
論文 / 著書情報
Article / Book Information

題目(和文)

Title(English) Ontology-assisted Methods for the Detection and Clustering of
Hierarchical Topics on the Social Web

著者(和文) SLABBEKOORNKristian

Author(English) Kristian Slabbekoorn

出典(和文) 学位:博士(学術),
 学位授与機関:東京工業大学,
 報告番号:甲第10256号,
 授与年月日:2016年3月26日,
 学位の種別:課程博士,
 審査員:徳田 雄洋,佐伯 元司,徳永 健伸,権藤 克彦,西崎 真也

Citation(English) Degree:Doctor (Academic),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第10256号,
 Conferred date:2016/3/26,
 Degree Type:Course doctor,
 Examiner:,,,,

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

Ontology-assisted Methods for the
Detection and Clustering of

Hierarchical Topics on the Social
Web

THESIS

submitted in partial fulfillment of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Kristian Slabbekoorn

Tokuda Laboratory
Department of Computer Science

Graduate School of Information Science and Engineering
Tokyo Institute of Technology

http://www.cs.titech.ac.jp/

c© 2016 Kristian Slabbekoorn

Ontology-assisted Methods for the
Detection and Clustering of

Hierarchical Topics on the Social
Web

Author: Kristian Slabbekoorn
Email: kt.slabbekoorn@gmail.com

Abstract

Discovery of topics of interest on the Social Web can enhance applications
like user recommendation and expert finding. We propose methods for ontology-
assisted, hierarchical topic clustering on the Social Web. To overcome sparsity
issues of LSA-based topic modeling, we map user content to hierarchical, on-
tological classes, which we manipulate to express topical similarity at a chosen
topic scope. Using community detection techniques, we find topic clusters with
machine-readable labels without having to pre-define the number of topics. We
evaluate against Twitter users and the 20-newsgroups dataset. Compared to the
state-of-the-art in topic modeling and document clustering, LDA and k-means,
we can discover an appropriate number of topics for the chosen topic scope, out-
perform both baselines by up to 26.7% on Twitter content, and perform equiva-
lently on newsgroup posts.

Thesis Committee: Prof. T. Tokuda, Prof. M. Saeki, Prof. T. Tokunaga,
Prof. K. Gondow, Prof. S. Nishizaki

Contents

Contents iii

List of Figures vii

Acknowledgements xi

1 Introduction 1
1.1 Thesis organization . 5
1.2 Contributions . 5

2 Background and Related Work 7
2.1 Document processing and representation 7

2.1.1 Vector space model for documents 8
2.2 Topic modeling . 9

2.2.1 Latent Dirichlet allocation 9
2.3 Document clustering . 10

2.3.1 k-means document clustering 11
2.4 Community detection . 11
2.5 The Semantic Web and Ontologies 12

2.5.1 Ontologies and taxonomies 12
2.6 The Social Web and Twitter . 13
2.7 Related work . 13

2.7.1 Twitter user recommendation approaches 14
2.7.2 Topic modeling approaches 14
2.7.3 Document clustering and classification approaches 15
2.7.4 (Ontology-assisted) Social Web approaches 16
2.7.5 Community detection-based approaches 17

3 Entity Recognition and Ontological Expansion 19
3.1 Detecting named entities . 19

3.1.1 DBpedia . 19
3.1.2 DBpedia Spotlight . 20
3.1.3 Named entities on the Social Web 21
3.1.4 Concatenation window size 23

iii

CONTENTS CONTENTS

3.1.5 Spotlight parameter tuning 23
3.2 Ontological expansion . 23

3.2.1 Including entities as classes 24
3.2.2 Topic representation: class pruning 25
3.2.3 Topic representation: cf-iuf weighting 27

4 Improving Relation-based User Recommendation on Twitter with On-
tological Timeline Analysis 29
4.1 Twitter user rank for keyword search (TURKEYS) 29
4.2 User recommendation using ontological timeline analysis 31

4.2.1 User Tweet Collection . 32
4.2.2 Topic Representation . 32
4.2.3 Topic consistency checking 33

5 Ontology-assisted Discovery of
Hierarchical Topic Clusters on the Social Web 35
5.1 User interests on the Social Web . 35
5.2 Discovering scoped topics . 36

5.2.1 cf-iuf weighting and trait vectors 37
5.2.2 Scoped topical similarity . 37

5.3 Hierarchical topic clustering . 39
5.3.1 Scoped topical similarity graph 39
5.3.2 Finding highly-connected subgraphs 40
5.3.3 Topic clusters and labeling 42
5.3.4 Recursive topic clustering 42

6 Implementation and Algorithmic Analysis 45
6.1 Twinterest Explorer . 45

6.1.1 Technical implementation 46
6.2 Algorithms and complexity . 49

6.2.1 Algorithmic time complexity 49
6.2.2 Scalability . 51
6.2.3 Benchmarks . 51

7 Evaluation 55
7.1 Ground truths . 55

7.1.1 User recommendation: keywords mined 56
7.1.2 Scoped topical similarity: user relevance maps 56
7.1.3 Topic clustering: ground truths 56

7.2 Experimental methodology . 58
7.2.1 Evaluation metrics . 58
7.2.2 Baseline approaches . 60

7.3 Parameter selection . 62
7.3.1 Named entity recognition parameter tuning 62
7.3.2 TURKEYS and class pruning settings 63
7.3.3 Class frequency distribution and trait cut-off threshold θ . . . 63
7.3.4 Hyperparameter optimization and scope calibration 64

iv

CONTENTS CONTENTS

7.4 Experimental results . 66
7.4.1 Experimental results: timeline analysis 66
7.4.2 Experimental results: topical similarity 70
7.4.3 Experimental results: topic clustering 71

7.5 Results discussion . 83
7.5.1 Enhancing user recommandation 83
7.5.2 Scoped topical similarity and clustering 84

8 Conclusions and Future Work 87
8.1 Future work . 88

Bibliography 89

v

List of Figures

1.1 A simple comparison of tf-idf word co-occurrence and ontological expan-
sion. tf-idf is unable to capture the similarity between the documents on
the left. We can expand both documents to the “Apple products” class
when doing ontological expansion. 2

1.2 Using scoped topical similarity clustering, we can manipulate the topic
scope in order to cluster users at an arbitrary height of the topic hierarchy.
In this example, we can cluster by two broad topics (high scope) or five
specific topics (low scope). 4

2.1 A simple example of the vector space model for documents1. Three docu-
ments with three dimensions each are shown. 9

2.2 Plate notation representing the LDA model and variables. 10
2.3 A simple example of k-means clustering with k = 8. The red dots are the

centroids for each cluster. 11
2.4 A (partial) screenshot of the Twitter Analytics dashboard, showing an ag-

gregate view of follower interests. 16

3.1 The structure of our thesis. First, we apply entity recognition and ontolog-
ical expansion. From here, we develop two methods: timeline analysis to
improve user recommendation (left, see chapter 4), and hierarchical clus-
tering into topics (right, see chapter 5). 20

3.2 Tweets are collected from the timelines of a collection of users U . DB-
pedia Spotlight is then applied on the text in these tweets to find named
entities, which are linked to DBpedia entities and (a simplified representa-
tion of) their class hierarchy. 22

3.3 Example excerpt of a YAGO class taxonomy after filtering, with a mis-
match removal cutoff of t = 1% (14 occurrences), and p = 80%. 26

4.1 Calculation algorithm for the user influence score and the tweet influence
score. 31

5.1 Manipulating the topic scope parameter γ in order to cluster users at an
arbitrary height of the topic hierarchy. In this example, we can cluster by
two broad topics (high scope) or five specific topics (low scope). 38

vii

List of Figures List of Figures

5.2 An example of a partial, pruned topical similarity graph of Twitter users. . 40
5.3 Clustering a testset of Twitter users at γ = 0.7 (left), yielding 6 clusters,

and γ = 0 (right), yielding 9 clusters. 40
5.4 An example of cluster labeling and recursive clustering. For each cluster

k, the top-5 cluster-based traits from tk are listed. A “Sports” cluster is
isolated and further sub-divided into the individual sports that made up
the cluster. 42

6.1 A screenshot of TwinterestExplorer, a prototype application for the real-
time clustering of Twitter user streams. 46

6.2 An overview of the client-server architecture of the Twinterest Explorer
system. 47

6.3 A plot of the time it took to ontologically expand 175 users with 500 tweets
and obtain their cfi,c maps. 52

6.4 A plot of the time it took to create the ST Sγ graph Gγ for 175 users with
500 tweets. 53

7.1 nDCG scores for different NER confidence settings for the iOS develop-
ment and cars datasets. 62

7.2 nDCG scores for different tweet window sizes for the iOS development
and cars datasets. 63

7.3 The combined class frequency distribution for 175 Twitter users with 500
tweets each. There were 1,535,108 classes found in total. 64

7.4 MCC surface plots for varying values of θ and τ. From top-left to bottom-
right, α = 2, α = 3, α = 4 and α = 5. Each MCC data point is the average
over 20 iterations with semi-random cluster selections. 66

7.5 Distribution of standard deviations for each fold of the cross-validation.
To save space, a long tail of outliers on the right side of the graph have
been aggregated as > 0.14. 67

7.6 The 95% confidence interval of standard deviations. In other words, 95%
of measurements fall within roughly -0.157 and 0.157 of the real mean
MCC. 67

7.7 Results for keyword mars rover ∪ curiosity rover. 68
7.8 Results for keyword genetically modified. 69
7.9 Results for keyword malware. 69
7.10 Results for keyword nuclear power. 70
7.11 nDCG scores for different similarity calculation approaches for the iOS

development and cars datasets. 70
7.12 Results for ST Sγ-clustering on the 4-topic Twitter ground truth. 71
7.13 Results for ST Sγ-clustering on the 11-topic Twitter ground truth. 71
7.14 Results for LDA-based clustering on the Twitter ground truth. 72
7.15 Results for Twitter-LDA-based clustering on the Twitter ground truth. . . 72
7.16 Results for k-means clustering on the Twitter ground truth. 72
7.17 Results for ST Sγ-clustering on the 6-subject testset of the 1800 newsgroup

articles. 75
7.18 Results for ST Sγ-clustering on the 20-topic testset of the 1800 newsgroup

articles. 76

viii

List of Figures List of Figures

7.19 Results for LDA-based clustering on the 1800 newsgroup articles. 76
7.20 Results for Twitter-LDA-based clustering on the 1800 newsgroup articles. 77
7.21 Results for k-means-based clustering on the 1800 newsgroup articles. . . 77
7.22 Results for ST Sγ-clustering on the 6-subject testset of the newsgroup arti-

cles larger than 10.0 kb. 78
7.23 Results for ST Sγ-clustering on the 20-topic testset of the newsgroup arti-

cles larger than 10.0 kb. 79
7.24 Results for LDA-based clustering on the newsgroup articles larger than

10.0 kb. 79
7.25 Results for k-means-based clustering on the newsgroup articles larger than

10.0 kb. 80

ix

Acknowledgements

Before you lies my Doctoral thesis – the final work I’ve performed at Tokyo Institute
of Technology. Over the past three years, I feel that I have learned many technically,
academically and socially valuable skills. I am grateful that I have been able to partake
in the opportunity to pursue research in Japan, and experience daily life in a culture
that is very different from the one I grew up in.

I would like to express my gratitude to my supervisor, Professor Takehiro Tokuda,
for making this possible for me, and for his continuous guidance, support and help
with my Ph. D. study and research. His guidance has been of great help throughout my
time spent researching and writing this thesis. My gratitude also goes out to Assistant
Professor Tomoya Noro for his continuous help, advice and comments regarding my
research. I would also like to thank remaining members of Tokuda Laboratory for their
support.

Secondly, I would like to thank the Monbukagakusho (MEXT) department of the
Japanese government for the opportunity to conduct my research in such a wonderful
country, and for funding my endeavors with their generous scholarship.

Last but not least, I would like to thank my friends and family for their continued
support.

Kristian Slabbekoorn
Tokyo, Japan

February 18, 2016

xi

Chapter 1

Introduction

With the emergence and rapid popularization of various social media, communication
is done less frequently in person, and increasingly more often via online social ser-
vices such as Facebook and Twitter. Recent analyses show that US Web users spend
on average 23 hours per week on email, text and social services; 87% of users log
in to Facebook at least once per week, and 32% log in to Twitter at least once per
week [18]. Inevitably, communities form on these media, bringing together friends
and like-minded individuals. Restricting our scope to the Social Web, we can distin-
guish between connections between individuals based on (1) interpersonal ties, and
(2) mutual interests. There are many applications that can benefit from the discov-
ery of these types of connections, and from the clustering of individuals into social
or interest-based groups. For example, discovering the structure of connections be-
tween people can provide social scientific insights into human behavior or assist user
recommendation based on similarity of interests, and expert finding, where we are
looking for individuals with specific skills, mentioning unique types of terminology in
his content.

The tie-based clustering of individuals (henceforth users) by their connections is
a classic, interdisciplinary task within the social, natural and computer sciences, com-
monly known as community detection. There has been a significant amount of research
into this notion [48][35]. A population is represented as a graph, where each vertex is
a user and each edge ties two users together. Edges can be weighted in order to express
strong or weak ties. Such a graph can then be clustered into one or more subgraphs
(the communities). There exist many algorithms for clustering in graphs, such as mod-
ularity optimization [45] or clique percolation [16], which generally boil down to the
principle of the strength of weak ties [17], where the goal is to identify weak, inter-
community connections and remove or ignore them; what remains are the communities
of interest. A distinguishing property of such community detection algorithms is that
the number of communities, or clusters, do not need to be known beforehand. A down-
side to tie-based community detection is that content is not considered; we argue that
on the modern Social Web, interpersonal ties matter less when we are purely interested
in users with similar topics of interest.

When we are more concerned with content, we can turn to the related but distinct
tasks of topic modeling and document clustering [70]. Here, we try to assign similar
documents to the same semantic topic. Links between documents are not assumed

1

Introduction

Figure 1.1: A simple comparison of tf-idf word co-occurrence and ontological ex-
pansion. tf-idf is unable to capture the similarity between the documents on the left.
We can expand both documents to the “Apple products” class when doing ontological
expansion.

to be present, and we must therefore analyze the content of the documents in order
to determine conceptual similarity. This is most commonly achieved by leveraging
word co-occurrence – if words that are relatively unique to the entire collection ap-
pear often together in the same subset of documents, we may assume that this subset
shares some common topic. Since this topic is not expressed in the documents them-
selves, it is called latent; the most common class of topic modeling algorithms use a
technique known as latent semantic analysis (LSA) to find these “hidden” topics [14].
Document clustering works in a similar way, where a k-means-based classifier is often
used to divide documents into a pre-defined number of topics. We can map the tasks
of topic modeling and document clustering onto the Social Web by considering each
user’s content as a document; the latent topics belonging to groups of users can then be
regarded as user “interests”. However, a problem with methods that rely on word co-
occurrence is that in cases where not much text is available, or text is not necessarily
grammatically accurate, these methods tend to perform poorly [24][74]. See figure 1.1
(left) for a simple example of this. Another limitation of most existing document clus-
tering approaches is that the number of topics needs to be known beforehand, which
is rarely the case when dealing with an ad hoc collection of users on the Social Web
(such as a stream of users resulting from a keyword search on Twitter, for example).

In this thesis, we take a hybrid approach: we use an ontology-assisted topic mod-
eling technique to determine the topical similarity among a population of Social Web
users, then use a quasi-clique community detection algorithm to cluster users by shared
topics of interest – we assume the number of topics is not known, and infer this from
the data.

Initially, we capture topic information by applying ontological expansion: we
match named entities discovered in users’ text content to an external knowledge base,
DBpedia [4], and obtain full class hierarchies for three types of classes (DBpedia [1],
YAGO [64], Schema.org [55]) contained in the DBpedia ontology for these entities.
See figure 1.1 (right). We use this technique as a foundation for two different methods.

2

Introduction

Enhancing user recommendation Our first method focuses on improving a user
relation-based approach from previous work [46] for user recommendation on Twitter.
Due to the large number of Twitter users, finding users who often provide valuable
information related to the topic of interest is difficult. One simple way is to search for
tweets by some keywords related to the topic of interest and see how many tweets each
user posted. However, using this method we quickly end up with spam bots and other
unrelated content; we need to consider user relations as well to derive some minimum
level of user influence. Second, it is difficult to choose appropriate keywords to search
for related tweets. Suppose that we would like to get tweets related to malware. Some
tweets may include names of malware, Internet security companies, technology related
to malware, and so on. Since it is almost impossible for us to list all keywords related to
the topic of interest, we need to take the deeper semantics of tweets into consideration.
To solve these problems, we present a method for user recommendation based on
user relations and ontological timeline analysis. The method finds users to follow
related to the topic of interest based on provided keywords, then picks up users who
continuously post related tweets from the user list. Given some keywords related to the
topic of interest, the method first searches for tweets including the keywords, extracts
user relations based on tweet behavior among users from the obtained tweets, then
ranks users, taking the discovered user relations into account. We then create simple
topic ontologies, or taxonomies, of each of the users ranked high after the first phase
from tweets collected during different time periods, then determine whether each user
continuously post tweets related to the topic of interest. We adopt ontological timeline
analysis in this phase instead of keyword matching as in the first phase to cope with
the second problem mentioned above; that is, we cannot encapsulate the entire topic
of interest using a (manually created) list of keywords alone.

We evaluate the approach on four different keywords. The approach generates rec-
ommendation rankings of users to follow for each keyword. We manually check the
relevance of the tweets of users found to the keywords, then calculate the normalized
DCG [29] score for the resulting ranking. We compare our ontological timeline analy-
sis method to rankings based on tweet count, user influence and TURKEYS [46], which
is a combination of both.

Hierarchical topic clustering Our second method aims to cluster Social Web users
by topics of interest. Based on the class hierarchies gathered in the ontological ex-
pansion step, we propose a weighting scheme that allows us to determine trait vectors
(ontological classes weighted with a prominence score) that characterize individual
users within a population, and capture users’ dominant topics of interest. The scope of
topics can be dynamically controlled with a topic scope mechanism – it depends on our
application whether we want to detect users interested in “sports”, or go a step down
and distinguish the “American football” interest from the “soccer” interest, for exam-
ple. This is an important distinction from other topic modeling approaches, which
usually require the number of topics to be known in advance, and may not capture
hierarchical topics.

In the second part, we construct an undirected scoped topical similarity (STS)
graph of Social Web users, weighted based on the cosine similarity between users’ trait
vectors. This graph is clustered into topics of interest shared by groups of users using a

3

Introduction

Figure 1.2: Using scoped topical similarity clustering, we can manipulate the topic
scope in order to cluster users at an arbitrary height of the topic hierarchy. In this
example, we can cluster by two broad topics (high scope) or five specific topics (low
scope).

variation of the clique-based Highly Connected Subgraph (HCS) algorithm [22], which
finds communities by recursively splitting a graph along its minimum cut. We modify
this algorithm by (1) considering edge weights when determining minimum cuts; (2)
loosening constraints on what constitutes “highly-connectedness”; and (3) assigning
lowly-connected users that would otherwise be dropped to clusters that match their
traits best. Depending on how we set our topic scope, we obtain a high or low slice
of the topic hierarchy. See figure 1.2 for an illustration of this. The flexibility of the
approach enables two interesting side-effects: using the same algorithms, (1) we can
compute cluster-based trait vectors that allow us to label clusters with appropriate tags
that are both human-readable and machine-understandable, since they link directly into
the Linked Data cloud [7]; and (2) we can cluster a graph divisively into increasingly
more specific topics by recursively applying the described method on resulting topic
clusters.

We evaluate the approach in three ways. We first investigate the quality of our ST S
weighting scheme, in terms of nDCG [29] rankings for two different seed users with
known interests, and compare the results to baselines such as tf-idf term weighting
to show the advantages over word co-occurrence-based methods. We then evaluate
scoped topic clustering based on (1) a manually constructed ground truth of 175 Twit-
ter users, distributed over 4 topics and 11 sub-topics; and (2) a dataset commonly used
in document clustering research (the 20-newsgroups dataset [53]). The topic cluster-
ing results are compared mainly to latent Dirichlet allocation (LDA) [10], the current
gold standard for topic modeling; a state-of-the-art Twitter-centric version of LDA,
called Twitter-LDA [74]; and k-means clustering [21], a classic document clustering
algorithm. Lastly, we evaluate full hierarchical clustering, comparing to hLDA [9] and
hierarchical k-means.

4

Introduction 1.1 Thesis organization

1.1 Thesis organization

After a short re-iteration of the main contributions of this work, we begin the main
matter of the thesis, which is organized as follows. In chapter 2, we offer some back-
ground into the general concepts that we deal with in this thesis, and outline past
research into user recommendation, topic modeling, document clustering and commu-
nity detection, on and off the Social Web. We outline their problems, and how our
proposal differs from these works. What follows are the three main components of our
approach. First, in chapter 3, we explain how we handle entity recognition and onto-
logical expansion, which forms the basis for the two methods we devised. Chapters
4 and 5 will then explain in detail our proposals for improving user recommendation
and hierarchical clustering, respectively. In chapter 6, we discuss our implementation
of the hierarchical clustering method and its algorithmic complexity. In chapter 7, we
outline our experimental setup and methodology, and evaluate both proposals com-
pared to baselines and the state-of-the-art. Finally, in chapter 8, we conclude the paper
with a summary of the results and directions for future work.

1.2 Contributions

We can define three main contributions for this thesis.

1. We propose a method for improving follow relation-based user recommendation
on Twitter by including an ontology-based procedure for checking whether user
interest into a topic is consistent.

2. We extend contribution (1) into a general, ontology-assisted approach for the
hierarchical clustering of Social Web users by topic of interest when the number
of topics is not known in advance – we allow the discovery of topic clusters at
a chosen topic scope that is independent of the underlying data. Using these
techniques, we additionally describe:

a) a method for automatic labeling of clusters with human- and machine-
readable topic tags;

b) a method for divisive clustering of a user graph into a topic hierarchy.

3. Based on contribution (2), we design and implement a system for the real-time
clustering, visualization and exploration of streams of Twitter users.

5

Chapter 2

Background and Related Work

In this chapter, we will introduce the background concepts and previous research that
we build upon throughout the thesis. We start by giving brief introductions to some
natural language processing notions, such as the term vector space model for represent-
ing documents and tf-idf term importance weighting in section 2.1. This is followed
by a short review of the classical computer science problems of topic modeling, doc-
ument clustering and community detection and common implementations, in 2.2. We
also cover topics relating to the Semantic Web [6], such as Linked Data [7] and on-
tologies such as DBpedia [4], in section 2.5. We also introduce the Social Web and its
peculiarities, and why we have chosen this environment and Twitter as our main use
case, in 2.6.

The background is followed by a short survey of previous work into approaches
that relate to our proposed methods, in section 2.7. We touch briefly on their short-
comings, and introduce our proposals to improve them, which we will expand upon in
detail in chapters 3, 4 and 5.

2.1 Document processing and representation

Within languages, we can distinguish between formal and natural languages. Formal
languages – such as programming languages – have syntactic and semantic rules that
can be formally defined using a formal grammar. This grammar is then used as a
reference for a parser to extract concrete meaning from text written in this language,
based on which a computer can take deterministic actions. Natural languages – such as
English, German, etc. – do not have their semantic rules formally defined, making it far
more difficult for a machine to derive meaning from such languages. For example, the
simple sentence “John sits behind his computer” is ambiguous. John could be sitting in
a chair in front of his computer, which would be the most common semantic meaning
of this sentence. However, we cannot rule out the possibility he is not literally sitting
behind his computer: we need additional context information, perhaps the sentence
before or after this sentence, to make a definitive judgement on its meaning.

The processing of natural languages, commonly known as natural language pro-
cessing (NLP), is a challenging task which has been the subject of extensive research
[57]. Natural language text can be processed in many ways to make it more con-
sumable for computers, such as part-of-speech tagging, word stemming, stopword re-

7

2.1 Document processing and representation Background and Related Work

moval, and so on. Furthermore, we can distinguish structural NLP from statistical NLP.
Structural NLP mainly aims to analyze and understand text based on grammar rules or
known structural properties of the language. However, given the ever increasing com-
putational processing capabilities of computers, statistical NLP is a more promising
area that has become dominant in recent years. In statistical approaches to NLP, we
interpret the semantics of text based on stochastic or probabilistic models derived from
the analysis of large existing corpora. Statistical NLP has a wide array of applications,
such as machine translation, speech recognition, word disambiguation, and topic seg-
mentation. In this thesis, we will focus only on leveraging statistical NLP methods for
topic segmentation purposes. For a more comprehensive overview of statistical NLP,
see [37].

2.1.1 Vector space model for documents

If we want to divide documents by topic, we need some way of representing and com-
paring documents to each other to determine their similarity. A common model for
representing documents is the vector space model, in which documents are represented
as term vectors:

d j = (w1,w2, . . . ,wn) (2.1)

See figure 2.1 for a simple representation of n sentences in n-dimensional term
space. For practical purposes, only three dimensions are shown – under typical condi-
tions, we have many thousands of dimensions (one for each word in a document) which
we cannot represent visually. Each component of the vector corresponds to a word in
the document, with the value being a weight that expresses some property about this
word in terms of the rest of the document collection. Words are assumed to be inde-
pendent of each other: ordering of words within a sentence is not considered. This is
also called the bag-of-words model, since we literally have an unsorted collection of
words. This assumption is not necessarily realistic, since word ordering is obviously
an important part of any natural language. For some applications, such as topic mod-
eling, this abstraction does not pose problems; for others, such as sentiment analysis,
it greatly hurts results. Commonly, term frequency–inverse document frequency, or tf-
idf, is used for weighting document vectors. tf-idf expresses the importance of a word
within a document compared to other documents within the collection:

tf-idft,d,D = tft,d× idft,D, where t ∈ d, d ∈ D (2.2)

Here, term frequency is how often a term occurs within each document, while
document frequency records the number of documents in which this term occurs, of
which we take the inverse, so that terms that occur in many documents get a low
weight. By weighting documents and their words using tf-idf, we can express which
terms define the documents best. The vector space model for documents is useful for
applications within the space of document clustering. We introduce one important
document clustering algorithm, k-means clustering, in section 2.3.

8

Background and Related Work 2.2 Topic modeling

Figure 2.1: A simple example of the vector space model for documents1. Three docu-
ments with three dimensions each are shown.

2.2 Topic modeling

Within the field of topic modeling, we aim to discover the topics of a document within
a collection by analyzing the natural language text in these documents. Topics are
generally considered latent; that is, topic information does not exist within any of
the documents, and needs to be “invented” just by looking at the words. One par-
ticular approach that has gotten popular in recent years is latent semantic analysis
(LSA) [14], particularly probabilistic forms of LSA [25]. Probabilistic LSA aims to
model the probability of co-occurrences between words and documents as mixtures of
multinomial distributions. Put simply, the documents are analyzed in order to derive a
generative probabilistic model that is most likely to have created the underlying collec-
tion of documents. Latent Dirichlet allocation (LDA) is currently the state-of-the-art
implementation of PLSA.

2.2.1 Latent Dirichlet allocation

LDA is a generative model that allows sets of observations to be explained by unob-
served groups, or topics, that explain why some parts of the data are similar [10]. A
“topic” in LDA is a probability distribution over a fixed vocabulary (for example, a
topic genetics would likely contain words “gene” and “dna” with high probability).
LDA generates document words in the following way. For each document in a collec-
tion, (1) a distribution over topics is chosen randomly. Then for each word position
in the document, (2) a topic is randomly chosen from the topic distribution, and (3)
a word is randomly chosen from the distribution over the topics’ vocabulary. Each

1Image source: http://blog.christianperone.com/?p=2497

9

2.3 Document clustering Background and Related Work

Figure 2.2: Plate notation representing the LDA model and variables.

document gets assigned topics in different proportions, and each topic gets assigned
words in different proportions: these are called the Dirichlet distributions.

See figure 2.2 for a representation of the LDA model and its variables in the so-
called plate notation. Here M is the document collection; N is the vocabulary; α is
the set of documents α1:M, where M is the number of documents and each αm is a
distribution over topics; β is the set of topics β1:K , where K is the number of topics and
each βk is a distribution over the words; θ denotes the topic proportions for each topic
in each document; z contains the topic assignments for each word in each document;
and w is each actual word in each document. w is grayed out, to denote that it is
observed; the rest of the variables are white, to denote they are hidden, or latent. This
model forms a joint distribution of hidden and observed variables, from which we can
generate documents.

This generation is done by sampling from this distribution. There are several ways
to sample, but most commonly it is done using Gibbs sampling [11]. With Gibbs
sampling, we construct a Markov chain to derive the posterior of the joint distribution
(the topic structure given the observed documents and words). By running the chain
for a long time, we can collect samples and approximate the distribution using the
collected samples. For a more in depth explanation of LDA and Gibbs sampling, see
[8]. We employ LDA with Gibbs sampling as a baseline in the evaluation, using the
implementation that is included in the MALLET package [39].

2.3 Document clustering

The task of document clustering is to group related documents together, usually by
some shared topic. This can be determined though several means, but most commonly,
distance between documents is calculated by some kind of similarity measure, such as
the cosine similarity of tf-idf-weighted term vectors, with each document projected
into multi-dimensional space. Subsequently, documents that are close together are
grouped into clusters. One of the most common document clustering algorithms is
k-means, which we will explain briefly.

10

Background and Related Work 2.4 Community detection

Figure 2.3: A simple example of k-means clustering with k = 8. The red dots are the
centroids for each cluster.

2.3.1 k-means document clustering

k-means document clustering aims to partition a number of documents into k clusters,
in which each document belongs to the cluster with the nearest mean; that is, we
calculate k centroid vectors that are composed of the mean of one of k disjoint subsets
of document term vectors within the multi-dimensional space; each of these subsets
therefore comprises a cluster. For example, figure 2.3 shows the 8-means clustering
of points in a two-dimensional space. Again, since document vectors can have many
thousands of dimensions, this is not possible to render visually for anything larger than
three dimensions.

The most common algorithm to implement k-means document clustering is Lloyd’s
algorithm. We use this algorithm in our work to implement k-means as a baseline to
which we evaluate our approach. Refer to [47] for implementation details.

2.4 Community detection

Community detection generally refers to the discovery of community structure in net-
works or graphs. There are many types of algorithms to find communities. One such
type are minimum-cut methods, in which we divide a network in a pre-determined
number of parts such that the weight or length of edges between parts are minimized.
This type of method has the same weakness as topic modeling and document cluster-
ing methods, namely that the number of communities needs to be pre-defined. For
our work, however, we are mainly interested in community detection methods that can
derive the right number of communities from the structure of the graph.

One popular algorithm that can achieve this is modularity maximization, in which
the quality of particular divisions of a network into communities is measured [45].
We search through possible divisions of the graph for those that give a particularly
high modularity score: it is intractable to do this exhaustively, hence approximation
algorithms are usually employed. For our work, we apply a lesser-known algorithm,
called the Highly-Connected Subgraph (HCS) algorithm [22]. Using this algorithm,

11

2.5 The Semantic Web and Ontologies Background and Related Work

we find minimum cuts in a graph recursively until all clusters are highly-connected;
that is, fulfill some minimum edge degree constraint. Unlike regular minimum-cut
community detection, we do not have to pre-define the number of parts to cut in. And
unlike modularity optimization, it is fast and deterministic, making it more attractive
for our purposes.

2.5 The Semantic Web and Ontologies

The Web has been evolving continuously since its inception at CERN in 1991 by Tim
Berners-Lee [5]. What started out as a simple means to share academic data by elec-
tronically linking together documents has grown to become a major part of our lives.
With the advent of Web 2.0, the web gradually evolved into a fully interactive environ-
ment where users could not only access information from Web pages, but also publish
their own content such as blogs and videos, stay in touch with their friends, chat/talk
with people in real-time, do online banking, and so on. What remained missing from
this picture, however, was the development of standard ways of representing data, and
to give it universally understood semantics to allow even computers to understand what
these pieces of data actually mean. Berners-Lee proposed his vision of a fully Seman-
tic Web [6]. The Semantic Web is not intended to be a replacement for the current
Web, but rather a new layer superimposed on top of it, injecting a new stack of tech-
nologies into the existing Web stack that are based on established Web standards and
protocols, such as HTTP and XML.

Since its initial proposition, various initiatives have been set up in attempt to real-
ize the goal of creating a fully Semantic Web. One of the most successful initiatives
has been “Linked Open Data” (LOD), which aims to interconnect vast amounts of
data from many disciplines using standardized syntactic and semantic conventions,
and have this data open for everyone to use and add to. In fact, the term “Semantic
Web” is now often used interchangeably with “Linked Open Data.” The main goal
behind LOD, or simply “Linked Data,” is to create a “Web of Data” next to the current
“Web of Documents” – one that is interpretable by machines. In Linked Data, related
data that was not previously linked is connected to form a new, large-scale, integrated
knowledge base. It is this interconnection between datasets that is the most important
aspect of Linked Data; by providing links to other datasets, applications may exploit
this extra and possibly more precise knowledge. With standardized semantics, this
knowledge base can be queried as one would a regular database.

While details of the Semantic Web stack are out of the scope for this thesis (see
e.g. [60] for a more extensive introduction), one component that bears explaining are
ontologies and taxonomies, meant to give semantics, i.e. concrete meaning, to data on
the Web. We explain them in a little more detail in the next section.

2.5.1 Ontologies and taxonomies

An ontology, in the philosophical sense of the word, concerns “what entities exist or
can be said to exist, and how such entities can be grouped, related within a hierarchy,
and subdivided according to similarities and differences2.” In the context of informa-

2http://en.wikipedia.org/wiki/Ontology

12

Background and Related Work 2.6 The Social Web and Twitter

Table 2.1: Distinguishing characteristics between the World Wide Web and the Social
Web.

World Wide Web Social Web
Documents Users
Formal content Informal content
Connected through hyperlinks Connected through interpersonal ties
Static (pages not updated regularly) Dynamic (timelines updated daily)

tion science, an ontology is the representation of this concept in the form of a structural
framework for organizing information. Ontologies are employed in a multitude of dis-
ciplines, such as artificial intelligence (AI), knowledge representation and enterprise
architecture. A taxonomy is very similar to an ontology – in fact, in the context of the
Semantic Web, there is no real clear distinction between the two. That said, the word
“ontology” tends to be associated with more complex and formal collections of terms,
whereas the word “taxonomy” is usually used when strict formalism is not employed.

2.6 The Social Web and Twitter

In this work, we make the explicit distinction between the the regular, World Wide
Web (Web of Documents) and the Social Web (Web of Users). A short summary of
distinguishing properties is shown in table 2.1.

The experiments for this work are performed mainly on Twitter. The reason for
this is that data on Twitter is open, with publicly accessible APIs, and in widespread
use. It is also an excellent example of an environment where messy, sparse text data
comprises the majority of content: Twitter is a so-called micro-blogging service, mean-
ing there are strict limitations to the size of individual posts (or “tweets”). Each post
can comprise at most 140 characters. It is therefore quite different from a traditional
blogging service, mostly consisting of short, informal blurbs rather than well-formed
essays or stories. These properties make it challenging for traditional topic modeling
and document clustering methods to obtain enough data to make meaningful general-
izations about the content of tweets.

2.7 Related work

Due to its many applications, Twitter user recommendation is a commonly studied
problem [32]. More generally, topic modeling, (ontology-based) document clustering
and classification, and community detection are all classic, multi-disciplinary prob-
lems that have been the subject of a significant amount of research, leading to the de-
velopment of many different methods and algorithms [8][35]. This section will present
an overview of past research that relates most to our work, outlining differences com-
pared to our approach, as well as their drawbacks and our proposed improvements.

13

2.7 Related work Background and Related Work

2.7.1 Twitter user recommendation approaches

Twitter provides its own user recommendation service that recommends users who
have mutual followers/friends, but it requires us to already follow some users related to
the topic of interest in advance to have the service give an appropriate recommendation
result. We want a service that can recommend the right users based on a keyword
search.

TwitterRank [69] finds influential users by taking topical similarity among users
and link structure (follow relation) into account. Although it returns influential users
for each topic cluster, we cannot control how topics are clustered. As a result, we
cannot always find an appropriate cluster corresponding to the topic of interest. Twit-
tomender [20] uses lists of followers, friends, and terms in their tweets to find users
related to a particular user or query. It calculates similarity between users by represent-
ing each user as a weighted term vector. However, it does not take the overall semantics
of a user’s tweets into consideration, which reduces chance of finding relevant users
since each tweet is limited to 140 characters.

Syed et al. [65] proposed a scheme for using Wikipedia as an ontology for de-
scribing documents. They demonstrate several algorithms for finding named entities
in a document and to leverage the Wikipedia category hierarchy in order to find a set
of topics for one or more documents. We exploit the Wikipedia category hierarchy in
a similar way, but we use the cleaner YAGO hierarchy and focus on finding topics of
interest of a user from tweets rather than domain-specific articles, which makes our
problem quite different in nature and significantly more difficult. Nakatsuji et al. [44]
used taxonomies to model user interests and how they change over time. Focusing on
specific domains of interest, they apply hand-crafted taxonomies to classify entities.
Item recommendations are made for an active user based on the similarity of (super)
topics with target users. Our approach is not aimed at item recommendation but user
recommendation. We model a user’s entire recent tweet history to recommend users
who consistently post tweets about a certain topic.

2.7.2 Topic modeling approaches

In 2003, Blei et. al. [10] revolutionized the topic modeling field with the introduc-
tion of a pLSA-based generative probabilistic topic modeling technique called latent
Dirichlet allocation (LDA). Since then, a great number of variations of and additions
to LDA have been developed that address specific use cases. We briefly discuss two
Twitter-centric approaches and a hierarchical approach.

Hoang et. al. [24] conducted an empirical study on different ways of performing
topic modeling on Twitter tweets using the original LDA model and the author-topic
model [56]. They find that topics learned from documents formed by aggregating
tweets posted by the same users may help to significantly improve some user profiling
tasks. The work by Zhao et. al. [74] proposes the TwitterLDA topic model for mi-
croblogging data. TwitterLDA is another variant of LDA, hLDA, which assumes there
is only one common topic for all words in each tweet, and that each word in a tweet
is generated from either a background topic or the user’s perceived topic. The authors
demonstrate a significant improvement over standard LDA on Twitter data. In [9], Blei
et. al. introduce a hierarchical version of LDA, using a nested Chinese restaurant pro-

14

Background and Related Work 2.7 Related work

cess to generate infinitely deep trees in order to cluster documents at multiple levels
of topic abstraction. We include these latter two works in our evaluation of a Twitter-
based dataset. The main issue with all approaches that incorporate a variation of LDA
is the inherent reliance on word co-occurrence between users or documents, and the
need to pre-define the number of topics (number of hierarchical levels for hLDA) that
exist in the data. This is especially problematic on the Social Web, where text content
is sparse and noisy, leading to insufficient term overlap to make accurate predictions
about their latent semantics, and where topics cannot be concretely pre-defined. We
address the first concern by mapping text content to a subset of the roughly 300,000
hierarchical classes of an external ontology; all subsequent processing is done on these
classes. This dimensionality reduction helps minimize sparsity and noise, while leav-
ing enough classes to be able to model unique user interests. Secondly, we do not need
to pre-define any number of topics: given a topic scope, we infer this from the data
using clustering techniques.

2.7.3 Document clustering and classification approaches

Approaches that leverage some form of document classification involve the a priori
definition of a set of possible topics or categories, with the subsequent application of
NLP and machine learning techniques to allocate each document or user to one of these
categories. For example, Zhao et. al. [75] propose a topic-oriented community detec-
tion approach which combines both social objects clustering and link analysis, in order
to identify more meaningful topical communities. They classify documents according
to a number of pre-defined topics, taking into account interpersonal connections as
well as content similarity. Tsur et. al. [67] present an algorithm for classifying Twitter
tweets into pre-defined topics based on hashtags. While we agree with these works that
topic-oriented communities are more meaningful than tie-oriented ones, these types of
techniques are classification methods that pre-define a set of around eight to ten flat
topics to assign users or documents to, which limits usefulness in scenarios where we
are interested in specialized topics or hierarchical topics. Our approach is not one of
classification, but of clustering: we construct topics dynamically in terms of classes
that characterize groups of topically similar users.

An advanced streaming, machine learning-based method for matching individual
tweets to a pre-defined ontology of 300 classes with high precision was introduced by
Twitter’s user modeling team [72], and is currently in active use as a part of Twitter An-
alytics3. Although this work focuses on individual tweet topic modeling, it offers some
insights into extending this to user interest modeling based on tf-idf-style weighting
of the discovered tweet topics and additional user behavior (retweet, reply, favorite,
etc): this is similar to how we model user interests, however we aim to discover much
more fine-grained interests by leveraging and defining them as a subset of hundreds of
thousands of classes instead. This allows us explicit control over the scope of interests
and to cluster a larger collection of users by their shared interests. Furthermore, Twit-
ter Analytics only offers a general overview of one’s own follower interests (see figure
2.4); we instead develop an application that can visualize any (public) individual user
and their interests, clustered by users who share their interests.

3https://analytics.twitter.com

15

2.7 Related work Background and Related Work

Figure 2.4: A (partial) screenshot of the Twitter Analytics dashboard, showing an
aggregate view of follower interests.

2.7.4 (Ontology-assisted) Social Web approaches

The emergence of the Social Web has given rise to a substantial body of research ex-
ploring differences between Social Web content and standard content, and developing
specialized methods and variations on common techniques to deal with these differ-
ences. In [54], for example, the authors rebuild the NLP pipeline from start to end with
microblogs in mind, reporting double the F-measure compared to the state-of-the-art.
In [36], a graph-based method is introduced that conducts named entity normalization
and recognition simultaneously, looking for pairs of words that share the same lemma
and judging whether these words mention the same entity in a stochastic way. A gen-
eral exploration into the difficulties of standard NLP on the Social Web is given in
[15]. We will limit ourselves to discussing works that specifically combine the Social
Web and semantic expansion to external ontologies (most commonly Wikipedia) into
their apporach.

In [41], Michelson et. al. present results on discovering Twitter users’ topics of
interest by examining entities mentioned in their tweets, and deriving a topic profile
based on Wikipedia categories. Their findings corroborate our own results that using
an external concept hierarchy can be a good indicator for categorizing general user
interests, but we argue that Wikipedia categories are too disorganized to be useful, and
choose to rely mostly on the more robust YAGO [64] taxonomy instead. In [2], Abel et.
al. incorporate semantic expansion to an external ontology into their Twitter user mod-
eling process for improved personalized news recommendations, showing significant
improvements over simpler approaches such as relying on hashtags. Similarities be-
tween the above two works and ours end at the way user topic profiles are represented,
however; they do not incorporate clustering of users using these profiles. We are not
aware of research on the clustering of Social Web users specifically using ontological
classes. However, significant research has been conducted into the clustering of regu-
lar documents with the assistance of ontologies. The most prominent work is by Hotho
et. al. [26], who propose using WordNet [42] concepts to assist in document cluster-
ing, and show improved results. They disambiguate terms to concepts in a simple way
and apply a k-means type clustering based on concept frequencies into a pre-defined

16

Background and Related Work 2.7 Related work

number of topics. Unlike our approach, they do not exploit a tf-idf-style weighting of
concepts and rely only on concept frequency to determine similarity, require topics to
be pre-defined, and do not support hierarchical topics. We also argue that WordNet
does not provide sufficient granularity for concepts: only relatively high-level topics
can be obtained, whereas we allow even highly specific topics to be defined by consid-
ering not only classes, but at the lowest level also the Wikipedia pages themselves.

We have previously introduced a method in which we enhanced a Twitter rec-
ommendation system based on user follow relations with a post-processing step that
leveraged an external ontology [62]. We reported positive results, but the approach is
not applicable for comparing different users to find if they are similar. Our new work
described in this paper essentially extends this previous post-processing step into a
general approach for clustering a population of users by interest.

2.7.5 Community detection-based approaches

To our knowledge, there has been little to no substantial research into hybrid topic
modeling and graph-based community detection approaches for clustering. A notable
exception is Lancichinetti et. al. [33], who develop a community detection-based
method for document clustering applied on a graph expressing tf-idf-based similari-
ties between documents, and show large improvements over the LDA gold standard in
terms of accuracy and reproducibility. Our work can be regarded as a further explo-
ration of this approach, substituting an ontology-based method for the topic modeling
part – which we argue should work better with sparse content – and additionally al-
lowing hierarchical clustering as well as automatic topic labeling.

17

Chapter 3

Entity Recognition and Ontological
Expansion

As described in the contributions section (1.2), our research consists of three main
contributions: two methods and one implementation. The structure of the components
of the two methods we devised is shown in figure 3.1. A common component for both
methods is the recognition of entities in tweets, and ontological expansion to map users
to classes, which we will define first in this chapter. First, in section 3.1, we will detail
how we detect entities in free text on the Social Web. We subsequently explain our
approach to ontological expansion in section 3.2.

3.1 Detecting named entities

The first step is to ontologically expand each user’s posts by applying named entity
recognition (NER) to link entities to ontology classes. We do this in order to mitigate
the sparsity of raw text data in a Social Web context. In order to keep the scope
of our research within bounds, we have decided not to devise our own approach for
NER. Instead, we opt to use DBpedia Spotlight [40][12], a proven off-the-shelf entity
recognizer that detects named entities in text and generates links to DBpedia [4]. We
briefly explain DBpedia in section 3.1.1, introduce DBpedia Spotlight in section 3.1.2,
followed by an explanation of how we apply Spotlight to our Social Web data, in
section 3.1.3. Finally, sections 3.1.4 and 3.1.5 touch on two ways in which we adapt
the source text and tune the entity recognizer for better performance.

3.1.1 DBpedia

For this work we have chosen to focus on DBpedia, a centerpiece of the Linked Data
cloud of the Semantic Web [4]. DBpedia can be regarded as the Linked Data equivalent
of Wikipedia – in fact, all information contained in DBpedia has been automatically
extracted from Wikipedia. It is therefore a type of mirror for Wikipedia – it does not
produce data of its own, but simply structures data extracted from Wikipedia pages.
This structuring is done in RDF1, according to an ontological schema of classes and

1http://www.w3.org/RDF/

19

3.1 Detecting named entities Entity Recognition and Ontological Expansion

Figure 3.1: The structure of our thesis. First, we apply entity recognition and ontologi-
cal expansion. From here, we develop two methods: timeline analysis to improve user
recommendation (left, see chapter 4), and hierarchical clustering into topics (right, see
chapter 5).

properties, which has been taken and adapted from infoboxes on Wikipedia. Mea-
sures have been taken to clean this data by merging instances where there are multiple
infoboxes for the same class, or different property names for the same property.

For each Wikipedia page, there is a resource in DBpedia. This resource does not
contain the full text of the page, but only structured information. Aside from infobox
classes and properties, it contains an abstract for the resource (the first paragraph of
the corresponding page), disambiguation pages and redirects that point to this resource,
and external links to other large datasets on the Semantic Web.

3.1.2 DBpedia Spotlight

As a starting point for the entity recognition and ontological expansion we take DB-
pedia Spotlight [40], a powerful, off-the-shelf tool for matching textual resources to
DBpedia. DBpedia Spotlight has been shown to be able to compete with established
annotation systems while remaining largely configurable [40].

Spotlight works by first finding surface forms in the text that could be mentions of
DBpedia resources (the “spotting” function), then disambiguating these surface forms
to link to the right DBpedia resources based on context similarity measures (the “dis-
ambiguation” function). This is depicted in the left side of figure 3.2. Its results can be
directed towards high precision or high recall by setting two parameters: a “support”
threshold for minimum popularity of the associated Wikipedia page (i.e. the number

20

Entity Recognition and Ontological Expansion 3.1 Detecting named entities

of inlinks to this page from other Wikipedia pages) and a “confidence” threshold for
minimum similarity between source text and context associated with DBpedia surface
forms. The confidence of a match also takes into account the difference in similarity
score with the second-most similar concept: the confidence score gets an increasing
downward bias as this difference gets smaller, so that ambiguous resources are as-
signed a lower confidence value (i.e. we cannot be fully sure that this resource is the
correct one since there are some very similar resources to this one) and unambiguous
resources get higher confidence (i.e. we can be pretty sure that the resource we end up
with is correct since there is no other resource like it). The confidence score has been
normalized to a range of 0..1.

As mentioned, the tool performs disambiguation of possible resource mentions
based on surface forms that may point to these resources. These surface forms are
mined from Wikipedia in a pre-processing stage. For each resource, the following
surface forms and context information are collected:

• the resource labels, i.e. the Wikipedia page titles, with the entire page as context;

• redirect and disambiguation labels, i.e. titles of pages that redirect or disam-
biguate to the resource;

• anchor texts of hyperlinks pointing to this resource from other Wikipedia pages,
with the sentence the link occurs in as context;

• anchor texts of hyperlinks pointing to this resource from the Web, with the sen-
tence where the link occurs in as context information.

The various types of context gathered for each resource are combined and stored
along with the resource URI and its associated surface forms. When trying to dis-
ambiguate a surface form to a resource, all resources associated with this particular
surface form are gathered and ranked according to the similarity between the context
of the surface form (if available) and the context belonging to each resource.

3.1.3 Named entities on the Social Web

For our work we do not employ the full range of Spotlight’s features – we simply take
the best candidate for each resource found if it meets the confidence threshold. We aim
to derive per-user topic profiles, meaning we map whole users to some hierarchical
distribution of topics. To this end, we take a significant portion of a user’s text content
– for our Twitter use case, we take the most recent 500 tweets – and apply DBpedia
Spotlight on this content. We make the observation that the more input data that we
have, the better entity recognition imperfection will be mitigated: even if recognition
is only roughly 85% accurate [12] (although this number will likely be lower in a
Social Web context), by the law of large numbers, entities should converge to the most
dominantly present topics in spite of a significant ratio of error. The text content of the
tweets is pre-filtered in a basic way: we remove user mentions, urls, and the hashbangs
from hashtags, as well as certain very common terms that are noise more often than not
(such as “Twitter”, which appears often in tweets but is redundant since an interest in
Twitter is obvious for Twitter users, or netslang such as “lol”). Since Spotlight already

21

3.1 Detecting named entities Entity Recognition and Ontological Expansion

Figure 3.2: Tweets are collected from the timelines of a collection of users U . DBpedia
Spotlight is then applied on the text in these tweets to find named entities, which are
linked to DBpedia entities and (a simplified representation of) their class hierarchy.

applies tokenization and other common NLP techniques to its input, any further text
pre-processing is left to the entity recognizer.

More formally, given a collection of users U , for each user ui ∈ U , we apply
Spotlight on all posts {p1, p2, ..., pn} ∈ Pi to obtain a list of unique DBpedia en-
tities {e1,e2, ...,em} ∈ Ei. For each entity, we keep track of its number of occur-
rence within Pi. In the simple example that is illustrated in figure 3.2, we have E1 =
{(iPad_Mini,1)}, E2 = {(iPhone,1)} and E3 = {(HTC_One,1)}.

It is important to note that this step is a dimensionality reduction from words W
to entities E: while each post p ∈ P may contain up to 140 characters (in the case of
Twitter), with an empirically observed average of around 15 words for English tweets
[50], typically only one or two entities will be discovered in each p. This reduces the
dimensionality and therefore sparsity of the problem by roughly an order of magnitude.
Furthermore, given that Spotlight can annotate a full news article in approximately one
second on a commodity PC [12], entity recognition has no significant impact on the
performance of the method as a whole. In our environment, we apply Spotlight in
parallel across six process threads on a modern PC2, and find that we can annotate 175
users with 500 tweets each (87,500 tweets in total) in around 67 seconds.

2Experiments were performed on an Intel Core i7 4790k @ 4Ghz with 16 GB of RAM.

22

Entity Recognition and Ontological Expansion 3.2 Ontological expansion

3.1.4 Concatenation window size

Spotlight leverages word co-occurrence between source text and text from candidate
Wikipedia entries for disambiguation, so supplying extra context information can sig-
nificantly improve the accuracy of the entity recognition. For microblogs such as Twit-
ter, multiple consecutive tweets are often about the same topic (consider conversations
between two or more users, or a message that does not fit in 140 characters), resulting
in better accuracy for the recognizer if we have more of the same type of content to
consider. We need to determine a concatenation window size for the number of indi-
vidual posts p ∈ Pi to concatenate before sending them to the recognizer. We set up
a simple experiment in order to determine what window size values give best results;
see section 7.3.1 of the evaluation for details.

3.1.5 Spotlight parameter tuning

DBpedia Spotlight has a number of parameters that can be adjusted for different re-
sults. Most significantly, we can set support and confidence values. Setting these
parameters is essentially deciding on a trade-off between precision and recall. With
the support parameter we can set a minimum number of in-links that we require a
Wikipedia page to have, and with the confidence parameter we can filter out matches
that have insufficient similarity between source and target texts. For our approach, we
are interested in even the very specialized subjects that may have only a single in-link
on Wikipedia, but also want to exclude orphaned pages that may have been abandoned.
By this reasoning, we fix the support parameter to a value of 1. It is not clear however
which confidence parameter will yield the best results, so we perform experiments to
find a good value empirically. See section 7.3.1 of the evaluation for details.

3.2 Ontological expansion

In this section, we explain how we apply ontological expansion to gather class in-
formation about the entities found by DBpedia Spotlight in free text, and represent
user topics in terms of these classes. Recall that Spotlight links matches to DBpedia
resources, and that DBpedia is essentially a structured version of Wikipedia that in-
cludes various ontologies and taxonomies, automatically or manually extracted from
the underlying Wikipedia data and external sources. For our purposes, there are three
ontologies that are useful in particular, which we incorporate into our approach:

• DBpedia ontology classes [1]: these have been derived mainly from the info
boxes on Wikipedia. They form a hierarchy of 685 classes.

• Schema.org classes [55]: these are originally semantic classes to mark up HTML
pages in ways recognized by major search providers. They have been included
for DBpedia resources through a mapping from the DBpedia ontology [23].

• YAGO classes [64]: this ontology is a cleaned version of the Wikipedia category
hierarchy, with top-level classes represented by terms from WordNet [42]. It
contains roughly 300,000 classes, and is the taxonomy we rely on the most, as
it contains both broad and very specific types of classes. The accuracy of the

23

3.2 Ontological expansion Entity Recognition and Ontological Expansion

Table 3.1: An overview of the properties of the different types of ontological classes
that we collect.

Class type Source Creation
method

Size Hier.
type

Hierarchy depth

DBpedia
classes

Infobox
types

User-
defined

685 Strict Shallow (7 levels)

Schema.org
classes

HTML mi-
crodata

User-
defined

673 Strict Shallow (6 levels)

YAGO
classes

Categories
+ WordNet

Auto-
generated

>300,000 Near-
strict

Deep (>10 levels)

derivation employed for the mapping from categories + WordNet is claimed to
be around 95%. A simplified excerpt of this ontology can be seen on the right-
hand side of figure 3.2, showing the beginning of the YAGO hierarchy for some
example entities.

All three of these ontologies form tree-like hierarchies, but none are strict trees –
that is, they are directed acyclic graphs, which means some classes may have multiple
parents. However, they are all hierarchical in the sense that concepts get broader the
closer one gets to the root, and narrower the closer one gets to the leaves. We have
summarized the properties of each type of class information in table 3.1.

Recall that we gathered a collection of entities Ei for each user ui in the entity
recognition step. Now, for each entity e j ∈ Ei we collect hierarchical class informa-
tion. This means that we obtain the DBpedia, Schema.org and YAGO classes directly
assigned to this entity, as well as the parent class(es) of these classes, and their parent
classes, and so on, until the root of the hierarchy is reached. We keep count of the num-
ber of occurrence of each unique class as we did for entities. We end up with a bag of
unique classes {c1,c2, ...,cn} ∈Ci per user ui, where each c is a tuple consisting of the
class name along with its number of occurrence. For our example in figure 3.2, we get:

C1 = {(Apple_PDAs,1),(PDAs,1),(Electronic_Device,1)}
C2 = {(Apple_Mobile_phones,1),(Cellular_phones,1),(Electronic_Device,1)}
C3 = {(HTC_Mobile_phones,1),(Cellular_phones,1),(Electronic_Device,1)}

3.2.1 Including entities as classes

Wikipedia, and by extension DBpedia, are crowd-sourced data sources, and are there-
fore noisy: not all entities have classes associated to them, assigned classes may be
incorrect, or the classes may not be sufficiently descriptive. To mitigate this, aside
from including the three different ontologies described for extra redundancy, we in-
clude the entities themselves as classes as well. This means that we count not only
class occurrences, but also entity occurrences. From here on, we will consider cfi,c to

24

Entity Recognition and Ontological Expansion 3.2 Ontological expansion

be the class frequency map consisting of the union between the entities Ei and classes
Ci:

cfi,c = Ei∪Ci = the number of times entity e or class c occurs for user ui. (3.1)

These class frequency maps associated to users are the fundamental building blocks
for two novel methods for the representation of topics in terms of classes: class prun-
ing and cf-iuf weighting. We will explain these methods in the next two sections.

3.2.2 Topic representation: class pruning

We can trim the set of classes to obtain an accurate representation of a user’s topic(s)
of interest. Since entity recognition on informal tweets is far from perfect, we need to
discover and remove any classes that have been linked to mismatched entities. Second,
since we collect classes up to the root of the hierarchy, we need to filter out classes that
are too generic and cover too broad of a topic.

Mismatch removal We rely on the law of large numbers to remove mismatched
entities: as long as the accuracy rate of our entity recognizer is not so low as to be
equivalent to a random selection of DBpedia resources for each possible entity men-
tion in the text, then classes related to the topic being talked about by the user will
statistically have the highest number of occurrence in the long run. Since DBpedia
Spotlight has been shown to be able to attain an accuracy rate that is far better than
a random selection [40], we assume that, given enough tweets of a user to process,
classes related to his/her interests will appear the most in the collection.

We can therefore choose to remove classes with a particularly low number of oc-
currence, as these are the most likely to be mismatches. Since we cannot be sure
exactly how many classes we collect (for example, since we collect classes up to the
root of the hierarchy, more classes are collected for specific topics than for generic
ones), we define a threshold for removal as a percentage t% of the total number of
occurrence for all classes gathered for a user. Any class with a number of occurrence
lower than this percentage will be removed.

Filter generic classes We also need a way to remove classes that are too broad and
cover too many classes. We apply the algorithm described in our earlier work [61].
That is, we filter out all super-classes where the sum of the numbers of occurrence of
their direct sub-classes is greater than p% of the number of occurrence of the super-
class. In other words, for every class Super, if

n

∑
i=1

occs(Subi)>
p

100
occs(Super), (3.2)

where n is the number of direct sub-classes Subi of Super, and function occs counts
the number of occurrence of each class, then Super is removed from the collection.

See figure 3.3 for an illustrative example of pruning a taxonomy with a domi-
nant topic of “musical artists”. In this figure, class occurrence numbers are shown in

25

3.2 Ontological expansion Entity Recognition and Ontological Expansion

Figure 3.3: Example excerpt of a YAGO class taxonomy after filtering, with a mis-
match removal cutoff of t = 1% (14 occurrences), and p = 80%.

26

Entity Recognition and Ontological Expansion 3.2 Ontological expansion

parentheses. Dotted lines abstract some unimportant intermediate classes, and classes
occurring 5 times or less are also not shown. The percentages are the proportions
of direct sub-class occurrences to this class’ occurrences. Classes in light gray are
discarded during mismatch removal; classes marked red are discarded during generic
class filtering. The white classes represent the final topic. As can be seen, most generic
and unrelated or too specific classes are successfully removed. However, there is one
particular YAGO class, LivingPeople, that is often assigned directly to a person entity,
making it not possible to filter out using this algorithm. Since this is an exceptional
class, and is too generic for our purposes, we exclude this class from the result manu-
ally.

3.2.3 Topic representation: cf-iuf weighting

Note that given the ontologies’ hierarchical properties, highly specialized classes will
tend to get lower cf values, and more general classes will get higher cf values. So while
the entities and the classes of the three different ontologies have been combined, flat-
tened and assumed independent from each other, their hierarchical properties remain
intact. The most common classes are the root classes for each ontology: for example,
the root class of the DBpedia ontology is Thing, which means that Thing will occur as
often as the total number of entities found in all posts Pi of ui.

We introduce a weighting strategy for classes that is based on tf-idf, a common
strategy used in document processing [63]. On top of the class frequency map cfi,c

described in section 3.2.1, we now additionally calculate a user frequency map uf that
records for every unique c found how many users in U have at least one instance of
each c:

ufc = the number of users that have at least one instance of c. (3.3)

We can see that the higher the ufc for some c, the more common a class is among
the collection of users – and the more common a class, the less this class contributes to
the uniqueness of a particular user that has this class. Hence, as with traditional inverse
document frequency, we take the inverse of this measure, so that more common classes
get a lower weight:

iufc = log
|U |
ufc

(3.4)

Combining equations 3.1 and 3.4 leads us to our cf-iuf weighting strategy for each
ui:

cf-iufi,c = cfi,c× iufc, where c ∈Ci. (3.5)

We can calculate a cf-iuf weight for each unique class that occurs for each user. It
follows that, using this equation, classes that occur many times for a select group of
users get assigned high weights, while classes that are relatively common, occurring
for a large portion or all of the users, get assigned low weights.

27

Chapter 4

Improving Relation-based User
Recommendation on Twitter with

Ontological Timeline Analysis

The representations of users in terms of ontological classes defined in the previous
chapter are now used as the foundation for two specific methods. In the first, which
we will explain in this chapter, we use our ontological expansion technique to improve
a follow relation-based method for Twitter user recommendation through analysis of
individual user timelines. Although our second and main contribution is designed to
be useful in a more general sense, this method is explicitly Twitter-based.

We focus our attention on how we can use our method for ontological expansion
to improve user recommendation based on user relations, in order to find influential
users that post about their topic of interest consistently. We first give a short summary
of how a ranking of users by follow relation for a certain Twitter keyword search is
obtained. This is followed by a description of how we further improve this ranking
based on ontological expansion and an approach for calculating the degree of taxo-
nomical similarity between the tweets we obtained through the keyword search and
the remaining tweets from a user’s timeline.

The chapter is divided in two parts. First, we describe how obtain the Twitter
user ranking using keyword search (TURKEYS), in section 4.1. Then, we apply this
technique to improve follow relation-based Twitter user recommendation, in section
4.2.

4.1 Twitter user rank for keyword search (TURKEYS)

In this section, we explain the Twitter user rank for keyword search, or TURKEYS.
Given an input query representing the topic of interest, we find tweets matching the
query using Twitter keyword search, then extract user information and user relations
from them. After we create a reference graph based on the user relations, the TURKEYS
score of each user is calculated. We will give a summarized explanation for TURKEYS;
see [46] for a more in depth explanation. The main assumptions for this approach are:

1. Users who post many valuable tweets and retweets about the topic are worth
following;

29

4.1 Twitter user rank for keyword search (TURKEYS)
Improving Relation-based User Recommendation on Twitter with Ontological Timeline

Analysis

2. Valuable tweets attract attention from many users;

3. Each user pays attention to tweets he/she retweets or replies to, but also watches
the other tweets to some extent (not more than retweets and reply tweets).

Based on these assumptions, the TURKEYS score of each user u is defined as
follows.

TURKEYS(u) = TC(u)w×UI(u)1−w (4.1)

TC(u) and UI(u) are respectively tweet count score and user influence score of user
u, ranging between 0 and 1. Weight w also ranges between 0 and 1. The tweet count
score is based on the number of tweets for each user and reflects the first assumption;
the user influence score is based on user relations among users and reflects the second
and third assumptions.

Users and tweets are collected by keyword search. Let the set of tweets obtained
and the set of users obtained be Tall and Uall respectively. Then the tweet count score
is calculated by counting not only original tweets but also retweets in T0 as each user’s
own tweets. The score is dampened by a logarithm function and is normalized so that
the largest possible value is 1:

TC(u) =
log(1+ |{t|t ∈ T0∧ t.user.id = u.id}|)

maxu′∈Uall log(1+ |{t|t ∈ T0∧ t.user.id = u′.id}|)
, (4.2)

where t.user.id indicates poster’s ID of the tweet t and u.id indicates the ID of the
user u.

Next, we define the user influence score and tweet influence score. The user influ-
ence score of each user is calculated using the tweet influence score of original tweets
and retweets the user posted, and the tweet influence score of each tweet is calculated
using the user influence score of users who pay attention to the tweet.

We create a tweet-user reference graph from the tweet set Tall consisting of user
nodes, tweet nodes, and directed edges between a user node and a tweet node. Using
adjacency matrix transformations for this graph, we obtain matrices Bt and Br, which
encode our third assumption above numerically: that is, each user pays attention to
tweets he/she retweeted or replied to, and watches all tweets (regardless of his/her
activity of retweet and reply) at a certain rate.

The user influence score and the tweet influence score are then calculated as fol-
lows.

u = BT
t t t = BT

r u (4.3)

where u and t indicate the column vector of the user influence score of all users and the
column vector of the tweet influence score of all tweets respectively. We can calculate
the user influence score and the tweet influence score using the power iteration method.
The iterative processes are as follows.

uk = BT
t BT

r uk−1 tk = BT
r BT

t tk−1 (4.4)

30

Improving Relation-based User Recommendation on Twitter with Ontological Timeline
Analysis 4.2 User recommendation using ontological timeline analysis

u0 = (1
|Uall| ,

1
|Uall| , . . . ,

1
|Uall|);

t0 = (1
|Tall| ,

1
|Tall| , . . . ,

1
|Tall|);

k = 1;
Repeat

uk = BT
t BT

r uk−1; tk = BT
r BT

t tk−1;
k = k+1;

until |uk−uk−1|< εu and |tk− tk−1|< εt ;
return uk and tk;

Figure 4.1: Calculation algorithm for the user influence score and the tweet influence
score.

where uk and tk indicate the user influence score and the tweet influence score at the k-
th iteration respectively. The calculation algorithm for the user influence score and the
tweet influence score is shown in Figure 4.1. εu and εt are error tolerance parameters.
Lastly, the user influence score of each user is normalized so that the largest value
should be 1, as UI:

UI(u j) =
u(j)

maxk u(k)
(4.5)

The TURKEYS score defined in equation 4.1 is calculated using equations 4.2 and
4.5. We take the top-k ranked users as candidates for the next phase.

4.2 User recommendation using ontological timeline
analysis

Once we have obtained a ranking of users based on keywords and user influence, we
want to select only those users that continuously post about topics closely related to
the keyword. However, a user may not always be using the same keywords when talk-
ing about a topic. Consider, for example, the topic “space development”. There are
many keywords that relate to this topic (e.g. “NASA”, “SpaceX”, “Curiosity”, etc.).
Users will likely not be mentioning any one of these all the time, and it is difficult and
time-consuming to come up with an exhaustive search query. Another example is a
user searching by a keyword “whaling”. This user likely also be interested in discus-
sions about the hunting of dolphins as well. Some of these posts may go undetected
when relying solely on keywords. Therefore, we aim to encapsulate multiple keywords
that can be traced back to the same topical domain by using ontological background
knowledge. Only if a user consistently posts about the same topic do we consider this
user to be appropriate to follow.

There are several difficulties that need to be overcome, which are listed below. The
solutions to these difficulties comprise the sequential steps of our proposed approach.

1. User tweet collection: this time, we need tweets from specific users rather than
tweets related to a certain topic.

31

4.2 User recommendation using ontological timeline analysis
Improving Relation-based User Recommendation on Twitter with Ontological Timeline

Analysis

2. Named entity extraction and classification: we need some way to extract named
entities from tweets, then use a background ontology to obtain class information
for extracted keywords (we use the approach described in section 3.2).

3. Topic representation: we need a way to represent the topic(s) of interest. Here,
it is important to encapsulate just the right amount of generality. For example,
when a user is interested in baseball, “sports” would be too generic, but “major
league baseball players” might be too specific to determine topic consistency.
For this part, we use the class pruning method we proposed earlier, in section
3.2.2.

4. Topic consistency checking: once we have a topic representation, we need to
determine whether a user posts about this topic consistently. To achieve this, we
propose the taxonomical similarity score.

We take the output of the user recommendation method described in the previous
section; for the top users, we derive a topic representation for (1) the tweets made dur-
ing the period of tweet mining for the user relation-based recommendation, and (2) a
selection of tweets made outside this period. We then compare the two topic represen-
tations and determine their similarity; if this is above a certain similarity threshold, we
can say that this user posts about a topic consistently.

Our method thus applies a binary selection to the user ranking: starting at the best
ranked user output in the previous step (user recommendation based on user relations),
we decide whether this user is valuable or not based on a threshold of taxonomical
similarity across his timeline. We continue down the ranking, until we have found the
target k of top-k users.

In the following sections we will explain each step of the approach in detail.

4.2.1 User Tweet Collection

We take the top ranked users and their tweets that are output from the recommendation
step based on user relations. We call this set of tweets belonging to one user Tmine.
Additionally, for each user we collect earlier tweets from their timeline using the Twit-
ter API. Although the Twitter API allows one to retrieve a maximum of 3200 tweets
from a user’s timeline, the subsequent entity recognition step that we perform on the
tweets is somewhat computationally intensive, so we decide to collect a maximum of
500 tweets per user profile. We call this set of tweets Tpro f ile. Here, we exclude tweets
that were made during the mining period for the previous step, i.e. Tmine∩Tpro f ile =∅.

We apply entity recognition using DBpedia Spotlight and perform ontological ex-
pansion on both sets of tweets separately, as described in section 3.2. Recall that we
collect all entities and class types and combine them into class frequency maps cfi,c for
each user, containing each unique class and how often it occurs. We construct these
maps for both tweet sets Tmine and Tpro f ile. For convenience, we denote the generic cf
maps for the mined tweets and profile tweets as Cmine and Cpro f ile, respectively.

4.2.2 Topic Representation

Next, we trim the sets of classes Cmine and Cpro f ile to obtain an accurate representa-
tion of a user’s topic(s) of interest. Since entity recognition on informal tweets is far

32

Improving Relation-based User Recommendation on Twitter with Ontological Timeline
Analysis 4.2 User recommendation using ontological timeline analysis

from perfect, we need to discover and remove any classes that have been linked to
mismatched entities. Second, since we collect classes up to the root of the hierarchy,
we need to filter out classes that are too generic and cover too broad of a topic.

We apply the class pruning method that we proposed in section 3.2.2 for this part.
We end up with a compact selection of classes per user that represents their topic of
interest best.

4.2.3 Topic consistency checking

Finally, we need to compare the topic representations of the tweets collected in the user
relation mining period and remaining tweets collected from a user’s timeline, in order
to determine whether or not a user posts about the same topic consistently. We have
two sets Cmine and Cpro f ile of classes ci, and each class has a number of occurrence,
which we will denote as occs(ci). We devise a simple way to determine the similarity
between the two sets.

First, we take the smallest of the two sets, in terms of the total number of class
occurrences. For simplicity, we will assume this to be Cmine as this is true in virtually
every case. We then count for each class ci in Cmine how many occurrences of this
same class ci are also covered in Cpro f ile. Finally, we normalize by dividing the total
number of common occurrences found by the total number of class occurrences in
Cmine. Formally:

s =
∑

ci∈Cmine∩Cpro f ile

min{occs(ci)|ci ∈Cmine,occs(ci)|ci ∈Cpro f ile}

∑
ci∈Cmine

occs(ci)
. (4.6)

The taxonomical similarity score s that is obtained is a number between 0 and 1.
We can subsequently define a threshold parameter θs between 0 and 1 to determine
whether two taxonomies are similar enough to consider the user to be posting about
the same topic consistently. We apply a binary selection on the user ranking, starting
with the highest ranked user. For each user, if s is above θs, the user is kept in the
ranking. If s is below θs, the user is removed from the ranking. We continue until the
desired top-k ranked users are obtained, or until we reach a stop condition (e.g. process
only the top 50 users).

The evaluation for this approach, detailing the degree in which it can improve user
recommendation on Twitter, can be found in section 7.4.1.

33

Chapter 5

Ontology-assisted Discovery of
Hierarchical Topic Clusters on the

Social Web

In this chapter, we will detail the methods we devised for discovering ontology-based,
hierarchical representations of user interests, and for topic clustering. It is our second
and most comprehensive method, in which we extend and generalize the ontological
timeline analysis from the previous chapter to allow comparison not just within single
timelines, but among arbitrary users, based on scoped topical similarity. This scoped
topical similarity allows us (1) to detect clusters of users at a chosen topic scope (a slice
of the topic hierarchy present in a collection of users), without having to pre-define
the number of topics beforehand; (2) to automatically label clusters with machine-
readable topic tags; and (3) divisively cluster users into a topic hierarchy. This method
is designed to be especially useful in a generic, noisy Social Web environment, rather
than any specific application. However, for simplicity’s sake, we will still focus on
Twitter as a use case for the majority of this chapter.

The chapter is organized as follows. First, in section 5.1, we give a short introduc-
tion into user interests on the Social Web, and our formal definition of a Social Web
user. We then explain how we represent users and topics at different topic scopes, in
section 5.2. This is followed by an explanation of how we use community detection
techniques to divide users into scoped and labeled clusters, in section 5.3.

5.1 User interests on the Social Web

We assume that we have a collection of Twitter users that we want to cluster by topic.
For simplicity, we make the assumption that each user has some current, static topic of
interest. Realistically, user interests are dynamic and evolve over time, so an accurate
topic model would need to incorporate the time dimension in some form. However,
as this would significantly increase to complexity of the problem at hand, we choose
to simplify this by simply taking the latest posts on a user’s timeline as their current
topic of interest. Furthermore, we also assume this topic of interest is hierarchical in
nature: that is, a user generally interested in “sports”, might be specifically interested
in “hockey” and “golf” to different degrees. We aim to develop a method that can
accurately capture this type of information.

35

5.2 Discovering scoped topics
Ontology-assisted Discovery of

Hierarchical Topic Clusters on the Social Web

For practical purposes, there are a number of ways to obtain an initial set of Twitter
users, depending on our specific objective. If we want to group a user’s followers or
friends into shared-interest groups, we can collect this direct neighborhood of the user
and process the gathered collection of users. If we want to find out for some ambiguous
keyword, say “football”, which users are interested in American football and which
are interested in soccer (known as “football” outside of the US), we can collect those
users by keyword search. Or, we might have a pre-defined list of users that we want to
cluster.

To differentiate Social Web-oriented clustering from traditional document cluster-
ing, we consider a collection of users U , as opposed to documents D. These notions are
conceptually similar: each ui in U contains some number of posts {p1, p2, ..., pn} ∈ Pi,
similar to how a document di ∈ D would consist of lines or paragraphs, which are
both in turn collections of words {w1,w2, ...,wm} ∈Wi. In order to keep our approach
application-agnostic, we consider only the raw text content associated to users – usu-
ally their raw text (micro-)posts Pi. We have already introduced the class frequency
map cf in section 3.2.1. Over the course of our approach, we will additionally compute
a trait vector ti for each user. These concepts will be explored in greater detail in the
coming sections.

At this point, we can define a Social Web user as follows.

Definition 1. A Social Web user ui in a collection of users U is a 3-tuple

ui = (P,cf, t), ui ∈U, (5.1)

where P is a collection of (micro-)posts; cf is a class frequency map, which is a bag
of all entities and classes discovered in P with their number of occurrence; and t is a
trait vector composed of weights expressing topic similarity.

5.2 Discovering scoped topics

For our second method, rather than determining the relevance of some user with re-
gard to a keyword, we want to determine the relevance level of one user compared
to another user: that is, calculate the topical similarity between pairs of users. We
can achieve this by generalizing the user recommendation method from the previous
chapter in a number of important ways. First, in order for the approach to work on
different users, we no longer divide individual user timelines into mining/non-mining
sections; instead, we consider only full user timelines. Second, we need a more gen-
eralizable and robust approach for deriving user topics: we replace the heuristic for
calculating the taxonomical similarity based on class occurrences with a more formal
and generally applicable approach. Third, we introduce the assumption that topics are
hierarchical. We assumed flat interests for the previous approach, but this is not a re-
alistic assumption in real-life situations. We assume there to exist a topic hierarchy
within a collection of users: we want to be able to cluster users by topics of different
scopes (that is, different slices of the hierarchy). In this section, we will describe our
methods and equations for achieving this.

36

Ontology-assisted Discovery of
Hierarchical Topic Clusters on the Social Web 5.2 Discovering scoped topics

5.2.1 cf-iuf weighting and trait vectors

Recall our novel cf-iuf weighting strategy, proposed in section 3.2.3. We reprint the
equation here for convenience:

cf-iufi,c = cfi,c× iufc, where c ∈Ci. (5.2)

We can calculate a cf-iuf weight for each unique class that occurs for each user. It
follows that, using this equation, classes that occur many times for a select group of
users get assigned high weights, while classes that are relatively common, occurring
for a large portion or all of the users, get assigned low weights. We use this weighting
strategy as components for a trait vector ti, to project characteristic user traits into a
novel trait vector space model (as opposed to the common term vector space):

ti = [w1,w2, ...,w|Ci|]
T , where wk = cf-iufi,ck and ck ∈Ci. (5.3)

In other words, each user has as many traits as he has unique classes, and these
traits are weighted according to their overall uniqueness compared to other users. The
traits with the highest weights characterize this user best within the full collection of
users.

5.2.2 Scoped topical similarity

Given a collection of users ui = (P,cf, t), ui ∈U (as first introduced in definition 1), we
can group similar users by their common topics of interest. It is hard to define “topics
of interest” concretely, for a number of reasons. First of all, the topic scope can be
almost arbitrarily narrow or broad (consider e.g. Premier league players→ Football→
Sports→ Activity): there is no “true” scope for the topics, as this depends completely
on what we are interested in finding. A second reason is that there is ambiguity as
to the delineation of topics, and how many and what kind of concepts can even be
considered “topics”. This is often called the “user’s dilemma” [27]: each observer has
different ideas about what constitutes a “topic” and how to draw the right delineation
between different topics. We deal with these problems by (1) making the scope of
topics sought controllable: different use cases require different topic allocations, so
we allow the retrieval of topics at arbitrary levels of the latent topic hierarchy; and (2)
inferring mutual topics of interest and their boundaries from the underlying data based
on users’ scoped topical similarity.

Controlling topic scope The scope of the topics that we want to find largely depends
on the application – as explained above, the scope of the topics we seek is application-
specific, and there is no “right” or “wrong” scope or number of topics. Exploiting
the hierarchical properties of the ontological classes that form the basis of our user
trait vectors, we introduce a topic scope parameter, γ, into the equation for the cf-
iuf weighting strategy. This allows us to forego the definition of a target number of
topics for the clustering that is common to most existing topic modeling and document
clustering techniques.

37

5.2 Discovering scoped topics
Ontology-assisted Discovery of

Hierarchical Topic Clusters on the Social Web

Figure 5.1: Manipulating the topic scope parameter γ in order to cluster users at an
arbitrary height of the topic hierarchy. In this example, we can cluster by two broad
topics (high scope) or five specific topics (low scope).

cf-iufi,c = cf1+γ

i,c × iuf1−γ
c , −1≤ γ≤ 1, γ ∈ R (5.4)

γ can take on any real value between -1 and 1. If we set γ closer to -1, we put
more weight on the inverse user frequency and less on the class frequency, leading to
a bias towards rare classes (a lower slice of the topic hierarchy). Conversely, if we
set γ closer to 1, we put more weight in the class frequency and less on the inverse
user frequency, leading to a bias towards common classes (a higher slice of the topic
hierarchy). This behavior was depicted in figure 1.2 of the introduction; we reprint it
in 5.1 for convenience.

The exact generality of classes that we obtain at a given, absolute value of γ de-
pends on a number of other dependent variables of our approach, which we will in-
troduce in the coming sections. Therefore, there is a need to calibrate γ to yield a
certain topic scope at a certain value, and optimize the remaining variables around this
calibration. We describe this calibration and optimization process in section 7.3.4.

Inferring mutual interests: scoped topical similarity Given each user’s trait vector
t, we can find which users are similar to each other at scope level γ by calculating the
pair-wise cosine similarity between all users in U . This is done by calculating the dot
product over each user’s trait vectors and dividing by the product of their Euclidean
length. We call this the scoped topical similarity (STS) function between users.

ST Sγ(ui,u j) =
ti · t j

|ti||t j|
(5.5)

Since the cf-iuf weights for traits were normalized, it follows that 0≤ ST Sγ(ui,u j)≤
1. At any point, we can alter the topic scope γ and re-calculate the trait vectors t and the
ST Sγ between all users for different topic distributions. However, this is not enough

38

Ontology-assisted Discovery of
Hierarchical Topic Clusters on the Social Web 5.3 Hierarchical topic clustering

the determine topic boundaries within a collection of users; the next section will detail
how we cluster users into distinct topics using community detection techniques.

5.3 Hierarchical topic clustering

In this section, we describe how we use graph-based community detection techniques
to perform the clustering of users into topics. The key characteristic of this type of
approach is that we do not need to pre-define the number of topics to cluster in. First,
we explain how we represent users and their scoped topical similarity as a weighted
graph in 5.3.1, followed by a detailed description of the methods we developed for
scoped clustering in 5.3.2, topic labeling in 5.3.3 and recursive clustering to construct
topic hierarchies in 5.3.4.

5.3.1 Scoped topical similarity graph

Recall that we have a collection of users ui = (P,cf, t), ui ∈U , where a user’s posts P
and class frequency map cf are static, and the composition of trait vector t is calculated
given the desired topic scope γ. We can construct a scoped topical similarity graph
Gγ = (V,E). Gγ is an undirected, weighted graph where each vertex is a user and each
edge connects two users, with their ST Sγ as edge weight. Initially, we calculate edge
weights between every pair of users to obtain a fully connected graph.

Such a graph is not an ideal form if we want to find topic clusters; it is hard to
find clusters within a fully connected graph (although not impossible since our graph
is weighted), and the number of edges |E| will be exponential in |V |, leading to in-
tractable computational complexity when dealing with large graphs. We solve this by
first pruning the edges E, imposing a minimum ST Sγ threshold τ. In other words, if
two users are less than τ similar, we consider them too different to have any kind of
interest in common. It is not immediately clear which value of τ would yield the best
results. We include τ as one of three dependent variables that we attempt to derive an
optimal configuration for through hyperparameter optimization; see section 7.3.4 for
details.

Pruning helps us discover topic-based clusters in the graph. When visualized, as in
figure 5.2 for example, the topological graph structure gives an intuitive idea of where
clusters are located, but is not sufficient to say anything explicit about the clusters
and their content. We can apply community detection techniques to isolate highly-
connected clusters into distinct topics. We can expect to find a high or low number
of clusters if the graph Gγ has a low or high value for γ, respectively. In other words,
we can find topics of an arbitrary scope by taking different slices of the inherent topic
hierarchy. How many topics we end up with depends entirely on the underlying data:
in the evaluation, we will see that we can find different and roughly the appropriate
number of topics at the same setting of γ for different datasets. Figure 5.3 gives an
example of the different results between clustering a testset of Twitter users at γ = 0.8
and γ = 0. We explain how we arrived at this result in the next section.

39

5.3 Hierarchical topic clustering
Ontology-assisted Discovery of

Hierarchical Topic Clusters on the Social Web

Figure 5.2: An example of a partial, pruned topical similarity graph of Twitter users.

Figure 5.3: Clustering a testset of Twitter users at γ = 0.7 (left), yielding 6 clusters,
and γ = 0 (right), yielding 9 clusters.

5.3.2 Finding highly-connected subgraphs

We now describe how we perform topic clustering on the pruned ST Sγ graph Gγ, using
a custom version of the Highly Connected Subgraph (HCS) clique-based, strict parti-
tioning clustering algorithm [22]. Originally, this algorithm works by dividing a graph
into subgraphs that fulfill some minimum edge degree condition. First, a minimum cut
is determined, along which the graph is cut. The resulting subgraphs are examined to
see if they are highly connected; each vertex in the subgraph must have an edge degree
that is at least greater than half the number of vertices in the subgraph. If a subgraph
is not highly connected, the algorithm is repeated on this subgraph, assuming there are
at least 2 vertices left. HCS allows outliers: singleton and twin vertices are not consid-
ered clusters, and therefore discarded. The final result is a clustered graph containing
however many highly connected subgraphs were found.

40

Ontology-assisted Discovery of
Hierarchical Topic Clusters on the Social Web 5.3 Hierarchical topic clustering

For our purposes, we modify this algorithm in three ways. Firstly, the original
algorithm was developed for unweighted graphs. Since we deal with a weighted graph,
we apply a minimum cut1 algorithm that takes weights into account. Secondly, the
original full-clique constraint for determining highly-connectedness of a cluster is too
strict for our purposes; we relax these constraints to obtain a quasi-clique algorithm.
Lastly, we do not want to drop outliers from the result, thus also apply a singleton
adoption heuristic as described in [22]. We explain these three modifications in brief.

Weighted minimum cut An important consideration when using the HCS algorithm
is which algorithm to use for the sub-task of finding a minimum cut in the graph. Tech-
nically speaking, we seek the maximum cut, since a higher weight means a higher sim-
ilarity between users, but for simplicity’s sake we maintain the common terminology.
Since we have a weighted graph, Gγ, we use a modified version of Kruskal’s minimum
spanning tree algorithm [31]. First, we sort all edges E ∈Gγ by ST Sγ in descending or-
der. Then we start constructing the minimum spanning tree as per Kruskal’s algorithm
using the sorted edge list, but stop at the second-to-last step, at which point we have
two trees that contain all of the vertices. The last step would connect the two trees to
form the minimum spanning tree; since we constructed the trees in descending order
of edge weight, it follows that the cut between the two trees represents the minimum
cut. A proof of this can be found in [13].

Highly-connectedness constraint We argue that the original, strict constraint to de-
termine highly-connectedness of subgraphs may not be optimal for all use cases. We
can rewrite this constraint as follows, parameterizing the numerator for the proportion
of vertices that must be higher than the minimum vertex degree of a subgraph as α:

min{degrees(v j) | 1≤ j ≤ |Vsub|, v j ∈Vsub} >
|Vsub|

α
(5.6)

In the original algorithm, α = 2; we experiment with different values for α. A
larger α means a less strict lower bound requirement for a highly connected graph,
hence we find larger subgraphs compared to low values of α. We call subgraphs deter-
mined to be highly connected topic clusters.

Singleton adoption With the standard version of the algorithm, lowly connected or
isolated nodes will get excluded from the resulting clustered graph. This is not desir-
able for our purposes; we want to allocate users to at least one topic, even if their affin-
ity to the other users belonging to this topic is low. This also makes evaluation against
a ground truth and other clustering methods easier. We apply a singleton adoption
heuristic where for all remaining, unassigned users after one iteration of the standard
algorithm, we recalculate the ST Sγ between each unassigned user trait vector ti and
each cluster-based trait vector tk. The latter has been calculated from the union of all
classes of all users assigned to that cluster, compared to those of other clusters. The
next section explains this in more detail.

1Strictly speaking, we seek the maximum cut, since a higher weight means a higher similarity be-
tween users, but for simplicity’s sake we maintain the common terminology.

41

5.3 Hierarchical topic clustering
Ontology-assisted Discovery of

Hierarchical Topic Clusters on the Social Web

Figure 5.4: An example of cluster labeling and recursive clustering. For each cluster
k, the top-5 cluster-based traits from tk are listed. A “Sports” cluster is isolated and
further sub-divided into the individual sports that made up the cluster.

5.3.3 Topic clusters and labeling

An advantage of using ontology classes to model topics is that it allows us to rea-
son about the semantic content of topic clusters. One important result is that we can
obtain intuitive labels for the clusters by regarding clusters as single entities, and re-
calculating ST Sγ; this time, we calculate the similarity between clusters rather than
users, and take class names of the top scoring cluster traits as labels. We formally
define topic clusters as follows.

Definition 2. A topic cluster Tk in a clustered graph G′γ with K clusters is a 3-tuple

Tk = (Uk,cfk, tk), Tk ⊆ G′γ, 1≤ k ≤ K, Uk ⊆U, (5.7)

where Uk is the subset of users assigned to the k-th topic cluster; cfk is the combined
class frequency map for the cluster taken from Uk; and tk is a trait vector that expresses
cluster-based topical affinity.

In other words, we merge the class frequency maps for every user ui ∈ Uk in a
cluster Tk to form a cluster-based class frequency map cfk. From all cfk, we calculate
a cluster frequency map clf which records for each class in how many clusters this
class occurs at least once (analogous to the user frequency map uf). We can then
take the same steps as before to calculate cluster-based, cf-iclf-weighted trait vectors
tk. Sorting these trait vectors by their topical affinity component in descending order
provides us with the most characteristic traits for each cluster at the top of the list; we
use the names of the top traits as topic cluster labels. See the left side of figure 5.4, for
example, which shows the result of clustering a testset of 175 Twitter users into K = 5
dominant topics (γ = 0.8). For each cluster k, the top-5 cluster-based traits from tk are
listed.

5.3.4 Recursive topic clustering

While we consider altering the topic scope γ and re-calculating trait vectors a form of
hierarchical clustering (since we can obtain topics at an arbitrary height in the latent

42

Ontology-assisted Discovery of
Hierarchical Topic Clusters on the Social Web 5.3 Hierarchical topic clustering

topic hierarchy – something we cannot with traditional approaches), our approach also
allows divisive clustering to generate a full topic hierarchy in a top-down fashion.
After one clustering iteration, we can apply the clustering once again on each resulting
cluster separately. That is, we ignore all users that do not belong to the selected cluster,
and re-evaluate the trait vectors of the remaining users. Since dominant traits of each
user are now calculated only with regard to the other users originally in the same
cluster, we can further divide users into more specific topics of interest within this more
general topic of interest. We call this type of recursive topic clustering hierarchical
STS, or ST Sh, and it allows us to extract a full topic hierarchy, rather than just a slice,
from a collection of users. An example of one iteration of recursive clustering is shown
in figure 5.4, where we have a cluster of users that is about “Sports”, as is evident from
the topic labels. We can sub-divide this topic cluster into sub-clusters lower in the
topic hierarchy. We find the cluster consists of “Golf”, “Cricket”, “American football”
and “Football”. A simple pseudocode representation of the recursion we perform is
shown in algorithm 1.

Algorithm 1 ST Sh: Recursive topic clustering to obtain a full topic hierarchy.

1: procedure CLUSTERGRAPH(G(V,E)):
2: V ← calculateTraitVectors(V , γ)
3: for e in E do
4: e.weight← STS(V[e.i], V[e.j])
5: subGraphs[]← HCS(G)
6: for subGraph in subGraphs do
7: clusterGraph(subGraph)

43

Chapter 6

Implementation and Algorithmic
Analysis

In the previous chapter, we have described an approach for the hierarchical clustering
of Social Web users. Now, we will implement all of these methods and techniques into
a prototype Web application, in order to demonstrate the advantages of our approach
when dealing with real Social Web data gathered from Twitter. We build a system that
obtains users from Twitter given an input seed user or keyword, applies all the steps
of the approach to calculate scoped topical similarity between users, then visualizes
construction and clustering of a graph of users in real-time. Additionally, we provide
a time complexity analysis of the algorithms we implement, and compare them to
popular algorithms for the clustering task (Lloyd’s k-means clustering algorithm and
LDA with Gibbs sampling).

The chapter is organized as follows. First, We give a system overview of Twin-
terest Explorer, the application we designed, in section 6.1. This is followed by an
analysis of the algorithms used and their complexity, scalability considerations, and
some benchmarks between our method and other approaches, in section 6.2.

6.1 Twinterest Explorer

In this section, we will explain Twinterest Explorer1, a Web application that enables
the exploration of interests on Twitter. See figure 6.1 for a screenshot of the interface.
It does real-time topic clustering and automatic labeling of users on Twitter, based
on their unstructured timelines of microposts. A demo set of 175 Twitter users is
included as well – this is the same set we use for the evaluation of topic clustering, and
is explained in section 7.1.3.

Twinterest Explorer can group and visualize streams of users by topic (or interests).
Users are gathered directly from Twitter through keyword search, by collecting the
neighborhood (followers/friends) of a seed user, or by providing a user-defined list of
screen names. Desired topic scope can be arbitrarily narrow or broad (e.g. AngularJS
→ WebFrameworks→ ProgrammingLanguages→ Structure): this can be adjusted in
real-time with a slider. Detected clusters are visualized as new users are processed in

1Source code and installation instructions can be found at: https://github.com/ktslabbie/
TwinterestExplorer

45

6.1 Twinterest Explorer Implementation and Algorithmic Analysis

Figure 6.1: A screenshot of TwinterestExplorer, a prototype application for the real-
time clustering of Twitter user streams.

the background, using a colored and labeled graph. This graph can be explored by
adjusting topic scope and zooming in on clusters. Zooming in will allow a cluster to
be divided into sub-clusters (sub-topics within the broader topic). Clusters are labeled
automatically with the most characteristic traits for that cluster.

On a small scale where real-time visualization is still possible such as in this appli-
cation, real-life usefulness is somewhat limited. Still, there are some interesting things
it can show. We can find out which followers/friends of some user post about concep-
tually similar things, and have them grouped and labeled by interest automatically. Or
we can discover which users are consistently interested in a given topic to get a better
idea of who to follow (is their mention of “machine learning” a one-time event, or are
they consistently interested in it?). For ambiguous keywords, we can separate people
into concrete interest groups. Spambots tend to get grouped together, so it could the-
oretically be used as a spam filter as well. Finally, we can apply semantic labels to
clusters. Generally, using traditional topic modeling methods, the best we can is to
generate word clouds from the terms that appear most in each document, and actual
semantic labeling is not possible due to the reliance on word co-occurrence.

6.1.1 Technical implementation

We have created a diagram of the main system architecture and its components in figure
6.2. The project can be roughly divided into a frontend and backend, in a client-server
type of architecture. We will explain the details of each component in the following
two sections.

Backend The backend is a standard Java application with a REST interface that is
exposed to the client. Restricting scope to the backend, it communicates with:

1. a DBpedia Spotlight server to annotate tweet content with links to DBpedia
resources;

46

Implementation and Algorithmic Analysis 6.1 Twinterest Explorer

Figure 6.2: An overview of the client-server architecture of the Twinterest Explorer
system.

2. a Redis [58] key-value store instance, which contains flattened versions of the
DBpedia, YAGO and Schema.org class hierarchies from DBpedia (lists of classes
up to the root of the hierarchy for each resource);

3. a PostgreSQL [43] database, mostly used for caching users, and tweets and
classes collected for them.

The general process flow for the backend is as follows:

1. get a request for a user, as well as some parameters, through the RESTful API;

2. check database for containment of this user:

a) if not contained, call Twitter API and apply named entity recognition on
tweets;

b) otherwise, apply only named entity recognition or return immediately.

Applying named entity recognition means sending (concatenated) tweet text to
DBpedia Spotlight and collecting and counting all classes (DBpedia, Schema.org,
YAGO) up to the root of their hierarchies for all DBpedia resources detected. The
backend API can handle many requests concurrently; the client is set up to send sev-
eral requests at a time asynchronously.

Frontend The frontend is a Javascript application using the AngularJS [28] Web
framework, that sends HTTP GET or POST requests to the backend to obtain users
and their classes. As users come back, there are three processes that are performed in
the client, sequentially and in parallel:

47

6.1 Twinterest Explorer Implementation and Algorithmic Analysis

1. The users’ scoped trait vectors consisting of the cf-iuf weights for each unique
class of each user are calculated. We compute and update a user frequency
hashmap as users come in, and keep using it as the current data is manipulated
through the frontend interface and needs to be re-calculated. Recall that the user
frequency for each class is the number of users for which this class was discov-
ered in their tweets at least once. As explained in section 5.2.2, we can put extra
weight on either generic or specific classes to bias the user trait vectors towards
one or the other. This is done using a controllable topic scope correction param-
eter, which is implemented by a slider that can be set to a range of real numbers
between -1 and 1. The topic scope can be changed at any time; whenever a
change is detected, the trait vectors are re-caclulated and the similarity graph
and cluster graph re-constructed.

2. The cosine similarity between all pairs of users’ class collections is calculated,
based on their scoped trait vectors scores. Essentially, users and classes are
represented as sparse matrices, with users in the rows and trait vectors in the
columns. Calculating the cosine similarity between all user pairs is then a ma-
trix multiplication operation where we calculate the dot product between trait
vectors of each possible user pair. Since classes are stored in hashmaps, calcu-
lating this takes O(n2c) time, where n is the number of users and c is the number
of unique classes, given naive matrix multiplication. Since our matrix is sparse,
some optimizations may be possible [71][73], but this is outside the scope of
our thesis. This similarity is then used as edge weights for the scoped topical
similarity graph Gγ(V,E), where each vertex is a user and each edge weighted
with the scoped topical similarity ST Sγ between these users.

3. Lastly, the similarity graph is clustered using a custom version of the Highly
Connected Subgraph (HCS) algorithm. We have explained how we modified
HCS in section 5.3.2. The Kruskal minimum spanning tree algorithm outputs
two or more sets of nodes as clusters. For each cluster found, we take all the
edges that would fall within this cluster (i.e. edges between two nodes within
the same cluster). The corresponding vertices and edges are added to a graph
object. Edges between nodes of different clusters are dropped from the result.

The final scoped topic cluster graph G′γ is displayed to the user using a D32 force
graph, and can be manipulated by altering the topic scope (recalculating from trait
vectors onward with a different topic scope γ), or by zooming in on a cluster: the
algorithm is re-run for those isolated users; essentially a recursive step to drill down
into the topic hierarchy an arbitrary number of times for increasingly narrow topics.
This was explained in section 5.3.4.

Parallel processing with Web Workers The three calculation steps in the frontend
described above are performed continuously and concurrently as new users come in,
using HTML5 Web Workers [68] to make full use the client machines’ (presumably)
multi-core environments, as well as to prevent the UI thread from blocking. One

2D3.js - Data-Driven Documents: http://d3js.org

48

Implementation and Algorithmic Analysis 6.2 Algorithms and complexity

worker is used for each of steps 1 and 3; we spawn 6 parallel workers for step 2,
as this is the most demanding (matrix multiplication).

One pitfall regarding Web Workers we must be wary of is that objects cannot be
passed by reference to Worker threads. What this means is that each object (a standard
JavaScript object) must be cloned before a Worker can start – this cloning is done in
the main UI thread, causing some UI blocking, and takes time for large objects. In our
case, the largest objects we deal with are each user’s class frequency maps: to calculate
the trait vectors of a collection of users in a Web Worker, we must send an array of all
users and their class frequency maps, which can consist of thousands of classes each.
Deep cloning this full array is not trivial and takes a large amount of time. It is the
same on the way back: when we have finished calculating the trait vectors, they must
be cloned before they can be received back by the main UI thread. We mitigate this
by only sending out class frequency maps to the Worker once for each new user; the
map is then stored in the Worker itself, and does not have to be re-cloned each time the
topic scope or collection of users changes. Unfortunately, it is not possible to eliminate
cloning when sending trait vectors back.

6.2 Algorithms and complexity

In this section we will briefly expand on the algorithms used in the LDA and k-means
clustering baselines that we explained in the background chapter and will use for the
evaluation, and our ST Sγ-clustering, and compare their time complexity, in section
6.2.1. We touch upon the scalability of each method for larger data in section 6.2.2.
We will then give some actual execution benchmarks of the different components of
ST Sγ-clustering and compare them to standard implementations of the baselines, in
section 6.2.3.

6.2.1 Algorithmic time complexity

We examine the algorithmic time complexity of the main algorithms we handle in
this thesis: LDA, k-means clustering, and ST Sγ-clustering. Aside from deriving their
big-O time complexity, we make an estimation of the number of operations needed
assuming we apply the algorithms on our main evaluation testset of 175 Twitter users
with 500 tweets each, clustering into 11 topics (see section 7.1.3 of the evaluation for
more info).

LDA For LDA, we use a variation of the algorithm that uses Gibbs sampling in-
cluded in the MALLET package [39]. MALLET implements one of the fastest known
algorithms for Gibbs sampling [49]. Since this is the most computationally intensive
component of LDA, we may consider its big-O time complexity to be the worst-case
complexity for LDA as a whole. Gibbs sampling generates a Markov chain of sam-
ples that estimate the probabilities of each word in vocabulary v belonging to one of
n documents, and each document in collection n belonging to one of k topics. It fol-
lows that each sample takes O(nkv) time, and due to the probabilistic nature of the
algorithm, we need to iterate the sampling i times (a common default for LDA is 1500
iterations). Therefore the total worst-case complexity of LDA is O(nkvi). As an esti-
mation for the number of operations given our testset: we have n = 175 users k = 11

49

6.2 Algorithms and complexity Implementation and Algorithmic Analysis

topics, v ≈ 10,000 words, and i = 1500 iterations. Rounding to orders of magnitude,
we get an estimated worst-case of 1010 operations.

k-means clustering For k-means clustering, although we calculate trait vectors in the
same way as for ST Sγ-clustering, the most intensive part is the clustering itself, which
we implement using a standard Lloyd’s algorithm [47] (there are faster algorithms,
but we consider these out-of-scope). Using this algorithm, we first randomly pick k
nodes as means for the k clusters, then between all users n and each k, we calculate the
cosine similarity between the trait vectors of n and the cluster-based trait vectors of the
k centroid clusters. Given d trait vector dimensions (unique classes), this can be done
in nkd time. Users are then grouped by cluster by minimizing the within-cluster sum
of squares (WCSS), and a new mean is calculated for the cluster, which we can keep
track of during the cosine similarity calculation. The algorithm is iterated i times until
the k-means clusters converge: typically around 10 times. Given the initial random
assignment, the result of a single execution cannot be assumed to be optimal: we need
to iterate the whole algorithm j times (depends on the dataset, but typically 100 times)
and pick the result with minimum overall WCSS. The total time complexity of this
algorithm is therefore O(nkdi j). Given our testset, n = 175, k = 11 and d ≈ 1000, so
we can expect roughly on the order of 109 operations.

ST Sγ-clustering For ST Sγ-clustering, we briefly summarize the various parts of the
procedure and their complexity. First, we apply entity recognition and ontological
expansion. DBpedia Spotlight uses the Aho-Corasick string matching algorithm for
entity recognition [3], which has a worst-case complexity of O(n+m+ z), where n is
the corpus length (over 4 million Wikipedia pages), m is the query length (assuming
a tweet concatenation window of 10, at most 1400 characters), and z is the number of
matches (typically 1-2 per tweet, so 10-20 per query). Wikipedia pages are additionally
indexed using a Lucene-based system, and Spotlight can be accessed concurrently.
Ontological expansion is done using a pre-populated hashmap, and can thus be done
in O(1) time. Therefore performance of entity recognition and ontological expansion
is not a significant bottleneck.

The next step is trait vector calculation. We need to calculate one inverse user
frequency map iufc and n cf− iufi,c-weighted trait vectors, where n is the number of
users and c the number of unique classes. This can be done in O(n + nc) time, a
relatively low polynomial.

Then we need to calculate the ST Sγ between each user to build graph Gγ. This is
a matrix multiplication step that can be naively performed in O(n2c) time, yielding on
the order of 107 operations on our testset, but is highly parallelizable. We distribute
the problem across six process threads and calculate in parallel, as explained in section
6.1.1.

Lastly, we need to perform the HCS clustering. We must recursively compute
the minimum spanning tree using Kruskal’s algorithm: n times in the worst case (no
set of nodes is highly-connected), but typically less. Kruskal can be implemented in
O(|E| log |V |) time, where |V | is the number of users and |E| the number of edges
between users: there are n2 edges in the worst case, but usually much less, since
we apply an edge pruning step (section 5.3.1. The minimum edge degree per cluster

50

Implementation and Algorithmic Analysis 6.2 Algorithms and complexity

Table 6.1: Scalability of each algorithm from a dataset with n = 1000 to a dataset with
n = 1,000,000. Bold is best, italics is worst.

Worst-case number
of operations

LDA
O(nkvi)

k-means
O(nkdi j)

ST Sγ

O(n3 logn)
n = 1000 1010 109 106

n = 1,000,000 1013 1012 1015

can be kept track of during the spanning tree calculation. Therefore the total time
complexity is O(n |E| log |V |) ≈ O(n3 logn). Due to the difficulty of parallelizing this
algorithm, it is the most time-consuming part of our ST Sγ-clustering approach. Given
175 users, in the worst case we have 1752 = 30625 edges. With at most n recursive
steps, the total expected number of operations is on the order of 106 operations. This is
significantly less than the other baseline approaches; however, it needs to be performed
in sequence with Gγ, which is also time-consuming of itself. Still, we can expect better
performance compared to the baselines overall.

6.2.2 Scalability

The approximations of the number of operations required for each of the algorithms
described in the previous section assumed datasets of sizes ≤ 1000, but this does not
necessarily generalize to larger datasets. A larger dataset means a larger n term in our
big-O time complexity notations. Let us consider a large dataset of n = 1,000,000.
The estimated number of operations then become as shown in table 6.1.

As we can see, due to the n3 term in the time complexity for ST Sγ-clustering and
the difficulty of parallelizing the HCS algorithm, it does not scale well to huge datasets.
In order for it to scale, we will need to substitute the community detection algorithm
for a faster one. A promising candidate for a fast, near-linear community detection
algorithm for weighted graphs is label propagation, described by Raghavan et. al.
[52]. This algorithm can find community structures in large-scale networks in O(n+
n2) time. The implentation of this algorithm is outside the scope of this thesis, and left
as future work.

6.2.3 Benchmarks

We have conducted a number of profiling experiments in order to determine the ef-
fectiveness of enabling parallel processing, either using parallel requests to the server
and DBpedia Spotlight for ontological expansion, or splitting the load across multiple
Web Workers for calculating the scoped topical similarity graph in a distributed way.
Additionally, we test the performance of ST Sγ-clustering against LDA and k-means
baselines. All experiments are performed on an Intel Core i7 4790k @ 4Ghz with
16 GB of RAM. This CPU has 4 physical cores and 8 logical cores, through hyper-
threading.

51

6.2 Algorithms and complexity Implementation and Algorithmic Analysis

Figure 6.3: A plot of the time it took to ontologically expand 175 users with 500 tweets
and obtain their cfi,c maps.

Parallel ontological expansion First, we profile how much time it takes to ontolog-
ically expand 175 Twitter users with 500 tweets each and obtain their class frequency
maps given different numbers of processing threads. In practice, this means that we
make several requests to the server API in parallel: each request results in a user and
his tweets being taken from the caching database and the text content concatenated
and sent to a (multi-threaded) DBpedia Spotlight instance. In our setup, Spotlight runs
on the same machine as the backend code – we argue that the time spent inserting and
retrieving users and tweets from the database is negligible given no additional load.
The results are plotted in figure 6.3: each data point is the average processing time of
five attempts. We see that for 7 threads, we get the best result: it takes 66.9 seconds
to process and obtain the class frequency maps of all 175 users. For 8 threads, this
actually grows slightly, as we run out of threads here (the backend code also needs a
thread) and suffer some overhead.

Parallel scoped topical similarity graph In figure 6.4, we have plotted how much
time is took to create Gγ of 175 Twitter users with 500 tweets each, yielding trait
vectors of roughly a few thousand classes each. Settings for our clustering method are
as we define them in section 7.3.4. Each data point is the average amount of time it
took out of five test runs, for different numbers of parallel Web Workers. We split the
computation by assigning each Worker an even share of the possible pair combinations
between users (there are n2−1

2 such pairs: ST Sγ(ui,u j) is the same as ST Sγ(u j,ui)).
We can see from the results that, after 6 Workers, which takes 4.8 seconds, we see
diminishing returns. The reason for this is, aside from the core limitation of the CPU,
there is some computational overhead to spin up a new Web Worker, and clone the
data to send to them. For a larger number of users, more Workers may be useful.

Comparison to baselines Now we will compare the computation time of ST Sγ-
clustering against our main evaluation baselines, LDA and k-means (see section 7.2.2

52

Implementation and Algorithmic Analysis 6.2 Algorithms and complexity

Figure 6.4: A plot of the time it took to create the ST Sγ graph Gγ for 175 users with
500 tweets.

Table 6.2: Execution times for clustering 175 Twitter users with 500 tweets each into
topics.

Execution time LDA k-means ST Sγ

Time (seconds) 87.1s 75.3s 70.6s

of the evaluation chapter). We again measure the time it takes to cluster our test set of
175 Twitter users from start to end into 11 topics. For ST Sγ-clustering, we measure the
time it takes to execute our method from start to end, using 7 threads for ontologically
expansion and 6 Web Workers for calculating the similarity graph. The rest of the
calculations, including HCS clustering, are single-threaded. We set γ to 0. For LDA,
the MALLET package includes a fast, state-of-the-art parallel implementation of the
algorithm, with default settings (1500 iterations), and the number of topics set to 11.
For k-means, we implement the standard Lloyd’s algorithm to cluster the ST S0 graph
into 11 clusters. We again take the average time of five runs. The results are displayed
in table 6.2. We see that our method is slightly faster than both LDA and k-means. The
difference in execution time is in line with the complexity approximation conducted in
section 6.2.1.

53

Chapter 7

Evaluation

In this chapter we describe the evaluation of our approach. First, we describe our target
keywords, users and ground truths that we have prepared, in section 7.1. This is fol-
lowed by an explanation of our experimental methodology; that is, the used evaluation
metrics and baselines we compare our methods to, in 7.2. In 7.3, we describe how we
derive parameter settings and calibrate the topic scope by tuning the hyperparameter
configuration of our second method. Section 7.4 describes the experimental results of
the timeline analysis, topical similarity calculation, scoped topic clustering and hierar-
chical clustering, respectively. We end this section with a discussion of the results, in
section 7.5.

7.1 Ground truths

We now explain the ground truths we created in order to evaluate our methods. First,
for timeline analysis for user recommendation, we examine four different keywords,
for which we mine tweets over five consecutive days. We evaluate how accurately
we can recommend users consistently interested in these keywords. We do this by
comparing the ranking we obtain with a relevance map of users for which we manually
checked whether each user was interested in the keyword or not.

There are two main aspects of our approach that we must evaluate: (1) the quality
of the topical similarity calculation within a noisy Social Web context; and (2) the
quality of the topic clustering, i.e. whether discovered topics are appropriate (content,
number and size) for the selected scope or full hierarchy, and whether the topic labels
are correct. We perform two different experiments, and therefore have two separate
types of test sets: for (1), relevance maps, expressing relevance of a number of semi-
random users to a known target user; and for (2), ground truths of users divided into
topics and subtopics that we identified beforehand for Twitter, as well as an existing
dataset of categorized newsgroup posts. For Twitter, we want human users that tweet
actively and have enough content that we can process, so we only choose those users
that tweet in English, have at least 500 tweets, and, excluding seed users, have between
100 to 10,000 followers and friends.

55

7.1 Ground truths Evaluation

7.1.1 User recommendation: keywords mined

We have mined the Twitter search API over the course of five days, from Dec. 15th,
2012 to Dec. 19th, 2012. We gathered all tweets that contained any of the following
keywords: mars rover ∪ curiosity rover, malware, nuclear power, and genetically
modified. For mars rover, we take the union with keyword curiosity rover, as they
refer to the same thing and are both used often. For this keyword, we consider tweets
concerning Mars or space probes in general relevant to the topic as well. For malware,
we also consider viruses, software vulnerabilities, etc. to be related. We feel that this
reflects a real-world scenario, as a user searching for “malware” will likely be using
this term as a catch-all for cyber security related topics, and not just the fairly narrow
subject of “malicious software”. For nuclear power, we aim to cover topics related
to nuclear energy. Keyword genetically modified is used to catch topics related to
genetically modified organisms (GMOs) and food. The evaluation will be performed
on these four keywords separately.

7.1.2 Scoped topical similarity: user relevance maps

We prepare two sets of 100 Twitter users each. Each set has one seed user with a
clearly identifiable interest that was manually determined by the authors by checking
their Twitter profiles. The remaining 99 users are collected semi-randomly from their
immediate follower neighborhood. We gather direct followers, followers of those fol-
lowers, and so on, in a breadth-first fashion until we have enough users that satisfy our
constraints. We pick one seed user that tweets consistently about iOS development
(@iOS_blog), and one seed user that tweets consistently about cars (@CCCManhat-
tan). For the remaining 99 users of both sets, we manually determine relevance of the
user’s timeline to the seed user, assigning a score of 0, 1 or 2, as follows:

0: This user is irrelevant; the user does not have tweets related to the topic

1: This user is somewhere in between; in this category we include users that post
some tweets related to the topic, but also a considerable number of unrelated
tweets

2: This user is very relevant; most of the user’s tweets are directly related to the
topic

7.1.3 Topic clustering: ground truths

To evaluate the topic clustering results, we prepare a primary ground truth consisting
of 175 Twitter users. The ground truth contains 4 main topics, which are further subdi-
vided into 11 subtopics. Each user belongs to one main topic and one subtopic. Since
our method takes slices of a topic hierarchy, we expect it to be able to discover both
clusterings, depending on the setting of the topic scope parameter γ. The topics are
distributed as follows:

• Computer science (50 users): iOS development (20 users), Web development
(15 users), Data Science (15 users)

56

Evaluation 7.1 Ground truths

Table 7.1: The 20 newsgroups dataset (20 topics over 6 subject matters).

comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x

rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey

sci.crypt
sci.electronics
sci.med
sci.space

misc.forsale
talk.politics.misc
talk.politics.guns
talk.politics.mideast

talk.religion.misc
alt.atheism
soc.religion.christian

• Sports (40 users): Soccer (10 users), Football (American) (10 users), Golf (10
users), Cricket (10 users)

• Cars (40 users): Cars (40 users)

• Politics (45 users): US politics (15 users), UK politics (15 users), Australian
politics (15 users)

Note that for topic cars, we could not distinguish any clear further subtopics, there-
fore we expect the same result for main and subtopic. For each user, the authors made
sure that the users were primarily interested in the subtopics defined above by manu-
ally checking their recent tweets. To make this process less laborious, some users were
collected from follower neighborhoods of well-known seed users for each subtopic
(e.g. @BarackObama for US politics, @BBCTopGear for cars, etc.). Others were
found through the keyword search function on Twitter. The result is a well-defined
ground truth that forms a good basis for comparison. The clusters have different sizes,
which was a deliberate choice; it allows us to evaluate performance when dealing with
asymmetric cluster sizes.

We prepare a second ground truth based on the 20 newsgroups dataset by Ken Lang
[34], which is a commonly used dataset in the field of document clustering [53]. This
dataset consists of over 20,000 posts across 20 newsgroups. These 20 newsgroups can
be roughly divided into 6 main subject matters (see table 7.1). Due to performance
limitations, we take a subset of 1800 randomly selected posts, evenly divided over
the 20 newsgroups (90 posts per group). This dataset differs from Twitter data in that
the text is generally well-structured and grammatically correct. However, posts can
be short: in the extreme case, a post may consist of only a single line. Our approach
requires an appropriate amount of context information (a portion of a user’s timeline)
for ontological expansion, which may not be available here, so we expect this to impact
performance of our method. For a more even comparison given this limitation to our
approach, we also prepare a second subset of all posts larger than 10.0 kilobytes in size
(there are 239 such posts).

57

7.2 Experimental methodology Evaluation

7.2 Experimental methodology

In this section, we describe the evaluation metrics we employ and the baseline ap-
proaches we will compare to. We evaluate user recommendation rankings and scoped
topical similarity using the normalized Discounted Cumulative Gain (nDCG) [29]
ranking based on the recommendation ranking and user relevance maps described in
the previous section, and topic clustering based on overlap between the clustering re-
sults and ground truths (we calculate accuracy and Matthew’s Correlation Coefficient,
or MCC [38]) and a graph entropy-based measure (normalized mutual information,
or NMI). We subsequently compare the obtained results to relation-based approaches
for user recommendation. For STS, we compare to the results of calculating topical
similarity using a traditional tf-idf-weighted term vector model. For scoped topic clus-
tering, we compare to latent Dirichlet allocation (LDA) and k-means clustering, and
for hierarchical clustering to hLDA and hierarchical k-means.

7.2.1 Evaluation metrics

To evaluate a ranking of users given relevance maps, we calculate the DCG according
to the formula

DCGk = rel1 +
k

∑
i=2

reli
log2(i)

, (7.1)

where k corresponds the top-k ranked users based on taxonomical similarity for the
user recommendation method, and based on unscoped topical similarity ST S0 for the
topic clustering method. reli is the relevance score assigned to the user at rank i.
Since we want to evaluate for different top-k, we will obtain different DCGk scores for
different k, therefore we need to use the normalized version of the DCG, nDCG:

nDCGk =
DCGk

IDCGk
. (7.2)

Here IDCG refers to the Ideal DCG, i.e. the maximum possible DCG until position k:

IDCGk = 2+
k

∑
i=2

2
log2(i)

. (7.3)

For topic clustering, since our method is already based on similarity, any cluster
similarity-based internal evaluation would give biased results. Therefore, we apply an
external clustering evaluation by representing our ground truths and cluster graphs as
truth tables containing true positives (T P), false positives (FP), true negatives (T N),
and false negatives (FN). Let Tk(ui) be the k-th topic cluster containing some user
ui. Then we can define the contingency table as in table 7.2. Using this table, we
can calculate the precision, recall and F1-score, as well as the Matthew’s Correlation
Coefficient (MCC) [38] for a topic clustering result over a collection of users U as
follows.

Precision =
T P

T P+FP
, Recall =

T P
T P+FN

, F1-score =
2 ·Precision ·Recall
Precision+Recall

(7.4)

58

Evaluation 7.2 Experimental methodology

Table 7.2: Determining true/false positives/negatives between the clustering result and
the ground truth.

Ground truth
Tk(ui) = Tk(u j) Tk(ui) 6= Tk(u j)

Clustering Tk(ui) = Tk(u j) T P FP
result G′γ Tk(ui) 6= Tk(u j) FN T N

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(7.5)

Note that precision, recall and F1 do not take into account true negatives. This
makes it susceptible to bias, since the T N:FN ratio gets increasingly skewed towards
more T Ns the more clusters we have. The MCC accounts for this bias by giving FPs
and FNs equal weight to T Ps and T Ns, taking on a value between -1 and 1, where a
value of 0 means the result is no better than random; towards -1 increasingly worse
than random; and towards 1 increasingly better than random (with 1 being a perfect
score).

Additionally, we evaluate according to an entropy-based measure: normalized mu-
tual information (NMI). This is a measure of the difference between the number and
sizes of the ground truth clusters with the resulting clusters, without regard for their
content (whether the right users have been assigned to the right clusters). It is calcu-
lated as follows:

NMI(X ;Y) =
∑

y∈Y
∑

x∈X
p(x,y) log

(
p(x,y)

p1(x)p2(y)

)
√(
− ∑

x∈X
p(x) log p(x)

)(
− ∑

y∈Y
p(y) log p(y)

) (7.6)

Here, the X and Y variables are substituted with representations of the ground truth
and clustering result. For details, refer to [66].

In order to evaluate full hierarchical clustering, we require some way to evaluate
each level of the hierarchy as a whole rather than separately in order to get an accurate
assessment of algorithm quality. We borrow the hierarchical F-score as introduced in
[30], and further recommended as a generally usable measure to evaluate hierarchical
classification algorithms in the survey presented in [59].

hP =
∑i | P̂i∩ T̂i |

∑i | P̂i |
, hR =

∑i | P̂i∩ T̂i |
∑i | T̂i |

, hF =
2 ·hP ·hR
hP+hR

(7.7)

Here P̂i is the set consisting of the most specific topic(s) predicted for user i and
all their ancestor topics and T̂i is the set consisting of the true most specific topic(s)
of user i and their ancestor topics. Although designed for the evaluation of document
classification (matching to an existing class hierarchy) rather than clustering (creating
an entirely new class hierarchy), the measure is flexible enough to be adapted for

59

7.2 Experimental methodology Evaluation

clustering by regarding each topic in our two-level ground truths as the target classes
we expect to see when clustering data hierarchically. This means that T̂i will always
have size 2. If a result cluster consists of more than one of the ground truth topics, we
consider this a new class not in T̂i; we continue clustering hierarchically until cluster
topics closely represent the topics defined in the lower layer of the ground truth in the
result. To judge this, we look at the top terms identified per topic for hLDA, and the
top labels generated for ST Sh.

7.2.2 Baseline approaches

Timeline analysis We will compare the taxonomical timeline analysis method with
different values for similarity threshold θs to each other, as well as to several baseline
approaches to showcase the merit of the proposed method over other methods. The
following baselines are applied:

• Tweet count score (TC): rank users simply based on the amount of tweets that
contained the keyword they posted.

• User influence score (UI): rank users based on the user influence score de-
scribed in section 4.1.

• TURKEYS score: rank users based on the TURKEYS score from equation 4.1.

Timeline analysis is performed on top of the user ranking based on TURKEYS
scores. We try θs = {0.1,0.2,0.3,0.4,0.5}. Note that the higher the similarity thresh-
old θs, the higher the number of users that we discard from the ranking, meaning we
need to process more than just the top 20 users even in the case of k = 20. We decide
to process at most the top 50 users. Usually, this does not lead to a sufficient amount
of resulting users for higher thresholds, so we stop at 0.5. Note, however, that even for
k = 5, we found no performance improvements beyond θs = 0.5 given the keywords
that we experimented with.

STS and topic clustering We compare our ST Sγ similarity calculation to two base-
lines: (1) traditional tf-idf-based cosine similarity, and (2) a similarity calculation
based on the simple taxonomical similarity of classes between users [62]. For (1),
we take all words in all tweets per user (after basic filtering), calculate the document
vectors with tf-idf component weights, and calculate the cosine similarity-based rank-
ing compared to the seed users. For (2), taxonomical similarity stax, we apply the
following formula between the seed user useed and each subject user ui:

s =
∑

c j∈cfseed∩cfi

min{cfseed(c j), cfi(c j)}

∑
c j∈cfseed

cfseed(c j)
. (7.8)

That is, we sum the class frequencies for all classes that useed and ui have in com-
mon, and then divide that by the sum of all class frequencies of all classes in useed .

We evalute four versions of our ST Sγ-based topic clustering, each using different
types of ontology information: Wikipedia resources only (ST Sγ,res), DBpedia/Schema.org

60

Evaluation 7.2 Experimental methodology

classes only (ST Sγ,DBpedia), YAGO types only (ST Sγ,YAGO) and all types combined
(ST Sγ). We compare all versions to four baselines:

1. Random clustering: we take the average of 100 random clusterings of the data.

2. Latent Dirichlet allocation (LDA): we apply LDA on text content (after basic
filtering). For Twitter, each user profile is considered one document. Since LDA
requires us set a number of topics, we calculate the results for 2 to 24 topics. We
cluster users into the topic to which LDA assigns them the highest probability.
We use the state-of-the-art LDA implementation that is part of the MALLET
package [39], with 800 iterations but otherwise default settings. We use 800
iterations since this finishes in roughly the same calculation time for 175 Twitter
users as our implementation of ST Sγ-clustering on our environment (around 67
seconds).

3. Twitter-LDA [74]: we apply the Twitter-optimized version of LDA as imple-
mented and described in [51] for an evaluation compared to the state-of-the-art
in Twitter topic modeling. We apply the same hyperparameter settings as regular
LDA, and maintain 800 iterations.

4. k-means clustering: we cluster the ST Sγ graph Gγ using standard k-means [21].
As with LDA, we calculate the results for the number of topics K ranging from
2 to 24 topics. For each K, we iterate 10 times and take the result for which
the within-cluster sum of squares (WCSS) is maximum (since we maximize on
cosine similarity):

argmax
T

K

∑
k=1

∑
t∈Tk

‖t−µk‖2 (7.9)

Here, T is the set of K topic clusters, and µk is the centroid vector of all trait
vectors ti of users ui ∈Uk that belong to topic cluster Tk ∈ T.

Lastly, we evaluate hierarchical clustering, where we apply our recursive topic
clustering strategy (algorithm 1) to generate a full topic hierarchy. We compare ST Sh
against two baselines:

1. Hierarchical latent Dirichlet allocation (hLDA): similar to the per-layer evalua-
tion, we use the state-of-the-art hLDA implementation that is part of the MAL-
LET package [39] to infer a topic hierarchy, with 800 iterations (we are not
aware of any Twitter-specific hierarchical LDA algorithm). hLDA requires a
hierarchy depth to be pre-determined; we set this to 3 (the first level of hLDA
consists of the full data, so 3 levels matches our ground truth).

2. Hierarchical k-means: we cluster the data hierarchically using the k-means al-
gorithm in a recursive fashion, with the expected number of topics at each level
as value for K (for the Twitter dataset, K = 4 for the first level, and K = 3 or
K = 4 depending on the number of subtopics expected). Since k-means works
stochastically, we iterate 10 times and average the result.

61

7.3 Parameter selection Evaluation

7.3 Parameter selection

There are a large number of parameters to set for both of our methods, and it is un-
clear which settings will yield the best results. We want to derive optimal parameter
settings that will provide good results on unseen data with high likelihood. To keep di-
mensionality of this optimization problem in check, we decide to tune the parameters
for the named entity recognizer and for the clustering method separately. Recall that
for entity recognition, we must tune the confidence parameter and the concatenation
window size. We perform a simple grid search over a discretized range of values to
find which parameter values give the best results on average when checked against the
nDCG relevance rankings. For topic clustering, we must first decide on a neutral topic
scope (an appropriate level of topic generality given γ = 0), then calibrate the remain-
ing variables around this by applying a hyperparameter optimization approach, using
grid search and a random selection-based cross-validation on the cluster ground truth
for regularization.

7.3.1 Named entity recognition parameter tuning

For NER, key parameters we need to decide on are (1) the confidence value of the
entity recognizer (DBpedia Spotlight); and (2) the size of the windows of concatenated
tweets. We determine a good confidence value using a simple grid search optimization.
We calculate the top-k nDCG rankings on both relevance map-based datasets in terms
of their seed users, for k ∈ {3,5,10,25,50} and for a range of values between 0 and 1
for the confidence parameter. For this initial experiment, we concatenate 10 tweets at
a time before applying NER. The results are shown in figure 7.1.

Figure 7.1: nDCG scores for different NER confidence settings for the iOS develop-
ment and cars datasets.

We see that the results are relatively close to each other. For top-50, which should
be least affected by random noise, all settings perform roughly equal with the exception
of the highest setting of 1. Given these results, we decide to keep the confidence value
at 0 – aside from giving the best results on average (by a small margin), in situations
where we have little content available the higher settings may no longer yield enough
classes to determine topic clusters accurately.

Additionally, we must decide on window sizes for concatenating tweets (recall that
the entity recognizer works by leveraging the surrounding context of source terms). We

62

Evaluation 7.3 Parameter selection

again experiment on both datasets, this time varying tweet window sizes between 3,
5, 10, 25 or 50 tweets. Results are shown in figure 7.2. Again, we see only minor
differences in the results. We set the tweet window to 10 tweets, which performed best
at larger sample sizes.

Figure 7.2: nDCG scores for different tweet window sizes for the iOS development
and cars datasets.

7.3.2 TURKEYS and class pruning settings

For calculating the TURKEYS score in the evaluation of recommendation based on
user relations, we need to define how to weight tweet count score TC vs. user influ-
ence score UI (equation 4.1). We will fix the weight w to 0.5, so that both scores are
weighed equally, as this weight was shown to perform the best on average in previous
experiments [46].

For the pruning of classes, described in section 4.2.2, we need to set a parameter
t as a cutoff threshold for mismatch removal, and a parameter p for the filtering of
generic classes. We set t to 0.1% of the total number of class occurrences, and p
to 100%, meaning there should be at least as many direct sub-class occurrences as
the number of occurrence of their super-class as a condition to remove this super-
class. Again, experimentation showed that these values resulted in reasonable topic
representations (not too many or too few classes, not too broad or too specific classes),
but a more detailed investigation is needed in order to find optimal values.

Lastly, we need to set the similarity threshold θs to decide tweeting consistency of
users for the final taxonomical analysis step. Given that the evaluation of this step is
the focus of this work, we will experiment with different values to determine which
provides the best result on average.

7.3.3 Class frequency distribution and trait cut-off threshold θ

The combined distribution of class frequencies over our ground truth of 175 users with
500 tweets each is plotted in figure 7.3. As is evident, class occurrences are skewed at
the tail-end of the distribution, with almost 10% of all unique classes occurring 10 or
less times. Classes with small occurrence numbers lead to negligible contributions to
the cosine similarity, therefore consider it safe to prune the trait vectors up to a certain
trait cut-off threshold θ to reduce the sparsity and dimensionality of data. Which value
of θ would be best is not immediately clear. Along with the previously introduced τ and

63

7.3 Parameter selection Evaluation

Figure 7.3: The combined class frequency distribution for 175 Twitter users with 500
tweets each. There were 1,535,108 classes found in total.

α, this variable is the last of three dependent variables that we set by hyperparameter
optimization.

7.3.4 Hyperparameter optimization and scope calibration

We apply a hyperparameter optimization approach to calibrate θ, τ and α around a
neutral topic scope γ = 0. This is necessary since all four variables are dependent on
one another. Since our dataset is not that large, and we have only three dimensions, it
is feasible to apply a grid search on the parameters – that is, check each combination
exhaustively within a reasonable discrete range of possibilities. We can make surface
plots to visually determine appropriate values. We test the following parameter ranges:

• Trait cut-off threshold: θ = {0.0,0.001, ...,0.01}

• Similarity threshold: τ = {0.0,0.01, ...,0.1}

• Highly-connectedness parameter: α = {2,3,4,5,6}

Next, we need a data set and some fitness function to optimize on. We choose to
use our cluster ground truth of 175 users, testing the MCC score of the resulting cluster
graphs compared to the 11 subtopics we defined in the ground truth. This means that
our method gets calibrated to the extent that γ = 0 will detect topic clusters roughly
corresponding to the scope expressed by these 11 subtopics. This choice is made
for both intuitive and practical reasons. Intuitively, the subtopics represent a mid-
level position in the hierarchy: given a topic such as Football, it is easy to come up
with topics that are more general (“Sports”→ “Activity”) and more specific (“Premier
League clubs” → “Arsenal F.C.”). Practically, we need a concrete ground truth to
perform the calibration, and our 11-topic testset is the most comprehensive we have
available.

64

Evaluation 7.3 Parameter selection

To avoid overfitting, we must incorporate some form of regularization, such as
cross-validation. However, since our approach does not involve a training phase, we
cannot split the data into a training set and test set as with traditional cross-validation.
Therefore, we regularize using random-fold cross-validation in the following way:

1. For each parameter combination, do the following 50 times:

a) Take 7 out of 11 sub-topics from the ground truth uniformly at random

b) For each sub-topic, take between 50-100% of the users assigned to that
topic uniformly at random

c) Apply the approach from start to end to these users and calculate the MCC
of the resulting cluster graph G′0 in comparison to the reduced, 7-topic
ground truth

2. Take the average of the 50 iterations as the final MCC value

In figure 7.4, we have plotted the resulting MCC value surfaces for all combina-
tions of θ and τ, with each graph keeping α fixed at one of 2, 3, 4 or 5. For α = 6,
the results were very clearly substandard to the other parameters, so we omitted the
surface plot here. It is now important to pick a combination of values that has a high
probability of yielding a good result when dealing with new, unseen data. In other
words, we must take care to choose values so that the area around combinations of
θ and τ – and from one α to the next – is of consistently good quality. This leads
to a higher probability that the results are reproducible. The values that best fit this
condition are θ = 0.003, τ = 0.07, and α = 4. These will be the values we will use in
the coming experiments where we compare our approach to baselines and established
approaches.

Standard deviation and standard error of folds Regularizing the parameter selec-
tion only works if the cross-validation is adequate given the size of the testset. Since
our testset of 175 users is rather small, it is not immediately clear if our random-fold
cross-validation is reliable. Recall that for each parameter combination, we take the
average score of 50 iterations on random selections of topics and users. For a reliable
method, we expect that scores between iterations do not fluctuate in a random or other-
wise significant way. In other words, by calculating the average standard deviation and
margin of error of the sampling, we can obtain a statistical measure of the reliability
of the hyperparameter optimization.

We calculated the standard deviation σ of 50 iterations for all parameter combina-
tions as described above. There are 11× 11× 4 = 484 such parameter combinations.
The resulting distribution function of standard deviations is plotted in figure 7.5.

In order to calculate the standard error from these standard deviations, we can
construct the 95% confidence interval for the average standard deviation. The average
standard deviation is best calculated by taking the square root of the mean of variances
σ2:

σ =
√

σ2 =
√

0.0067≈ 0.08 (7.10)

65

7.4 Experimental results Evaluation

Figure 7.4: MCC surface plots for varying values of θ and τ. From top-left to bottom-
right, α = 2, α = 3, α = 4 and α = 5. Each MCC data point is the average over 20
iterations with semi-random cluster selections.

It follows that the 95% confidence interval is [−0.08× 1.96,+0.08× 1.96]. See
figure 7.6. This result means that we can say with 95% confidence that the resulting
mean MCC score for a given parameter combination lies within approximately -0.157
and 0.157 of the true mean MCC score. Since MCC ranges from -1 to 1, this is a
standard error of around 7.8%. This is a reasonable enough value to conclude that the
hyperparameter optimization is adequate.

7.4 Experimental results

In this section, we will show the experimental results for each of the methods. Section
7.4.1 details the results for timeline analysis. For topic clustering, section 7.4.2 shows
the topical similarity results and section 7.4.3 the hierarchical topic clustering results.

7.4.1 Experimental results: timeline analysis

First, we show the evaluation for enhancing user recommendation based on user rela-
tions with a taxonomical similarity approach. The results for the four keywords that
we investigated are listed below. In case not enough users could be gathered for the
taxonomical analysis approach, the result is left empty in the charts.

Figure 7.7 shows the result for keyword(s) mars rover ∪ curiosity rover. We can
see a significant improvement in nDCG scores for the taxonomical analysis approach,
especially for higher similarity thresholds. Although for a top-20 ranking, we can no

66

Evaluation 7.4 Experimental results

Figure 7.5: Distribution of standard deviations for each fold of the cross-validation. To
save space, a long tail of outliers on the right side of the graph have been aggregated
as > 0.14.

Figure 7.6: The 95% confidence interval of standard deviations. In other words, 95%
of measurements fall within roughly -0.157 and 0.157 of the real mean MCC.

67

7.4 Experimental results Evaluation

Figure 7.7: Results for keyword mars rover ∪ curiosity rover.

longer obtain a sufficient amount of users past θs = 0.2, even θs = 0.1 and θs = 0.2
already outperform the baselines.

For the results of keyword genetically modified in figure 7.8, we see a peak in
performance at a θs value of 0.2. For this keyword, it is more difficult to obtain a
sufficient amount of users, as the topic of genetically modified foods and animals is
much less focused than the mars rover, making it harder to concretely define a topic
covering and determine whether two coverings are similar. Again, there are significant
improvements to be seen for k = 5 and k = 10. For k = 20, however, tweet count
performs best.

Results for keyword malware are shown in figure 7.9. Performance of the taxo-
nomical approach is equal to the tweet count score for k = 5, and inferior to tweet
count score and TURKEYS for k = 10 and k = 20. We found that the topic of malware
is consistently captured into the same classes (most often occurring classes are Soft-
ware, ComputerSecuritySoftwareCompanies and ComputerCrimes), making it easy to
end up with enough users even at high thresholds. We discuss an explanation for the
poor performance for this keyword in the next section.

Lastly, figure 7.10 shows the result for keyword nuclear power. We can see that
all methods perform well in terms of absolute nDCG score. For k = 5 and k = 10, the
proposed approach with θs at 0.1 or 0.2 is the best performer. For k = 20, tweet count
score performs best again, although θs = 0.1 comes very close. For this keyword, it is
again difficult to obtain enough users for k = 10 and k = 20 at higher thresholds, for
the same reasons as keyword genetically modified.

68

Evaluation 7.4 Experimental results

Figure 7.8: Results for keyword genetically modified.

Figure 7.9: Results for keyword malware.

69

7.4 Experimental results Evaluation

Figure 7.10: Results for keyword nuclear power.

7.4.2 Experimental results: topical similarity

We now evaluate the topical similarity portion of our approach in terms of two nDCG
rankings to seed users with known interests (iOS development and cars), as explained
in section 7.2.2. These evaluations will be similar to the entity recognition confi-
dence and tweet window experiments, although this time we compare the quality of
our ST Sγ-based rankings to the two baseline approaches: (1) traditional tf-idf-based
cosine similarity, and (2) taxonomical similarity of classes between users [62].

We again evaluate by comparing the top-k nDCG rankings, for k∈ {3,5,10,15,20,
25}. Since the baseline methods do not incorporate topic scope, we keep γ fixed to 0
for a fair comparison. The results are plotted in figure 7.11. A consistent improvement
of roughly 15% on average over the second-best baseline approaches (taxonomical for
iOS development, tf-idf for cars) can be observed. We leave further interpretation and
discussion of these results for the discussion section 7.5.

Figure 7.11: nDCG scores for different similarity calculation approaches for the iOS
development and cars datasets.

70

Evaluation 7.4 Experimental results

Figure 7.12: Results for ST Sγ-clustering on the 4-topic Twitter ground truth.

Figure 7.13: Results for ST Sγ-clustering on the 11-topic Twitter ground truth.

7.4.3 Experimental results: topic clustering

In this section we detail the results for scoped and hierarchical topic clustering. First,
we show the scoped clustering results we obtained for the Twitter dataset, followed by
the results for the newsgroups datasets. We conclude with an evaluation of hierarchical
clustering.

Twitter dataset We apply ST Sγ-clustering for the Twitter ground truth, distinguish-
ing between 4 topics and 11 sub-topics that we aim to cluster the same set of 175
users in. The goal is to be able to cluster into the right 4 main topics or the right
11 sub-topics depending on our desired topic scope setting. The P/R/F1, NMI and
MCC scores are calculated for a range of topic scope parameter γ values between -1
and 1, in increments of 0.1. The results are compared to random clustering, LDA and
Twitter-LDA-based clustering, and k-means clustering.

71

7.4 Experimental results Evaluation

For ST Sγ, for both the 4-topic and 11-topic testsets, a progression of the F-score,
NMI and MCC metrics (lines) and the number of topics they yielded (columns) for
different topic scopes (x-axis) is plotted in figures 7.12 and 7.13. The same metrics
for LDA, Twitter-LDA and k-means, trying topic selections from 2 to 24, are plotted
in figures 7.14, 7.15 and 7.16, respectively. Table 7.3 shows a summary of the best
values with corresponding settings that were obtained for each method. This summary
includes the best results for all 4 versions of our method: resources-only (ST Sγ,res),
DBpedia/Schema.org classes only (ST Sγ,DBpedia), YAGO types only (ST Sγ,YAGO) and
all types combined (ST Sγ. Tables 7.4 and 7.5 list topic labels discovered for the best
results: terms with highest probability per topic for Twitter-LDA, and top class labels
calculated as described in section 4.3 for ST Sγ-clustering. k-means clustering does not
provide topic labels.

Figure 7.14: Results for LDA-based clustering on the Twitter ground truth.

Figure 7.15: Results for Twitter-LDA-based clustering on the Twitter ground truth.

Figure 7.16: Results for k-means clustering on the Twitter ground truth.

Looking at the results in figures 7.12 and 7.13, we observe an expected progression
in terms of the number of topics detected: the higher the topic scope, the less topic
clusters we find. For the 4-topic testset, the best result in terms of the MCC score

72

Evaluation 7.4 Experimental results

Table 7.3: Summary of optimal results for the random clustering baseline, LDA,
Twitter-LDA, k-means and our ST Sγ-clustering method with different ontology class
selections.

175 Twitter users, 4-topic testset
Precision Recall F-score NMI MCC Topics

Random 0.248 0.250 0.249 0.885 -0.001 4

LDA 0.870 0.722 0.789 0.806 0.733 5

Twitter-LDA 0.877 0.767 0.819 0.772 0.767 5

k-means 0.663 0.887 0.759 0.729 0.677 3

ST S0.7 0.945 0.840 0.889 0.711 0.858 6

ST S0.3,res 0.972 0.633 0.767 0.787 0.736 9

ST S0.8,DBpedia 0.926 0.824 0.872 0.781 0.836 7

ST S0.6,YAGO 0.959 0.807 0.876 0.611 0.846 7

175 Twitter users, 11-topic testset
Precision Recall F-score NMI MCC Topics

Random 0.110 0.092 0.100 0.769 0.001 11

LDA 0.799 0.552 0.653 0.777 0.632 15

Twitter-LDA 0.736 0.822 0.777 0.732 0.749 9

k-means 0.819 0.810 0.814 0.864 0.791 14

ST S0 0.700 0.947 0.805 0.686 0.788 9

ST S0.35,res 0.791 0.794 0.793 0.768 0.767 6

ST S−0.1,DBpedia 0.484 0.938 0.639 0.677 0.621 8

ST S0.35,YAGO 0.655 0.927 0.768 0.735 0.748 9

Table 7.4: Top topic labels discovered for the best results for the 4-topic testset (top
terms per topic for Twitter-LDA with 5 topics, top traits per cluster for ST Sγ).

4-topic set Twitter-LDA terms ST S0.7 classes

Computer Science 1: swift, ios, app
2: data, bigdata, big

1: Big_data, EmergingTechnologies, Web_analytics
2: Model, ProgrammingLanguagesCreatedIn1995, IOS

Sports golf, game, win
1: Cricketer, NationalCricketTeams, SoccerPlayer
2: GolfPlayer, PGATourGolfers, Golfer

Cars car, f1, ferrari CarManufacturer, SportsCarManufacturers, Coupes

Politics auspol, people, obama Statesman, NationalLeaders, PoliticiansFromSydney

73

7.4 Experimental results Evaluation

Table 7.5: Top topic labels discovered for the best results for the 11-topic testset (top
terms per topic for Twitter-LDA with 9 topics, top traits per cluster for ST Sγ).

11-topic set Twitter-LDA terms ST S0 classes

iOS development swift, ios, app -

Web development - Model, RichInternetApplicationFrameworks, IOS

Data Science data, bigdata, big Big_data, EmergingTechnologies, Data

Soccer - FootballClubsInEngland, FIFAWorldCupPlayers

Football good, game, day
AmericanFootballLeagueTeams,
GridironFootballPlayer, AmericanFootballPlayer

Golf golf, cup, rydercup GolfPlayer, PGATourGolfers, AmericanGolfers

Cricket ausvind, cricket, india -

Cars car, f1, ferrari CarManufacturer, Coupes, SportsCarManufacturers

US politics obama, president, people
DemocraticPartyUSSenators,
AmericanLegalScholars, HarvardLawSchoolAlumni

UK politics labour, people, nhs NationalistPartiesInTheUK, UKIndependenceParty,
ConservativePartiesInTheUK

Australian politics auspol, abbott, australia PoliticiansFromSydney, AustralianPoliticians,
AustralianRhodesScholars

is a scope of γ = 0.7 (6 topics found), and for the 11-topic set a scope of γ = 0.0 (9
topics found). For LDA, Twitter-LDA and k-means in figures 7.14, 7.15 and 7.16, the
progression looks similar (although reversed). For LDA we get the best results for 5
topics and 15 topics respectively; for Twitter-LDA, for 5 and 9 topics; and for k-means,
for 3 and 14 topics.

Regarding the different versions of ST Sγ used, we see a somewhat expected result:
using only DBpedia classes (of which there are few and they are generic) we do well
at discovering the generic topics but does poor at specific topics; using only resources
we see the opposite result. Using only YAGO classes and using all classes combined
do well at both parts, with ST Sγ outperforming ST Sγ,YAGO by a small margin.

Overall, our best-performing method, ST Sγ, outperforms standard LDA by 17%
for 4 topics and by 26% for 11 topics, and Twitter-LDA by 11.9% for 4 topics and
by 5.2% for 11 topics. ST Sγ outperforms k-means by 26.7% for the 4-topic testset,
but performs roughly equal for the 11-topic testset. This conspicuous result can be
explained by the fact that k-means does not take any topic hierarchy into account;
we discuss this further in the discussion section (5.6). Lastly, the random baseline

74

Evaluation 7.4 Experimental results

Figure 7.17: Results for ST Sγ-clustering on the 6-subject testset of the 1800 newsgroup
articles.

performs as expected, with the MCC score hovering around 0.

We now look at the discovered topics and their labels for the best results, taking
the top terms for Twitter-LDA and using our topic labeling technique described in sec-
tion 4.3 to find the top classes for ST Sγ. From table 7.4, we see that for the 4-topic
set, the best Twitter-LDA result (5 topics) has wrongly split Computer Science into
two sub-topics. For ST S0.7, Computer Science and Sports are erroneously split up into
sub-topics. Upon inspection of the ontologies for the Sports-related topics and entities,
we find that many entities simply do not link to a “Sports” class: in fact, there is no
such class in the YAGO hierarchy. For Soccer, for example, common entities found
in tweets are team names. Entities such as “Arsenal F.C.” expand to “PremierLeague-
Club”→ “Club”→ “Association”→ ... , never reaching a class that could identify it
with Sports. This is why we only see “CricketTeams”, “SoccerPlayer”, “Golfer”, etc.
in our result.

Looking at table 7.5 for the 11-topic testset, we see that for the best Twitter-LDA
result (9 topics), the Web development and Soccer topics have not been properly iden-
tified. For ST S0, we fail to identify Cricket, and iOS development gets erroneously
(although the two topics are highly related) combined with the Web development clus-
ter, as is evident from the “iOS” label. Of note is that ST Sγ, unlike LDA, correctly
distinguishes between Soccer and Football.

Not listed are the top terms found for topics using standard LDA. These were gen-
erally similar to the terms Twitter-LDA found, but contained a number of extra “noise”
topics, containing words such as “great”, “today”, “make”. This noise was successfully
filtered out by Twitter-LDA, explaining its better performance over standard LDA.

75

7.4 Experimental results Evaluation

Figure 7.18: Results for ST Sγ-clustering on the 20-topic testset of the 1800 newsgroup
articles.

Newsgroups dataset Next, we apply the same methods with the same settings to
two configurations of the newsgroups dataset. We consider clustering in either the 6
subject matters or in the full 20 newsgroups (see table 7.1). First, we try the set of
1800 newsgroup posts consisting of 90 posts evenly and randomly taken from each
newsgroup. The ST Sγ, LDA, Twitter-LDA and k-means results are plotted in figures
7.17, 7.18, 7.19, 7.20 and 7.21. The best results, including a comparison to the random
baseline, are summarized in table 7.6. We omit the clearly inferior versions of ST Sγ

for this evaluation, comparing only the variant using all types of ontology classes.

Figure 7.19: Results for LDA-based clustering on the 1800 newsgroup articles.

As expected, we see that results in terms of absolute F-score and MCC are sig-
nificantly poorer compared to the Twitter dataset when we aim to detect all 20 topics,
some of which we lack enough information about due to the brevity of posts. For
the 6-subject test set, however, ST Sγ still manages to outperform (Twitter-)LDA, but

76

Evaluation 7.4 Experimental results

oddly enough it does so for lower topic scopes. ST S-1 found 12 topics, while LDA
and Twitter-LDA gave wildly different results at 2 and 9 topics respectively. k-means
peaked at 13 topics, but with a significantly lower score. A likely reason for the poor
performance of LDA is that the cluster sizes for the 6-subject testset are very un-
even, ranging from 90 to 450 documents (see table 7.1): this is a known weakness
of LDA, which is biased towards even-sized clusters. This is especially visible in the
NMI scores for the 20-topic testset: both LDA variants score highly here due to all
20 clusters having roughly the right sizes (interestingly, the random clustering has a
significantly higher NMI than even LDA: this makes sense, since we distribute nodes
uniformly at random over 20 topics, and take an average of 100 iterations, leading to a
very even distribution).

Figure 7.20: Results for Twitter-LDA-based clustering on the 1800 newsgroup articles.

Figure 7.21: Results for k-means-based clustering on the 1800 newsgroup articles.

For 20-topics, standard LDA performs best, with a very significant improvement
over the Twitter-specific version. ST Sγ performs very poorly here. We interpret these
results in more detail later.

77

7.4 Experimental results Evaluation

Table 7.6: Summary of optimal results for the 1800 newsgroup article dataset.

1800 Newsgroup posts, 6-subject testset
Precision Recall F-score NMI MCC Topics

Random 0.190 0.167 0.177 0.684 0.000 6

LDA 0.289 0.786 0.423 0.506 0.262 2

Twitter-LDA 0.488 0.345 0.404 0.664 0.300 9

k-means 0.373 0.352 0.362 0.648 0.219 13

ST S-1 0.334 0.760 0.464 0.526 0.321 12

1800 Newsgroup posts, 20-topic testset
Precision Recall F-score NMI MCC Topics

Random 0.050 0.051 0.050 0.873 0.001 20

LDA 0.282 0.370 0.320 0.820 0.283 20

Twitter-LDA 0.239 0.254 0.246 0.833 0.206 25

k-means 0.167 0.259 0.203 0.801 0.156 27

ST S-0.6 0.099 0.862 0.177 0.504 0.198 18

Figure 7.22: Results for ST Sγ-clustering on the 6-subject testset of the newsgroup
articles larger than 10.0 kb.

78

Evaluation 7.4 Experimental results

Figure 7.23: Results for ST Sγ-clustering on the 20-topic testset of the newsgroup arti-
cles larger than 10.0 kb.

Figure 7.24: Results for LDA-based clustering on the newsgroup articles larger than
10.0 kb.

Next, we try the set of 239 newsgroup posts larger than 10.0 kilobytes in size. The
ST Sγ, LDA and k-means results are plotted in figures 7.22, 7.23, 7.24 and 7.25. The
best results, including a comparison to the random baseline, are summarized in table
7.7.

This time, results in terms of the absolute MCC score are higher, as expected; both
for LDA, but especially for ST Sγ and k-means. The ST Sγ-based approach outperforms
LDA and k-means for the 6-subject testset again, with 12 topics detected at a topic
scope of γ = 0.3. All methods performs roughly equal now for the 20-topic testset,
which is a big improvement for ST Sγ over the 1800 posts dataset. We note that we
find the best result for the 20-topic testset with the topic scope parameter γ set to 0.0,
yielding 15 topics; this is the same setting for which we had the best result for the
Twitter 11-topic testset, which yielded 9 topics. γ = 0.0 yielded 15 topics for the 1800
newsgroup post set as well. This is an encouraging result that shows that, using ST Sγ-
clustering, we do not have to know how many topics there are, nor does the size or

79

7.4 Experimental results Evaluation

Table 7.7: Summary of optimal results for the larger than 10.0 kb newsgroup article
dataset.

Newsgroup posts larger than 10 kilobytes, 6-subject testset
Precision Recall F-score NMI MCC Topics

Random 0.213 0.164 0.186 0.756 0.000 6

LDA 0.683 0.319 0.434 0.718 0.387 12

Twitter-LDA 0.528 0.731 0.613 0.669 0.497 4

k-means 0.756 0.377 0.503 0.647 0.457 15

ST S0.3 0.669 0.467 0.550 0.744 0.465 12

Newsgroup posts larger than 10 kilobytes, 20-topic testset
Precision Recall F-score NMI MCC Topics

Random 0.092 0.048 0.063 0.778 0.000 20

LDA 0.683 0.497 0.576 0.761 0.548 17

Twitter-LDA 0.562 0.564 0.563 0.765 0.518 14

k-means 0.537 0.619 0.575 0.751 0.530 15

ST S0 0.512 0.688 0.587 0.773 0.546 15

content of the dataset matter; we can specify a desired topic scope, and automatically
discover roughly the number of topics that exist at that scope.

Figure 7.25: Results for k-means-based clustering on the newsgroup articles larger
than 10.0 kb.

Hierarchical topic clustering Lastly, we will evaluate hierarchical clustering. We
use the Twitter ground truth to try and cluster 175 Twitter users into a full hierarchy that
contains both the 4 main topics and the 11 subtopics. For ST Sγ, we use our recursive
topic clustering algorithm (see algorithm 1), starting at the clustering that gave the best
results for the 4-topic testset (ST S0.7). We compare against hierarchical LDA (hLDA)

80

Evaluation 7.4 Experimental results

Table 7.8: Summary of optimal results for hierarchical topic clustering.

175 Twitter users, 4 main and 11 sub-topics
hP hR hF Levels Topics per level

hLDA 0.633 0.543 0.585 3 L1: 1, L2: 6, L3: 16

Hier. k-means 0.696 0.763 0.728 2 L1: 4, L2: 11

ST S0.7,recursive 0.877 0.837 0.857 3 L1: 6, L2: 8, L3: 2

and hierarchical k-means, which we apply in the manner described in section 7.2.2.
We also initialize hierarchical k-means to the best 4-topic clustering. hLDA requires
no initialization; instead we fix the depth to 3 levels. We evaluate the results using
hierarchical precision, recall and F-score as explained in section 7.2.1. The results are
summarized in table 7.8. Table 7.9 gives an overview of the actual topic hierarchies
created for hLDA and ST Sh (k-means does not support topic labeling), detailing the
location of each cluster within each hierarchy using a number-based notation.

We see that ST Sh gives the most accurate results, followed by hierarchical k-means.
We found that even with 800 iterations, hLDA was unable to converge to the appro-
priate number of topics, leading to a poor hF score. hLDA could not detect a single
topic of the 4 topics in the top layer accurately: either the clusters in level 2 consisted
of more than 1 of the topics (e.g. cluster 1 of level 2 in table 7.9 comprised both cars
and computer science), or of the topics we expected in the lower half of the hierarchy.

Statistical significance of results In [19], it is shown that given a sample of the full
collection of users/documents (i.e. our ground truths), and p the true proportion of
samples produced that is correct (which is unknown), n the size of the sample used
to approximate p (the size of the ground truths: in our case 175 for Twitter users,
and 1800 and 239 for each newsgroups set respectively) and P̂ the approximation of p
based on the ground truth, then this approximation lies in the interval

P̂ ∈ [p−δ, p+δ] where δ =
1√
n

(7.11)

with 95% confidence. δ is thus the 95% confidence margin of error for the result.
For example, if one result falls within this range of another result, then these two results
do not differ sufficiently from each other in order for us to state with certainty that one
is better than the other. We can apply this calculation on the resulting MCC scores
for each approach to verify their statistical significance: we want to make sure that a
good result according to the ground truth is sufficiently generalizable to a good result
on larger, unseen data, and that an improvement of our method over the baselines is
actually significant enough to draw conclusions about it.

For the Twitter users, we have n = 175, so the margin of error δ becomes 1√
175

=

0.076. Referring back the summary of results in table 7.3, we can conclude that for the
4-topic testset, our ST Sγ-clustering gives a significant improvement over the baselines
– the smallest difference, between ST Sγ and Twitter-LDA, is 0.858−0.767 = 0.091 >
0.076. For the 11-topic testset, our method again provides a significant improvement

81

7.4 Experimental results Evaluation

Table 7.9: Clusters discovered at each level L for hierarchical clustering (top terms per
topic for hLDA, top traits per cluster for ST Sh). The numbers represent the level and
position each cluster was located in the hierarchy.

L hLDA topics ST Sh topic clusters

1 1: good, time, great

1: Big_data, EmergingTechnologies, Web_analytics
2: Model, ProgrammingLanguagesCreatedIn1995, IOS
3: Cricketer, NationalCricketTeams, SoccerPlayer
4: GolfPlayer, PGATourGolfers, Golfer
5: CarManufacturer, SportsCarManufacturers, Coupes
6: Statesman, NationalLeaders, PoliticiansFromSydney

2

1.1: car, cars, bmw
1.2: byu, game, coach
1.3: australia, today, minister
1.4: ballondor, live, fifa
1.5: data, learning, science
1.6: wt, pakvnz, pakistan

2.1: DistributedFileSystems, Apache_Hadoop, Run_batted_in
2.2: WebApplicationFrameworks,
RichInternetApplicationFrameworks, Swift
3.1: NationalFootballLeagueTeams, GridironFootballPlayer,
AmericanFootballPlayer
3.2: FootballClubsInEngland, PremierLeagueClubs,
FootballClubsInLondon
3.3: CricketersAtThe2011CricketWorldCup,
NationalCricketTeams,
IndiaTestCricketers
6.1: RepublicanPartyStateGovernorsOfTheUnitedStates,
UnitedStatesAirForceOfficers,
Patient_Protection_and_Affordable_Care_Act
6.2: PoliticiansFromSydney, AustralianPoliticians,
AustralianLeadersOfTheOpposition
6.3: NationalistPartiesInTheUnitedKingdom,
UK_Independence_Party,
ConservativePartiesInTheUnitedKingdom

3

1.1.1: swift, ios, app
1.1.2: vettel, webber, video
1.1.3: gsl, youtube, http
1.2.1: cowboys, bro, mfjs
1.3.1: auspol, abbott, manus
1.3.2: spotmyride, spotted, ferrari
1.4.1: golf, rydercup, year
1.4.2: league, goal, goals
1.5.1: obama, people, president
1.5.2: indyref, labour, scotland
1.5.3: car, ford, cars
1.5.4: data, bigdata, big
1.5.5: porsche, atlanta, photo
1.5.6: initializr, yelp, css
1.5.7: http, eurotour, sqcom
1.6.1: ausvind, india, cricket

2.2.1: CascadingStyleSheets, Sheet, WebDev
2.2.2: OS_X, Swift, Macintosh

82

Evaluation 7.5 Results discussion

over LDA, but the difference between ST Sγ and Twitter-LDA lies within the margin
of error (0.039 < 0.067): we cannot state that one method is better than the other with
95% confidence. Similarly, results for ST Sγ and k-means can be considered equivalent,
which is in line with our earlier observations, and subject of discussion in the next
section.

For the main newsgroup dataset, δ = 1√
1800

= 0.024. Due to the size of this testset,
we obtain a much smaller margin of error compared to the set of Twitter users. Re-
ferring back to table 7.6, we see that all pair-wise results are statistically significant.
Finally, for the set of newsgroup posts larger than 10kb, we obtain δ = 1√

239
= 0.065.

From table 7.7, we learn that for the 6-subject testset, the improvement of ST Sγ over
LDA is significant again, but we cannot make conclusions about the difference with
Twitter-LDA and k-means clustering. For the 20-topic testset, we see that all results
(excluding random) are essentially equivalent.

7.5 Results discussion

In this final section, we discuss the impact and implications of the results we obtained
in greater detail. We first discuss the user recommendation method results, followed
by the topic clustering method results.

7.5.1 Enhancing user recommandation

For most of the keywords analyzed and top-k values evaluated, our results show an
improvement over the baseline approaches. Keyword mars rover, focusing on a very
specific topic shows the most significant improvement. There are two main reasons
for this. First, a specific topic is easier to model consistently, as the same specific set
of classes tend to be associated to related entities (most commonly occurring classes
are NASAProbes and TerrestrialPlanets, which would never appear in a more general
context). Second, due to the popularity of the rover among the general public, many
users not truly interested in Mars may mention the rover in passing when news con-
cerning it is released, but are not consistently talking about the rover or Mars-related
topics, making approaches that do not take tweeting consistency into account select
the wrong users.

For “genetically modified” and “nuclear power”, improvements are less significant
but still visible, as these topics are more generic and thus more difficult to concretely
define in terms of Wikipedia classes.

For “malware”, performance is equal to the best baseline for k = 5, but worse for
k = 10 and k = 20, where tweet count and TURKEYS outperform it. This can be ex-
plained by the fact that a large portion of the top users for “malware” seem to be either
news aggregation bots that automatically post malware related topics (such as discov-
eries of new viruses, exploits or security holes), or users that automatically retweet
these bots. These users typically have very high tweet counts. Since the taxonomical
analysis approach is not perfect, it is incorrectly excluding some valuable users from
the ranking.

Compared to the experiments performed in our previous work, on average the
results obtained with the TURKEYS ranking are somewhat worse. This is because the

83

7.5 Results discussion Evaluation

TURKEYS mechanism relies on the existence of a tightly knit user community and
the mentions and retweets among them. This works particularly well when processing
Japanese twitter users who are concentrated in a single location, use the same language
and share the same culture, but it appears to be less effective on a global scale.

7.5.2 Scoped topical similarity and clustering

For Social Web content, our ontology-assisted topical similarity calculation and graph-
based ST Sγ-clustering results show a significant improvement over traditional tf-idf
weighting, LSA-based topic modeling such as LDA and Twitter-LDA and common
document clustering approaches such as k-means clustering. An important reason for
the poor performance of tf-idf and LDA is the absence of overlapping terms due to
the high dimensionality (and therefore high sparsity given the limited and noisy con-
tent on the Social Web) of the term vector space compared to our trait vector space.
For k-means, despite using the same similarity calculation to construct graph Gγ as
our ST Sγ-clustering, γ was fixed to 0, which we found discovered appropriate top-
ics at roughly the scope expressed by the 11-topic testset. However, even though we
could force k-means to cluster the graph into 4 topics, it performed poorly in terms of
F-score and MCC for the 4-topic testset. This is because k-means clustering does not
take the existence of a latent topic hierarchy into account: the topology of the graph G0
is shaped with a bias towards how many topics exist within the data at that particular
topic scope. These results make clear the advantages of a hybrid approach – hierar-
chical topic modeling combined with graph-based community detection – compared
to traditional methods.

For regular documents, we see that our ontology-assisted topic modeling approach
yields results that are on par with LDA only when there is enough content available per
document. It appears that ontologically expanding text content only works well when
there is enough context information available – when the dataset contains many doc-
uments that sometimes consist of only one sentence, such as with the 20-newsgroups
dataset, ST Sγ-clustering gives poor results. This is a significant weakness of our ap-
proach. This is in line with results reported in [15]. Topic modeling approaches that
iterate over the whole dataset when deriving a model, such as LDA, work better in
these cases.

When there is enough content per document – as was the case for the dataset of
newsgroup posts over 10.0 kb in size – ontology-assisted topical similarity as em-
ployed in ST Sγ-clustering and k-means performs roughly equivalent to document-level
word co-occurrence as employed in LDA. This is not a surprising result, since the
newsgroup posts use more formal language and contain less noise than their Twitter
counterparts, leading to more word overlap between documents.

Another reason for discrepancies is due to the (un-)evenness of clusters. Our clus-
tering algorithm can deal with uneven clusters well, since clusters are determined
solely based on the degree of similarity and number of similar users in the dataset.
LDA is biased towards evenly sized topics, and it is very difficult for the method to
detect topics of vastly different sizes, unless some form of iterated hyperparameter
optimization is employed. In comparison to our approach, LDA gave the overall best
result when dividing the 1800 newsgroup posts into 20 topics; this is the only dataset
where all desired clusters are of even size (90 documents per cluster).

84

Evaluation 7.5 Results discussion

Table 7.10: qualitative comparison between the LDA and k-means baselines and ST Sγ-
clustering.

LDA Twitter-LDA k-means ST Sγ-clustering

Perf. on Social content - + +- ++

Perf. on documents ++ + +- +

Pre-defined topics Yes Yes Yes No

Hierarchical topics Yes Yes No Yes

Topic labels Top terms Top terms None
Top classes
(machine-readable)

Time complexity O(nkvi) O(nkvi) O(nkci j) O(n2c+n3 logn)

A important observation is that classes from our trait vectors originally form a con-
crete hierarchy; this is not the case for terms, where this hierarchy needs to be guessed
from the terms available in the corpus. This hierarchical information is retained within
the trait vectors we calculate, making it easier for the original class ontology to be
reconstructed in terms of traits. A nice side effect of this is that for traits, we may
simply use the most characteristic ontology classes for a cluster as labels; and these
labels are machine-readable and directly linked to DBpedia and the rest of the Linked
Data cloud. Using LDA, the best we can do is to pick the top terms per topic that
actually occurred within the text content, which are often less descriptive and harder
for machines to reason about.

In conclusion, we summarize the results of the evaluation by means of a qualitative
comparison between our approach and the baselines, in table 7.10. This overview
includes computational time complexity per method, which we will touch upon again
briefly. Due to ST Sγ’s reliance on a full connectivity graph based algorithm, its big-
O complexity is in the n3 logn order of magnitude, which is the highest of all the
algorithms. This means that in its current form, the method does not scale well to
large datasets. This is a significant limitation of the approach. A substitution of the
current HCS-based algorithm with e.g. a density-based one such as ES clustering
would improve scalability, but this is outside the scope of this thesis.

85

Chapter 8

Conclusions and Future Work

In this thesis, we have presented our work on using ontologies to enhance user recom-
mendation, and the hierarchical clustering of Social Web users by their shared topics
of interest. We have shown that we can bypass common limitations of the term vec-
tor space model by leveraging an external ontology to express user topic profiles in
terms of trait vectors, and subsequently calculating scoped topical similarity, or ST Sγ,
between users; a measure that expresses the distinguishing characteristics of groups of
users compared to the full collection of users at a certain level of topic generality.

We demonstrated the benefits of applying semantic analysis of timelines to user
recommendation on Twitter. We first created an initial ranking of potentially valu-
able users by analyzing user relations, and ranking users according to a score based
on a combination of tweet count and user influence (TURKEYS). We then took the
top users from this ranking and analyzed their timelines to create topic taxonomies
by matching terms in their posts to a background knowledge base (Wikipedia). In
case topics were not steady across the user’s timeline, we judged this user not to post
consistently about these topics and excluded them from the ranking.

We applied community detection techniques on a graph constructed from the ST Sγ

between users and showed that, by incorporating the concept of topic scope into our
calculations, we can get results based on the desired scope rather than the desired
number of topics – with the same topic scope values, we managed to discover roughly
the appropriate numbers of topics even for different data sources of different sizes.
Furthermore, the approach could be used to generate human- and machine-readable
labels for clusters, and to divisively cluster a group of users or documents in order to
generate a full topic hierarchy1.

For user recommendation, our evaluation showed that, depending on the keyword,
applying an extra binary selection to the ranking of users allows us to obtain signifi-
cantly more accurate user recommendations. We found that our method is particularly
useful for specific topics that are easily modeled in terms of YAGO classes. For more
generic keywords, improvements are less significant, but still visible.

For topic clustering, the experimental results presented showed an improvement
of up to 14.7% over standard latent Dirichlet allocation, 11.9% over Twitter-LDA and
up to 26.7% over k-means clustering on Social Web data. We also showed that we

1The source code used to obtain the results described in this paper, including an interactive visualizer
for hierarchical clustering, can be found at https://github.com/ktslabbie/TwinterestExplorer

87

8.1 Future work Conclusions and Future Work

can correctly detect topics at different scopes by changing the topic scope parame-
ter, whereas changing the number of topics for k-means clustering failed to detect the
correct topics. Results on traditional documents were mixed, with results equivalent
to or worse than the LDA state-of-the-art. For full hierarchical clustering, ST Sh out-
performed hLDA and a hierarchical version of k-means. Notably, we observe similar
improvements over LDA using community detection-based clustering as was shown
in Lancichinetti et. al. [33]. This is an encouraging result, suggesting that perhaps
graph-based community detection methods for document clustering are a better fit for
the task than probabilistic LSA-based methods, at least when the topics are not known
in advance.

8.1 Future work

Throughout this work we have assumed that users can be cleanly divided into disjoint
topic clusters, but in the real world this is obviously not the case: users can have mul-
tiple identifiable interests, or users may not post about any specific interest at all. We
need to further develop and evaluate methods for overlapping community detection.
One possible way is to replace the current HCS community detection algorithm with a
clique percolation method [16] to discover overlapping cliques in a graph.

A significant untapped area of potential lies in multi-lingual topic clustering. Since
the semantic classes we collect from DBpedia are language-agnostic, and DBpedia
resources exist in multiple languages, it becomes trivial to link together equivalent
entities from different languages and collect the same classes for both languages. Sim-
ilarly, the DBpedia Spotlight entity recognizer is easily extensible with other languages
and class models (although non-alphabetic languages such as Japanese will require ad-
ditional processing). This will allow us to detect similar content in different languages
without requiring any knowledge about these languages.

The current graph connectivity-based clustering algorithm used does not scale to
large datasets. Future work would experiment with more modern density-based clus-
tering algorithms as well

Lastly, we relied largely on YAGO, DBpedia and Schema.org classes to model user
topics of interest. In reality, these class hierarchies are still quite limited in what they
can express, as many entities simply do not have classes in DBpedia, or they are not
sufficiently connected with superclass relations to the classes we are really looking for
(such as most sports-related entities not actually being connected to a “Sports” class).
Other than these types of super- and subsumption relations, there are a great many
other relations available in DBpedia (e.g. “team of” linking players to teams, “field
of” linking academic disciplines to famous researchers, etc.). How to make good use
of these relations is another promising area to explore.

88

Bibliography

[1] Dbpedia wiki: The dbpedia ontology (2014).
http://wiki.dbpedia.org/Ontology2014, Retrieved on April 14 2015.

[2] Fabian Abel, Qi Gao, Geert-Jan Houben, and Ke Tao. Analyzing user modeling
on twitter for personalized news recommendations. In User Modeling, Adaption
and Personalization, pages 1–12. Springer, 2011.

[3] Alfred V Aho and Margaret J Corasick. Efficient string matching: an aid to
bibliographic search. Communications of the ACM, 18(6):333–340, 1975.

[4] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-
niak, and Zachary Ives. DBpedia: A Nucleus for a Web of Open Data. In The
Semantic Web, volume 4825 of Lecture Notes in Computer Science, chapter 52,
pages 722–735. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2007.

[5] Tim Berners-Lee and Mark Fischetti. Weaving the Web : The Original Design
and Ultimate Destiny of the World Wide Web by its Inventor. Harper San Fran-
cisco, September 1999.

[6] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific
american, 284(5):28–37, 2001.

[7] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked Data - The Story So
Far. International Journal on Semantic Web and Information Systems, 5(3):1–22,
Mar 2009.

[8] David M Blei. Probabilistic topic models. Communications of the ACM,
55(4):77–84, 2012.

[9] David M Blei, Thomas L Griffiths, and Michael I Jordan. The nested chinese
restaurant process and bayesian nonparametric inference of topic hierarchies.
Journal of the ACM (JACM), 57(2):7, 2010.

[10] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.
the Journal of machine Learning research, 3:993–1022, 2003.

[11] Chris K Carter and Robert Kohn. On gibbs sampling for state space models.
Biometrika, 81(3):541–553, 1994.

89

BIBLIOGRAPHY BIBLIOGRAPHY

[12] Joachim Daiber, Max Jakob, Chris Hokamp, and Pablo N Mendes. Improving
efficiency and accuracy in multilingual entity extraction. In Proceedings of the
9th International Conference on Semantic Systems, pages 121–124. ACM, 2013.

[13] S Dasgupta, CH Papadimitriou, and UV Vazirani. Algorithms–chapter 5, 2006.

[14] Scott C. Deerwester, Susan T Dumais, Thomas K. Landauer, George W. Fur-
nas, and Richard A. Harshman. Indexing by latent semantic analysis. JAsIs,
41(6):391–407, 1990.

[15] Leon Derczynski, Diana Maynard, Niraj Aswani, and Kalina Bontcheva.
Microblog-genre noise and impact on semantic annotation accuracy. In Proceed-
ings of the 24th ACM Conference on Hypertext and Social Media, pages 21–30.
ACM, 2013.

[16] Imre Derényi, Gergely Palla, and Tamás Vicsek. Clique percolation in random
networks. Physical review letters, 94(16):160202, 2005.

[17] Mark S Granovetter. The strength of weak ties. American journal of sociology,
pages 1360–1380, 1973.

[18] The Buntin Group. Social usage involves more platforms, more of-
ten. www.emarketer.com/Article/Social-Usage-Involves-More-Platforms-More-
Often/1010019, Retrieved on February 19 2013.

[19] Willem Van Hage, Antoine Isaac, and Zharko Aleksovski. Sample evaluation of
ontology-matching systems. In Fifth Int. Workshop on Evaluation of Ontologies
and Ontology-based Tools, ISWC 2007.

[20] John Hannon, Mike Bennett, and Barry Smyth. Recommending Twitter users to
follow using content and collaborative filtering approaches. In 4th ACM Confer-
ence on Recommender Systems (RecSys ’10), pages 199–206, 2010.

[21] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering
algorithm. Applied statistics, pages 100–108, 1979.

[22] Erez Hartuv and Ron Shamir. A clustering algorithm based on graph connectivity.
Information processing letters, 76(4):175–181, 2000.

[23] M. Hausenblas and R. Cyganiak. Schema.rdfs.org. http://schema.rdfs.org/, Re-
trieved on April 20 2015.

[24] Tuan-Anh Hoang and Ee-Peng Lim. On joint modeling of topical communities
and personal interest in microblogs. In Social Informatics, pages 1–16. Springer,
2014.

[25] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the
22nd annual international ACM SIGIR conference on Research and development
in information retrieval, pages 50–57. ACM, 1999.

90

BIBLIOGRAPHY BIBLIOGRAPHY

[26] Andreas Hotho, Steffen Staab, and Gerd Stumme. Ontologies improve text doc-
ument clustering. In Data Mining, 2003. ICDM 2003. Third IEEE International
Conference on, pages 541–544. IEEE, 2003.

[27] Anil K Jain, Richard C Dubes, et al. Algorithms for clustering data, volume 6.
Prentice hall Englewood Cliffs, 1988.

[28] Nilesh Jain, Priyanka Mangal, and Deepak Mehta. Angularjs: A modern mvc
framework in javascript. Journal of Global Research in Computer Science,
5(12):17–23, 2015.

[29] Kalervo Jarvelin and Jaana Kekalainen. Cumulated gain-based evaluation of IR
techniques. ACM Transactions on Information Systems, 20(4):422–446, 2002.

[30] Svetlana Kiritchenko, Fazel Famili, S Matwin, and R Nock. Learning and eval-
uation in the presence of class hierarchies: Application to text categorization.
2006.

[31] Joseph B Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical society, 7(1):48–
50, 1956.

[32] Su Mon Kywe, Ee-Peng Lim, and Feida Zhu. A survey of recommender systems
in twitter. In Social Informatics, pages 420–433. Springer, 2012.

[33] Andrea Lancichinetti, M Irmak Sirer, Jane X Wang, Daniel Acuna, Konrad Körd-
ing, and Luís A Nunes Amaral. High-reproducibility and high-accuracy method
for automated topic classification. Physical Review X, 5(1):011007, 2015.

[34] Ken Lang. Newsweeder: Learning to filter netnews. In Proceedings of the 12th
international conference on machine learning, pages 331–339, 1995.

[35] Jure Leskovec, Kevin J Lang, and Michael Mahoney. Empirical comparison of
algorithms for network community detection. In Proceedings of the 19th inter-
national conference on World wide web, pages 631–640. ACM, 2010.

[36] Xiaohua Liu, Ming Zhou, Furu Wei, Zhongyang Fu, and Xiangyang Zhou. Joint
inference of named entity recognition and normalization for tweets. In Proceed-
ings of the 50th Annual Meeting of the Association for Computational Linguis-
tics: Long Papers-Volume 1, pages 526–535. Association for Computational Lin-
guistics, 2012.

[37] Christopher D Manning and Hinrich Schütze. Foundations of statistical natural
language processing. MIT press, 1999.

[38] Brian W Matthews. Comparison of the predicted and observed secondary struc-
ture of t4 phage lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Struc-
ture, 405(2):442–451, 1975.

[39] Andrew Kachites McCallum. Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002.

91

BIBLIOGRAPHY BIBLIOGRAPHY

[40] Pablo N. Mendes, Max Jakob, Andrés García-Silva, and Christian Bizer. Dbpedia
spotlight: Shedding light on the web of documents. In Proc. of the 7th Intl.
Conference on Semantic Systems, 2011.

[41] Matthew Michelson and Sofus A Macskassy. Discovering users’ topics of interest
on twitter: a first look. In Proceedings of the fourth workshop on Analytics for
noisy unstructured text data, pages 73–80. ACM, 2010.

[42] George A. Miller. WordNet: a lexical database for English. Commun. ACM,
38(11):39–41, 1995.

[43] Bruce Momjian. PostgreSQL: introduction and concepts, volume 192. Addison-
Wesley New York, 2001.

[44] Makoto Nakatsuji, Yasuhiro Fujiwara, Toshio Uchiyama, and Hiroyuki Toda.
Collaborative filtering by analyzing dynamic user interests modeled by taxon-
omy. In 11th International Semantic Web Conference, pages 361–377, 2012.

[45] Mark EJ Newman. Modularity and community structure in networks. Proceed-
ings of the National Academy of Sciences, 103(23):8577–8582, 2006.

[46] Tomoya Noro, Fei Ru, Feng Xiao, and Takehiro Tokuda. Twitter user rank using
keyword search. Information Modelling and Knowledge Bases XXIV. Frontiers
in Artificial Intelligence and Applications, 251:31–48, 2013.

[47] Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy.
The effectiveness of lloyd-type methods for the k-means problem. In Foundations
of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages
165–176. IEEE, 2006.

[48] Symeon Papadopoulos, Yiannis Kompatsiaris, Athena Vakali, and Ploutarchos
Spyridonos. Community detection in social media. Data Mining and Knowledge
Discovery, 24(3):515–554, 2012.

[49] Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic
Smyth, and Max Welling. Fast collapsed gibbs sampling for latent dirichlet al-
location. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 569–577. ACM, 2008.

[50] Oxford University Press. Rt this: Oup dictionary team monitors twitterer’s
tweets. http://blog.oup.com/2009/06/oxford-twitter/, 2009.

[51] Minghui Qiu, Feida Zhu, and Jing Jiang. It is not just what we say, but how we
say them: Lda-based behavior-topic model. SIAM.

[52] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time al-
gorithm to detect community structures in large-scale networks. Physical Review
E, 76(3):036106, 2007.

[53] Jason Rennie. The 20 newsgroups data set. http://qwone.com/ ja-
son/20Newsgroups/, Retrieved on April 2 2015.

92

BIBLIOGRAPHY BIBLIOGRAPHY

[54] Alan Ritter, Sam Clark, Oren Etzioni, et al. Named entity recognition in tweets:
an experimental study. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 1524–1534. Association for Computa-
tional Linguistics, 2011.

[55] Jason Ronallo. Html5 microdata and schema. org. Code4Lib Journal, 16, 2012.

[56] Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers, and Padhraic Smyth. The
author-topic model for authors and documents. In Proceedings of the 20th con-
ference on Uncertainty in artificial intelligence, pages 487–494. AUAI Press,
2004.

[57] Naomi Sager. Natural language information processing. Addison-Wesley Pub-
lishing Company, Advanced Book Program, 1981.

[58] Salvatore Sanfilippo and Pieter Noordhuis. Redis, 2010.

[59] Carlos N Silla Jr and Alex A Freitas. A survey of hierarchical classification
across different application domains. Data Mining and Knowledge Discovery,
22(1-2):31–72, 2011.

[60] Kristian Slabbekoorn. Domain-aware ontology matching on the semantic web.
Master’s thesis, TU Delft, Delft University of Technology, 2012.

[61] Kristian Slabbekoorn, Laura Hollink, and Geert-Jan Houben. Domain-aware on-
tology matching. In The Semantic Web–ISWC 2012, pages 542–558. Springer,
2012.

[62] Kristian Slabbekoorn, Tomoya Noro, and Takehiro Tokuda. Towards twitter
user recommendation based on user relations and taxonomical analysis. In 23nd
European-Japanese Conference on Information Modelling and Knowledge Bases
(EJC), 2013, 2013.

[63] Karen Sparck Jones. A statistical interpretation of term specificity and its appli-
cation in retrieval. Journal of documentation, 28(1):11–21, 1972.

[64] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of WWW’07, pages 697–706, 2007.

[65] Zareen Saba Syed, Tim Finin, and Anupam Joshi. Wikipedia as an ontology for
describing documents. In 2nd International Conference on Weblogs and Social
Media, pages 136–144, 2008.

[66] Lei Tang and Huan Liu. Community detection and mining in social media. Syn-
thesis Lectures on Data Mining and Knowledge Discovery, 2(1):1–137, 2010.

[67] Oren Tsur, Adi Littman, and Ari Rappoport. Efficient clustering of short mes-
sages into general domains. In Proceedings of the 7th International Conference
on Weblogs and Social Media, 2013.

[68] Steven J Vaughan-Nichols. Will html 5 restandardize the web? Computer,
(4):13–15, 2010.

93

BIBLIOGRAPHY BIBLIOGRAPHY

[69] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He. TwitterRank: Finding topic-
sensitive influential Twitterers. In 3rd ACM International Conference on Web
Search and Data Mining, pages 261–270, 2010.

[70] Peter Willett. Recent trends in hierarchic document clustering: a critical review.
Information Processing & Management, 24(5):577–597, 1988.

[71] Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick,
and James Demmel. Optimization of sparse matrix–vector multiplication on
emerging multicore platforms. Parallel Computing, 35(3):178–194, 2009.

[72] Shuang-Hong Yang, Alek Kolcz, Andy Schlaikjer, and Pankaj Gupta. Large-
scale high-precision topic modeling on twitter. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 1907–1916. ACM, 2014.

[73] Raphael Yuster and Uri Zwick. Fast sparse matrix multiplication. ACM Transac-
tions on Algorithms (TALG), 1(1):2–13, 2005.

[74] Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing He, Ee-Peng Lim, Hongfei Yan,
and Xiaoming Li. Comparing twitter and traditional media using topic models.
In Advances in Information Retrieval, pages 338–349. Springer, 2011.

[75] Zhongying Zhao, Shengzhong Feng, Qiang Wang, Joshua Zhexue Huang, Gra-
ham J Williams, and Jianping Fan. Topic oriented community detection through
social objects and link analysis in social networks. Knowledge-Based Systems,
26:164–173, 2012.

94

