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Abstract 
  

Analytical expressions of non-equilibrium relaxation for the system with soft-core (SC) 
potential under the constant pressure condition (using the Andersen method) were derived for 
the first time and validity of them was confirmed by molecular dynamics (MD) simulations. The 
path of relaxations can be mapped on the phase-diagram (Compressibility factor g* plotted 
against the reduced density * ) using its instantaneous value gt* and is found to be a unique 
function of the reduced density, * . Contribution of internal energy term to the NPH relaxation 
is found to be about 1/4 of the instantaneous compressibility factor, g(t*). It is also shown that 
different extended conditions resulted in different paths on the phase-diagram. Based on these 
results, a role of the path and fluctuations on the glass transition is discussed. Further details 
such as fluctuation of each term of thermal properties and effects of mass of walls are examined 
to serve a fundamental knowledge of the non-equilibrium relaxation.   

 
Key words    Non-equilibrium relaxation, SC model, Molecular Dynamics, Phase-diagram  
 

1. INTRODUCTION 
To clarify complex relaxations in supercooled liquids is a long-standing unsolved 
problem of condensed matter physics and chemistry, which is closely related to the 
glass transition of the system [1-4]. Although attention tends to be focused on the 
relaxations in the equilibrated or quasi-equilibrated state, non-equilibrium character of 
the glass transition should not be forgotten. Previously, non-equilibrium relaxation in 
NVE condition of the system with inverse-power law type potential,  nn rr /)(   , (it 
is traditionally called as soft-core (SC) model), was examined along the phase-diagram 
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using the compressibility factor,  TNkPVTP B/*)(~   (=g*) plotted against the reduced 
density *   or reduced temperature, *T . Interestingly, non-equilibrium relaxation can 
be mapped on the diagram using the instantaneous compressibility factor and it enables 
us to treat the system, analytically. Although the NVE ensemble is a natural ensemble 
without modification by walls or thermostat, experiments are usually performed in 
constant pressure conditions and hence the role of these conditions in the non-
equilibrium relaxation is worth to examine.  

Our attention is focused on the constant pressure condition by the Andersen method 
[5], where several walls with different mass are used to control pressure. At first, we 
derived analytical expressions of non-equilibrium relaxation for the system with inverse 
power law type potential (SC model, n=12) under this condition. To conform the 
analytical expression, Molecular Dynamics (MD) simulations were performed. 
Furthermore, details of the thermodynamic variables and the fluctuation of them were 
examined to serve a fundamental knowledge for understanding the glass transition. 

So far, MD simulations have been used to study the dynamics and structures in the 
systems such as SC model [6-11] and/or Lennard-Jones [12-15] including the problem 
of the glass transitions. Such works have not only theoretical but also have practical 
importance. For example, simulations of SC model are successfully compared with 
experiments of argon and sodium to understand the melting curves [16].  

Recently, validity of thermodynamic scaling (i. e. the transport coefficient and/or 
structural α-relaxation time,α, of many glass-formers are/is a function of the product 
variable,  /T, where  is the density and T the temperature, where the γ is material 
constant.) is well established [17-20].  This scaling is frequently argued with the inverse 
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power law type effective potentials and hence importance of the SC model is increasing. 
One may consider that the one component system is not suitable for the study of the 
glass transition because it was known to show a rapid crystallization. Actually, until 
now, binary systems tend to be used a model of glass transition, since they have stability 
against the crystallization. One problem of using binary system is that the mixing effect 
of components is unavoidable [See Ref. 21 and references therein] and this effect may 
be difficult to separate from other ones.  

In earlier works, one component SC system was believed to crystalize easily. 
However, if the system size is large enough, almost all systems are found to reach the 
glass branch of the phase-diagram, where the system is in the metastable state rather 
than to reach the crystal (FCC) branch below it (see Fig. 1(a)). Thus one component 
system is useful for the study of the glass transition [10,11]. 

 
1.1 Effect of Different Extended Conditions on the Glass Transition 
In the present work, the system under the constant pressure (NPH) conditions was 
examined, because conventional experimental conditions can be represented by the 
combination of NPH condition and cooling by different rates.  
Results obtained by the NPH  (constant number, constant pressure and constant 
enthalpy) condition will be compared with those by the NVE  non-equilibrium 
relaxation examined in previous works [10,11].   
The problem contains two factors; one is difference in the path on the P-V-T diagram or 
on the phase-diagram and another is difference of fluctuations of the systems by the 
choice of conditions. Treatment of the system under the constant pressure condition in 
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the theory and/or MD simulations seems to be necessary for further comparison with 
experiments and deeper understanding of the glass transition.  

Some arguments for the effect of different ensembles during the glass transition 
are found in literatures. For example, Binder [22] has pointed out that it is essential to 
carry out simulations for examining the glass transition at constant density and not at 
constant pressure, because in the latter case, there is a too strong dependence of the 
simulated properties on the cooling rate of the simulation. Although this argument is 
reasonable in some purpose of the researches, caution is required for the treatment of 
density during the cooling schedule. If the density is taken from experiments at room 
temperature and constant volume condition is used throughout the cooling schedule, 
system is under high pressure at high temperature. In this case, structure under high 
pressure might result in the high pressure form of the glass. Furthermore, such strong 
dependency can be a characteristic of the glass transition.  For the structure of network, 
Habasaki and Ngai [23] pointed out that the formation of polymorphs in different Qn 
distributions (where n is concerned with the number of bridging oxygen in SiO4 units.) 
in the lithium disilicate glass is related to the different path in P-V-T phase-diagram 
during the cooling or compression schedule used in MD simulation. The resultant 
network structures of glasses are expected to depend on the history and choice of the 
conditions. 
Of course, different extended conditions also affect the fluctuation of the system. 
Recently, Roskilde group [24,25] pointed out that the presence of strong correlations 
between equilibrium fluctuations of the configurational parts of (instantaneous) pressure 
and energy for a number of model liquids in NVT ensemble (using the Nosé-Hoover 
thermostat [26]), and this behavior is argued to be correlated with the validity of the 
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thermodynamic scaling. Thus the problem of difference of the conditions are non-
negligible for the argument of the glass transition. In the present work, it will be shown 
that the direction of the path and the fluctuation on the phase-diagram are different, if 
different ensembles are used. This gives a new perspective for understanding glass 
transition. 
2. BACKGROUND 
Here we summarize the theoretical formula used for NVE  condition [8-11]. 
The Hamiltonian of the SC model is 

UKrmprpH
j ji

n
ijj   )/(2/),( 2   ,                                                 (1) 

where the m and are mass and a size parameter of the particle, respectively. 
The Hamiltonian is rewritten as 

),()/(),( *** rpHlrpH n             (2a)   
***2**** )/1(2/),( UKrprpH

j ji
nijj                                                               (2b) 

Here the unit system of the length, 3/1)/( NVl  , time 2/2/1 )/()/( nlml   is 
introduced. Values *K and *U  are the scaled kinetic and potential energies, 
respectively.According to the classical virial theorem, combined with the NVE-MD 
method, the compressibility factor TNkPV B/ can be written as  

)(~
3121 *

*
* PNT

Un
K
Un

TNk
PV t

t
t

B


 ,                                                               (3) 

where the notation  ...  means the time average. The )(~ *P is given by a function of 
the reduced density *  (or the reduced temperature, *T ) defined by 
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


                                                                    (4) 

where VN /3  is the non-dimensional number density，andV the volume of  the 

system [6]. On the phase-diagram, where the compressibility, )(~ *P  is plotted against 
, the glass transition by cooling or compression can be treated on the same basis. 
Interestingly, the fluctuation of )(~ *P caused by the energy transfer between potential 
and kinetic energies can be mapped on the diagram [8-11] using a dynamical 
compressibility factor tBTNkPV )/( defined by 

)(21 *
t

t
t

tB
gK

Un
TNk

PV 


 .                                                                (5) 

One can represent a path of the non-equilibrium relaxation on the phase-diagram. The 
following expressions (6a) and (6b) represent a non-equilibrium relation toward the 
glass branch of the system under the constant energy condition.  
 

  )12/()/()12/()()( 3/*
0

**
0

*  nngg n
tt                                 （6a） 

)12/()/)(/)(3/()( 3/*
0

*
0  nNEng n .                                        （6b） 

Here )( tt UKE  and  *
0g  is a given initial value of  *

tg   with the time dependent 
reduced density defined by n

tBt Tk /3* )/(  , and tT  is defined by NKTk ttB 3/2 .  
When *

t fluctuates within the region of thermally equilibrated liquid state (or 
crystalline state), the longtime averages )( **   t and ))(~()( **  Pg t  give a 
point of state on the diagram of )(~ *P vs. * . Behaviors of the quenched glasses as well 
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as NVE  non-equilibrium relaxation obey this relation, although in the former system 
tends to be trapped in the midway of the path toward the glass branch.  

Thus NVE  non-equilibrium relaxations are represented by analytical equations 
(see (6a) and (6b)). In this case, the non-equilibrium relaxation occurs with fluctuations 
of reduced density and can be mapped on the phase-diagram by using the instantaneous 
compressibility factor [9-11]. The NVE relaxation is accompanied with the increase of 
temperature and the decrease of potential energy and hence the process is 
distinguishable from the equilibrated state easily.  

 
3. MOLECULAR DYNAMICS SIMULATIONS 
We study the behaviors of SC system with a pair potential,  nn rr /)(   (n=12) by 
molecular dynamics simulations using our MD program. MD simulations were 
performed as in the previous work [10,11,27] using the argon like parameters. 

 

The runs in NVE and NPH conditions for the system with 2048 particles have been 
analyzed. Here H (=E+PV) is enthalpy. The time step was set to be either 1 fs or 4 fs 
(for argon). Cut-off length for the calculation of force was chosen to be 3, where the 
constant temperature is obtained by the scaling of the velocity in each step (it forms a 
Gaussian thermostat). The system in the liquid state was rapidly cooled (~1 × 1012 K/s 
for argon) along the liquid branch of the phase-diagram to the initial value of * to be 
examined in the supercooled liquid state. The run of more than 200,000 steps was done 
at each condition for examining non-equilibrium relaxation and run after it was also 
used for further analyses. The results of time dependence are given using a reduced unit 

, where 2/2/1 )()( nlml   . 
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For examining the relaxation process in the constant pressure condition, we used a time 

development of the value )( *
tj  , (= t

BTNk
H )( ) denoted *

tj  and dynamical 

compressibility factor, )( *
tg   denoted *

tg . Fluctuation of P, *g and *j  along the non-
equilibrium relaxation was examined by MD simulations.    
In the present work, several M values were used for each *

0  value under NPH 
conditions and results are compared with those obtained under the NVE relaxation. For 
the latter condition, we have done 23 independent runs [10] and confirmed the 
reproducibility of the path on the phase-diagram and the validity of the equations, (6a) 
and (6b). For the NPH runs with different mass of walls M (M=0.0021, 0.021, 0.105, 
0.21 and 2.1) over several orders were compared using a common starting configuration. 
In the present work, we found that all NPH runs reached to the glass branch on the 
phase-diagram and similar mass dependences are observed for three different *

0  values 
( *

0 =1.4~1.53). Therefore our attention is focused on the non-equilibrium relaxation 
starting from *

0  =1.53 for the NPH non-equilibrium relaxation. In addition, runs under 
NPT and NVT conditions were examined to represent the paths and fluctuations 
depending on the extended conditions. 
4. RESULTS  
4.1 Derivation of Equations of Non-equilibrium Relaxations in NPH 
Condition  

At first, we derive the analytical expressions of the non-equilibrium relaxation under 
the constant pressure condition as follows. 
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 We consider the system containing N particles in the box with the length L (therefore, 
volume V=L3), where L is determined by the system pressure balancing with the 
pressure by walls having the mass M  (that is, a three dimensional piston) as introduced 
by Andersen [5].  
Hamiltonian in the extended system can be written as follows, 

 
i

exii VPMVUmVVH 23/13/2
2
1])([)2/()(),,,( sπππs                        (7) 

, where s (= ),, iziyix sss , iπ
is

L

(  ) and  ( 

 
 VM
V
L ) are normalized ( ii Lsr  ) 

coordinates, momentum of particle i and momentum of the wall respectively and VPex is 
a potential energy by the wall. The system is conservative. 

In the equilibrated system with a constant pressure, the term 2
2
1 M  becomes 

negligibly small. If we neglected this term,  
.constVPEVPUK exex   

*)(jTNk
VP

TNk
E

B
ex

B
    .                                                                                       (8) 

Here we represent an enthalpy at t as, 
textt VPEH        ,                                                                                                      (9) 

and following relation, 

*)()( tt
B

jTNk
H                                                                                                         (10) 

is used with n
tBtt Tk /3)/(*    .  

The subscript t means an instantaneous value. 
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Eqs. 6(a) and 6(b) explained in Section 2 have been obtained [6,7] based on the classical 
virial theorem. By the similar procedure to derive these equations, following relation 
was obtained. 

)12()12(*)()*
*)((*)( 0

3

0
0

0




 


 nnjE

Ej
n

t
t

tt 



                                          (11) 

Here, 0 * is an initial reduced density of the system after the quench of the system by 
temperature scaling, where the non-equilibrium relaxation started in NPH condition. 
Values 0E  and  0  are the initial internal energy and initial density, respectively.  
Derivation of the equation (11) is as follows. 
Energy of the system can be written as follows. 

)12(3)12(2 


  n
TNk

En
TNk

En
K
En

TNk
E

TNk
VPE

tB
t

tB
t

t
t

tB
tt

B
ex                          (12) 

The relation, 3/*)/(/ n
tttBTk   , which was obtained from the n

tBtt Tk /3)/(*   , 
was inserted into above relation, 

)12()*()13(*)( 3
0

 n
N
Enj

n
tt

t 


  .                                                                     (13) 

At t=0, 

)12()*()13(*)( 3
0

000  n
N
Enj

n




      .                                                                 (14) 

Therefore, 

3
0
000 )*)](12(*)([)13(

nnjN
En


             .                                                                      (15) 



 12

Using equations (13) and (15), we obtained the equation (11). This Eq. (11) is an 
important result of the present work to represent the non-equilibrium relaxation under 
the constant pressure condition. 
The relation, 

*)(]1*)([3
2
3*)(*)(*)(  ggnghj   

*)()13()3
2
3( gnn                                                                                                                (16) 

is obtained from Eq. (5) and following Eqns. (17) and (18). 
Eqns. (17) and (18) are concerned with )( *h  defined by )/()( * TNkEh B  (see Ref. 
27). 

    )( * htN
E  ,                                                                                                (17) 

  where /Tkt B . 

  1)(~3
2
3)( **   Pnh    .                                                                        (18) 

If the above relation in Eq. (16) holds during the non-equilibrium relaxation process, the 
following relation is obtained. 

   .                                                                  (19) 
Equations (16) and (19) represent the relation between the *)( tj   and the instantaneous 
compressibility factor, *)( tg  . Therefore, using the latter value, non-equilibrium 
relaxation under the constant pressure condition can be mapped on the phase-diagram. 
From these relations, values of *)( tj   is found to be about 5/4 of *)( tg   when n=12, if 

)]3
2
3(*)([)13(*)( 1

njng tt   
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we neglected the constant term. Therefore, contribution of internal energy term in the 
non-equilibrium relaxation is about 1/4 of instantaneous compressibility factor, *)( tg  .  

In the rest of this subsection, the pressure and mass of walls used to control the 
constant pressure conditions related to above derivations will be explained. 
The system under the constant pressure condition is controlled by the difference of 
external pressure and internal pressure. The inner pressure P  is given by the following 
form. 

)(~ **
1/3

3 
 PTkP

n
B





                                                 .                                   (20) 

Here the compressibility factor introduced in Ref. 6, *)(~ nP  and ours is related by the 
equation  ./)(~*)(~ **  nPP   
Comparing the dimension between mass of the wall and the particle, we see that M has 
a dimension, [mass][(length)-4]. Then we use the reduced mass M’ which is given by the 
following relations [28], 

M’=M4/m.                                                                                                    (21) 
Hereafter M’ is written as M. 
4.2 Phase-Diagram of the SC System and NPH Relaxation Shown on 
the Diagram 
MD simulations are used to check the expressions mentioned in the section 4.1 and to 
examine further details of the non-equilibrium relaxation.  
In Fig. 1(a), the phase-diagram of the system including the glass branch examined in 
previous works [10,11] is shown. In NVE conditions, the system on the liquid branch is 
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 Fig. 1(a) (Color online) (a) Phase-diagram and non-equilibrium relaxations in NPH condition represented by gt*. 
Open quares (red) are g* for liquids (connected by a solid (red) curve) and super cooled liquids (connected by a 
dashed (red) curve), while filled circles (black) are for FCC crystal (connected by a solid (black) curve). Open 
circles (blue) are metastable positions after the NVE relaxation obtained in Ref. 10. The curve connecting the 
positions is defined as the glass branch.The value  gt* is related to jt* by Eq. (19)  in the NPH condition. Four 
curves were started from the same configuration at 0*=1.53 with several different mass of the wall (blue: 
M=0.0021, purple: M=0.021 orange: M=0.21 and gray:M=2.1) (from right to left). A thin curve (pale blue) is 
NVE relaxation started from the slightly larger 0*. (b) Curves in (a) are shown in an enlarged scale. Except for 
the heaviest wall (gray:M=2.1) case, all curves starting from the same structure in NPH conditions are only 
slightly different on the phase-diagram. (c) Comparison of the paths for NPT and NVT relaxations on the phase-
diagram. The curve for NPT (Green) (during t/=3104 ) started from 0*=1.42 are followed by the NVT (Black) 
relaxation and additional NPT runs (Bright green). The NVT relaxation looks like a straight line, while NPT 
relaxation curves developed from left to right with large fluctuations. The path and its fluctuation for the NVT 
relaxation are fairly different from those in NPT runs. The final positions after the run of t/=3104 are marked 
by open black circles for both cases. (d) The NPT and NVT runs in (c) are shown in an enlarged scale. 
 

unstable above *
0 ~1.3 and it initiates a non-equilibrium relaxation process toward the 

glass branch [10]. 
 Here the glass branch is defined by the curve connecting metastable positions after the 
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non-equilibrium relaxations, on which the system is considered as a stabilized glass 
after aging. The position of crystal branch (FCC) is obviously below and separate from 
this branch on the phase-diagram. Both equilibrated and non-equilibrated values of the 
compressibility factor were represented as *g . Similar non-equilibrium relaxations are 
found in NPH runs. Actually, all NPH runs for *

0 =1.4~1.53) show non-equilibrium 
relaxations and reached to the glass branch (slightly above the glass branch obtained by 
NVE runs). In Fig. 1(a), NPH runs starting from *

0 =1.53 with several M values are 

plotted. For the comparison, NVE relaxation started from the nearby *
0  value on the 

diagram is shown. Curvatures found in the NPH  relaxation are slightly different from 
that in the NVE relaxation and final positions after the relaxations have lower *  and 

larger *g values. In this figure, non-equilibrium NPH relaxation curve for M=2.1 (gray) 
was found to deviate from other curves considerably, while the curvature for the 
smallest M in NPH  conditions is comparable to the case of NVE relaxation. Other 
curves are comparable each other, but are slightly modified by the different mass.  
If NPH non-equilibrium relaxation moves along a unique path in the )( *j - *  plane, 

it will also hold in the )( *g - *  diagram from Eq. (19) and this can be judged from 
the plot.  

Difference of the fluctuations by different conditions can be also shown in this 
figure. Curves for NPH relaxations are found to have larger width due to fine structures 
of the fluctuation. To see it clearly, they are shown in an enlarged scale in Fig. 1(b).   
4.3 Comparisons of Non-Equilibrium Relaxations in Different Extended Condition 
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In Figs. 1(c) and 1(d), relaxation curves for NPT and NVT conditions are shown. The 
latter relaxation started from the same configurations obtained from the initial stage of 
NPT relaxation (See caption of Fig. 1(c) for details). In this plot, NVT relaxation looks 
like a straight line, while the NPT relaxation looks like a ball of yarn due to the large 
fluctuation.  
If we compared the constant volume and constant pressure conditions in Figs. 1(c) and 1 
(d), it is found that the path of each run shows different direction on the phase-diagram. 
Due to the temperature control, increases of the temperature observed in NVE and NPH 
conditions are suppressed by removal of heat from the system and the g* decreases 
more directly toward the glass branch.  

When different value of M is used, the fluctuations of the systems are modified 
considerably. In Fig. 2, fluctuations of P’ (=inner pressure/external pressure) of the 
system for four different M values (The fluctuation with M=0.105 is comparable to that 
for M=0.021 and is not shown) and fluctuation of H’ (=H/H0) during the corresponding 
runs are shown, where the same initial configuration as in Fig. 1(a) and (b) was used. 
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 Fig. 2  (Color online) (Left panel) Fluctuations of the relative pressure P’ (inner pressure divided 
by the external pressure being set in advance) and (Right panel) H’ (=H/H0), during the NPH 
relaxation (0*=1.53) in several systems with different mass of walls in the Andersen method. The 
mass of the wall is M=2.1 (brown), M=0.21 (red) M=0.021 (blue) and M=0.0021 (black), from top 
to bottom for each case.  
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The largest fluctuation of P’ is found in the case of the largest M (=2.1). Corresponding 
H’ shifted considerably during the run and therefore this condition is not suitable for the 
NPH condition. With the largest M, temperature and system volume is found to increase 
rapidly, while mean pressure is nearly kept constant. It means that the kinetic energy of 
the wall is non-negligible and particles are affected by it.  
Here we note that NPH  condition does not necessarily mean the NPH ensemble.  In 
the middle region 0.021M 0.21, a pressure control works well with a small drift of H’ 
(within 0.5% during the run).  Although the H is a conservative amount in the NPH 
ensemble in the equilibrated system, it is not necessarily conserved in the non-
equilibrium condition or for slow dynamics observed in the limited time scale, while the 
control of the pressure is successfully done within the observation time. Similar 
discussion holds for other conditions and therefore, it is better to distinguish 
terminologies of “condition” and “ensemble”.  
 
In these cases, fluctuation of P and V is found to be antiphase (Details are shown in Fig. 
6) and therefore, the pressure control of the system works well.  When M is heavier, the 
frequency of the fluctuation becomes smaller. A width of the fluctuation becomes large 
when it is comparable to the natural frequency of the system. For the smallest M 
(=0.0021), beat was found and it suggests the P and V in the system is not an exact 
antiphase here.   

To examine the validity of expressions derived in the present work, Eq. (11) is 
compared with Eq. (16). For several NPH non-equilibrium relaxations, we have 
confirmed that jt(*) plotted against time obtained from Eq. (11) and that by Eq. (16) 
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completely overlapped. For example, plot of the latter against the former shows the 
slope of 0.9992 for the M=0.021 and this result is shown in Fig. 3.  

 
In this case, 2000 data points are included in the plot and every instance during the NPH 
relaxation, Eq. (11) is comparable to Eq. (16).  

In Fig. 4, *
tg values are plotted against time for M=0.0021, 0.021 and 0.21. A 

result of NVE non-equilibrium relaxation starting from the slightly larger 0* is also 
shown for the sake of comparison.  
The shapes of the relaxation curves in Fig. 4 (a) are compared. The inflection in the 
relaxation curve is clearer when the heavier wall was used. Black curves are 
reconstructed ones obtained by a few numbers of principal components using the 
singular spectrum analysis (SSA) [29]. In Fig. 4(b), a kind of phase-space plots [30] of 
such relaxations, where dg* (=g*t-g*t-dt, where dt corresponds to 100 steps) is plotted 
against g*, are shown using the reconstructed (de-noised) data. 

 
 

 
Fig. 3 (Color online) The )( *j  values obtained by Eq. (11) is compared 
with those obtained by Eq. (16). 
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Previously, a similar plot (d|r|=|rt-rt-dt| is plotted against |r|, where the r is displacement 
vector of ion) has been successfully used to characterize the ionic motion in lithium 
silicate [31] and ionic liquids [32]. In a similar manner, deterministic character of the 
“thermodynamical” change of the system is visualized by the plot. These plots start 

(a) 

 (b) 

  
Fig. 4 (Color online) Three curves for gt* in NPH conditions (0*=1.53) are shown as a function 
of time. The values of mass of the wall used are M=0.0021 (blue), 0.021 (purple) and 0.21 
(orange), respectively.  The gt* is connected to jt* by Eq. (19). Pale blue curve is for the NVE 
relaxation starting from a slightly larger0 value. (b) Phase-space plots of the developments of 
the NVE and NPH relaxations using the de-noised data. De-noising has been done by the 
singular spectrum analysis (SSA), which is a principal component analysis of the time series. 
Clear structures (formed by parts of the oval) are found in each curve meaning the deterministic 
nature of the development. In the beginning of the curves (They started from the right), large 
changes in g* are found.  In NPH conditions, the structure with a longer wave length is found 
when the mass of wall is heavier.  Small fluctuations also overlap to curves.   
 
 



 21

from the right side and move to the left side with the relaxation. In this kind of plot, 
clear structure is found if the change is deterministic and oval shapes are found if the 
change is vibrational. Actually, a clear structure with parts of the oval is found in the 
NVE relaxation, while a structure with some small bumps is found in the case of NPH 
condition. They seem to modify the oval like structures to more hindered ones. Thus the 
shape of the relaxation curve found in g* is characterized by the deterministic structure 
but is affected by the fluctuation of the system.  
 
4.4 Comparison of the Non-equilibrium Relaxation in NVE Condition and NPH 
condition 

 

  Fig. 5 (Color online) (a) Time dependence of  jt/j0 for the NPH non-equilibrated relaxation is 
shown as a function of Et/E0 and Tt/T0 for the run with M=0.021 shown in Fig. 4.  (a) The jt 
fluctuates with both values as predicted by Eq. (11). 
(b) Fluctuations of relative pressure (Pt/P0) plotted against that of relative volume (Vt/V0 ) and 
relative temperature (Tt/T0) during the same run shown in (a).   
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Fluctuations of the systems also depend on the conditions used. Some details for 
fluctuations of variables in NVE and NPH conditions will be shown here. In the NPH 
run, the fluctuation of jt (= *)( tj  ) is caused by those of both Et and Tt. This is predicted 
by Eq. (11) and this situation is shown in Fig. 5(a) for the case with *

0  =1.53 and 
M=0.021. A curve after the smoothing by the local polynomial fitting is shown in black. 
Inset shows the fluctuation for the beginning of the same run in an enlarged scale. In Fig. 
5(b), fluctuation of the pressure (Pt/P0) for this case is shown as a function of Tt and Vt. 
The curve after the smoothing is shown in red. 



 23

In Figs. 6(a) ~ (d), time dependences of some thermodynamic terms are compared. Here, 
data are normalized by using the initial values. 

 
 As shown in Fig. 6(d), relative pressure and volume show antiphase fluctuations. In 

the case of equilibrated condition [28], this situation is known to occur when the mass 
of the wall is relatively small.  
 
4.5 Structures Obtained after NPH Relaxations 

  
 Fig. 6 (Color online) (a) Time dependence of the fluctuations of variables during 
the NPH run with M=0.021. Curves are Tt/T0, Et/E0, Pt/P0 and jt/j0 from top to bottom. 
The fluctuation of Tt/T0 and jt/j0 are larger than other variables. Increase in the 
former and decrease in the latter are dominant process for the NPH non-equilibrium 
relaxation.  The curve for Vt/V0  is hidden by other curves and therefore it is shown 
in an enlarged scale in (b).  (b) The same curves in (a) for Pt/P0, Et/E0 and Vt/V0 (bottom in the right part) are shown in an enlarged vertical scale.  
 (c) The plot for a beginning of the same run in an enlarged scale for Tt/T0 (lower 
curve) and jt/j0 (upper curve). 
(d) The plot for a beginning of the same run in an enlarged scale for Pt/P0, Et/E0 and 
Vt/V0. The smallest fluctuation is found for Vt/V0.  
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Structures found after the NPH  non-equilibrium relaxations (starting from 0*=1.53) 
using different mass of walls are compared in Fig. 7. In all of these figures, the splitting 
of the peaks is not clear and structures are different from crystals. From the 
characteristics of )(rg , all samples can be judged in the glassy state. This is because the 

)(rg  function is different from that of FCC and BCC and it lacks the long ranged 
correlations [10], although an overlap of crystallization process is not excluded here. 
Some differences were observed if we compared the structures obtained with different 
M values. We note that both g(r) and n(r) systematically changed with the value of M.  

 Fig. 7 (Color online) Pair correlation functions g(r), obtained during NPH 
relaxations with different mass of wall.  Left panel: top:M=0.0021 (black), 
bottom:M=0.021 (blue); Right panel, top: M=0.105 (purple), bottom: M=0.21 (red).  
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As shown in Fig. 7, positions and heights of first peaks in g(r) for different M values are 
only slightly different. The shape of the second peaks for larger M values (0.105 and 
0.21) is slightly sharper and hindered than that for smaller M values (0.0021 and 

 Fig. 8 (Color online) (a) Running coordination functions n(r), obtained after the NPH 
relaxation shown in Fig. 1 with different mass of wall. M=0.0021 (black, solid), M=0.021 
(blue,dashed), M=0.105 (purple, short dashed), M=0.21 (red, dot dashed), M=2.1 
(orange, dotted). (b) The same function shown in an enlarged scale. Systematic changes 
of the function with M is clearly found for the first coordination shell. (c) The same 
function shown in an enlarged scale for the second coordination shell.  
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0.0021). Corresponding change is observed in the running coordination number n(r) 
shown in Fig. 8 (a). The contribution at around r=1.5 decreases with increasing M and 
opposite trend is found at around r=1.8 and this trend is clearer in Figs. 8(b) and 8(c) 
shown in an enlarged scale. Namely, the decrease of the coordination number with 
increasing M in the first coordination shell is compensated by the increase of it in the 
longer length structure.  
 
5. DISCUSSION 
5.1 Difference of the Non-Equilibrium Relaxations in the Different Extended 
Condition 
From Fig. 1, we have shown that the different extended ensemble resulted in the 
different path in the phase-diagram and the path of the NPH relation shows a slightly 
different slope from that for NVE relaxation. The largest deviation of the curve of the 
NPH relaxation from NVE relaxation is found for the system with the largest mass of 
the wall and it is probable that some correlated structures are destroyed by the motion of 
the wall. 
The small difference of the curves in NVE and NPH conditions in the non-equilibrium 
relaxations is not a self-evident thing. This fact becomes clear if we compare the NPT 
relaxation and NVT relaxation on the same diagram. A different direction of the paths is 
found in Figs. 1(c) and 1(d). The large effect of the temperature control found in these 
figures is natural, because the increase of system temperature is found in the constant 
energy conditions and the heat of the system is taken away by the temperature control.   
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One can also find that not only the path on the phase-diagram but also the 
fluctuation of it depend on the extended conditions of MD simulations, considerably. 
The fluctuation of the curve is not determined by that of *  only, although the position 
on the phase-diagram is essentially determined by it.  
 
5.2 Validity of Analytical Expressions 
For expression of 6(a) and 6(b) for NVE relaxation, one can estimate the behavior of the 
system by changing t*. On the other hand, for expressions of Eq. (11) for NPH 
condition, direct mapping is difficult because the j(t*) is a function of both E and . 
Therefore we confirmed the validity of expressions by several steps.  
At first, we mapped g(t*) on the phase-diagram to check if the j(*) shows a unique 
path during the NPH relaxation irrespective of different conditions such as choice of M.  
If the NPH non-equilibrium relaxation moves along a unique path in the )( *j - *  
plane, we can expect it also holds in the )( *g - *  diagram from Eq. (19). In fact this 
is the case observed in Fig. 1(a), and each path on the phase-diagram is found to be a 
unique function of * for the medium M value cases. Results with different mass of 
walls can be used not only to choose the suitable M, but also to learn the effect of 
different fluctuations on the non-equilibrium process. Fluctuations of thermodynamic 
variables are examined in Fig.2 to see the effect of different M values using the relative 
pressure P’ (inner pressure divided by the external pressure being set in advance) and H’ 
(=H/H0), during the NPH relaxation. From Fig. 2, it is found that the condition of the 
largest M is no more suitable to keep the constant pressure conditions. Therefore, this 
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case can be excluded in this argument of the validity of the expressions. For other cases, 
the relaxation shows the unique path on the phase-diagram.  

In the next step, we confirmed that the relation between equations (11) and (16), 
where the instantaneous enthalpy during the relaxations was calculated by the different 
routes.  

As shown in Fig. 3, the relation of )( *j  obtained by Eq. (11) is completely 
overlapped to that obtained by Eq. (16). The non-equilibrium relaxation with M=0.021 
shows the large change of gt* value during the run as shown in Fig. 4(a). It is interesting 
to note that even in this case, the relation between Eqns. (11) and (16) holds well. From 
these results, assumptions used to derive (11) and (16) seem to be reasonable.  
Further characteristics such as the relation among several thermodynamic variables are 
also consistent to the expressions.  
 
5.3 Deterministic Charcater of the Relaxations 
From Fig. 4(a), the shape of the relaxation curves seems to be different case by case, 
while the positions in the phase-diagram are comparable if we started the same *

0 . 
Such differences in the shape of the relaxation curves were found previously even in 
NVE runs without modification by walls [10], where 23 independent runs in several 
conditions including larger system size and longer runs had been examined.  

In the present work, a kind of phase-space plots is used to show the deterministic 
nature of the “thermodynamic” variable, for the first time. The cause of the fluctuations 
of the relaxation pattern can be explained by the determinstic character of them as 
discussed below. Such characteristics are shown by the phase-space plot (dg* plotted 
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against g*) in Fig. 4(b). Clear structures representing deterministic nature of the 
relaxations are found and the spike like changes in dg* are also found for the beginning 
of the non-equilibrium relaxations. The results for NPH relaxations have more bumps 
compared with NVE relaxation and modification of the shapes is found in the formers. 
This suggests that the large fluctuation affect the details of the relaxations. That’s why 
the shape and timing of the start of the relaxation changes case by case.  

One may consider that the relaxation curves should be treated with better statistics. 
However, extremely large number of runs is required to take an average of such decay 
curves, due to the deterministic character and discontinuous events concerned it. In the 
present work, averaging these relaxation patterns is out of focus, because reproducibility 
of the paths on the phase-diagram is already good and this is our target of debate. 
 
5.4 Fluctuation Found in the Non-Equilibrium Relaxation 
In the case of NVE  conditions, the dynamical compressibility factor changes with time 
along the )( *

tg  curve, accompanying the fluctuation of *
t  as shown in the equations 

6(a) and 6(b). If an initial point )),(( *
0

*
0 g  is located in the region of unstable state, the 

system relaxes, fluctuating together with *
t . In the case of constant pressure conditions, 

)( *
tj   fluctuate instead of )( *

tg   and total energy of the system fluctuates as well. In 
both NVE and NPH relaxations, *U  decreases to compensating increase of * . In the 
NPH run, the fluctuation of jt (= *)( tj  ) is caused by that of Et and Tt as represented in 
Eq. (11) and this situation is shown in Fig. 5(a) for the case with *

0  =1.53 and M=0.021. 
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In Fig. 5(b), fluctuation of the pressure (Pt/P0) for this case is shown as a function of Tt 
and Vt. The curve after the smoothing is shown in red. 

Since details for the fluctuation of thermodynamics in the non-equilibrated 
relaxation are unknown, fundamental relations among variables are examined and 
shown in Fig. 6(a) ~ (d). These results at every instance during the runs are consistent to 
the analytical representation obtained in the present work.  
 
5.5 Structures obtained after the NPH Non-Equilibrium Relaxations 
Obtained structures after NPH relaxation are quite similar to those obtained near the 
glass branch in NVE relaxations [10,11] as shown in Fig. 7 and 8(a). The g(r) shows 
some characteristics of glasses different from BCC nor FCC structures. The lack of the 
clear plateaus in the running coordination number, n(r) in Fig. 8 also means the system 
is not in the crystalline state. With increasing M, the contribution at around r=1.5 
decreases and opposite trend is found at around r=1.8.   
As a whole, coordination shells are slightly clearer when the M is smaller.  
It means that a partial crystallization or development of the local packing occurs when 
M is smaller. The present results reveal that the packing of the structures is affected by 
the fluctuation of the system during the non-equilibrated relaxation and hence it is 
related to the formation of glasses.  
The fluctuation of the system by the wall affects the local packing of the system and its 
compressibility. How is the change of the packing related to the glass transition? 
Recently, Habasaki and Ngai have reported [33] that the number of constraints of the 
system and the geometrical degree of the freedom of the coordination polyhedra play 
roles in the fragile behavior of the glass transition for a typical ionic liquid, 1-ethyl-3-
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methyl imidazolium nitrate (EMIM-NO3). The packing of the coordination polyhedra as 
well as rigidity percolation of fictive bonds (contact ion pairs) takes important roles 
there. The role of the packing in the system is to be taken into account for the glass 
transition of the system. 
 
5.6 Relations with the Problem of the Glass Transition 
5.6.1 Definition of the Glass Transition 
In the previous works [10,11], glass transition is defined by the positions on the phase-
diagram as follows. When the liquid is rapidly cooled (~1 × 1012 K/s for argon) along 
the liquid branch of the diagram, the system can be supercooled and the glass transition 
occurs. Structures thus obtained are liquid like (but has more closed packing locally) 
when it is near the liquid branch. This corresponds to the usual definition of the glass by 
the procedure how to obtain it. We called this type of glass as a quenched glass. In the 
region near 36.1*

0  , a non-equilibrium relaxation starts after some leading times, 
while in the region larger than 4.1*

0  , a non-equilibrium relaxation immediately 
started in NVE conditions. In our previous study [10], it was shown that most of runs of 
NVE relaxations in the one component SC system ( N =2048, 2067, 4096) resulted in 
the metastable states and they are judged to be in the glassy state from both structures 
[10] and thermodynamic properties [11]. Even for the rapidly quenched system, non-
equilibrated relaxation starts at 4.1*0  . Both states trapped one and metastable states 
on the glass branch, are considered as the glassy states. This is because the quenched 
glass also shows the relaxation toward the glass branch (aging), after long time 
relaxation time. In other words, the quenched glass is considered as in a trapped state on 
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the way to the glass branch [10] and there are no differences in the characteristics of the 
relaxation processes observed in both cases. The difference found is mainly for the 
location on the phase-diagram. A rapidly quenched system tends to be trapped on the 
midway toward the glass branch for long time. Therefore the quenched system can be 
located near the liquid branch, while the glass branch is located near the crystal (FCC) 
branch. Using this definition one can understand the cooling rate dependence of the 
glass transition, aging and structural changes during the relaxation processes. If the 
system was rapidly cooled, the system will be located near the liquid branch of the 
phase-diagram, while the system is cooled more slowly, the non-equilibrium relaxation 
will start at smaller 0* value and it will proceed during the cooling. Naturally, similar 
discussion holds for the case of constant pressure conditions, although the actual paths 
and fluctuations on the phase-diagram are different. If a rapid cooling rate is used, the 
system shows the path near the liquid branch of the phase-diagram, while if a slower 
cooling rate is used, the path would be nearer to the relaxation path for the NPH or NPT 
condition. Usually, studies of the glass transition in experiments are performed under 
constant pressure condition combined with the different cooling rates. Therefore, 
thermodynamics examined under the constant pressure condition in the supercooled 
liquids are useful to consider the problem of the glass transition.  
The above definition of the glass transition discussed in previous works [10,11] may not 
necessarily be the same as those by other researchers. Actually, the definition of the 
glass transition tends to be different by researchers. 
One should note that if one used different definition of glasses or the glass transition, it 
may affect the understanding of the glasses or glass transition; however, it does not 
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affect the main results of the present work. That is, they are concerned with expressions 
of non-equilibrium relaxations and related results of MD simulations.  
5.6.2 Relation between Thermodynamic Scaling and Glass Transition 
As mentioned in Introduction, the thermodynamic scaling of glass forming systems has 
been well established in many systems. Namely, the structural -relaxation time, , or 
other transport properties of small molecular and polymeric glass-formers obey 
thermodynamic scaling. In the SC system, thermodynamic scaling holds exactly 
[6,11,34,35] and hence scaling behavior suggests the existence of effective inverse-
power law type potentials in many materials. Concerned with this scaling behavior, 
fluctuation of the thermodynamic variables may be considered to play important roles in 
the glass transition. For example, by the Roskilde group [24,25],  the presence of strong 
correlations between equilibrium fluctuations of the configurational parts of 
(instantaneous) pressure and energy for a number of model liquids in NVT ensemble has 
been shown by MD. An effective inverse law type potential dominating fluctuations (in 
the equilibrium system) is argued to be responsible for the thermodynamic scaling, 
based on the pressure-energy correlations. In general, details of the fluctuation of 
thermodynamic properties depend on the thermodynamic condition used [36], while the 
thermodynamic scaling holds regardless the conditions in the SC model in the 
equilibrated system. However, for some dynamical quantities determined from 
fluctuations, deviation from the thermodynamical scaling might happen even for the SC 
model, when the non-equilibrium relaxation is concerned.  
5.6.3 Relation between nucleation (toward the crystal branch) and non-equilibrium 
relation (toward the glass branch) 
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One may have a question if the non-equilibrium relaxation toward the crystal branch 
and that toward the glass branch is the same process or not. Therefore, relationship 
between nucleation (toward the crystallization) process and non-equilibrium relaxation 
is discussed here.  
If one considered that the system relaxed toward the crystal branch, the phenomena 
investigated along the non-equilibrium relaxation might be considered as a rapid 
nucleation rather than the relaxation toward the glass branch. However, it was shown 
that the metastable structures on the glass branch are not FCC or mixtures of FCC and 
BCC crystals [10] but a mixture of their partial structures in an atomistic length scale. 
Therefore, during the non-equilibrium relaxation, structures tend to be locally (or in a 
medium ranged scale) equilibrated, while crystallization requires a nucleation and 
development of clusters and global rearrangements of positions of particles. Therefore, 
the non-equilibrated relaxation and the crystallization are not the same process, although 
some overlaps of processes are possible as already mentioned. Small difference of the 
structures obtained by different M values can be explained by the overlap of the partial 
crystallization or the changes in the local or medium packing caused by the fluctuation 
in the system.  
5.6.4 Is the glass transition purely kinetic or with structural change? 
In the present work, change of the packing of the system affected by the fluctuation of 
the thermodynamic quantities in the system was found. On the other hand, there is a 
claim that the glass transition is purely kinetic phenomena [For example, see discussion 
in Ref. 37]. That is, glass transition is considered to be brought by the short observation 
time compared with the relaxation time in this case. This view might be brought by the 
fact that the clear structural changes accompanied with the glass transition have not 
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been found in experiments. However, both experiments and simulations suggest the 
existence of structural change accompanied with the glass transition. Experimentally, it 
is known that the volumetric change of the systems occurs both at Tg and TB with 
decreasing temperature (see Ref. 38 and references therein) and this fact implies that the 
location of free volumes in the system changes with temperature. Usually, aging of the 
glass is observed with volume change of the system [39] and therefore, such a “kinetic 
glass” will not be stable for a longer time scale. Therefore, existence of the kinetic glass 
is not necessarily contradicting to the existence of structural changes at these 
characteristic temperatures. MD simulations for several systems show sharpening of the 
first peak and/or splitting of the second peak of the pair correlation functions [6,40] and 
such splitting is accompanied with the structural arrest of the system [40]. Changes of 
the coordination polyhedra formed by oxygens around alkali metal ions were found 
during the glass transition in a silicate system [41]. Furthermore, structures of Voronoi 
polyhedra and their connections also change during the solidification of metallic glasses 
[42].  
Structural changes near the characteristic temperatures are also known for an ionic 
liquid system. In the MD of EMIM-NO3 [33], diffusion coefficient plotted against 1/T 
changes in slope at around TB (~400 K), although it is difficult to reach the diffusive 
time regime near Tg by MD within a run of ~10 ns. Both a degree of freedom of 
geometrical structure of the coordination polyhedra of ions and a degree of freedom of 
the system measured by the number of fictive bonds (contact ion pairs) are found to 
change at these characteristic temperatures of ionic liquid [33]. Thus nowadays, many 
researchers of glass transition are seeking for the structural origin of the glass transitions 
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including theoretical ones (See Ref. 43 and references therein) and our MD simulations 
of the present simplest glass forming model is consistent to this view.  
 
 
 
6. CONCLUSION 
We have examined thermodynamic properties of the one component SC system and 
obtained analytical expressions of non-equilibrium relaxation under the constant 
pressure condition for the first time.  Our main results are equations (11) and (16), 
where the non-equilibrium relaxation is represented by a time dependent term j(t*) 
(Instantaneous enthalpy Ht divided by NkBT). In Eq. (11), the value is represented as the 
function of both energy and number density. This is in contrast that the relaxation in 
NVE condition is a function of number density only. In equation (16), the )( ** tj  value 
is represented as a function of the compressibility factor, )( *g (= *)(~ TP ) and this 
enables us to compare the behavior of the systems using the phase-diagram represented 
by )( *g  against * plot.  The contribution of internal energy term for the non-
equilibrium relaxation is found to be about 1/4 of the instantaneous compressibility 
factor, *)( tg  . Validity of these expressions was confirmed by the molecular dynamics 
simulations with a suitable choice of mass of the wall used in the constant pressure 
conditions.   
It was clarified that the plot of non-equilibrium relaxation in NPH condition mapped on 
the *g - * diagram is found to show a unique path with large fluctuations. The 
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fluctuation of the system brought by the different mass of walls was found to affect the 
packing of the particles in the system. 
From these results, importance of the paths and fluctuations of the system on the phase-
diagram for the discussion of the glass transition is suggested and they give a new 
perspective for understanding glass transition. Present work for constant pressure 
condition can be a basis to consider the relation between glass transition and 
fluctuations as well as its relation with extended conditions to affect it. 
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