T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

題目(和文)	
Title(English)	Photocatalytic Activity and Photoinduced Superhydrophilicity of Immobilized Nano-TiO2 Thin Films
著者(和文)	EDENGAN MARIQUIT
Author(English)	Eden Mariquit
出典(和文)	学位:博士(工学), 学位授与機関:東京工業大学, 報告番号:甲第9937号, 授与年月日:2015年6月30日, 学位の種別:課程博士, 審査員:日野出 洋文,中崎 清彦,宮内 雅浩,大川原 真一,森 伸介
Citation(English)	Degree:, Conferring organization: Tokyo Institute of Technology, Report number:甲第9937号, Conferred date:2015/6/30, Degree Type:Course doctor, Examiner:,,,,
学位種別(和文)	博士論文
Category(English)	Doctoral Thesis
種別(和文)	要約
Type(English)	Outline

Department :	Department of International Development Engineering
Academic Supervisor :	Prof. Hirofumi Hinode
Name :	Eden G. Mariquit

Thesis Title : Photocatalytic Activity and Photoinduced Superhydrophilicity of Immobilized Nano-TiO2 Thin Films

Thesis Outline

This thesis investigated the photocatalytic activity and photoinduced superhydrophilicity of nano-TiO₂ thin films immobilized onto glass substrates. Two types of TiO₂ thin films were considered in this research. The first type was TiO₂ thin films immobilized on glass substrates with the aid of surfactants. The thin films were prepared using sol-gel process and immobilized by dip coating technique. Ionic (CTAB) and non-ionic (Triton X-100) surfactants were added to the TiO₂ sol prior to film deposition. The second type of TiO₂ thin films that were studied in this research were Fe-TiO₂ thin films that were prepared in three forms; TiO₂ film doped with Fe(III) ions, TiO₂ film grafted with Fe(III) ions and lastly, TiO₂ film that were doped and grafted with Fe(III) ions. The films were also immobilized onto glass slides coated with SiO₂ and deposited several times to vary the film thickness.

The thin films were characterized using high magnification imaging by field emission scanning electron microscopy (FE-SEM) to see the surface morphology and obtain the film thickness; differential thermal gravimetric analysis (TG-DTA) to determine the transformation and changes the thin films undergo at elevated temperatures; and x-ray diffraction (XRD) to determine the crystal phase of the deposited TiO_2 film. Additional XPS and transmittance plot studies were done for the Fe-TiO₂ films. All of the TiO_2 thin films were evaluated based on their performance in two functionalities namely; (i) photocatalytic activity, which was tested in methylene blue dye degradation in UV light and (ii) photoinduced hydrophilicity of the TiO_2 thin which was evaluated through contact angle measurements after the films were exposed to UV light. Kinetic studies showed that the three and six-layer films followed the Langmuir-Hinshelwood kinetic model.

Results in the first part of the study showed that the addition of surfactants improved the photocatalytic activity of TiO_2 thin films and the films became hydrophilic after exposure to ultraviolet light. For Fe-TiO₂ thin films, their photocatalytic activity and surface hydrophilicity under UV light were significantly influenced by the film configuration.

Keywords: Fe-TiO₂ thin films, Surface hydrophilicity, TiO₂ photocatalysis, TiO₂ thin films.