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Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and
decoding to suppress and correct errors that degrade the performance of quantum annealers in solving
optimization problems. While QAC has been experimentally demonstrated to successfully error correct a
range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here
we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models
using a mean-field analysis, specifically the p-body ferromagnetic infinite-range transverse-field Ising
model as well as the quantum Hopfield model. We demonstrate that for p ¼ 2, where the phase transition is
of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p ≥ 3,
where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty
values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection
from excitations that occur near the quantum critical point. We find similar results for the Hopfield model,
thus demonstrating that our conclusions hold in the presence of disorder.

DOI: 10.1103/PhysRevLett.116.220501

Quantum computing promises quantum speedups for
certain computational tasks [1,2]. Yet, this advantage is
easily lost due to decoherence [3]. Quantum error correc-
tion is therefore an inevitable aspect of scalable quantum
computation [4]. Quantum annealing (QA), a quantum
algorithm to solve optimization problems [5–10] that is a
special case of universal adiabatic quantum computing
[11–15], has garnered a great deal of recent attention as it
provides an accessible path to large-scale, albeit nonuni-
versal, quantum computation using present-day technology
[16–19]. Specifically, QA is designed to exploit quantum
effects to find the ground states of classical Ising model
Hamiltonians HC by “annealing” with a noncommuting
“driver” Hamiltonian HD. The total Hamiltonian is
HðtÞ ¼ ΓðtÞHD þHC, and the time-dependent annealing
parameter ΓðtÞ is initially large enough that the system can
be efficiently initialized in the ground state of HD, after
which it is gradually turned off, leaving onlyHC at the final
time. QA enjoys a large range of applicability since many
combinatorial optimization problems can be formulated in
terms of finding global minima of Ising spin glass
Hamiltonians [20,21]. Being simpler to implement at a
large scale than other forms of quantum computing, QA
may become the first method to demonstrate a widely
anticipated quantum speedup, though many challenges
must first be overcome [22,23].

While QA is known to be robust against certain forms of
decoherence provided the coupling to the environment is
weak [10,24–28], error correction remains necessary in order
to suppress excitations out of the ground state aswell as errors
associated with imperfect implementations of the desired
Hamiltonian [29]. Unfortunately, unlike the circuit model of
quantum computing [30], no accuracy-threshold theorem
currently exists for QA or for adiabatic quantum computing.
Nevertheless, error suppression and correction schemes have
been proposed [31–36] and successfully implemented exper-
imentally [37–43], resulting in significant improvements in
the performance of special-purpose QA devices.
Herewe focus on the quantum annealing correction (QAC)

approach introduced in Ref. [37], which assumes that only the
classical Hamiltonian HC can be encoded. QAC introduces
three modifications to the standard QA process. First, a
repetition code is used for encoding a qubit into K (odd)
physical data qubits; i.e., K independent copies of HC are

implemented given by HðkÞ
C , k ¼ 1,…, K. Second, a penalty

qubit is added for eachof theN encoded qubits, throughwhich
the K copies are ferromagnetically coupled with strength
γ > 0, resulting in a total QAC Hamiltonian of the form

H=J ¼ −
XK
k¼1

ðHC
k þ ΓHD

k þ γHP
k Þ; ð1Þ
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where J is an overall energy scalewhichwe factor out tomake
the equation dimensionless. The penalty Hamiltonian HP ¼P

K
k¼1 H

P
k represents the sum of stabilizer generators [44] of

the repetition code, and it penalizes disagreements between the
K copies. This allows for the suppression of errors that do not
commutewith the Pauli σz operators. Third, the observed state
is decoded via majority vote on each encoded qubit, which
allows for active correction of bit-flip errors.
It was shown in Refs. [37–40] that using QAC on a

programmable quantum annealer [16–19] significantly
increases the success probability of finding the ground
state after decoding, in comparison to boosting the success
probability by using the same physical resources of K þ 1
copies of the classical Hamiltonian. This empirical obser-
vation was explained using perturbation theory and numeri-
cal analysis of small systems, where it was observed that
QAC both increases the minimum gap and moves it to an
earlier point in the quantum anneal (i.e., higher Γ), and
recovers population from excited states via decoding.
A deeper understanding of this striking success proba-

bility enhancement result is desirable. We tackle this
problem using mean-field theory, which gives us an ana-
lytical handle beyond small system sizes. Specifically, we
are able to calculate the free energy associatedwith theQAC
Hamiltonian, and in turn study the phase diagram as a
function of penalty strength and transverse field strength.
We do this by first studyingQAC in the setting of thep-body
infinite-range transverse-field Ising model, then include
randomness by studying the p-body Hopfield model.
p-body infinite-range Ising model encoded using

QAC.—In this model the ith physical qubit is replaced
by the ith encoded qubit, comprising K physical qubits and
a penalty qubit. The terms in the QAC Hamiltonian in
Eq. (1) are the infinite-range classical Hamiltonian
HC

k ¼ NðSzkÞp, where Szk ≡ ð1=NÞPN
i¼1 σ

z
ik, and the driver

and penalty Hamiltonians are given by

HD
k ¼

XN
i¼1

σxik; HP
k ¼

XN
i¼1

σzikσ
z
i0; ð2Þ

where σxik and σzik denote the Pauli operators on physical
qubit k of encoded qubit i, and σzi0 acts on the penalty qubit
of encoded qubit i. Unlike in Refs. [37,38], we do not
include a transverse field on the penalty qubit, since this
allows us to keep our analysis analytically tractable.
By employing the Suzuki-Trotter decomposition and the

static approximation (constancy along the Trotter direction)
[45–48], we find that the free energy F is given in the
thermodynamic limit (N → ∞) by

F=J ¼ ðp − 1Þ
XK
k¼1

mp
k −

1

β
lnðe

P
K
k¼1

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ−pmp−1

k Þ2þΓ2
p

þ e
P

K
k¼1

β
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγþpmp−1

k Þ2þΓ2
p

Þ ð3aÞ

~
β ~∞XK

k¼1

½ðp − 1Þmp
k −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ þ pjmkjp−1Þ2 þ Γ2

q
�; ð3bÞ

where mk is the Hubbard-Stratonovich field [49] that also
plays the role of an order parameter, and β ¼ ðkBTÞ−1 is the
inverse temperature. This free energy for the infinite-range
model appropriately reflects quantum effects; i.e., the
eigenstates are not classical product states, as further
commented on in Sec. I of the Supplemental Material
[50]. The dominant contribution to F comes from the
saddle point of the partition function Z ¼ exp ð−βNFÞ,
which provides a consistency equation formk. The solution
that minimizes the free energy has all K copies with the
same spin configuration, i.e., mk ¼ m∀k, which is the
stable state. Metastable solutions exist where mk ¼ m for
k ¼ 1, …, κ and mk ¼ −m for k ¼ κ þ 1;…; K, which
represent local minima and are decodable errors provided
κ > K=2. Additional details of the derivation of F can be
found in the Supplemental Material [50].
When p ¼ 2, it is well known that for γ ¼ 0 (where the

K copies are decoupled) there is a second order phase
transition (PT) from a symmetric (paramagnetic) phase to a
symmetry-broken (ferromagnetic) phase, at Γc ¼ 2 [55].
However, as shown in Fig. 1, as γ increases, the PT is
pushed to increasingly larger Γc values for fixed β, until, as
β → ∞ also Γc → ∞ for any γ > 0. This means that in the
zero temperature limit the PT is effectively avoided for any
γ > 0, while for T > 0 as γ is increased the system spends
an increasingly larger fraction of the anneal in the sym-
metry-broken phase.
For p > 2, there is a first order PT for γ ¼ 0 [55]. We

show the p ¼ 4 phase diagram in Fig. 2, for different values
of γ. We find several interesting regimes that we observe
generically for p > 2. In the zero temperature limit, there is
a single first order PT between m ¼ 0 and m ¼ mlarge that
persists even for small γ, and the associated Γc increases
monotonically as a function of γ, as Γc ≈ 1.4γ þ 1.2.

FIG. 1. The mean field phase diagram for p ¼ 2 for different γ
values. The lines represent second order PTs encountered along
the anneal from large to small Γ values. For a fixed temperature,
the critical point Γc increases with γ. At zero temperature,
Γc ¼ ∞ for γ > 0.
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However, the PT disappears for γ > γcðpÞ, where
γcðpÞ ≈ 0.46p − 1 (see the Supplemental Material [50]).
In general, such a result should be taken as an indication
that the penalty is too strong, in the sense that it over-
whelmedHC and has potentially turned a hard instance into
an easy one.
For T, γ ≳ 0 we observe two first order PTs. The first is

between m ¼ 0 and m ¼ msmall, followed by a PT between
msmall and mlarge at a smaller Γ. If γ is made larger than a
critical value of γc2 at these low temperatures, then only the
former PT survives, and msmall smoothly moves to mlarge as
Γ is decreased. Further details are provided in the
Supplemental Material [50].
The penalty term also changes the first order PT

quantitatively. In Figs. 3(a) and 3(b), we show the free
energies at the critical points for γ ¼ 0 and 0.5 in the T → 0
limit. The penalty term reduces the width and the height of
the potential barrier, thus increasing the probability that the
system will tunnel from the left well (small m; global
minimum for Γ > Γc) to the right well (large m; global
minimum for Γ < Γc). This is similar to the reduction and

elimination of the barrier heights when different driver
Hamiltonians are used [56–58].
We can relate the reduction of the width and the height of

the mean-field free energy barrier to the softening of the
energy gap between the ground state and the first excited
state. We use our earlier finding that in the T → 0 limit the
penalty qubits are locked into alignment with the ground

state of HðkÞ
C . This configuration of penalty qubits defines a

particular sector of the Hilbert space of H, which contains
the global ground state of H. We can thus confine our
analysis to one of the two corresponding sectors, i.e., where
σzi0 ¼ þ1∀i; at T ¼ 0 and in the absence of a transverse
field there is no mechanism to flip the penalty qubits. This
decouples the K copies and the penalty becomes a global
field in the z direction. The HamiltonianH restricted to this
sector is invariant under all permutations of the logical
qubit index i. Therefore, if we initialize the system in this
symmetric subspace it will remain there under the unitary
evolution. This symmetric subspace is spanned by the
Dicke states (eigenstates of the collective angular momen-
tum operators with maximal total angular momentum), and
the dimensionality of each of the K copies is reduced from
2N to N þ 1 (see the Supplemental Material [50]). In the
Dicke state basis the Hamiltonian is tridiagonal and can be
efficiently diagonalized [47]. Doing so for sufficiently large
N’s allows us to extract the scaling of the minimum gap Δ
in the symmetric subspace. We show for the case of p ¼ 4

that Δ ∼ CN , with C given in Fig. 3(c). As γ increases C
increases as well, asymptoting to 1 for large γ, at which
point the gap is constant. This softening of the closing of
the gap with γ is obviously a desirable aspect of QAC, since
it reduces the sensitivity to excitations and in turn implies
an enhancement of the success probability of the QA
algorithm.
Hopfield model encoded using QAC.—The ferromag-

netic model considered above has a trivial classical ground
state. To understand whether a more challenging computa-
tional problem exhibiting randomness affects our

FIG. 2. The mean field phase diagram for p ¼ 4 for different γ
values. The lines represent first order PTs. Inset: a magnification
of the low temperature region to show the presence of two first
order PTs for a particular range of T and γ. At zero temperature,
there exists a value γc such that for γ > γc, the first order PT is
avoided completely, as can be seen by the case γ ¼ 1.5.

FIG. 3. Results for p ¼ 4, T → 0, and J ¼ 1. (a) The free energy for γ ¼ 0 at the critical point Γc ¼ 1.185. The two degenerate global
minima are atm ¼ 0 and 0.943. (b) The free energy for γ ¼ 0.5 at the critical point Γc ¼ 1.847. Now the two degenerate global minima
are at m ¼ 0.328 and 0.844. For γ ¼ 0.5, the symmetric point m ¼ 0 is metastable and the global minimum has nonzero magnetization
even for large Γ. This minimum continuously moves to m ¼ 0.328 along the anneal, and then discontinuously jumps to m ¼ 0.844 at
Γc ¼ 1.847. (c) The coefficient C associated with the scaling of the gap in the symmetric subspace (Δ ∼ CN). C increases monotonically
towards unity as a function of γ.
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conclusions, we now consider the quantum Hopfield model
[59,60], but limit ourselves to the T ¼ 0 case for simplicity.
The encoded Hamiltonian of the Hopfield model is again
given by Eq. (1), and the driver and penalty Hamiltonians
are given in Eq. (2). The classical Hamiltonian
is HC

k ¼ N
P

R
μ¼1 ½ð1=NÞPN

i¼1 ξ
μ
i σ

z
ik�p, where the R

“patterns” ξμi (indexed by μ) take random values �1.
The Hubbard-Stratonovich field is now labeled by mμ

k.
Note that the p-body infinite-range Ising model is the
special case with R ¼ 1 and ξμi ≡ 1.
Let us first consider the case of a finite number of

patterns, i.e., mμ
k ¼ mk for 0 ≤ μ ≤ l and mμ

k ¼ 0 for
μ ≥ lþ 1. We then find that the free energy is minimized
by l ¼ 1 for all Γ (see Supplemental Material [50]) and is
identical to Eq. (3b); thus the conclusions obtained above
for the uniform ferromagnetic case apply in this case
as well.

Next, we consider the “many-patterns” case, where the
number of patterns scales as R ¼ OðNp−1Þ (ensuring
extensivity). In this case, the free energy under the ansatz
of replica symmetry [61] is a function of two order
parameters: the one- and two-point spin correlation func-
tions m and q. Both order parameters are relevant for
determining the phase, and hence the complexity, of
the Ising Hamiltonian. Details can be found in the
Supplemental Material [50].
Our results are illustrated in Fig. 4. For p ¼ 2 and γ ¼ 0,

the extremum of the free energy is at the symmetric point
ðm; qÞ ¼ ð0; 0Þ for large Γ and moves continuously to the
symmetry-broken phase with nonzero q as Γ goes below Γc.
For finite γ, the system is in the symmetry-broken phase
even for large Γ and is never at ðm; qÞ ¼ ð0; 0Þ [see Fig. 4].
For p ¼ 4 and γ ¼ 0, there is a discontinuous jump in
(m, q) as a function of Γ, indicating the presence of a first-
order PT. For finite values of γ, the discontinuity is smaller
in magnitude, and it eventually disappears as γ increases
[see Fig. 4(b)]. These qualitative features are the same as
those observed in the uniform ferromagnetic case above.
Therefore, QAC improves the success probability of the
QA algorithm even in the presence of certain types of
randomness. We note that replica symmetry breaking may
change some of the results [61]. For example, the PT for
p ¼ 2may persist up to a finite value of γ but will disappear
for sufficiently large γ. We can trust at least the qualitative
aspects of our result that effects of PTs become less
prominent under the presence of the penalty term, which
would enhance the performance of QA.
Conclusions.—We have demonstrated that in the thermo-

dynamic limit, depending on the penalty strength γ, QAC
either softens or prevents the closing of the minimum
energy gap. In the latter case the associated PT is avoided in
the T → 0 limit, while in the T > 0 setting only the
conclusion that the gap closing is softened survives.
Indeed, it is unreasonable to expect that QAC changes
the computational complexity class of the optimization
problem of the corresponding QA process. This would help
to explain the increase in success probability witnessed in
QAC experiments [37–40].
An important aspect of QAC that is absent in the analysis

presented here is the decoding step, which is known to lead
to an optimal penalty strength [37–40]; this aspect may
emerge as we attempt to keep decodable metastable
solutions closer to the global minimum than undecodable
solutions, and will be addressed in future work.
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FIG. 4. (a) The q value at the free energy extremum for the
Hopfield many-patterns case with p ¼ 2, R ¼ 0.01N, and K ¼ 3
under the replica symmetric ansatz. For γ ≠ 0, the system remains
in the symmetry-broken phase at least up to Γ ¼ 10, while for
γ ¼ 0 the symmetric phase is present for Γ≳ 2.2. (b) Them value
at the free energy extremum for the Hopfield many-patterns case
with p ¼ 4, R ¼ 0.01N3 and K ¼ 3. For γ ¼ 0, there is a first
order transition around Γ ¼ 1.6, and the extremum jumps
discontinuously from m ¼ 0.86 to m ¼ 0. For γ ¼ 0.5, there is
again a discontinuous jump in the value ofm but it does not reach
m ¼ 0. For γ ¼ 1, 2 a discontinuity is not observed suggesting
that the first order PT disappears or is at least weakened
considerably by the penalty term.
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Supplementary Material for
“Mean Field Analysis of Quantum Annealing Correction”

In the main text we were concerned with Hamiltonians of the form

H/J = Hx +Hz , (1)

where J has dimensions of energy, and

Hx = −Γ

K∑
k=1

HD
k , (2)

Hz = −
K∑
k=1

(
HC
k + γHP

k

)
. (3)

Hx involves only σx-type Pauli operators and Hz involves only σz-type Pauli operators. Note that both γ and Γ are
dimensionless since we have already factored out the energy scale J . The driver and penalty Hamiltonians are

HD
k = N

(
Sxk +

ε

K
Sx0

)
, Sxk ≡

1

N

N∑
i=1

σxik (4a)

HP
k =

N∑
i=1

σzikσ
z
i0 . (4b)

Throughout we use σαik to denote the α-type Pauli operator acting on physical qubit k of encoded qubit i. The term
σxi0 represents the transverse field on the penalty qubit shared by the K copies, which we assume has magnitude
ε ≥ 0. We keep this term for now, though in the main text we consider only the ε = 0 case. The case with ε = 0 is
illustrated in Fig. 1 for a chain.

…	  

!!i=1 !!i=2 !!i=3 !i=N

!!k=1

!!k=2

!k=K

…
	  

FIG. 1. Schematic of the QAC scheme for a chain. Filled blue circles represent physical data qubits, dotted black circles
are the corresponding penalty qubits, coupled via the thin black lines. Thick green lines represent couplings in the classical
Hamiltonian HC

k , up-pointing arrows are longitudinal local fields in HC
k , sideways-pointing arrows are transverse fields from

the driver Hamiltonian (data qubits only).

The classical (problem) Hamiltonian is either the p-body infinite-range ferromagnetic Ising model

HC
k = N(Szk)p, Szk ≡

1

N

N∑
i=1

σzik , (5)

or the Hopfield model

HC
k = N

R∑
µ=1

(Szk,ξµ)p, Szk,ξµ ≡
1

N

N∑
i=1

ξµi σ
z
ik . (6)
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We are interested in the partition function

Z = Tr e−βH = Tr e−βJ[Hx+Hz ] = Tr e−β[Hx+Hz ] , (7)

where β = Jβ is the dimensionless inverse temperature.

From here on, our calculations are similar to Appendix A of Ref. [1]. We write the partition function explicitly as

Z =
∑
{σz}

〈{σz}| exp [−β (Hz +Hx)] |{σz}〉 = lim
M→∞

ZM , (8)

where
∑
{σz} is a sum over all possible 2(K+1)N spin configurations in the z basis, and |{σz}〉 = ⊗Ni=1⊗Kk=0 |σzik〉. ZM

is determined using the Trotter-Suzuki formula eA+B = limM→∞
(
eA/MeB/M

)M
:

ZM =
∑
{σz}

〈{σz}|
(

exp

[
− β

M
Hz

]
exp

[
− β

M
Hx

])M
|{σz}〉 . (9)

We introduce M copies of the identity operator closure relations I(α) =
∑
{σz(α)} |{σz(α)}〉〈{σz(α)}|, each labeled

by the Trotter time α:

ZM =

M∏
α=1

∑
{σz(α)}

〈{σz(α)}|
(

exp

[
− β

M
Hz

]
exp

[
− β

M
Hx

])
|{σz(α+ 1)}〉 , (10)

where |{σz(M + 1)}〉 ≡ |{σz(1)}〉; M is known as the Trotter number. Likewise we introduce M copies of the identity
operator closure relations I(α) =

∑
{σx(α)} |{σx(α)}〉〈{σx(α)}|:

ZM =

M∏
α=1

∑
{σx,z(α)}

〈{σz(α)}| exp

[
− β

M
Hz

]
|{σx(α)}〉〈{σx(α)}| exp

[
− β

M
Hx

]
|{σz(α+ 1)}〉 (11a)

=

M∏
α=1

∑
{σx,z(α)}

exp

[
− β

M
Hz(α)

]
〈{σz(α)}|{σx(α)}〉 exp

[
− β

M
Hx(α)

]
〈{σx(α)}|{σz(α+ 1)}〉 (11b)

=

M∏
α=1

∑
{σx,z(α)}

exp

[
− β

M
(Hz(α) +Hx(α))

]
〈{σz(α)}|{σx(α)}〉〈{σx(α)}|{σz(α+ 1)}〉 . (11c)

The notation {σx,z(α)} is shorthand for {{σxik(α), σzik(α)}Kk=0}Ni=1, and

〈{σz(α)}|{σx(α)}〉〈{σx(α)}|{σz(α+ 1)}〉 =
N∏
i=1

K∏
k=0

〈σzik(α)|σxik(α)〉〈σxik(α)|σzik(α+ 1)〉. (12)

Note that this allowed us to replace the operators Hx and Hz by c-numbers Hx(α) and Hz(α).

We now specialize to the two models considered in the main text.

I. p-BODY INFINITE-RANGE FERROMAGNETIC ISING MODEL

In this case

Hz(α) =−
K∑
k=1

[
N(Szk(α))p + γHP

k (α)
]
. (13)

We rewrite the p-body interaction in terms of one-body interactions by introducing auxiliary Hubbard-Stratonovich
fields mkα and m′kα, which play the role of an order parameter and a Lagrange multiplier respectively. This is done
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by successively using the elementary δ function identities

f(a) =

∫ ∞
−∞

f(mkα)δ(mkα − a) dmkα, δ(mkα − a) =
1

2π

∫ ∞
−∞

ei(mkα−a)m′kα dm′kα , (14)

with a = Szk(α), namely, continuing from Eq. (11c):

ZM =

M∏
α=1

∑
{σx,z(α)}

K∏
k=1

{∫
dmkαδ (mkα − Szk(α)) exp

[
β

M

(
Nmp

kα + γHP
k (α)

)]}
exp

[
βΓ

M

K∑
k=1

HD
k (α)

]
× 〈{σz(α)}|{σx(α)}〉〈{σx(α)}|{σz(α+ 1)}〉 (15a)

=

M∏
α=1

∑
{σx,z(α)}

K∏
k=1

{∫
dmkα

∫
dm′kα

2π
exp [im′kα (mkα − Szk(α))] exp

[
βN

M
mp
kα +

βγ

M
HP
k (α) +

βΓ

M
HD
k (α)

]}
× 〈{σz(α)}|{σx(α)}〉〈{σx(α)}|{σz(α+ 1)}〉 . (15b)

To proceed, we use the static approximation [2, 3], i.e., mkα 7→ mk and m′kα 7→ m′k. We also make a change of

variables m′k = N
M m̃k. The partition function is now given by:

ZM =

M∏
α=1

∑
{σx,z(α)}

K∏
k=1

{∫
dmk

∫
Ndm̃k

2πM
exp

[
i
N

M
m̃k (mk − Szk(α))

]
exp

[
βN

M
mp
k +

βγ

M
HP
k (α) +

βΓ

M
HD
k (α)

]}
× 〈{σz(α)}|{σx(α)}〉〈{σx(α)}|{σz(α+ 1)}〉 (16a)

=

K∏
k=1

∫
dmk

∫
d′m̃k exp (iNm̃kmk + βNmp

k)

M∏
α=1

∑
{σx,z(α)}

K∏
k=1

exp

[
−im̃k

N

M
Szk(α) +

βγ

M
HP
k (α) +

βΓ

M
HD
k (α)

]
× 〈{σz(α)}|{σx(α)}〉〈{σx(α)}|{σz(α+ 1)}〉 (16b)

→
K∏
k=1

∫
dmk

∫
d′m̃k exp (iNm̃kmk + βNmp

k) Tr

K∏
k=1

exp
[
−im̃kNS

z
k + βγHP

k + βΓHD
k

]
, (16c)

where in the last line we took M → ∞ and rewrote
∏M
α=1

∑
{σx,z(α)} in terms of the trace. Note that we replaced

Ndm̃k
2πM by d′m̃k; the factor N

2πM will ultimately not matter since we are interested (below) in the saddle points of the
integrand. The same result can be derived using the path-integral formulation of quantum mechanics under the static
approximation, i.e., with imaginary-time independent variables. It is also worth noting that quantum fluctuations
are appropriately taken into account even after the static approximation, as reflected in the α-dependence of the
Hamiltonians in Eqs. (16a) and (16b).

Now note that

Tr

K∏
k=1

exp
(
−im̃kNS

z
k + βγHP

k + βΓHD
k

)
= Tr

N∏
i=1

K∏
k=1

exp
[
−im̃kσ

z
ik + βγσzikσ

z
i0 + βΓ

(
σxik +

ε

K
σxi0

)]
(17a)

=

(
Tr

K∏
k=1

exp
[
−im̃kσ

z
k + βγσzkσ

z
0 + βΓ

(
σxk +

ε

K
σx0

)])N
, (17b)

since terms with different values of i commute.

At this point we set ε = 0. This amounts to treating the penalty qubit as a classical Ising spin, and allows us to
trace it out:

Z =

K∏
k=1

∫
dmk

∫
d′m̃ke

N(im̃kmk+βmpk)

(
Tr

K∏
k=1

e−im̃kσ
z
k+βγσzk+βΓσxk + Tr

K∏
k=1

e−im̃kσ
z
k−βγσ

z
k+βΓσxk

)N
. (18)

The residual term from tracing out the penalty qubit acts as a local field. The eigenvalues of the operators in the
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remaining exponents are ±
√

(βγ ± im̃k)2 + (βΓ)2 so we can perform the trace to give

Z =

K∏
k=1

∫
dmk

∫
d′m̃ke

N(imkm̃k+βmpk)×(
K∏
k=1

(
e
√

(βγ−im̃k)2+(βΓ)2 + e−
√

(βγ−im̃k)2+(βΓ)2
)

+

K∏
k=1

(
e
√

(βγ+im̃k)2+(βΓ)2 + e−
√

(βγ+im̃k)2+(βΓ)2
))N

.(19)

In the large β limit, the dominant contribution is from the positive power terms:

Z ≈
K∏
k=1

∫
dmk

∫
d′m̃ke

N(imkm̃k+βmpk)

(
K∏
k=1

e
√

(βγ−im̃k)2+(βΓ)2 +

K∏
k=1

e
√

(βγ+im̃k)2+(βΓ)2

)N
(20a)

=

K∏
k=1

∫
dmk

∫
d′m̃k exp

{
N

[
K∑
k=1

(imkm̃k + βmp
k) + log

(
e
∑K
k=1

√
(βγ−im̃k)2+(βΓ)2 + e

∑K
k=1

√
(βγ+im̃k)2+(βΓ)2

)]}
.

(20b)

In the large N limit, the saddle points give the dominant contributions, and the saddle point conditions for mk and
m̃k are

im̃k + βpmp−1
k = 0 , (21a)

imk +

−i(βγ−im̃k)√
(βγ−im̃k)2+(βΓ)2

e
∑K
k=1

√
(βγ−im̃k)2+(βΓ)2 + i(βγ+im̃k)√

(βγ+im̃k)2+(βΓ)2
e
∑K
k=1

√
(βγ+im̃k)2+(βΓ)2

e
∑K
k=1

√
(βγ−im̃k)2+(βΓ)2 + e

∑K
k=1

√
(βγ+im̃k)2+(βΓ)2

= 0 . (21b)

By eliminating m̃k, we obtain

mk +
− γ+pmp−1

k√
(γ+pmp−1

k )2+Γ2
e
∑K
k=1 β
√

(γ+pmp−1
k )2+Γ2

+
γ−pmp−1

k√
(γ−pmp−1

k )2+Γ2
e
∑K
k=1 β
√

(γ−pmp−1
k )2+Γ2

e
∑K
k=1 β
√

(γ+pmp−1
k )2+Γ2

+ e
∑K
k=1 β
√

(γ−pmp−1
k )2+Γ2

= 0 . (22)

For large β the condition simplifies to

mk =
γ + p|mk|p−1√

(γ + p|mk|p−1)2 + Γ2
. (23)

For p = 2 the function on the RHS of Eq. (23) behaves similarly to tanh(βm+ h) appearing in the mean-field theory
of the simple Ising model at finite temperature T , where T = 1/β is analogous to Γ, and h is analogous to γ.

The free energy F is derived from the partition function via Z = e−βNF . To calculate F we first use the saddle
point result (21a) to write im̃k = −βpmp−1

k , and then obtain F directly as the saddle point value of the integral in
Eq. (20b):

F = J(p− 1)

K∑
k=1

mp
k −

1

β
ln
(
e
∑K
k=1 β
√

(γ−pmp−1
k )2+Γ2

+ e
∑K
k=1 β
√

(γ+pmp−1
k )2+Γ2

)
. (24)

In the β →∞ limit only one of the exponentials in Eq. (24) survives and we obtain:

F = J

K∑
k=1

[
(p− 1)mp

k −
√

(γ + p|mk|p−1)2 + Γ2
]
. (25)

To understand how this happens, note that the terms ±pmp−1 in Eq. (24) correspond to the two eigenvalues of σz

of each penalty qubit. Equation (23) follows from Eq. (22) by dropping the subdominant term with −p|m|p−1 in the
T → 0 limit, which is equivalent to having each penalty qubit orient in the same direction. This direction is found
as follows. Early in the anneal, when Γ � |γ ± pmp−1| and the two terms in Eq. (24) are close, the two penalty
qubit orientations contribute with nearly equal weights, meaning that thermal noise on the penalty qubits flips their
orientations relatively easily even at low temperatures. However, as T is lowered the penalty qubits equilibrate into
their minimizing configuration earlier on in the anneal. Once equilibrated, the penalty qubits behave as an effective
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global field that helps break the symmetry. Eventually, in the T → 0 limit, this equilibration occurs at the very
beginning of the anneal, i.e., at Γ = ∞. Thus, given enough time to equilibrate, the penalty qubits facilitate the
system’s evolution toward the ground state.

Stated differently, a sort of simulated annealing works to find the best state of the penalty qubit (classical Ising
spin) more efficiently at large Γ than at small Γ. Since the introduction of γ pushes the transition point to large Γ
(at finite temperature), we can conclude that the coupling γ is effective at aligning the penalty qubit to the correct
orientation.

II. ADDITIONAL RESULTS FOR THE p = 2 CASE

We can solve equation (22) for the Hubbard-Stratonovich field mk. The solution that minimizes the free energy
satisfies mk = m, ∀k. We show in Fig. 2 the behavior of m. The second order phase transition occurs at Γc when m
changes from being zero (the symmetric phase) to being finite (the symmetry-broken phase).

γ=�
γ=���
γ=���

� � � � �
���

���

���

���

���

���

Γ

|
�
|

(a) β = 10

γ=�
γ=���
γ=���

� � � � �
���

���

���

���

���

���

Γ

|�
|

(b) β =∞

FIG. 2. The solution for p = 2 to the saddle-point equation for the Hubbard-Stratonovich field mk = m, ∀k for (a) β = 10 and
(b) β =∞. The anneal proceeds from large to small Γ values. At zero temperature, a second order phase transition occurs at
Γ = 2 when γ = 0, but is pushed to Γ =∞ for γ > 0.

III. ADDITIONAL RESULTS FOR THE p > 2 CASE

As mentioned in the main text, in the zero temperature limit, there exists a single first order transition for γ < γc.
We show in Fig. 3 the behavior of Γc with γ and the dependence of γc on p.

In order to illustrate what occurs for the parameter range where two first order phase transitions occur, we show
in Fig. 4 a case where for a suitably small temperature sweeping through Γ reveals two phase transitions. In the first
transition (Fig. 4(a)), the free energy exhibits two degenerate global minima at m = 0 and msmall . In the second
transition (Fig. 4(b)), the free energy exhibits two degenerate global minima at m = msmall and mlarge . In various
limits, we can recover a single phase transition again. In the limit of γ → 0, msmall continuously goes to zero, and the
first phase transition vanishes in this limit. As γ increases, msmall becomes larger as well and eventually merges with
mlarge , and only a single phase transition occurs. In the zero temperature limit, the minimum at m = 0 is absent
and there is only a phase transition from msmall to mlarge . The appearance of multiple phase transitions at fixed
temperature is generic for p > 2, as we show in the phase diagram for multiple p values in Fig. 5.

IV. NUMERICAL ESTIMATION OF THE SCALING OF THE GAP

Recall the Hamiltonian in the case of uniform ferromagnetic couplings, as defined in Eqs. (1)-(5): H/J =

−
∑K
k=1

(
HC
k + ΓHD

k + γHP
k

)
, where HP

k =
∑N
i=1 σ

z
ikσ

z
i0, HC

k = N(Szk)p, and HD
k =

∑N
i=1 σ

x
ik. At zero tempera-

ture and in the absence of a transverse field on the penalty qubits, there is no mechanism for the penalty qubits to
flip, so their orientation is fixed by the initial state. This separates the Hilbert space into different sectors, with the
sector that has the penalty qubits aligned with the ground state of HC

k containing the global ground state of H. Let
us first consider the case where all penalty qubits point up, i.e., σzi0 = +1 ∀i. Note that this decouples the K copies,
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FIG. 3. The critical value Γc where the phase transition occurs as a function of γ, for p = 4 (dots). The line is a quadratic
fit: Γc = 1.186 + 1.379γ − 0.115γ2. The phase transition is avoided entirely for γ & 0.8. The inset shows the critical value of γ
above which the phase transition disappears for various values of p. The fit is γc = −0.99 + 0.46p.
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FIG. 4. Free energy as a function of the order parameter m. Parameters are chosen to be p = 4, T = 0.025, γ = 0.5 (a)
Γ = 1.8698 (b) Γ = 1.849. There are three local minima m = 0, msmall ∼ 0.3, and mlarge ∼ 0.8. For large Γ, the quantum
fluctuation is large and m = 0 is the ground state. As Γ decreases, F (msmall) first reaches to the value of F (m = 0), and there
is a first order phase transition from m = 0 to msmall . Then, as Γ further decreases, the free energy F (mlarge) reaches to
F (msmall) and another phase transition happens between msmall and mlarge .

and the penalty Hamiltonian becomes a global field in the z-direction. The Hamiltonian restricted to this sector can
be written as:

H(0)/J =

K∑
k=1

H
(0)
k = −N

K∑
k=1

[(Szk)
p

+ ΓSxk + γSzk ] . (26)

Note that this Hamiltonian is invariant under all permutations of the logical qubit index i. Therefore, if we initialize
the system in the symmetric subspace, i.e., if the initial state is symmetric under interchange of logical qubit labels,
the unitary evolution will keep us in this subspace. In the symmetric sector, which is spanned by the Dicke states

{|J = N
2 ,M〉} with M = −N2 , . . . ,

N
2 , the dimensionality of the kth Hamiltonian H

(0)
k is reduced from 2N to N + 1.1

1 The initial state is |+〉 · · · |+〉. To see that it belongs to the {|J = N
2
,M〉} subspace note that, e.g., for N = 2, the singlet subspace

|J = 0,M = 0〉 is the antisymmetric state 1√
2
(|01〉 − |10〉), while the initial state is 1

2
(|00〉 + |01〉 + |10〉 + |11〉), which belongs to the

triplet subspace spanned by |J = 1,M = −1, 0, 1〉 = {|00〉, 1√
2
(|01〉+ |10〉), |11〉}.
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FIG. 5. Phase diagram (Γ, T ) for various values of p and γ around T = 0.04.
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(a) γ = 0
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(b) γ = 0.3
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FIG. 6. Behavior of the minimum gap of H
(0)
k when restricted to the symmetric subspace, for p = 4. For (a), the scaling

with N gives ∆min ∼ (0.868)N (extracted from the slope of the fit curve (red line)), whereas for (b), the scaling with N gives
∆min ∼ (0.949)N . (c) The scaling of the gap ∆min ∼ CN .

The Dicke states are eigenstates of the collective angular momentum operators

sα =
1

2

N∑
i=1

σαi =
N

2
Sα , (27)

with

sz|J,MJ〉 = MJ |J,MJ〉, s±|J,MJ〉 = ((J ∓M)(J ±M + 1))
1/2 |J,MJ ± 1〉 , (28)

and s± = sx ± isy [4]. Thus 〈J,MJ |sz|J,MJ〉 = MJ and 〈J,MJ |sx|J,MJ ± 1〉 = 1
2 (J(J + 1)−MJ(MJ ± 1))

1/2
, and

the only non-vanishing matrix elements of H
(0)
k = −2

[(
2
N

)p−1
(szk)

p
+ Γsxk + γszk

]
in the Dicke basis {|J = N

2 ,M〉} ≡
{|M〉} are given by:

〈M |H(0)
k |M〉 = −2

[(
2

N

)p−1

Mp + γM

]
, (29a)

〈M |H(0)
k |M ± 1〉 = −Γ

[
N

2

(
N

2
+ 1

)
−M(M ± 1)

]1/2

. (29b)

The Hamiltonian is thus tridiagonal and can be efficiently diagonalized. Doing so for sufficiently large N ’s allows us
to extract the scaling of the minimum gap in this sector. The result is shown in Fig. 6.
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V. HOPFIELD MODEL

In this section, we derive the partition function of the Hopfield model, following the method used in Ref. [5]. The
Hamiltonian of the Hopfield model is given by [see Eqs. (1)-(6) with ε = 0]:

H = −N
R∑
µ=1

K∑
k=1

(
1

N

N∑
i=1

ξµi σ
z
ik

)p
− Γ

K∑
k=1

N∑
i=1

σxik − γ
K∑
k=1

N∑
i=1

σzikσ
0
iz . (30)

In what follows, we will consistently use the following labels: k ∈ [1,K] denotes the copy index; ρ ∈ [1, n] denotes the
replica index; µ ∈ [1, R] denotes the pattern index; α ∈ [1,M ] denotes the Trotter index.

Let us first consider the case of a finite number of patterns embedded, i.e., R = O(N0), and assume that the
magnetization is non-zero only for a finite number of µ’s:

mµ
k = mk for 0 ≤ µ ≤ l , mµ

k = 0 for µ ≥ l + 1 . (31)

In this case, one can take the same steps as in the uniform ferromagnetic case to compute the partition function.
Starting from Eq. (16c), including the pattern index and dropping the prime superscript on m̃k since it will not matter
in the end, we have

Z =

K∏
k=1

R∏
µ=1

∫
dmµ

k

∫
dm̃µ

ke
(iN

∑
µm

µ
km̃

µ
k+βN

∑
µ(mµk )p)

N∏
i=1

(
Tr

K∏
k=1

e−i
∑
µ m̃kξ

µ
i σ

z
ik+βγσzikσ

z
i0+βΓσxik

)
. (32)

We next trace over the penalty qubit and then use the eigenvalues of the operators in the remaining exponents to
perform the trace over the other qubits:

Z =

K∏
k=1

R∏
µ=1

∫
dmµ

k

∫
dm̃µ

k exp

(
iN
∑
µ

mµ
km̃

µ
k + βN

∑
µ

(mµ
k)p

+

N∑
i=1

log

(
Tr
∏
k

e−i
∑
µ m̃

µ
kξ
µ
i σ

z
ik+βγσzik+βΓσxik + Tr

∏
k

e−i
∑
µ m̃

µ
kξ
µ
i σ

z
ik−βγσ

z
ik+βΓσxik

))
(33a)

=

K∏
k=1

R∏
µ=1

∫
dmµ

k

∫
dm̃µ

k exp

(
iN
∑
µ

mµ
km̃

µ
k + βN

∑
µ

(mµ
k)p

+

N∑
i=1

log

[∏
k

(
e
√

(βγ−i
∑
µ m̃

µ
kξ
µ
i )2+(βΓ)2 + e−

√
(βγ−i

∑
µ m̃

µ
kξ
µ
i )2+(βΓ)2

)
+
∏
k

(
e
√

(βγ+i
∑
µ m̃

µ
kξ
µ
i )2+(βΓ)2 + e−

√
(βγ+i

∑
µ m̃

µ
kξ
µ
i )2+(βΓ)2

)])
. (33b)

In the large β limit, only terms that have a positive exponent contribute to the partition function:

Z ≈
K∏
k=1

R∏
µ=1

∫
dmµ

k

∫
dm̃µ

k exp

(
iN
∑
µ

mµ
km̃

µ
k + βN

∑
µ

(mµ
k)p

+

N∑
i=1

log
(
e
∑
k

√
(βγ−i

∑
µ m̃

µ
kξ
µ
i )2+(βΓ)2 + e

∑
k

√
(βγ+i

∑
µ m̃

µ
kξ
µ
i )2+(βΓ)2

))
. (34)

In the large N limit, the saddle points again give the dominant contributions, and the saddle point condition found
from differentiating with respect to mµ

k is the same as Eq. (21a), i.e., im̃µ
k = −βp(mµ

k)p−1. The free energy, obtained
from Z = exp(−βNF ), is therefore similar to Eq. (24):

F = J(p− 1)
∑
µ,k

(mµ
k)p − 1

βN

N∑
i=1

log
(
e
∑
k β
√

(γ+
∑
µ p(m

µ
k )p−1ξµi )2+Γ2

+ e
∑
k β
√

(γ−
∑
µ p(m

µ
k )p−1ξµi )2+Γ2

)
. (35)
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FIG. 7. Hopfield Free energy at γ = 1 for l = 1, 2, 3 red (small dashes), green (large dashes), blue (solid) respectively. l = 1
gives the lowest energy.

In the large N limit, the sum over lattice sites i can be replaced by the average of ξµi , i.e. the self-averaging property,

1

N

N∑
i=1

f(ξi)
N→∞→ [f(ξ)] , (36)

where [f(ξ)] is the average of f(ξ) over the distribution of ξ. For l = 1, 2 and 3, the results are shown in Fig. 7. The
case of l = 1 has the lowest free energy, and consequently, all the conclusions of the previous section for the pure
ferromagnet apply to the present Hopfield model as well.

VI. HOPFIELD MODEL - MULTI-PATTERN CASE

We next consider the case where the number of embedded patters R increases with the system size N .

A. The case of p ≥ 3

Let us first consider the case of p ≥ 3. We assume that only a single pattern has a non-vanishing expectation
value mµk

α = O(N0) for µ = 1 and other order parameters take non-zero values from coincidental overlapping
mµk
α = O(N−1/2) for µ ≥ 2. In contrast to the finite pattern case, the contribution of those coincidental overlaps is

not negligible if the number of µ increases as a function of the system size N . Below we will often use the following
relation,

N∑
1=i1<···<ip

f(i1, · · · , ip) =
1

p!

N∑
i1,··· ,i p=1

f(i1, · · · , ip) +O(Np−1) , (37)

where f(i1, · · · , ip) is a function symmetric under permutation of indices. For convenience of calculations, we tem-
porarily divide the leading interaction part of the Hamiltonian Eq. (30) by p!

H = −N
p!

R∑
µ=1

K∑
k=1

(
1

N

N∑
i=1

ξµi σ
z
ik

)p
− Γ

K∑
k=1

N∑
i=1

σxik − γ
K∑
k=1

N∑
i=1

σzikσ
0
iz . (38)

The original Eq. (30) without p! will be recovered at the end of computations.

The partition function is, up to a trivial factor involving a power of 2π,

Z =
∑
σ

∏
µ,α,k

∫
dmµ

kαdm̃
µ
kα(
∏
〈σ|σ〉)

exp

i β
M
m̃1
kα

(
Nm1

kα −
∑
i

ξ1
i σ

z
ik(α)

)
+
βN

Mp!
(m1

kα)p +
βN

M

R∑
µ=2

1

Np

∑
i1<···<ip

ξµi1 · · · ξ
µ
ip
σzi1k(α) · · ·σzipk(α)
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+
βΓ

M

∑
i

σxik(α) +
βγ

M

∑
i

σzik(α)σzi0(α)

)
, (39)

where we used a simplified notation

∏
〈σ|σ〉 ≡ 〈σzi0(α)|σxi0(α)〉〈σxi0(α)|σzi0(α+ 1)〉

K∏
k=1

〈σzik(α)|σxik(α)〉〈σxik(α)|σzik(α+ 1)〉 . (40)

We use the replica method to evaluate the configurational average of the free energy [6],

[lnZ] = lim
n→0

[Zn]− 1

n
, (41)

where the square brackets denote the average over the distribution of random patterns ξµi . Let us denote the replica
index as ρ = 1, 2, · · · , n. All the variables are replicated, for instance, as mµk

α → mµk
ρ (α). The replicated partition

function is ’

Zn =
∑
σ

∏
µ,α,k,ρ

∫
dmµk

ρ (α)dm̃µk
ρ (α)(

∏
〈σ|σ〉) exp

i β
M

∑
α,k,ρ

m̃1k
ρ (α)(Nm1k

ρ (α)−
∑
i

ξ1
i σ

k
iρz(α)) +

βN

Mp!
(m1k

ρ (α))p+

+
∑
µ≥2

∑
αkρ

β

MNp−1

∑
i1<i2<···<ip

ξµi1 · · · ξ
µ
ip
σki1ρz(α) · · ·σkipρz(α)

+
βΓ

M

∑
i

∑
α,k,ρ

σkiρx(α) +
βγ

M

∑
i

∑
α,k,ρ

σkiρz(α)σ0
iρz(α)

 . (42)

To take the configurational average over ξµi = ±1 (µ ≥ 2), we evaluate the cummulants of the term involving ξµi1 · · · ξ
µ
ip

.

The term linear in ξ vanishes by symmetry. The next quadratic term involving∑
i1<···ip

∑
i′1<···<i′p

[
ξµi1 · · · ξ

µ
ip
ξµi′1
· · · ξµi′p

]
(43)

survives only when i1 = i′1, · · · , ip = i′p. Thus we find for the quadratic term

1

2

(
β

MNp−1

)2 ∑
αkρ,α′k′ρ′,
i1<i2···<ip

σki1ρz(α)σk
′

i1ρ′z(α
′) · · ·σkipρz(α)σk

′

ipρ′z(α
′)

=
1

2

(
β

MNp−1

)2 ∑
αkρ,α′k′ρ′

1

p!

(∑
i

σkiρz(α)σk
′

iρ′z(α
′)
)p

=
1

2p!

(
β

M

)2 ∑
αkρ,α′k′ρ′

1

Np−2

(
1

N

∑
i

σkiρz(α)σk
′

iρ′z(α
′)

)p
. (44)

The leading term of the cubic cumulant is proportional to

1

(Np−1)3

( ∑
i1<···<ip

ξµi1 · · · ξ
µ
ip
σki1ρz(α) · · ·σkipρz(α)

)3

 . (45)

The sum
∑
i ξ
µ
i σ

k
iρz(α) is O(N1/2) due to coincidental overlap, and hence the above expression is O(N3p/2/N3p−3).

For p ≥ 3, this can be neglected in the limit N → ∞ compared to the leading term of O(N). The same applies to
higher-order cumulants. Therefore the total contribution from µ ≥ 2 is

R∏
µ≥2

exp

 1

2p!

(
β

M

)2
1

Np−2

∑
αkρ,α′k′ρ′

(
1

N

∑
i

σkiρz(α)σk
′

iρ′z(α
′)

)p
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= exp

aN
2p!

(
β

M

)2 ∑
αkρ,α′k′ρ′

(
1

N

∑
i

σkiρz(α)σk
′

iρ′z(α
′)

)p , (46)

where we defined a = R/Np−1. Then the total partition function is

[Zn] =
∑
σ

∏
µαkρ

∫
dmµk

ρ (α)dm̃µk
ρ (α)

∏
〈σ|σ〉

exp

∑
αkρ

βN

Mp!
(m1k

ρ (α))p + i
βN

M

∑
αkρ

m̃1k
ρ (α)m1k

ρ (α) +
aN

2p!

(
β

M

)2 ∑
αkρ,α′k′ρ′

(
1

N

∑
i

σkiρz(α)σk
′

iρ′z(α
′)

)p

−i β
M

∑
αkρ

m̃1k
ρ (α)

∑
i

ξ1
i σ

k
iρz(α) +

βΓ

M

∑
i

∑
αkρ

σkiρx(α) +
βγ

M

∑
i

∑
αkρ

σkiρzσ
0
iρz(α)

 . (47)

We linearize the term involving the pth power of spin variables in the above equation by introducing auxiliary fields
qkk

′

ρρ′ (α, α
′) and q̃kk

′

ρρ′ (α, α
′) for ρ 6= ρ′ and Rkk

′

ρ (α, α′) and R̃kk
′

ρ (α, α′) for ρ = ρ′,

[Zn] =
∑
σ

∏
µαkρ

∫
dmµk

ρ (α)dm̃µk
ρ (α)

∏
〈σ|σ〉 exp

∑
αkρ

βN

Mp!
(m1k

ρ (α))p + i
βN

M

∑
αkρ

m̃1k
ρ (α)m1k

ρ (α)

+
aN

2p!

(
β

M

)2 ∑
kk′αα′
ρ 6=ρ′

(qkk
′

ρρ′ (α, α
′))p +

aN

2p!

(
β

M

)2 ∑
kk′αα′

ρ

(Rkk
′

ρ (α, α′))p

+i
aβ2

2M2

∑
kk′αα′
ρ 6=ρ′

q̃kk
′

ρρ′ (α, α
′)
(
Nqkk

′

ρρ′ (α, α
′)−

∑
i

σkiρz(α)σk
′

iρ′z(α
′)
)

+i
aβ2

2M2

∑
kk′αα′

ρ

R̃kk
′

ρ (α, α′)
(
NRkk

′

ρ (α, α′)−
∑
i

σkiρz(α)σk
′

iρz(α
′)
)

−i β
M

∑
αkρ

m̃1k
ρ (α)

∑
i

ξ1
i σ

k
iρz(α) +

βΓ

M

∑
i

∑
αkρ

σkiρx(α) +
βγ

M

∑
i

∑
αkρ

σkiρzσ
0
iρz(α)

 . (48)

We use the replica-symmetric ansatz as well as the static approximation and consider only the saddle point solution,

m1k
ρ (α) = m, m̃1k

ρ (α) = im̃, ξ1
i = ξ, qkk

′

ρρ′ (α, α
′) = q, q̃kk

′

ρρ′ (α, α
′) = iq̃, R̃kk

′

ρ (α, α′) = iR̃ . (49)

The spin-dependent part Z ′ of Eq. (48) is quadratic in spin variables. One can linearize it by introducing auxiliary
parameters z and w for Gaussian integrations. For fixed site index i, we find

Z ′ =
∑
σ

∏
〈σ|σ〉 exp

 β

M

∑
αkρ

m̃σkρz(α)ξ +
βΓ

M

∑
αkρ

σkρx(α) +
βγ

M

∑
αkρ

σkρz(α)σ0
ρz(α)

+
a

2

(
β

M

)2 ∑
kk′αα′
ρρ′

q̃σkρz(α)σk
′

ρ′z(α
′) +

a

2

(
β

M

)2 ∑
kk′αα′

ρ

(R̃− q̃)σkρz(α)σk
′

ρz(α
′)

 (50a)

=
∑
σ

∏
〈σ|σ〉

∫
Dz exp

zβ
M

√
aq̃
∑
αkρ

σkρz(α)

 exp

a
2

(
β

M

)2 ∑
αα′kk′ρ

(R̃− q̃)σkρz(α)σk
′

ρz(α
′)


exp

 β

M
m̃
∑
αkρ

ξσkρz(α) +
βΓ

M

∑
αkρ

σkρx(α) +
βγ

M

∑
αkρ

σkρz(α)σ0
ρz(α)

 , (50b)

where Dz is the Gaussian measure Dz = dz exp(−z2/2)/
√

2π. Now the summation over spin variable can be carried
out independently for each ρ, which gives an expression of the form

∫
Dz(· · · )n. We further linearize the term involving
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R̃− q̃ by a Gaussian integral to find∫
Dz

{∑
σ

∏
〈σ|σ〉 exp

(
zβ

M

√
aq̃
∑
αk

σkz (α)

)∫
Dw exp

(
wβ

M

√
a(R̃− q̃)

∑
αk

σkz (α)

)

exp

(
β

M
m̃
∑
αk

ξσkz (α) +
βΓ

M

∑
αk

σkx(α) +
βγ

M

∑
αk

σkz (α)σ0
z(α)

)}n
, (51)

To take the n→ 0 limit according to the replica method Eq. (41), we evaluate the linear in n term in the expansion
of the above equation,

n

∫
Dz ln

∑
σ

∫
Dw

∏
αk

exp

(
β

M

(√
aq̃z +

√
a(R̃− q̃)w

)
σkz (α)

)
exp

(
β

M

(
m̃ξσkz (α) + γσkz (α)σ0

z(α) + Γσxk(α)
))∏

〈σ|σ〉 . (52)

In the limit M →∞ , the trace can be evaluated as

n
∫
Dz ln

∫
Dw


2 coshβ

√(
m̃ξ + γ +

√
aq̃z +

√
a(R̃− q̃)w

)2

+ Γ2

K +

2 coshβ

√(
m̃ξ − γ +

√
aq̃z +

√
a(R̃− q̃)w

)2

+ Γ2

K
 . (53)

At this stage, we need to take the average over ξ = ±1. One can see that the spin part becomes a sum of four terms:
coshβ

√
±m̃± γ + · · ·. However, two of them are identical by the reflection z(w)→ −z(−w). Therefore, one can just

insert ξ = 1 in the above expression. The final form of the partition function is

Z = exp

{
βNKnmp − βNKnm̃m+

aN

2
β2K2n(n− 1)qp +

aN

2
β2K2nRp

−aβ
2

2
NK2n(n− 1)q̃q − aβ2

2
NK2nR̃R+ nN

∫
Dz ln

∫
Dw((2 coshβu+)K + (2 coshβKu−)K)

}
, (54)

where

u± =

√(
m̃± γ +

√
aq̃z +

√
a(R̃− q̃)w

)2

+ Γ2 . (55)

We have dropped the factor 1/p! in front of mp, qp, and Rp to recover the original form of the Hamiltonian (30) from
Eq. (38). The free energy F defined by Z = exp(−NβnF ) is given by

F/(JK) = −mp + m̃m+
aβK

2
qp − aβK

2
Rp − aβK

2
q̃q +

aβK

2
R̃R

− 1

βK

∫
Dz ln

∫
Dw

(
(2 coshβu+)K + (2 coshβu−)K

)
. (56)
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The consistency conditions for m, q,R and m̃, q̃, R̃ are

m̃ = pmp−1 , (57a)

q̃ = pqp−1 , (57b)

R̃ = pRp−1 , (57c)

m =

∫
DzY −1

∫
Dw

(
g+

u+
(2 coshβu+)K−1(2 sinhβu+) +

g−
u−

(2 coshβu−)K−1(2 sinhβu−)

)
, (57d)

q =

∫
DzY −2

∫
Dw

[(
g+

u+
(2 coshβu+)K−1(2 sinhβu+)

)2

+

(
g−
u−

(2 coshβu−)K−1(2 sinhβu−)

)2
]
, (57e)

R =
1

βK

∫
DzY −1

∫
Dw

[
β(K − 1)(2 coshβu+)K−2(2 sinhβu+)2

(
g+

u+

)2

+ β(2 coshβu+)K
(
g+

u+

)2

+ (2 coshβu+)K−2(2 sinhβu+)2 Γ2

u3
+

+ β(K − 1)(2 coshβu−)K−2(2 sinhβu−)2

(
g−
u−

)2

+ β(2 coshβu−)K
(
g−
u−

)2

+(2 coshβu−)K−2(2 sinhβu−)2 Γ2

u3
−

]
, (57f)

where

g± =

(
m̃± γ +

√
aq̃z +

√
a(R̃− q̃)w

)
, (58a)

u± =
√
g2
± + Γ2 , (58b)

Y =

∫
Dw

(
(2 coshβu+)K + (2 coshβu−)K

)
. (58c)

Inspection of Eqs. (57e) and (57f) reveals that R approaches q in the low temperature limit. Consequently, R̃ − q̃
goes to zero, and the w dependence in the integrands disappear. We therefore have, for β � 1,

m =

∫
DzY −1

(
g+

u+
(2 coshβu+)K−1(2 sinhβu+) +

g−
u−

(2 coshβu−)K−1(2 sinhβu−)

)
, (59a)

q =

∫
DzY −2

[(
g+

u+
(2 coshβu+)K−1(2 sinhβu+)

)2

+

(
g−
u−

(2 coshβu−)K−1(2 sinhβu−)

)2
]
, (59b)

R =
1

βK

∫
DzY −1

[
β(K − 1)(2 coshβu+)K−2(2 sinhβu+)2

(
g+

u+

)2

+ β(2 coshβu+)K
(
g+

u+

)2

+ (2 coshβu+)K−2(2 sinhβu+)2 Γ2

u3
+

+ β(K − 1)(2 coshβu−)K−2(2 sinhβu−)2

(
g−
u−

)2

+ β(2 coshβu−)K
(
g−
u−

)2

+(2 coshβu−)K−2(2 sinhβu−)2 Γ2

u3
−

]
. (59c)

Without loss of generality, we can restrict the parameter region to m̃ ≥ 0 and γ ≥ 0. Then, in the limit β → ∞,
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βu+ � βu−, and thus

m =

∫
DzY −1

(
g+

u+
(2 coshβu+)K−1(2 sinhβu+)

)
→
∫
Dz

g+

u+
, (60a)

q =

∫
DzY −2

[(
g+

u+
(2 coshβu+)K−1(2 sinhβu+)

)2
]
→
∫
Dz

g2
+

u2
+

, (60b)

R =
1

βK

∫
DzY −1

[
β(K − 1)(2 coshβu+)K−2(2 sinhβu+)2

(
g+

u+

)2

+ β(2 coshβu+)K
(
g+

u+

)2

+(2 coshβu+)K−2(2 sinhβu+)2 Γ2

u3
+

]
→
∫
Dz

g2
+

u2
+

, (60c)

where

g+ =
(
m̃+ γ +

√
aq̃z
)

= (pmp−1 + γ +
√
apqp−1z) , (61a)

u+ =
√
g2

+ + Γ2 , (61b)

Y = (2 coshβu+)K . (61c)

We show an example of solutions in Fig. 8. The free energy is

F/(JK) = (p− 1)mp +
ap(p− 1)

2
Cqp−1 −

∫
Dz

√
(pmp−1 + γ +

√
apqp−1z)2 + Γ2 , (62)

where

lim
β→∞

βK(R− q) =

∫
Dz

Γ2

u3
+

≡ C . (63)

γ=�

γ=���

γ=�

γ=�

� � � � � ��
���

���

���

���

���

���

Γ

�

(a)

γ=�

γ=���

γ=�

γ=�

� � � � � ��
���

���

���

���

���

���

Γ

�

(b)

FIG. 8. Behavior of m (a) and q (b) for the Hopfield model with many patterns embedded with p = 4, R = 0.25N3 and K = 3.

B. p = 2 Case

In this subsection, we use the following convention

H/J = −N
2

R∑
µ=1

K∑
k=1

(
1

N

N∑
i=1

ξµi σ
z
ik

)2

− Γ
∑
k

∑
i

σxik − γ
∑
k

∑
i

σzikσ
0
iz . (64)
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The replicated partition function is

Zn =
∑
σ

∏
µσρk

∫
dmk

µρ(α)
∏
〈σ|σ〉 exp

−βN
2M

∑
αµρk

(mk
µρ(α))2 +

β

M

∑
αµρk
i

mk
µρ(α)ξµi σ

k
iρz(α)


× exp

βΓ

M

∑
αρk
i

σkiρx(α) +
βγ

M

∑
αρk
i

σkiρz(α)σ0
iρz(α)

 . (65)

We separate the part of µ = 1 from µ ≥ 2 as in the case of p ≥ 3. For µ ≥ 2, we keep only the quadratic term of the
cumulant expansion of the expectation value [Zn] under the expectation that mk

µρ is O(N−1/2),

∏
µ≥2

exp

 β

M

∑
αρk
i

mk
µρ(α)ξµi σ

k
iρz(α)

 ' ∏
µ≥2

exp

 β2

2M2

∑
i

∑
αα′ρρ′kk′

mk
µρ(α)mk′

µρ′(α
′)σkiρz(α)σk

′

iρ′z(α
′)

 . (66)

We can thus write for µ ≥ 2

exp

−βN
2M

∑
α,µ≥2,ρk

(mk
µρ(α))2 +

β

M

∑
α,µ≥2,ρk

i

mk
µρ(α)ξµi σ

k
iρz(α)


'
∏
µ≥2

exp

−βN
2M

∑
αα′ρρ′kk′

Λ̃αρkα′ρ′k′m
k
µρ(α)mk′

µρ′(α
′)

 , (67)

where

Λ̃αρkα′ρ′k′ = δαρkα′ρ′k′ −
β

MN

∑
i

σkiρz(α)σk
′

iρ′z(α
′) . (68)

Integrating over mk
µρ(α), we obtain

(det Λ̃)−(R−1)/2 ' (det Λ̃)−aN/2 = exp

(
−aN

2

∑
λ

lnλ

)
, (69)

where λ are the eigenvalues of Λ̃. We linearize the spin dependent terms by introducing auxiliary fields qkk
′

ρρ′ (α, α
′),

q̃kk
′

ρρ′ (α, α
′), Rkk

′

ρ (α, α′) and R̃kk
′

ρ (α, α′) as before. With these auxiliary fields, the matrix elements are

Λ̃αρkα′ρ′k′ = δαρkα′ρ′k′ −
β

M
qkk

′

ρρ′ (α, α
′)− δρρ′

β

M
Rkk

′

ρ (α, α′) , (70)

The integrand in Eq. (65) becomes

exp

−βN
2M

∑
αρk

(mk
1ρ(α))2 − aN

2

∑
λ

lnλ− Naβ2

2M2

∑
αα′kk′
ρ 6=ρ′

q̃kk
′

ρρ′ (α, α
′)qkk

′

ρρ′ (α, α
′)

− Naβ2

2M2

∑
αα′kk′

ρ

R̃kk
′

ρ (α, α′)Rkk
′

ρ (α, α′)


Tr exp

 β

M

∑
αρk

mk
1ρ(α)ξ1

i σ
k
iρz(α) +

aβ2

2M2

∑
αα′kk′
ρ 6=ρ′

∑
i

q̃kk
′

ρρ′ (α, α
′)σkiρz(α)σk

′

iρ′z(α
′)

+
aβ2

2M2

∑
αα′kk′

ρ

∑
i

R̃kk
′

ρ (α, α′)σkiρz(α)σk
′

iρz(α
′) +

βΓ

M

∑
αkρ
i

σkiρx(α) +
βγ

M

∑
αkρ
i

σkiρz(α)σ0
iρz(α)

 . (71)
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Under the replica symmetric and static approximations, the spin dependent part in Eq. (71) has almost the same
form as in Eq. (48) and therefore can be evaluated similarly. The result is

n

∫
Dz ln Tr

∫
Dw((2 coshβu+)K + (2 coshβu−)K) , (72)

where

u± =

√(
m± γ +

√
aq̃z +

√
a(R̃− q̃)w

)2

+ Γ2 . (73)

Let us use the static and replica symmetric ansatz also for the matrix Λ̃,

Λ̃α,ρ,kα′,ρ′,k′ =


− β
M q for ρ 6= ρ′

− β
MR for ρ = ρ′ and α 6= α′

(1− β
M ) for ρ = ρ′ and α = α′ and k = k′

− β
M for ρ = ρ′ and α = α′ and k 6= k′

, (74)

where we used Rkk
′

ρ (α, α′) = R for α 6= α′ and 1 for α = α′. The eigenvalues of Λα,ρ,kα′,ρ′,k′ and their degeneracies are
given by

Eigenvalue degeneracy
1 n(M(K − 1))

1−K β
M +K β

MR n(M − 1)

1−K β
M −K(M − 1) βMR+KM β

M q (n− 1)

1−K β
M −K(M − 1) βMR−K(n− 1)M β

M q 1

(75)

Thus, for M →∞ and n→ 0,∑
λ

lnλ = n

(
ln(1−KβR+Kβq)− Kβq

1−KβR+Kβq
+Kβ(R− 1)

)
. (76)

The free energy F defined by Z = exp(−NβnF ) is therefore given by

F/(JK) =
1

2
m2 +

a

2Kβ

(
ln(1−KβR+Kβq)− Kβq

1−KβR+Kβq
+Kβ(R− 1)

)
− aβK

2
q̃q +

aβK

2
R̃R

− 1

βK

∫
Dz ln

∫
Dw

(
(2 coshβu+)K + (2 coshβu−)K

)
. (77)
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The consistency equations for q,R,m, q̃ and R̃ are

q̃ =
q

(1−Kβ(R− q))2
, (78a)

R̃ =
q

(1−Kβ(R− q))2
+

R− q
(1−Kβ(R− q))

, (78b)

m =

∫
DzY −1

∫
Dw

(
g+

u+
(2 coshβu+)K−1(2 sinhβu+) +

g−
u−

(2 coshβu−)K−1(2 sinhβu−)

)
, (78c)

q =

∫
DzY −2

∫
Dw

[(
g+

u+
(2 coshβu+)K−1(2 sinhβu+)

)2

+

(
g−
u−

(2 coshβu−)K−1(2 sinhβu−)

)2
]
, (78d)

R =
1

βK

∫
DzY −1

∫
Dw

[
β(K − 1)(2 coshβu+)K−2(2 sinhβu+)2

(
g+

u+

)2

+ β(2 coshβu+)K
(
g+

u+

)2

+ (2 coshβu+)K−2(2 sinhβu+)2 Γ2

u3
+

+ β(K − 1)(2 coshβu−)K−2(2 sinhβu−)2

(
g−
u−

)2

+ β(2 coshβu−)K
(
g−
u−

)2

+(2 coshβu−)K−2(2 sinhβu−)2 Γ2

u3
−

]
. (78e)

In the low temperature limit, R− q and R̃− q̃ go to zero and

m→
∫
Dz

g+

u+
, (79a)

q →
∫
Dz

g2
+

u2
+

, (79b)

R→
∫
Dz

g2
+

u2
+

, (79c)

where

g+ =
(
m+ γ +

√
aq̃z
)
, (80a)

u+ =
√
g2

+ + Γ2 , (80b)

Y = (2 coshβu+)K , (80c)

and we have defined

lim
β→∞

βK(R− q) =

∫
Dz

Γ2

u3
+

= C . (81)

The free energy in the limit β→∞ is

F/(JK) =
1

2
m2 +

a

2

(
−1 +

qC

(1− C)2

)
−
∫
Dz

√(
m+ γ +

√
a

q

(1− C)2
z

)2

+ Γ2. (82a)

We show examples of consistent solutions in Fig. 9.
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FIG. 9. Behavior of m (a) and q (b) for the Hopfield model with p = 2 and many patterns embedded at R = 0.25N and K = 3.
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