T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	
Title(English)	Prediction Method for Quasi-Static Component Response of High-Rise Seismic Isolated Building under Fluctuating Wind Force
著者(和文)	
Authors(English)	Keisuke Yoshie, Daiki Sato, Toshiaki Sato, Haruyuki Kitamura
出典(和文)	日本風工学会論文集, Vol. 41, No. 2, pp. 41-47
Citation(English)	Journal of Wind Engineering, Vol. 41, No. 2, pp. 41-47
発行日 / Pub. date	2016, 4

変動風力を受ける超高層免震建物の準静的成分の応答予測手法 Prediction Method for Quasi-Static Component Response of High-Rise Seismic Isolated Building under Fluctuating Wind Force

小川諒^{*1} 吉江慶祐^{*2} 佐藤大樹^{*3} 佐藤利昭^{*4} 北村春幸^{*5} Ryo OGAWA, Keisuke YOSHIE, Daiki SATO, Toshiaki SATO, Haruyuki KITAMURA

SUMMARY

Recently, response evaluation of a high-rise seismic isolated building against the wind external force within elasto-plastic range has been requested. In the elasto-plastic response case, shifts of center displacement which are showing change in very long period like a step-function are caused. The response time history is separated to resonance component and quasi-static component and examined. From the time history analysis results, we could verify that the shift of the change center displacement is caused by the resonance component. This paper proposes a prediction method for quasi-static component response caused by the shifts of center displacement of a high-rise seismic isolated building under the fluctuation wind force. Its accuracy is demonstrated through comparison with time history analysis results.

key words: high-rise seismic isolated building, wind force, elasto-plastic response, quasi-static component

1. はじめに

建築物の耐風設計は,部材の塑性化を許容する耐震設計とは異なり,建築物が弾性的に挙動することを前提として行われている¹⁾。これは,風外力の継続時間が地震に

比べて遙かに長いため,部材を塑性化させた場合の疲労 に対する研究が十分に進んでいないことが要因の一つと して挙げられる。しかし,近年建設された超高層免震建 物^{例にば2)}では,設計時に想定する風力に対して免震層の塑

- *1 株式会社シグマクシス(元東京理科大学)・修士(工学) SIGMAXYZ Inc., M. Eng.
- *2 株式会社日建設計 構造設計部長・博士 (工学) General Manager, Nikken Sekkei Ltd., Dr. Eng.
- *3 東京工業大学 科学技術創成研究院 未来産業技術研究所 准教授・博士 (工学) Associate Professor, FIRST, Tokyo Institute of Technology, Dr. Eng.
- *4 九州大学大学院 人間環境学研究院 准教授・博士 (工学) Associate Professor, Faculty of Human-Environmental Studies, Kyushu University, Dr. Eng.
- *5 東京理科大学 理工学部建築学科 教授・博士 (工学) Professor, Department of Architecture, Tokyo University of Science, Dr. Eng.

性化を許容する設計も行なわれている³。このような超高 層免震建物について,風外力に対する弾塑性範囲の応答 評価が求められている⁴。

文献 5 では、エネルギーの釣合に基づく平均成分を有 しない風直交方向風力に対する超高層免震建物の弾塑性 風応答予測手法を提案し、その有効性を示している。こ の手法は応答の共振成分のみを対象としており、準静的 成分による特徴的な挙動は考慮されていない。そのため、 準静的成分の影響が比較的大きくなる免震層の塑性化の 小さい範囲において、予測精度が低下することが確認さ れている⁵。免震建物の応答評価において、免震層の塑性 繰り返しによる疲労や残留変形は無視しえない現象であ り、応答予測手法の実用化には、準静的成分の応答評価・ 予測手法の構築が必要となる。

本論文では前述したような文献 5 の応答予測手法の適 用範囲を拡張すべく、平均成分を有しない変動風力に対 する準静的成分の応答予測手法を提案し、時刻歴応答解 析により提案手法の妥当性を確認することを目的とする。

2. 解析モデルおよび風外力の概要

2.1 解析モデル

本論文では、1次モードが直線のとなる上部構造(固有 周期 $_{u}T_{0}=5$ 秒)に、免震層を設定した11質点せん断型モ デルによる時刻歴応答解析結果を基に検証する。図1に 対象モデルの概要を示す。上部構造の構造減衰はh=0.02の剛性比例型とし、免震層には内部粘性を考慮しない。 図2に、ダンパー(添え字d)、アイソレータ(添え字f) およびそれらを組み合わせた免震層(添え字b)のせん

断力 *Q* と変形 *δ* の関係を示す。本論文では、ダンパーは 2 次剛性を有しない完全弾塑性型、アイソレータは線形の 復元力特性を有するものとする。ダンパーおよびアイソ レータの諸元は式(1) ~ (3)を用いて決定される。

 ${}_{d}Q_{y} = ({}_{u}W + {}_{b}W) \cdot {}_{d} \alpha_{y} \tag{1}$

$$_{d}k_{1} = _{d}Q_{y}/_{d}\delta_{y} \tag{2}$$

$${}_{f}k_{1} = \frac{4\pi^{2}({}_{u}W + {}_{b}W)}{{}_{f}T^{2} \cdot g}$$
(3)

ここで、 $_dQ_y$: ダンパーの降伏せん断力、 $_uW$: 上部構造の 重量、 $_bW$: 免震層の重量、 $_dk_1$: ダンパーの初期剛性、 $_d\delta_y$: ダンパーの降伏変位(= 27.8 mm)、 $_fk_1$: アイソレータの 剛性、 $_fT$: 免震周期(= 6秒)、g: 重力加速度である。 免震層の1次剛性 $_bk_1$ は $_bk_1 = _dk_{1+f}k_1$ となる。ダンパーが 完全弾塑性型であるため、免震層の2次剛性 $_bk_2$ は $_bk_2 = _fk_1$ となる。 $_bk_2 = _fk_1$ の剛性比 α と呼ぶ。免震層の降伏せん断 力 $_bQ_y$ は $_bQ_y = _dQ_y + _fk_1 _d\delta_y$ で表現される。免震層の降伏変 形 $_b\delta_y$ はダンパーの降伏変形と等しく、 $_b\delta_y = _d\delta_y$ となる。

以降では、式(1)のダンパー降伏せん断力係数 $_{d} \alpha_{y} e^{\phi}$ ンパー量とよび、 $_{d} \alpha_{y} = 0.02 \sim 0.1$ の範囲について 0.02 刻みでダンパー量を設定し、時刻歴応答解析を行う。

2.2 風外力の概要

解析モデルに作用させる風外力には、風洞実験[¬]より得られた風直交方向風力を用いた。実験気流は「建築物荷 重指針・同解説」¹⁾の地表面粗度区分 III の気流を目標に 作成されたものである。実験模型は縮尺 1/400 とし、高さ $H_m = 50$ cm, 辺長比 $D_m/B_m = 1.0$, 平面積 $A_m = 100$ cm² の角柱模型を用いて、層風力を 10 層分測定した。実建 物での風速として、再現期間 500 年に相当するレベル

(頂部風速 $U_H = 63.8 \text{ m/s}$)を想定した。検討用風力波 形は、0.05 秒刻み 13,000 ステップの 10 質点分の変動層 風力波形を 1 組とし、風洞実験結果から評価時間部分 が重ならないように 650 秒×30 組を取り出した。解析 開始時の過渡応答の影響を避けるため、各風力波形の 先頭 50 秒にエンベロープを設けた後、50 ~ 650 秒の 10 分間の応答を用いる。本論文では、30 波のアンサン ブル平均により解析結果を評価した⁸。

3. 免震層変位の応答性状

3.1 成分分離方法

本論文では免震層応答に着目するため、以降、特に 断りの無い限りせん断力および応答については免震層 を対象とする。図3に、免震層に作用するせん断力の パワースペクトル密度 $S_Q(f)$ を示す。図3に示すように、 パワースペクトル密度は、図中に示す境界振動数 f_{Bound} を境に準静的成分(添字 B で表す)と共振成分(添字 Rで表す)に分離することができる⁹。本論文では文献 9 に倣い、 f_{Bound} を、免震層を含めた建物全体の1次固有振 動数 $_1f$ の1/3の振動数として、共振成分を1次共振成分 と高次の共振成分に分解し検討を行なう。

3. 2 応答変位性状

図 4,5 に, _d α_v = 0.06 における弾性および弾塑性時刻 歴応答解析より得られた免震層の変位時刻歴波形を, 前 述の方法で全成分,1次共振成分,準静的成分に分離して 示す。なお、図 5 中の破線は、ダンパーの降伏変位 $d\delta_v$ を示す。図4に着目すると、弾性解析時では準静的成分 の応答が小さく、全成分の応答は1次共振成分が支配的 となっていることが確認できる。一方で、図5に着目す ると, 弾塑性解析時における, 全成分の応答は, 準静的 成分の振動を中心として、1次共振成分が足し合われさる ことで構成されていることが分かる。また、準静的成分 の応答のみで降伏変位 $d\delta_v$ を超えており、変動中心変位の シフトが生じている。変動中心変位のシフトは、全成分 の変形がダンパー降伏変形 doyを大きく超え,1次共振成 分に大きな振幅が発生した際に生じていることが確認で きる。したがって、準静的成分の応答評価・予測を行な う際は、変動中心変位のシフトを生じさせる共振成分の 評価も同時に行なう必要があることが確認された。

図6に、ダンパー量を変化させた場合における、弾性お よび弾塑性時刻歴応答解析より得られた免震層における 応答変位準静的成分の標準偏差 σ_{xb} の変化を示す。図6よ り、弾塑性時における応答変位準静的成分の標準偏差は弾 性時の10倍以上の値を示していることが分かる。本検討 範囲において、 $d\alpha_y = 0.04$ 以上で変動中心変位のシフトが 顕著に発生することを確認しているため^{11,12}、以降ではd

α_v=0.04以上についての検証結果を示す。

4. 応答変位ピークの確率密度分布の予測手法

前章において、応答変位の準静的成分を評価・予測す るためには、応答変位の共振成分の評価が必要であるこ とを示した。吉江らは1質点系において、等価線形系を 用いて応答変位ゼロクロスピーク値、ゼロクロスピー ク・ピーク値確率密度関数を予測している¹³⁾。本節では、 吉江らの手法を応用し、多質点系モデルにおける免震層 の弾塑性風応答時における変位1次共振成分の確率密度 分布の予測を行なう。

4.1 予測手法

弾塑性系 1 次共振成分ゼロクロスピーク変位 $x_{R,p}$ と対応する等価線形系ゼロクロスピーク変位 $_{eq1}x_{R,p}$ の関係は

次式で表される 13)。

$$\frac{1}{2}k_{eq}\cdot_{eq1}x_{R,p}^{2} = \begin{cases}
\frac{1}{2}{}_{b}k_{1}\cdot_{1}x_{R,p}^{2} & ({}_{1}x_{Ri,p}\leq_{d}\delta_{y}) \\
\frac{1}{2}\alpha_{b}k_{1}\cdot_{1}x_{R,p}^{2} + (1-\alpha)_{b}k_{1}\cdot_{b}\delta_{y}\cdot_{1}x_{R,p} - \frac{1}{2}(1-\alpha)_{b}k_{1}\cdot_{b}\delta_{y}^{2} \\
& ({}_{1}x_{R,p}>_{b}\delta_{y})
\end{cases}$$
(4)

ここで、keq:等価バネ係数であり次式により求める¹³⁾。

$$k_{eq} = {}_{b}k_{1} \left\{ 1 - (1 - \alpha)e^{-\frac{d \delta_{y}^{2}}{2_{1}\sigma_{Rx}^{2}}} + (1 - \alpha)\sqrt{\frac{\pi}{2}} \frac{d \delta_{y}}{2_{1}\sigma_{Rx}} \left[1 - \operatorname{erf}\left(\frac{d \delta_{y}}{\sqrt{2}_{1}\sigma_{Rx}}\right) \right] \right\}$$
(5)

 $1\sigma_{Rx}$ は応答変位 1 次共振成分の標準偏差であり、本論文 では予測式の妥当性を検証するため、時刻歴応答解析結 果を用いる。弾塑性系の 1 次共振ゼロクロスピーク変位 $1x_{Ri,p}$ の発生確率 $p(1x_{R,p})$ は、対応する等価線形系の 1 次 共振ゼロクロスピーク変位 $eq_1x_{R,p}$ の発生確率 $p'(eq_1x_{R,p})$ と等しいので、 $p(1x_{R,p})$ を次式で表すことが できる 13。

 $p(_{1}x_{R,p})d_{1}x_{R,p} = p'(_{eq1}x_{R,p})d_{eq1}x_{R,p}$ (6)

さらに、等価線形系の $_{eq1}x_{R,p}$ はレーリー分布に従うので ¹³、式(4)を $_1x_{R,p}$ について解き、それを式(6)に代入するこ とで弾塑性系の確率分布を算出する。

変動中心変位のシフトを引き起こす 1 次共振成分の振幅は、ゼロクロスピーク変位ではなく、ゼロクロスピーク・ピーク変位に影響されるため¹⁴⁾、ゼロクロスピーク・ ピーク変位確率密度分布を予測する必要がある。本研究 では、文献 13 と同様に、1 次共振成分の標準偏差を(1+β) 倍としたものを、ゼロクロスピーク・ピーク変位確率密度 分布の予測値として用いる。βは次式より与えられる¹³⁾。

$$\beta = \exp(-\zeta \cdot \pi) \tag{7}$$

ここで、 ζ =0.02は振動系全体での減衰定数である。本論 文では免震層を無減衰としていることから、上部構造の 構造減衰 h = 0.02 と同じ ζ =0.02を用いることは適切でな いと考えられるが、 ζ が小さい範囲では予測式に与える影 響が小さいことを確認している¹⁴⁾。よって、本論文では、 上部構造の構造減衰と同じ ζ =0.02を用いることとした。

応答変位全成分のゼロクロスピーク値は,応答変位の 共振成分ゼロクロスピーク値と,ピーク発生時における 応答変位準静的成分の和で表すことができる。応答変位 共振成分のゼロクロスサイクル間における応答変位準静 的成分の変位は一定値であると仮定し、応答変位共振成 分ゼロクロスピーク値確率密度関数を応答変位全成分ゼ ロクロスピーク値確率密度関数として表す¹³⁾。

4.2 確率密度分布の予測結果

図7に、時刻歴応答解析より得られた、免震層変位の1 次共振成分の確率密度分布を示す15%なお、図中には降伏 変位の2倍と応答変位共振成分の標準偏差の値を示して いる (*a*α_v=0.06 では、ほぼ同じ値であった)。さらに、図 7には免震層変位の塑性率μRmsを参考までに併せて示して いる。ここで、塑性率µRmsとは、免震層の降伏変位に対す る免震層の応答変位1次共振成分の標準偏差の比を意味す る。図7には時刻歴応答解析結果より得られた免震層変位 の1次共振成分の標準偏差の1%を用いて、レーリー分布 を算出した結果(実線)および式(6)より求めた応答変位1 次共振成分の確率密度の予測値(破線)を示している。図 7 より、時刻歴応答解析結果より得られた分布はレーリー 分布と異なる形状となっていることが分かる。一方,式(6) による予測結果は時刻歴解析結果のピークを良く表現でき ていると言える。しかし、 塑性化が大きくなるにしたがっ て誤差が大きくなる傾向が確認できる。これは式(5)による 等価バネ定数の予測値の誤差や、塑性化によって見かけ上 等価な減衰が大きくなったことによるβ(式(7))の評価誤 差などが考えられる。これについては今後の課題である。

図7 応答変位1次共振成分のゼロクロスピーク変位 確率密度分布と予測値の比較

Fig. 7 Comparison between zero-crossing peak displacement probability density distribution and predictive results

5 変動中心変位のシフトの予測

変動中心変位のシフトは, 正負の累積塑性変形量の差で あるが,本論文では入力させる外力に, 平均値がゼロとな る風直交方向風力を用いているため,短い時間内の変動を 評価しなければならない。そこで,本章では,時刻歴応答 解析結果から,変動中心変位のシフトの生じている箇所を それぞれ分析し,変動中心変位のシフトの生じる場合につ いて,成分ごとの応答変位性状の関係性を明らかにするこ とで,共振成分より免震層の変動中心変位のシフトを予測 する方法を提案する。

5.1 検証方法

本論文における変動中心変位のシフトの定義を図8に 示す。図中の破線はダンパーの降伏変位 $_d\delta_y$ である。応 答変位全成分の時刻歴波形から、変動中心変位のシフト の発生原因と見られるゼロクロスピーク・ピーク変位(● 印)を抽出し、そのゼロクロスピーク・ピーク変位の前 後の領域で、ゼロクロスピーク変位(の印)の平均値を算 出する。その値を変動中心変位のシフト δ_r とする。以降 では、パラメータの中で最も変動中心変位のシフトが明 確に現れている $_d\alpha_y=0.06 \sim 0.1$ について検証を行なう。

図9に、抽出した応答変位全成分のゼロクロスピーク・ ピーク変位 x_{pp} と変動中心変位のシフト δ_r の関係を示す。 また、図中の \Box , \bigcirc , Δ 印は、図中プロットのアンサンブ ル平均結果である。図には、評価時間内における変動中 心変位シフトの発生回数の平均値 n_r を示している。図中 の破線 δ'_r については後述する。図9より、変動中心変位

のシフト δ_r を生じさせるゼロクロスピーク・ピーク変位 x_{pp} は広範にわたり分布していることが分かる。 δ_r を生じ させる x_{pp} の下限値を見ると、いずれのダンパー量におい ても降伏変位 $_d\delta_y$ の2倍以上で発生していることが確認さ れた。一方、 δ_r を生じさせる x_{pp} の最大値に着目すると、 $_d\alpha_y$ =0.06,0.08において約50 cm、 $_d\alpha_y$ =0.1においては約 30 cm と、極めて発生頻度少ない大きな変形においても δ_r が生じていることが確認できる(図7)。ダンパー量で比 較すると、図9よりダンパー量が小さいほどゼロクロス ピーク・ピーク変位 x_{pp} および変動中心変位のシフト δ_r は大きくなるが、それに対して平均値(図中: \Box , \bigcirc , Δ) はダンパー量の違いによる影響をほとんど受けない事が 確認できる。

次に、ゼロクロスピーク・ピーク変位 x_{pp} から、ダンパ 一降伏変位の2倍の値 $2_d\delta_y$ を引いて求めた値を δ'_r と定義 し、変動中心変位のシフト δ_r と比較する。図9より、ダ ンパー量の δ_r を生じさせる x_{pp} に関わらず、 δ_r (プロット) は δ'_r の破線よりも低い値に集中していることが確認でき る。以上より、 x_{pp} から簡便に推定できる δ'_r は、変動中心 変位のシフトを大きく評価できることから、 δ_r に対して 安全側の値となることが分かった。

変動中心変位のシフト δ_r の予測値である δ'_r の確率密度 分布を図 10 に示す。図の曲線は、 δ'_r の標準偏差を用いて 描いたレーリー分布である。また、図には変動中心変位 のシフト δ'_r の標準偏差 $\sigma_{\delta'_r}$ と、平均値 $\overline{\delta'_r}$ を併せて示して いる。図 10 より、ダンパー量の違いに寄らず、変動中心 変位のシフト δ'_r はレーリー分布と良い対応を示すことが 確認された。

5.2 変動中心変位のモデル化

本節では、応答変位共振成分より、応答変位準静的 成分の吸収エネルギーを予測する手法を提案する。免 震層が変動中心変位のシフトを起こす回数 n', を, 次式 で表現する%

$$n'_{r} = \gamma \cdot v_{R} \cdot \int_{2\delta_{y}}^{\infty} p(x_{p-p}) dx_{p-p}$$
(8)

$$_{1R}\nu' =_1 \nu_{R0} \cdot \sqrt{k_{eq} /_b k_1} \tag{9}$$

ここで、 γ :変動中心変位のシフト発生確率、 $_1\nu'_k$:弾塑 性系 1 次共振ゼロクロッシング数、 $_1\nu_{R0}$:弾性系 1 次共 振ゼロクロッシング数である。求めた変動中心変位のシ フトの発生回数 n'_r に関して、「変動中心変位のシフトが 毎回 $\overline{\delta'_r}$ 発生すること」、さらに「発生した変動中心変位 のシフトは次の機会に必ずゼロに戻ること」を仮定する と、変動中心変位のシフトの分散 $\sigma^2_{\delta'_r}$ は、以下の式により 求められる。

$$\sigma_{\delta \tilde{r}}^{2} = \begin{cases} \frac{n}{2n_{r}'} \left(\kappa \overline{\delta_{r}'}\right)^{2} & [n: \mathbb{R} \mathbb{X}] \\ \left(1 - \frac{n+1}{2n_{r}'}\right) \left(\kappa \overline{\delta_{r}'}\right)^{2} & [n: \widehat{\oplus} \mathbb{X}] \end{cases}$$
(10)

ここで、 $n: n'_r$ の整数部分、 $\kappa: 実効シフト係数。\kappaは、$ $<math>\delta'_r \imath \delta_r$ より必ず大きくなるために用いる係数である。 $d\alpha_y$ = 0.08 について、変動中心変位のシフトのモデル化例を図 11 に示す。以上のようにして求めた変動中心変位のシフ トの発生回数 n'_r と分散 $\sigma_{\delta'}^2$ を、時刻歴応答解析結果と比

predictive results

較したものを図 12(a), (b)にそれぞれ示す。ここでは、本 手法の精度検証が目的であるため、パラメータとなる γ と κ の値は、時刻歴応答解析結果と一致するように試行 錯誤的に求めた γ =0.15, κ =0.38 を用いる。なお、 γ =0.15 とは、応答変位全成分振幅がダンパー降伏変位の 2 倍の 値 2 $_{d\delta_y}$ を超える回数のうち、15%が変動中心変位のシフ トを起こすことを意味している。図 12(a)に着目すると、 予測値はダンパー量の違いに寄らず、変動中心変位のシ フトの発生回数n',を概ね精度良く表現できていることが 分かる。図 12(b)より、 $_{d\alpha_y}$ = 0.08 で変動中心変位シフト の分散 $\sigma_{\delta_t}^2$ の予測精度が低いがそれ以外では、式(10)によ り概ね精度良く $\sigma_{\delta_t}^2$ を予測できていることが分かる。

6. まとめ

平均成分を有しない変動風力を受ける超高層免震建物 を想定した多質点系モデルを対象として,応答性状を成 分ごとに分析し,共振成分から求めた等価剛性を用いる ことで,応答変位準静的成分を予測する手法を提案した。 以下に結論を示す。

- (1) 1 質点系で提案されている応答変位共振成分ゼロ クロスピーク・ピーク値確率密度分布の予測式が、
 多質点系においても適応可能であることを示した。
- (2) 変動中心変位のシフトを引き起こす1次共振成分応答と変動中心変位のシフトの関係を明らかにし、 1次共振成分応答から準静的成分の応答が予測可能であることを示した。ただし、ダンパー量によっては予測精度が低下する場合がある。これについては今後の課題である。

以上より,提案した予測手法は,パラメータのγ, κの 設定方法等に課題を残すものの,平均成分を有しない変 動風力が作用した際における準静的成分による変動中心 変位のシフトを予測できる可能性を示せたと考える。こ れにより,既往の手法⁵で予測精度が低下する範囲におい ても,本手法を用いることで,免震層および上部構造の 応答予測の精度が向上するものと思われる。本論文で対 象としてない,風力に平均成分が存在する場合はさらな る検討が必要であるため,今後の課題とする。

謝辞

本研究は、神奈川大学工学研究所 大熊武司客員教授, (株)泉創建エンジニアリング,(株)日建設計,東京理 科大学 北村研究室,東京工業大学 佐藤研究室による新 耐風設計法研究会の成果の一部です。特に、本研究を進 めるにあたり、大熊武司客員教授、(株)泉創建エンジニ アリングの丸川比佐夫博士、片桐純治博士からご指導を 賜りました。ここに記して、感謝の意を表します。

この論文は 2013 年度優秀修士論文賞を受賞したもので す。

参考文献

- 1) 日本建築学会、「建築荷重指針・同解説」、(2004.9)
- 2) 佐藤大樹,鈴木勇人,田村哲郎, 普後良之,中村修, 笠井和彦,北村春幸,「超高層免震建物の観測記録に 基づく風応答の分析」,第22回風工学シンポジウム 論文集, pp.251-256, (2012.12)
- 菊地岳志,藤森智,竹内徹,和田章,「メガブレース を用いた超高層免震鋼構造建築物の設計」,日本建築 学会技術報告集,第22号,pp.217-222,(2005.12)
- 日本免震構造協会、「免震建築物の耐風設計指針」、 (2012.9)
- 5) 鈴木悠也, 佐藤大樹, 吉江慶祐, 北村春幸, 「エネルギ ーの釣合に基づく変動風力を受ける超高層免震建物 の応答予測手法」, 日本建築学会学術講演梗概集, B-2, pp.281-282, (2010.7)
- 6) 佐藤大樹, 笠井和彦, 田村哲郎, 「粘弾性ダンパーの 振動数依存性が風応答に与える影響」, 日本建築学会 構造系論文集, 第 635 号, pp.75-82, (2009.1)
- 7) 丸川比佐夫,大熊武司,北村春幸,吉江慶祐,鶴見俊 雄,佐藤大樹,「風洞実験に基づく高層建物の多層層 風力によるエネルギー入力性状(その2)矩形高層建 築物に作用する層風力特性」,日本建築学会学術講演 梗概集,B-1,pp.193-194,(2010.9)
- 8) 平井宏幸,吉江慶祐,佐藤大樹,片桐純治,鶴見俊雄,北 村春幸,大熊武司,「風洞実験より得られた層風力のサン プル数が高層建築物の時刻歴風応答評価に及ぼす影響」, 日本建築学会技術報告集,第18巻,第39号,pp.489-494, (2012.6)
- 9) 吉江慶祐,大熊武司,北村春幸,和田章,「広帯域性の変動風力を受ける弾塑性構造物の応答変位振幅の確率分布」,日本建築学会構造系論文集,第 604 号, pp.37-46,(2006.6)
- 平井宏幸,吉江慶祐,佐藤大樹,鈴木悠也,北村春幸, 「変動風力を受ける超高層建築物の高次モード応答特 性」,日本建築学会技術報告集,第18巻,第38号, pp.79-84,(2012.2)
- 11) 小川諒,吉江慶祐,佐藤大樹,平井宏幸,北村春幸,「平面形状の違いが超高層免震建物の風応答に与え

る影響」,日本建築学会大会学術講演梗概集,B-2, pp.215-216,(2012.9)

- 12) 小川諒,吉江慶祐,佐藤大樹,北村春幸,「超高層免 震構造物の多質点風応答性状について」,日本建築学 会大会学術講演梗概集,B-2,pp.555-556,(2013.8)
- 13) 吉江慶祐,北村春幸,大熊武司,和田章,「エネルギーの釣合に基づく平均成分を有する広帯域性変動風力を受ける弾塑性構造物の応答予測手法」,日本建築学会構造系論文集,第608号,pp.21-28,(2006.10)
- 14) 小川諒,吉江慶祐,佐藤大樹,早田友彦,佐藤利昭, 北村春幸,「多質点系モデルによる超高層免震建物の 風応答評価-免震層残留変形評価の試案 -」,日本 建築学会関東支部研究報告集,2006, (2014.2)
- 15) 小川諒,吉江慶祐,佐藤大樹,北村春幸,「狭帯域性の変動風力を受ける超高層免震構造物の応答変位確率密度分布」,日本風工学会誌,第38巻,第2号, No135, pp.181-182, (2013.4)