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Abstract

An automatic speaker verification system (ASVS) is used to determine whether

a claim about the identity of a person is true or false by analyzing the

person-specific characteristics extracted from speech. In a text-independent

ASVS, the lexical contents of speech are allowed to be varied from time to

time. This kind of system has a great demand in surveillance and forensic

applications. In the last two decades, short utterances and inter-session vari-

ability have been considered two important obstacles for achieving high ver-

ification accuracy. In this thesis, we deal with these two obstacles by improv-

ing background models named structural maximum-a-posteriori (SMAP)

tree and probabilistic discriminant analysis (PLDA) model. These back-

ground models have large impact on the system’s performance.

When utterances are very short, SMAP adaptation is good for reliable pa-

rameter estimation of speaker-specific models. In SMAP adaptation, a tree

structure obtained by clustering Gaussian components offers a convenient

way to capture the hierarchical structure of the acoustic space of the human

voice. Different speakers may have different acoustic spaces depending on

factors such as their language, accents or pronunciation particularities. We

propose to use a set of trees instead of using a single tree, assuming that

each speaker will find its appropriate tree. We define the set of trees as an

acoustic forest. Combining decisions of many ASVS using different tress in

the acoustic forest gives robustness against enrollment data variants.

For inter-session variability, two utterances with the same lexical content

may sound differently even though they are spoken by the same speaker. Re-

cently the PLDA model has become one of the state-of-the-art inter-session

variability compensation models. The standard approach is to train a PLDA

model by using all available data without paying attention that irrelevant

data may deteriorate performance of an ASVS. We notice that selecting k

nearest neighbors, we can remove irrelevant training data and improve the

system performance. In order to avoid the difficulty of optimizing k on a

development set, we propose flexible k-Nearest Neighbors (fk-NN).

By conducting experiments on the text-independent ASVS using con-

versational telephone speeches, we show the effectiveness of our proposed

methods for improving background modeling which ultimately improves

verification accuracy.
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Chapter 1

Introduction

In this chapter we give a brief introduction of an automatic speaker ver-

ification system and mention the focus of this dissertation. The organi-

zation of this chapter is as follows: In Section 1.1, some differentiating

points between an automatic speaker verification system (ASVS) and an au-

tomatic identification system are mentioned. Section 1.1.1 gives a compar-

ative study between an ASVS and other biometric authentication systems.

The performance issue, applications and obstacles for getting high verifica-

tion accuracy of an ASVS are described in Section 1.1.2, Section 1.1.3, and

Section 1.1.4, respectively. Section 1.2 is about our research direction and

contribution. The organization of the rest of this dissertation is given in

Section 1.3.

1.1 Fundamentals of Speaker Verification

Automatic speaker verification is a task to determine whether a claim about

the identity of a person is true or false by analyzing the person-specific

characteristics extracted from speech without any manual interference. The

system which performs this task is known as an automatic speaker verifica-
tion system (ASVS). The person who provides speech and claimed ID to an

ASVS is called a speaker or user, and the claimed identity is called a tar-
get speaker. When a speaker claims him/herself as a target speaker falsely,

then that speaker is called an impostor. On the other hand, when the target
speaker is the one who a speaker claims to be, then that speaker is called

true speaker or client.

1



Introduction 2

An ASVS is different from an automatic speaker identification system
(ASIS) for few reasons. An ASIS gives an identity to a person by estimating

the similarity of that person’s voice with n registered speakers’ voices and

choosing the most similar voice’s ID as that person’s ID. Therefore, it is a

1-to-n comparison task whereas a speaker verification task is a 1-to-1 com-

parison task because it matches the similarity of a speech segment with a

particular speaker’s voice. An ASIS establishes a user’s identity (ID) answer-

ing the question "Who am I?", whereas an ASVS answers to the question

"Am I whom as I claim I am?". In an ASIS a user does not provide any other

information except speech, whereas in an ASVS a user needs to provide the

ID of the claimed speaker along with the speech.

An ASVS has two phases: training phase and authentication phase. When

users are restricted to utter the same speech both in the training phase and

the authentication phase, an ASVS is called a text-dependent system. It is

mainly used for co-operative users (who willingly participate in the training

and the authentication phase, or who are aware about the authentication

process) in a controlled environment. Few seconds of speech is enough to

obtain performance that is good enough for commercial applications. On

the other hand, when the lexical contents of speech are allowed to be varied

from time to time, an ASVS is called a text-independent system. It can be

used for users who are unaware about the authentication process. There-

fore, this kind of system has a great demand in surveillance or forensic ap-

plications. Long utterances are necessary in the training phase in order

to capture the long-term statistical characteristics of the target speaker’s

speech. When a system can generate synthesized speech or text for users to

inform what to utter, a text-independent ASVS is a good choice for avoid-

ing the impostor attack done by using the recorded speech. This kind of

text-independent ASVS is known as text-prompted ASVS.

1.1.1 Comparison with Other Biometric Systems

The individuating characteristic of a human being carried by speech is known

as voice biometric, and an ASVS is sometimes called a voice authentication
system. Each person generally has a distinctive voice due to unique physi-

ological properties of his/her speech production system along with his/her

speaking style which includes accent, rhythm, pronunciation, etc. There-
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fore, human voice is considered as a combination of physiological and be-

havioral biometrics. The physiological part is invariant for an individual,

but the behavioral part changes over time due to age, medical conditions

(e.g., cold), and emotional state (e.g., stress), etc. [71]. A brief comparison

between a voice authentication system and other biometric authentication

systems based on the following seven factors pointed out by Jain et al. [71]

is given in Table 1.1.

1. universality: the size of the population that have the biometric.

2. distinctiveness: how well the biometric separates individuals from

each other.

3. permanence: how stable the biometric is over time.

4. collectivity: how quantitatively the biometric is measured.

5. performance: to what extent accurate and speedy results can be ob-

tained by the biometric.

6. acceptability: to what extent people are willing to use the biometric.

7. circumvention: how easily the system can be fooled using fraudulent

actions.

Even though the distinctiveness of an ASVS is low and it is easy to be

fooled by fraudulent actions, since 1960s [108, 93, 123, 97] until now

ASVSsa’ have been drawing huge attention from researchers because voice

is the only biometric that is based on the acoustic information, whereas

most other biometrics like face, retina, fingerprint, hand geometry, gait, etc.,

are image-based. For the remote-access transactions, voice is a good choice

because of the following reasons:

1. Speech is a natural communication media of the human being. Most

of the people do not need any extra effort to speak. Therefore, the

acceptability of voice as a biometric to the user is very high. Even voice

is more acceptable than face (another highly acceptable biometric for

authentication) to the users who are unwilling to show their face due

to religion or customs.

2. Speech can be captured easily with simple transducers and recording

devices. Comparing to cameras for capturing facial features or scan-

ners for capturing iris, or palmprint, voice capturing devices are less

expensive.
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Table 1.1: Comparison of various biometric technologies based on the perception
of Jain et al. [71]. Universality, Distinctiveness, Permanence (Stability),
Collectivity, Performance, Acceptability, and Circumvention (Evasion)
are denoted by ‘U’, ‘D’, ‘S’, ‘C’, ‘P’, ‘A’ and ‘E’, respectively. High, Medium,
and Low are denoted by ‘H’, ‘M’, and ‘L’, respectively.

Biometric Identifier U D S C P A E

DNA H H H L H L L

Ear M M H M M H M

Face H L M H L H H

Facial thermogram H H L H M H L

Fingerprint M H H M H M M

Gait M L L H L H M

Hand geometry M M M H M M M

Hand vein M M M M M M L

Iris H H H M H L L

Keystroke L L L M L M M

Odor H H H L L M L

Palmprint M H H M H M M

Retina H H M L H L L

Signature L L L H L H H

Voice M L L M L H H

3. For well-established telecommunication networks, speech can be trans-

ferred without any extra system setup.

1.1.2 Performance

According to a presentation entitled “On the Deployment of Speaker Recog-

nition for Commercial Applications:Issues & Best Practices" in International

Biometrics Consortium, 2003, by Larry Heck, the director of speech R&D at

Nuance Communications, the error rate of an ASVS was:

1. Text-dependent ASVS using

• clean data, single microphone, and large amount of training &

authentication data: 0.1%
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• telephone data having digit strings, multiple microphones and

small amount of training data: 1%

2. Text-independent ASVS using

• conversational telephone data, multiple microphones and mod-

erate amount of training data: 10%

• military radio data having read sentences, multiple radios & mi-

crophones and moderate amount of training data: 25%

Since then the performance of an ASVS specially of a text-independent ASVS

has been improved a lot. According to a report by Greenberg et al. in 2014

[49], the error rate of a text-independent ASVS is 2-5%.

1.1.3 Applications

Rapid growth of mobile communications has increased the demand of an

ASVS system. These days huge amount of information is exchanged be-

tween two parties in telephone conversations, including between criminals.

From blackmailing to sending commands to terrorists for malicious activ-

ities, criminals and leaders of terrorists are using speech disguising their

face or other biometrics. Sometimes some videos are prepared by com-

bining different person’s voice with the face of a well-known leader or a

terrorist in order to mislead his/her followers. In such scenarios, no other

biometric authentication system can be used rather than an ASVS. In 2003,

the CIA (Central Intelligence Agency), the NSA (National Security Agency)

and Swiss IDIAP (Dalle Molle Institute for Perceptual Artificial Intelligence)

used an text-independent ASVS to analyze so called Osama Bin Laden’s fake

tapes. Since 1980, an ASVS has been used for other commercial purposes

rather than forensics, such as online banking, network access-control, au-

tomated customer services, etc. Some successful applications of ASVSs are

given below:

• SAIVOX: operated by the Spanish Guardia Civil, a law enforcement

agency. It is used to find out criminals using voice samples by compar-

ing with around 3,500 recordings linked with well-known criminals

and certain types of crime.

• PerSay VocalPassword: operated by Vodafone Turkey. It is used to

secure self-service applications such as GSM Personal Unlocking Key
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reset and access to Vodafone Call Centers.

• VoicePassport: developed by Japanese Animo company. It is used for

secure access to personal databases, logging into e-learning systems,

telephone banking, and other telephony services.

• BATVOX: developed by Spanish Aginto company. It is designed for

criminal identification experts and scientific police to perform speaker

verification and compile expert reports as evidence in court. It is used

in court in more than 35 countries world wide as the de facto standard

Voice Biometrics forensic tool.

• Lenovo A586 voice unlock: jointly created by Baidu and the Singapore-

based A*STAR Institute for Infocomm Research. It is used to securely

lock down an Android phone using user’s voice.

• FreeSpeech: developed by Nuance company. It is used to verify a

caller’s identity during the course of a natural conversation for enter-

prises, interactive service responses (IVRs) service providers and call

centers. It transparently retrieves the biometric voice characteristics

required for verification within seconds, regardless of what is said,

accent, language, or call quality.

• VocalPassword: developed by Nuance company. It is used to verify

a speaker during an interaction with a voice application such as an

IVR or a mobile application. It compares a single repetition of a pass-

phrase that is stored in the system’s database.

1.1.4 Challenges

Countless factors greatly destroy the unique characteristics of speech signals

and make reliable speaker verification a complicated and challenging task

([111, 54, 33]). Some factors are mentioned below:

• Insufficient Amount of Relevant Speech

– very short utterances

• Inter-session Variability

– different microphones, transmission channels in the training and

the testing phase
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– speaker’s different physical and psychological states (e.g., caught

cold)

• Abnormal Speaker States

– extreme emotional states (e.g., stress or duress)

– loudness of speech (whispering, normal talking or very loud speak-

ing)

• Intentional Circumvention

– mimicry, replay, speaker-adapted speech synthesis

• Distorted Speech Signal

– surrounding environmental noise, transmission channel noise echo,

crosstalk

In order to train speaker-specific models robust against the above mentioned

factors, we need speech data for all conditions. However, even in the text-

dependent ASVS, it is unpractical to ask users to say the same phrase in

multiple conditions. In the text-independent ASVS, where the phonemes of

the authentication utterance are unknown, many hours of speech data in

multiple conditions are necessary in order to cover the effects of all these

factors during the training period of speaker-specific models. Therefore,

text-independent verification is more challenging than the text-dependent

verification. Since the former one is more flexible for the users than the

later one and more demanding in forensic applications, in the last two

decades a large effort has been given to improve the performance of the

text-independent ASVS.

Since 1996, research for text-independent ASVS has been influenced by

the NIST speaker recognition evaluation (SRE) plan funded by the U.S. De-

partment of Defense. In the NIST SRE plan, the following two factors are

considered two important obstacles for achieving high verification accuracy:

• Challenge-1: inter-session variability

• Challenge-2: short duration of utterance.

The above mentioned two obstacles are not only important for the researchers

following the NIST SRE plan, but also for the users of ASVS. Co-operative

users prefers to use short speech segment in real applications for conve-

nience. On the other hand, forensic applications need to handle mismatched

recordings.
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Inter-session variability occurs when there is a mismatch between the

training and authentication conditions. For this problem, two utterances

with same lexical content may sound differently even though they are spo-

ken by the same speaker. Last one and half decades, most of the researchers

working on the NIST SRE plan have been focusing on this problem. The

progress of inter-session variability modeling techniques like joint factor

analysis (JFA) [78], support vector machine (SVM) with nuisance attribute

projection (NAP) [19], or i-vectors with probability linear discriminant anal-

ysis (PLDA) [79] is quite impressive when speech segments are around 2.5

minutes long. However, verification accuracy needs to be improved more in

order to use a text-independent ASVS in the forensic field.

When speech segments are very short, parameter estimation is not reli-

able, and therefore, inter-speaker modeling becomes weak. This situation

becomes worse when inter-session variability exists. Systems such as JFA,

NAP-SVM, PLDA etc., which gave impressive results in long utterances were

not successful to solve this problem. Approaches have been proposed to

train robust speaker models by tuning few parameters and deal with inter-

session variability [100, 35, 130, 81, 103, 76, 77, 84, 74, 75]. For 10-

second speech segments, Vogt et al. [130] proposed to use speaker subspace

maximum-a-posteriori (MAP) adaptation for factor analysis (FA) modeling,

Fauve et al. [34] proposed a well-tuned speech detection front-end for im-

proving frame selection in eigenvoice modeling and Kenny et al. [81] ex-

tended JFA to model within-session-variability over a shorter time span.

1.2 Focus of the Dissertation

In this thesis, we deal with the above mentioned two important obstacles

in the text-independent ASVS by improving background models. A back-

ground model is a model which is trained offline by using data generally not

included in the evaluation set. It plays an important role in an ASVS by pro-

viding a prior distribution for the parameters of the speaker-specific model,

by acting as an alternate model during scoring of a trial, or by providing

information about general characteristics of speakers for inter-session vari-

ability compensation. Universal background model (UBM) [114], structural

maximum-a-posteriori (SMAP) tree [119], total variability matrix [28], NAP

matrix [19], and the PLDA model [79] are well known background models.
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These models have large impact on the system’s performance, however, have

obtained little attention from researchers.

The standard approach is to train one background model for the whole

set of target speakers using all available data by matching one or two cri-

teria. For example, using gender- or telephone-specific background models

for the whole set of target speakers without paying attention to any other

consideration is a well-accepted approach. In this approach, the existence

of variations in the set of target speakers and the existence of irrelevant and

noisy data in the training dataset of the background models are generally

ignored. In this thesis, we pay attention to the target speaker variants and ir-

relevant data issues for background modeling. We focus on two background

models: SMAP tree and PLDA model. The first one is used to mitigate prob-

lems caused by short utterances and the second one is used to compensate

inter-session variability.

When utterances are very short, SMAP adaptation is good for reliable

parameter estimation of speaker-specific models [119]. In SMAP adapta-

tion, a single tree structure is generally used for the acoustic space of all

the speakers assuming that the hierarchical structure of the acoustic space

can be shared among all the speakers. However, we notice that a single

tree structure is not always optimal for modeling the acoustic space of every

speaker enrolled to the system. Ideally, different tree structures should be

provided for speakers. However, until now no methods for obtaining such

trees automatically are known. On the other hand, to find the optimal tree

structure for every speaker empirically is computationally expensive when

the number of speakers is large, and demands a large amount of data. We

propose to use a set of trees instead of using a single tree, assuming that

each speaker will find its appropriate tree. We define the set of trees as an

acoustic forest. Combination of decision of many trees in the acoustic forest

gives robustness against enrollment data variants.

Recently, the PLDA model has become one of the state-of-the art inter-

session variability compensation technique. It is sensitive to the quality of

the training data, B. In order to train a good PLDA model, two conditions

need to be fulfilled. First, B should be plentiful. Multi-channel utterances

from several hundred speakers, resulting in several thousands of speech files

are typically needed. Second, B should be relevant; i.e., B should have simi-

lar properties to the evaluation set. Since in very few applications, the prop-
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erties of authentication data can be pre-determined, researchers mainly try

to match one or two properties of the target speakers with the properties

of B of a PLDA model using meta-data. However, meta-data is not always

available for all databases. Beside this, it is not always obvious which prop-

erties except gender, telephone type, are important to be matched. There-

fore, we adopt data-driven approaches for selecting data from B. We notice

that selecting k nearest neighbors we can improve the system performance

by removing irrelevant training data of the PLDA model. In order to avoid

the difficulty of optimizing k on a development set, we propose flexible k-

Nearest Neighbors (fk-NN).

1.3 Organization of the Dissertation

Apart from this chapter, this dissertation has five more chapters. Chapter 2

gives a technical overview of an ASVS and describes the speech databases,

protocols and evaluation metrics used in our work. Chapters 3 discusses

previous works on intersession variability compensation techniques and ap-

proaches for dealing with short utterances and robust background modeling.

Chapters 4 and Chapter 5 independently describe our methods to improve

the background modeling. While Chapter 4 tackles the robustness against

speaker variants, for which we propose a method to grow acoustic forests,

Chapter 5 handles the robustness against irrelevant training data of the

background model, PLDA model, for which we propose flexible k-NN (fk-

NN). Chapter 6 concludes this dissertation and indicates future directions.



Chapter 2

Overview of Automatic
Speaker Verification System

In this chapter we give a technical overview of the tasks and modules of

an automatic speaker verification system (ASVS). In Section 2.1 we outline

the phases of an ASVS. In Section 2.2, datasets generally used in an ASVS

are briefly described. The fundamental technologies for features extraction,

speaker modeling and adaptation techniques that underlie the work in this

thesis are then detailed in Sections 2.3 to 2.5. Finally, the evaluation metrics

and significance test used in this thesis are described in Section 2.6 and

Section 2.7.

2.1 Phases of an ASVS

As shown in Figure 2.1, an automatic speaker verification system (ASVS)

is composed of two phases: (i) a training phase and (ii) a authentication
phase. In the training phase, each speaker who will be target speaker in

the authentication phase needs to provide speech segments or utterances

in order to train a speaker-specific statistical model. In the authentication

phase, a user supplies a speech segment or utterance and claims a speaker

identity (target speaker ID), after which the ASVS decides whether the claim

is true or false by comparing the speech segment to the model of the claimed

identity. There are two steps in the training phase:

1. Feature Extraction: In this step, the physiological and behavioral

characteristics of the speaker’s voice are represented by a sequence

11
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Figure 2.1: Phases of an automatic speaker verification system (ASVS)

of numerical values which are called features (of speech). The fea-

tures should be designed to capture much of the information about

speaker identity in the speech signal as well as being compact and

robust against noise etc.

2. Speaker Modeling: Speaker models are made for every speaker by

statistical modeling of the features extracted from the training speech.

Along with the feature extraction step, the authentication phase of an

ASVS has the following two steps:

1. Score Generation: In this step, a score is generated for each claim. A

score is a numerical descriptor of the speech segment supplied by the

user being generated by the claimed speaker (target speaker) model.

A good speaker model gives a higher score for the claim of a target

speaker than the claim of an impostor.
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2. Decision Making: Comparing the score with a threshold value, the

speaker verification system decides whether the claim of an identity is

true or false as follows:

Dx =

{
True if Sx ≥ Θ,

False if Sx < Θ
(2.1)

where Dx is the decision about claim x, Sx is the score for the claim x,

and Θ is a threshold value. If the Θ is set to very high, the system will

not do any mistake to take decision about False claims from impostors,

however it will reject many True claims from clients. Similarly, if Θ is

very low, many False claims from impostors will be accepted as True
claims. Two common ways for setting the value of Θ are based on

the equal error rate (EER) and the minimum detection cost function
(MinDCF or Cmin) estimated on a development set (See Section 2.6).

In both phases of an ASVS, background models play important roles.

They are generally trained offline. In the training phase of an ASVS, a back-

ground model provides a prior distribution for the parameters of speaker-

specific models. In the authentication phase, it acts as an alternate model

during scoring of a trial, or provides information about general characteris-

tics of speakers for inter-session variability compensation. Universal back-

ground model (UBM) [114], i-vector extractor [28], nuisance attribute pro-

jection (NAP) matrix [19], probabilistic linear discriminant analysis (PLDA)

model [79] are well known background models.

2.2 Datasets used in an ASVS

Three kinds of speech datasets are used in an ASVS.

1. Enrollment Dataset, E: It contains speech files from speakers who

would like to be enrolled in the system during the training phase of the

ASVS. Enrolled speakers are the target speakers in the authentication

phase.

2. Authentication Dataset, A: It contains speech files from speakers

who are verified/ authenticated by the ASVS in the authentication

phase. This dataset contains speech files both from clients and im-

postors.
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3. Background Dataset, B: It contains multi-channel utterances from

several hundred speakers, resulting in several thousands of speech

files which are collected from multiple databases. This dataset is used

for training background models and it does not contain any data in-

cluded in A.

The combination of E and A used for measuring performance of an ASVS is

known as an evaluation set, V. When an evaluation set is used for tuning

parameters and deciding threshold value it is called a development set, D.

2.2.1 The NIST-SRE Datasets

From 1996 to 2006, the NIST organized an speaker recognition evaluation

(SRE) campaign annually. After that this campaign has been being orga-

nized once in two years. These campaigns are mainly funded by the U.S.

Department of Defense. In each campaign, a large, specifically designed

speech corpora having mainly conversational speech is distributed to the

participants without any charge as an evaluation dataset. Now these days,

researchers in the text-independent speaker verification field mainly use

NIST-SRE datasets as evaluation datasets. Among the NIST-SRE datasets,

NIST SRE 2012 dataset for core task is the largest one. In the NIST SRE

framework, except the NIST SRE 2012, E is not allowed to be included in B.

2.2.2 Switchboard Datasets

Switchboard datasets are popular as background datasets to the researchers

in the text-independent ASVS. The linguistic data consortium (LDC) is in

charge of maintenance and distribution of Switchboard datasets. The LDC,

formed in 1992, is an open consortium of universities, libraries, corpora-

tions and government research laboratories. For LDC members for a specific

year, Switchboard databases are free for that year, for non-members it costs

money. Switchboard II Phase-1,-2,-3, Switchboard Cellular Part-1 and Part-2

are popular as B.
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2.3 Feature Extraction

The feature extraction module of a speaker verification system transforms

the raw speech signal into feature vectors. One reason for feature extraction

is to emphasize the speaker specific characteristics. As shown in Figure 2.2,

in the raw speech signal the inter-speaker variability is not easily noticeable

for all speakers. Figure 2.3 reveals that in mel-frequency cepstral coefficient

(MFCC) feature, high inter-speaker variability is easily noticeable. For ex-

ample, for Speaker-1, the 3rd MFCC component is always higher than the

2nd in the later region of the utterances but for the other two speakers there

no such pattern. Another reason of feature extraction is to reduce the di-

mension of the speech data. For example, 15 dimensional 90 feature vectors

are more desirable than the 1100 dimensional one speech signal because of:

• The joint distribution for high-dimensional features are hard to es-

timate. Accordingly, reliable speaker modeling using such features

requires large amounts of data.

• Low-dimensional features need low computational cost.

2.3.1 Properties of an Ideal Feature

The feature extraction method is very important for an automatic speaker

verification system because the quality of the speaker modeling and pattern

matching is strongly determined by the quality of the extracted features. An

ideal feature would [135]:

• have large inter-speaker variability (i.e., between-speaker variability)

and small intra-speaker variability (i.e., within-speaker variability)

• be robust against noise

• occur frequently and naturally in speech

• be easy to measure from speech signal

• be difficult to impersonate/mimic

• not be affected by speaker’s health or long-term variation in voice

2.3.2 Types of Features

There are different ways to categorize the features. From the viewpoint

of their physical interpretation, we can divide the speech features into the
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Utterance-1 Utterance-2 Utterance-3

Seaker-1

Seaker-2

Seaker-3

Figure 2.2: Raw speech signal of sample speech (the Bengali word "Protijogeeta",
meaning "competition" in English) segments from three speakers.
Inter-speaker variability is not noticeable for the utterances of Speaker-
2 and Speaker-3. Utterance-2 of Speaker-2 seems to be similar to
Utterance-1 and Utterance-2 of Speaker-3; where Utterance-1 and
Utterance-2 of Speaker-1 and Utterance-3 of Speaker-3.

following five categories [85]:

1. Short-term Spectral Feature: This type of feature are computed from

short frames of about 20-30 ms in duration. They are usually descrip-

tors of the short-term spectral envelope which is an acoustic correlate

of timbre, i.e., the “color" of sound, as well as the resonance properties

of the supralaryngeal vocal tract.

2. Voice-source Feature: This type of features characterize the glottal

excitation signal of voiced sounds such as glottal shape and funda-

mental frequency.

3. Spectro-temporal feature: This type of features describes formant

transitions and energy modulations which contain speaker-specific in-

formation.

4. Prosodic Feature: This type of features refers to non-segmental as-

pects of speech such as syllable stress, intonation patterns, speaking
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Utterance-1 Utterance-2 Utterance-3

Seaker-1

Seaker-2

Seaker-3

1st MFCC 

2nd MFCC

3rd MFCC

Figure 2.3: 1st, 2nd and 3rd MFCCs of the utterances whose waveforms are de-
picted in Figure 2.2. Notice MFCCs have high inter-speaker variability
and low intra-speaker variability.

rate, rhythm etc.

5. High-level Feature: This type of features captures conversation-level

characteristics of speakers, such as characteristic use of words(“uh-

hh", “right", “you know",“ah! so",“I see",“sokka sokka",“for example"

etc.)

Any features is not globally accepted as the best feature. The choice of a

feature depends on the intended application, computing resources, amount

of speech data available and whether the speakers are co-operative or not.

A comparison of the five types of features are given in Figure 2.4. Since,

high-level features are easier to impersonate, so in speaker verification it

is better to use short-term spectral features. Two popular short-term spec-

tral features are Mel-frequency Cepstral Coefficient (MFCC) and Perceptual
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Linear Prediction (PLP) coefficients.

+ Robust against

channel effects
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the vocal tract

Figure 2.4: Comparison of different types of features. The leftmost boxes include
positive and negative sides of features, middle boxes include different
kinds of features with examples, and the factors affect the features are
pointed out in the rightmost part.

2.3.3 Pre-processing

Before extracting features, a speech signal is passed through the following

pre-processing steps:

1. Silence Removing: At this step, speech endpoint detection algorithm

is used to detect the presence of speech, and to remove pauses and

silences. It is an important step because of the following two counts:

(a) Firstly, about half of the input speech signal contains silence. The

periods of silence contain no acoustical contents, and provide

no information to aid the speaker verification process. As a re-

sult, storing these periods of silence is nothing important rather

wastage of resources.
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(b) Secondly, if the silence portions are left in the speech signal, they

will form part of the features and affect the identification accu-

racy.

For telephone speech, it is considered quite noiseless signal, so short-

term energy or average magnitude based method is enough to remove

the silence part of the speech segment.

2. Pre-emphasizing: Pre-emphasis refers to filtering that emphasizes the

higher frequencies. Its purpose is to balance the spectrum of voiced

sounds that have a steep roll-off in the high frequency region. It is

generally done by the following way:

ŝn = sn − α× s(n−1) (2.2)

where α is the pre-emphasis co-efficient which should be in the range

0 ≤ α ≤ 1. Generally 0.97 is used for α.

3. Framing: Since the speech signal changes continuously due to the ar-

ticulatory movements of the vocal production organs, the signal must

be processed in short frames, within which the parameters remain

quasi-stationary. Therefore, in this step, a continuous speech signal is

blocked into frames of N samples, with adjacent frames being sepa-

rated by M(M < N) samples. The overlap between adjacent frames

is used to smooth the frame-to-frame transitions and to provide a bet-

ter handling of the correlation existing between successive parts of the

voice signal. Typically a frame length of 10-30 milliseconds is used. A

typical frame overlap is around 30 to 50% of the frame size.

4. Windowing: The purpose of the windowing is to reduce the effect of

the spectral artifacts that result from the framing process. The most

commonly used window function in speech processing is the Hamming

window defined as follows:

w(n) = 0.54− 0.46 cos(
2π(n− 1)

N − 1
) (2.3)

where N represents the width of window function in samples. Typi-

cally, it is an integer power-of-2, such as 210 = 1024. n is an integer

with values 0 ≤ n ≤ N .
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2.3.4 Perceptual Linear Prediction

In perceptual linear prediction (PLP) technique proposed by Hynek Her-

manskey, auditory like spectrum of speech is approximated. The following

steps of PLP extraction closely follow the paper written by Hermanskey [64]:

1. The windowed speech segment is transformed into the frequency do-

main by discrete Fourier transform (DFT). The short-term power spec-

trum of the short term speech spectrum is:

P (ω) = Re[S(ω)]2 + Im[S(ω)]2, (2.4)

where Re and Im mean Real and Imaginary. S(ω) means short-term

speech spectrum.

2. The spectrum P (ω) is warped along its frequency axis ω into the Bark

frequency Ω by

Ω(ω) = 6 ln{ω/1200π + [(ω/1200π)2 + 1]0.5}, (2.5)

where ω is the angular frequency in rad/s.

3. The critical-band power spectrum is generated from the warped P (Ω)

as follows:

Θ(Ωi) =
2.5∑

Ω=−1.3

P (Ω− Ωi)Ψ(Ω), (2.6)

where Ψ(Ω) is the critical band curve which is given by:

Ψ(Ω) =



0 for Ω < −1.3,

102.5(Ω+0.5) for − 1.3 ≤ Ω ≤ < −0.5,

1 for − 0.5 < Ω < 0.5,

10−1.0(Ω−0.5) for 0.5 ≤ Ω ≤ 2.5,

0 for Ω > 2.5,

(2.7)

4. Θ[Ω(ω)] is sampled in approximately 1-Bark intervals.

5. The sampled Θ[Ω(ω)] is pre-emphasized by simulated equal-loudness

curve

Ξ[Ω(ω)] = E(ω)Θ[Ω(ω)], (2.8)

where E(ω) is an approximation to the nonequal sensitivity of human

hearing at different frequencies which is given by

E(ω) =
(ω2 + 56.8× 106)ω4

(ω2 + 6.3× 106)× (ω2 + 0.38× 109)
. (2.9)



Overview of Automatic Speaker Verification System 21

6. The values of the first and last samples are made equal to the values

of their nearest neighbors so that Ξ[Ω(ω)] begins and ends with two

equal-valued samples.

7. Ξ[Ω(ω)] is compressed as follows:

Φ(Ω) = Ξ(Ω)0.33 (2.10)

8. The inverse DFT (IDFT) is applied to Φ(Ω) to yield the auto correlation

function dual to Φ(Ω).

9. The first M + 1 auto correlation values are used to get autoregressive

coefficients of the M -th order all-pole model.

10. The autoregressive coefficients are transformed into cepstral coeffi-

cients.

2.3.5 Mel-Frequency Cepstral Coefficient

MFCC was introduced by Davis and Mermelstein [24] in speech and audio

processing which was then become popular features in speaker recognition

field. There are many similarities between the processes of MFCC and PLP

extraction, which are mentioned below:

1. Spectral Analysis: Like PLP, at first short-term power spectrums are

obtained by applying DFT to the windowed frames for MFCC .

2. Critical-band Analysis: A frequency band is a set of consecutive fre-

quencies and a critical band is a frequency band within which frequen-

cies cannot be distinguished from the center frequency by the human

auditory system. Like PLP, MFCC also does critical-band analysis and

employs an auditory-based frequency warping of the frequency axis

derived from the frequency sensitivity of human hearing. The small

difference is that MFCC is based on a uniform spacing along the Mel-

scale and PLP uses the Bark-scale. The Mel-scale is defined by:

fmel = 2595log10(1 +
f

700
) (2.11)

In mel-scale, the size of critical-band is approximated by:

BWcritical(mel) = 25 + 75[1 + 1.4(
fmel
1000

)2]0.69 (2.12)
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Whereas the Bark-scale is defined by

fbark = 13 arctan(0.00076f) + 3.5 arctan(
f

7500
)2 (2.13)

In bark-scale, the size of critical-band is approximated by:

BWcritical(bark) =
52548

(fbark)2 − 52.56fbark + 69039
(2.14)

3. Homomorphic Analysis: In MFCC the log filterbank amplitude is

taken whereas in PLP cubic-root amplitude is done.

4. Cepstral Analysis: In MFCC, cepstral coefficients are calculated from

the log Mel filter using a discrete cosine transform(DCT). In PLP, as

described in Section 2.3.4 cepstral co-efficients are computed from LP

co-efficients.

In short, MFCC can be calculated as follows:

ci =

√
2

L

L∑
l=1

[log Yl] cos[
πn

L
(l − 0.5)] (2.15)

where L is the number of mel-filterbank channels and Yl is the log filterbank

amplitudes.

2.3.6 Dynamic Features

The features described so far are known as static features. Static features

capture the average frequency distribution during a frame. Furui [41], [42]

showed that adding time derivatives to static features can greatly enhance

the performance of speaker verification systems. The first-order dynamic

feature or ∆ co-efficient at time t can be computed using the following re-

gression formula [138]:

∆t =

∑Θ
θ=1 θ(ct+θ − ct−θ)

2
∑Θ

θ=1 θ
2

(2.16)

ct±θ is the static feature. The value of Θ is generally set to 1. The end-effect

problem for the first and last frame can be solved:

∆t = ct+1 − ct, t < Θ (2.17)
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and

∆t = ct − ct−1, t ≥ T −Θ (2.18)

where T is the number of total frames. The second-order dynamic feature

or ∆∆ co-efficient can be computed in the same way using ∆t in place of

static feature.

2.4 Speaker Modeling

Modeling speaker characteristics is an important part in an ASVS. In the

training phase of an ASVS, speaker models are built up which are used to

generate scores in the authentication phase. In 2000 Reynolds et al. [114]

introduced Gaussian mixture models (GMM)s in ASVS for modeling speaker

characteristics. Since then, most works in text-independent ASVS have

been done either by using the standard GMM system [114] or by extend-

ing the concept of GMM. Before 2005, most popular GMM based systems

were GMM-UBM which used speaker-specific GMM for modeling the target

speaker and speaker-independent GMM known as UBM for modeling im-

postors during score generation. In 2005 Kenny et al. [78] proposed to use

stacked GMM mean vectors called supervectors to model speaker and inter-

session variability separately using factor analysis. This kind of ASVS is

known as JFA based ASVS. In 2006 Campbell et al. [18] showed that a sup-

port vector machine (SVM) using GMM-supervector (GSV) based linear ker-

nel outperforms the standard GMM-UBM configuration. This kind of ASVS

is quite often called GMM-SVM system with GSV linear kernel. In 2009 De-

hak et al. [26] proposed to map high-dimensional GSVs to low-dimensional

vectors by using factor analysis. This kind of systems are known as i-vectors
based systems. The common part of all these models is GMM which is dis-

cussed in Section 2.4.1. An SVM based system is discussed in Section 2.4.2.

GMM-SVM with GSV linear kernel and i-vector based models are discussed

in Section 2.4.3 and Section 2.4.4, respectively. JFA based ASVS is not dis-

cussed here since we do not use this model in this thesis.

2.4.1 Gaussian Mixture Model (GMM)

A GMM is a probabilistic model for estimating density of a random variable

by combining a set of Gaussian or normal distributions. Each member of the
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distribution set is called a Gaussian component. The equation of the density

of a GMM with M Gaussian components can be written as:

p(x | λ) =
M∑
m=1

wmNm(x | µm,Σm), (2.19)

where x is a D-dimensional random vector; Nm(.) is the i-th Gaussian com-

ponent density with mean µm and co-variance matrix Σm; and wm is the

mixture weight. Each component density is a D-variate Gaussian function

of the form:

Nm(x | µm,Σm) =
1

(2π)D/2|Σm|1/2
exp{−1

2
(x− µm)′Σ−1

m (x− µm)}.

(2.20)

The mixture weights are the prior probability of M Gaussian components

which satisfy the following constraint:

M∑
m=1

wm = 1. (2.21)

The complete set of parameters of a GMM are represented by the following

notation

λ = {wm,µm,Σm} m = 1, 2, ....M (2.22)

Maximum Likelihood Parameter Estimation

The most popular and well-established method to estimate λ of a GMM

is the maximum likelihood (ML) estimation. In this method, the model

parameters which maximize the likelihood of the GMM, given the training

data, X, are selected as the model parameters:

λ̂ = arg max
λ

p(X | λ) (2.23)

where X is a sequence of T training vectors i.e., X = {x1,x2, ....,xT , } and

the likelihood function p(X | λ) can be written as:

p(X | λ) =

T∏
t=1

p(xt | λ). (2.24)

By taking log in both sides of Equation (2.24), the likelihood function can

be written as:

L(X | λ) =

T∑
t=1

log(p(xt | λ)). (2.25)
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where

L(X | λ) = log(p(X | λ)) (2.26)

Using Equation (2.19), Equation (2.25) can be written as:

L(X | λ) =

T∑
t=1

log(
M∑
m=1

wmN (xt | µm,Σm)). (2.27)

Unfortunately Equation (2.27) is difficult to calculate. The numerical diffi-

culties come from:

• the sum inside the log and

• N (.) is a nonlinear function of the parameters µm and Σm.

Therefore, direct maximization of the log-likelihood is not possible. How-

ever, ML parameters can be estimated by using the expectation-maximization

(EM) algorithm. The basic idea of this algorithm is to start with an initial

model parameter set λ and estimate a new model parameter set λ̄ such that

p(X | λ̄) ≥ p(X | λ). The new model parameter set then becomes the initial

model parameter set for the next iteration and the process is repeated un-

til some convergence threshold is reached. The steps of EM algorithm are

given below [7]:

1. Initialize the means µm, covariances Σm and mixing coefficients or

weights wm, and evaluate the initial value of the log-likelihood.

2. E step. Compute the posterior probabilities using the current param-

eter values

γmt =
wmN (xt | µm,Σm)∑M
i=1wiN (xt | µi,Σi)

(2.28)

3. M step. Re-estimate the parameters using the current posterior prob-

abilities

µnewm =
1

Nm

T∑
t=1

γmtxt, (2.29)

Σnew
m =

1

Nm

T∑
t=1

γmt(xt − µnewm )(xt − µnewm )′ (2.30)

wnewm =
Nm

N
(2.31)

where

Nm =

T∑
t=1

γmt (2.32)
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4. Evaluate the log-likelihood using Equation (2.27) and check for the

convergence of either the parameters or the log-likelihood. If the con-

vergence criterion is not satisfied return to Step 2.

In an GMM based ASVS, feature vectors extracted from speech segments

are considered as the random variable x. When a GMM is trained by fea-

ture vectors extracted from thousands speech files from hundreds speak-

ers in order to represent speaker-independent distributions, that GMM is

called UBM. When a GMM is trained to represent speaker-specific distribu-

tion, then that GMM is called a speaker-specific GMM. Generally a speaker-

specific GMM is trained by adapting an UBM using feature vectors extracted

from the speaker (See Section 2.5 for various adaptation techniques).

2.4.2 Support Vector Machine (SVM)

In an SVM [128] an optimal hyperplane H is found out which provides

the maximum margin between a positive class and a negative class. For n

number of data points of two classes, {xi, yi}ni=1, where yi ∈ {+1,−1} is the

class label of the data point xi, a linear hyperplane H can be written as:

H : w′ · x+ b = 0 (2.33)

where w is perpendicular to H and b ∈ R is a constant. H should be as

far away from the data points of both classes as possible. Let d+ and d− be

the shortest distance from H to the closest positive class data point and to

the closest negative class data point, respectively, and d+ = d−. Then, the

margin,M, can be written as:

M = d+ + d−

=
1

||w||
+

1

||w||

=
2

||w||

(2.34)

where ||w|| is the Euclidean norm of w. In order to find the maximumM,

we need to find a pair of hyperplanes, H1 and H2, which minimize ||w||2.

Note that H1 and H2 are parallel of H and can be written as:

H1 : w′ · x+ b = 1 (2.35)
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H2 : w′ · x+ b = −1 (2.36)

Ideally, there should be nothing between H1 and H2 except H. However,

it is rare to have data points of two classes which are completely separa-

ble. Therefore, there can be some data points in the middle of H1 and H2.

These inseparable data points can be handled by positive slack variables.

Therefore, the optimization problem of H can be summarized as:

Minimize
1

2
||w||2 + C

n∑
i=1

ξi (2.37)

subject to yi(w′ · xi + b) ≥ 1− ξi and ξi ≥ 0

where ξi is the slack variable in the optimization, ξi = 0 when no error

occurs to separate xi, and C is the tradeoff parameter between error and

margin which can be adjusted by the user. The above optimization problem

can be easily solved by turning it into a convex quadratic programming (QP)

problem as follows:

Maximize θ(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjx
′
i · xj (2.38)

subject to C ≥ αr ≥ 0 and
n∑
i=1

αiyi = 0

where r ∈ {i, j}, αr is a Lagrange multiplier, C is the tradeoff parameter

between error and margin, and generally, C is chosen by cross validation.

In the training phase of an SVM-based system, the main target is to find the

data points which lie on H1 and H2. These data points are called support
vectors, since their removal can change the solution.

In reality, linear hyperplane cannot separate low dimensional data points

of two classes even after introducing slack variables. On the other hand,

non-linear hyperplane is complicated to be found out. This situation can be

avoided by transforming data points from their original space called input
space or data space into a high dimensional (possibly infinite dimensional)

space called feature space, where linear hyperplane separator can be used.

The above convex QP problem in 2.38 can be written as:

Maximize θ(α) =
n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjΦ(xi)
′ · Φ(xj) (2.39)
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subject to C ≥ αr ≥ 0 and
n∑
i=1

αiyi = 0

Doing dot product in a very high dimensional space is costly, which can

be avoided by using a kernel function,K(., .). A kernel function can estimate

the dot product in the input space which is equivalent to doing dot product

in the feature space. Using a kernel function, the above convex QP problem

in 2.39 can be written as:

Maximize θ(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj) (2.40)

subject to C ≥ αr ≥ 0 and
n∑
i=1

αiyi = 0

where,

K(xi,xj) = Φ(xi)
′ · Φ(xj). (2.41)

In an SVM based ASVS, the data points from a target speaker are con-

sidered in Class +1, whereas the data points from impostors are considered

in Class -1. Different types of kernel functions have been proposed to con-

vert variable length sequence of feature vectors into fixed-dimension vec-

tors for scoring by SVM. Some examples of kernels are the generalized lin-

ear discriminant sequence (GLDS) kernel [16], Fisher kernel [131], n-gram

kernel[17], GMM-supervector (GSV) linear kernel [18, 19], GSV non-linear

kernel [25], linearized LR kernel [141] etc. In this thesis we use GSV linear

kernel which is discussed in details in the next section.

2.4.3 GMM-SVM Modeling

In text-independent speaker verification, a GMM-SVM based ASVS was pro-

posed to associate robustness of the GMM system with discriminative power

of the SVM system [91, 131, 18, 19, 25]. One of the popular GMM-SVM

systems uses GSV linear kernel written as:

K(a, b) =
M∑
m=1

(
√
wmΣ

− 1
2

m µ(a)
m )′(

√
wmΣ

− 1
2

m µ(b)
m ) (2.42)

This kernel was proposed by Cambell et al. in [18, 19]. In this system a very

high-dimensional vector is built by concatenating the mean vectors of all

Gaussian components of the speaker-specific GMM. This high-dimensional
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vector is called GMM supervector (GSV). In the training phase, a linear

kernel is used and a set of positive and negative supportvectors are found

out for each target speakers. In the authentication phase support vectors are

used to generate scores for authentication speech segments. Steps of these

two phased are described in details below:

• Training Phase:

1. ExtractD-dimensional feature vectors (e.g., MFCC, PLP co-efficients

etc) from all utterances of enrollment dataset, E , and background

datasets, B1 and B2. Most of the cases B2 ⊂ B1.

2. Train a UBM, λ, with M Gaussian components applying the EM

algorithm described in Section 2.4.1 on the feature vectors ex-

tracted from B1, where each Gaussian component of λ can be

written as:

λm = {wm,µm,Σm}, m = 1, 2, .....,M, (2.43)

where wm ∈ R1 is the mixture weight, µm ∈ RD×1 and Σm ∈
RD×D are the mean vector and the co-variance matrix of m-th

Gaussian components, respectively.

3. Train either only one speaker-specific GMM, λ(S), or P number

of speaker-specific GMMs, λ(S1), λ(S2), ......, λ(SP ), for each target

speaker, S ∈ E , by adapting the UBM with the feature vectors

extracted from P ≥ 1 speech segments of S ∈ E following any

adaptation technique described in Section 2.5.

4. Train speaker-specific GMMs, λ(I1), λ(I2), ......, λ(IQ), for Q num-

ber of background speakers where I ∈ B2.

5. Make a supervector for each GMM by concatenating the mean

vectors of all Gaussian components. If the mean vector of each

Gaussian component is D-dimensional then the supervector of a

GMM with M Gaussian components will be MD×1-dimensional

which can be written as:

µ(n) = {
√
wmΣ

− 1
2

m µ
(n)
1 ,
√
wmΣ

− 1
2

m µ
(n)
2 , .....,

√
wmΣ

− 1
2

m µ
(n)
M },
(2.44)

where n ∈ {S, I}, S ∈ E and I ∈ B2.

6. Prepare a training dataset for each S ∈ E by putting P supervec-

tors from S and Q supervectors from I ∈ B2 with class labels +1
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and −1, respectively. The training data set can be written as:

{µ(S1),+1}, ...., {µ(SP ),+1}, {µ(I1),−1}, ...., {µ(IQ),−1}

7. Train a speaker-specific SVM for each S ∈ E .

(a) Solve the following convex quadratic programming problem

equivalent to Problem 2.37 using the training dataset.

Maximize θ(α) =

P+Q∑
i=1

αi −
1

2

P+Q∑
i=1

P+Q∑
j=1

αiαjyiyjµ
(i)µ(j)

(2.45)

subject to C ≥ αr ≥ 0 and
P+Q∑
i=1

αiyi = 0

where r ∈ {i, j}, αr is a Lagrange multiplier, yr is the class la-

bel of r-th supervector, C is the tradeoff parameter between

error and margin. Generally, C is chosen by cross validation.

yr =

{
+1 for target speaker’s supervectors,

−1 for background supervectors

(b) Pick the supervectors for which αi > 0 as supportvectors, υ.

(c) Estimate w by using all υ.

w =

G∑
g=1

αiyiυi (2.46)

where G is the total number of positive and negative sup-

portvectors.

(d) Using a single supportvector either on H1 or on H2, estimate

the value of b. For example, using a positive supportvector,

υ+ and w from Eq. 2.46, b can be estimated from Eq. 2.35

as:

b = w′ · υ+ − 1 (2.47)

Figure 2.5 is a schematic example of training a GMM-SVM based ASVS

using one speech segment from a target speaker and Q speech seg-

ments from Q background speakers.

• Authentication Phase:
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UBM

SS of TS SS of BS-1 SS of BS-n

Feature Extraction

Adaptation

GMM 
of TS

( FM of TS ) ( FM of BS -1) ( FM of BS-Q)

GMM 
of BS-1

GMM 
of BS-Q

Supervector Making

Class 1

SVM Training (linear kernel)

SV of 
TS

SV of 
BS-1

Class -1

SV of 
                  BS-Q

f(x) > 0

f(x) < 0Margin

Separating 
hyperplane
f(x)=0

Supportvector

Figure 2.5: GMM-SVM Training. The meaning of notations are– SS: Speech Seg-
ment, BS: Background Speaker, TS: Target Speaker, FM: Feature Ma-
trix, SV: Supervector, UBM: Universal Background Model.

1. Extract feature vectors from the authentication speech segment,

x.

2. Train GMM, λ(x), by adapting UBM using feature vectors of x.

3. Make a supervector, µ(x), by concatenating means of λ(x).
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4. Solve the following equation to get score of x against the target

speaker S’s SVM:

Score(S, x) =
G∑
g=1

αgygµ
(x)υ(S)

g + b. (2.48)

5. Take decision about x by comparing Score(S, x) with a prede-

clared threshold.

2.4.4 i-Vector based Modeling

An i-vector based system [26, 28] assumes that the feature vectors of an

utterance are drawn independently from a GMM. The stacked mean vectors

of the GMM constitute a speaker- and channel-dependent GMM-supervector,
µ. It is assumed that µ is generated according to

µ = µ̄+ Tφ, (2.49)

where µ̄ is the mean of speaker- and channel-independent supervectors, T

is a basis for the total variability subspace, and φ is a random vector. It is

assumed that φ follows the standard normal distribution and its dimension

is lower than that of µ̄.

Given the features from an utterance, the i-vector, ω, is the maximum a
posteriori (MAP) estimate of φ. The mathematical framework for training T

and estimating φ is the same as used for training the eigenvoice matrix, V,

and estimating the hidden variable, y, in the eigenvoice MAP [82]. The only

difference is that, in the eigenvoice MAP, y is the same for all utterances of

the same speaker, whereas in an i-vector based system, φ is different from

utterance to utterance. The steps for building i-vector based ASVS are given

below:

• Training Phase:

1. ExtractD dimensional feature vectors from all utterances of back-

ground set, B1 and B2. The same datasets can be used as B1 and

B2.

2. Train a UBM using feature vectors extracted from B1.

3. Train an i-vector extractor, i.e., T-matrix using feature vectors

extracted from B2:
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(a) For each utterance u with T feature vectors {x1,x2, ....,xT },
estimate the 0th and the centralized 1st order Baum-Welch

statistics, Nm and Fm, respectively, using the m-th Gaussian

component of UBM as follows:

Nm(u) =
T∑
t=1

γmt(u)

=
T∑
t=1

wmN (xt | µm,Σm)∑M
i=1wiN (xt | µi,Σi)

(2.50)

Fm(u) =

T∑
t=1

γmt(u)(xt − µm), (2.51)

(b) Decide a desired rank R and initialize the i-vector extractor

T ∈ RMD×R randomly.

(c) Estimate precision matrix, L(u)as follows:

L(u) = I +
M∑
m=1

Nm(u)T′mΣ−1
m Tm (2.52)

where Tm ∈ RD×R is the m-th sub-matrix of T.

(d) Estimate i-vector of utterance u as follows:

ω(u) = L−1(u)
M∑
m=1

T′mΣ−1
m Fm(u) (2.53)

(e) Estimate accumulators, C and A as follows:

C =
∑
u∈B2

F (u)ω(u)
′

(2.54)

Am =
∑
u∈B2

Nm(u)(L−1(u) + ω(u)ω(u)
′
) (2.55)

where F (u) = (F1(u)′, F2(u)′, ......, FM (u)′)′

(f) Update Tm as follows:

Tm = CA−1
m (2.56)

(g) Iterate Step 3c-Step 3f until T converges.

• Authentication Phase:
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1. Estimate the centralized 1st order Baum-Welch statistic for target

speaker and authentication speech segment using Eq. 3.27.

2. Estimate ωi and ωj for e target speaker and a authentication

speech segment, respectively, using Eq. 2.53.

3. Normalize ωi and ωj by their squared-root L2 forms in order to

increase the Gaussianiality of i-vectors as mentioned in [43].

ω̂n =
ωn
||ωn||

, where n ∈ {i, j}. (2.57)

4. Estimate LLR score either by estimating cosine distance between

ω̂i and ω̂j as described in [26, 28] or by using a PLDA model.

An i-vector contains information not only about the speaker identity

but also to a large extent about other factors such as the speaker’s emo-

tions, transmission channels, languages, and environmental noises. These

other factors in all can be referred to as inter-session variability or channel
factors and should ideally be removed before verification. Three popular

channel compensation techniques, namely within class covariance normal-

ization (WCCN) [60], linear discriminate analysis (LDA), and nuisance at-

tribute projection (NAP) [19], were used to remove the effect of channel

factors from the i-vectors in [28]. The low dimension of the i-vector in-

spired researchers to use more advanced methods. Currently, PLDA intro-

duced in [79] has became one of the state-of-the-art methods for removing

channel effects from i-vectors in text-independent ASVS.

2.5 Gaussian Mixture Adaptation

When large amounts of speech data is available, MLE using EM estima-

tion algorithm is a good approach to train a speaker specific GMM for each

speaker. The necessary amount of speech data depends on how many Gaus-

sian components are there in the GMM. As a rule-of-thumb, to estimate the

parameters of a distribution which follow a Gaussian distribution, we need

at least 30 observations [38]. The more observations we have, the more ac-

curate estimation we can achieve. Therefore, if we want to estimate param-

eters of a GMM having 512 Gaussian components, we need at least 512*30

or 15360 observations or feature vectors. We can get this number of feature

vectors from a 2.56 minutes long speech segment if we extract 1 feature
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vector per 10ms speech. However, we cannot guarantee that we will get an

equal number of feature vectors (i.e., at least 30) from 2.56 minutes speech

for each Gaussian. Most likely many of the feature vectors will be assigned

to a small number of Gaussian components. As a result, the parameters of

the most of the Gaussian components are not reliably estimated. For this

reason, we need many hours of speech data in order to make sure that there

will be enough data for estimating the parameters of each Gaussian. How-

ever, for real applications, it is unpractical to ask a user to talk for a long

time in order to train his/her GMM. To solve this problem in GMM-based

speaker verification, a speaker independent GMM is at first trained using

several hours of speech by hundreds of speakers. The parameters of this

GMM is then adjusted to make a speaker-specific GMM by using a small

amount of speech uttered by the speaker. The speaker-independent GMM

is called universal background model (UBM) and the parameter adjustment

is refereed to as adaptation. Figure 2.6 is a schematic example of mak-

ing speaker-specific GMM by adapting UBM. The UBM is trained by using

speech from many speakers which is then adapted by using shorter speech

segments of two speakers to make two speaker-specific GMMs.

All adaptation techniques used in speech processing can be classified

into the following two groups:

1. Non-structural adaptation technique: It is also known as a static

adaptation technique because the number of free parameters is con-

stant regardless of the amount of adaptation data. Relevance maximum-

a-posteriori (MAP) [45] and eigenvoice adaptation techniques belong

to this category.

2. Structural adaptation technique: It first groups the free parameters

in a hierarchical manner and depending on the available adaptation

data, it controls the number of free parameters. If only a small amount

of adaptation data is available, the free parameters of a few major

groups are adjusted, and if a reasonable amount of adaptation data is

available, then every free parameter is adjusted. Maximum-likelihood-

linear-regression (MLLR) [92] and structural MAP (SMAP) [119] adap-

tation techniques are examples of this type of adaptation.
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Figure 2.6: An example of UBM adaptation

2.5.1 Maximum-A-Posterirori (MAP) adaptation

This adaptation technique is also known as Bayesian adaptation technique.

To adapt a UBM withM Gaussian components, using a set of feature vectors,

X = {x1, x2, ...xt}, the steps of MAP adaptation technique are given below:

1. Step-1: Compute the sufficient statistics, that means the number of

frames for each component, and the first and second moments as fol-
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lows:

Nm =
T∑
t=1

p(m|xt) (2.58)

Em(X) =
1

Nm

T∑
t=1

p(m|xt)xt (2.59)

Em(X2) =
1

Nm

T∑
t=1

p(m|xt)x2
t (2.60)

where

p(m|xt) =
wmpm(xt)∑M
j=1wjpj(xt)

(2.61)

2. Step-2: Update the old sufficient statistics of UBM for mixture m as

follows:

ŵm = [
αamNm

T
+ (1− αam)wm]β (2.62)

µ̂m = αbmEm(X) + (1− αbm)µm (2.63)

σ̂2
m = αcmEm(X2) + (1− αcm)(σ2

m + µ2
m)− µ̂2

m. (2.64)

The scale factor β, is computed over all adapted weights to ensure

they sum to unity and the data dependent adaptation coefficient αρm
for ρ ∈ {a, b, c} is defined as:

αρm =
Nm

Nm + τρ
(2.65)

where τρ is a fixed relevance factor for parameter ρ. Reynolds et

al. [114] showed that the mean value adaptation gives the best speaker

verification result.

2.5.2 SMAP

Structural maximum-a-posteriori (SMAP) adaptation technique was first pro-

posed by Shinoda et al. [119] for speech recognition. In speaker verifica-

tion, Liu et al. [95] and Xiang et al. [136] successfully applied it to speech

segments of two minutes or shorter.

The SMAP adaptation was proposed to keep the desirable asymptotic

properties of relevance MAP while dealing with the problem of data sparse-

ness by using a tree structure. The SMAP-based method have two steps. In

the first step, a tree is built by clustering Gaussian components of the UBM.
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The root node of the tree represents the whole acoustic space and each

of the non-leaf nodes has a Gaussian component that summarizes its child

node distributions. Each leaf node corresponds to a Gaussian component

in the UBM. In the second step, a speaker-dependent model is obtained by

using the distribution of each non-leaf node as the prior for parameters of

its child nodes. The adaptation steps for each node p using adaptation data

X = {x1, x2, ..., xT } are:

1. Transform each sample vector xt into a vector ymt for each mixture

component m as follows:

y
(p)
mt = Σ−1/2

m (xt − µ(p)
m ), (2.66)

where t = 1, 2, ..., T and m = 1, 2, ...,M (p).

2. Estimate the normalized pdfN (Y (p)|ν, η) for Y (p)
m = {y(p)

m1, y
(p)
m2, ..., y

(p)
mT },

where ν(p) and η(p) represent the shift and rotation needed to compen-

sate for the distortion, i.e., to adapt the model parameters to the data.

When there is no mismatch between the training and adaptation data,

then ν(p) = ~0 and η(p) = I. The ML estimation of the mean vector of

the normalized pdf is calculated as follows:

ν̃(p) =

∑T
t=1

∑M(p)

m=1 γ
(p)
mty

(p)
mt∑T

t=1

∑M
m=1 γ

(p)
mt

, (2.67)

where γ(p)
mt is the occupation probability for Gaussian m at tree node p

and time t.

3. Calculate the hierarchical prior

ν̂(p) =
N (p)ν̃(p) + τ ν̂(p−1)

N (p) + τ
, (2.68)

where N (p) =
∑T

t=1

∑M(p)

m=1
γ(p)mt is the average number of frames

assigned to node pdf p and τ is the MAP relevance factor that weights

the priors at the parent node p− 1.

4. Compute the SMAP estimate of the mean vector

µ̂(p)
m = µ(p)

m + Σ1/2
m ν̂(p), (2.69)

where µ(p)
m is the unadapted mean vector for Gaussian m of node p.
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Figure 2.7: Comparison between relevance MAP and SMAP adaptation.

2.5.3 MAP vs SMAP

When no adaptation data is available for a Gaussian component, this Gaus-

sian is not shifted in relevance MAP. In SMAP adaptation, in such case, it

takes prior information from its parent Gaussian. Accordingly, every Gaus-

sian component is shifted from its position in UBM. Figure 2.7 shows a

schematic example, where in SMAP, {a, b, c} get prior information from

h, {d, ..., g} from i, and {h, i} from j. Therefore, every Gaussian component

is shifted in SMAP whereas in MAP, Gaussian components {a, b, c} are not

shifted.
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2.6 Evaluation Metrics

The task of an ASVS is to decide whether speech of the target speaker oc-

curs in an authentication speech, X, and to generate a similarity score. By

comparing the similarity score with a threshold, an ASVS takes a decision.

The higher the score, the greater confidence that X is spoken by the target

speaker. In order to evaluate the performance of an ASVS, a set of trials

need to be prepared. A trial consists of a target speaker ID and an authen-

tication speech segment, X. There are two kinds of trials: target trial and

non-target trial. In a target trial, X is from a client, whereas in a non-target

trial, X is from an impostor. The ultimate goal of an ASVS is to generate low

similarity score for a non-target trial and high similarity score for a target

trial.

Two commonly used evaluation metrics for an ASVS are the detection

cost function (DCF) and the equal error rate (EER). The lower the DCF

or EER is, the better the system is. Both evaluation metrics consider two

kinds of errors occurred in an ASVS: false acceptance (FA) and false rejection
(FR). First kind of error occurs when the ASVS accepts an impostor’s false

claim, while the second kind of error occurs when the ASVS rejects a client’s

true claim. The proportion of these two kinds of errors are known as false
acceptance rate (FAR) and false rejection rate (FRR) which can be written as:

FAR =
FA
nI
, FRR =

FR
nC

, (2.70)

where FA, FR, nI and nC are the total number of false acceptances, false

rejections FR, client accesses, and impostor accesses, respectively.

The DCF has been used as primary evaluation metric in the recent NIST

SREs. It assigns one cost for FA (CFA), one cost for FR (CFR), and, a prior

probability for a trial being a target trial (Ptar). The DCF is the empirical
expected cost of a trial, estimated on the evaluation data, i.e.,

CDCF = PtarCFRPFR|Target + (1− Ptar)CFAPFA|Nontarget, (2.71)

where PFR|Target and PFA|Nontarget are the empirical error rates for target trials

(false rejection rate) and non-target trials (false acceptance rate), respec-

tively, estimated in the evaluation data. Notice that a system that always

rejects all trials, will obtain the cost PtarCFR and a system that always ac-

cepts all trials will obtain the cost (1 − Ptar)CFA. Therefore, a useful system
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should obtain a DCF that is lower the smallest of these costs. To reflect this,

DCF is often normalized as,

CNorm = CDet/min(PtarCFR, (1− Ptar)CFA) (2.72)

which then should not be larger than 1 for a useful system. Obviously, DCF

depends on the decision threshold, Φ. In order to ignore the problem of

threshold tuning, which can be regarded as a separate problem, researchers

sometimes use the optimal decision threshold for the evaluation set. The

DCF obtained in this way is called minimum DCF, Cmin. As a realistic eval-

uation metric, actual detection cost function (Cact) has been embraced by

speaker verification community since 2010. Cact is the cost estimated by

Bayesian decision rule after mapping scores to log-likelihood ratios (LLRs).

When some non-target speakers are known, i.e., any of the enrolled

speakers and some are completely unknown to the system, DCF can be writ-

ten as:

CNorm =PFR|Target + β × PKnown × PFA|KnownNontarget (2.73)

+ β × (1− PKnown)× PFA|UnknownNontarget,

where PKnown is the a priori probability that the non-target speaker is one of

the enrolled speakers, and

β =
CFR

CFA
× Ptar

1− Ptar
, (2.74)

When PKnown > 0, we need to use compound LLRs instead of the original

simple LLRs. In order for compound LLRs to be effective, it is important

that the simple LLRs are well-calibrated. It is not sufficient to calibrate

the compound LLRs themselves. Therefore, to simply optimize the decision

threshold for the compound LLRs does not give the lowest cost that could

have been obtained with perfect calibration. See the BOSARIS website for

SRE12 [13] and the materials therein for an explanation about compound

vs. simple LLRs.

In order to encourage systems that work well on a large range of oper-

ating points (DCFs), the primary evaluation metric, DCF, can be written as

the average of two normalized detection costs given by:

Cavg =
Cβ1Norm + Cβ2Norm

2
, (2.75)
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where Cβ1Norm and Cβ2Norm are two different normalized DCFs corresponding to

different values of the parameters Ptar, CFR and CFA.

Since the DCF is an average of the two error rates (false acceptance and

false rejection), it is not particularly intuitive. A more intuitive evaluation

metric is the EER. This evaluation metric indicates the number of errors

when the decision threshold is set so that FAR and the proportion of false

rejections FRR are equal.

2.7 Significance Test

In statistics, a significance test is used to decide whether a null hypothesis

should be rejected or retained. In speaker verification, it should be used to

compare the performances of two systems or the performances of a novel

approach to the existing state-of-the art approach on the same problem to

determine whether the difference between the measured performance levels

of two ASVS is statistically significant. However, in the current literature

related to ASVS it has been noticed that most of the time no significant test

is done for comparing two systems or two approaches. In this thesis, we

follow steps mentioned in [5] for doing significance test of the results of

our ASVS. Let two approaces are A and B. Then significance test can be

performed by

1. Consider null hypothesis, H0, and alternative hypothesis, Ha:

H0: Approach-B is equally good as Approach-A.

Ha: Approach-B is better than Approach-A.

2. Estimate z-statistic:

z =
|FARAB − FARBA + FRRAB − FRRBA|√

FARAB+FARBA
4·nI

+ FRRAB+FRRBA
4·nC

(2.76)

where nI and nC are the total number of impostor accesses and client

accesses. FARAB is the proportion of impostor accesses correctly re-

jected by Approach-A based ASVS, but mistakenly accepted by Approach-

B based ASVS. On the other hand, FARBA is the proportion of impostor

accesses correctly rejected by Approach-B based ASVS, but mistakenly

accepted by Approach-A based ASVS. Same explanation can be applied

for FRRAB and FRRBA .
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3. Set confidence level, α and determine the value of Zα/2 from the z-

Table.

4. If z > Zα/2, reject the null hypothesis, H0 and take a decision that

Approach-B is statistically significantly better than Approach-A

In this approach, data dependency issue is ignored. Data dependency

in an ASVS arises largely from multiple uses of the same speakers in or-

der to provide more target and non-target trials due to limited resources.

Generally, the number of target speakers and the number of authentication

speeches are very small. By using the same target speakers and authentica-

tion speeches, a set of trials are prepared for evaluating any system which

causes data dependency. This data dependency issue is complicated. Ro-

hdin et al. [115], dealt this issue for discriminant training of a PLDA model.

However, for significance test, no suitable approach has been found in the

current literature. Therefore, data dependency has been overlooked in this

thesis.



Chapter 3

Related Work

In this chapter, we give an overview of previous works on intersession vari-

ability, short duration of utterance and background models. The organiza-

tion of this chapter is as follows: Section 3.1 and Section 3.2 point out some

approaches proposed to deal with inter-session variability and short utter-

ances, respectively. Section 3.3 discusses previous works on robust back-

ground models.

3.1 Inter-session Variability Compensation

Except the context of speech, factors which change the characteristics of a

speaker’s speech signal from time to time are known as inter-session vari-
ability or channel variability factors. For example, the acoustic environment

in which a system is operating, the speaker’s emotional state and physical

conditions, the input equipments, the transmission channels and so on are

considered as inter-session variability factors because they add information

to the speech signal which is uncorrelated to the identity of the speaker. Be-

cause of these factors, an authentication utterance may sound different from

the training utterance(s) even though they are spoken by the same speaker,

as a result the verification performance degrades a lot. The process of sep-

arating these factors from the speaker identity or mitigating the effect of

these factors is referred to as channel compensation or inter-session variabil-
ity compensation which has become one of the core tasks of ASVS. Various

approaches have been proposed at almost every stage in an ASVS which can

be divided mainly into three categories: feature space based compensation,

44
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model-based compensation, and score normalization. Both feature space

based compensation and score normalization can be used with a wide va-

riety of classifiers, whereas model-based approaches are less general since

they are specific to a particular classifier. A few approaches for each of these

three categories are listed below:

• 1974: Cepstral mean subtraction (CMS) was proposed by Atal [3].

• 1996: Handset-dependent score normalization (H-Norm) was pro-

posed by Reynolds [112].

• 1998: Modulation spectral analysis based approach was applied by

Vuuren et al. [127].

• 2000: Speaker model synthesis (SMS) and test normalization (T-Norm)

were proposed by Teunen et al. [126] and Auckenthaleret et al. [4],

respectively.

• 2001: Feature warping was proposed by Pelecanos et al. [106].

• 2003: Feature mapping was proposed by Reynolds [113].

• 2004: Joint factor analysis (JFA) was proposed by Kenny et al. [83]

for GMM-UBM based ASVS.

• 2006: Nuisance attribute projection (NAP) and within-class covari-

ance normalization (WCCN) were proposed by Campbell et al. [19]

and Hatch [60], respectively, for the GMM-SVM based ASVS.

• 2009: WCCN, LDA and NAP were used by Dehak et al. [26] for i-

vector based ASVS.

• 2010: Heavy-tailed PLDA was proposed by Kenny in [79] for i-vector

based ASVS.

• 2011: Length normalized Gaussian PLDA (G-PLDA) was introduced

by Garcia-Romero et al. [43] for i-vector based ASVS.

• 2014: Weighted maximum margin criterion (WMMC) and source-

normalized WMMC (SN-WMMC) were introduced by Kanagasundaram

et al. [75].

Among the above mentioned approaches, CMS, RASTA filtering, feature

warping and feature mapping are feature space based compensation tech-

niques, H-norm and T-norm are score normalization techniques and the

others are model based compensation techniques. These approaches are

described briefly in Sections 3.1.1- 3.1.3. A comparative study about their

performances is done in Section 3.1.4.
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3.1.1 Feature Space-based Compensation

CMS is a very simple technique, which can achieve a considerable amount of

robustness against disturbing channel and speaker effects. In this approach,

the mean of the cepstral vectors of an utterance is subtracted from each

frame of that utterance:

y[t] = x[t]− 1

T

T∑
i=1

x[i] (3.1)

where x[t] and y[t] are the time-varying cepstral vectors of the utterance be-

fore and after CMS, respectively, the index ‘t’ refers to the analysis frames

and T is the total number frames in an utterance. This approach not only re-

duces linear channel effects, but also reduces the average vocal tract config-

uration information of the speaker. Therefore, under different channel envi-

ronments, it is beneficial to apply CMS, but applying it on clean speech with

matched transducer and channel conditions degrades performance [110].

Modulation spectrum based approaches were proposed to suppress the

spectral components that change more slowly or quickly than the typical

range of change of speech. RelAtive SpecTrA (RASTA) filtering [65] is such

a popular approach which was proposed for robust speech recognition and

accepted by research community worked on speaker verification due to its

simplicity and good performance for removing convolutional noise (e.g.,

noise caused by recording devices such as microphone) as well as additive

noise (e.g., car passing sound, air-conditioned sound etc). In RASTA filter-

ing, at first the critical band power spectrum is computed from each analysis

frame. Then a compressing static non-linear transformation is applied on

the spectral amplitude. After that, the time trajectory of each transformed

spectral component is filtered out and then the filtered speech representa-

tion is transformed through an expanding non-linear transformation. Then

the steps of conventional PLP (See Section 2.3.4) can be applied to simulate

power law of hearing and compute an all-pole model.

The RASTA filter has a bandpass about 1 to 13 Hz. This is suitable

for speech recognition, but its lower cut-off frequency removes significant

portions of speaker specific information, and higher cut-off frequency in-

cludes unnecessary information. By computing relative importance of dif-

ferent spectral components of the magnitude spectrum, Vuuren et al. [127]

showed that spectral components from 0.1 Hz to 10 Hz contain the most
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useful speaker information. They designed a filter appropriate for speaker

verification based on their findings. In their approach, static features are

derived by applying CMS and 101-tap lowpass FIR filter with cut-off at 10

Hz to the time sequences of cepstrums. Dynamic features are derived by

applying a delta filter to the static features. Both the static and dynamic

features are downsampled to 25 Hz.

In feature warping [106], at first a set of cepstral co-efficients are ex-

tracted from the speech segment. Then the short term distribution of the in-

dividual cepstral co-efficients is conditioned to a standardized distribution.

For this, a sliding window (typically, a three second window) is shifted by

a single frame each time by keeping the cepstral co-efficient whose warped

value will be estimated in the center of the sliding window. The co-efficient

values inside the sliding window are sorted in descending order and their

ranking within the sorted list is calculated. The most positive co-efficient

obtains a ranking of 1 while the most negative a ranking of the size of win-

dow, N . This ranking is used as an index in a lookup table to determine

the warped feature value. The lookup table used to perform the mapping is

calculated prior to the parameterization process using

m∫
z=−∞

h(z)dz =
N + 1

2 −R
N

(3.2)

where z is a single warped feature stream variable, h(z) is the target density

function of z, N is the size of the sliding window, R is the rank of the middle

speech feature of the current window and m is the warped feature value. If

the target density function is a normal distribution, then the warped feature

is estimated by setting the rank initially to R = N , solving for m by nu-

merical integration, and repeating for each decremented value of R for the

following equation:

m∫
z=−∞

1√
2π

exp
(
− z2

2

)
dz =

N + 1
2 −R
N

(3.3)

3.1.2 Score Normalization

In handset-dependent score normalization, the basic approach is to estimate

handset-dependent biases, µ, and scales, σ, in the LLR scores from a set of
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impostors and then remove these from scores of target speakers during veri-

fication. For that, at first a set of handsets, H, are decided whose scores will

be normalized. Then a set of impostors, I, are selected from a background

dataset, B, which have recordings for each handset, h ∈ H. After that a set

of impostor models, Ih, are trained. Then a set of speech segments, Xh, are

selected as test segments for each h ∈ H. After that LLR score is estimated

for each Ih-UBM model pair using Xh. Then µh and σh are estimated which

is used in score normalization. To avoid bimodal distributions, gender in-

formation is matched. The H-normalized score, Ŝtx, of a LLR score, Stx, for a

given target speaker t and an authentication utterance x, can be defined as:

Ŝtx =
Stx − µh(x)

σh(x)
, (3.4)

where h(x) is the handset label for the authentication utterance x. In this ap-

proach, a handset label detector is necessary when meta data about handset

label is not available. This approach does not work on a unknown handset.

Therefore it did not get popularity.

Test normalization (T-norm) is applied to transform the log likelihood ra-

tio (LLR) score of an ASVS in order to reduce inter-session variability associ-

ated with the LLR score [4]. Unlike H-Norm, it does need to detect handset

label and to have a set of impostors for each handset. The T-normalized

score, Ŝtx, of a LLR score, Stx, for a given target speaker t and an authentica-

tion utterance x, can be defined as:

Ŝtx =
Stx − µ
σ

, (3.5)

where parameters µ and σ are estimated as the sample mean and standard

deviation, respectively, of a set of LLR scores generated by impostor models

for the authentication utterance t. Impostors used in T-normalization are

known as T-norm speakers.

3.1.3 Model Based Compensation

Speaker Model Synthesis (SMS)

In this approach, speaker-independent channel transformations are esti-

mated offline, which are then used to synthesize speaker models for chan-

nels for which no speaker data is available. For an authentication utterance,



Related Work 49

first caller’s channel is identified by a channel detector. If the detected chan-

nel is different from the target speaker’s channel, then a synthesized model

is built for the target speaker by applying the appropriate transformation.

Likelihood scoring and normalization is performed using the synthesized

model and channel-specific UBM.

Given a gender-, channel- and speaker-independent root UBM, λr(wr, µr, σr),

and a set of feature vectors {xi}Ni=1 from a channel, h ∈ 1, 2, ...,H, a channel-

and gender-dependent UBM can be obtained by adapting the c-th Gaussian

component of the root UBM, λr, in the following way:

wh,c = α
nc
N

+ (1− α)wr,c (3.6)

µh,c = α

(
1

nc

N∑
i=1

p(c|xi, λr)xi

)
+ (1− α)µr,c (3.7)

σ2
h,c = α

(
1

nc

N∑
i=1

p(c|xi, λr)x2
i

)
+ (1− α)(σ2

r,c + µ2
r,c)− µ2

h,c (3.8)

where α is the smoothing factor and nc is defined as:

nc =
N∑
i=1

p(c|xi, λr). (3.9)

After training channel- and gender-dependent UBM, λh, channel is detected

for the enrollment data of a target speaker. After that the corresponding λh
is adapted by the enrollment data to make channel- and speaker-dependent

model, λs(ws, µs, σs). In the authentication phase, if the channel of au-

thentication segment is different from the channel of target speaker, then a

transformation is done from channel a to channel b denoted by Tab in the

following way:

Tab(ws,c) = ws,c

(wb,c
wa,c

)
(3.10)

Tab(µs,c) = µs,c + (µb,c − µa,c) (3.11)

Tab(σ
2
s,c) = σ2

s,c

(σ2
b,c

σ2
a,c

)
(3.12)
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Within-Class Covariance Normalization (WCCN)

In WCCN [60], first a set of upper bounds on the rates of false positives

and false negative at a given score threshold are constructed. Under various

conditions, minimizing these bounds leads to the closed-form solution, W−1,

where W is the expected within-class covariance matrix of the data, given

by:

W =
C∑
c=1

p(c)Σc (3.13)

Σc = E(xc − x̄c)(xc − x̄c)′, ∀c (3.14)

where C is the total number of classes, p(c) is the prior probability of class

c and xc is a random draw from class c in input space. After estimating W,

a generalized linear kernel can be obtained as:

k(xi,xj) = x′iWxj (3.15)

If W is full-rank, then it can be written as:

W−1 = UU′ (3.16)

For a small set of feature vectors, generally W is estimated empirically. In

practice, empirical estimates of W are typically quite noisy. In order to de-

noise empirically estimated Ŵ, generally a smoothing technique is applied.

In [59] the following smoothing model is used:

Ŵs = (1− α) · Ŵ + α · I, α ∈ [0, 1] (3.17)

For large feature sets, inverting or simply estimating Ŵ is impractical for

computational reasons. To deal with this problem, in [59] the PCA decom-

position described in [73] was proposed to use, where the feature space is

divided into two sets: a PCA-set and a PCA-complement set.

Nuisance Attribute Projection (NAP)

NAP [19] was proposed mainly for SVM based system, but it is enable to

work with any other classifiers. In this approach, a projection matrix, P

is learned to remove the components of a vector (e.g., supervector) in the

direction of a subspace that contains mostly channel information rather than



Related Work 51

information about speakers identity. The filtered out components are called

nuisance attributes. Projection matrix, P, is defined as:

P = I− UU′ (3.18)

where U is a matrix with orthonormal columns. Thousands of speakers

recorded in multiple conditions are used to train P. Let S be the number of

speakers and Hs be the number of utterances from s-th speaker. By extract-

ing MD × 1 dimensional mean vector µ from each session h = 1, 2, ....,Hs

of each speaker s = 1, 2, ...., S, the projection matrix P is estimated by the

following objective function

Minimize
N−1∑
i=1

N∑
j=i+1

wij ||P(µi − µj)||2 (3.19)

subject to U′U = I (3.20)

where N =
∑S

s=1Hs and wij is a weight which can be defined as:

wij =

1 if µi and µj are from the same speaker

0 otherwise

The objective function 3.19 is minimized by setting the columns of U be the

d most principal eigenvectors of the eigenvalue problem

AZA′U = UΛ (3.21)

where A = [µ1,µ2.....,µN ] and Z is defined as:

Z = diag(W · 1)−W (3.22)

where W = [wij ] is a N ×N symmetric matrix and 1 is a vector of ones.

Joint Factor Analysis (JFA)

JFA [83, 78, 80] was proposed for speaker recognition using the GMM-

supervector. In this approach, it is assumed that a speaker- and channel-

dependent GMM-supervector, µcs, can be decomposed into a speaker-dependent

part, s, and a channel-dependent part, c, in the following way:

µcs = s+ c, (3.23)



Related Work 52

where

s = µ+ Vy + Dz, (3.24)

c = Ux, (3.25)

where

• µ ∈ RMD×1 is a speaker- and channel-independent GMM-supervector

representative of D-dimensional M number of mean vectors of an

UBM.

• V ∈ RMD×Rs is the eigenvoice matrix with rankRs, whereRs �MD.

• U ∈ RMD×Rc is the eigenchannel matrix with rank Rc, where Rc �
MD.

• D ∈ RMD×MD is the diagonal residual matrix with full-rank.

• y ∈ RRs×1, x ∈ RRc×1 and z ∈ RMD×1 are hidden variables dis-

tributed according to the standard normal distribution,N (y|0, I),N (x|0, I)
and N (z|0, I), respectively. They are called speaker factors, channel
factors and speaker-dependent residual factors or common factors, re-

spectively.

• s is normally distributed with mean µ and covariance matrix VV′ +

D2, and c is normally distributed with zero mean and covariance ma-

trix UU′.

• The range of VV′ is known as speaker space and the range of UU′ is

known as channel space.

For a UBM, λ = {wm,µm,Σm}Mm=1, and a background dataset, B with S

number of speakers having Hs number of enrollment data per speaker, s ∈
{1, 2, ..., S}, hyperparameters (V,U,D) are estimated in a iterative process.

At first eigenvoice matrix V is estimated assuming that U and D are zero,

then using the estimated V eigenchannel matrix U is estimated assuming

that D is zero, and using estimated V and U, residual matrix D is estimated.

The steps of estimating V are given below:

1. Extract D dimensional feature vectors from all utterances of back-

ground set, B.

2. For each speaker s with T feature vectors {o1,o2, ....,oT } extracted

from Hs number of utterances from s, estimate the 0th, 1st and 2nd

order Baum-Welch statistics, Nm(s), F̃m(s) and S̃m(s), respectively,
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using the m-th Gaussian component of UBM as follows:

Nm(s) =
∑
t∈s

γmt

=
∑
t∈s

wmN (ot | µm,Σm)∑M
i=1wiN (ot | µi,Σi)

(3.26)

F̃m(s) =
∑
t∈s

γmtot (3.27)

S̃m(s) = diag
(∑
t∈s

γmtoto
′
t

)
(3.28)

The 2nd order statistic is unnecessary if Σ does not need to be up-

dated.

3. Center 1st and 2nd-order Baum-Welch statistics:

Fm(s) = F̃m(s)−Nm(s)µm, (3.29)

Sm(s) =S̃m(s)

− diag
(
F̃m(s)µ′m + µmF̃m(s)′ −Nm(s)µmµ

′
m

)
,

(3.30)

4. Decide a desired rank Rs for the eigenvoice matrix, V, and initialize

it randomly.

5. Estimate precision matrix, L(s)as follows:

L(s) = I +
M∑
m=1

Nm(s)V′mΣ−1
m Vm (3.31)

where Vm ∈ RD×Rs is the m-th sub-matrix of V.

6. Estimate speaker factors of speaker s as follows:

y(s) = L−1(s)

M∑
m=1

V′mΣ−1
m Fm(s) (3.32)

7. Estimate accumulators, C and A as follows:

C =
∑
s∈B

F(s)y(s)
′

(3.33)

Am =
∑
s∈B

Nm(s)(L−1(s) + y(s)y(s)
′
) (3.34)
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where

F(s) =


F1(s)

F2(s)
...

Fm(s)

 (3.35)

8. Update Vm as follows:

Vm = CA−1
m (3.36)

9. Update covariance matrix:

Σ = N−1
(∑
s∈B

S(s)− diag(CV′)
)

(3.37)

where

N =
∑
s∈B

N(s) (3.38)

N(s) =


N1(s) · I 0 · · · 0

0 N2(s) · I · · · 0
...

...
. . .

...

0 0 · · · Nm(s) · I

 (3.39)

S(s) =


S1(s) 0 · · · 0

0 S2(s) · · · 0
...

...
. . .

...

0 0 · · · Sm(s)

 (3.40)

This step is optional. Most of the time UBM’s covariance matrix is

used.

10. Iterate Step 5-Step 9 until V converges.

Steps of estimating V are almost the same to the steps of estimating i-vector

extractor, T (See Section 2.4.4). The only difference is that for T all utter-

ances from a speaker are considered as being uttered by different persons,

whereas for V all the utterances of a given speaker are considered to belong

to the same person [28].

After computing V, Eq. 3.32 is used to estimate speaker factors, y(s),

for each speaker. Then the 1st-order statistic for each utterance, u of s ∈ B
is modified as follows:

Fm(u, s) = F̃m(u, s)−Nm(u, s)
(
µ+ Vy(s)

)
(3.41)
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where

F̃m(u, s) =
∑
t∈u,s

γmtot (3.42)

Nm(u, s) =
∑
t∈u,s

γmt (3.43)

Using Nm(u, s) and Fm(u, s) instead of Nm(s) and Fm(s), U is estimated

following the same steps followed for estimating V. To estimate D, the

following first order statistic is used in the steps used for estimating V:

Fm(s) = F̃m(s)−Nm(s)
(
µ+ Vy(s)

)
−
∑
u∈s

Nm(u, s)Ux(u, s) (3.44)

After estimating V, U and D using B, y, x and z are estimated for the

enrollment data of the target speaker and for the authentication data in or-

der to generate score for a trial. There are many scoring strategies. In [47],

it has been shown that performance does not vary too much among differ-

ent scoring techniques, however, the speed of evaluation varies a lot from

one technique to another. The fastest scoring technique is the linear scoring

which can be written as for a target speaker (tar) and an authentication

speech (test):

S =
(
Vy(tar)+Dz(tar)

)′
Σ−1

(
F(tst)−N(tst)µ−N(tst)Ux(tst)

)
(3.45)

Probabilistic Linear Discriminant Analysis (PLDA)

PLDA was originally proposed for object recognition in image processing

independently by Ioffe [70] and Simon et al. [107]. In [107] it is assumed

that the feature vector, g, is generated as:

g = m + Vy + Ux + ε, (3.46)

where m is the mean of g, and y and x are random vectors dependent on

the class and channel factors, respectively. The vector ε also depends on

the channel factors and follows N (0,Σ), where Σ is a diagonal covariance

matrix. The vectors y and x follow the standard normal distribution. The

matrix V is a basis for the between-class subspace and the matrix U is a basis

for the within-class subspace. This PLDA model is very similar to the JFA

model. The difference is that in the PLDA model, g is observed whereas in

JFA, µ is indirectly observed, i.e., we observe features drawn from the GMM

but we do not know the parameters of µ.
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Kenny introduced PLDA as in Eq. (3.46) for speaker verification with i-

vectors as features in [79]. The author suggested to skip Ux but instead use

full covariance Σ when large amounts of data are available, i.e.,

ω = m + Vy + ε. (3.47)

Using a full covariance matrix, Σ, is possible since the dimension of the i-

vector is low. The PLDA model in Eq. (3.47) is similar to the two-covariance
model proposed in [14] and to the PLDA model proposed in [70]. The rank

of V is lower than the dimension of the feature vector in [70, 79]. On the

other hand, in [14], the rank of V is equal to the dimension of the feature

vector, which means that the between-class covariance VVT has a full rank.

Given the two i-vectors, ωi and ωj involved in a trial, the verification

score, sij , is computed as:

sij = log
p(ωi,ωj |Hs)
p(ωi,ωj |Hd)

, (3.48)

where Hs and Hd are the following two hypotheses

Hs: ωi and ωj belong to the same speaker

Hd: ωi and ωj belong to two different speakers

When m = 0, the closed-form solution of Eq. (3.48) is

sij = 2ωTi Pωj + ωTi Qωi + ωTj Qωj + c, (3.49)

where c is a constant, and

P = Σ−1
a Σb − (Σa −ΣbΣ

−1
a Σb)

−1, (3.50)

Q = Σ−1
a − (Σa −ΣbΣ

−1
a Σb)

−1, (3.51)

where Σa = VVT + Σ, and Σb = VVT [see [43]].

Typically, V and Σ are estimated by maximizing the likelihood (ML) of

the training data

[V̂, Σ̂] = arg max
V,Σ
{p(B|V,Σ)}, (3.52)

where V̂ and Σ̂ are the ML estimates of V and Σ, respectively, and B is the

set of background i-vectors.

This is usually achieved by means of an EM algorithm [107]. It has been

shown in [43] that it is better to apply whitening followed by length normal-

ization to the i-vectors before estimating the parameters of the PLDA model

in order to make the i-vectors more closely follow a Gaussian distribution.
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3.1.4 Comparisons Among Different Approaches

In [15], a comparative study was done on the effect of CMS, RASTA filtering,

heteroscedastic linear discriminant analysis (HLDA) [90], feature warping,

feature mapping, eigenchannel adaptation and score normalization. It was

shown that doing RASTA filtering after applying CMS can reduce EER al-

most half comparing to the CMS based system. Feature warping, HLDA and

feature mapping on the top of the RASTA filtering was also advantageous.

The most beneficial was to do eigenchannel adaptation. It gave an impres-

sive improvement in system’s performance especially when it was applied

without feature mapping. T-norm was not effective to improve the overall

system’s performance. Comparing to RASTA filtering feature warping was

more beneficial. The baseline system’s EER and Cmin for the NIST SRE 2006

core task (English) were 23.8% and 0.088, respectively. Using all channel

compensation techniques along with double delta and triple delta, 4.0%

EER and 0.018 Cmin were obtained. Excluding RASTA, feature mapping

and T-norm, EER and Cmin became 3.6% and 0.018, respectively. In [27],

comparison between JFA and SVM with NAP is presented. It was shown

that JFA is better successful than NAP based SVM. For the NIST SRE 2006

core task (English), 4.4% EER and 0.024 Cmin was obtained in SVM based

system using non-linear kernel and applying NAP, whereas 3.5% EER and

0.021 Cmin was obtained in JFA based system.

3.2 Short Duration of Utterance

There is no doubt that the performance of a text-independent ASVS has

been improved a lot during the last one and half decades mainly because

of the improvement of classifiers and channel compensation techniques.

However, all these techniques demand substantial amount of speech both

in the training and authentication phases which contradict with the users’

demands and reality. Many cooperative users (i.e. users who willingly use

an ASVS for their own benefit) do not want to talk happily for a long time

to be authenticated by an ASVS even for not frequently used applications

(e.g., accessing online banking service). For frequently accessed applica-

tions (e.g., login to smart phone, e-mail account) shorter speech gets their

higher priority because of convenience. For some applications where users
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are unaware about the authentication process like in forensics, it is not pos-

sible to ensure that substantial amount of quality speech can be collected for

the verification purpose. For some devices like mobile phones, it is hard to

use long utterances because of the shortage of memory. Therefore, reducing

the required amount of speech data has recently become a focusing point in

the state-of-the-art speaker verification design, including GMM-UBM, JFA,

SVM and i-vector based systems [100, 35, 130, 81, 103, 76, 77, 84, 74, 75].

In [103], a comparative figure was drawn about the performances of the

GMM-SVM based systems using limited speech. Comparing to the GMM-

UBM based system, the performance of GMM-SVM based system degraded

more rapidly when speech duration was reduced. The duration of impostor

utterances had a considerable effect on the system’s performance. Matching

the impostor utterances to the length of the short authentication utterance

significantly improved SVM-based system’s performance. It was also true for

the NAP-based compensation. For short authentication segments, systems

without NAP was better than systems used full length available utterances

for estimating the NAP directions. It was found that NAP compensation is

most effective when the nuisance directions were estimated from utterances

containing an amount of speech matching the authentication speech seg-

ments. The same phenomena was observed for the score normalization. It

was shown that score normalization like T-Norm to be most effective when

cohort speakers’ utterances were matched to the utterances used for the

enrollment and authentication.

One reason for the degradation of the performance of ASVS using short

utterances could be that adaptation techniques fail to provide robust param-

eters estimation. In [96, 100, 129, 34], eigenvoice modeling proposed by

Kuhn et al. for speech recognition [88], was used for adaptation arguing

that the number of free parameters is small in eigenvoice modeling which

suits for short utterances. In eigenvoice modeling also known as subspace

adaptation (SA), a speaker-specific model can be expressed as:

µs = µ+ Vy (3.53)

where V = {vr}Rr=1 is the R eigenvectors corresponding to the R largest

eigenvalues, y is the parameter of speaker s resides within the speaker sub-

space built by V. In [96] Lucey and Chen proposed probabilistic subspace

adaptation (PSA) by considering y as a random variable and optimizing it
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according to MAP criterion. Comparing with relevance MAP, they showed

that PSA improved the performance of an ASVS when the amount of train-

ing data is limited. In [130, 129], Vogt et al. combined SA with relevance

MAP adaptation.

µs = µ+ Vy + Dz, (3.54)

where Dz models residual variability that is not captured by speaker sub-

space. They also proposed a method similar to JFA by combining SA, rele-

vance MAP and session variability modeling. They empirically showed that

independent estimation of speaker and session subspaces performed better

than their simultaneous optimization. It was also shown that for training

the speaker subspace as much data as possible should be used. On the other

hand, for training session subspace, it is important to match conditions and

utterance lengths of data used for training subspace with the conditions and

utterance lengths of the data expected to be encountered in the enrollment

and authentication phases. In [34], µs is calculated as follows:

µs = µ+ Vy(µr − µ), (3.55)

where µr is the speaker mean supervector derived from relevance MAP

adaptation. In [35, 34], Fauve et al. also highlighted the importance of

a well-tuned speech detection front-end for short-utterances. They em-

pirically showed that a front-end that is optimized on a longer duration

task generates suboptimal results when for shorter duration task. The re-

verse case is not so severe. Using enrollment data in the range of 2-32

seconds, Mak et al. [100] showed a comparative figure about the effect

of four adaptation techniques: MAP [45], maximum likelihood linear re-

gression (MLLR) [92], reference speaker weighting (RSW) [62] and ker-

nel eigenspace-based MLLR (KEMLLR) [98, 67]. Using a GMM-UBM based

ASVS, it was shown that KEMLLER outperforms other adaptation techniques

for enrollment data between 2 to 4 seconds. KEMLLR is a kernel ver-

sion of the eigenspace-based MLLR (EMLLR) adaptation [72]. EMLLR de-

rives a small set of eigenmatrices using principal component analysis (PCA)

and performs MLLR transformation by combining eigenmatrices linearly.

KEMLLR finds eigenmatrices in the kernel-induced high dimensional fea-

ture space. The main shortcomings of eigenvoice modeling is that it de-

mands huge amount of background data for training projection matrix or

factor loading matrix.
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The effect of using short utterances both for evaluation and develop-

ment in the PLDA based ASVS was investigated in [77]. It was found that

the heavy tailed PLDA (HTPLDA) performed better than the Gaussian PLDA

(GPLDA) when evaluation utterance lengths were decreased. The impor-

tance of matching durations for score normalization and PLDA modeling to

the expected evaluation conditions was highlighted. It was also pointed out

that a pooled total-variability approach to PLDA modeling can achieve bet-

ter performance than the traditional concatenated total-variability approach

for short utterances in mismatched evaluation conditions.

In [76], a comparison of JFA and i-vector based systems including var-

ious compensation techniques such as WCCN, LDA, scatter difference NAP

(SDNAP) and GPLDA, was done. Systems using around 2.5 minutes enroll-

ment data were better than systems using shorter enrollment data. Marginally

better performance was obtained for GPLDA based i-vector system compar-

ing to other compensation techniques when authentication utterances were

above or equal to 10 seconds. Overall, performances of all systems declined

sharply once utterance lengths fall below 10 seconds. Based on these find-

ings, appropriate session compensation techniques using short utterances

are studied in [74, 75].

In [74] Kanagasundaram et al. introduced two different types of source

and utterance-duration normalized LDA approaches, named SUN-LDA-pooled

and SUN-LDA-concat, to compensate the session variability in i-vector based

ASVS using short utterance. By capturing the source variation information

from short- and full-length development i-vectors, the these approaches out-

performed the traditional LDA approach. In this approach, at first between-

class-scatter matrices for telephone and microphone are estimated as fol-

lows:

St
b = αtfS

tf
b + αtsSts

b (3.56)

Sm
b = αmfS

mf
b + αmsSms

b (3.57)

where αtf, αts, αmf and αms are respectively weighting coefficients of tele-

phone and microphone sourced full- and short length between-class scat-

ter estimations, Stf
b and Smf

b are individually estimated from telephone and

microphone sourced full-length utterances using the following Eq. 3.58. Stf
b

and Sms
b are estimated using telephone and microphone sourced short-length
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utterances respectively.

Sb =
S∑
s=1

ns(ω̄s − ω̄)(ω̄s − ω̄)′ (3.58)

where S is the total number of speakers and ns is number of utterances of

speaker s and N is the total number of sessions. The mean i-vectors are ω̄s
for each speaker and ω̄ for the across all speakers are defined by:

ω̄s =
1

ns

ns∑
i=1

ωsi (3.59)

ω̄ =
1

N

S∑
s=1

ns∑
i=1

ωsi (3.60)

The within-class scatter matrix Sw is calculated using only full-length utter-

ances as follows:

Sw =
S∑
s=1

ns∑
i=1

(ωsi − ω̄s)(ωsi − ω̄s)′ (3.61)

The LDA matrix, A, is calculated through the eigenvalue decomposition of

Sbv = λSwv. That means A is formed as the subset of eigenvectors, v,

having the largest eigenvalues, λ. For the SUNLDA-pooled case, v is defined

by

(Stb + Smb )v = λSwv (3.62)

For the SUN-LDA-concat case, the A is formed by concatenating the tele-

phone and microphone sourced LDA matrices, At and Am, as follows,

A = [AtAm] (3.63)

where At and Am are estimated as eigenvalue decomposition of,

Stbv = λSwv (3.64)

Smb v = λSwv (3.65)

In [75] the short utterance variance normalisation (SUVN) and short

utterance variance (SUV) modelling were introduced for PLDA based ASVS

to compensate the session and utterance variations in short utterances. In

these approaches, short utterance variance (SUV) matrix is estimated:

SSUV =
1

N

N∑
n=1

(ωfulln − ωshortn )(ωfulln − ωshortn )′, (3.66)

where i-vectors ωfulln were extracted from 100 seconds long utterances and

ωshortn were extracted from 30 seconds utterances.
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3.3 Robust Background Model

A background model plays an important role in dealing with both inter-

session variability and short utterances. In the model based inter-session

variability compensation techniques like NAP, WCCN, JFA etc., background

models (e.g., NAP matrix P, within-class covariance matrix W, eigenvoice

matrix V, eigenchannel matrix U) provide information about the directions

of inter- and intra-speaker variations which help to build speaker-specific

models excluding information unrelated to the speaker identity. For the

short-utterance case, background models like UBM, eigenvoice matrix etc.,

provide prior distributions for the parameters of robust speaker-specific mod-

els. The standard approach is to train one background model for all target

speakers in the enrollment set, E , using all available data by matching one

or two criteria. In this approach, the existence of variations in the set of

target speakers and the existence of irrelevant and noisy data in the train-

ing dataset (denoted by B) of the background models are generally ignored.

Few researches on background modeling have dealt with the following two

issues, even though it has been empirically proved those two issues have

positive impact on the performance of ASVS.

1. robustness against enrollment data variants

2. robustness against irrelevant training data

These two issues are described briefly in the following two sessions.

3.3.1 Robustness Against Enrollment Data Variants

The homogeneity of target speakers in E based on some characteristics

such as gender (male/female), duration of speech segments (long utter-

ance/short utterance), transmission channel (telephone/microphone) etc.,

has been generally maintained in an evaluation set so that researchers can

focus on the effect of a specific issue. The standard approach is to match

B with the obvious characteristics based on which speakers included in

E are homogeneous and train only one background model for each char-

acteristic. For example, common approach is to train gender-dependent

UBMs, i.e., one UBM for male speakers trained by using only male data, and

one UBM for female speakers trained by using only female data. Empiri-

cally it has been shown that gender-dependent UBM outperformed gender-
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independent UBM. However, in practical applications variability in E is nor-

mal. Even the enrollment set which is homogeneous according to one or

two obvious factors can be heterogeneous according to more factors. For

example, a set of telephone speech collected from female speakers can be

heterogeneous according to the handset type (e.g., electret, carbon). The

existence of data variants in E gets attention in [63, 142, 116]. In these

studies, it has been concluded that it is better to use target speaker-specific

or cluster in E specific UBMs rather than one UBM for all speakers in E .

In [63], it has been empirically shown that the handset- and gender-

dependent UBM outperformed the handset- and gender-independent UBM.

Zhang et al. [142] proposed to use people’s vocal tract length (VTL) normal-

ization factor, α, to divide B into separate datasets, each part of B was then

used to train a VTL-dependent UBM. Therefore, their system was multiple

UBMs based rather than single UBM based. Their multiple background mod-

els (MBM) based system can be viewed as a natural extension of gender-

dependent UBM systems. The steps of MBM based system are given below:

1. Extract normal feature vectors (e.g., MFCC, PLP coefficients) from all

utterances in the background dataset, B.

2. Train a UBM, Λ, using the feature vectors extracted from B.

3. Generate warped features of all utterances in B using VTL normaliza-

tion factor or warping factor, α, in the range of 0.88 and 1.12 (i.e.,

0.88 ≤ α ≤ 1.12) with step-size 0.02 and the following bilinear fre-

quency warping function in the filterbank analysis.

fα = f +
fu − fl
π

arctan(
(1− α) sin θ

1− (1− α) cos θ
), (3.67)

where

θ =
f − fl
fu − fl

π, (3.68)

where f and fα are the original and warped frequencies, respectively.

fu and fl are the upper bound and lower bound of the filter, respec-

tively.

It means, if we choose n values for α in the range between 0.88 and

1.12, there will be n set of feature vectors for each utterance in B.

4. Using the warped features of B (say, Oα), train a warped UBM, Λ∗
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(a) Search the best warping factor in a limited grid.

α∗ = arg max
0.88≤α≤1.12

p(Oα|Λ) (3.69)

(b) Update model parameters

Λ∗ = arg max
Λ

p(Oα∗ |Λ) (3.70)

(c) Set α = α∗ and Λ = Λ∗ and go to Step-4a.

If there is no significant difference in the warping factors between

two consecutive iterations, stop parameters updating of Λ∗.

5. Estimate the best warping factor, α∗r for each utterance, r, in B, using

warped features of that utterance (say, Oαr ) and warped UBM, Λ∗,

α∗r = arg max
0.88≤α≤1.12

p(Oαr |Λ∗) (3.71)

6. Divide B into N disjoint datasets, B1,B2, .....,BN , according to the

warping factors.

7. Train N VTL-dependent UBMs using B1,B2, .....,BN .

8. Extract normal feature vectors (e.g., MFCC, PLP coefficients) from all

utterances in the enrollment dataset, E .

9. Train N speaker-specific GMMs for each speaker, S, in E , by MAP

adaptation of N UBMs using S’s feature vectors.

10. Verify each authentication utterance against all theN (speaker-specific

GMM, VTL-dependent UBM) pairs.

11. Fuse the scores ofN GMM-UBM systems in order to get the final score.

They conducted experiments on the NIST SRE 2006 (SRE06) core task

(1conv4w-1conv4w) and cross-channel task (1conv4w-1convmic). They

trained eight VTL-dependent GMM-UBM systems (i.e.,N = 8). Using gender-

dependent systems and minimum likelihood ratio (MLR) score fusion tech-

nique, for 1conv4w-1conv4w task they were able to reduce EER from 9.69%

to 9.40% for female and from 8.38% to 8.36% male. Cmin was reduced

from 0.0449 to 0.0414 for female and from 0.0397 to 0.0371 for male. For

1conv4w-1convmic task, EER was reduced from 11.65% to 10.76% for fe-

male and from 10.01% to 9.38% for male. Cmin was reduced from 0.0563

to 0.0543 for female and from 0.0442 to 0.0408 for male.

Sarker et al., also proposed to train multiple UBMs using VTLN factor

in [116]. The main difference between their approach and the previous
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approach is that they clustered target speakers in E , where the previous

approach clustered utterances in B. The steps of their approach are given

below:

1. Extract normal feature vectors (e.g., MFCC, PLPCC ) from all utter-

ances in the background dataset, B.

2. Train a speaker-independent UBM, Λ, using the feature vectors ex-

tracted from B.

3. Cluster target speakers in the enrollment set E using VTLN factor into

M disjoint clusters, C1, C2, ...., CM .

(a) Extract normal feature vectors (e.g., MFCC, PLPCC ) from all ut-

terances in E .

(b) Generate warped features of all utterances in E using 0.80 ≤ α ≤
1.20 with step-size 0.02.

(c) Estimate the best warping factor, α∗S for each speaker, S, using

warped features of that speaker (say, QαS)

α∗S = arg max
0.80≤α≤1.20

p(QαS |Λ) (3.72)

4. Train speaker cluster-depndent UBMs, SC-UBMs.

(a) Load the feature vectors of all the training utterances from all the

target speakers in cluster Cj , where j = 1, 2, .....,M .

(b) Build a SC-UBMCj for speaker cluster Cj with single iteration of

MLLR adaptation from speaker-independent UBM.

(c) Repeat Step-4a to -4b for all clusters.

5. Build speaker-specific GMMs from the corresponding SC-UBM using

2-iterations of MAP adaptation.

6. Verify each authentication utterance against speaker-specific GMM and

SC-UBM pairs.

By using 14 clusters (i.e., M = 14), Sarker et al., reduced EER from 15.07%

to 13.96% and Cmin from 0.0597 to 0.0593. The EERs of both approaches

are relatively high compared with other more powerful GMM-UBM sys-

tems [10]. It is because in the above two approaches complicated inter-

session variability compensation techniques were not used.
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3.3.2 Robustness Against Irrelevant Data

More data is not always better. Noisy, irrelevant, or weakly relevant data

or outlier is unwanted data, since it hinders most of the data analysis like

classification, regression, clustering etc., by leading to biased parameter es-

timation and incorrect results. Often there is no clear boundary between

different kinds of unwanted data. Sometimes only distorted data as the re-

sult of an imperfect data collection, transferring or storing process, or data

mixed with unexpected sources is refereed to as noisy data. For example,

main block information in a web page along with incoherent banner ad-

vertisements, navigation bars, copyright notices, etc., is considered as noisy

data [137]. According to Hawkins [61], “An outlier is an observation which

deviates so much from the other observations as to arouse suspicions that it

was generated by a different mechanism". It is referred to as an anomaly in

the data mining and statistics literature. Some authors named anomalies as

strong outliers while noisy or erroneous data as weak outliers [86, 1]. Some-

times some data are neither noisy nor outliers, but irrelevant or weakly rel-

evant to a particular data analysis because those data do not contain any in-

formation helpful for data analysis. For example, speech data is completely

irrelevant for image recognition and male speech data is weakly relevant for

female speakers.

No matter whether data is a weak outlier or strong outlier; weakly rele-

vant or completely irrelevant, it is important to identify unwanted data and

then remove it completely. If that is not possible or that causes reduction of

huge amount of training data which can hinder system’s performance, then

transforming noisy data to useful ones is an important task. There are many

approaches to do that, for example denoising techniques such as wavelet

transform, different kinds of linear and non-linear filters etc., are used to re-

pair distorted data. Different kinds of feature reduction approaches such as

independent component analysis (ICA), LDA, PCA etc., have been proposed

for reducing features which do not contain speaker discriminative informa-

tion. Reducing irrelevant data points to make B smaller without hampering

system’s performance have been addressed in [124, 102, 101, 57, 56, 68,

125, 94].
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Approaches for UBM

Huang et al. proposed to use maximum entropy in order to reduce redun-

dant feature frames while keeping all speakers for training UBM in [68].

Let U be the unique speakers for training UBM. For each speaker, S (i.e.,

S ∈ U), assume that there are NS speech files. Then the steps of their

proposed method are given below:

1. Extract TS feature frames from NS speech files.

2. If TS ≤ θ

(a) Keep TS frames for training UBM.

Else

(a) Train a speaker-specific GMM, ΛS , using TS feature frames . The

number of Gaussian mixtures, M , is small for the robust estima-

tion of ΛS .

(b) Make nS blocks of F feature frames where nS = TS
F . Let each

block be Xi, where i = 1, 2, .., nS .

(c) Estimate entropy of Xi

H(Xi) = E[I(xf )] =
F∑
f=1

p(xf |ΛS) log
1

p(xf |ΛS)
(3.73)

where

p(xf |ΛS) =
M∑
m=1

wmp(xf |µm, σm) (3.74)

(d) Sort H(X1), H(X2), .,H(XnS ) in descending order.

(e) Choose q blocks with higher entropy so that q×F ≤ TS×α where

α is a compressed factor.

Experiments were conducted by using GMM-UBM system. Setting M =

16, B = 16 and θ = 4500, 13.68% feature frame reduction was obtained

which reduced 4.69% EER and 6% DCF in the NIST SRE 2008 core task

(telephone condition) having English trials only.

Sub-sampling of feature frames (SSFF) is one kind of data selection

method for UBM where instead of using all available feature frames, some

frames are selected for UBM training. Intelligent feature selection (IFS)

method proposed by Hasan et al. [56], is a one kind of SSFF methods. It

is different from other SSFF methods such as lead feature selection (LFS),
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random feature selection (RFS) and uniform feature selection (UFS), since

these methods do not consider any specific distribution of phonetic content

over time. On the other hand, IFS method measures the similarity of suc-

cessive frames using a phonetically motivated distance measure. It selects

a feature frame only if that frame’s dissimilarity from the most recently se-

lected feature frame is higher than some threshold. In this approach, it is

assumed that the K dimensional feature vectors of B, originating from a

specific phone, can be modeled by an independent, wide sense stationary

(WSS), white Gaussian random sequence X[n] with a co-variance matrix,

ΣXX [m,n] = diag(λ1, λ2, ....., λK)δ[m− n], (3.75)

where m, n denote feature vector indexes, and λi = 1, 2, .....,K are the

variances of the individual cepstral coefficients. It can be shown that the

Euclidean distance, d, between two feature vectors follow a Chi-squared

distribution:

f(d) =
21−K

Γ(K/2)

dK−1

λ̂K/2
exp(− d

2

4λ̂
), (3.76)

where mean, µd, and variance, λd, can be defined as:

µd =
2
√
λ̂Γ(1+K

2 )

Γ(K/2)
, (3.77)

σ2
d = 2Kλ̂− µ2

d, (3.78)

where λ̂ is defined as the average variance given by

λ̂ =
1

K

K∑
i=1

λi. (3.79)

The steps of IFS are given below:

1. Extract K-dimensional N feature vectors, X, from all speech files of

B.

2. Arrange N feature vectors as a sequence vectors, X[1],X[2], ....,X[N ].

3. Set i = 1.

4. Consider the 1st feature vector, X[1], as the latest selected sequence

vector, S[i], with mean and variance µS[i] = S[i] and λS[i] = 0, respec-

tively.

5. For j = 2, 3, ...., N
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(a) Estimate mean and variance of i number of selected feature vec-

tors S[1], .....,S[i] and j-th sequence vector, X[j], using a recursive

method similar to [12] as:

µS[i+ 1] = βmµS[i] + (1− βm)X[j] (3.80)

λS[i+ 1] = βvλS[i] + (1− βv)||X[j]− µS[i+ 1]|| (3.81)

(b) Estimate λ̂ by setting λS[i+ 1] in Eq. 3.79.

(c) Estimate µd and λd by setting λ̂ in Eq. 3.77 and Eq. 3.78, respec-

tively.

(d) Estimate the distance threshold, dth, for the distance between any

two consecutive feature vectors

dth = µd +
√

2σderfc−1(2α) (3.82)

where erfc−1 is the inverse of the complementary error function

(erfc) which can be defined as:

erfc(α) =
2√
π

∫ ∞
α

e−t
2
dt (3.83)

(e) Estimate distance between two consecutive feature vectors

d(i, j) = ||X[j]− S[i]||1/2 (3.84)

(f) If d(i, j) > dth

i. Set i = i+ 1.

ii. Select j-th feature vector, X[j] as the new i-th selected fea-

ture vector.

(g) j = j + 1 and go to Step-5a.

(h) Train a UBM using S[1],S[2], ......,X[i− 1]

Hasan et al., conducted experiments on GMM-UBM ASVS without any inter-

session variability compensation techniques. Using a B containing 2019

utterances (168.25 hours long in total) from 126 male speakers and setting

α = 0.1, βm = 0.8 and βv = 0.8, they achieved 99% reduction in data size

and 3.8% reduction in EER for the NIST SRE 2008 (tel-tel) male task.
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Approaches for SVM

A GMM-SVM system proposed by Campbell et al. [18] is accepted as one of

the state-of-art ASVS for text-independent speaker verification.The training

of a target speaker-specific SVM involves positioning a hyperplane in a high

dimensional space which maximizes the margin between target speaker

class, T , and impostor class, I. The position of the separating hyperplane is

defined by a subset of members of T and I known as support vectors. Sup-

port vectors of an SVM hyperplane normal w =
∑
i
xiyiαi are the training

vectors, xi with a class label yi ∈ {−1, 1} and coefficient αi > 0. The mem-

bers of T and I which are not selected as support vectors in the training

phase of an SVM do not have any contribution in the authentication phase

of that SVM (see Section 2.4.3).

The standard approach is to use the same background dataset, B for

modeling I for all T in an enrollment set E . It has been shown that effective

selection of B for I, which includes as much data as possible which are

close to the E , can improve performance of the SVM-based ASVS, while

verification accuracy degrades when whole B is used as I.

McLaren et al., proposed to select a subset of B based on the assumption

that more frequently selected data in B as support vectors belong to I are

likely to be more important than the rarely selected data in B as support

vectors belong to I [102, 101]. Let the enrollment set, E of a development

set, D, has n number of target speakers. The steps of their method is given

below:

1. Train n speaker-specific SVMs using the same B for I in every SVM.

2. Calculate the support vector frequency (SVF) for each vector, j, in B

SVFj =
n∑
i=1

φ(αij), (3.85)

where,

φ(α) =

{
1 if α > 0

0 if α = 0
(3.86)

3. Choose k vectors from B with the highest SVF and make refined back-

ground dataset, Rk ⊂ B.

4. Tune k on D to find Rk which maximizes SVM’s verification perfor-

mance.
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5. Use Rk as the background dataset for impostor class I of the evalua-

tion set, V.

In that study the support vector frequencies (SVFs) of a large set of impostor

examples was calculated for evaluating the NIST SRE 2006 SRE core (En-

glish only) task. Evaluation showed that a refined background dataset, Rk,
of the 500 highest-ranking observations maximized performance, giving rel-

ative improvements of up to 22% in both minimum DCF and EER over the

complete B.

The support vector frequency (SVF) method selects N vectors for I by

conducting experiment on a development set,D. However, the fixed number

of vectors for I does not always provide consistent performance in different

evaluation data, V. In [125] Suh et al., showed that for the NIST SRE 2008

male core task, SVF based method found Rk=500 as the optimum subset of

B consisting of the NIST SRE 2004 and NIST SRE 2005. However, for the

NIST SRE 2010 male core task, Rk=500 ⊂ B did not produce the best result.

The size of the optimum subset for this task was 300. This variation in

performance across the datasets suggests that the SVF based data selection

method needs to be improved. Suh et al. proposed steps in order to improve

SVF based dataset selection for impostor models:

1. Train speaker-specific SVMs for all enrollment speakers in V using B.

2. Estimate SVF of each vector in B using Eq. 3.85.

3. Order vectors in B based on SVF value.

4. Separate ordered vectors of B into three sets, B1, B2 and B3. Use B1

of size a for measuring decision threshold θ, B2 of size b for finding R
and B3 of size c for error estimation.

5. Make l+1 overlapped datasets of size p from B2 (i.e., Bp2) by increasing

p in increments of 100 (i.e., p = 100, p+ 1 = 200, ....., p+ l = 100× l).
6. For each enrollment speaker, n, in V, do:

(a) Train speaker-specific SVM using Bp2 for impostor class I.

(b) Measure error of n’s SVM using B3

Errn,p =
1

c
card{j : Op,j − θ < 0), (3.87)

where ‘card{}’ is the cardinality and Op,j is the output function

of j-th vector, xj , in B3. Op,j is defined as:

Op,j = wp · xj − b, (3.88)
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where wp is the norm vector and b is the bias of n’s SVM. Decision

threshold θ is defined as:

θ = a
a∑
j=1

Op,j . (3.89)

(c) Calculate error difference (ED) as:

EDn,p = Errn,p − Errn,p+1 (3.90)

(d) Select the steepest slope in ED. The simplified method to find the

steepest slope for background dataset is

p∗ = arg max
p

(EDn,p − EDn,p+1) (3.91)

(e) Choose Bp∗2 as the refined dataset R for enrollment speaker n.

In general there is an unlimited available database for I (i.e., B is huge)

whereas the data for T is limited. For example, for the core task of the

NIST SRE 2004-2010, the ratio between the members of T and I could be

1:1300. In [94], Liu et al., proposed a balanced impostor selection method

with respect to the entire enrollment speakers’ space.

1. Train a universal SVM (noted as u-SVM ) by using all the enrollment

speakers’ vectors in E as positive examples and all impostors’ vectors

in B as negative examples.

2. Estimate SVF of each vector in B using Eq. 3.85.

3. Order vectors in B based on SVF value.

4. For j-th enrollment speaker, where 1 ≤ j ≤ S and S is the total num-

ber of enrollment speakers in E , do:

(a) Train j-th speaker-specific SVM (notes as j-SVM) using j-speaker’s

vectors as positive examples and the negative support vectors of

the u-SVM as negative examples.

(b) Pool negative support vectors of j-SVM and pmost frequent nega-

tive support vectors in B to build a set of vectors,Rj , for negative

class of j-th speaker. Decide p as proposed in [125].

(c) Train j-th speaker-specific SVM using j-speaker’s vectors as posi-

tive examples and Rj as negative examples.
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Evaluations were done on 5min-5min telephone-telephone core-condition

of the NIST SRE 2008 (SRE08) and 2010 (SRE10) corpora. V contained

only male speakers. EER was reduced from 6.01% to 4.90% for SRE08 and

from 6.14% to 5.67% for SRE10.

Approaches for T-Speakers in T-Normalization

The standard approach is to match some broad speaker-specific informa-

tion, such as speaker’s gender or telephone set and draw T-norm speakers

from the same background dataset used for training UBMs. There has been

little research in more speaker-specific, data driven approaches for select-

ing T-norm speakers. Sturim et al., proposed a data driven approach for

target speaker-specific T-norm speaker selection in order to improve verifi-

cation performance in [124]. They named their approach Adaptive-Tnorm
or ATnorm. Steps of their proposed method are given below:

1. Pool utterances of P speakers from a background dataset, B, contain-

ing utterances varying in handset types, durations, number of sessions,

age and many other factors.

2. Train P GMM-UBMs called as ATnorm models for P number of Tnorm

speakers.

3. Choose N impostor authentication speech segments from B not in-

cluded in the training data of P Atnorm models.

4. Verify N utterances against P ATnorm models and generate P number

of score vectors, Lp ∈ RN , where p = 1, 2, ...., P . In Lp each dimension

contains LLR score of one ATnorm model.

5. For each target speaker, s, in the enrollment set E of a development

set, D:

(a) Train a speaker-specific GMM-UBM

(b) VerifyN utterances against s’s model and generateN -dimensional

score vector, Ls ∈ RN .

(c) Estimate city block distance between Ls and Lp

d(s, p) =

N∑
i=1

|Ls(i)− Lp(i)|, where p=1, 2, ....., P. (3.92)

(d) Choose K nearest ATnorm models of the speaker s according to

the distance between Ls and Lp.
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(e) Tune K

6. For each target speaker in the enrollment set E of an evaluation set,

V, do Steps 5a - 5d using K tuned on D.

By using Pmale = 435, Pfemale = 550 and N = 800, they tuned K to 55. They

conducted experiment on the NIST SRE 2004 extended task (8conv-1conv)

and showed that ATnorm outperformed traditional T-norm.

McLaren et al., showed that support vector frequency (SVF) based ap-

proach used for selecting data for the negative class in SVM based system

(see Section 3.3.2) can also be used for finding suitable T-norm speakers

both for JFA and SVM based ASVS [102]. They were able to drop EER from

3.20% to 2.93% and Cmin from 0.0171 to 0.0137 for the NIST SRE 2006

1sided English Task [105] using a JFA based ASVS. Using a SVM ASVS with

NAP, they dropped EER from 4.93% to 4.48% and Cmin from 0.0230 to

0.0202.

Summary of Previous Works

The summary of some previous works on reducing irrelevant data points

from B in speaker verification is given in Table 3.1.

Approaches for PLDA Model

Recently, PLDA model has become one of the state-of-art methods for inter-

session variability compensation in an i-vector based ASVS (See Sections 2.4.4

and 3.1.3). Although data-driven approaches have been proposed for re-

ducing irrelevant data points in B for UBM and SVM, it was not done for

PLDA model. In order to train the parameters of a PLDA model, multi-

session recordings from several hundred speakers, resulting in several thou-

sands of recordings from multiple databases, are typically used. For exam-

ple, research groups involved in the NIST speaker recognition evaluation

(SRE) typically use utterances from all NIST 2004-2005 data along with the

Switchboard II, Phases 1, 2 and 3; Switchboard Cellular, Parts 1 and 2 data,

and Fisher data. However, there is no evidence that using all the available

data would guarantee the best PLDA model.

Based on the experiences from the other models such as UBM, SVM

or JFA, researchers typically use gender-dependent PLDA models. Senous-
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Table 3.1: Previous work on Background models. First line of ‘Result’ column
shows EER (%) and second line shows 100 × Cmin. Left side of ’–>’ is
baseline performance and right side is proposed method performance.

Researchers Background Proposed Method Evaluation Dataset Result

Model

Zhang et al. UBM Clustering B based on NIST SRE 2006 11.65 –>10.76

[142] VTLN factor and training 1conv4w-1convmic 5.63 –>5.43

multiple UBMs (female)

Sarkar et al. UBM Clustering E based on NIST SRE 2004 15.07 –>13.96

[116] VTLN factor and training core task 5.97 –>5.93

cluster-dependent UBMs

Huang et al. UBM Feature frames reduction NIST SRE 2008 4.05 –>3.86

[68] from B based on core task (tel-tel), 1.73 –>1.63

maximum entropy English trials

Hasan et al. UBM Feature frames reduction NIST SRE 2008 11.43 –>10.99

[57, 56] from B based on core task (tel-tel), using 1% data

sub-sampling of frames English trials of baseline

McLaren et al. Impostor Choosing k impostors NIST SRE 2006 3.21 –>2.49

[102, 101] models having high support core task, 1.52 –>1.18

in SVM vector frequency (SVF) English trials

Suh et al. Impostor Estimating error on the NIST SRE 2008 6.01 –>4.98

[125] models support vector for core task (tel-tel), 6.56 –>5.42

in SVM each enroll speaker male trials

Liu et al. Impostor Selecting universal NIST SRE 2008 4.98 –>4.90

[94] models background support core task (tel-tel), 5.42 –>4.90

in SVM impostor models male trials

Sturim et al. T-speakers Selecting k nearest NIST SRE 2004 6.84

[124] impostor models extended task, 0.27

(8conv-1conv)

McLaren et al. T-speakers Selecting k impostors NIST SRE 2006 4.93 –>4.48

[102] having high SVF core task, 2.30 –>2.02

English trials

saoui et al. [118], empirically showed that gender-dependent PLDA models

outperformed gender-independent PLDA models even the later one had all
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available data from male and female speakers while the former ones had

only gender specific data. Obviously, a speaker’s acoustic properties de-

pend not only on gender but also on the physical properties of the vocal

tract, dialect, age etc. In addition, phone sets, transmission channel types

or background noises are known to greatly affect the acoustic properties

of a recording. Kanagasundaram et al. [77], showed that the PLDA model

trained by utterances whose lengths matched with those utterances in the

evaluation set, V, performed better than that trained by full-length utter-

ances. In that study, speech segments in B were divided into smaller pieces

so that their lengths were almost the same as that for V. These studies

showed that data relevancy is more important for the verification perfor-

mance than data size. One could continue to experiment in this way by

exploring whether it is beneficial to find a subset of B which is relevant to V
with respect to other properties such as microphone, age, emotions, trans-

mission channel or accent. However, this kind of meta-data is generally not

available. Moreover, it is not always obvious which properties are important

to be matched to find relevant data.



Chapter 4

Robustness Against Enrollment
Data Variants

In this chapter, we describe our proposed method acoustic forest in details

which deal with the robustness issue of background models against enroll-

ment data variants for SMAP based ASVS. The organization of this chapter is

as follows: Section 4.1 points out our motivation. Section 4.2 illustrates how

to grow an acoustic forest. Section 4.3 describes our experimental setup for

conducting experiments in order to evaluate acoustic forest. Section 4.4

presents results.

4.1 Motivation

As discussed in Section 2.5.2, SMAP adaptation technique provides robust

parameter estimates for very limited amount of adaptation data while keep-

ing the desirable asymptotic properties of relevance MAP. Therefore for very

short utterances like 10 seconds or less, SMAP adaptation is better than

relevance MAP adaptation in order to train speaker-specific GMMs from a

speaker-independent GMM. The main advantage of SMAP over eigenvoice

adaptation is that using hierarchical adaptation approach SMAP demands

less background data.

In SMAP adaptation, a tree structure obtained by clustering Gaussians

offers a convenient way to capture the hierarchical structure of the acoustic

space of the human voice. Different speakers may have different structures

of the acoustic space depending on factors such as their language, accents or

77



Robustness Against Enrollment Data Variants 78

pronunciation particularities. For example, we can mention the differences

between English and Spanish. Among consonants, there are 15 common

phonemes in both languages, 5 Spanish phonemes do not occur in English,

whereas 9 English phonemes do not occur in Spanish. Therefore, when

a Spanish speaker speaks a English word having phoneme not in Spanish,

he/she may pronounce that phoneme like a Spanish phoneme whose pro-

nunciation is close to that English phoneme. For example, /s/ and /z/

are two different phonemes in English, but a Spanish speaker typically pro-

nounce them as /s/. In Spanish, pitch does not vary as it does in English.

Therefore, a non-native English speaker from Spain may sound monotone

when speaking English. These kinds of differences can be seen not only

between English and Spanish, but also between other two languages, even

two different dialects of same languages. For example, Japanese speakers

pronounce /l/ as /r/ when speak in English, Swedish or English speakers

pronounce /dh/, /th/ as /d/, /t/when speak in Bengali. If B contains speech

data from multiple languages spoken by native and non-native speakers, we

may assume that the hierarchical structure of the acoustic space cannot be

shared among all the speakers. That means, it is reasonable to think that the

optimal tree structure differs from an English speaker to a Spanish speaker.

In other words, some tree structures may be adapted more efficiently to

English speakers than Spanish speakers.

As discussed in Section 3.3.1, using enrollment speaker-specific back-

ground model or sub-cluster of enrolled speakers specific background mod-

els improves systems performance. Therefore, different tree structures should

be provided for different enrollment speakers. However, until now no meth-

ods for obtaining such trees automatically are known. On the other hand, to

find the optimal tree structure for every speaker empirically is computation-

ally expensive when the number of speakers is large, and demands a large

amount of data. The easiest solution of this problem is to use a set of trees

instead of using a single tree, assuming that each speaker will find its appro-

priate tree. We define the set of trees as an acoustic forest [8]. Combining

decisions of multiple ASVS using trees in the acoustic forest gives robustness

against enrollment data variants.
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4.2 Acoustic Forest

Acoustic forest is a set of trees obtained by clustering Gaussian components

of a speaker-independent UBM. It is different from the well-known random

forest [11]. In a random forest each tree is a decision tree, i.e., each tree

is used for the classification or regression purpose. On the other hand,

each tree in our acoustic forest is used to provide prior information about

the GMM parameters in a hierarchical manner for building speaker-specific

GMMs. The classification or decision making task is done by speaker-specific

GMMs. The steps of an acoustic forest-based ASVS are given below:

1. Train a speaker-dependent UBM using available background data, B.

2. Decide the number of trees, N , heuristically for the acoustic forest.

3. For T = 1, 2, ..., N

(a) Set the number of layers L and the number of branches B(l)
r from

a node r at the l-th layer of T -th tree.

(b) Construct T -th tree following the steps mentioned in Section 4.2.1.

(c) Build speaker-specific GMMs by adapting T -th tree with speaker-

specific data by following the steps described in Section 2.5.2.

(d) Generate scores for a trial.

4. Combine scores of N trees and take final decision about a trial.

In the acoustic forest based ASVS, the most troublesome task is to decide

the number of trees and the structure of each tree. Until now there is no

automatic way to fix these issues. We need to depend on a development

set, D, to solve this problem. During choosing a tree structure, we need to

ensure that the number of leaf-nodes are less than or equal to the number

of Gaussian components.

4.2.1 Tree Construction

A tree is constructed by clustering Gaussian components of a UBM. For

clustering, two widely used distance measure are the symmetric Kullback-

Leibler (KL) divergence and Bhattachariyya distance [119, 136]. In this

thesis, we use the former distance measure. Assuming the covariance ma-

trices to be diagonal, the KL divergence between two Gaussian components,
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ga(·) and gb(·), can be written as

d(a, b) =

F∑
i=1

[
σ2
a(i)− σ2

b (i) + (µb(i)− µa(i))2

σ2
b (i)

+
σ2
b (i)− σ2

a(i) + (µa(i)− µb(i))2

σ2
a(i)

], (4.1)

where µa(i) is the i-th element of F -dimensional mean vector µa and σ2
a(i)

is the i-th diagonal element of covariance matrix
∑

a.

The algorithm for obtaining a tree from a UBM with M Gaussians is

given below:

1. Set:

(a) k to be the root node

(b) Gk to be a set of all the M Gaussians governed by node k,

(c) B
(1)
k to be the number of children of node k

(d) l to be 1.

2. Calculate the node pdf gk for node k using the following formulas:

µk(i) =
1

Mk

∑
m∈Gk

µm(i), (4.2)

σ2
k(i) =

1

Mk
[
∑
m∈Gk

(σ2
m(i) + µ2

m(i))−Mkµ
2
k(i)], (4.3)

where Mk is the number of Gaussian components included in Gk.

3. If l is equal to L, stop clustering, else go to Step 4.

4. Compute the initial pdf for n child nodes using the minimax method:

(a) Find n Gaussian components from Gk:

i. The 1st Gaussian is gc1(·) = gm̂(·) where

m̂ = arg max
m

d(m, k). (4.4)

ii. The remaining (n−1) Gaussians will be gcp(·) = gm̂(·) where

m̂ = arg max
m

min
q∈Gck

d(m, cq). (4.5)

Here Gck is the set of Gaussians already assigned to the child

nodes of node k, 1 ≤ p ≤ n− 1 and 1 ≤ q ≤ n− 2.
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(b) Interpolate the node pdf of node k and the initial node pdf of

each child node cp to create a new node pdf for cp as follows:

µ̂cp(i) = (1− α)µk(i) + αµcp(i), (4.6)

σ̂2
cp(i) = (1− α)(σ2

k(i) + µ2
k(i)) +

α(σ2
cp(i) + µ2

cp(i))− µ̂cp , (4.7)

where 0 ≤ α ≤ 1.

5. Repeat the following k-means procedures until the grand sum of dis-

tances, GD, converges:

(a) For each Gaussian component in Gk, calculate the distance from

it to each child node pdf of the l-th layer by using Eq. (4.1), and

assign it to the nearest child node.

(b) Recalculate the child node pdf by using Eq. (4.2) and Eq. (4.3).

(c) Using Eq. (4.1), calculate the sum of distances, D, from each

child node to each of its mixture components and then obtain

GD by accumulating all D.

6. Set each child node to be node k and its corresponding subset of Gaus-

sian components to be Gk. Increase l and go to Step 4.

Figure 4.1 shows a schematic example of tree construction of Gaussian com-

ponents of UBM in SMAP. In the acoustic forest, the number of layers and

number of branches of each node will vary from tree to tree. Figure 4.2

shows the acoustic forest having six tree structures for the UBM mentioned

in Fig. 4.1(a).

4.2.2 Decision Making

There are different ways to combine the decisions of multiple SMAP adapted

GMM-SVM systems with different tree structures. Like the random forest

algorithm [11], we can use a voting approach or we can fuse the scores of

different systems and take the decision by setting a threshold on the fused

score. In this thesis we use three score fusion techniques.

Let s1, s2, ...., sL be the L scores of a trial produced by L SMAP adapted

systems. Then the fused score, Ŝ of the claimed speaker can be calculated

in the following ways:
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Figure 4.1: An example of a tree structure of Gaussian components in SMAP. Each
of a, b, ..., g is a Gaussian component of a UBM. h, i and j are parent
Gaussians of {a, b, c}, {d, e, f , g} and {h, i}, respectively.

• Maximization

Ŝ = max(s1, s2, ...., sL) (4.8)

• Sum

Ŝ =
L∑
l=1

sl (4.9)

• Multilayer Perceptron (MLP)

Ŝ =
1

1 + exp(−(
∑H

h=1wh,oyh + δh,o))
, (4.10)

where H is the number of neurons in the hidden layer; wh,o and δh,o

are the weights connecting the hidden layer and the single output

neuron of an MLP; yh is the output of the h-th neuron of the hidden

layer which is obtained by the following sigmoid function:

yh =
1

1 + exp(−(
∑L

l=1wl,hsl + δl,h))
(4.11)
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Figure 4.2: Acoustic forest having six tree structures for the UBM with seven Gaussian
components. The number of layers and the number of branches of each
node vary from tree to tree.

where wl,h and δl,h are the weights connecting the l-th neuron of the

input layer and the h-th neuron of the hidden layer, and sl is the score

of the l-th system.

4.3 Experimental setup

In our evaluation, we used a GMM-SVM ASVS proposed by Campbell et

al. [18] (See Section 2.4.3). Performance of our ASVS was measured by

carrying out experiments on the 10sec4w-10sec4w task of the NIST SRE

2006 [105].

4.3.1 Development set and Evaluation set (D and V)

The enrollment set, E and authentication set, A, designed for the 10sec4w-

10sec4w task of the NIST SRE 2005 (SRE05) [104] were used as the devel-

opment set, D, whereas E and A prepared for the 10sec4w-10sec4w task of
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Table 4.1: Details of the evaluation set, SRE06. #M: the number of models in E ,
#Te: the number of test files in A, #T: the number of total trials, #Tr:
the number of target trials, #Nt: the number of non-target trials.

SRE06 #M #Te #Tr #Nt

Male 316 958 1319 13695

Female 415 1205 1652 16889

Total 731 2163 2971 30584

the NIST SRE 2006 (SRE06) [105] were used as the evaluation set, V. De-

tails of V are given in Table 4.1. E of SRE06 mostly included English speech

segments and some speech segments from seven other languages: Bengali,
Thai, Hindi, Urdu, Chinook Jargon, Russian and Korean. On the other hand,

the speech segments in A of SRE06 were from 14 languages. The length of

speech segments both in E and A was approximately 10 seconds.

4.3.2 Background Dataset (B)

We used the NIST SRE 2004 database as the background dataset B. This

dataset has conversational telephone speech. Most of the speakers are bilin-

gual who speak Arabic, Mandarin, Russian or Spanish in addition to En-

glish. Each speech file in B consists of 5-minute excerpt from a 6-minute

call. Without silence, each file contains 2.5 minutes long speech on average.

4.3.3 Pre-Processing and Training Models

Regarding feature extraction, we first removed the non-speech part from

the speech segments using the information in the transcript files provided

by the NIST SRE organizer. We broke each speech segment into frames of

30 ms long with a frame rate of 100 frames/sec. We pre-emphasized each

frame with a pre-emphasis factor of 0.97 and applied a Hamming window.

We computed PLP coefficients and MFCC, augmented with the energy coef-

ficient and first and second derivatives. Cepstral mean subtraction was ap-

plied to remove static channel effects. A three layer MLP with three hidden

neurons in the hidden layer was trained for score fusion by using MATLAB.
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UBM

We trained one gender-independent UBM and two gender-dependent UBMs

using B (Table 4.2). We applied five iterations of Baum-Welch re-estimation

to estimate the parameters of UBM. The feature extraction and UBM part

were implemented by using the hidden Markov model toolkit (HTK) [138].

Table 4.2: UBM

UBM Type No. of No. of

Speech Segments Frames

Gender-independent UBM 4806 66848003

Male UBM 1974 27046663

Female UBM 2832 39801340

Tree Structure

We constructed two acoustic forests with two groups of trees. In the first

forest, there were eight binary trees and in the second forest there were 10

different trees having odd number of children for each node as shown in

Table 4.3.

GMM-SVM

By using adaptation techniques, MAP and SMAP, speaker-specific GMMs

were made from the UBM, whose means were then stacked to make su-

pervectors. A linear SVM for each speaker was trained by using one target

speaker-specific supervector and multiple impostor supervectors. For build-

ing impostor supervectors, 604 speech segments were randomly selected

from 4806 speech segments used to train UBM. Among 604 impostors, 242

were male speakers and 362 were female speakers. Therefore, the number

of background speakers was 242 for male GMM-SVM and 362 for female

GMM-SVM. The SVM classifier was made by using LIBSVM [20].
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Table 4.3: Tree Structures for SMAP. The design of a tree is written as n1−n2− ...−
nl where nl represents the maximum number of child nodes belonging
to each node of the l-th layer.

Tree Structure No. of Child Nodes

Forest-1

1. 2-2 4

2. 2-2-2 8

3. 2-2-2-2 16

4. 2-2-2-2-2 32

5. 2-2-2-2-2-2 64

6. 2-2-2-2-2-2-2 128

7. 2-2-2-2-2-2-2-2 256

8. 2-2-2-2-2-2-2-2-2 512

Forest-2

1. 3-3 9

2. 5-5 25

3. 7-7 49

4. 9-9 81

5. 11-11 121

6. 13-13 169

7. 15-15 225

8. 17-17 289

9. 19-19 361

10. 21-21 441

4.3.4 Tuning Parameters

For tuning parameters we conducted experiment on SRE05. First we con-

ducted an experiment on relevance MAP-adapted GMMs with 32 Gaussian

components. By setting the relevance factor equal to 10, we found that the

system using the gender-dependent UBMs was better than the system us-

ing the gender-independent UBM. We also noticed that PLP outperformed

MFCC. So, for further experiments, we used gender-dependent UBM and
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PLP features.

For 2 or 3 minutes speech segments, the value of relevance factor, τ is

generally set to the value from 10 to 20. However, decreasing τ from 10

to 1, we noticed that the lower the τ , the better the performance for 10

second test. We also noticed that ∆∆ coefficient degraded the performance

of ASVS and log-energy had a great impact for improving the system per-

formance. The lowest EER was achieved for 32 dimensional feature vector

with ∆, logEnergy and ∆ logEnergy. For further experiments, we used 32

dimensional feature vector and τ = 1.

In order to avoid computational complexity, we did not use GMMs with

more than 1024 Gaussian components. We noticed that the performance

of our MAP adapted system improved, when we increased the number of

Gaussian components until 512. We, therefore, set the number of Gaussian

components to 512.

After selecting feature vector type and setting UBM parameters, we fo-

cused on acoustic forest part. The performances of most of the binary

tree adapted systems were worse than the relevance MAP adapted system.

Therefore, we discarded Forest-1 for the evaluation dataset, SRE06.

4.4 Results

Table 4.4 shows the EER(%) and Cmin of our MAP and SMAP adapted sys-

tems where we used the gender-dependent UBM with 512 Gaussian Com-

ponents, 32 dimensional PLP feature vectors (i.e. 15 PLP + 15 ∆PLP + E +

∆E), and set the relevance factor to 1. Most of the SMAP-adapted systems

using trees in Forest-2 outperformed the relevance MAP-adapted system. Er-

ror rates of SMAP-adapted systems consistently decreased as the number of

nodes got larger. The best relative improvement for individual SMAP sys-

tems, around 3.2%, was obtained for the 21_21 tree structure-based system

without T-Normalization. T-Normalization helped to drop the EER slightly

for both MAP and SMAP adapted systems.

As shown in Table 4.5, score fusion techniques improved the SMAP

adapted system by decreasing only EER. Two fusion techniques, sum and

MLP, gave the same performance. Using acoustic forest, 1.5% relative reduc-

tion was gained in EER compared to the single tree structure-based system.
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Table 4.4: EER and Cmin for GMM-SVM systems using MAP and SMAP adaptation
on the 10sec4w-10sec4w task of 2006 NIST SRE. The design of a tree is
written as n1_n2 where nl represents the maximum number of child nodes
belonging to each node of the l-th layer. Each leaf node corresponds one
component in GMM.

Adaptation No Norm T-Norm

EER(%) Cmin EER(%) Cmin

MAP 27.7 0.0917 27.4 0.0910

SMAP 3_3 28.2 0.0959 27.8 0.0941

SMAP 5_5 27.9 0.0943 27.6 0.0921

SMAP 7_7 27.7 0.0943 26.9 0.0917

SMAP 9_9 27.4 0.0937 26.9 0.0918

SMAP 11_11 26.9 0.0936 26.6 0.0918

SMAP 13_13 27.1 0.0932 26.6 0.0913

SMAP 15_15 27.3 0.0930 26.9 0.0909

SMAP 17_17 27.2 0.0933 27.0 0.0910

SMAP 19_19 27.2 0.0927 26.9 0.0913

SMAP 21_21 26.8 0.0922 26.9 0.0915

Table 4.5: Comparison of the EER and the MDC for fusion of ten SMAP adapted
systems with and without T-Norm on the NIST 2006 SRE 10sec4w-10sec4w
task.

Fusion No Norm T-Norm

EER(%) Cmin EER(%) Cmin

Maximization 27.2 0.0945 26.5 0.0915

Sum 26.5 0.0928 26.2 0.0909

MLP 26.5 0.0922 26.2 0.0908



Chapter 5

Robustness Against Irrelevant
Training Data

In this chapter, we discuss about our proposed methods for reducing un-

wanted data in order to enhance robustness of PLDA models against irrele-

vant training data. The organization of this chapter is as follows: Section 5.1

describes our motivation. Section 5.2 presents a background study. Sec-

tion 5.3 presents our proposed data selection methods and their variants.

Section 5.4 and Section 5.5, describe our experimental setup and results,

respectively. Section 5.6 includes analysis of different issues regarding the

data selection schemes, as well as experiments with some of their modifica-

tions and extensions described in Section 5.3.

5.1 Motivation

As discussed in Section 3.3.2, more data is not always better. Data rele-

vancy is more important for the verification performance than data size.

Outliers, noisy and irrelevant data can hinder system’s performance sig-

nificantly. Therefore, they are unwanted. For enhancing system’s perfor-

mance, it is necessary to remove unwanted data from background dataset,

B. PLDA model is considered as one of the-state-of-the-art methods for inter-

session variability compensation technique now these days. No data-driven

approach has been proposed for cleaning unwanted data from B used for

training PLDA models.

In many real applications such as on-line bank services for registered

89
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Figure 5.1: Clusters formed by i-vectors extracted from phone- and microphone-
utterances after principal component analysis (PCA). x-axis is for
the first principal component and y-axis is for the second princi-
pal component. Black circles represent i-vectors extracted from the
phone-utterances and blue dots represent i-vectors extracted from the
microphone-utterances. (a) There are 1270 male i-vectors. Among
them 648 are from the phone-utterances and 622 are from the
microphone-utterances. (b) There are 1993 female i-vectors. Among
them 1140 are from the phone-utterances and 853 are from the
microphone-utterances.

customers, we can access the enrollment set, E , during the development

phase of the system. Targeting such applications, we propose to use E for

selecting S ⊂ B that has similar properties to E for training the PLDA model.

In general, i-vectors having similar properties are close to each other. One

scenario shown in [120] was that most of the PCA projected male i-vectors

are close to each others while far from the PCA projected female i-vectors,

same for the female i-vectors. Another scenario is visualized in Fig. 5.1

where microphone and telephone recordings are clearly separated. From

these examples, we can, therefore, safely assume that the set of i-vectors in

B that has smaller distance from the set of i-vectors in E can be our desired

S.

By selecting i-vectors in B that are close to the i-vectors in E , we may im-

prove the modeling in the relevant region of i-vector space on the expense

of worse modeling in other regions of the i-vectors space. Of-course, the

i-vectors of some impostors might be located in the regions where the mod-

eling have been worsen, but our assumption is that these impostors will not

be confused with any of the target speakers in E , anyway.

In this thesis, we first use cosine distance to find k number of i-vectors
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in B close to an i-vector in E . This is similar to the neighborhood building

part of the classical k-NN approach [37, 22] (See Section 5.2 for details).

We show that this method performs remarkably well when the optimal k is

known. However, it is difficult to estimate the optimal k. We, therefore,

propose a robust way of selecting k based on the local distance-based outlier
factor (LDOF) [140]. We name our method flexible k-NN (fk-NN) [9]. We

also explore some variants of k-NN and fk-NN based data selection meth-

ods.

Since the training time of the PLDA model is very short (several sec-

onds), fk-NN does not offer a large reduction in computational expense as

some data selection methods for UBM training [56] do. However, it im-

proves the verification accuracy. Thanks to the short training time, we can

re-train the PLDA model quickly after adding relevant data for newly added

enrollment speakers, which would not be practical for UBM training or other

offline modeling such as factor loading matrix (e.g., total variability matrix)

training.

The organization of the rest of this chapter is as follows: Section 5.2

presents a background study on k-NN. Section 5.3 presents our proposed

data selection methods based on k-nearest neighbors and their variants.

Section 5.4 and Section 5.5, describe our experimental setup and results,

respectively. Section 5.6 includes analysis of different issues regarding ex-

periments.

5.2 Previous Works on k-NN

k nearest neighbors (k-NN) rule is one of the simplest non-parametric ma-

chine learning method which is mainly used for classification and regres-

sion. No explicit training is necessary in this method. It memorizes all

training data points which participate in the classification or discriminant

analysis. Therefore, it is considered as a type of memory based learning,

instance based learning, or case based learning. It was first investigated by

Fix and Hodges [37] for k →∞ and then by Cover et al. [23] for fixed k.

In k-NN based methods, each training data vector is treated as a refer-

ence vector and is labeled either by the class it belongs to or by the dis-

criminant value. The unknown test vector is called a query vector. Given

a set Ω with n reference vectors {xi ∈ RD}ni=1, and n labels {yi ∈ C :
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Figure 5.2: Example of k-NN Classification. Red star is the unlabeled query vector,
green and yellow circles are reference vectors of Class-1 and Class-2,
respectively.

{1, 2, ....C}}ni=1 for classification or yi ∈ R for regression, the task of this

method is to find a label, y0, for a query vector x0. For that at first dis-

tances from x0 to all {xi}ni=1 are estimated, then k closest neighbors of x0

are chosen to build a neighborhood S for x0.

• Classification: In k-NN based classification, y0 is a class membership,

which is predicted by a ‘majority rule’. The probability of assigning x0

to class c ∈ C is:

p(c|x0) =
Nc

k
(5.1)

where Nc is the number of reference vectors in S belong to class c. y0

is set to that c for which p(c|x0) is the maximum. In the simplest case,

k = 1, i.e., only the nearest neighbor determines the class of x0 results

in p(c|x0) = 0 or 1. During binary classification, generally an odd

number is chosen for k in order to avoid ties. For example, as shown

in Figure 5.2, the test sample (red star) should be classified either to

the Class-1 consisted of green circles or to the Class-2 consisted of

yellow circles. If k = 5, red star is assigned to Class-2 because there

are 3 yellow circles and only 2 green circles inside four inner boundary

lines. If k = 4, there will be a tie.

• Regression: Unlike k-NN based classification, in k-NN based regres-

sion y0 is a real value. The prediction can be done in different ways
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such as simple interpolation, local linear regression, local weighted

regression, or just averaging of k nearest neighbors property value as

follows:

y0 =

k∑
i=1

wiyi (5.2)

where wi could be:

– wi = 1
k

– wi ∼ 1− ||xi − x0||
– wi ∼ k − rank||xi − x0||

Since 1951, many investigations have been done for k-NN based classifica-

tion and regression, some of them are pointed out below:

1. The statistical properties of k-NN classifier like the convergence of the

conditional error rate, the limit of the error rate in the case of depen-

dent data, mathematical consistency, etc. were discussed in [23, 22,

40, 30, 51, 50, 29, 21, 89, 121, 66].

2. As k-NN requires to store the whole training set and to estimate dis-

tance from each reference vector to the query vector, it may become

too costly and very slow when the training set is very large and high-

dimensional. Research have been done to mitigate this problem by

getting rid of the redundant data or the data which does not provide

extra information, or by finding some representatives of the whole

training set [55, 44, 2, 87, 134].

3. Similarity measure between the query vector and the reference vec-

tors is an important task in k-NN, since it helps find out informative

neighbors which can predict the right label for the query vector. The

success of k-NN approach quite depends on the distance function used

for measuring similarity. Finding out a better distant metric rather

than the common Euclidean, Mahalanobis or Manhattan metric was

targeted in [58, 53, 133, 31, 122].

4. The choice of k plays an important role on the performance of the

k-NN based approaches, since it decides the volume of the neighbor-

hood, S, and the smoothness of the posterior estimates. If k is too

large, it will lead to over-smoothed boundaries, whereas if it is too

small, it will lead to noisy decision boundaries. Usually, k is chosen

empirically by cross-validation. Depending on each problem, different
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values of k are tried, and k with the best performance is chosen. It is a

computationally expensive and slow process. Optimization of k rather

than cross-validation was investigated in [132, 46, 52].

5. In a high dimensional space, distances between the nearest and the

farthest reference vectors from query vectors become almost equal,

which causes wrong classification. Wrong classification for the pres-

ence of many irrelevant attributes in a vector is often termed as the

curse of dimensionality. Mitigating the curse of dimensionality issue

was investigated in [69, 139, 117].

Some popular extensions of k-NN approach are described briefly in the fol-

lowing Sections.

5.2.1 Condensed Nearest Neighbor (CNN)

It was proposed by Hart [55] to reduce the number reference vectors from

Ω : {{xi, yi}ni=1 ∈ {RD,C}}. In this algorithm, a new set of reference vec-

tors, Φ ⊂ Ω, is made which is initially empty and gradually filled up by the

following steps:

1. Copy the first reference vector from Ω to Φ.

2. Use Φ as the set of reference vectors and Ω as the set of query vectors

and do classification by setting k = 1 and following the two steps

below:

(a) terminate classification if each query vector in Ω is classified cor-

rectly.

(b) go to Step-3 if any query vector in Ω is classified incorrectly.

3. Copy the incorrectly classified vector in Ω to Φ and go to Step-2.

During classification of a query vector, x0, Φ is used instead of Ω as the set

of reference vectors and k can be any value.

5.2.2 Reduced Nearest Neighbor (RNN)

It was an extended version of CNN. It was proposed by Gates [44]. The

target of RNN is to make a set of reference vectors, Ψ ⊂ Φ, by eliminating

the reference vectors from Φ which are not affecting the classification result

of Ω. The steps of RNN are given below:
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1. Copy Φ into Ψ.

2. Remove the first vector from Ψ.

3. Use Ψ to classify all the vectors in Ω using k-NN rule with k = 1:

(a) if all vectors in Ω are classified correctly, go to Step-4.

(b) if any vector is classified incorrectly, return the vector to Ψ that

was removed from Ψ and go to Step-4.

4. If every vector in Ψ is removed once (and possibly replaced) then halt.

Otherwise, remove the next vector of Ψ and go to Step-3.

During classification of a query vector, x0, Ψ is used instead of Ω as the set

of reference vectors and k can be any value.

5.2.3 Discriminant Adaptive NN (DANN)

It was proposed by Hastie and Tibshirani [58]. In this approach, a distant

metric, Σ, behaved like a LDA metric is learned, which can be written as

follows:

Σ = W−1/2[W−1/2BW−1/2 + εI]W−1/2 (5.3)

where ε is some small tuning parameter to be determined, I is a D × D

dimensional identity-matrix, W and B are the D × D dimensional within
and between sum-of-squares matrices, respectively. These sum-of-squares

matrices are estimated using the neighborhood S created by KL nearest

neighbors of the query vector x0. Initially distant metric, Σ, is set to I. Then

it is updated iteratively by using updated B and W which are estimated as

follows:

B =

J∑
j=1

αj(x̄j − x̄)(x̄j − x̄)′ (5.4)

W =

∑J
j=1

∑
i∈J αj(xi − x̄j)(xi − x̄j)′∑KL

i=1wi
(5.5)

where J ⊂ C contains the classes inside S; x̄j is the weighted mean of the

Nj observations in the j-th class and

αj =

∑
i∈j wi∑KL
i=1wi

(5.6)

wi = [1− (di/h)3]3I(|di| < h) (5.7)
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where,

di = d(x0,xi)

= ||Σ1/2(xi − x0)||
(5.8)

h = max
xi∈S

d(x0,xi) (5.9)

After learning Σ by an iterative process, KG nearest neighbors of x0 are

found by estimating distance using Eq. 5.8. Σ is different for different x0.

Note that KL and KG are two different values. KL is used for estimating

the distant metric, whereas KG is used for classifying x0. KL should be

reasonably large, since neighborhood S created by KL is used to estimate

covariance matrices, whereas KG is set to a small value in order to avoid

bias. Another point is that except two tuning parameters, KL and KG, there

is another parameter that needs to be tuned and that is ε.

5.2.4 Weight Adjusted k-NN (WAKNN)

It was proposed by Han et al. [53] for categorizing documents. In this

method at first the mutual information of each word in the training doc-

ument set is estimated as follows:

MI(w) =
∑
c∈C

(p(c, w) log
p(c, w)

p(c)p(w)
+ p(c, w̄) log

p(c, w̄)

p(c)p(w̄)
) (5.10)

where p(c) is the probability of class c, p(w) is the probability of the presence

of word w, and p(w̄) is the probability of the absence of word w, and p(c, w),

and p(c, w̄) are joint probabilities. Then the importance of each word is

learned using mutual information as the initial value of weight for that word

and applying weight adjustment steps which is a iterative procedure. During

classification, k-NN of the query document from the training documents are

found using the following weighted cosine similarity measure:

cos(X,Y, α) =

∑
w∈W (Xw × αw)× (Yw × αw)√∑

w∈W (Xw × αw)2 ×
√∑

w∈W (Yw × αw)2
(5.11)

where Xw and Yw are normalized within-document word frequency of word

w for a reference document X and a query document Y , respectively, and

αw is the weight of word w.
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5.2.5 Adaptive Metric NN (ADAMENN)

It was proposed by Domeniconi et al. [31] in order to minimize bias intro-

duced by high dimensional finite number of reference vectors. A new distant

metric based on Chi-square distance analysis was introduced for producing

a neighborhood which is elongated along less relevant feature dimensions

and constricted along most influential ones. According to the new distant

metric, the distance between a query vector x0 and a reference vector xi
can be written as:

d(x0,xi) =

√√√√ D∑
d=1

wd(x
d
0 − xdi )2 (5.12)

where {xi ∈ RD}ni=1 with class labels {yi ∈ C}ni=1 and wd is the weight

associated with feature d of x0, defined as:

wd = exp
(
β

1

rd

)
/

D∑
d=1

exp
(
β

1

rd

)
(5.13)

where β is a parameter to control the influence of rd on wd, and rd is a mea-

sure of feature relevance of x0 with respect to its neighborhood S0 created

by K0 nearest neighbors and rd is defined as:

rd =
1

K0

∑
z∈S0

C∑
c=1

[P(c|z)− P̂(c|xd0 = zd)]
2

P̂(c|xd0 = zd)
(5.14)

where P(c|z) and P̄(c|xd0 = zd) are estimated using Ω : {xi, yi}ni=1 and two

neighborhoods S1 and S2 centered at z ∈ S0. The size of S1 and S2 are K1

and K2, respectively. During classification k different from K0, K1, and K2

is used to create a neighborhood S. This approach has six adjustable tuning

parameters: K0, K1, K2, k, β and L: the number of points within the ∆

intervals used for estimating P̄(c|xd0 = zd).

5.2.6 Large Margin NN (LMNN)

This was proposed by Weinberger et al. [133]. In this approach, a Mahanalo-

bis distance metric, M, is learned by using Ω : {{xi, yi}ni=1 ∈ {RD, C}} and

the following semidefinite programming:

Minimize (1− α)
∑
i,j i

d(xi,xj) + α
∑
i,j i,l

(1− yil)ξijl (5.15)
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subject to:

1. d(xi,xl)− d(xi,xj) ≥ 1− ξijl
2. ξijl ≥ 0 and

3. M � 0.

where α ∈ [0, 1] is a balancing factor which can be tuned by cross validation,

ξijl is the slack variable, xj and xl are the target neighbor and impostor of

any data point xi, respectively. Both xj and xl are included in the set of

k nearest neighbors of xi, however, yj = yi, whereas yl 6= yi. The last

constraint ensures that M is positive semi-definite. The distance between

any two points is estimated as:

d(a, b) = (a− b)′M(a− b) (5.16)

During classifying any query vector, x0, k-NN of x0 is found out by using

distance measure in Eq. 5.16 using learned M.This approach is called large
margin nearest neighbor since it seeks a large margin that separates exam-

ples from different classes, while keeping a close distance between nearest

neighbors that have the same class labels. The novelty of this method is that

it does not try to minimize the distance between all examples that share the

same labels, but only to those that are specified as target neighbors.

5.2.7 Informative KNN (IKNN)

Song et al. [122] introduced a new distant metric using the measure of

importance of reference vectors to a query vector. They named the measure

of importance as informativeness, I. Based on the new distance metric, they

proposed locally informative KNN (LI-KNN) and globally informative KNN

(GI-KNN). In LI-KNN, at first k nearest reference vectors to a query vector

is selected using Euclidean distance. Among k nearest reference vectors, I

number of most informative reference vectors are selected for deciding class

label of the query vector. Let the neighborhood of a query vector, x0, created

by k nearest neighbors {xi ∈ RD, yi ∈ C}ki=1 with {C : 1, 2, 3...., C} be S. A

neighbor, xi ∈ S, is treated to be informative for the query vector, x0, if xi
is close to x0, and far away from the reference vectors with different class

labels. The informativeness of xi for x0 can be defined as:

Ix0(xi) = − log(1− P(xi|x0)) ∗ P(xi|x0), i = 1, 2, 3, ....k (5.17)
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where P(xi|x0) is the probability that xi is informative for x0 and defined

as:

P(xi|x0) =
1

Zi

{
p(xi|x0)η

( k∏
i=1

(1− p(xi|x0)Iyi 6=yk)

)(1−η)
}

(5.18)

where the indicator I[.] equals to 1 if the condition is met and 0 otherwise,

η is a balancing factor and Zi is a normalization factor defined as:

Zi =
k∑
i=1

p(xi|x0). (5.19)

where p(xi|x0) is defined as:

p(xi|x0) = exp(−
∑D

d=1wd(x0d − xid)2

γ
), (5.20)

where γ > 0 and wd is obtained by averaging over all classes’ weights wdc,

which is calculated using the variance of all points in each class c at feature

d, denoted by Var(xdc).

wd =
1

C

C∑
c=1

wdc =
1

C

C∑
c=1

Var(xdc) where d = 1, 2, 3, ...D, (5.21)

In GI-KNN, more emphasis is put on those reference vectors that are

globally informative. For that an optimum weight vector A is estimated

using all reference vectors and query vectors by an iterative process and

that weight vector is used to measure distance between the query vector

and a reference vector.

Shortcomings of k-NN variants

Despite the success for improving classification performance, the above men-

tioned extended k-NN have several shortcomings. The weakness of CNN and

RNN is that they do not ensure that the resulting condensed neighborhood

is the smallest consistent set. Depending on the order in which the refer-

ence vectors are selected, different condensed sets with different sizes will

be obtained. All sets will be consistent but many reference vectors will not

keep consistency property in the condensed set. DANN introduces two new

parameters, KL and ε; ADAMENN has five new parameters to be tuned that

could be cause of overfitting, LMNN applies semidefinite programming for
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the optimization problem, WAKNN is designed specifically for text catego-

rization, IKNN has two extra parameters to be tuned and measuring infor-

mativeness is a time consuming procedure and so on. Additionally, choosing

the proper value of k is a crucial task in all approaches.

5.2.8 Optimization of k

Even though the success of a k-NN based approach to some extent depends

on the choice of k, it is very hard to find any works in literature regarding

this issue. Here we summarize some of the works found in literature:

1. Fukunaga and Hostetler [39] developed a functional form for the op-

timum k in terms of the sample size, the dimensionality of the obser-

vation space, and the underlying probability distribution [39].

2. Enas et al. [32] showed an efficient adaptive rule which selects k by

iteratively maximizing the local Mahalanobis distance .

3. Wang et al. [132] argued that each neighborhood contains some de-

gree of support for all classes. If all these supports are aggregated, we

could end up with a less biased classification in the sense that it is not

too dependent on a single value for k.

4. In [52], Hall et al. used Poisson and Binomial distributions for choos-

ing value of k.

5. Ghosh mentioned that popular cross-validation techniques often fail

in selecting k due to the presence of multiple minimizers of the esti-

mated misclassification rate. He proposed a Bayesian method in [46].

According to his method, the optimum k is k0 so that

α(k0) > α(k), ∀k 6= k0, (5.22)

where α(k) is the accuracy index defined as:

α(k) =

C∑
c=1

πc

∫
S(c|k)fc(x0)dx0, (5.23)

where fc, πc and S(c|k) are the density function, prior probability, and

strength function of class c, respectively, which can be defined as:

πc =
nc
n

(5.24)
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S(c|k) =

∫
pc=max{p1,p2,...,pC}

ζ(p|k, tk)dp (5.25)

where pc = p(c|x0), p = (p1, p2, ..., pC),
∑C

c=1 pc = 1, tk = (t1k , t2k , ..., tCk
),∑C

c=1 tck = k, tck is the number of neighbors among k neighbors come

from the c-th class, and ζ(p|k, tk) is the conditional probability of p for

some fixed k and tk defined as:

ζ(p|k, tk) =
ξk(p)φ(tk|p, k)∫
ξk(p)ψ(tk|p, k)dp

(5.26)

where ξk(p) is the prior distribution of P in the neighborhood around

x0 and ψ(tk|p, k) is the conditional probability of tk for given p and k,

defined as:

ψ(tk|p, k) =

(
k

t1k , t2k , ...., tCk

)
C∏
c=1

p
tck
c (5.27)

Even though above mentioned studies have been done, their findings did

not get popularity. Most of the time, k is decided empirically. That means

different values of k are tried, and k with the best performance is chosen.

Most of the time, a cross-validation approach is applied.

5.3 i-Vector Selection

Unlike classification or regression discussed in Section 5.2, in this thesis

we use k-NN to find out a set of reference vectors, X, which follows the

same distribution, as the set of query vectors, X0, so that X can be used

to provide prior to reduce nuisance attributes from x0 ∈ X0. In another

way, we can say that we use k-nearest neighbors only, not the rule based on

k-nearest neighbors. In our case, {xi ∈X}ni=1 are unlabeled data, and both

X and X0 are i-vectors extracted from speech segments. X are prepared

from the background dataset, B and X0 are from the enrollment set, E .

Section 5.3.1 describes our data selection approach based on k near-

est neighbors along with its shortcomings. Our approach in order to over-

come those shortcoming is described in Section 5.3.2. Few variants of our

proposed approaches are presented in Section 5.3.3. Different kinds of is-

sues regarding our proposed data selection approaches are discussed in Sec-

tion 5.3.4.
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5.3.1 k-NN for i-vector Selection

Let the sets of i-vectors, ω, for the PLDA modeling, for enrollment speakers,

and for authentication be B, E , and A, respectively. Our target is to select a

subset, S ⊂ B, that is more suitable for E than the whole set B.

Algorithm of k-NN based i-vector Selection

Let Ske ⊂ B be the set of the k-nearest neighbors of an enrollment i-vector,

ωe. Our target is to find Ske ⊂ B for all ωe ⊂ E in order to build S ⊂ B. The

steps of our data selection process using k-NN are given as:

1. Set the value of k.

2. For each ωe ∈ E , find Ske .

(a) Estimate the distance from ωe to each ωb ∈ B, i.e., dist(ωe,ωb).

(b) Sort dist(ωe,ωb) in ascending order.

(c) Put the k-nearest neighbors of ωe from the set of ωb ∈ B into Ske .

3. Take the unique set of i-vectors from {Ske }∀e to get S.

Problems in k-NN based i-vector Selection

We can choose the value of k from a range of values for which we can get the

best verification accuracy on a development set. However, a careful tuning

of k in this way might be computationally expensive. The second problem

is that k may vary from database to database. Therefore, one k does not

guarantee good result in all evaluation sets. Furthermore, the size and the

spreadness of E compared to the spreadness of B may affect the number of

selected i-vectors. If the i-vectors in E are close to each other compared to

the typical distance between the i-vectors in B, then every ωe ∈ E will select

almost the same ωb ∈ B. In such case, if the size of E is very small, we need

a large k in order to get a sufficient amount of i-vectors for training a good

PLDA model. On the other hand, if the size of E is large, then a large k may

select unnecessary data. Therefore, if we use a k optimised for a different

E , we may not get a sufficient amount of i-vectors for training a good PLDA

model, or we may end up covering almost the whole training set, B. Another

more complicated problem is that the i-vectors in Ske might be much closer

to each other than they are to ωe ∈ E . In this case, the i-vectors in Ske form
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a cluster, and ωe becomes its outlier. In such a case, Ske cannot be expected

to improve modeling of the region surrounding ωe.

In order to solve these problems, we propose a modification of the k-

NN method, which we name flexible k-NN (fk-NN) [9]. In this method, we

first use the LDOF defined in the next section to measure to what extent ωe
deviates from the cluster made by Ske . We then increase k until all ωe ∈ E
lie inside the cloud of nearest neighbors according to the LDOF criteria. Our

proposed fk-NN helps to decide k based on the nature of the target E , not

on any development set.

5.3.2 Flexible k-NN (fk-NN)

LDOF

In data mining applications, LDOF proposed by [140] is used for capturing

the outlierness of an object among a scattered neighborhood. In this thesis,

we use it to control the value of k in the k-NN based data selection process.

In order to estimate to what degree ωe is an outlier with respect to its k

nearest neighbors, LDOF checks the average distance between ωe and the k

nearest neighbors, as well as the average among all the neighbor pairs. If

the former is large compared to the latter, ωe can be regarded as an outlier.

Formally, LDOF of ωe given k is defined as

LDOFke =
dke
Dk
e

, (5.28)

where dke is the k-NN distance of ωe and Dk
e is the k-NN inner distance of

ωe’s neighbourhood, which are defined as:

dke =
1

k

∑
ωi∈Ske

dist(ωe,ωi), (5.29)

Dk
e =

1

k(k − 1)

∑
ωi,ωj∈Ske ,i 6=j

dist(ωi,ωj). (5.30)

As shown in Fig. 5.3, LDOF captures the degree to which ωe deviates from

its neighborhood Ske . When LDOFke ≤ 1, we can say that ωe is surrounded

by the cloud created by the i-vectors of Ske . Notice that if k = 1, Dk
e is

undefined, therefore, LDOF cannot be calculated.
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Figure 5.3: The outlierness of a synthetic two-dimensional i-vector, ωe ∈ E , with
respect to its six neighbours, ωb ∈ B, according to the LDOF criteria.
Here red dot: ωe ∈ E , black square: ωb ∈ B, magenta dot: center of
six ωb ∈ B. Among nine ωb, three are on the boundary lines.

Algorithm of fk-NN

As argued in above, in order for each enrollment i-vector to be well repre-

sented by the training data, we would like to make sure that each enrollment

i-vector is an inlier its neighborhood. The most naive way to ensure this is

to select an individual value of k, ke, for each ωe, as the minimum from

among those k’s which suffice LDOFke ≤ 1. However, LDOF is not robustly

estimated for values of k much smaller than the dimension of the data. In

order to use LDOF in a cautious way, we therefore first find the minimum k

which suffice LDOFke ≤ 1 for all ωe. We then use this k for all ωe. We call

this method fk-NN [9]. The fk-NN algorithm is as follows:

1. Set the LDOF threshold, θ, so that 0 < θ ≤ 1.

2. Set k = 2.

3. For each ωe ∈ E ,

(a) Find Ske .

(b) Estimate LDOFke .

4. If any LDOFke ≥ θ, then

(a) k = k + 1.

(b) Go to Step-3
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Figure 5.4: Estimation of k for a synthetic two-dimensional i-vector, ωe ∈ E , by
using LDOF value. Here red dot: ωe ∈ E , black square: ωb ∈ B,
magenta dot: center of i-vectors in Ske . For k = 7 the LDOFk

e < 1.

5. Take the unique set of i-vectors from {Ske }∀e to get S.

In order to avoid an extra parameter to tune, we set θ = 1 in our ex-

periments. Fig. 5.4 shows how the LDOF value is used to decide the value

of k in fk-NN for a synthetic two-dimensional enrollment i-vector, ωe. In

this figure, k is gradually increases until LDOFke ≥ θ = 1 which happens

for k = 7. The highest value of k obtained in this way for any enrollment

i-vector will be the value of k according to fk-NN.
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5.3.3 k-NN and fk-NN Variants

Individual k-NN (ik-NN)

As mentioned in Section 5.3.2, it is difficult to estimate an individual k for

each ωe using LDOF since LDOF for small values of k is not robostly esti-

mated. Here, we propose a variant of fk-NN using the difference between

LDOFke ’s. Let ∆LDOFke be the absolute difference between LDOFke and

LDOFk−1
e , and γ be the threshold for ∆LDOFke . Then, for each ωe, we in-

crease ke as long as LDOFke ≥ 1 and ∆LDOFke ≤ γ. Here, we use absolute

difference since we assume that the differences converge to 0 as k increases

without necessarily being negative for all k. We refer to this method as

individual k-NN (ik-NN). The steps of ik-NN are given below:

1. For each ωe ∈ E ,

(a) Set ke = 2.

(b) Find Ske .

(c) Estimate LDOFke .

(d) If LDOFke ≥ 1 and ∆LDOFke ≤ γ, then

i. ke = ke + 1.

ii. Go to Step-1b

2. Take the unique set of i-vectors from {Ske }∀e to get S.

Averaged Enrollment i-Vectors

Up until now we have discussed the scenario where each target speaker has

one enrollment i-vector. However, in some cases such as in the NIST SRE12

data set, the target speakers sometimes have several enrollment i-vectors.

For such cases, we propose an alternative strategy where at first we average

the enrollment i-vectors of each speaker. Then we use the averaged i-vectors

for data selection with k-NN or fk-NN in the normal way. We denote the

methods as a-k-NN and a-fk-NN, respectively.

Adding All Sessions from Selected Speakers

Having many sessions per speaker is important for reliable estimation of

both the speaker variability, V, and the channel variability, Σ. (Consider for

example the extreme case of having only one session per traning speaker in
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which speaker and channel variability cannot be separated in PLDA train-

ing.) Our data selection approaches (k-NN, fk-NN, ik-NN) are, however,

unlikely to select all sessions of each selected speaker. In order to avoid

this problem, we propose a variant of our data selection methods where we

first apply k-NN, fk-NN or ik-NN, and then add all discarded i-vectors from

the speakers in S. We call this method k-NN-s, fk-NN-s or ik-NN-s. Since

adding more i-vectors may lose the theoretical justification for fk-NN-s and

ik-NN-s, we focus on k-NN-s in this thesis.

5.3.4 Issues Related to Data Selection

Distance metric

The choice of the distance measure is an important issue in both k-NN and

fk-NN. Various measures can be used to compute the distance between two

i-vectors. From Fig. 5.1, we can say that the Euclidean distance could be

a good choice. However, since we are using length-normalized i-vectors

for PLDA modeling, it would be inconsistent to use the Euclidean distance

without length normalization in the i-vector selection phase. Because, some

ωb ∈ B that are close to an ωe ∈ E before length-normalization may not

be close after length-normalization. Thus wrong i-vectors may be selected

which will deteriorate the performance of k-NN based system. Our pre-

liminary experiment using the Euclidean distance supported this fact. In

Fig. 5.5, the same i-vectors shown in Fig. 5.1, are shown after length normal-

ization. As can be seen, there is an obvious directional separation between

the i-vectors extracted from phone- and microphone-utterances. Therefore,

the cosine distance,

distcos(ωi,ωj) = 1− ωTi ωj√
ωTi ωiω

T
j ωj

(5.31)

could be a good choice. When the i-vectors are length-normalized, i.e.,

ωTi ωi = 1, the relation between the two distance metrics is given by,

disteuc(ωi,ωj) =
√

(ωi − ωj)T (ωi − ωj)

=
√

2× distcos(ωi,ωj), (5.32)

where disteuc(ωi,ωj) is the Euclidean distance and distcos(ωi,ωj) is the co-

sine distance between any two i-vectors, ωi and ωj . Since this function is
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Figure 5.5: Plot of the length-normalized i-vectors after applying a two dimen-
sional PCA-projection. Black circles represent i-vectors extracted from
the phone-utterances and blue dots represent i-vectors extracted from
the microphone-utterances. (a) There are 1270 male i-vectors among
them 648 are from the phone utterances and 622 are from the mi-
crophone utterances. (b) There are 1993 female i-vectors among them
1140 are from the phone-utterances and 853 are from the microphone-
utterances.

monotonically rising, it does not make any difference which of the two dis-

tance metrics we use when i-vectors are length-normalized. In this study, we

use the cosine distance for both k-NN and fk-NN. A more detailed analysis

of distance metric will be a part of future work.

Domain Adaptation

If we can use E for selecting relevant data from B, we can also use E for

domain adaptation. The most trivial domain adaptation approach is to add

i-vectors of E (i.e., the in-domain data) to the PLDA training data (i.e., the

out-domain data), and re-train the model. Domain adaptation adjusts the

model to be more similar to E but equal emphasis on the relevant data S ⊂ B
and the irrelevant data B \ S. Data selection improves the modeling in the

region close to E on the expense on regions far from E but does not use E for

training. Data selection and domain adaptation can therefore be expected

to be complementary, unless the enrollment set is so large that it is enough

for PLDA training by itself.
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Unseen Impostors

A possible concern with the idea of data selection based on E is that this may

reduce the performance for non-target trials involving unknown impostors,

i.e., impostors who are not in E . The reason for this concern is that by

selecting training data close to E , the modeling of impostors in regions far

away from E may deteriorate. However, our assumption is that impostors

who are far away from E will not be confused with speakers in E anyway.

In order to verify that data selection does not reduce the performance for

non-target trials involving unknown impostors, we experimentally compare

the performance of data selection when all the impostors are unknown and

when all the impostors are known, i.e., they are one of the speakers in E in

Section 5.6.6.

5.4 Experimental Set-up

In order to examine the effect of S ⊂ B selected by k-NN, fk-NN and their

variants on the performance of the PLDA model, we conducted experiments

on several recent NIST SREs. In these evaluations, there are conditions

focusing on telephone speech, microphone speech or both. We restricted

our experiments to conditions having authentication sets, As, containing

telephone data only. We chose to work on the telephone data because the

amount of microphone data in our B was small. During the development

of our baseline system, we found that it was beneficial to exclude i-vectors

estimated from utterances of B that were distorted by echo, or crosstalk,

or background noise based on meta-data. However, in reality meta-data may

not always be available. Therefore, we considered two background datasets,

B1 including distorted speech and B2 excluding distorted speech for PLDA

training. For our convenience, we denote B1 as R and B2 as C in the later

sections.

The details of our development set, D, and evaluation sets, Vs, are given

in Section 5.4.1. Section 5.4.2 describes background datasets used for train-

ing UBMs, i-vector extractor, T and PLDA models. Extracting features, train-

ing models and tuning k are discussed in Section 5.4.3 and in Section 5.4.4.

Evaluation metrics are described in Section 5.4.5.
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5.4.1 Development Set and Evaluation Set (D and V)

We used the NIST SRE 2006 core task (SRE06) as D, in particular for tuning

k in k-NN. The NIST SRE 2008 core task condition-6 (SRE08), the NIST

SRE 2010 core task condition-5 (SRE10), and the NIST SRE 2012 core task

condition-2, -4 and -5 (SRE12) were used as Vs. Among the three Vs, SRE12

has noisy As, whereas the other two are considered to have clean As.

SRE06, SRE08 and SRE10 have only clean speech files in A. In E , there

are only one speech file for training a model for each target speaker. Each

speech file of E is from approximately five minutes long conversational tele-

phone speech. Some speakers in E have multiple model IDs. Therefore,

the number of speaker models, #M, is larger than the number of speakers,

#Es. SRE12 has noisy As. In SRE12(c5), all speech files of A have inten-

tionally been collected in a noisy environment. In SRE12(c4), the files of A
have added noise. SRE12(c2) includes all the trials of SRE12(c5) plus trials

where A is clean. In E , each target speaker has several enrollment sessions

from several different recording conditions (we used the enrollment file list

that excludes repeated speech). There is only one model ID for each speaker

in E . Therefore, #M is equal to #Es.

Table 5.1 shows the number of files that we had in E and A after dis-

carding corrupted files. In E of SRE12, there were 8094 and 12393 files for

training 723 and 1095 male and female speaker models, respectively. Since

the PIN numbers were missing for unknown test segments, #As and #Us for

male and female tasks of SRE12 could not be counted. Table 5.2 shows the

number of trials in the evaluation sets. For all sets, only a small number of

the non-target trials have impostors who are unseen in E . In more realistic

scenarios, the number of unseen impostors might be higher. In SRE12, this

is taken into account by a re-balancing of the trials.

Note that, using E for system development is allowed in the NIST SRE

plan for SRE12 but not for SRE06, SRE08 and SRE10. Therefore, we vio-

lated the rules of SRE06, SRE08 and SRE10.

5.4.2 Background Datasets (R and C)

As the background dataset, we used the NIST SRE 2004 (SRE04), NIST

SRE 2005 (SRE05), Switchboard II Phase 1 (SB2P1), Switchboard II Phase

2 (SB2P2), Switchboard II Phase 3 (SB2P3), Switchboard Cellular Part 1
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Table 5.1: Development set, SRE06 and evaluation sets, SRE08, SRE10 and
SRE12 for male and female speakers. #M: the number of models in
the enrollment set, E , #Es: the number of unique speakers in E , #Te:
the number of test files in the authentication set, A, #As: the number
of unique speakers in A, and #Us: the number of speakers of A unseen
in E .

Dataset Male

#M #Es #Te #As #Us

SRE06 349 257 1347 257 4

SRE08 648 492 858 427 105

SRE10 1906 187 384 192 20

SRE12(c2) 723 723 4962 - -

SRE12(c4) 723 723 3900 - -

SRE12(c5) 723 723 2156 - -

Dataset Female

#M #Es #Te #As #Us

SRE06 459 335 1679 327 5

SRE08 1140 844 1508 691 92

SRE10 2361 221 369 208 11

SRE12(c2) 1095 1095 7984 - -

SRE12(c4) 1095 1095 6195 - -

SRE12(c5) 1095 1095 3325 - -

(SBCP1) and Switchboard Cellular Part 2 (SBCP2). From SRE04, we se-

lected speech files having single-channel conversation of approximately five

minutes total duration. From SRE05, we selected speech files having two-

channel conversation of approximately five minutes total duration. We used

all non-empty speech files of the Switchboard datasets. We prepared two

background datasets, R and C. For training UBMs and i-vector extractor, T ,

we used R, whereas for training PLDA models we used both R and C.
Background dataset R included all speech files available in the above

mentioned speech databases. The number of speech files, #F, and the num-

ber of speakers, #S, of individual dataset and of the combined dataset, R,

are shown in Table 5.3. MIXER PIN and PIN were used as unique speaker

IDs for NIST SRE and Switchboard datasets, respectively. For the files whose
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Table 5.2: Trials of SRE06, SRE08, SRE10 and SRE12 for male and female speak-
ers. #T: the number of total trials, #Tr: the number of target trials,
#Nt: the number of non-target trials, #Kn: the number of non-target
trials by known speakers, #Un: the number of non-target trials by un-
known speakers.

Dataset Male

#T #Tr #Nt #Kn #Un

SRE06 22123 1594 20529 20066 463

SRE08 12356 724 11632 9906 1726

SRE10 179338 3465 175873 158846 17027

SRE12(c2) 164549 2830 161719 131932 29787

SRE12(c4) 125400 2775 122625 122625 0

SRE12(c5) 62845 1534 61311 61311 0

Dataset Female

#T #Tr #Nt #Kn #Un

SRE06 28945 2022 26923 26478 445

SRE08 22957 1445 21512 20088 1424

SRE10 236781 3704 233077 221097 11980

SRE12(c2) 393042 4524 388518 313109 75409

SRE12(c4) 298491 4401 294090 289218 4872

SRE12(c5) 152976 2349 150627 148221 2406

MIXER PIN or PIN were missing, model IDs were used as speaker IDs. For

example, in SRE05, there were 198 male and 211 female speech segments

without MIXER PIN. We counted those speech segments as from 28 male and

29 female speakers based on their model IDs. However, multiple model IDs

may share the same MIXER PIN. Therefore, it is possible that our counted

#S was higher than the original #S. There were 18 male and 23 female

speakers appearing in multiple Switchboard datasets. Therefore, the num-

ber of speakers in the combined set, R, was smaller than the total number

of speakers in individual sets. For male set, #S of R was 1495, whereas

the total number of speakers was 1525. For female set, #S of R was 1897,

whereas the total number of speakers was 1919.

For C, we selected only the clean speech files of R, i.e., C ⊂ R. Clean
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Table 5.3: The number of speech files, #F, and the number of speakers, #S, used
for training gender-dependent UBM and T.

Dataset Male Female

#F #S #F #S

SB2P1 2558 292 3251 358

SB2P2 2352 304 2716 335

SB2P3 1612 290 2083 341

SBCP1 462 103 567 116

SBCP2 1310 165 2000 245

SRE04 1906 126 2651 188

SRE05 2705 245 3792 336

R 12905 1495 17060 1897

speech refers to speech which is not distorted by echo or crosstalk or back-
ground noise according to the meta-data of the databases. According to the

documentation of the Switchboard corpora [48], echo or crosstalk in the

telephone circuit refers to the audibility of the channel-1 speaker in channel-

2 and vice-versa. Background noise refers to the amount of sounds not made

by the speakers, e.g., baby crying, television, radio, etc. For the NIST SRE

databases, there is no meta-data for identifying noisy speech, therefore we

considered all speech of SRE04 and SRE05 as clean speech. The number of

speakers, #S, and the number of clean speech files, #F, of individual dataset

and of the combined dataset, C, are given in Table 5.4.

5.4.3 Pre-processing and Training Models

We at first extracted 15 PLP coefficients [64] along with log-energy and

then applied feature warping [106]. After that we appended the first-order

and second-order derivatives, resulting in 48 elements per frame. Then

we removed non-speech parts from the feature vector sequences by using

spectral subtraction-based voice activity detector (VAD) [99].

After extracting PLP features, we trained gender-dependent systems us-

ing R. First, we trained gender-dependent UBMs with 2048 Gaussian com-

ponents by using feature vectors of R. Next we trained gender-dependent

T matrices by the feature vectors extracted fromR. The rank of T matrices,
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Table 5.4: The number of speech files, #F, and the number of speakers, #S, se-
lected from clean speech for training gender-dependent PLDA models.

Dataset Male Female

#F #S #F #S

SB2P1 391 125 455 191

SB2P2 1868 283 2134 307

SB2P3 1399 277 1921 337

SBCP1 236 78 290 94

SBCP2 1038 157 1595 232

SRE04 1906 126 2651 188

SRE05 2705 245 3792 336

C 9543 1278 12838 1665

d, was tuned to 400 by using SRE06. By using T matrices, we extracted i-

vectors. Then, we applied data selection methods for selecting i-vectors for

training PLDA models. Finally, the i-vectors of PLDA models went through

the process of centering, whitening, and length-normalization [43].

We trained four gender-dependent PLDA models, among which two mod-

els were for male speakers and two models were for female speakers using

R and C. The parameters m, V and Σ of PLDA models were estimated by

the ML criteria (see Equation 3.52). The rank of V was optimized to 250

by using SRE06. Table 5.5 defines the symbols for referring to the data sets

we used in the experiments. Note that we will use the same symbol for the

training set and its corresponding PLDA model from now on.

5.4.4 Tuning k

For the conventional k-NN, we optimised k by minimising EER of the de-

velopment set, SRE06. Using the cosine distance as the distance metric, we

chose the k-nearest neighbours from C for each ωe ∈ E . We increased k

from one up to fifty. When k ≤ 2, PLDA training failed due to an insuffi-

cient amount of training data. The optimum k was 37 for male and 25 for

female trials of SRE06, respectively. We used the same k for the background

dataset, R.
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Table 5.5: Symbols that will be used for referring to PLDA models later in this
paper.

Symbol Training Data

R All available data

C Clean data selected by removing echo or

crosstalk or noise from R, i.e., {C ⊂ R}
{C/R}k S ⊂ {C/R} selected by k-NN

{C/R}fk S ⊂ {C/R} selected by fk-NN

Cik S ⊂ C selected by ik-NN

{C/R}+ E Training data added with enrolment set

{C/R}k + E S ⊂ {C/R} selected by k-NN and added

with E
{C/R}fk + E S ⊂ {C/R} selected by fk-NN and added

with E

5.4.5 Performance Measure

For SRE06, SRE08 and SRE10, we used equal error rate (EER) and minimum
detection cost, Cmin, as evaluation metrics. For SRE12, we used a minimum

and an actual version of the primary evaluation metric, denoted by Cmin and

Cact, respectively, as evaluation metrics. Cmin was the Cavg (See Section ??).

Both Cβ1Norm and Cβ2Norm used CFR = CFA = 1.

We computed Cact by applying detection thresholds of log(β) for the two

values of β with β1 = 99 and β2 = 999 as recommended in NIST SRE plan

for SRE12. We used an affine transformation estimated using the Cllr loss

shifted to Ptar = 10−2.5 (i.e., the geometric average of P(1)
tar and P(2)

tar ). We

used SRE06 for training the affine transformation. For Cmin, we applied

a PAV transformation on the evaluation scores. For calculating compound

LLRs, doing calibration and calculating the evaluation metrics, we used the

BOSARIS toolbox [13].
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5.5 Results

This section presents results of our experiments conducted on the develop-

ment set, SRE06, and three evaluation sets, SRE08, SRE10 and SRE12. Sec-

tion 5.5.1 shows results of SRE06,SRE08 and SRE10, whereas Section 5.5.2

shows results of SRE12.

5.5.1 SRE06, SRE08 and SRE10

Table 5.6 compares EER and Cmin for the baseline, k-NN and fk-NN based

ASVS. Data selection either by k-NN or by fk-NN improved the verification

accuracy. The k-NN method performed well on the development set, SRE06,

where k was optimized. On the other hand, fk-NN was better than k-NN

for reducing EER in SRE08 and SRE10. Using fk-NN in C, we achieved on

average 4.2% and 3.4% relative reduction in EER over the baseline for male

and female trials of the evaluation sets, respectively. On the other hand,

using fk-NN inR we achieved on average 6.0% and 5.9% relative reduction

in EER over the baseline for male and female trials of the evaluation sets,

respectively.

We followed steps of the significance test mentioned in Section 2.7. By

comparing fk-NN based system with baseline system using R, we got p

values 6.366e-05, 0.1167 and 0.0267 for male trials of SRE06, SRE08 and

SRE10 respectively. For female trials of SRE06, SRE08 and SRE10, p- values

were1.0051e-07, 0.000116, and 0.0197 respectively. We can say that except

SRE08 male trials, our achievement using fk-NN was statistically significant

at α = 0.05 level. fk-NN was more successful for improving system’s perfor-

mance for non-target trials than target trials. In SRE08 male, the number of

non-target trials was not large, which effect on the overall p value of SRE08

male.

5.5.2 SRE12

In order to explore whether k-NN and fk-NN are effective for noisy data,

we performed experiments on SRE12. SRE12 is different from the previ-

ous evaluation sets in that several enrollment sessions are available for each

speaker in E . In our preliminary experiments, the methods using the av-

eraged i-vectors, a-k-NN and a-fk-NN (Section 5.3.3), were always better
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Table 5.6: EER and Cmin of SRE06, SRE08 and SRE10. For SRE06 and SRE08,
Cmin is in 10−2 whereas for SRE10, Cmin is in 10−4. For all tasks EER is
in %.

Male SRE06 SRE08 SRE10

model EER Cmin EER Cmin EER Cmin

C 2.30 1.16 4.92 2.55 2.01 3.73

Ck 1.84 1.05 4.76 2.44 2.05 3.68

Cfk 2.08 1.12 4.73 2.43 1.92 3.53

R 2.59 1.33 5.07 2.65 2.14 3.97

Rk 2.08 1.13 4.87 2.58 2.11 3.94

Rfk 2.07 1.15 4.77 2.58 2.01 3.76

Female SRE06 SRE08 SRE10

model EER Cmin EER Cmin EER Cmin

C 3.42 1.85 5.97 2.85 3.02 4.94

Ck 2.71 1.43 5.81 2.82 2.93 4.74

Cfk 2.71 1.43 5.78 2.84 2.91 4.74

R 3.92 2.20 6.29 3.01 3.29 4.96

Rk 2.89 1.50 5.80 2.84 3.22 4.83

Rfk 2.89 1.50 5.79 2.84 3.16 4.81

than the methods using all available i-vectors per speaker. Therefore, we

considered only a-k-NN and a-fk-NN in these experiments. Further, the

probability that an impostor is one of the other target speakers, PKnown, was

considered in this evaluation. In this Section, we used PKnown = 0.5 which

was the core task of the evaluation. The effect of changing the value of

PKnown is analyzed in Section 5.6.6.

The results of data selection from C and R are given in Table 5.7 and

Table 5.8. Since SRE12(c4) and SRE12(c5) for male do not have any un-

known impostors, the performance for these conditions could not be esti-

mated. With the exception of using C for male, data selection was always

effective. In many cases, k-NN was better than fk-NN. A possible reason

for this could be that averaged i-vectors were not optimal for determining

k with fk-NN. It is noticeable that, despite the fact that A was noisy, using

C gave in most cases better Cact than using R. This could perhaps be ex-

plained by the fact that the calibration model was trained on SRE06 which
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Table 5.7: Results of male trials of SRE12(c2) using PKnown = 0.5. In k-NN, k was
optimized considering SRE06 as the development set.

PLDA model Cact Cmin

C 0.321 0.293

Ca-k 0.320 0.298

Ca-fk 0.325 0.315

R 0.350 0.287

Ra-k 0.331 0.289

Ra-fk 0.323 0.279

Table 5.8: Results of female trials of SRE12 using PKnown = 0.5. In k-NN, k was
optimized considering SRE06 as the development set.

PLDA c2 c4 c5

model Cact Cmin Cact Cmin Cact Cmin

C 0.432 0.281 0.598 0.464 0.491 0.310

Ca-k 0.386 0.271 0.548 0.447 0.436 0.308

Ca-fk 0.414 0.279 0.574 0.452 0.470 0.307

R 0.476 0.281 0.630 0.444 0.536 0.317

Ra-k 0.409 0.277 0.558 0.441 0.461 0.314

Ra-fk 0.445 0.273 0.596 0.445 0.504 0.299

was clean.

5.6 Analysis

In this Section we analyze the behavior of data selection with k-NN and fk-

NN more in details, as well as some of their modifications and extensions

described in Section 5.3. Most of the experiments were done on SRE06,

SRE08 and SRE10. Only for checking the effect of unseen impostors, SRE12

was used.

5.6.1 Analysis of the Selected Data

Fig. 5.6(a)-5.6(f) shows how much data were selected from each training

corpus for SRE06, SRE08 and SRE10. The most noticeable trend was that
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Figure 5.6: The y-axis shows the number of i-vectors of different datasets used for
training PLDA models for male and female trials of SRE06, SRE08 and
SRE10.

SRE10 selected much more of the Switchboard corpora than SRE06 and

SRE08. In particular, SRE10 selected almost all of SBCP1. For further anal-

ysis, we trained database-specific PLDA models using data of each database

in C. For SB2P1 and SBCP1, PLDA training failed due to an insufficient

amount of training data. In this thesis, we did not attempt to solve this

problem by applying regularization to the channel covariance during PLDA

training. The results are shown in Table 5.9. We can conclude that the NIST

SRE databases (ALLSRE) have more relevant data for E of SRE06, SRE08,

and SRE10 than the Switchboard databases (ALLSB). Using only ALLSRE,

we got the lowest EER and Cmin for SRE06 and SRE08 while adding ALLSB
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with ALLSRE had negative impact on the performance. It reveals that us-

ing all the available data does not guarantee the best PLDA model for the

target evaluation set. The presence of irrelevant data in the training set

of the PLDA model may deteriorate the system’s performance. For SRE10,

we got the lowest EER and Cmin when we combined ALLSB with ALLSRE.

It indicates that relevant data differs in different target evaluation sets. By

k-NN and fk-NN, we are able to reduce the amount of irrelevant data for

the target evaluation set.

5.6.2 Error Analysis

In order to analyze the errors, we counted the number of false acceptance
(FA) and false rejection (FR) as well as the number of enrollment and test

segments that had at least one erroneous decision for any trial in SRE06,

SRE08 and SRE10. For this analysis, we used the thresholds that minimized

the detection costs. For the baseline system, the number of FR was higher

than the number of FA. This is because the operating point of Cmin in SRE06,

SRE08 and SRE10 promotes a low FA rate. This is particularly extreme for

SRE10. As shown in Table 5.10, we noticed that data selection reduced

the number of FR, miss-verified speakers and test-segments in all datasets

except SRE08. In most of the cases, the number of FA increased when data

selection was applied.

5.6.3 Adding All Sessions from Selected Speakers

According to the data selection approach, k-NN-s, described in Section 5.3.3,

all the sessions of each selected speaker were added in to S and k was opti-

mized. The optimal value of k on SRE06 was 12 and 3 for male and female

tasks, respectively, compared to 37 and 25 for the standard approach. Ta-

ble 5.11 shows the results. As can be seen, this method did not perform well

with the values of k that were optimal for the standard approach. However,

when k was specifically optimized for this purpose, the result was compa-

rable to the standard approach. This approach could, however, be refined

by ensuring that every speaker has at least a certain number of sessions

rather than using all the available sessions. Such exploration will be a part

of future work.
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Table 5.9: EER and Cmin of SRE06, SRE08 and SRE10 for different training data
sets. Empty entries mean that PLDA training failed due to insufficient
amount of training data. For SRE06 and SRE08, Cmin is in 10−2 whereas
for SRE10, Cmin is in 10−4. For all tasks, EER is in %.

Male SRE06 SRE08 SRE10

model EER Cmin EER Cmin EER Cmin

SB2P1 - - - - - -

SB2P2 10.65 4.99 13.26 5.54 17.96 8.56

SB2P3 11.23 5.28 14.31 5.65 18.19 8.78

SBCP1 - - - - - -

SBCP2 16.88 6.0 15.16 5.79 12.47 9.81

ALLSB 8.17 3.86 9.65 4.83 5.38 6.54

SRE04 4.89 2.20 6.96 3.29 4.88 7.51

SRE05 3.85 1.94 5.74 2.99 2.81 5.65

ALLSRE 2.07 0.97 4.58 2.36 2.28 4.20

C 2.30 1.16 4.92 2.55 2.01 3.73

Female SRE06 SRE08 SRE10

model EER Cmin EER Cmin EER Cmin

SB2P1 - - - - - -

SB2P2 12.56 6.0 14.94 6.42 17.92 9.15

SB2P3 11.57 6.07 13.83 6.24 17.42 8.77

SBCP1 - - - - - -

SBCP2 11.20 5.34 11.43 5.32 7.56 8.54

ALLSB 9.04 5.16 11.12 5.41 5.88 6.92

SRE04 3.35 1.73 6.53 3.00 4.62 6.83

SRE05 5.06 2.60 6.94 3.25 3.74 5.26

ALLSRE 2.64 1.42 5.51 2.6 3.26 4.69

C 3.42 1.85 5.97 2.85 3.02 4.94

5.6.4 Domain Adaptation

Table 5.12 compares the baseline, k-NN and fk-NN when E was added to

the PLDA training set. Notice that E was added after data selection. The

addition of E improved the performance of all systems substantially. For

male trials of SRE06, SRE08 and SRE10, by using C+E we achieved (2.30−



Robustness Against Irrelevant Training Data 122

Table 5.10: Number of errors. FR: False Rejection, FA : False Acceptance, eS:
Erroneous Target Speakers, eT: Erroneous Test Segments.

SRE06 Male Female

C Ck Cfk C Ck Cfk

FR 137 113 114 244 209 209

FA 84 91 105 219 142 142

eS 124 112 117 226 194 194

eT 194 178 186 380 303 303

SRE08 Male Female

C Ck Cfk C Ck Cfk

FR 137 92 96 274 266 269

FA 104 163 155 265 269 267

eS 171 184 179 345 345 350

eT 196 194 186 405 405 404

SRE10 Male Female

C Ck Cfk C Ck Cfk

FR 1156 1098 1046 1529 1518 1438

FA 7 9 9 19 15 20

eS 798 768 737 1125 1118 1075

eT 253 252 246 290 281 276

1.64)/2.30 × 100%= 28.7%, 15.9% and 27.4% relative reduction in EER

over C, respectively. For female trials of SRE06, SRE08 and SRE10, the EER

reduction rates were 29.5%, 14.7% and 16.9%, respectively. These results

confirmed the effect of domain adaptation, i.e., adding E to C .

We observed a consistent improvement using data-selection followed by

domain adaptation. By using Cfk + E , we achieved 6.7% and 4.1% EER

reduction over C + E for male trials of SRE06 and SRE08, respectively. For

female trials of SRE06, SRE08 and SRE10, the EER reduction rates were

13.3%, 4.7% and 6.8%, respectively. Fig. 5.7 shows the DET curves. It is

clear that adding E to C improved PLDA modelling and that fk-NN improved

the system performance further by discarding irrelevant data from P.

When E was included with R, using fk-NN, the EER reduction rates

were 18.1%, 10.2% and 3.7%, respectively, for male trials of SRE06, SRE08
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Table 5.11: EER and Cmin for speaker based i-vector selection. k was tuned on
SRE06. The “*” indicates that k was optimized for this method. In the
other rows, k was optimized before adding discarded sessions of the
selected speakers. For SRE06 and SRE08, Cmin is in 10−2 whereas for
SRE10, Cmin is in 10−4. For all tasks, EER is in %.

Male SRE06 SRE08 SRE10

model EER Cmin EER Cmin EER Cmin

C 2.30 1.16 4.92 2.55 2.01 3.73

Ck-s, k = 37 2.28 1.21 5.01 2.58 2.08 3.93

C∗k-s, k = 12 2.03 1.12 4.86 2.48 2.04 3.77

Cfk-s 2.22 1.19 4.89 2.54 2.08 3.88

Female SRE06 SRE08 SRE10

model EER Cmin EER Cmin EER Cmin

C 3.42 1.85 5.97 2.85 3.02 4.94

Ck-s, k = 25 3.50 1.96 6.20 2.98 3.19 4.95

C∗k-s, k = 3 2.71 1.43 5.79 2.82 3.05 4.75

Cfk-s 3.50 1.96 6.17 2.99 3.20 4.90

and SRE10. For female trials of SRE06, SRE08 and SRE10, the EER reduc-

tion rates were 23.8%, 9.1% and 4.9%, respectively. We can conclude that

{Pfk +E or Pk +E} > {P+E} >> {Pfk or Pk} > {P}, where > refers better
and >> refers much better performance.

5.6.5 Individual k-NN

In all of our experiments up until now, we used the same k for all ωe ∈ E .

Here, we show experiment with ik-NN proposed in Section 5.3.3. Table 5.13

shows results of using γ = 0.0001. Overall, ik-NN outperformed our base-

lines systems, but it was not better than fk-NN. A comparison of this method

and the standard k-NN for different amounts of training data is shown in

Figure 5.8. For k-NN, the amount of training data was controlled by varying

the value of k, and for ik-NN the amount of training data was controlled by

varying the threshold, γ. For smaller training data sizes, ik-NN was better

but for larger sizes, k-NN was better. Both the methods reached, however,

a similar optimum. There is therefore no clear winner of fk-NN and ik-NN.
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(b) SRE06_female 

 

(c) SRE08_male 

 

(d) SRE08_female 

 

(e) SRE10_male 

 

(f) SRE10_female 
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Figure 5.7: DET curves comparison of PLDA models trained by using different
amount of data. The results are given for male and female trials of
SRE06, SRE08 and SRE10. The x-axis shows False Alarm Probability
(in %) and the y-axis shows Miss Probability (in %).

Using ωe dependent k is however tricky and the proposed ik-NN is unlikely

to be the best approach. Exploring other strategies may, therefore, be a

fruitful direction of future work.

5.6.6 Effect on Unseen Impostors

As discussed in Section 5.3.4, we need to confirm whether data selection

has a bad effect on unknown impostors. For this, we examined the perfor-

mance of k-NN and fk-NN on SRE12(c2) when PKnown = 1 and PKnown = 0.

The results are given in Table 5.14. Overall, the performance of all methods
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Table 5.12: EER and Cmin for systems trained by including E into P. In k-NN, k
was optimised using SRE06. For male, k = 37, and for female, k = 25.
For SRE06 and SRE08, Cmin is in 10−2 whereas for SRE10, Cmin is in
10−4. For all tasks EER is in %.

Male SRE06 SRE08 SRE10

model EER Cmin EER Cmin EER Cmin

C 2.30 1.16 4.92 2.55 2.01 3.73

C + E 1.64 0.90 4.14 2.00 1.46 2.97

Ck + E 1.35 0.76 3.92 1.92 1.48 3.05

Cfk + E 1.53 0.77 3.97 1.80 1.46 2.91

R 2.59 1.33 5.07 2.65 2.14 3.97

R+ E 1.88 1.01 4.41 2.27 1.61 3.21

Rk + E 1.52 0.81 4.04 2.06 1.55 3.26

Rfk + E 1.54 0.81 3.96 2.08 1.55 2.95

Female SRE06 SRE08 SRE10

model EER Cmin EER Cmin EER Cmin

C 3.42 1.85 5.97 2.85 3.02 4.94

C + E 2.41 1.29 5.09 2.21 2.51 4.31

Ck + E 2.09 1.01 4.74 2.12 2.36 4.06

Cfk + E 2.09 1.01 4.85 2.08 2.34 4.04

R 3.92 2.20 6.29 3.01 3.29 4.96

R+ E 2.90 1.47 5.49 2.42 2.68 4.42

Rk + E 2.21 1.03 4.96 2.21 2.57 4.14

Rfk + E 2.21 1.03 4.99 2.23 2.55 4.16

became better when PKnown = 1, since we used compound LLRs that took

advantage of the presence of known impostors. When PKnown = 0, data se-

lection resulted in much improvement for female but a less clear pattern for

male. However, notice in Table 5.2 that the number of trials from unknown

impostors is quite small for male, so these results might be less reliable. In

conclusion, it does not seem unknown non-target trials become problematic

if our data selection methods are used.
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Table 5.13: EER and Cmin for systems trained by C, and Cik. For both male and
female, γ = 0.0001. For SRE06 and SRE08, Cmin is in 10−2 whereas for
SRE10, Cmin is in 10−4. For all tasks EER is in %.

Male SRE06 SRE08 SRE10

model EER Cmin EER Cmin EER Cmin

C 2.30 1.16 4.92 2.55 2.01 3.73

Ck 1.84 1.05 4.76 2.44 2.05 3.68

Cfk 2.08 1.12 4.73 2.43 1.92 3.53

Cik 1.86 1.12 4.54 2.46 2.00 3.72

Female SRE06 SRE08 SRE10

model EER Cmin EER Cmin EER Cmin

C 3.42 1.85 5.97 2.85 3.02 4.94

Ck 2.71 1.43 5.81 2.82 2.93 4.74

Cfk 2.71 1.43 5.78 2.84 2.91 4.74

Cik 2.93 1.46 5.83 2.84 2.93 4.77

i

Figure 5.8: EER(%) of SRE06, male. The x-axis shows the number of i-vectors
selected by k-NN and ik-NN for training the PLDA model.

5.6.7 Data Reduction Rate

Table 5.15 shows the data reduction rates for the four data sets. It is clear

that more irrelevant data was reduced from R than C by both k-NN and

fk-NN. For the male sets, fk-NN reduced the data more than k-NN. For

SRE10, both k-NN and fk-NN discarded only a few speakers. For female,

k-NN reduced more data than fk-NN in most cases.
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Table 5.14: Results of SRE12(c2) using PKnown = 1 and PKnown = 0. For male,
k = 37, and for female, k = 25.

Male PKnown = 1 PKnown = 0

model Cact Cmin Cact Cmin

C 0.340 0.246 0.341 0.340

Ca-k 0.339 0.257 0.327 0.305

Ca-fk 0.336 0.268 0.363 0.342

R 0.348 0.246 0.330 0.337

Ra-k 0.340 0.254 0.347 0.326

Ra-fk 0.334 0.257 0.338 0.314

Female PKnown = 1 PKnown = 0

model Cact Cmin Cact Cmin

C 0.414 0.239 0.433 0.339

Ca-k 0.395 0.239 0.380 0.341

Ca-fk 0.406 0.240 0.414 0.326

R 0.446 0.235 0.493 0.322

Ra-k 0.405 0.235 0.402 0.317

Ra-fk 0.424 0.230 0.452 0.322
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Table 5.15: Data reduction rate (%) by k-NN and fk-NN. In k-NN, k was opti-
mized using SRE06. For male, k = 37, and for female, k = 25. M:
Male model, F: Female model, m: reduction rate (%) of i-vectors and
n: reduction rate (%) of speakers. For SRE12, the results refer to a-
fk-NN and a-k-NN.

M SRE06 SRE08 SRE10 SRE12

m n m n m n m n

Ck 41.7 11.1 21.3 4.5 8.3 0.6 22.7 4.6

Cfk 55.2 19.5 28.6 7.1 25.8 4.2 31.8 7.7

Rk 50.9 10.6 30.7 4.3 12.9 0.8 31.5 4.0

Rfk 52.7 11.5 33.2 4.8 26.2 3.1 43.5 7.5

F SRE06 SRE08 SRE10 SRE12

m n m n m n m n

Ck 57.9 20.2 26.3 6.3 14.7 2.8 30.9 8.2

Cfk 57.9 20.2 23.0 5.8 15.7 3.0 11.5 1.9

Rk 65.5 17.9 34.9 5.1 20.6 1.8 39.7 6.3

Rfk 65.5 17.9 31.7 4.1 19.6 1.7 17.1 1.7



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In the last two decades, short utterances and inter-session variability have

been considered two important obstacles for achieving high verification ac-

curacy for a text-independent automatic speaker verification (ASVS). In this

thesis, we presented methods in order to deal with these obstacles and im-

prove the performance of a text-independent ASVS. We focused on robust

speaker modeling by improving background modeling.

We showed that SMAP adaptation is better than the popular MAP adap-

tation for reliable parameter estimation of speaker-specific models when

utterances are very short (e.g., 10 seconds). In SMAP adaptation, a single

tree structure of the UBM is generally used for the acoustic space of all the

speakers assuming that the hierarchical structure of the acoustic space can

be shared among all the speakers. During our work on speaker verification,

however, we noticed that a single tree structure is not always optimal for

modeling the acoustic space of every speaker. Therefore, for short utter-

ances, we propose to grow an acoustic forest with different tree structures

for SMAP adaption, and combine the decision of several SMAP adapted sys-

tems using score fusion techniques. By doing experiment on the 10sec4w-

10sec4w task of the NIST SRE 2006, we gained 1.5% relative reduction

EER.

We also presented data selection methods for PLDA modeling, which

is one of the state-of-the-art methods for i-vector scoring. Using k-NN we

showed that we can choose a subset of the available training data of the

129
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PLDA model, and improve the system performance for both male and female

trials of the NIST SRE 2006, SRE 2008, SRE 2010, and SRE 2012. In order

to avoid the difficulty of optimizing k on a development set, we presented

a robust way of selecting k, named flexible k-NN (fk-NN), which uses a lo-
cal distance-based outlier factor (LDOF). This method discarded irrelevant or

noisy training data of the PLDA model as much as the conventional k-NN

without the need for tuning k. Using both k-NN and fk-NN, we achieved

reduced EER and detection costs. By fk-NN, we reduced on average 30%

irrelevant data and achieved 6.0% reduction in EER for male 2.5 minutes

tasks of SRE 2008 and SRE 2010. For the female task, our achievement

were 26% irrelevant data reduction and 6.6% reduction in EER. We also

proposed variations of these methods, including individual k-NN (ik-NN)

which uses different k for different data points. The effect of i-vector se-

lection on known and unknown non-target trials, was also a topic of this

thesis.

Relation Between Our Proposed Methods

Both SMAP tree and PLDA model provide prior information for estimating

robust parameters of speaker-specific model. SMAP tree is concerned about

data sparseness problem. It does not deal with inter-session variability. Its

success is quite dependent on the human decided pre-specified tree structure

and the quality of data used for building the UBM. On the other hand, a

PLDA model provides prior information in order to separate inter-session

variability factors from speaker-specific factors. Its success depends on the

quality of the training data. Our proposed methods, acoustic forest and

fk-NN, increase robustness of these two models. Acoustic forest increases

robustness of an SMAP tree against enrollment data variants and fk-NN

increases robustness of a PLDA model against irrelevant and noisy training

data.

Robustness against enrollment data variants, and robustness against ir-

relevant and noisy training data are not two completely separate issues for

background modeling. One approach can deal with both issues and improve

the same background model. Our proposed two approaches can be used for

the same background model as proposed in [124, 125, 94]. In SMAP tree

we need to train a UBM at first. We can use fk-NN to select relevant data for
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UBM training. In that case, instead of using i-vectors, we need to use fea-

ture vectors like MFCC, PLPCC etc. In an i-vector based ASVS, one i-vector

is estimated from a complete utterance. On the other hand, multiple feature

vectors are extracted from an utterance. For example, from a 2.56 minutes

long utterance we can extract 17598 MFCCs in total if we extract one MFCC

from 30ms speech per 10ms. From a 10 seconds utterance we can extract

only 998 MFCCs. In order to minimize the computational expense, we need

to make one single vector from n feature vectors before applying fk-NN. We

can take averaged of n feature vectors or we can do polynomial expansion

of the averaged feature vector and make a single vector per utterance. We

can then apply fk-NN to select data for UBM training. After training UBM,

we can make acoustic forest by clustering Gaussian components of that UBM

applying different tree structures.

It is also possible to use acoustic forest in i-vector based ASVS. Structured

adaptation for JFA has been proposed in [36] and the same method can

be applied to other factor analysis models such as total variability models.

Accordingly, acoustic forest and fk-NN could be therefore combined.

6.2 Future Work

For the acoustic forest based system, we only gave a comparative figure of

relevance MAP and SMAP for short speech segments. In future work, we

plan to compare SMAP adaptation with other adaptation techniques, such

as eigenvoice modeling.

For fk-NN, future directions are many. It would be interesting to see

whether the performance of gender-dependent PLDA models can be im-

proved by selecting data from the opposite gender. Our proposed data se-

lection methods do not depend on any channel compensation techniques.

Therefore, it would be a good idea to explore whether they can benefit from

methods such as WCCN, NAP or LDA. We should also explore how much

training data is required for training an efficient PLDA model. Further de-

velopments of ik-NN, as well of schemes for adding discarded i-vectors from

the selected speakers seem to be promising directions. Also, the current

method uses the unique set of the selected i-vectors, and thus ignores the

number of times the i-vectors have been selected. Taking this information

into account could be interesting.
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We should also explore the effect of data selection by k-NN and fk-NN in

GMM-supervector space. Its success may help us in reducing training time of

the total variability matrix. However, in [6], it has been argued that as the

dimensionality increases, the distance to the nearest neighbor approaches

the distance to the farthest neighbour. This holds true for a broad range

of distributions and distance measures including cosine similarity measure

[109]. Therefore, both k-NN and fk-NN using the cosine similarity or cosine

distance may become ill-defined for high dimensional supervectors. There-

fore, we need to explore other distance metrics.
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