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Abstract

Cancer is a significant health problems around the world. Pathology

is a microscopic study of tissue structure to examine disease. The nu-

clear properties have significant representation for cancer diagnosis.

Except traditional color image, this study investigate various kinds of

imaging technologies including multispectral images and 3D images

to analyze cancer. These imaging systems may provide more informa-

tion than traditional color image and obtain an additional option to

pathologists in order to explore a new perspective. The objective of

this study is to implement a computational method to describe nuclear

characteristics of pathology images and classify cancer in hepatocel-

lular carcinoma and distinguish favor benign and borderline types in

thyroid follicular lesion. The proposed system mainly contains two

parts. First, nuclear segmentation is performed based on pixel-based

classification. Next, nuclear characteristics are represented utilizing

statistical and textural features. Lastly, Bag-of-visual-word model

with random forest classifier are investigated in classification step.
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Chapter 1

Introduction

1.1 Objective

The visual interpretation of cancer diagnosis depends on pathologists’ experi-

ences, time consuming for analysis and various kinds of cell images. Therefore,

computer aided diagnosis (CAD) systems would support pathologists to make

decisions and provide useful information for clinical treatment and also helps

pathologists as a pre-scanning tool. Except diagnosis perspective, the quantita-

tive analysis based on chromatin texture in cancer cells [1] will support patholo-

gists to explore the reason behind a specific disease identification. CAD systems

are based on image analysis, pattern recognition, machine learning techniques,

data visualization and human interaction. Pathology images investigation has a

significant image interpretation and classification in CAD systems. These systems

have some beneficial keys comparing with manual diagnosis such as consistency,

reliability, efficiency for cancer diagnosis. Furthermore, medical image analysis

has become an attractive topic for researchers to discover new perspective with

combining pathologists point of view and computational technologies including

image analysis and classification methods. However, various kinds of computa-

tional methods have been proposed in different techniques, diseases and imaging

technologies. These systems is expected to be more powerful tools.

This dissertation propose computational method for describing nuclear char-

acteristics of pathology images and classify cancer. The aim is to utilize various

1



1. Introduction

kinds of imaging technologies for cancer analysis. The main goal of this research

is summarized as follows.

• Defining significance of textural feature descriptors for representing nuclear

characteristics.

• Defining a computational method for nuclei segmentation and classification

in pathology images.

• Defining the efficiency of investigating multispectral images and volumetric

data for cancer diagnosis.

1.2 Approach

Pathology is a microscopic study of tissue especially in cancer diagnosis. Sub-

cellular components of tissue play an important role for cancer analysis. Most of

cancer types are diagnosed by visualizing pathology images [1]. To diagnose can-

cers, pathologists use tissue samples obtained from patients via biopsy. Patholo-

gists mainly examine tissues such as nuclei, glands and lymphocyte and discrim-

inate them on normal, benign and malignant [2]. The morphological appearance

of these structures is an important indicator for analysis. Since most of nor-

mal nuclei appear as a round or ellipsoidal shape, the sizes and morphological

features of nuclei tend to be uniform. In contrast, cancer nuclei have irregular

shapes, variables in size and atypia chromatin patterns [3]. Consequently, the

characteristics of nuclei indicate cancerous condition.

Due to the importance of nuclear structures which has a significant interpre-

tation for cancer analysis. In this research, we analyze liver and thyroid cancer

in pathology images from nuclear characteristics. Except traditional color images

which have been widely used for analysis, this study investigate other imag-

ing technologies including multispectral images and 3D images. These imaging

technologies may support a novel system and provide an additional option to

pathologists to see beyond color images.

This dissertation contains two studies. These two studies diagnose different

types of cancer and imaging systems. However, they have similar computational

2



1.3 Contributions

methods. The computational method mainly contain two steps, i. nuclei segmen-

tation based on pixel-based classification. ii. nuclear classification with BOW

model.

• Study I: High-magnification of histopathological multispectral images are

investigated to classify hepatocellular carcinoma (HCC). This study focus

on classification of normal and HCC cell nuclei by extracting the textural

properties of nuclei in multispectral images.

• Study II: We classify subclassification of thyroid follicular tumor in 3D

images. The objective of this study is to classify favor benign and borderline

types in follicular thyroid adenoma by utilizing volumetric data.

1.3 Contributions

The entire studies have two main topics which investigate different imaging tech-

nologies. However, these two studies have similar core framework. The contribu-

tions of this dissertation are listed as follow.

1. Classification of HCC in multispectral images.

• Proposed parameter selection to improve classification accuracy for all

multispectral bands.

• Analyze the significance of individual multispectral bands.

• Analyze groups of multispectral bands based on color spectrum.

2. Classification of favor benign and borderline types in FTA for volumetric

data.

• Proposed a new 3D nuclei segmentation method.

• Analyze FTA based on statistical and textural properties of nuclei.

3



1. Introduction

1.4 Outline

This dissertation is organized as follow. Chapter 2 explains related works in medi-

cal image analysis fields, including nuclear segmentation, feature extraction, clas-

sification techniques. Chapter 3 describes system overview of proposed method.

The proposed system consists of two main steps which are nuclear segmenta-

tion and nuclear classification. The nuclear segmentation is performed based on

pixel-based classification technique. Nuclear classification illustrates feature ex-

tractions, classification model and evaluation strategies that utilize in our system.

Chapter 4 describes experimental results on classification of HCC in multispec-

tral images. Chapter 5 presents the second study that aim to distinguish favor

benign and borderline types of FTA in volumetric data. Finally, this dissertation

is concluded all studies and future works in chapter 6.

4



Chapter 2

Related works

2.1 Introduction

Hepatic cancer is the third most frequent cause of cancer death in the world, es-

pecially in developing countries including Asia and Africa [4]. The most common

type of primary hepatic cancer is Hepatocellular carcinoma (HCC). Histopathol-

ogy examination is one of the techniques that use for the HCC from tissue samples

that have been obtained from patient via biopsy. Pathologists discriminate nor-

mal, benign and malignant tissues by the patterns of nucleis structures [2]. HCC

tumor are classified into different grade of cancer according to morphological

properties of nucleus such as shape, size and chromatin pattern. Most of normal

cells have similar size and rounded shape. However, cancer cells tend to have

irregular shape and various size [3]. From these difference, nuclear region has a

significant property to classify normal and cancer in computer aided diagnosis

system.

Follicular Thyroid is one of the common type of thyroid cancer. Thyroid fol-

licular examination get tissue sample from patient via fine needle aspiration. It

is the first step for diagnosis [5]. In order to deliver effective treatment accord-

ing to the risk of malignancy, indeterminate follicular neoplasm (FN) has been

recommended to triage patients. The Japan Thyroid Association (JTA) catego-

rized indeterminate FN into three levels of risk stratification as favor benign (low

risk), borderline (moderate risk), and favor malignant (high risk) [6]. The favor

5



2. Related works

malignant type has high probability of 40-60 percent to be malignancy. There-

fore, a patient diagnosed as favor malignant in cytological examination should

be operated immediately. Furthermore, favor benign and borderline types can

be observable. However, it is difficult to distinguish the difference between favor

benign and borderline by visual interpretation on a given images.

2.2 Imaging technologies

The multispectral imaging technology has been extended from a remote sensing

field to medical and biological fields as an effective technique for medical image

analysis. Multispectral images provide spatial and spectral information. It cap-

tured in the different narrow band of wavelength in visible spectral and invisible

spectral. Therefore, the information has an advantage to perform histopatholog-

ical analysis and broaden pathological knowledge as a new potential [7]. Over

the years, researchers have invented various multispectral imaging systems for

histopathological analysis of biological tissue specimen [8–10]. These systems

take advantage of using the combined spatial-spectral information to detect and

classify cancer.

In medical image analysis, 3D images are become popular for researchers

to explore an additional information and new perspective which aim to have a

beneficial for analysis. Moreover, 3D visualization can view the organ in realistic.

This point would help medical doctors to diagnosis effectively. Currently, 3D

imaging technology is available to acquire 3D microscopic images, and they help

pathologists and researchers to discover a new cell’s property. For instance, 3D

cell segmentation methods have been proposed to segment nuclei in fluorescence

microscope images [11],[12] and bright field microscopic images [12].

2.3 Image segmentation

Researchers have been proposed segmentation algorithms to identify subcellular

structures from multispectral images. Most of segmentation algorithms utilized

both of spatial and spectral information. The pixel-based methods are widely

used in multispectral and hyperspectral images for segmentation such as Spectral

6



2.4 Image classification

Angle Mapper (SAM) [13] and Spectral Information Divergence (SID) [14]. The

idea of SAM and SID techniques is to compute the spectral similarity between

two spectral vectors. Guan et al. [15] applied SID algorithm in white blood cell

segmentation on hyperspectral images and achieved promising result. Further-

more, conditional random field model (CRF) [16] and support vector machine

(SVM) [17] were proposed to segment nuclei and other subcellular structures.

3D cell segmentation methods have been proposed to segment nuclei in flu-

orescence microscope images [11],[12] and bright field microscope images [12].

Moreover, 3D segmentation algorithms, such as watershed [18], gradient vector

flow [11], and sliding band filter [12], well perform when a given image excludes

a high level of image noises or complexities of background images.

2.4 Image classification

The region of interest can be extracted features before performing classification in

order to represent region of interest effectively. The computational of feature rep-

resentations are based on morphological properties and textural characteristics.

In particular, feature extraction mainly contains into three categories.

• Morphological properties: area, circularity, sphericity, volume.

• Statistical measurements: average, standard deviation, maximum, mini-

mum, energy, entropy, contrast, homogeneity.

• Texture: Gabor filter banks, Haralick, Local binary pattern.

The extracted feature from region of interest in dataset were employed to

classify based on supervised learning technique. Researcher have been proposed

various kinds of feature extraction techniques for representing significant charac-

teristics in region of interest in order to improve classification accuracy.

The utility of Gabor filters have been beneficial. Particularly, Gabor filters

have accomplished in many applications related to texture analysis. Gabor de-

scriptors are the effective features to represent the characteristic of an image.

Specifically, Gabor descriptors have been widely applied to medical image anal-

ysis in histopathology image.

7



2. Related works

Habil et al. [19] proposed automated clasification of colon histopathology

images. They analyzed based on image patches in large dataset by utilizing

Gabor filter banks. The classification were analyzed into 3 cases: normal vs.

abnormal, cancer vs. non-cancer and four-class classification. Their proposed

method achieved 80% of classification accracy approximately.

Rahmadwati et al. [20] presented computer-assisted classification in cervical

cancers by utilizing histology images. Their analyzed based on nuclear charac-

teristics. Gabor filter descriptors were investigated to extract texture of nuclei in

dataset. For classification step, hybrid k-means clustering algorithm was utilized

for distingushing normal and abnormal cells in histological cervical cancer tissue.

However, the parameters of Gabor filter bank depend on a database. The

design of filter bank is done by setting parameters manually. Therefore, the in-

significant filters for representing the data are included. It is necessary to find

a relevant parameters and remove insignificant parameters. In color image, re-

searchers have proposed feature selection techniques to remove irrelevant Gabor

patterns such as Sequential Forward Selection (SFS), Sequential backward Selec-

tion (SBS), Mutual information [21] and Minimum Redundancy and Maximum

Relevance (mRMR) [22]. These techniques could not apply directly to our frame-

work in multispectral images. Therefore, our objective of utilizing optimization

algorithm is to find relevant Gabor patterns which suitable for overall multispec-

tral bands in term of improving classification accuracy. The algorithm can mainly

take the advantage to reduce dimensionality of feature and speed up computa-

tional time.

In multispectral images, Qi et al. [23] classified breast cancer tissue microar-

rays as well as low-magnification. They utilized a bag-of-visual-word technique

with texture descriptors. The experiment was performed by applying SVM classi-

fier with radial basis function for each individual multispectral band. The bands

that achieved higher classification rate than their transformed gray scale RGB

were chosen as candidates in final decision. The majority voting strategy was

applied for final classification result. In addition, they compared classification

performance with conventional RGB images. Their experimental result showed

multispectral images achieved higher classification rate than RGB images.

8



2.5 Multispectral bands selection

2.5 Multispectral bands selection

Band selection [24–28] is one of the popular techniques and widely used in remote

sensing. This technique refers to select the optimal subset of multispectral bands.

The advantage of band selection is removing redundancy of data and remove ir-

relevant spectral bands for improving analysis performance. In particular, the

computational time of utilizing subsets of spectral bands is faster than dealing

with whole multispectral bands. However, the aim of this study focuses on differ-

ent point of view. This dissertation aims to analyze the significance of individual

multispectral band in terms of characterizing cancer and non-cancer cell.

2.6 Computer aided diagnosis system

CAD systems in cancer diagnosis have been proposed in cervical cancer [29][30],

breast cancer [23], and white blood cell [17] by utilizing multispectral images.

Some publications analyzed cancers in multispectral images. Their result showed

that multispectral images can enhance the system performance compared with

the conventional color images. Wu et al. [29] and Xin et al. [23] studies have

shown the possibility of multispectral imaging technologies in pathological anal-

ysis. Moreover, multispectral images also contribute to researchers to get more

knowledge and new perspective on tissues and cells.

Irshad et al. [31] proposed computational method for mitosis detection in

breast cancer histopathology in multispectral images. First, focal plane selec-

tion is performed based on maximum gradient information. They reduced mul-

tispectral bands by considering absorption spectra properties. Next, gray level

co-occurrence matrix are investigated to extract feature descriptors in region of

interest. Finally, classification performances are compared with four difference

kinds of classifiers including decision tree, multilayer perceptron, linear support

vector machine and non-linear support vector machine. Their proposed frame-

work with multispectral histology images have beneficial to exploit the use of

spectral and spatial information to see beyond the visualization of human.

9



2. Related works

Several studies have been proposed computer aided diagnosis system for de-

tection and classification of thyroid follicular adenoma and thyroid follicular car-

cinoma in cytological images [32],[33],[34].

Gopinath et al. [32] developed an automated computer-aided diagnosis sys-

tem for distinguishing benign and malignant of thyroid nodules from cytolog-

ical images. In the first stage, nuclear segmentation was performed based on

morphological operations and watershed transform algorithm. Next, segmented

nuclei were extracted features including discrete wavelet transform, gray level co-

occurrence matrix and Gabor filter banks. The k-nearest neighbor, Elman neural

network and support vector machine are utilized to classify benign and malignant

of thyroid. The experimental results showed by combining textural features from

Gabor filter banks with Elman neural network achieved highest classification rate

93.33%.

Wang et al. [33] proposed detection and classification system for classifying

thyroid follicular adenoma and thyroid follicular carcinoma in high magnifica-

tion. They were analyzed based one nuclear characteristic by extracting several

features and combined them together such as geometrical features, color features

and textural features. Thus, each nuclei represented in high-dimensional feature

vector. By utilizing support vector machine with radial basis function with kernel,

the classification performance successfully achieved 100% based on leave-one-out

cross validation strategy. However, they performed on small dataset around 10

patients. This proposed system may not confirm stability and consistency. It

require to perform experiment in large amount of dataset.

Jung et al. [34] analyzed the impact of nuclear segmentation on classification

of thyroid follicular lesions. Various kinds of nuclear segmentation algorithms are

performed and compared the performance in classification step for classifying thy-

roid follicular adenoma and thyroid follicular carcinoma. The result showed that

nuclear segmentation algorithm was importance for classifying thyroid follicular

lesions.

Recently, deep neural networks algorithm is popular and was applied in var-

ious kinds of research field for classification. Due to deep neural network per-

form well in many applications of both research and practical. In medical image

analysis, researcher have been developed computer aided diagnosis systems by

10



2.6 Computer aided diagnosis system

investigating deep neural networks for analysis in breast cancer [35],[36] and thy-

roid nodules [37]. Dan et al. [36] analyzed mitosis detection of breast cancer in

histology images. Their system achieved promising results. Antonis et al. [37]

proposed a multi-classifier diagnostic system for classifying benign and malignant

of thyroid nodules in HE stained cytological images. Their experimental results

showed that by combining several classifiers in k-nearest neighbor, probabilistic

neural networks, bayesian and the majority voting strategy, the classification ac-

curacy was outperformed single classifier in probabilistic neural networks. Deep

neural networks algorithm was applied in many applications. However, it has

some limitations for consideration. Deep neural networks acquire large number

of training dataset, high computational resources and time consuming. An appli-

cation which provide limitation of computational resources and important issue

of the runtime, deep neural networks may not appropriate. Other classifiers may

achieve similar or better results than deep neural networks.

For 3D medical image analysis, Ali et al. [38] proposed classification system

of renal cell carcinoma tissue image from confocal laser scanning microscope.

Their mainly focused on extracting efficient feature descriptors for grading can-

cer specifically in three-dimensional texture analysis methods. The result showed

that utilizing Haar wavelets with principle component analysis achieved the high-

est classification rate 90%.
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Chapter 3

System overview of proposed

method

3.1 Introduction

This chapter explains details of the proposed system. It consists of two main

parts including nuclei segmentation and nuclear characteristic analysis for cancer

cells images. The proposed method in nuclear segmentation is based on pixel-

based classification as described in section 3.2. Section 3.3 explain the overview

of proposed method for nuclear characteristic analysis for cancer cells images.

The proposed system will apply to analyze HCC and FTA as explain in chapter

4 and 5, respectively.

3.2 Nuclear segmentation

In subcellular structure, nuclei is one of the significant factor for cancer analysis

in pathology images. Due to the morphological features and chromatin patterns

change in cancer cells. That is the reason to utilize the properties of nuclei for

distinguishing normal and cancer cells. Most of normal cells appear as a rounded

or ellipsoid shape, and the sizes and morphological features of the nuclei tend to

be uniform as shown in Fig. 3.1 . On the other hand, cancer nuclei have irregular

shapes, variable in size and atypical chromatin patterns as shown in Fig. 3.2.
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3. System overview of proposed method

Figure 3.1: Normal liver tissue.

Figure 3.2: Hepatic cancer tissue.
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3.2 Nuclear segmentation

Figure 3.3: System overview of nuclear segmentation.

Figure 3.3 shows the overview of proposed system in nuclear segmentation.

The system mainly contains three processes. In the first process, preprocessing

techniques are applied in each image for improving image quality. Next, pixel-

based classification method is investigated to classify each pixel. In the last

process, we enhance images by using image processing techniques. Finally, we

can get segmented nuclei and used these nuclei for classification in the next step.

3.2.1 Image preprocessing

Image preprocessing technique is the first step for processing data. The propose

of this step is to improve the image quality from raw data. Due to image artifacts

can be generated while capturing image from CCD camera and it effect on images.

However, There are many preprocessing techniques to deal with different kinds

of problems which depend on imaging technologies and capturing techniques.

In this dissertation, we utilized multispectral images and 3D images to perform

experiments for details of investigating image preprocessing will explain in chapter

4 for multispectral images and chapter 5 for volumetric data.

3.2.2 Pixel-based classification

Pixel-based classification technique is one of segmentation methods which in-

vestigate machine learning algorithms instead of image processing algorithms.

Therefore, each pixel in images is classified into one subclass by using machine
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3. System overview of proposed method

learning algorithms. Pixel-based classification can be supervised learning or un-

supervised learning. This dissertation perform experiments based on supervised

learning in multispectral images and unsupervised learning in 3D images. The

first step is to extract feature vector for representing each pixel. In the second

step, these feature vectors are applied as input for training in random forest clas-

sifier for generating model of random forest. For testing, the result of random

forest classifier give posterior probability of each class. The aim of this study is to

segment nuclei. Thus,we are interested in posterior probability of nuclear class.

The pixel is belong to nuclear area, if it has high probability in nuclear class.

3.2.2.1 Random forests

Random-forests algorithms has been used in wide variety of computer visions,

such as digit recognition, keypoint recognition, visual word clustering, object

segmentation, pose estimation, organ detection, and so on. It was proposed

by Breiman [39]. Random forests classifier can solve a large variety of high

dimensional problems with low computation time, high performance and high

accuracy. Random-forests is an ensemble of several decision trees. Each tree is

grown by using some types of randomization. The structure of each tree is binary

decision tree which is created in a top-down manner as shown in Fig. 3.4.

In training procedure, Each tree is trained separately by choosing subset I ′

randomly in training data I, I ′ ⊆ I. At node n, learning proceed iteratively to

split the training data In into left and right subsets Il and Ir in accordance with

a threshold t of some splitting function f(vi) of the feature vector v,

Il = {i ∈ In|f(vi) < t} (3.1)

Ir = In\Il (3.2)

At each split node, several candidates are generated randomly by using the

splitting function f and threshold t. The one candidate that has a maximal
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3.2 Nuclear segmentation

information gain about the corresponding node is chosen.

∆E = − |Il|
|In|

E(Il)−
|Ir|
|In|

E(Ir) (3.3)

According to eq. 3.3, ∆E is information gain calculated by entropy estimation,

where E(I) is the Shanon entropy of the classes in the set of training data I. The

recursive training ended when the training process reaches maximum depth of

the tree or until no further information gain is possible. Consequently, at every

leaf node has a posterior probability and class distributions, P (c|n) are estimated

empirically as a histogram of the class labels ci of the training examples, i, that

reached node n.

In the testing step, feature vector is used as an input to the trained random

forests. The final class distribution is generated by averaging the class distribu-

tions over the leaf nodes L = (l1, l2, , lt) reached for all T trees :

P (ci|L) =
1

T

T∑
t=1

P (ci|lt) (3.4)

In eq. 3.4, T is the number of trees and ci is a final class of an input feature if

and only if P (ci|L) has the maximum posterior probability.

3.2.3 Image enhancement

Since we performed nuclear segmentation based on pixel-based classification, the

result is not give perfect segmentation. It is important to apply image processing

techniques in order to reduce the noise in image and non-nuclei area. The ob-

jective of this step is improve quality and remove noise of images for extracting

nuclei effectively. Firstly, the connected component are investigated to measure

the size of each object in image. If the size is smaller than threshold value, that

area will be removed. The removed area can be non-nuclei area or lymphocyte

area. Next, morphological operators are utilized to remove noise and refine the

shape of nuclei area. Finally, we obtain segmented nuclei. These segmented nu-

clei are used to analyze cancer in the next step which is classification. The details

of classification describe in section 3.3.
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3. System overview of proposed method

Figure 3.4: Structure of random forests.

3.2.3.1 Morphological operator

Morphological operator is based on a set theory that represents shapes [40]. In

term of image, elements of a set are pixels in an image. Morphological methods

are widely used in image processing, which in the field of noise reduction, segmen-

tation, restoration, enhancement, shape analysis, etc. The basic morphological

operators are erosion and dilation which implicate an image A and a structure

element E. The structure element E is constructed in 2D Euclidean space ε2.

Dilation of image A by S is given by

A⊕ E =
{
x ∈ ε2|x = a+ e, fora ∈ A, e ∈ E

}
(3.1)

Erosion of the image A by S is given by

A	 E =
{
x ∈ ε2|∀e ∈ E,∃a ∈ Asuchthatx = a− e

}
(3.2)

The closing and opening operators are derived from erosion and dilation, are

defined by
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3.3 Nuclear characteristic analysis for cancer cells images

Closing:

A • E = (A⊕ E)	 E (3.3)

Opening:

A ◦ E = (A	 E)⊕ E (3.4)

In case of noise reduction, morphological operator reduces the noise based on

shape characteristics of the input image, which is characterized by the structuring

element.

3.3 Nuclear characteristic analysis for cancer cells

images

In this section, we explain classification step which investigate in this research.

It mainly consist of feature extraction, classification model as describe in section

3.3.1 and 3.3.2, respectively. As the result of nuclei segmentation in section 3.2,

the segmented nuclei were applied in classification step for cancer analysis by

extracting statistical and textural feature for representing nuclear characteristics.

Next, classification model and evaluation strategies were investigated for final

decision.

Figure 3.5 shows the overview of proposed system in cancer classification based

on nuclear characteristics. First step is to extract feature for each segmented nu-

clei. Next, bag-of-visual-word (BoW) model is utilized to reduce the dimension of

feature vector and seek relevant feature descriptors for representing nuclear char-

acteristic significantly. Random forests classifier is performed to classify normal

and cancer cells nuclei. Lastly, majority voting strategy are applied to make the

final decision.

3.3.1 Feature extraction

The feature is defined as a set of measurements which describe the property of

an object and compute significant characteristics of the object through numerical

representation. Features can be categorized into low-level features and high-level
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3. System overview of proposed method

Figure 3.5: System overview of classification model.

features. Low-level features compute directly from original images whereas high-

level features extract based on low-level features. Feature extraction is investi-

gated in the field of pattern recognition and image processing. Feature extraction

is a process to transform the input data into a set of features. It mainly contain

information related to texture, shape or color intensity. The beneficial of feature

extraction is to reduce dimension of data, remove redundancy and extract rel-

evant information from input data. Feature extraction have to be done before

performing classification of objects. If we can find suitable feature extraction

techniques to represent objects in dataset, we can improve classification accuracy

when utilized feature descriptors to classify objects in classification step.

In the study of HCC classification in multispectral images as describe in chap-

ter 4, Gabor descriptors are used to represent chromatin pattern inside nuclei.

In addition, we proposed optimization of Gabor parameters in order to select

significant parameters which suitable for all multispectral bands and improving

classification accuracy. Thus, This section also explain basic concept of Gabor

filter banks. In chapter 5, we classify subclassification of follicular thyroid ade-

noma in favor benign and borderline types by utilizing 3D images. In this study,

3D feature descriptors are investigated to extract information of nuclei in 3D im-

ages. Specifically, this section also explain basic concept of 3D feature descriptors

especially in 3D gray level co-occurrence matric (GLCM).
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3.3 Nuclear characteristic analysis for cancer cells images

3.3.1.1 Gabor filter

In this study, we investigated Gabor descriptors. Gabor filtering is one of the

textural feature extraction techniques, and widely applied in various kinds of

recognition applications including medical image diagnosis system [41]. Due to

Gabor descriptors extract the significant texture characteristics of the specific

region of interest.

The 2D-Gabor filters explained in [42] can be defined as

guvθ(x, y) = exp(−x′2+γ2y′2

2u2
)cos(2π x

′

v
+ ψ),

x′ = x cos(θ) + y sin(θ),

y′ = y cos(θ)− x sin(θ)

(3.5)

where guvθ denotes a Gabor filter with spatial aspect ratio γ, standard devia-

tion of Gaussian u, phase offset ψ and orientation θ. x, y are spatial coordinates.

v is the wavelength and 1/v is spatial frequency of the cosine factor. The ratio

u/v determines the spatial frequency bandwidth bw. The relationship between

the half-respond of spatial frequency bandwidth bw and the ratio u/v can be

expressed as

bw = log2

u
v
π +

√
ln 2
2

u
v
π −

√
ln 2
2

,
u

v
=

1

π

√
ln 2

2

2bw + 1

2bw − 1
(3.6)

The image features can be extracted by convolution of original image I(x, y)

with a set of Gabor patterns as described

Guvθ(x, y) = I(x, y) ∗ guvθ(x, y) (3.7)

where Guvθ(x, y) represents the convolution result corresponding to the origi-

nal image and Gabor filter guvθ.

Gabor feature descriptors may provide meaningful information from region

of interest. The main key of generating Gabor filter bank is scales and orienta-

tion parameters. In particular, the combination of their parameters will produce

different classification results. Therefore, this study focuses on orientation θ and
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3. System overview of proposed method

spatial frequency bandwidth bw parameters for creating a set of Gabor filters and

other parameters are fixed.

3.3.1.2 Gray level co-occurrence matrix (GLCM)

For computation of 3D GLCM in three-dimensional image [43], [44], a co-occurrence

matrix is a n x n matrix, where n is the number of gray levels in a given im-

age. Basic concept of the computation is similar to a conventional 2D GLCM.

A co-occurrence matrix collects the number of differences in intensities of two

pixels indexed i and j in specific directions and distances. The co-occurrence

matrix represents a displacement as d = (dx, dy, dz) where dx, dy and dz denote

the number of pixel moved along x, y and z axis, respectively in volumetric data,

respectively. 3D GLCM can be defined as

p(i, j) =
Bz−dz∑
z=1

By−dy∑
y=1

Bx−dx∑
x=1

{
1 ifG(x, y, z) = i ∧G(x+ dx, y + dy, z + dz) = j

0 otherwise

(3.8)

where 3D GLCM elements p(i, j) compute within moving box B. Furthermore,

displacement vectors contain 13-directions with offset D as shown in Table 3.1.

Actually, direction 1, 2, 3, and 4 are commonly used in 2D GLCM, and the

additional nine directions are investigated in 3D GLCM. Next, haralick features

[45, 46] is computed from the co-occurrence matrix to describe the texture of

images. This study considers 12 statistical measurements as shown in Table 3.2

including Energy, Entropy, Correlation, Contrast, Variance, Sum Mean, Inertia,

Cluster Shade, Cluster Tendency, Homogeneity, Max Probability, and Inverse

Variance.

3.3.2 Classification model

3.3.2.1 Bag of Words model

Bag of Words model (BoW) approaches have been investigated in various kinds

of computer vision applications as one of the powerful techniques. The main

process of BoW model is to transform a set of high-dimensional local features into

a single feature vector for representing region of interest. This representation has
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3.3 Nuclear characteristic analysis for cancer cells images

Table 3.1: Displacement vectors for co-occurrence matrix generation.

ID Displacement vector Direction (horizontal, vertical)

1 (0, D, 0) (0◦, 0◦)

2 (−D,D, 0) (45◦, 0◦)

3 (−D, 0, 0) (90◦, 0◦)

4 (−D,−D, 0) (135◦, 0◦)

5 (0, D,−D) (0◦, 45◦)

6 (0, 0,−D) (none, 90◦)

7 (0,−D,−D) (0◦, 135◦)

8 (−D, 0,−D) (90◦, 45◦)

9 (D, 0,−D) (90◦, 135◦)

10 (−D,D,−D) (45◦, 45◦)

11 (D,−D,−D) (45◦, 135◦)

12 (−D,−D,−D) (135◦, 45◦)

13 (D,D,−D) (135◦, 135◦)
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3. System overview of proposed method

Table 3.2: statistical measurements of haralick descriptors.

ID Statistical measurement Equation

1 Energy
∑

i

∑
j p(i, j)

2

2 Entropy −
∑

i

∑
j p(i, j)log(p(i, j))

3 Correlation
∑

i

∑
j(i,j)p(i,j)−µxµy

σxσy

4 Contrast
∑Ng−1

n=0 n2{
∑Ng

i=1

∑Ng

j=1 p(i, j)}, |i− j| = n

5 Variance
∑

i

∑
j(i− µ)2p(i, j)

6 Sum Mean
∑2Ng

i=2 ipx+y(i, j)

7 Inertia
∑

i

∑
j(i− j)2)p(i, j)

8 Cluster Shade
∑

i

∑
j((i− µi) + (j − µj)3p(i, j)

9 Cluster Tendency
∑Ng

i=1

∑Ng

j=1(i+ j − 2µ)kp(i, j)

10 Homogeneity
∑Ng

i=1

∑Ng

j=1
p(i,j)

1+|i−j|

11 Max Probability maxi,jp(i, j)

12 Inverse Variance
∑

i

∑
j

1
1+(i+j)2

p(i, j)
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3.4 Evaluation strategies

shown the effectiveness in image classification and categorization. Specifically,

BoW model has been successfully applied in medical image analysis and achieved

high performance especially in histopathology images. In histopathology image

analysis, textural features are mainly extracted in nuclear region. Then, k-means

algorithm is computed to generate dictionary. As a result, each cluster center

represents a feature vector of its class, called visual word. Consequently, each

pixel in region of interest finds the nearest visual word index and form histogram

frequencies. The histogram is a novel representative of interested region.

3.3.2.2 Texture classification model

In this dissertation, the classification is based on BoW model of textural features

by extracting from nuclear region. Figure 3.6 shows the overview of classification

procedures step by step. Firstly, nuclear texture is extracted utilizing textural fea-

ture descriptors. Then, BoW model is applied to represent nuclei as a histogram

frequency. The histogram of visual words provides a discriminative characteris-

tic for each nucleus. A random forest classifier [39] is adopted in classification

step. The histogram is investigated as an input for generating model of random

forest in training step and also used in testing step. The posterior probability

of each class is obtained as a result of random forest classifier. The class that

has maximum posterior probability, is selected as the final class of that nucleus.

Finally, majority voting strategy is utilized for making a final decision in patient

level. Let qc be the total number of nuclei which belong to class c and r be total

number of nuclei. Also let the probability of a patient classified into class c be

pc = qc/r. Given a threshold T , if maximum of pc is greater than T , then the

patient is classified into class c.

3.4 Evaluation strategies

3.4.1 k-fold cross validation

Normally, classification systems have two steps.

i. Training: The classifier learns from training data to generate the model.
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3. System overview of proposed method

Figure 3.6: Schematic for construction of textons based classifier using Gabor
descriptors. In the training step, the gabor features are extracted for each nucleus.
Then, the features are clustered via k-means to identify the cluster centroids as
texton. The feature space is reduced to the index of the nearest texton. After that,
the bag of textons forming the histogram model for each patch. In the final step,
random forests classifier performed by using the histogram as an input to generate
several decision trees. Classification of a new nucleus involves first constructing the
corresponding texton signature and then using model of random forests to classify
normal and cancer.

ii. Testing: The classifier predicts the system performance.

In order to reduce the bias from classification techniques, validation strategies

is necessary to apply. The k-fold cross validation is one of validated method and

widely used for evaluation. In the first step, dataset are divided randomly into

k disjoint subsets of approximately equal sizes. Next, k − 1 subsets are utilized

to train the classifier and another subset is for testing. The process iteratively

perform for all disjoint k subsets to estimate the clssifier.

3.4.2 Classification rate(CR)

The percentage of classification rate is defined as follow,

CR =

∑K
i=1 ni
N

× 100 (3.9)

where ni is the total number of correctly classified to the ith class, M is the

number of class, and the total number of samples data (N).
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3.4 Evaluation strategies

Moreover, The final classification accuracy of applying k-fold cross validation

is the average of classification rate (avgCR) as follow.

avgCR =

∑k
i=1CR

k
(3.10)

Where k is number of fold in k-fold cross validation.

3.4.3 Statistical measures

In binary classification, the classifier performance is computed through various

statistical measurement including precision and recall especially in pattern recog-

nition and information retrieval fields. The measurement is performed by analyz-

ing the result from classifier. The computation of precision and recall are defined

as follows.

Precision =
TP

TP + FP
(3.11)

Recall =
TP

TP + FN
(3.12)
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Chapter 4

Hepatocellular carcinoma

classification in multispectral

histopathology images

4.1 Introduction

Hepatocellular carcinoma is the second most of major death in worldwide espe-

cially men [4]. Specifically, hepatocellular carcinoma is a major cause of death in

developing countries including Asia and Africa. Histopathology is a microscopic

study of tissue especially in cancer diagnosis. Since the nuclei structure has a

significant interpretation for cancer analysis in histopathological microscipic im-

ages. Figure 4.1 and 4.2 shows the multispectral sample images of HE-stained

biopsy specimen in normal and HCC, respectively. The different characteristics

of liver cell nuclei between normal and HCC are chromatin patterns and mor-

phological properties. Therefore, the texture properties of nuclei are utilized to

classify normal and HCC.

In this study, we analyze hepatocellular carcinoma in 100x magnification in

order to clearly see chromatin pattern inside nuclei. The multispectral images

are utilized for this study with aim to extend new technologies to explore an

additional information beyond spatial and spectral information. This study pro-

poses a classification approach of hepatocellular carcinoma (HCC) for classifying

cancer and normal cells. Nuclear segmentation perform in the first step based
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4. Hepatocellular carcinoma classification in multispectral
histopathology images

Figure 4.1: The 10th band of normal liver histological image.

on supervised learning in pixel-based classification technique. In classification

step, we extract features from Gabor filter banks. Moreover, we proposed an op-

timization algorithm to select relevant features. Then, Bag-of-visual-word with

random forests classifier is employed to classify normal and cancer cells nuclei in

hepatocellular carcinoma.

4.2 Image acquisition

The multispectral microscopic-camera created by Akasaka National Vision Re-

search Center, Japan is investigated to capture multispectral dataset in this study.

The camera system contains a 16-band rotating filter wheel with a 2048x2048 pix-

els per image using CCD camera. The wavelength range is in the visible spectrum

from 400 nm to 750 nm. a multispectral image illustrate in gray scale image. At

one position, multispectral microscopic-camera capture 16-band by changing the

different narrow band of wavelength. Figure. 4.3 shows the example of HCC

multispectral images of 16 spectral bands in our dataset. Figure 4.4 shows multi-

spectral information which compose of 2D-spatial data along x and y directions
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4.2 Image acquisition

Figure 4.2: The 10th band of HCC histological image.

and 1D-spectral wavelength information in λ dimension. It can be formed as an

image cube from spatial and spectral information. At the same position of 16

bands, the intensity value of spatial coordinates along wavelength dimension is

called spectrum. In addition, the spectrum indicate a particular properties of its

spatial point.

Our dataset obtained from US Biomax, Inc., (Rockville, MD, USA) and con-

tained normal liver and HCC tissue microarray specimen. All tissue samples

were verified with informed consent from patients. This study perform experi-

ment with 19 patients of HE stained histopathology liver tissues including normal

and HCC multispectral images. Experienced pathologists distinguished a set of

multispectral images as normal or cancer. In order to clearly see chromatin pat-

terns in each nucleus, the multispectral dataset captured at 100x magnification

with no overlapping area and obtained 162 images. One data sample have 16

multispectral bands.
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4. Hepatocellular carcinoma classification in multispectral
histopathology images

Figure 4.3: HE stained histopathology images captured from different wavelength
intervals. (a) to (p) represent multispectral bands from the 1st to 16th band,
respectively.
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4.2 Image acquisition

Figure 4.4: Image acquisition, Multispectral image cube acquired 2D-spatial in-
formation in x, y direction and 1D-spatial information along λ direction. At pixel
p(x, y), spectrum is constructed by plotting the signal intensity versus wavelength.
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4.3 Image preprocessing of multispectral images

The light microscope was employed to capture multispectral image. In the first

step, a CCD exposure time and light intensity were set before taking images.

Then, multispectral images were taken under the same condition in order to

compute the performance of data. However, some factors of image artifact can

be happen such as non-uniform illumination during capturing the multispectral

image. This problem affect image quality. In this study, image preprocessing

technique is utilized to remove the artifacts. It acquired an additional reference

image B(x, y;λj) under exactly the same acquisition condition in a blank area

of the tissue slide, where x and y are spatial coordinates of the image and λj is

wavelength interval of jth band. Therefore, normalized data I(x, y;λj) can be

described as

I(x, y;λj) =
S(x, y;λj)

B(x, y;λj)
(4.1)

where S(x, y;λj) and B(x, y;λj) are an original image and no cell component

slide image in multispectral data respectively. Figure. 4.3 shows the example of

multispectral dataset after applying pre-processing technique for all 16 bands.

4.4 2D nuclei segmentation

The cell components mainly contain four types in our dataset including nuclei,

cytoplasm, lymphocyte and blank regions. The propose of segmentation is to ex-

tract nuclear regions in normal liver and HCC images. The segmentation method

perform multi-class segmentation based on pixel-based classification and image

processing technique. Even though, only nuclear region is considered to inves-

tigate for cancer classification. In order to get more precise and accurate seg-

mentation, we apply multi-regions segmentation. The proposed method is based

on supervise learning. Thus, annotation os 15 sample images are obtained by

experts’. The content of annotation consist of four regions: nucleus, cytoplasm,

lymphocyte and background regions for each sample image. Since nuclear and

lymphocyte features are sometimes overlapped. Thus, nuclear and lymphocyte
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4.4 2D nuclei segmentation

class are combined and represented as one class. This experiment investigated

147 multispectral images with 19 patients.

From eq. 4.1, we have a multispectral image I(x, y;λj), j = 1, ..., 16. The

spectrum at a point (x, y) along λ direction can be defined as a vector V (x, y)

V (x, y) = {I(x, y;λ1), I(x, y;λ2), ..., I(x, y;λ16)} (4.2)

The spectrum given by equation (4.2) represents a pixel feature vector with

16 dimension. The pixel based-classification with randomforest classifier is inves-

tigated for distinguishing three cell components. In the training step, the input

for generated random forest model are features vector and its label in annotated

region. When we applied test data in random forest model, the prediction prob-

ability of each class is obtained. However, our objective is to segment nuclei.

Therefore, only prediction probability of nucleus-lymphocyte class are consid-

ered. Consequently, these probabilities are normalized into gray scale image as

shown in Fig 4.5(b).

Consequently, image processing technique is applied to improve the segmented

result from pixel-based classification. Firstly, morphological opening operator and

Otsu’s binarization algorithm [47] were utilized to enhance gray scale image and

convert to black and white image, respectively. Then, we removed small regions

by applying morphological closing operator. However, lymphocyte still appeared

in image. In fact, the size of lymphocyte is smaller than nucleus. Thus, we

removed lymphocyte region by setting the threshold value. Figure 4.5(c) shows

the result of investigating image processing technique. Lastly, the final result of

segmented nuclei were detected Fig. 4.5(d). Our method mainly detected only

focused nuclei which have clear boundary and focus. For out-of-focus nuclei, the

probability of nuclear-lymphocyte class in that area is not high. the reason ia

that the spectrum is more similar to other classes. Furthermore, when we applied

image processing technique, the out-of-focus nuclei are removed. Our propose is

to diagnose cancer from chromatin patterns in nuclei. Therefore, only focused

nuclei are our target in this experiment.
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Figure 4.5: Step-bystep process of nuclei segmentation. (a) An example
of original image in band 8th. (b) Prediction probability of nuclei and lymphocyte
class as normalized into gray scale image. (c) Final result by applying morpholog-
ical operators. (d) The boundary of nuclei were detected.
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4.5 Optimization algorithm for gabor parameters

4.5 Optimization algorithm for gabor parame-

ters

In feature extraction step, the parameter setup for generating filter banks is also

important to extract nuclear texture. Since a result of feature extraction directly

influences classification performance. This study utilizes Gabor filters by consid-

ering parameter of frequencies and orientations. However, by manually setting,

frequencies and orientations may not achieve high performance in liver cancer

classification. We propose a concept to select subset of relevant Gabor parame-

ters. The idea takes an advantage of improving the overall computational com-

plexity. The objective of our proposed algorithm is to search the most effective

parameter which is appropriate to overall multispectral bands. Moreover, this op-

timization technique also makes the data comparable under the same condition.

In this study, the proposed optimization algorithm focused on selecting a subset

of relevant parameters in Gabor filter, that is, orientation and spatial frequency

bandwidth. The overview of proposed algorithm is shown in the optimization

part of Fig. 4.8.

The algorithm is described as follows.

Given a data set of nuclei D ⊂ ZN×16, where N denotes the total number of

nuclei in the multispectral database, we randomly select K, (K < N) data from D

for optimizing Gabor parameters. A and B denote a set of orientations and spatial

frequency bandwidths of Gabor filter bank repectively, where A = {a1, a2, ..., am}
and B = {b1, b2, ..., bs}. The optimal values in A and B are selected from the

minimum ranking of mean square error (MSE) in texture classification model.

The proposed parameter optimization procedure is described in Algorithms

4.6 and 4.7. The Algorithm 4.6 is aimed to find the optimal subset of parameters

A and B. Firstly, MSE of each parameter in A (MSEA) and B (MSEB) is

computed in Algorithm 4.7. After that, first n-rank and p-rank of descending

order of MSEA and MSEB respectively are selected as optimal values in A

(optA) and B (optB). n and p are the number of selected elements in A and B

respectively. The MSEA is calculated using Algorithm 4.7 with input d,A,B.

Secondly, the MSEB is also computed from Algorithm 4.7 with input d,B,A.

The optimization of Gabor parameters is described in Algorithm 4.7. The input
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Figure 4.6: Algorithm 1.

consists of data d and parameter sets A and B. Firstly, a set of Gabor pattern f

is generated by utilizing element of ai with a set of B. Then, Gabor descriptors

in each multispectral bands is calculated by taking convolution between original

image Ij at band j and f . The error classification rate ej is computed at band

j from texture classification model as described in section 3.3.2.2. We iteratively

compute ej for every multispectral band. Thus, we calculate MSE of ai, where

µ = 1
16

∑16
j=1 ej. Consequently, we iteratively change ai, i = 1, 2, ...,m. Finally,

the result of Algorithm 4.7 return MSEA. Moreover, the MSEB is also computed

in Algorithm 4.7 as described above.

4.6 Experimental and results

4.6.1 Implementation

In classification step, segmented nuclei as a result from nuclear segmentation

method were investigated to discriminate cancer and non-cancer cells. This

experiment utilized Gabor descriptors to extract textural patterns in each nu-

cleus. In this study, we generate parameters with a set of different frequen-

cies and orientations and fix spatial aspect ratio and wavelength. We set θ =

{0◦, 30◦, 45◦, 60◦, 90◦, 135◦} in orientation, the spatial frequency bandwidth bw =

{0.6, 0.7, 0.8, 0.9, 1}, spatial aspect ratio γ = 0.6 and wavelength v = 2. Thus, we
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Figure 4.7: Algorithm 2.

obtain 30-Gabor patterns. Moreover, optimization of Gabor parameter is per-

formed on our proposed algorithm. Due to a set of Gabor patterns may contain

irrelevant patterns and it may affect the classification accuracy. In this exper-

iment, we randomly get 25% of nuclear database to find relevant parameters

which are suitable for all multispectral bands. The first three ranks of values in

parameter θ and bw are selected as a result from Algorithms 4.6 and 4.7. Thus,

we obtain 9-Gabor patterns. After extracting feature descriptors, classification

procedure is performed for each individual multispectral band as shown in Fig.

4.8. Our experiment created 30 visual vocabularies of dictionary. This num-

ber of visual words provides the optimal classification rate. The final decision is

specified by majority voting strategy in patient level. Furthermore, k-fold cross

validation (CV) is applied for evaluating the performance. The classification ac-

curacy obtain from the average accuracy over k-fold. Specifically, we compared

the classification performance by utilizing all Gabor parameters and optimized

Gabor parameters in this study. Figure. 4.8 shows the overview of classification
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Figure 4.8: Schematic for filter-bank construction and BoW based classifier using
Gabor descriptors. In the training step, the Gabor features are extracted for each
nucleus using Gabor filter bank from the result of optimization algorithm. Then,
the features are clustered via k-means to identify the cluster centroids as visual
words. The feature space is mapped to the index of the nearest visual word. After
that, the bag of visual words forming the histogram model for each nucleus. In the
final step, random forests classifier performed by using the histogram as an input to
generate decision trees. Classification of a new nucleus involves first constructing
the corresponding visual word signature and then using model of random forests
to classify normal and cancer cell.

procedures which mainly contain three steps: optimization, training and testing.

In addition, we performed experiment by combining the multispectral bands

into several color spectrum according to the reference of wavelength interval of

each color spectrum as shown in Table 4.2. The classification was performed by

concatenating the histogram of visual words in each band. Consequently, random

forest classifier and majority voting strategy were performed for final decision.

4.6.2 Parameter selection

The result after performing optimization of Gabor parameters is the first three

ranks of a subset in parameter θ and bw. In this experiment, the relevant param-
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eter in θ = {0◦, 30◦, 60◦} and bw = {0.6, 0.7, 0.8} are suitable for discriminating

cancer and non-cancer nuclei in HCC multispectral images. Therefore, the feature

vector for representing nuclear pixel reduces 30% of utilizing all parameters.

4.6.3 Classification on single spectral band

The classification results of individual multispectral bands are presented in Table

4.1. We evaluated the performance of the system with 10-fold CV and its standard

deviation in patient level. This experiment compared the classification accuracy

with optimized and non-optimized Gabor parameters for discriminating normal

and cancer nuclei. We conclude the result of this experiment as follows.

1. After performing optimization algorithm, the result shows that the 1st, 2nd,

4th, 5th and 8th − 14th band successfully achieve high classification rate ap-

proximately over 99%. Furthermore, classification performance in 6th, 7th,

13th, 14th band are around 98%.

2. The 15th and 16th band which is in the wavelength range 686-753 nm. have

not much significant for classifying cancer and non-cancer nuclei in HCC

images compare with other spectral bands.

3. Classification rates utilizing optimized Gabor parameters obtain higher per-

formance than non-optimized for all multispectral bands.

The classification result showed that individual multispectral band contains

enough information for classifying HCC and normal nuclei in high-magnification

of liver tissue. In other words, the combination of multispectral bands was not

necessary. By utilizing feature optimization, a small number of features are used

to select the most significant features. The experimental result also showed that

there are no additional advantage of using more features. It was not get more

beneficial information of chromatin patterns. In addition, parameter optimization

assists to improve recognition performance and reduce computational time for

feature extraction and speed up the system efficiently.
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Table 4.1: Comparison of classification accuracy (%) and its standard deviation
between use of all of Gabor filters and optimized Gabor parameter.

band all filters optimization

1 92.32 ± 5.09 99.11 ± 1.03

2 88.58 ± 11.39 99.64 ± 0.31

3 88.45 ± 9.07 98.61 ± 1.98

4 90.00 ± 9.78 99.84 ± 0.25

5 87.81 ± 9.99 99.13 ± 1.06

6 87.53 ± 7.73 98.85 ± 1.16

7 94.22 ± 4.49 98.55 ± 0.98

8 97.88 ± 2.94 99.94 ± 0.09

9 93.67 ± 5.11 99.78 ± 0.31

10 88.06 ± 9.88 99.84 ± 0.31

11 95.10 ± 2.87 99.21 ± 0.79

12 94.95 ± 3.23 99.75 ± 0.61

13 95.82 ± 3.21 98.58 ± 1.27

14 93.74 ± 4.65 98.09 ± 1.43

15 92.50 ± 4.19 97.04 ± 2.25

16 90.70 ± 6.58 97.35 ± 2.74

4.6.4 Classification on color spectrum

In this experiment, we analyzed the impact of different color spectrum in visible

wavelength interval for discriminating normal and cancer nuclei. The classifica-

tion results and its standard deviation are shown in Table 4.2. The experimental

result showed that green spectrum reported the highest classification performance

(99.82%). However, blue, yellow and orange spectrum obtained classification rate

99.5% approximately and red spectrum achieved recognition rate 98.34%. These

five color spectrums have similar classification performance.
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Table 4.2: The wavelength interval in each color Band column is grouped multi-
spectral bands by mapping approximately the wavelength interval for each color.

Color Wavelength Band Classification

interval rate (%) ± SD

Red ∼ 700-635 nm. 12th − 16th 98.34 ± 2.50

Orange ∼ 635-590 nm. 10th − 12th 99.51 ± 0.40

Yellow ∼ 590-560 nm. 9th − 10th 99.73 ± 0.29

Green ∼ 560-490 nm. 5th − 8th 99.82 ± 0.28

Blue ∼ 490-450 nm. 1st − 4th 99.69 ± 0.32

4.6.5 Conclusions

This study presented a computational method for classifying HCC in multispec-

tral images. Our propose is to analyzed based on nuclear chromatin patterns.

We captures multispectral images with 100x magnification. We extracted Gabor

descriptor to represent the characteristics of chromatin patterns in each nucleus.

Bag of visual word model and random forest classifier were utilized to classify

normal and HCC. Then, the final decision was computed based on majority vot-

ing strategy with a set of nuclei in each patient. Consequently, we performed

experiment on analysis of the significant of one spectral band for distinguish-

ing normal and cancer cell nuclei. Moreover, we applied parameter optimization

algorithm to select relevant Gabor patterns which suitable for all multispectral

bands at the same parameters. The experimental results shows that the use of

optimized Gabor parameters improved classification accuracy of all multispectral

bands comparing with using full set of Gabor parameters. For individual mul-

tispectral band analysis, most of multispectral bands have similar classification

accuracy. Specifically, the 1st, 2nd, 4th, 5th and 8th − 12th bands achieve 99% of

classification accuracies approximately. However, 3rd, 6th, 7th and 13th bands and

15th−16th bands obtain 98.60% and 97%, respectively. In summary, the textures

of nuclei obtained from wavelength 418-467 nm., 481-513 nm. and 548-641 nm.
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are adequate to classify normal and HCC in high-magnification. Our approach

shows that multispectral images provide meaningful feature in terms of classify-

ing normal and HCC nuclei. It was also proved that nuclei texture is sufficient

to classify normal and HCC.
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Chapter 5

Thyroid follicular tumor

classification in 3D images

5.1 Introduction

Subclassification of follicular neoplasm has been proposed to triage each patient

by considering the risk of malignancy for ben-eficial treatment. The Japan Thy-

roid Association (JTA) categorizes indeterminate FN into three levels of risk

stratification [6]. First, the favor malignant type or high risk presents the high

probability of malignancy around 40-60 percents. If a patient is identified as the

favor malignant type by cytological diagnosis, the patient should immediately re-

ceive its treatment. Furthermore, the borderline and the favor benign represent

moderate and low risk, respectively.

Due to the limitation of 2D microscope images, we can visualize cell images

in one view point. In fact, cells are in different 3D locations, and they vary in

size and shape. Thus, 3D image data may provide more significant information

and advantages for analysis. Moreover, 3D image data may assist pathologists

to explore more details of a specific disease based on morphological properties

and chromatin patterns in cancer cells. Thus, a computer aided diagnosis system

based on 3D image is an additional option for pathologists to support clinical

treatment.

In this study, we present a new 3D nuclei segmentation method based on un-

supervised learning technique consisting of K-mean clustering and random forests

45



5. Thyroid follicular tumor classification in 3D images

methods. Next, classification approach perform for classifying favor benign and

borderline types of follicular thyroid adenoma in volumetric data. The proposed

method utilizes 3D textural features in gray level co-occurrence matrix algorithm

and Gabor filter banks to extract volumetric textural features of 3D segmented

nuclei. Then, these texture descriptors are classified by random forest classifier.

The objective of this study is to discriminate between favor benign and borderline

of follicular thyroid adenoma in cytological specimens from 3D image stacks.

5.1.1 Image acquisition

The tissue samples are from Ito hospital, Tokyo, Japan where is one third of the

thyroid specialist hospitals in Japan. Thus, the precision of cytologic diagnosis

in thyroid is higher than other hospitals that are not specialist in analysis of

thyroid nodules. Moreover, the diagnosis was evaluated with hospitals in foreign

countries. The evaluated result showed that the cytologic diagnosis of thyroid in

Japan, achieved higher classification accuracy than others. Therefore, our dataset

that utilize in this experiment, is reliable in term of diagnosis point-of-view.

The follicular thyroid adenoma dataset were captured using the virtual slide

imager [Claro, optical: 1/2 type1.6 prism, effective pixels: 1360(H) x 1024(V)]

with a 3CCD digital camera. This camera system focuses on the center of nuclei in

cytological specimens and automatically move up and down along depth direction

with 0.25 µm for acquiring a 3D image stacks. One stack contains 41 image

with 40x objective lens. Each 3D image stacks is categorized by experienced

pathologists. One dataset is classified as favor benign or borderline types in

follicular thyroid adenoma (FTA). This experiment contain 11 cases of favor

benign and 11 cases of borderline for analysis. Figure 5.1 shows examples of

the collected images. The dataset contain various kinds of background colors,

different levels of image noises and inconsistent color-intensities. The 3D nuclei

segmentation is a challenge task in this study.
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5.1 Introduction

Figure 5.1: Examples of follicular thyroid adenoma images in cytological spec-
imens. They were captured at auto focus slide of 3D stack of images. (a),(b)
Favor benign type in thyroid follicular adenoma. (c),(d) Borderline type in thyroid
follicular adenoma.

47



5. Thyroid follicular tumor classification in 3D images

5.2 3D nuclei segmentation

5.2.1 Nuclei detection in 2D image slice

This study aims to detect nuclei inside images as much as possible. It is simply

explained by the following steps as shown in Fig. 5.2. First, for each given 2D

image slice, a preprocessing step is executed to remove some parts of cytoplasm

and background areas. This removal is achieved by applying the Otsu’s bina-

rization algorithm [47] and opening morphological operations. As a result of this

removal, all segmented areas are classified in two categories of individual nuclei

areas and compound areas. This classification is proceeded by measureing area

and circularity. In fact, the compound areas still consist of nuclei and cytoplasms.

Afterwards, four image slices in individual nuclei areas and compound areas are

selected to perform based on K-mean clustering. As a result of K-mean cluster-

ing, cluster centers of individual nuclei areas are utilized in the final step of 2D

nuclei segmentation. On the other hand, as for the compound areas, a result of

K-mean clustering gives many different clustered regions. Therefore, pixel-based

classification is utilized to label each pixel in compound areas. Subsequently, the

cluster centers acquired from individual nuclei areas and labeled pixels are used

to indicate nuclei regions in compound areas.

In this study, pixel-based classification was performed based on unsupervised

learning scheme. A classification model is provided for one stack of images.

Random forest classifier [39] is used to label nuclei areas. It starts from a training

step. Each pixel is represented as a six-dimensional feature vector composed of

RGB and HSV color values. We separately apply K-means clustering to all pixels

in each slice of a training data set to classify them into N clusters. Afterwards, all

training feature vectors are labeled by considering the shortest distance from the

N clusters. Most of cluster centers on a slice may be near to those on different

slices in the training data. In this case, clusters on different slices that those

neighboring are given a same cluster label. Thus, each data set may provide

different number of labels in its training, which depend on the context of images.

Actually, from our preliminary experiments, it is not good to apply the pixel-

based classification to all entire data set because these images contain various
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5.2 3D nuclei segmentation

Figure 5.2: A flow chart of the proposed 2D nuclei detection
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kinds of background colors, different levels of image noises, and inconsistent color-

intensities. Subsequently, training features and their labels are assessed by a

random forest model. The result of random forest classifier presents posterior

probabilities of each feature vector. Then, we select the label presenting the

maximum posterior probability as the final label of the pixel. Next, each labeled

pixel will be classified as one of nuclear components if a cluster center of a labeled

pixel is near to the cluster center of individual nuclei areas. Finally, these labeled

pixels are refined by morphological operators. Figure. 5.4(b) shows the result of

2D nuclei segmentation.

5.2.2 3D cell construction

Referring to Fig. 5.3, a 3D nucleus volume is constructed by three main steps.

The first step is to initialize a reference slice for a target nucleus. The variable k

denotes a depth location of a center slice of the 3D nucleus volume in the image

stacks. Furthermore, a target nuclear region in the reference slice k is indicated

by Rk, which is called reference region. Neighbor slices b and t are referred to the

next slice and the previous slice from reference image slice, respectively. Then,

we devide the nucleus volume into top and bottom sections before applying the

second and third steps to both sections. Thus a neighbor slice is referred to

an upper layer counted from the reference image slice when the top section is

considered. On the other hand, a neighbor image slice is a bottom layer.

In the second step, both centroids of a nuclear region in a neighbor image

slice and reference image slice are considered. If the centroids of both regions are

equal or slightly different, they are probably located in the same nucleus volume

in a three dimensional system. However, it is necessary to validate a region in the

neighbor image slice before combining it to the nuclear region in reference slice.

This validation process is performed by considering four cases.

1. Similar size:

The considered area will be merged into the area at reference slice if their

sizes are equal.
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2. Under segmentation:

A region in a neighbor image slice is smaller than the region in reference

slice. In this case, the region in the neighbor image slice is replaced by the

region in reference slice before performing a combination.

3. Touching cells:

If a considered region in a neighbor image slice is larger than the reference

image, the considered region will be categorized as touching cell regions.

Thus, we apply the Watershed transform [48] to it in order to split touching

cell regions. Next, one of split regions is selected to integrate with the region

in reference slice.

4. Misdetection:

This case is preferred when no area appears in a neighbor image slice. In this

case, a simulated region based on the region in reference image is created

and added into the neighbor image slice for merging with Rk.

In the final step, a considered region in a neighbor image slice conforms the

validate process. It is labeled by the same number of Rk. Then, the considered

region of the neighbor image slice is set as Rk for obtaining a new region in the

next neighbor image slice. In addition, the second and the third main steps are

iterated until the top and the bottom slices are found. This process is iteratively

performed for all nuclei in the dataset. The result of 3D nuclei model is shown in

fig. 5.4(c) which estimated ellipsoid from major axis, minor axis and intermediate

axis.

5.3 Experimental results in volumetric data

5.3.1 Implementation

We applied the proposed 3D nuclei segmentation method to FTA images as de-

scribed in section 5.2. The result of 3D nuclei segmentation that is shown in

Fig. 5.4. The segmented nuclei were utilized to discriminate favor benign and

borderline in the classification step. In this experiment, 2D GLCM, 2D Gabor,
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Figure 5.3: A flow chart of the proposed 2D nuclei detection
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Figure 5.4: Step-bystep process of 3D nuclei segmentation. (a) An example of
original image slice. (b) 2D nuclei segmentation result. (c) 3D nuclear model
construction.
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3D GLCM and 3D Gabor filter banks were applied to extract chromatin pat-

terns for each 3D nuclear model over 22 cases of FTA that contain 11 cases of

favor benign and 11 cases of borderline. The total of 927 nuclei are examined

in this study. For GLCM parameters, we set offset D = 1. The 12 haralick

features were extracted as described in 3.3.1.2. In Gabor filter banks, we set

θ = {0◦, 30◦, 45◦, 60◦, 90◦, 135◦} in orientation, the spatial frequency bandwidth

bw = 0.9, spatial aspect ratio γ = 0.6 and wavelength v = 2. This experiment

extracted six different feature descriptors for each nucleus.

1. 2D GLCM extract from the center layer of image slice in four different

directions including 0◦, 45◦, 90◦, 135◦.

2. 3D GLCM method 1 compute from volumetric data considering four direc-

tions in x, y plane including 0◦, 45◦, 90◦, 135◦.

3. 3D GLCM method 2 obtain from volumetric data in 13 directions as ex-

plained in 3.1.

4. 2D Gabor compute from the center layer of image slice.

5. 3D Gabor method 1 extract 2D Gabor filter banks from each layer of image

slice and concatenate feature of each layer into 1 vector.

6. 3D Gabor method 2 calculate 3D Gabor filter banks from volumetric data.

After extracting feature descriptors, the classification procedure was performed

by utilizing the BoW model and random forest classifier. The final decision was

made by majority voting strategy for each image stack. Furthermore, we evalu-

ated the performance by applying k-fold cross validation. The average accuracy

over 10-fold cross validation was obtained as a result of cross-validation accuracy.

In addition, six textural features were utilized to compare their performances

of classification. Precision and recall are computed to evaluate the system per-

formance. Figure 5.5 shows the overview of classification model in volumetric

data.
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Figure 5.5: The overview of classification model in volumetric data.
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Table 5.1: Comparision of classification accuracy

Texture Classification Computational precision recall

feature accuracy(%) time(mins)

2D GLCM 86.36 ∼0.67 1 0.78

3D GLCM method 1 90.91 ∼6.39 1 0.85

3D GLCM method 2 95.45 ∼23.47 1 0.92

2D Gabor 81.82 ∼1.48 1 0.73

3D Gabor method 1 90.91 ∼49.36 1 0.85

3D Gabor method 2 95.45 ∼7.14 1 0.92

5.3.2 Classification results

The performance of classification was evaluated by using 10-fold cross validation

as described in section 3.4.1. Table 5.1. shows classification accuracy of favor

benign and borderline nuclei in 3D images. From the result, the use of the

3D GLCM method 2 and 3D Gabor method 2 descriptors achieved the highest

classification rate 95.45 % whereas the classification based on the 3D GLCM

method 1 and 3D Gabor method 1 descriptors were 90.91 %. The classification

accuracy of 2D GLCM and 2D Gabor were 86.36% and 81.82%, respectively.

Thus, the use of 3D GLCM method 2 and 3D Gabor method 2 descriptors are

the best feature descriptor to explore volumetric data for distinguishing favor

benign and borderline in FTA. However, the classification rate of 3D GLCM

method 2 and 3D Gabor method 2 descriptors are same. The computational

time of 3D Gabor is three times faster than 3D GLCM. In addition, the precision

of all textural features is one. It means that the correct prediction rate of favor

benign achieved 100%.
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5.3.3 Conclusions

This study presents detection and classification systems computed in volumetric

data for classifying favor benign and borderline of FTA. Pixel-based classification

technique is investigated to segment nuclei in each slide by utilizing k-mean clus-

tering and random forest classifier. Consequently, 3D nucleus model is created

by combining regions among slices according to their similarities. Furthermore,

We analyzed favor benign and borderline based on texture analysis of 3D shape

models. We investigated the use of GLCM and Gabor descriptors to extract volu-

metric texture features of chromatin patterns inside a nucleus. Subsequently, the

random forest classifier and majority voting strategy were performed to charac-

terize favor benign and borderline types. Moreover, experimental results showed

that the use of the 3D GLCM method 2 and 3D Gabor method 2 descriptors

achieved 95.45 % of classification performance. However, the 3D GLCM method

1 and 3D Gabor method gave 90.91 % of classification accuracy. Consequently,

volumetric feature descriptors probably provide more information of nuclear chro-

matin patterns for analysis comparing with utilizing 2D images. Specifically, The

3D Gabor method 2 descriptor compute faster than 3D GLCM method 2 descrip-

tor.
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Chapter 6

Conclusions

This thesis contains two main studies. Both of them have similar modules which

consists of nuclei segmentation and classification. However, these two studies

applied in different imaging technologies.

First study focused on classify HCC in multispectral images. The nuclei struc-

ture has a significant interpretation for cancer analysis in histopathological mi-

croscopic images. We analyzed hepatocellular carcinoma in 100x magnification

from nuclear chromatin patterns. The multispectral imaging is a new potential

technique for histopathology. It may provide an alternative to pathologists to

see additional information. This study utilize multispectral images which have

spatial and spectral information for nuclear analysis. The proposed framework

is based on texture analysis of nuclei. The system aim to analyze the signifi-

cant of multispectral bands for discriminating cancer and non-cancer nuclei. The

textural features were extracted using Gabor descriptors. We present nuclei tex-

tural feature with 30 Gabor patterns at different scales and orientations. Bag-

of-visual-word model with random forest classifier is employed to classify normal

and cancer cells. Moreover, we remove irrelevant Gabor parameters using op-

timization algorithm, which achieve high recognition performance significantly.

The experimental results shows that the use of optimized Gabor parameters

improved classification accuracy of all multispectral bands comparing with us-

ing full set of Gabor parameters. For individual multispectral band analysis,

most of multispectral bands have similar classification accuracy. Specifically, the
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1st, 2nd, 4th, 5th and 8th − 12th bands achieve 99% of classification accuracies ap-

proximately. However, 3rd, 6th, 7th and 13th bands and 15th − 16th bands obtain

98.60% and 97%, respectively. In summary, the textures of nuclei obtained from

wavelength 418-467 nm., 481-513 nm. and 548-641 nm. are adequate to classify

normal and HCC in high-magnification. Our approach shows that multispectral

images provide meaningful feature in terms of classifying normal and HCC nuclei.

It was also proved that nuclei texture is sufficient to classify normal and HCC.

Second study performed on classification of favor benign and borderline types

in follicular thyroid adenoma (FTA) of volumetric data. The subclassification

of follicular neoplasm (FN) plays an important role for clinical management in

Japan. The diagnosis system of indeterminate thyroid nodule is intended to

stratify a health risk status of patient. However, it is difficult to separate the

favor benign from borderline types, and the classification process normally re-

quires an experienced pathologist. We present a new methodology to detect

nuclei in 3D image stack based on unsupervised learning. We applied pixel-based

classification technique to segment nuclei in each slice by utilizing k-mean clus-

tering and random forest classifier. Consequently, 3D nucleus model is created

by combining regions among slices according to their similarities. Our proposed

method can work with complex background, different levels of image noises, and

inconsistent of color-intensities. Furthermore, 3D shape model is investigated to

analyze sub-categories of FN between favor benign and borderline in FTA. The

classification approach based on 3D nuclei model are performed for classification.

We investigated the use of GLCM and Gabor descriptors to extract volumetric

texture features of chromatin patterns inside nuclei. Subsequently, the random

forest classifier and majority voting strategy were performed to characterize fa-

vor benign and borderline. Moreover, experimental results showed that the use

of volumetric feature descriptors including 3D GLCM method 2 and 3D Gabor

method 2 achieved 95.45 % of classification performance. However, the 3D GLCM

method 1 and 3D Gabor method 1 descriptors gave 90.91 % of classification ac-

curacy. The classification rate of 2D GLCM and 2D Gabor were 86.36% and

81.82%, respectively. Even though, 3D GLCM method 2 and 3D Gabor method

2 descriptors achieved same classification accuracy. However, the computational
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time of 3D Gabor method 2 is three times faster than 3D GLCM method 2. Con-

sequently, the proposed method probably helps a pathologist as a pre-screening

tool.

In the future work, we will test our system with several dataset from differ-

ent hospitals in order to compute performance and consistency of the system.

Moreover, deep neural networks algorithm will perform to analyze cancer in our

experiments since it is a popular technique and provide promising results in many

applications including medical image analysis. We would like to compare classi-

fication performance with our proposed system. In second study, we would like

to extend experiments focusing on 3D feature descriptors. Various kinds of volu-

metric feature descriptors consider to investigate in the second study for seeking

the best feature descriptors which can be well represent nuclear characteristic in

3D nuclei model.
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