

NTN-LM-GMM (msec) Reduction (%)

7 0.557 14438 785.5 80.2 89.8
6 0.565 20412 1100.7 112.5 89.8
5 0.574 30653 1630.2 170.5 89.5
4 0.582 49580 2595.7 276.8 89.3
3 0.582 91284 4785.8 527.0 89.0

TABLE 4
Accuracy and speed comparison using different strides in dense sampling. Stride S: the density of sampling (every S

pixels), Mean AP: Mean AP on the PASCAL VOC 2007 Classification Challenge, Number of descriptors: the
averaged number of sampled descriptors per image, Time (msec): coding time using GMM/NTN-LM-GMM in msec,

GMM: standard Gaussian mixture model (GMM), NTN-LM-GMM: NTN search for a GMM with log-max
approximation, Reduction (%): reduction rate of the coding cost.

Fig. 6. A histogram of descriptors. Red bars: descriptors
that have the same visual word as a neighbor descriptor.
White bars: all descriptors. SIFT descriptors are extracted
from every 4 pixels at 5 scales on the PASCAL VOC 2007
training images. The codebook size is 512. 61.3% of two
adjacent descriptors have the same visual word.

VQ which replaces a neighbor vector by a randomly sampled
vector in each iteration of NTN-VQ. Notably, the average
distance between two neighbor descriptors (xj−1 and xj) is
132.8 and 507.7 for NTN-VQ and RAND-VQ, respectively.
This confirms that the assumption that neighbor vectors are
similar to each other, is necessary for NTN methods.

In addition, we confirm the necessity of the accumulated
distance in Eq. (6) by replacing it with direct distance, i.e.,

∆ij = ‖xi − xj‖ in Figure 9. If we ignore computation time
for ∆ij , for example in the case where a distance matrix
on input vectors is pre-computed in some way, the direct
distance is better than the accumulated distance. In general,
the accumulated distance is computationally effective since it
derives efficient update rules of a lower/upper bound in Eq. (9)
and (15).
7.1.3 Definition of neighbor vectors
Table 3 shows reduction rates of the coding cost using different
types of neighbor vectors B(x). As can be seen, using the four
adjacent points on a grid gives the best reduction rate. Since it
is needed to calculate distance between x and each neighbor
vector in B(x) in STEP 1 of NTN-VQ, the number of neighbor
vectors is better to be small rather than large. For example, if
we set B(x) to all the other descriptors than x as Table 3 (f),
the computational time for the STEP 1 becomes longer than
that for applying the standard VQ. We conclude that looking
at four neighbors is a reasonable definition for NTN search on
densely sampled image descriptors.
7.1.4 Sampling density
Table 4 compares results using different strides to extract SIFT
descriptors. A short stride improves the accuracy as can be
seen and the improvement saturates at the stride of 4, which

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

Fig. 7. Speed-accuracy trade-off for different values of
δ. Trade-off between coding time and Mean AP is re-
ported. All plots are for δ = 1.0, 0.9, · · · 0.1, 0.09, · · · , 0.01.
VQ: standard hard vector quantization (VQ), NTN-VQ:
neighbor-to-neighbor (NTN) search for VQ, GMM: stan-
dard Gaussian mixture model (GMM), NTN-GMM: NTN
search for a GMM, NTN-LM-GMM: NTN-GMM with the
log-max approximation.

is the standard setting in our experiments. It is also confirmed
that the reduction rate of the coding cost obtained by using
NTN-LM-GMM is stable for the all strides.
7.1.5 Result examples
We examine the effectiveness of NTN-VQ for several different
images in Figure 10. The reduction rate of the coding cost
by NTN-VQ is 84.9% for the image (a) and 66.8% for the
image (h). Here, (a) and (h) are the best and the worst
cases on PASCAL VOC 2007, respectively. This shows that
NTN methods are more effective for images which can be
segmented into several uniform regions. Notably, NTN-VQ is
still better than ANN-VQ even in the worst case.
7.1.6 Codebook size
The simplest idea to reduce the coding cost is to reduce the
codebook size. In Figure 11, which shows the speed-accuracy
trade-off for different codebook sizes, we confirm that using
NTN methods is better than reducing the codebook size. This
also confirms that NTN-LM-GMM is the best in both speed
and accuracy. Note that there is no significant difference in
Mean AP between a standard method and a NTN methods for
each codebook size K = 2048, 1024, · · · , 16.
7.1.7 Relative computational time in a pipeline
Figure 12 shows the relative cost of coding with respect to the
cost of the other steps of processing pipeline for extracting
SV and FV representation. As can be seen, the coding step
is the majority of the whole processing pipeline: 85.3% and
88.4% of computational time are occupied from it in FV and
SV, respectively. NTN-VQ, NTN-GMM and NTN-LM-GMM
reduces the total computational cost by 66.0%, 66.5%, and
85.3%, respectively. Note that the cost of pooling in FV, which
generate a final FV representation, is also reduced by the LM

Fig. 8. Comparison with RAND-VQ. Trade-off between
coding time and Mean AP is reported. NTN-VQ: neighbor-
to-neighbor (NTN) search for VQ, this is the same plot as
Figure 7, ANN-VQ: approximate nearest neighbor search
[20], RF-VQ: random forests [38], [39], RAND-VQ: NTN-
VQ in which a neighbor vector is replaced by a randomly
sampled vector.

Fig. 9. Comparison of the accumulated distance and
the direct distance. VQ error rate in NTN-VQ for different
values of δ is reported. All plots are for δ = 1.0, 0.9, · · · 0.1,
0.09, · · · 0.01. Accumulated distance: ∆ij is defined by
Eq. (6). Direct distance: ∆ij is replaced by the direct
distance ‖xi − xj‖. Pre-computed direct distance: the
direct distance is used but distance calculations for it are
not counted.

approximation since we can skip some summations in pooling
if cik is equal to zero.

Here we consider the costs to extract image representation.
However, for large-scale image classification, we should con-
sider the SVM-classification cost, which is negligible in our
experiments on PASCAL VOC with 20 categories. To reduce
the SVM-classification cost, applying dimension reduction
techniques such as product quantization [42] to the final image
representation can be effectively utilized.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

Fig. 10. The computational cost reduction by NTN-VQ for different images. Eight images are from PASCAL VOC
2007. The reduction rate of the coding cost by NTN-VQ and ANN-VQ for each image is reported.

Fig. 11. Speed-accuracy trade-off for different codebook
sizes. Trade-off between coding time and Mean AP for
codebook sizes of K = 2048, 1024, 512, · · · , 16. is re-
ported. VQ: standard hard vector quantization (VQ), NTN-
VQ: neighbor-to-neighbor (NTN) search for VQ δ = 0.20,
GMM: standard Gaussian mixture model (GMM), NTN-
GMM: NTN search for a GMM δ = 0.09, NTN-LM-GMM:
NTN-GMM with the log-max approximation δ = 0.09.

7.2 Experiments on TRECVID 2010

7.2.1 Exprimental setup

The dataset of the TRECVID 2010 Semantic Indexing Task
consists of 400 hours of Internet archive videos with creative
commons licenses. Shot boundaries are automatically detected
and provided with video data. The task is to detect 30 semantic

Fig. 12. Relative computational cost. Computational cost
for each step to extract super-vector (SV) representation
and Fisher-vector (FV) representation is reported. The
codebook size is 512. Feature extraction: SIFT descrip-
tors are extracted from every 4 pixels at 5 scales, Coding:
each descriptor is assigned to codeword(s), Pooling: an
SV or FV image representation is generated. 85.3%,
56.6%, 88.4%, 65.4% and 64.2% of computational time is
occupied from coding by VQ, NTN-VQ, GMM, NTN-GMM,
and NTN-LM-GMM, respectively. Total computational cost
is reduced by 66.0%, 66.5% and 85.3% by NTN-VQ,
NTN-GMM, and NTN-LM-GMM, respectively.

concepts including objects, events, and scenes from video
shots. The number of video shots is 119,685 for training, and
146,788 for testing. We use Mean Average Precision (Mean
AP) over the 30 semantic concepts for evaluating detection
accuracies. The AP is estimated by using a method called
inferred average precision, which is the official evaluation
measure of the TRECVID 2010 Semantic Indexing Task.

We implement NTN-GMM (Alg. 2) and NTN-LM-GMM
with GMM-supervector (GS) representation, which has shown
to be effective for video semantic indexing in [54]. See
Appendix for the definition of the GS representation.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

Method Mean AP Time (msec) Reduction (%)
GMM *0.0887 18088.7 0.0
NTN-GMM 0.0893 3484.5 80.7
NTN-LM-GMM 0.0881 1542.9 91.5

TABLE 5
Speed comparison on TRECVID 2010. GMM: standard

Gaussian mixture model (GMM), NTN-GMM: NTN
search for a GMM (Alg. 2, δ = 0.09), NTN-LM-GMM:

NTN-GMM with log-max approximation δ = 0.09.

We extract the same image descriptors as the PASCAL VOC
2007 from at most 100 image frames per a video shot. A
GS representation is obtained from all descriptors in a video
shot. The other experimental conditions are the same as the
PASCAL VOC 2007.

7.2.2 Speed of coding
From the TRECVID dataset, comparable results with those
on the PASCAL VOC dataset (Subsec 7.1.2) are obtained as
shown in Table 5, which compares speed of coding using
GMM, NTN-GMM, and NTN-LM-GMM. The reduction rate
of the coding cost is 80.7% and 91.5% for NTN-GMM and
NTN-LM-GMM, respectively. While NTN-GMM or NTN-
LM-GMM works slightly better than the standard GMM in
terms of accuracy for some semantic concepts, there is no sta-
tistically significant difference between them (randomization
test, p < 0.05). We conclude that our NTN algorithm effec-
tively reduces the computational cost without any significant
degradation.

7.2.3 Definition of neighbor vectors
Since video has two spatial and one time dimensions, we
extend the definitions of neighbor vectors in Table 3 to those
in the three dimensional space in Table 6. The best choice is
to use the six points adjacent to a point for a descriptor x
as a set of neighbor vectors B(x), since two descriptors on
adjacent points in the time axis are often very similar to each
other if they are extracted from a static background in video.

8 CONCLUSION
We have proposed a fast computation method for searching
for the matches, neighbor-to-neighbor (NTN) search, and its
applications to vector quantization (VQ), a Gaussian mixture
model (GMM), sparse coding, and a kernel codebook. Our
experiments on the PASCAL VOC 2007 classification chal-
lenge showed that NTN-VQ and NTN-LM-GMM reduced
the coding cost by 77.4%, and 89.3%, respectively, without
any significant degradation in the image classification perfor-
mance. We also confirmed the effectiveness of the NTN search
on the TRECVID 2010 Semantic Indexing Task.

In future work, we will focus on applications of NTN search
to deep architectures such as deep convolutional neural net-
works, and deep learning using Fisher vectors. Approximation
of deep learned features densely sampled in convolutional
layers would be interesting as a promising next step.

(c) (h) (i)
Neighbors B(x)

|B(x)| 4 6 26
∆i,i+1 116.2 82.0 101.5
Time (msec) 1542.9 1267.3 1512.9
Reduction (%) 91.5 93.0 91.6

TABLE 6
Speed comparison using different types of neighbor

vectors on TRECVID 2010. The row of “Neighbors B(x)”
illustrates the definition of neighbor vectors. A white node
and black nodes denote a point on a grid for a descriptor

x and its neighbor points, respectively. (c) uses four
points adjacent to x which is the best choice in Table 3,
(h) uses six points adjacent to x in a spatial-temporal

space on video data, (i) uses twenty six points adjacent
to x. |B(x)|: the number of neighbor vectors, min∆(x):

the minimum distance between x and its neighbor vector,
Time: coding time in msec, Reduction: reduction rate of

the coding cost by NTN-LM-GMM.

REFERENCES

[1] N. Inoue and K. Shinoda. Neighbor-to-neighbor search for fast coding
of feature vectors. Proc. ICCV, pp. 1233–1240, 2013. 1, 2

[2] G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. Visual
categorization with bags of keypoints. Proc. ECCV SLCV workshop,
pp. 59–74, 2004. 1, 2

[3] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
In IJCV, vol. 60(2), pp. 91–110, 2004. 1, 2

[4] H. Wang, A. Klaser, C. Schmid, and C.-L. Liu. Dense trajectories and
motion boundary descriptors for action recognition. In IJCV, vol. 103(1),
pp. 60–79, 2013. 1

[5] A. Habibian, T. Mensink, and C.G.M. Snoek. VideoStory: a new
multimedia embedding for few-example recognition and translation of
events. Proc. ACM Multimedia, 2014. 1

[6] C. Gao, D. Meng, W. Tong, Y. Yang, Y. Cai, H. Shen, G. Liu, S. Xu,
and A. G. Hauptmann. Interactive surveillance event detection through
mid-level discriminative representation. Proc. ICMR, 2014. 1

[7] C. Ellis, S.Z. Masood, M.F. Tappen, J.J. Laviola, and R. Sukthankar.
Exploring the trade-off between accuracy and observational latency in
action recognition. In IJCV, vol. 101(3), pp. 420–436, 2013. 1

[8] J. Luo, W. Wang, and H. Qi. Group sparsity and geometry constrained
dictionary learning for action recognition from depth maps. Proc. ICCV,
2013. 1

[9] M. Ovsjanikov, W. Li, L. Guibas, and N. J. Mitra. Exploration of
continuous variability in collections of 3d shapes. ACM Trans. Graph.,
vol. 30(4), pp. 1–10, 2011. 1

[10] R. Xu, and D. Wunsch II. Survey of clustering algorithms. IEEE Trans.
on Neural Networks, vol. 16(3), pp. 645–678, 2005. 1

[11] C.G.M. Snoek, and M. Worring. Concept-based video retrieval. Foun-
dations and Trends in Information Retrieval, 2009. 1

[12] A. Gersho, and R. M. Gray. Vector quantization and signal compression.
Kluwer Academic Publishers, 1992. 1, 2

[13] S. P. Lloyd. Least squares quantization in PCM. IEEE Trans. on
Information Theory, vol. 28(2), pp. 129–137, 1982. 1, 2

[14] J. C. V. Gemert, J.-m. Geusebroek, C. J. Veenman, and A. W. M.
Smeulders. Kernel codebooks for scene categorization. Proc. ECCV,
pp. 696–709, 2008. 1, 2, 7, 8

[15] F. Perronnin, C. Dance, G. Csurka, and M. Bressan. Adapted vocabular-
ies for generic visual categorization. Proc. ECCV, pp. 464–475, 2006.
1, 2

[16] N. Inoue and K. Shinoda. A fast map adaptation technique for
GMM-supervector-based video semantic indexing systems. Proc. ACM
Multimedia, pp. 1357–1360, 2011. 1, 2, 7, 8

[17] N. Inoue, and K. Shinoda. q-Gaussian mixture models for image and

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

video semantic indexing. Elasevier JVCI, vol. 24(8), pp. 1450–1457,
2013. 1, 4

[18] J. S. Beis and D. G. Lowe. Shape indexing using approximate nearest-
neighbour search in high-dimensional spaces. Proc. CVPR, pp. 1000–
1006, 1997. 1

[19] C. Silpa-anan and R. Hartley. Optimised kd-trees for fast image
descriptor matching. Proc. CVPR, pp. 1–8, 2008. 1, 2

[20] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. Proc. VISAPP, pp. 331–340, 2009.
1, 2, 7, 8, 10

[21] X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification using
super-vector coding of local image descriptors. Proc. ECCV, pp. 141–
154, 2010. 1, 2, 3, 7, 14

[22] F. Perronnin, S. Jorge, and T. Mensink. Improving the fisher kernel for
large-scale image classification. Proc. ECCV, pp. 143–156, 2010. 1, 2,
3, 4, 7, 14

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification
with deep convolutional neural networks. Proc. NIPS, 2010. 1

[24] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep Fisher betworks for
large-scale image classification. Proc. NIPS, 2013. 1

[25] V. Sydorov, M. Sakurada, and C.H. Lampert. Deep Fisher kernels – end
to end learning of the Fisher kernel GMM parameters. Proc. CVPR,
2014. 1, 2

[26] Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless
pooling of deep convolutional activation features. Proc ECCV, 2014. 1

[27] J. Y. Ng, F. Yang, and L. S. Davis. Exploiting local features from deep
networks for image retrieval. Proc. CVPR workshop on Deep Vision,
2015. 1

[28] F. Perronnin, and D. Larlus. Fisher vectors meet neural networks: a
hybrid classification architecture. Proc. CVPR, 2015. 1, 2

[29] C.G.M. Snoek, K.E.A. van de Sande, D. Fontijne, S. Cappallo,
J. van Gemert, A. Habibian, T. Mensink, P. Mettes, R. Tao, D.C. Koelma,
and A.W.M. Smeulders. Video concept detection by deep nets with
FLAIR (Mediamill at TRECVID 2014: searching concepts, objects,
instances and events in video). Proc. TRECVID workshop, 2014. 2

[30] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-
constrained linear coding for image classification. Proc. CVPR, pp.
3360–3367, 2010. 2, 6, 7, 8

[31] J. H. Freidman, J. L. Bentley, and R. A. Finkel. An algorithm for
finding best matches in logarithmic expected time. In ACM Trans. on
Mathematical Software, vol. 3(3), pp. 209–226, 1977. 2

[32] R. F. Sproull. Refinements to nearest-neighbor searching in k-
dimensional trees. In Algorithmica, vol. 6(1), pp. 579–589, 1991. 2

[33] P. Ciaccia, M. Patella, and P. Zezula. M-tree: an efficient access method
for similarity search in metric spaces. Proc. VLDB, 1997. 2

[34] J. Uhlmann. Satisfying general proximity/similarity queries with metric
trees. In Elsevier Information Processing Letters, vol.40(4), pp.175–179,
1991. 2

[35] S. M. Omohundro. Efficient algorithms with neural network behavior.
In Complex Systems, vol.1(2), pp.273–347, 1987. 2

[36] S. M. Omohundro. Five balltree construction algorithms. ICSI Technical
Report, TR-89-063, 1989. 2

[37] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree.
Proc. CVPR, pp. 2161–2168, 2006. 2

[38] F. Moosmann, E. Nowak, and F. Jurie. Randomized clustering forests for
image classification. IEEE Trans. on PAMI, vol. 30(9), pp. 1632–1646,
2008. 2, 7, 8, 10

[39] J. R. R. Uijlings, A. W. M. Smeulders, and R. J. H. Scha. Real-Time
Visual Concept Classification. IEEE Trans. on Multimedia, vol. 12(7),
pp.665–681, 2010. 2, 7, 8, 10

[40] H. Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of Educational Psychology, vol. 24(6), pp. 417–
441, 1933. 2

[41] R. A. Fisher. The use of multiple measurements in taxonomic problems.
Annals of Eugenics Journal, vol. 7(7), pp. 179–188, 1936. 2

[42] H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest
neighbor search. IEEE Trans. on PAMI, vol. 33(1), pp. 117–128, 2011.
2, 10

[43] T. Huang. Linear spatial pyramid matching using sparse coding for
image classification. Proc. CVPR, pp. 1794–1801, 2009. 2

[44] H. Bristow, A. Eriksson, and S. Lucey. Fast convolutional sparse coding.
Proc. CVPR, pp. 391–398, 2013. 2

[45] T. Guha and R. Ward. Learning sparse representations for human action
recognition. IEEE Trans. on PAMI, vol. 34(8), pp. 1576–88, 2012. 2

[46] X. Zhao, X. Li, C. Pang, X. Zhu, and Q. Z. Sheng. Online human
gesture recognition from motion data streams. Proc. ACM Multimedia,
pp. 23–32, 2013. 2

[47] N. Dalal and W. Triggs. Histograms of oriented gradients for human
detection. Proc. CVPR, pp. 886–893, 2004. 2

[48] K. van de Sande, T. Gevers, and C. Snoek. Evaluating color descriptors

for object and scene recognition. IEEE Trans. on PAMI, vol. 32(9), pp.
1582–1596, 2010. 2

[49] X. Wang, T. X. Han, and S. Yan. An HOG-LBP human detector with
partial occlusion handling. Proc. ICCV, pp. 32–39, 2009. 2

[50] T. Jaakkola and D. Haussler. Exploiting generative models in discrimi-
native classifiers. Proc. NIPS, pp. 487–493, 1998. 2

[51] F. Perronnin and et al. Fisher kernels on visual vocabularies for image
categorization. Proc. CVPR, 2007. 2

[52] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is
in the details: an evaluation of recent feature encoding methods. Proc.
BMVC, pp. 1–12, 2011. 3, 7, 8

[53] C.G.M. Snoek, K.E.A. van de Sande, D. Fontijne, A. Habibian, M. Jain,
S. Kordumova, Z. Li, M. Mazloom, S.L. Pintea, R. Tao, D.C. Koelma,
and A.W.M. Smeulders. The mediamill at trecvid 2013: searching
concepts, objects, instances and events in video. Proc. TRECVID
workshop, 2013. 3

[54] N. Inoue, Y. Kamishima, T. Wada, K. Shinoda, and S. Sato. Semantic
indexing using gmm supervectors and tree-structured GMMs (Toky-
oTech+Canon at TRECVID 2011). Proc. TRECVID workshop, 2011.
3, 11

[55] W. M. Campbell, D. E. Sturim, and D. A. Reynolds. Support vector
machines using gmm supervectors for speaker verification. IEEE Signal
Processing Letters, vol. 13, pp. 308–311, 2006. 3, 14

[56] S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman The Pascal visual object classes challenge: a retrospective. In
IJCV, vol. 111(1), pp. 98–136, 2014. 7

APPENDIX

Upper bound of a Guassian probability

The upper bound pjk of the probability (Eq. (13)) is delivered
as follows. The law of cosines gives

∃δ∗ ∈ [−1, 1] s.t. ‖xj − µk‖2
Σ−1

k
(32)

= ‖xi − µk‖2
Σ−1

k
+ ‖xi − xj‖2

Σ−1
k

− 2δ∗‖xi − xj‖Σ−1
k
‖xi − µk‖Σ−1

k
.

For δ ≥ max(δ∗, 0), it implies

‖xj − µk‖2
Σ−1

k
≥ ‖xi − µk‖2

Σ−1
k

− 2Skδ‖xi − xj‖‖xi − µk‖Σ−1
k

≥ ‖xi − µk‖2
Σ−1

k
− 2Skδ∆ij‖xi − µk‖Σ−1

k
,

(33)

where Sk is the square root of the spectral radius of Σ−1
k and

∆ij is the accumulated distance given by Eq. (6). Thus, we
have

pjk=
wk

Zk
exp

(
−1

2
‖xj − µk‖2

Σ−1
k

)
(34)

≤ wk

Zk
exp

(
−1

2
‖xi − µk‖2

Σ−1
k

+ Skδ∆ij‖xi − µk‖Σ−1
k

)

(35)

= pik exp
(
Skδ∆ij‖xi − µk‖Σ−1

k

)
(36)

= pik exp (δik∆ij) = pjk, (37)

where Zk = (2π) d
2 |Σk|

1
2 and δik is given in Eq.(14).

Image representations

Let X = {xi}N
i=1 be a set of d-dimensional input vectors. Here

we review the definition of each representation method used in
the experiments. In the following, {µk}K

k=1 and {wk, µk,Σk}
denote codebooks for VQ and a GMM, respectively.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

Histogram representation
Histogram representation is a histogram of quantized input
vectors given by

φHist(X) =

C1

C2
...

CK

. (38)

Here Ck is a count for the k-th visual word given by

Ck =
N∑

i=1

cik, (39)

where

cik =

1, if k = argmin

k
‖xi − µk‖,

0, otherwise.
(40)

The dimension of the Histogram representation is K.

LLC coding
LLC coding, which is obtained by max-pooling, is given by

φLLC(X) =

M1

M2
...

MK

. (41)

where

Mk = max
i

cik. (42)

Here cik is a code given by Eq.(21). The dimension of this
representation is K.

Super-vector representation
Super-vector representation [21], which captures the first order
differences between input vectors and codewords in addition
to the histogram, is given by

φSV(X) =

[
s
√

Ck/N ;
1√

Ck/N

N∑

i=1

cik(xi − µk)

]K

k=1

(43)

where s is a parameter, cik and Ck are given by Eq. (40)
and (42), respectively. Here, [;]Kk=1 denotes concatenation of
vectors in the bracket for k = 1, 2, · · · ,K. The dimension of
this vector is K(d + 1).

Fisher-vector representation
Fisher-vector representation [22] captures the first and second
order differences between input vectors and codewords by
using a GMM. It is given by

φFV(X) =

[
1

N
√

wk

N∑

i=1

cik

(
xi − µk

σk

)
; (44)

1
N
√

2wk

N∑

i=1

cik

(
(xi − µk)2

σ2
k

− 1
)]K

k=1

(45)

where cik is a code given by Eq. (10), σk is a vector of
diagonal elements of Σk, division between vectors is an
element-wize operation. The dimension of Fisher vector is
2Kd.

GMM-Supervector representation
GMM-supervector representation [55] is similar to the Fisher-
vector representation, but it uses a robust parameter estima-
tion technique, maximum-a-posteriori (MAP) estimation. It is
given by

φGS(X) =

[√
wk

τ + Ck

N∑

i=1

cikΣ
− 1

2
k (xi − µk)

]K

k=1

(46)

where τ is a parameter of the MAP estimation, cik is a code
given by Eq. (10), and

Ck =
N∑

i=1

cik. (47)

The dimension of GMM supervector is Kd.

PLACE
PHOTO
HERE

Nakamasa Inoue received the B.S., M.S. and
D.Eng. degrees in computer science from Tokyo
Institute of Technology, Tokyo, Japan, in 2009,
2011, and 2014, respectively. He is currently
an assistant professor with Tokyo Institute of
Technology. His research interests include mul-
timedia information retrieval, statistical pattern
recognition, visual and audio categorization, and
large-scale benchmark evaluations. He is a
member of the IEEE, IEICE and ASJ.

PLACE
PHOTO
HERE

Koichi Shinoda received the B.S. and M.S.
degrees from the University of Tokyo, Tokyo,
Japan in 1987 and 1989, respectively, both in
physics, and the D. Eng. Degree in computer
science from the Tokyo Institute of Technology,
Japan, in 2001. In 1989, he joined NEC Corpo-
ration, Japan, where he was involved in research
on automatic speech recognition. From 1997 to
1998, he was a Visiting Scholar with Bell Labs,
Lucent Technologies, Murray Hill, NJ. From June
2001 to September 2001, he was a Principal

Researcher with Multimedia Research Laboratories, NEC Corporation.
From October 2001 to March 2002, he was an Associate Professor
with the University of Tokyo, Japan. He is currently a Professor with
the Tokyo Institute of Technology. His research interests include speech
recognition, video information retrieval, statistical pattern recognition,
and human interfaces. He received the Awaya Prize from the Acoustic
Society of Japan in 1997 and the Excellent Paper Award from the IEICE
in 1998. He was Publicity Chair in INTERSPEECH2010, Video Program
Co-Chair in ACM Multimedia 2012. Dr. Shinoda is a senior member
of IEEE, IEICE. He is a member of ACM, IPSJ, JSAI, and ASJ. He is
currently an associate editor of Computer Speech and Language and
Speech Communication, Elsevier.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 15

SUPPLEMENTARY MATERIAL
Comparison with Harris-Laplace Detector
To reduce the computational cost of image/video classification, another way is to introduce an interest-point detector. For
example, by introducing the Harris-Laplace detector, which extracts corner points from an image, we obtain a smaller number
of image descriptors than that in dense sampling. Table 7 compares NTN-VQ with Harris-Laplace detector on the PASCAL
VOC 2007. The threshold of the detector is optimized to compare results at the same computational cost. We see that the
NTN-VQ performs better than the Harris-Laplace detector in terms of Mean AP. This shows that it is better to reduce the
coding cost than to reduce the number of descriptors by applying an interest-point detector. Note that since NTN search and
interest-point detectors are complementary to each other, NTN search can be introduced to detector-based applications.

Average Precision by Objects/Concepts
Table 8 and 9 show Average Precision for each object/concept on PASCAL VOC and TRECVID datasets, respectively.

Method N Time (msec) Mean AP
Dense sampling 49580 856.2 0.568
Dense sampling + NTN 11188 193.2 0.563
Harris-Laplace 11680 201.7 0.453

TABLE 7
Comparison with Harris-Laplace detector. N : the number of image descriptors (the average number of processed
descriptors for NTN). Time: coding time in msec. Mean AP: mean of Average Precisions on PASCAL VOC 2007

obtained by using super-vector coding.

Object VQ NTN-VQ GMM NTN-GMM NTN-LM-GMM
Aeroplane 0.782 0.778 0.790 0.793 0.790
Bicycle 0.643 0.642 0.638 0.632 0.634
Bird 0.493 0.485 0.506 0.503 0.496
Boat 0.679 0.677 0.703 0.699 0.699
Bottle 0.261 0.215 0.277 0.284 0.285
Bus 0.615 0.621 0.640 0.637 0.634
Car 0.757 0.754 0.768 0.765 0.764
Cat 0.590 0.587 0.579 0.571 0.575
Chair 0.534 0.541 0.545 0.544 0.545
Cow 0.441 0.445 0.463 0.458 0.461
DiningTable 0.552 0.533 0.536 0.535 0.542
Dog 0.392 0.368 0.439 0.439 0.438
Horse 0.757 0.750 0.768 0.771 0.769
Motorbike 0.654 0.648 0.685 0.677 0.674
Person 0.814 0.813 0.828 0.826 0.827
PottedPlant 0.263 0.246 0.276 0.273 0.270
Sheep 0.415 0.451 0.415 0.422 0.424
Sofa 0.464 0.472 0.524 0.523 0.515
Train 0.749 0.748 0.773 0.768 0.769
TvMonitor 0.495 0.488 0.478 0.476 0.473
Mean AP 0.568 0.563 0.582 0.580 0.579

TABLE 8
Average Precision by objects on the PASCAL VOC 2007 Classification Challenge. Super-vector representation is
used for VQ and NTN-VQ. Fisher-vector representation is used for GMM, NTN-GMM, and NTN-LM-GMM. VQ:

standard hard vector quantization (VQ), NTN-VQ: our neighbor-to-neighbor (NTN) search for VQ (Alg. 1), GMM:
standard Gaussian mixture model (GMM), NTN-GMM: NTN search for a GMM (Alg. 2), NTN-LM-GMM: NTN-GMM

with log-max approximation.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 16

Semantic Concept GMM
NTN-
GMM

NTN-LM-
GMM

Airplane Flying 0.1085 0.1007 0.1029
Animal 0.0577 0.0530 0.0512
Asian People 0.0162 0.0272 0.0242
Bicycling 0.0676 0.0690 0.0644
Boat Ship 0.0945 0.0999 0.0906
Bus 0.0027 0.0027 0.0027
Car Racing 0.0265 0.0275 0.0271
Cheering 0.0119 0.0131 0.0130
Cityscape 0.1457 0.1460 0.1468
Classroom 0.0136 0.0141 0.0139
Dancing 0.0425 0.0362 0.0364
Dark-skinned People 0.1376 0.1219 0.1161
Demonstration Protest 0.1349 0.1507 0.1374
Doorway 0.0998 0.0996 0.0999
Explosion Fire 0.0309 0.0298 0.0271
Female Face 0.1407 0.1477 0.1506
Flowers 0.0267 0.0286 0.0269
Ground Vehicles 0.2176 0.2201 0.2111
Hand 0.0409 0.0524 0.0520
Mountain 0.2368 0.2306 0.2346
Nighttime 0.1136 0.1039 0.0931
Old People 0.0417 0.0448 0.0450
Running 0.0729 0.0719 0.0736
Singing 0.0842 0.0923 0.0950
Sitting Down 0.0002 0.0005 0.0005
Swimming 0.3351 0.3403 0.3440
Telephones 0.0063 0.0053 0.0054
Throwing 0.0457 0.0467 0.0479
Vehicle 0.2145 0.2064 0.2135
Walking 0.0927 0.0960 0.0964
Mean AP 0.0887 0.0893 0.0881

TABLE 9
Average Precision on the TRECVID 2010 Semantic Indexing Task. GMM: standard Gaussian mixture model (GMM),

NTN-GMM: NTN search for a GMM (Alg. 2, δ = 0.09), NTN-LM-GMM: NTN-GMM with log-max approximation
δ = 0.09. GS representation is used.

