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i

Abstract

One of the fundamental challenges in speaker verification is to separate

characteristics of the speech signals that depend on the speaker’s identity

from characteristics that depend on other factors such as the speaker’s emo-

tions, the recording environment, or the transmission channel. This separa-

tion process is usually referred to as session or channel variability compen-

sation.

Over the last decade, complex probabilistic generative models based on

factor analysis have been shown to outperform other approaches for channel

variability compensation. The state-of-the-art such a model is probabilistic

linear discriminant analysis (PLDA). The PLDA parameters are usually op-

timized by generative training (GT) under the maximum likelihood (ML)

criterion. Despite the success of PLDA based systems it is clear that the as-

sumptions behind the PLDA model are inaccurate. This motivates the use of

discriminative training (DT) as an alternative or complement to GT. Indeed,

several studies have confirmed the effectiveness of DT for PLDA under cer-

tain conditions. However, many issues need to be addressed before PLDA

based speaker verification can take advantage of the full potential of DT.

The work in this thesis improves DT of PLDA modeling in three aspects.

First it proposes a technique for compensating the fact that the training

data used in DT of the PLDA model is statistically dependent. Second, it

proposes several constrained DT schemes in order to avoid the risk of over-

training. Third, it empirically evaluates several different loss functions (i.e.,

training objectives) as well as proposes a training strategy to deal with the

non-convexity of some of the loss functions.
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Chapter 1

Introduction

1.1 Background

Automatic speaker verification (ASV) refers to the process where a machine

judges whether a voice sample is spoken by a claimed identity or not. For

each speaker who should be verifiable by an ASV system, enrollment speech
data must be supplied. In a trial, authentication speech data and an identity

claim are supplied. The task of the ASV system is to compare the authen-

tication data with the enrollment data of the claimed identity and provide

a likelihood ratio (LLR) score for the hypotheses, the identity claim is true
(target trial) and the identity claim is false (non-target trial). A decision to

accept or reject the claim can then be made based on the LLR score, the

prior probability of a true claim, and the cost of false acceptance and false

rejection.

The main applications of ASV are access control, surveillance and foren-

sic applications. In access control, ASV is used to authorize access to a

resource such as a bank account or a building. In surveillance applications,

it is for example used for detecting a wanted criminal in a collection of tele-

phone recordings. In forensics, ASV is used for comparing a voice recording

from a crime scene with the voice of a suspect or a victim. ASV can be either

text-dependent or text-independent. In the former, the speakers are supposed

to speak a fixed phrase, whereas in the latter they can speak freely. For

access control, text-dependent ASV is usually employed due to its superior

performance over text-independent ASV. Commercial products offer error

rates less than 0.2% using three enrollment recordings and one authen-

1



Introduction 2

tication recording of three seconds each (Agnitio, 2015). In surveillance

and forensic applications, it is usually not possible to obtain enrollment and

authentication utterances with the same lexical content. Therefore, text-

independent ASV must be employed. In text-independent ASV, the error

rates are much less impressive than in text-dependent ASV, even for long

utterances. The challenges of text-independent ASV are the focus of most

speaker verification research these days, including the work in this thesis.

Research on text-independent ASV has also been much promoted by the Na-

tional institute of standards and statistics (NIST) by their series of speaker

recognition evaluations (SRE)s (e.g., NIST, 2006, 2008, 2010).

A typical ASV system involves the following steps:

1. Pre-processing of speech data: Voice activity detection and extrac-

tion of features.

2. Modeling/classification: Modeling of speaker and channel character-

istics, and generating raw score for a trial (the higher the score is, the

more likely is the trial a target trial).

3. Post-processing of scores: Normalization of score distributions and

improvements of the score quality, so called calibration.

All of the above mentioned components are important for accurate speaker

verification. The term channel refers broadly to characteristics in the speech

signal that are not related to the speaker identity, such as the speaker’s emo-

tional state, the recording environment and the transmission channel. The

process of separating speaker and channel characteristics in the speech sig-

nal is referred to as channel compensation and can be seen as the core task

of speaker verification. Most efforts for channel compensation are made

in the modeling/classification stage (e.g., Kenny et al., 2007) but channel

compensation can also be done in the pre-processing (feature) stage (e.g.,

Hasan and Hansen, 2013) or in the post-processing stage (e.g., Reynolds

et al., 2000). Regarding modeling, speaker verification is a complicated

problem. Although our final target is a binary decision, we have access to

multiple classes, i.e., speakers during the system development. Moreover,

we have two kinds of data for model building. First, training data which

is speech data from a large collection of speakers not involved in the trials.

Second, enrollment data for each speaker who should be verifiable by the

system. In most applications the enrollment data for each speaker is very
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limited (usually just one utterance) so it is important to utilize the train-

ing data as much as possible. For example, if an authentication utterance

of a target-trial is recorded with a different type of microphone than the

corresponding enrollment utterance, the claim might be rejected unless the

system has learned from the training data that the observed differences are

typical for microphone mismatch.

Over the last decade, complex probabilistic generative models based on

factor analysis have been shown to outperform other approaches for chan-

nel compensation. The first of them was Joint factor analysis (JFA) (Kenny,

2005; Kenny et al., 2007). More recently, probabilistic linear discriminant

analysis (PLDA) (Ioffe, 2006; Kenny, 2010), has become the state-of-the-

art model for channel compensation. Both JFA and PLDA assume additive

speaker and channel components modeled by Gaussian distributions. The

main difference between them lies in what kind of features they use. JFA

models the mean vectors of Gaussian mixture models from which speech

features are assumed to be generated whereas PLDA usually is applied to

so-called i-vectors (Dehak et al., 2009a) which are features that represents

whole utterances. JFA and PLDA are very effective also for small amounts

of enrollment data but requires on the other hand large amounts of training

data. Typically more than a thousand speakers with about 10 utterances

each on average are used for training. The JFA and PLDA parameters are

usually optimized by generative training (GT) under the maximum likeli-

hood (ML) criterion using the speaker IDs as classes.

In order to make the optimal decision (accept/reject), it is important that

the scores are accurate LLRs. For example, if a system on average gives

too large LLRs scores, the scores need to be reduced. Adjusting the scores

from the classifier to better serve as LLRs is known as calibration. Instead

of tuning the decision threshold, calibration adjusts the scores so that the

theoretically optimal threshold according to Bayes decision theory really will

be optimal. This procedure has several advantages compared to tuning the

threshold. Most importantly, it avoids overfitting of the decision threshold

to the development data. The most popular approach to calibration is to

apply a discriminatively trained (DT) affine transformation of the scores (AT-

Cal) (Brümmer, 2010). This method results in substantial improvements for

most ASV systems, including PLDA and JFA based ones and is a common

component in most state-of-the-art systems.
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The fact that AT-Cal improves the performance of a generative proba-

bilistic model such as PLDA is an indication that the assumptions made in

the model are not accurate. In fact, the standard pre-processing technique

for i-vectors clearly violates the assumptions of the PLDA model. Additional

mismatch between the model and the reality have been pointed out by, e.g.,

Bousquet et al. (2014). Whenever there is an mismatch between the model

and the reality, DT may improve the performance. AT-Cal is, however, a very

constrained DT scheme. In order to take full advantage of DT, it is prefer-

able apply it on the model itself rather than on its scores. Therefore, a DT

scheme that optimizes all the parameters of the PLDA LLR score function

(Scr-UC1) was proposed by Burget et al. (2011) and Cumani et al. (2011).

An important difference between this DT scheme and the previously very

popular discriminative framework, GMM-SVM, (Campbell et al., 2006), is

that PLDA treats the enrollment utterance and the authentication utterance

symmetrically. Given two i-vectors, the PLDA model provides a LLR score for

the hypotheses that the two i-vectors are from the same speaker and the two i-
vectors are from different speakers. In GMM-SVM systems on the other hand,

one model for each enrollment speaker is created, and an authentication

segment is then scored against the model of the claimed identity. GMM-

SVM systems therefore suffers severely from insufficient enrollment data.

As discussed above, PLDA systems suffers less from this problem. However,

DT of PLDA has several other problems.

1.2 Motivations and contributions

While GT of PLDA uses utterances as observations and the speaker IDs as

classes, DT uses utterance pairs as observations and same speaker or differ-
ent speaker as classes, i.e., it uses trials for training. The trials need to be

constructed from the training set. Ideally, we should use all possible pairs

of utterances that can be constructed from the training set. However, when

a training utterance (or just the same speaker) is used in more than one

trial, the trials will be statistically dependent. As a consequence, the aver-
age loss of the training trials that we use as training objective is no longer

the best estimate of the expected loss of a test trial, which is what we would
1UC refers to unconstrained.
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like to minimize. In order to compensate for this, we in this thesis, propose

to adjust the weights of the training trials in order to obtain the best linear
unbiased estimator (BLUE) of the expected loss of a test trial (Rohdin et al.,

2016). This means that we can make better use of available training data.

In general, DT more easily overfits to the training data than GT (Ng and

Jordan, 2002) so applying DT on a model that already requires a lot of data

such as PLDA, might be risky. This has been confirmed in Cumani and Laface

(2014) where Scr-UC was worse than GT as long as the number of training

speakers were less than around 1600. Scr-UC easily overfits to the train-

ing data because it estimates all the PLDA parameters by DT. AT-Cal on the

other hand, estimates only two parameters by DT so the risk of overfitting

is small. In order to find the constraints that best avoid overfitting with-

out constraining the model too much, we in this thesis, propose three dis-

criminative training schemes (Rohdin et al., 2016) that are less constrained

than Src-UC but more flexible than AT-Cal. The first is a transformation of

the PLDA LLR score function having four parameters to be estimated. The

second is a scaling of each element in the i-vectors. The third is a training

scheme that, like Src-UC, estimates all the parameters of the PLDA LLR score

function but preserves some properties of PLDA that are removed by Scr-UC

(Rohdin et al., 2014a).

In DT it is desirable that the loss function used in the training objec-

tive corresponds to the relevant evaluation criteria of the application. In

speaker verification applications, the evaluation criteria is typically given by

one cost for false acceptance and one cost for false rejection, together with

a prior probability that the claimed identity is true. The cost parameters and

the prior naturally depends on the application. The standard loss function

(the logistic regression loss) focuses on a broad range of cost parameters.

Brümmer and Doddington (2013) proposed a framework for tailoring the

loss function to a specific range of cost parameters and applied it to AT-Cal.

In this thesis, we apply such application-specific loss functions to less con-

strained DT schemes (Rohdin et al., 2014b). This exploration is important

because the merit of application-specific loss functions for less constrained

DT schemes than AT-Cal is not clear. Moreover, we investigate how to deal

with the non-convexity of the loss functions since this problem can be ex-

pected to be larger for models with more parameters.
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1.3 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents the

technical background of speaker verification. Chapter 3 describes previous

works on DT with a focus on PLDA. Chapter 4 describes our baseline system.

Chapter 5 presents the proposed method for compensating for statistically

dependent training data. Chapter 6 presents the proposed constrained DT

schemes. Chapter 7 presents our evaluation of application specific loss func-

tions. Chapter 8 presents experiments on combining our proposed methods.

Finally, Chapter 9 concludes this thesis and suggests areas of future works.



Chapter 2

Speaker verification

In this chapter we give an overview of automatic speaker verification (ASV).

We start by defining the task of an ASV system in Section 2.1. In Section 2.2,

we then introduce the standard evaluation metrics. In Section 2.3, we de-

scribe two post-processing steps of the scores, calibration and normalization.

In section 2.4, we give a short description of the pre-processing steps of the

speech data. Finally, we describe the standard statistical modeling tech-

niques for text-independent ASV with Gaussian mixture models (GMM)s in

Section 2.5 and with probabilistic linear discriminant analysis (PLDA) in

Section 2.6. Among the topics, the most import for understanding the work

in this thesis are, calibration and the evaluation metrics, as these topics are

closely related to discriminative training, and PLDA as we are work with

discriminative training of different variants of this model.

2.1 Task description

Speaker verification is the process of judging whether a voice sample be-

longs to a claimed identity or not. The process is called automatic speaker

verification if it is done solely by a machine, i.e., without human involve-

ment. In this thesis we are only concerned with automatic speaker verifica-

tion and and we refer to it simply as speaker verification.

For each speaker who should be verifiable by a speaker verification sys-

tem, enrollment speech data must be supplied. In a trial, authentication
speech data and an identity claim are supplied. The task of the system is

to compare the authentication speech data with the enrollment speech data

7
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and provide a likelihood ratio (LLR) score for the hypotheses, the identity
claim is true (target trial) and the identity claim is false (non-target trial).

We denote the enrollment and the authentication speech data of a trial

h as xh. Further, we denote the prior probability for a target trial, P(target),

as Ptar, the posterior probability as P(target|xh) = qh, and the log-likelihood

ratio (LLR) as

sh = log
P(xh|target)

P(xh|non-target)
. (2.1)

In speaker verification, we want the system to output LLRs rather than pos-

terior probabilities. This is because

1. The operator of the system should be able to set the prior, Ptar.

2. Speaker verification is a binary classification problem.

The first point means that the prior probability of a target trial in the training

data, i.e., the ratio of target trials, should not be included in the model.

Together with the second point, it means that it is enough if the system

outputs the LLR score. By setting Ptar, the operator can obtain qh as

qh =
(

1 + exp
(
− sh −

Ptar

1− Ptar

))−1
. (2.2)

The data set terminology in speaker verification experiments is some-

times confusing. In this thesis we define the sets as follows:

• Training set Used for building speaker independent models.

• Evaluation set Used for evaluation. Does not contain any data from

the training set. It has two subsets:

– Enrollment set Used to enroll speakers to the system.

– Authentication set Used for authentication.

• Development set Used for tuning parameters etc. Does not contain

any data from the evaluation set. Ideally (and usually) does not con-

tain any data from the training set. It has two subsets:

– Enrollment set Used to enroll speakers to the system.

– Authentication set Used for authentication.
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2.2 Evaluation metrics

In this subsection we describe the evaluation metrics used in this thesis.

These evaluation metrics are the most common to use in speaker verifica-

tion. Understanding the evaluation metrics is important for understanding

the training objectives used in discriminative training so we give a quite

detailed presentation on this topic.

2.2.1 Detection cost function

When making a decision based on the score from a speaker verification sys-

tem, it is typically desired to minimize the expected cost of the decision.

This is reflected in the detection cost function (DCF) used in the NIST eval-

uations. When the test and enrollment utterances in a trial are from the

same speaker, we refer to the trial as a target trial, otherwise we refer to it

as a non-target trial. The DCF measures the cost for an application with a

prior probability of a target trial, Ptar, and the costs CFR and CFA for false

rejection (FR) and false acceptance (FA) respectively. We refer to this set

of parameters as an operating point (OP). Let PFR = P (error|target) and

PFA = P (error|non-target) be the empirical probabilities for FR and FA, re-

spectively, estimated in the evaluation database. The DCF is then given by

DCF = PtarCFRPFR + (1− Ptar)CFAPFA, (2.3)

For the purpose of ranking systems, a scaling of the DCF does not make any

difference. Therefore, for system optimization it is equivalent to use

DCF′ = PeffPFR + (1− Peff)PFA, (2.4)

where

Peff =
PtarCFR

PtarCFR + (1− Ptar)CFA
, (2.5)

is known as the effective prior. In order to minimize the DCF, the decision

threshold for the LLR score should be set to

τ = −
(

log
Ptar

1− Ptar
+ log

CFR

CFA

)
= − log

Peff

1− Peff
. (2.6)

Therefore, if the speaker verification system outputs scores that can be in-

terpreted as LLRs, the threshold can easily be obtained for any Peff. The cost
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obtained by using τ as the decision threshold is called the actual detection
cost (actDCF) and the cost obtained by the optimal threshold for the eval-

uation set, is called the minimum detection cost (minDCF). If actDCF and

minDCF are similar, we say that the LLR scores are well calibrated for the

particular Peff. Obviously, for an unknown test set, we cannot know the op-

timal threshold so minDCF is a too optimistic evaluation metric. The actDCF

is usually much higher than minDCF but can be improved by calibrating the

scores. Compared to tuning the decision threshold, calibrating the scores

has many advantages which are discussed in Section 2.3.1.

A few points are worth noting with the DCF. First, the DCF assigns the

cost zero for correct decisions but in real applications, we may also have

non-zero costs (typically negative costs, i.e., rewards) for correct decisions.

For the purpose of ranking systems, this is, however, not a limitation. Let us

denote the costs for correct decisions CTA and CTR where TA and TR stands

for True acceptance and False rejection, respectively. If we add an offset to the

costs of the target trials (CFR and CTA) and another offset to the non-target

trials (CFA and CTR), the ranking of systems will not be affected (because

these offsets adds the same cost to all systems regardless of their decisions).

For system optimization, we can therefore select these offsets so that the

costs for correct decisions are zero. Thus, for any binary cost function with

parameters CFR, CTA, CFA, CTR and Ptar, there is an equivalent DCF with cost

equal to 1 for wrong decision and the prior probability Peff for a target trial.

Here, equivalent means that the systems will be ranked in the same order by

the equivalent DCF and the decision threshold will be the same. The actual

values of the original binary cost function and the equivalent DCF, will be

different, so any physical interpretation of the original binary cost function,

e.g., money, is lost.

Second, minimizing the expected cost of a single trial may not be the

main target if a set of trials is considered. In some scenarios, minimizing

the risk for a very high total cost of all the trials might be more important

then minimizing the expected total cost. In such cases decisions should

better be made jointly for all trials.
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2.2.2 Application independent cost, ĈLLR

The evaluation parameters, Ptar, CFR and CFA depends on the application

and therefore a DCF can be said to be an application dependent evaluation

metric. In Brümmer and du Preez (2006), a logarithmic cost function was

proposed as an application independent evaluation metric. It is given by

Ĉllr =
1

2 log 2

∑
t=−1,1

1

Nt

∑
h:th=t

log(1 + exp(−thsh)), (2.7)

where th and sh are the label (1 for target and -1 for non-target) and score

for trial h, respectively.

Interpretations

In Brümmer and du Preez (2006), several interpretations of Ĉllr that justifies

its appellation application independent were given:

• As an average of actDCFs: With Ptar = 0.5, CFA = 1/(1 − ζ) and

CFR = 1/ζ all DCFs can be parameterized by ζ which ranges from 0 to

1 and gives the decision threshold for the posterior, q = P(target|X).1

The cost for a target trial averaged over all values of ζ is∫ 1

q

1

ζ
dζ = − log(q)

= log
(

1 + exp
(
− s+ log

1− Ptar

Ptar︸ ︷︷ ︸
=0

))
, (2.8)

since the trial is falsely rejected if q < ζ. Similarly, the cost for a

non-target trial averaged over all ζ is∫ q

0

1

1− ζ
dζ = − log(1− q) = log

(
1 + exp(s)

)
, (2.9)

since the trial is falsely accepted if q > ζ. Thus Ĉllr is proportional to

an average of actDCF at all possible OPs.
1CFA = 1/(1 − ζ) and CFR = 1/ζ is not the only parameterization that results in the

threshold ζ for the posterior. The main motivation for this particular parameterization is to
make the cost function unbounded. This is desired in order to reflect that there is no bound
on the possible values of CFA and CFR in applications. See Brümmer and du Preez (2006) for
details.
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• Conditional log-likelihood: If the target and non-target trials are bal-

anced, it is proportional to the negative conditional log-likelihood of

the data. Since using that Ptar = 0.5, we have − log
∏
h P(th|sh) =∑

h log(1− exp(−thsh)) ∝ Ĉllr.

• Information theoretic interpretation: Let Ĉmin
llr = Ĉllr − Ĉcal

llr , where

Ĉcal
llr is the cost due to bad calibration (calibration is explained in Sec-

tion 2.3.1). Then the empirical mutual information of a label and a

score, I(s, t) is

I(s, t) = 1− Ĉmin
llr = 1− Ĉllr + Ĉcal

llr . (2.10)

Ĉcal
llr is the KL-divergence of the posteriors qh, from posteriors with

perfect calibration, q̊h. In other words, Ĉcal
llr , is the information lost by

using qh instead of q̊h.

Minimum Ĉllr

Here we give a more detailed explanation of Ĉmin
llr . As mentioned in Sec-

tion 2.2.1, the raw scores from a speaker verification system usually have

bad calibration, i.e., actDCF is larger than minDCF. Since Ĉllr is an aver-

age of actDCF at all possible OPs, it should also be affected by this issue.

Intuitively, one could imagine to somehow using an average of minDCF in-

stead of actDCF. This would tell us how good Ĉllr would be if the calibration

had been perfect at all OPs. It turns out that this can elegantly be achieved

by means of the pool of adjacent violators PAV algorithm (Brümmer, 2010).

If the PAV algorithm is applied to a set of scores, actDCF will be equal to

minDCF for these scores for any OP. Calculating Ĉmin
llr on the transformed

scores gives Ĉmin
llr introduced above.

2.2.3 Equal error rate

Equal error rate (EER) is together with DCF probably the most common

evaluation metric in speaker verification. It is defined as the error rate when

the threshold is set so that PFR = PFA. This evaluation metric is less con-

nected to applications than DCF and Ĉllr but we report results for it due to

its popularity and ease of interpretation.
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2.3 Post-processing of scores

Most speaker verification systems can gain substantial improvements by var-

ious post-processing steps of their scores. Two common processes are score
calibration, where the scores are transformed to better serve as likelihood

ratios, and score normalization where the score distributions of the enroll-

ment speakers and/or test segments are normalized.

2.3.1 Score calibration

The concept of calibration have already been briefly mentioned in Sections

2.2.1 and 2.2.2 where we said that minimum versions of actDCF and Ĉllr is

obtained when the scores are calibrated. In this section we will explain the

meaning of score calibration more precisely.

Motivation

Score calibration is the process of converting the raw scores from a classifier

so that they better serve as posterior probabilities, likelihoods or likelihood

ratios. The advantage of having calibrated scores it that their values have

an interpretation and that probabilistic rules such Bayes theorem applies to

them. For example, with calibrated LLR scores, the theoretically optimal

decision threshold, τ , will indeed be optimal so that the actDCF will be (ap-

proximately) equal to the minDCF. Score calibration has obtained a lot of

attention in the speaker verification community over the last years. The lat-

est NIST SREs have required the participants to submit real-valued scores

instead of hard decisions and and the scores have been used as likelihood

ratios in the evaluation, e.g., by the checking actDCF. However, even for

systems that are designed to output LLR scores such a PLDA, the actDCF

and the minDCF usually differs substantially, i.e., the scores have bad cali-
bration This may be due to incorrect model assumptions and/or inadequate

parameter estimation.

In order to explanation the importance of calibration, we here give an ex-

ample with posterior probabilities since these are more intuitive than LLRs.

Consider a speaker verification system that outputs raw scores, 0 ≤ q ≤ 1,

where the more the system believes a trial is a target trial, the higher value

of q it outputs. However, The fact that this score is between 0 and 1 is
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not enough for it serve well as the posterior probability for a target trial.

To clarify this, assume that we test the system N times and in N0.7 cases,

we obtain 0.69 < q ≤ 0.71. If the accuracy for these N0.7 cases is around

0.7, we can say that the system is well calibrated for this value of the score

(the OP). That is, the scores qh can serve well as the posterior probabil-

ity for target trial. If, instead, the accuracy for these N0.7 cases had been

0.9, the calibration would have been bad. As mentioned above, the prob-

lem with badly calibrated scores is that we do not know how to interpret

them and therefore we cannot make good use them. As an example, con-

sider an application were CFR = 4CFA. In this case, the optimal decision is

to choose accept if P(target) > 0.8, otherwise reject. Therefore we would

make the wrong decision if the system tells us P(target) = 0.7 instead of

P(target) = 0.9.

The LLR, sh and the posterior, qh, are related as

sh = log
qh

1− qh
− log

Ptar

1− Ptar
. (2.11)

Therefore, if the prior is known, obtaining calibrated posteriors is, in princi-

ple, equivalent to obtaining calibrated LLRs.

Calibration techniques and proper scoring rules

Both actDCF and Ĉllr are so called proper scoring rules. These are cost func-

tions that are sensitive to calibration. Formally, a (cost) function C(q, t) are

said to be a binary proper scoring rule if (Buja et al., 2005; Brümmer, 2010)〈
C(q, t)

〉
q
≤
〈
C(q′, t)〉q, (2.12)

where q and q′ are two posterior probabilities and 〈·〉q denotes the expec-

tation using P(t = 1) = q. In other words, if a system whenever it outputs

probability q′ actually has the probability q of succeeding, it will obtain a

higher cost than if it had output q. Therefore proper scoring rules penalizes

badly calibrated probability estimates. To see that they encourages good

discriminiation, i.e., target trials should obtain a high value of q and non-

target trials a low, assume that at a classifier have perfect calibration, i.e.,

P(tar|q) = q. Then, if we have N trials for which the classifier assigns prob-

ability q, (approximately) Nq of these trials will be a target trial. If we then

improve the classifier so that it among the N trials, now can distinguish
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N1 trials for which it assigns q1, and N2 trials for which it assigns q2
2 (still

having perfect calibration), the new cost is

N1

〈
C(q1, t)

〉
q1

+N2

〈
C(q2, t)

〉
q2
≤ N1

〈
C(q, t)

〉
q1

+N2

〈
C(q, t)

〉
q2

= N1

[
q1C(q, t = 1) + (1− q1)C(q, t = −1)

]
+N2

[
q2C(q, t = 1) + (1− q2)C(q, t = −1)

]
= (N1 +N2)

[
qC(q, t = 1) + (1− q)C(q, t = −1)

]
= N

〈
C(q, t)

〉
q
, (2.13)

which shows that proper scoring rules encourages not only good calibration

but also good discrimination.

The standard approach to score calibration in speaker verification ap-

plies a parametric transformation of the score, estimated by DT with proper

scoring rules as loss functions (Brümmer et al., 2007; Brümmer, 2010;

Brümmer and Doddington, 2013). This approach is described in Section

3 together with other similar techniques for DT in speaker verification.

Relation to tuning the decision threshold

An obvious way to improve DCF is to tune the decision threshold on a de-

velopment set. This may help improving DCF but does solve the problem

of uninterpretable scores. Moreover, this procedure easily overfits to the

development set, i.e, the obtained threshold is far from optimal on the test

test. Obviously, estimating a threshold for a particular OP is equivalent to

estimating an optimal offset of the scores for this OP. Essentially, the PAV

algorithm (discussed in Section 2.2.2) does this for all OPs, subject to the

constraint that the score transformation should be monotonically increas-

ing. It is therefore a non-parametric score calibration approach. While this

approach gives perfect calibration for the development set, the calibration

for other (test) sets is usually not nearly as good, i.e., the method suffers

from overfitting. For the approach mentioned above based on a parametric

transformations, overfitting is a smaller problem as long as the number of

parameters are not too many.
2In the best case, we improve the classifier so that theNq target-trials are assigned q1 = 1

and the N(1 − q) non-target trials are assigned q2 = 0. Notice that Nq = N1q1 +N2q2 and
N(1 − q) = N1(1 − q1) +N2(1 − q2).
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2.3.2 Score normalization

Score normalization is similar to score calibration in that it also applies an

affine transformation to the scores. But in score normalization this transfor-

mation depending on the enrollment utterances and/or the test utterance.

For this reason, calibration insensitive evaluation metrics such as minDCF

may improve. In fact, score normalization is not explicitly designed tot im-

prove calibration but may often do so. For systems based on i-vector +

PLDA, it has been shown that score normalization is not effective as long

as the i-vectors undergoes certain pre-processing (whitening and length-

normalization see Section 2.6.1) (Garcia-Romero and Espy-Wilson, 2011).

Zero-normalization

In zero-normalization (Z-norm) (Li and Porter, 1988) applies a normaliza-

tion that is specific for each enrollment speaker. In order to do find the

normalization parameters, we need a set of utterances from speakers who

are not in the the enrollment set. We then score each enrollment speaker

against each such normalization utterance. Let sij be the score for enroll-

ment speaker i and normalization utterance j, and let

µi =
1

N

N∑
j=1

sij (2.14)

and

σ2
i =

1

N

N∑
j=1

(sij − µij)2, (2.15)

where N is the number of normalization utterances. Then the Z-norm score

for speaker i against test utterance j is given by,

szij =
sij − µi
σi

. (2.16)

That is, affine transformation that is specific to each enrollment utterance.

In other words, the aim of z-norm is to ensure that the non-target scores

of each enrollment utterance have mean 0 and variance 1. Whether this

is desirable depends on the properties of the original (raw) scores. If the

distribution of the raw scores are different among the different enrollment
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speaker due the speakers having different calibration error, then this pro-

cedure can be expected to be beneficial. But if differences in score distri-

butions arise because some speakers really are more difficult to recognize

than others, then this should be reflected in theirs scores and this kind of

normalization can be harmful.

Test-normalization

Instead of ensure that the non-target scores of each enrollment speaker has

mean 0 and variance 1, one can do the same for the test segments. This

procedure is called Test-normalization (T-norm) (Auckenthaler et al., 2000).

Naturally, Z-norm and T-norm can be combined but notice that the order in

which they are applied makes a difference. Thus this procedure is called ZT-

norm or TZ-norm depending on which normalization that is applied first.

Symmetric-normalization

While most speaker verification systems treats then enrollment utterance

and test utterance differently, some recent methods that uses i-vectors as

features (including PLDA) directly aims to answer whether two given i-

vectors are from the same speaker or not with caring about which one ut-

terance is from the enrollment and which utterance is from the test phase.

With such symmetry between the two utterances, it would make very little

sense to use a normalization technique that is not symmetric with respect

to the two utterances. For this reason, a symmetric normalization (S-norm)

technique was proposed in (Kenny, 2010). Let µi, µj , σi and σj for two

utterances, i and j, be calculated as in Eqs (2.14) and (2.15). Then the

S-norm score for these two utterances is given by

ssij =
sij − µi
σi

+
sij − µj
σj

. (2.17)

2.4 Pre-processing of speech data

2.4.1 Features

The choice of features in speaker verification follows similar considerations

as in other pattern recognition problems. Specifically we would like features

that (Kinnunen and Li, 2010)
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• have large between speaker variability compared to the within speaker

variability

• are robust against noise, speakers’ emotions and other channel effects

• are frequent and easy to calculate.

Based on their physical interpretation, speech features can be categorized

as (Kinnunen and Li, 2010)

• Short-term spectral: Captures spectral content in a short frame (typi-

cally around 30ms)

• Voice-source: For example fundamental frequency

• Spectro-temporal: Temporal behavior of spectral features

• Prosodic: Pitch contour and rhythm

• High-level: Word patterns

Short-term spectral features are the most common features to use in speaker

verification systems. In this thesis we use one kind of such features, namely

Perceptual linear prediction (PLP) features (Hermansky, 1990), along with

log-energy. We further applied feature warping (Pelecanos and Sridharan,

2001) which is a normalization technique for speech enhancement. Finally,

we the appended the first-order and second-order feature derivatives (Furui,

1981). Feature derivatives is one example of spectro-temporal features.

2.4.2 Voice activity detection

Like most speech processing applications, accurate speaker verification re-

quires that only regions in the audio signal that contains speech are used. A

simple approach is to use energy for voice activity detection (VAD). However,

the energy of the signal can be high also in regions without speech due to

noise. An powerful method for noise reduction of noise that is fairly station-

ary is spectral subtraction (Boll, 1979) which subtract the estimated noise

in the frequency domain. Applying spectral subtraction before energy based

VAD, has been proven effective on the NIST data (Mak and Yu, 2010). For

this purpose, it does not matter much if the signal is distorted so spectral

subtraction can be applied more aggressively than in speech enhancement

applications.
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2.5 Gaussian mixture models

Over the last two decades Gaussian mixture models (GMMs) have been an

integral part in text-independent speaker recognition. Further back in time,

simpler statistical classifiers, including single Gaussians, had been applied.

Let N (f |µ,Σ) denote the probability density function (PDF) for a multi-

variate Gaussian distribution. The PDF of a (multivariate) Gaussian mixture

model is then given by

P(f) =
C∑
c=1

πcN (f |µc,Σc), (2.18)

where C is the number of Gaussian components in the mixture, µc and Σc

are the mean the covariance of the c-th Gaussian component respectively,

and πc are the so called mixing coefficients. In order for the GMM probability

density to integrate to 1, it is necessary that

K∑
c=1

πc = 1. (2.19)

In order to guarantee that P (f) is positive every where, the mixing coeffi-

cients are required to be positive. Together with the constraint in Eq (2.19)

this results in (Bishop, 2006, ch. 2.3.9)

0 ≤ πk ≤ 1. (2.20)

Gaussian mixture models can model more complex, multimodal, probabil-

ity densities than single Gaussians. When applied to speech features, they

have the intuitive interpretation that the single Gaussians represent differ-

ent acoustic classes corresponding to specific sounds. Such an acoustic class

could for example be a phoneme3 but in text-independent speaker recogni-

tion we do not need to explicitly specify which kind of sound each Gaussian

represents. This is in contrast to text-dependent speaker recognition as well

speech recognition where a GMM models a part of a specific phoneme or

word. In text-independent speaker recognition, we assume that the speech

features from each frame are independently generated from a GMM accord-

ing to Eq. (2.18). The number of Gaussians, C, is usually in the range

500 to 2000 which is substantially smaller than the number of Gaussians
3In fact, a phoneme needs more than one Gaussian to be modeled well.
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used in a speech recognition system. Given N observations of the fea-

ture vector, f1 . . .fN , the parameters of a GMM with K Gaussian compo-

nents, θGMM = {µ1 . . . ,µK ,Σ1 . . . ,ΣK , π1 . . . , πK}, can be estimated by

the (generative) Maximum likelihood criterion, which under the indepen-

dence assumption becomes

θ̂GMM = arg max
θGMM

N∏
i=1

P(fi|θGMM). (2.21)

This maximum can be found with the EM algorithm (Dempster et al., 1977).

See, e.g., (Bishop, 2006, ch. 9.2.2) for details. It should be noted that the

likelihood for a GMM can go to infinity if one of the Gaussian components

obtains a mean equal to one of the observations and a covariance matrix

whose elements goes to zero. In order to avoid this, the elements of the

covariance matrix are usually floored.

For speaker recognition, GMMs were initially applied to speaker identi-

fication (Rose and Reynolds, 1990; Reynolds and Rose, 1995). In these sys-

tems, a speaker specific GMM, θsGMM, is estimated for each enrolled speaker

s. Then, given the features from an utterance, f1 . . .fn, the speaker with

the highest probability is selected, i.e.,

ŝ = arg max
s∈S

P(θsGMM|f1 . . .fn)

= arg max
s∈S

P(f1 . . .fn|θsGMM)P(s)

P(f1 . . .fn)

= arg max
s∈S

n∏
i=1

P(fi|θsGMM), (2.22)

where S is the set of enrolled speakers and assuming equal prior P(s) for

each speaker.

2.5.1 GMM-UBM

Despite the fact that speaker verification is a binary classification task, it is

actually a more complex problem than speaker identification. This is be-

cause the likelihood for the non-target hypothesis, the authentication sut-
terance is spoken by another person is hard to estimate. One approach is to

estimate the likelihood P (f1 . . .fn|H0) by some function, e.g., the average,

of the likelihoods from a set of background speakers (Reynolds, 1995). A
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second approach is to create one model that represents all the speakers that

can be expected in the application (except the target speaker) (Reynolds,

1997; Reynolds et al., 2000). Such a model is referred to a Universal back-

ground model (UBM). The UBM approach has been shown to outperform

the first approach (Reynolds, 1997).

Adaptation

In order to reliably estimate the parameters of a complex probability distri-

bution such as a GMM by ML, large amounts of data is needed. However,

in speaker recognition applications, the available enrollment data is usually

only between a few seconds and a few minutes which is far from sufficient.

A solution to this problem is to, instead, use the data to adapt the UBM to

the speaker. In other words, when estimating the speaker dependent GMM,

some constraints that prevents it from being too different from the UBM are

imposed.

The first such adaptation technique was maximum a posteriori (MAP)

adaptation which was originally proposed for speech recognition in Gauvain

and Lee (1994) and applied to speaker verification in (Reynolds, 1997).

This approach relies on the Bayesian framework and uses parameters of

the UBM be to design a prior probability distribution for the parameters of

the speaker dependent GMM which then are estimated by the maximum a

posteriori (MAP) criterion:

θ̂GMM = arg max
θGMM

P(f1 . . .fN |θ)P(θGMM) (2.23)

= arg max
θGMM

N∏
i=1

P(fi|θGMM)P(θGMM), (2.24)

where P(θGMM) is the prior probability for the UBM parameters. For speaker

verification, it has been shown that adapting other parameters than the

mean vectors of the GMM is not helpful (Reynolds et al., 2000). Let the

mean vectorsµc be of the GMM be collected in a vectorµGMM = [µT1 . . .µ
T
C ]T .

Such a vector is known as the supervector. When the variance is fixed, the

conjugate prior for a Gaussian likelihood is also a Gaussian distribution. By
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choosing the prior,

P(µGMM) = N (µUBM,
1

τ
Σ), Σ =


Σ1

. . .

ΣC

 , (2.25)

we will get a particularly easy formula for MAP adaptation which for com-

ponent c is given by

µ̂
(c)
MAP =

γ(c)µ̂
(c)
ML + τµ

(c)
UBM

γ(c) + τ
, (2.26)

where µ̂(c)
ML is the ML estimate for the adaptation data, µ(c)

UBM and γ(c) is the

occupancy count for component c. The parameter τ is called the relevance
factor and is usually tuned on a development set.

2.5.2 GMM-SVM

As explained in Subsection 2.2, the goal of a speaker verification system

is to provide a likelihood ratio for the target and non-target hypotheses

given the enrollment and authentication speech, x. Therefore, if we can

correctly estimate P (x|target) and P (x|non-target), there is nothing more

to do. We cannot achieve better verification performance in any other way

than to use the likelihood ratio. However, in order for the likelihoods to

be correctly estimated, the model assumption must be correct (about both

speaker and channel effects) and the model parameters must be correctly

estimated. Neither of these criteria are fulfilled in reality. As an alternative

to generative classifiers such as GMMs, it can therefore be worth examine

discriminative classifiers, i.e., classifiers that directly aims to discriminate

between the classes of interest.

One of the most successful discriminative classifiers, is support vector

machines (SVM) (Vapnik, 1995). Given a set of feature vectors and a cor-

responding set of binary labels an SVM finds the hyperplane that best sep-

arates the two classes. In testing, features are simply classified based on

which side on the hyperplane they are. For a concise explanation of SVMs,

see Bishop (2006) and for a thorough tutorial see (Burges, 1998). An im-

portant property of SVMs is that they can be formulated in a way so that

they only depend on the feature vectors in terms of dot products. During
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training they utilizes the dot product of training pairs, and in testing the

dot product of the test vector and a subset of the training vectors (the so

called support vectors). Via the so called kernel trick, the dot product can be

replaced with a suitable kernel. The kernel should be a suitable measure of

similarity.

The difficulty in using SVMs in speaker recognition is to find a feature

that represents whole utterances, which may be of different length, in way

that captures speaker characteristics well. Or equivalently, to find a ker-

nel that measures speaker similarity between utterances well. Kernels that

compares sequences of features, such a features from each frame of a speech

signal, are called sequence kernels. The first example of such a kernel was

the Fisher kernel proposed in (Jaakkola and Haussler, 1998). For speaker

verification several sequence kernels based on GMMS have been explored

(Wan and Renals, 2005; Campbell et al., 2006). The most successful of them

is the GMM supervector linear kernel proposed by Campbell et al. (2006)

given by

K(utti, uttj) =
C∑
c=1

(√
πcΣ

1/2
c µ̂

(c)
MAP

)T (√
πcΣ

1/2
c µ̂

(c)
MAP

)
(2.27)

2.5.3 Subspace based methods

Although relevance MAP adaptation is more robust to data insufficiency

than ML estimation, it is still not particularly effective when the amount of

adaptation data is very small i.e., a couple of seconds. In such case, the oc-

cupancy counts for many Gaussians will be very small (or even zero if hard

counts are used). As can be seen in Eq (2.28), these Gaussians will then

remain almost unchanged from the UBM. To overcome this, several adapta-

tion methods that ties the Gaussians together during the adaptation phase

have been proposed. In this way, even if a Gaussian has no counts in the

adaptation data (or small soft counts) it can be adjusted based on how other

Gaussians were adjusted. This can be done by constrained updates of the SI

model estimated by ML (Leggetter and Woodland, 1995; Kuhn et al., 1998),

or by using the Bayesian framework with a priors that enforce correlations

between the Gaussian components (Zavaliagkos et al., 1995; Shinoda and

Lee, 2001).

The ideas introduced in Zavaliagkos et al. (1995) and Kuhn et al. (1998)
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can be said to have laid the ground for today’s i-vector systems. Zavaliagkos

et al. (1995) proposed to replace Σ in Eq (2.25) with full a covariance ma-

trix. In other words, the covariance between the elements of the means

of all Gaussian components are taken into account. This method is known

as extended MAP (EMAP). A closed form solution for the MAP estimate is

available (see Section 2.5.3). The paper did not detail how to estimate Σ.

Kuhn et al. (1998) proposed to reduce the dimension of the speaker

dependent supervectors by PCA, i.e., finding the eigenvectors of Σ. The re-

sulting low-dimensional vectors are referred to as eigenvoices. Let the eigen-

voices corresponding to the n largest eigenvalues of Σ be the columns in a

matrix V . The adapted supervector is then given by

µ̂EV = µUBM + V y, (2.28)

where y contains the coefficients for each eigenvoice and are to be estimated

in the adaptation. By using only a few eigenvoices, over-fitting to the adap-

tation data can be avoided. Kuhn et al. (1998) proposed two methods to

estimate y. The first is to simply estimate µ by ML without any constraints

and then project it, i.e.,

ŷproj = VT (µ̂ML − µUBM) . (2.29)

The second method was to estimate y by ML. It was found that ML estima-

tion outperformed projection in speech recognition.

Eigenvoice MAP

A major problem with the EMAP and the eigenvoice approach to adaptation

is how to estimate Σ. In order to estimate it by sample covariance, we need

a large number of speaker dependent supervectors. Usually we do not have

enough data for each speaker to estimate them reliably. This leads to a catch

22 situation where we need the speaker dependent supervectors in order to

estimate Σ but where we also need Σ in order to estimate the supervectors.

Moreover, the eigenvoice approach lacks the nice asymptotic properties that

MAP adaptation has. The adapted model is restricted to rest in the subspace

spanned by the n eigenvoices and will therefore never approach the ML so-

lution when the amount of adaptation data increases. Also, this approach

does not take the size of the eigenvalues of Σ into account. The eigenvoices
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corresponding to the n largest eigenvalues utilized equally, whereas the re-

maining eigenvoices are completely ignored.

An elegant solution to these problems was proposed by Kenny et al.

(2002, 2005). His approach extends the eigenvoice method in two ways.

First, it estimates y by MAP instead of by ML. Therefore it is referred to

as eigenvoice MAP. It is assumed that the elements of y are independent

and that each of them follows a standard normal distribution. This means

that the approach is equivalent to using Σ = V V T in EMAP. The length of

the eigenvoices are different which means that contrary to the approach by

Kuhn et al. (1998), they have different importance. The approach by Kuhn

et al. (1998) can be seen as an extreme case of this method where the length

of the discarded eigenvoices are zero and the length of the kept eigenvoices

is going to infinity. In eigenvoice MAP, the lengths of the eigenvoices are

estimated in training. In this way there is no need to reduce the number of

eigenvoices (although they are limited by the number of training speakers).

The second extension is that it estimates the training supervectors and V

jointly. Joint estimate was also suggested in Nguyen et al. (1999). The train-

ing procedure in Kenny et al. (2005) defines the likelihood by by marginal-

izing over the prior y ∼ N (y|0, I). The eigenvoices, V is then estimated by

by ML, i.e.,

V̂ = arg max
V

∏
s

∫
P (F

(s)
adp|y)N (y|0, I)dy

= arg max
V

∑
s

log

∫
P (F

(s)
adp|y)N (y|0, I)dy, (2.30)

where X(s)
adp is the adaptation data for speaker s. A local optimum can be

found by the EM-algorithm, see Kenny et al. (2005) for details.

Joint factor analysis

The number of eigenvoices in eigenvoice MAP is limited by the number of

speakers in the training set which is usually smaller than the dimension of

the supervector. In order to obtain the asymptotic properties of standard

MAP adaptation one can add an additional term to the model:

µ̂VD = µUBM + V y +Dz, (2.31)
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where the elements of z follows the standard normal distribution and D is

diagonal. Notice that if V = 0, this results in the standard MAP adaptation.

The various adaptation methods described above were initially devel-

oped for speech recognition. In speech recognition we want to adapt the

model to fit the utterance of interest but it is irrelevant whether the adap-

tation compensates for the speaker effect or for channel effects in the ut-

terance. In speaker verification on the other hand, it is crucial to exclude

channel effects at some stage in the verification process. Joint factor analy-

sis (JFA) (Kenny, 2005; Kenny et al., 2007) is an extension of the model in

Eq (2.31) by letting the terms V y andDz be responsible for speaker effects

and adding a third term, Ux, that is responsible for channel effects. The

model is given by

µ̂JFAse = µUBM + V ys +Uxse +Dzs, (2.32)

where the index s indicates speaker and the index e indicates session. Thus

the channel effects is assumed to be unique for each session of speaker s

and given by V y. Notice that according to this model, the between-speaker

covariance is V V T +DDT and the within-speaker covariance is UUT . For

details of training algorithms, see Kenny (2005); Kenny et al. (2008).

It is not practical to calculate the exact LLR score from JFA but several

approximations have been proposed. See Glembek et al. (2009) for and

comparison. As an alternative, SVMs can be applied either by using the

GMM supervector linear kernel on the channel compensated supervectors,

or by using the speaker factors directly with some suitable kernel (Dehak

et al., 2009b).

i-Vector

Dehak (2009) showed that the channel factors of JFA contains information

about the identity of the speaker. As an alternative approach, Dehak et al.

(2009a, 2011) therefore proposed to use the factor analysis framework as a

feature extractor. In this system, it is assumed that the GMM-supervector, µ,

corresponding to an utterance can be modeled as

µ = µUBM + Tφ, (2.33)

where φ is a random vector, and T is the so called total variability ma-

trix. Similarly to eigenvoice MAP, it is assumed that φ follows a standard
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normal distribution and its dimension, d, i.e., the rank of T , is lower than

dimension of µ. The only difference from eigenvoice MAP is that the fac-

tors, φ, of a given speaker are different from utterance to utterance whereas

in eigenvoice MAP they are forced to be the same for all utterances of a

given speaker. In other words, they are capturing both speaker and chan-

nel variability. This is taken into account also when estimating T hence the

name total variability matrix. Given the speech features of an utterance, the

i-vector, ω, is the MAP estimate of φ. The i-vector system differs from proba-

bilistic PCA (PPCA) (Tipping and Bishop, 1999) in that µ itself is not directly

observed, but only indirectly observed via the features generated from the

GMM. Since µ is not observed, it can be forced to rest in the sub-space

spanned by columns of T , so the residual term of PPCA is not needed.

An i-vector contains information related to the speaker identity as well

as irrelevant channel factors such as the speaker’s emotions, transmission

channels, language, and environmental noise. Channel factors should be

removed in order to improve the accuracy of verification.

Currently, PLDA has become one of the state-of-the-art channel compen-

sation techniques in i-vector based speaker verification (Kenny, 2010).

2.6 PLDA

2.6.1 Model

PLDA was originally proposed in image processing for object/face recogni-

tion (Ioffe, 2006; Prince and Elder, 2007). Kenny (2010) proposed to use it

in speaker verification with i-vectors as features. In its most general form,

PLDA assumes that the feature vectors (i-vectors), ω, are generated as:

ω = m+ V y +Ux+Dz, (2.34)

wherem is the mean of ω, y is a random vector depending on the class, and,

x and z are random vectors depending on the channel, i.e., they are different

from session to session. Contrary to the GMM-supervector, the i-vector is

observed, which means that U and D must together span the full i-vector

space. Two different PLDA configurations are popular. The configuration

suggested by Prince and Elder (2007) constrains both V and U to have a

rank lower than d, and D to be diagonal. This configuration is suitable for
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large d. This PLDA model is very similar to JFA. The configuration suggested

by Ioffe (2006) skips U but puts no constraints on D, i.e.,

ω = m+ V y +Dz. (2.35)

This is the most popular configuration in speaker verification (Kenny, 2010;

Brümmer and de Villiers, 2010) and we will use it in this study. The speaker

matrix, V , may have a rank lower than d (Kenny, 2010), or equal to d

(Brümmer and de Villiers, 2010) in which case the model is known as the

two-covariance model.
The original PLDA model (Ioffe, 2006; Prince and Elder, 2007) assumes

y, x and z follow Gaussian distribution (G-PLDA). However, the elements of

the i-vector are, in reality, more heavy-tailed than the Gaussian distribution.

Therefore, an extension named heavy-tailed PLDA (HT-PLDA), based on t-

distributions, has been proposed (Kenny, 2010). HT-PLDA has much better

performance than G-PLDA but is much slower both in the training and the

testing phase. Later, normalizing the i-vectors to unit length, was shown

to greatly improve the Gaussianity of the i-vectors so that G-PLDA provides

similar performance as HT-PLDA (Garcia-Romero and Espy-Wilson, 2011).

From here on, we only consider G-PLDA and refer to it as PLDA.

2.6.2 LLR score

Given two i-vectors, ωi and ωj , the LLR score is given by

sij = log
p (ωi,ωj |Hs)
p (ωi,ωj |Hd)

, (2.36)

where the hypotheses Hs and Hd are the following:

Hs: ωi and ωj are from the same speaker.

Hd: ωi and ωj are from different speakers.

According to Eq. (2.35), two i-vectors are generated by,[ωi
ωj

]
=
[m
m

]
+

[
V 0

0 V

] [ yi
yj

]
+

[
D 0

0 D

] [ zi
zj

]
, (2.37)

where the speaker factors, yi and yj are the same in a target trial but dif-

ferent in a non-target trial. Accordingly, [ωTi ω
T
j ]T follows a multivariate

normal distribution. Calculating the mean and covariance of an i-vector
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pair in a target and a non-target trial based on Eq. (2.37) and plugging

the resulting multivariate normal distributions into Eq. (2.36) results in a

closed-form expression of the LLR given by

sij = ωTi Pωj + ωTj Pωi + ωTi Qωi + ωTj Qωj

+(ωi + ωj)
Tc+ k, (2.38)

where

P =
1

2
Σ−1

tot Σac(Σtot − ΣacΣ
−1
tot Σac)

−1, (2.39)

Q =
1

2
Σ−1

tot − (Σtot − ΣacΣ
−1
tot Σac)

−1, (2.40)

c = −2(P +Q)m, (2.41)

k =
1

2
(log |Σtot| − log |Σtot − ΣacΣ

−1
tot Σac|)

+mT 2(P +Q)m, (2.42)

and Σac = V V T and Σtot = V V T +DDT .

Let γ = [vec(P )T , vec(Q)T , cT , k]T , where vec(·) stacks the columns of

a matrix into a column vector, and let

ϕ(ωi,ωj) =


vec(ωiω

T
j + ωjω

T
i )

vec(ωiω
T
i + ωjω

T
j )

ωi + ωj

1

 . (2.43)

Then Eq. (2.38) can be rewritten as (Burget et al., 2011; Cumani et al.,

2011)

sij = γTϕ(ωi,ωj). (2.44)

In other words, the PLDA LLR score is a linear function of a non-linear

feature expansion ϕ(ωi,ωj) of the two i-vectors.

2.6.3 Parameter estimation by the generative ML criterion

Typically, the PLDA parameters are estimated by the generative maximum

likelihood (ML) criterion:

[m̂, V̂ , D̂] = arg max
[m̂,V̂ ,D̂]

S∏
s=1

Es∏
e=1

(ωse|m,V ,D), (2.45)
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where index s indicates the speaker, index e indicates the session, S is the

number of speakers and Es is the number of sessions for speaker s. If all

speakers have the same number of sessions, an analytic solution exists (Ioffe,

2006), otherwise the EM-algorithm (Brümmer, 2010) can be used. The

EM-algorithm is described in Appendix A.1. The PLDA model needs large

amounts of training data. Typically around 10k utterances from around 1k

speakers are used.

2.6.4 Properties of P and Q

In this subsection we present some properties of the matrices P and Q and

discusses their impact on the PLDA score function given by Eqs. (2.38)

and (2.44). This discussion is important in order to understand the be-

havior of some the discriminative training schemes discussed later in the

thesis. The matrices P and Q depends on the PLDA between-class covari-

ance matrix, V V T , and the within-class covariance matrix, DDT , accord-

ing to Eqs. (2.39) and (2.40). It is however not immediately apparent what

constraints that follows on γ. In this subsection, the constraints on γ are

presented, as well as an analysis of their impact on the model.

The matrices, P and Q, are symmetric and have the same rank as V

(Garcia-Romero and Espy-Wilson, 2011). In addition, it can be shown based

on Eq. (2.39) and (2.40), that the matrices, P and Q, are constrained as

follows:

1. P is positive-(semi)definite.

2. Q is negative-(semi)definite.

3. P +Q is positive-(semi)definite.

For these constraints, semi applies when the rank of V is smaller than d.

The proofs are given in A.2.

Scr-UC preserves the symmetry of P and Q but relaxes the definite-

ness constraints. In the remainder of this subsection, the effects of these

constraints on the model are analyzed. In Section 6.2, the impact of the

constraints is evaluated experimentally.

The first constraint leads to a directional property. Consider an i-vector,

ω, scored against both αω and −αω, where α is a positive constant. That

is, in the first trial, ω is scored against an i-vector pointing in same direction
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and, in the second trial it is scored against an i-vectors pointing in the oppo-

site direction. Let s(ωi,ωj) = sij in Eq. (2.38). If the i-vectors are centered

around m, the difference between the scores of these two trials is

s(ω, αω)− s(ω,−αω) = 4αωTPω. (2.46)

In other words, the score of the same direction trial will be guaranteed to be

larger than the score of the different direction trial if and only if P is positive

definite.

The second constraint leads to a length property:

s(ω,ω) > s(αω,
1

α
ω). (2.47)

This property means that two i-vectors of equal length and direction will

obtain a higher score than two i-vectors having just equal direction.

From the first and the second constraint, it follows directly that P −
Q is positive-definite. Together with the third constraint, this leads to the

following properties:

s(ω,ω) > s(0,0), (2.48)

s(ω,−ω) < s(0,0). (2.49)

This means that any two i-vectors pointing in the same direction obtain a

higher score than any two i-vectors pointing in opposite direction. These

two properties are therefore a stronger version of the directional property.
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Previous work on
discriminative training

We have already introduced one approach to speaker verification that re-

lies on discriminative training, namely the GMM-SVM approach discussed

in Section 2.5.2. This approach trains one model for each enrolled speaker.

However, In most applications only one, or at most few enrollment utter-

ances with little channel variability are available for each speaker. Training

a speaker-specific models therefore suffers severely from (enrollment) data

insufficiency. The PLDA model discussed in Section 2.6 does not utilize

speaker-specific models and is therefore not affected by this problem.

As mentioned in Section 2.6, normalizing the i-vectors to unit length

improves their Gaussianity and substantially improves the performance of

PLDA. However, even with length normalization, it is clear that there is still a

mismatch between the model assumptions and the training data. Obviously

a PLDA model cannot generate i-vectors of a fixed length. Further, it has

been shown that for length-normalized i-vectors, the within-class covariance

depends strongly on the speaker factors (Bousquet et al., 2014), whereas

PLDA assumes the within-class covariance is independent of the speaker

factors. Since the model assumptions are not accurate, we cannot expect the

parameters obtained by GT to be optimal neither for discriminating between

speakers nor for providing well-calibrated LLR scores. Therefore, it might be

better to use a DT criterion that directly optimizes the model for providing

accurate LLR scores.

In this chapter, we first present three previously proposed DT schemes

32
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that do not utilize speaker-specific models. The first is calibration (and fu-

sion) by means of an affine transformation of the score. The other two are

based on the PLDA model. We then discuss the training objectives that have

been used. Finally, we discuss three problems in previous approaches. These

problems will then be addressed in Chapter 5, 6 and 7, respectively.

3.1 DT schemes

3.1.1 Calibration and fusion

Discriminative training has been proven very effective for score calibration

and fusion (Brümmer et al., 2007; Brümmer, 2010) based on affine func-

tions. Given the scores s(1), . . . , s(n) from n different systems, the fused

and/or calibrated score is given by

s(w) = w0 + w1s
(1) + . . .+ wns

(n), (3.1)

where the parameters w = [w0, . . . , wn] need to be estimated. Let th ∈
[−1, 1] be the label of trial h, i.e., it equals 1 if the two utterances are from

the same speaker and −1 otherwise. Then w can be estimated by minimiz-

ing the objective, l̄(w),

l̄(w) =
∑
h:th=1

Peff

N1
l (th, sh(w), τ) +

∑
h:th=−1

1− Peff

N−1
l (th, sh(w), τ) , (3.2)

where N1 and N−1 are the numbers of target and non-target trials respec-

tively, and l (th, sh(w), τ) is a loss function for a trial. There are many pos-

sible choices of loss functions. In order order to obtain good calibration,

the loss function should be a proper scoring rule. In speaker verification,

the most popular choice of such a loss function is the logistic regression loss

Brümmer et al. (2007); Brümmer (2010). See Section 3.2 below for details

regarding the choice of loss function. By rebalancing the trials, the system

is optimized for Peff rather than the prior in the training data. With n = 1,

we obtain an affine transformation of the scores which has become the stan-

dard approach for calibration (Brümmer et al., 2007; Brümmer, 2010). We

refer to this method as AT-Cal. An affine transformation results in a very

constrained update of the score function that cannot increase the system’s

ability to discriminate between target and non-target trials, i.e., to reduce
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minDCF. On the other hand it can substantially improve calibration, even

with quite small amounts of data.

3.1.2 PLDA

Burget et al. (2011) and Cumani et al. (2011) proposed to optimize the

parameters γ in Eq. (2.44), by minimizing the loss in Eq. (3.2) where sh is

a function of γ instead of w. Both the logistic regression loss in Eq. (3.3)

and the SVM hinge loss were evaluated. We refer to this method as Scr-UC,

where UC refers to unconstrained. Scr-UC is similar to a DT scheme for JFA,

proposed by Burget et al. (2008). In Burget et al. (2011); Cumani et al.

(2011), all possible i-vector pairs (typically some hundred millions) were

used for training, and efficient calculations of the total loss and its gradient

with respect to γ were presented. Even so, this method easily overfits to the

training data due to the large number of parameters to be estimated. The

studies in (Burget et al., 2011; Cumani et al., 2011) therefore added an L2

regularization term, ρ‖γ − γ̃‖2, to the training objective.

Borgström and McCree (2013) considered discriminative PLDA training

with multiple enrollment sessions. The proposed training scheme applies

DT to the model parameters, m, V and D, rather than the parameters of

the LLR score function. The training trials were from either single or mul-

tiple enrollment sessions. Only the eigenvalues (which were floored to be

positive) or a scaling factor of the covariance matrices were updated by DT.

The number of parameters to be estimated are therefore much fewer than in

Scr-UC, which reduces the risk of over-training. However, the gradient cal-

culations in this training scheme are only approximate and not as efficient

as in Scr-UC where all possible training trials can be used.

3.2 Loss functions

In this section we discuss the choice of loss function more in detail. We

will use θ to denote any parameters to be estimated by DT (e.g., w in AT-

Cal or γ in Scr-UC). The choice of loss function is an important issue in

discriminative training. For fusion, Brümmer et al. (2007) proposed to use

the logistic regression loss function given by

l
(
th, sh(θ), τ

)
= log

(
1 + exp(−th

(
sh(θ)− τ

))
. (3.3)
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As discussed in Section 2.2.2, this is the loss function used in Ĉllr and since

it is a proper scoring rule it encourages good calibration. Compared to

the standard logistic regression loss, the prior log-odds, −τ , is included.

Without it, s(θ) would be trained to be the posterior log-odds, log qh
1−qh . In

other words, it would include the prior log-odds learned from the data. By

including −τ in the loss function, we therefore ensure that s(θ) is trained to

be the LLR (compare Eq. 2.2).

To follow the true spirit of DT, one should use a loss function that is

relevant for the intended application. As argued in Chapter 2, real applica-

tions require the scores to be calibrated LLRs. Using the logistic regression

loss (Eq 3.3) in the training objective given by Eq (3.2) aims producing LLR

scores that minimize shifted version of Ĉllr. Recall that Ĉllr is an average of

actDCFs for all possible OPs according to Eqs (2.8) and (2.8). However, in

many application it might be desirable to optimize the system for a narrower

range of OPs. In this thesis we refer to such loss functions as application-
specific. By weighting the OPs differently, one can obtain cost functions that

emphasizes on a certain range of OPs, i.e,

Cw(q, t = 1) =

∫ 1

q

1

ζ
w(ζ)dζ, (3.4)

Cw(q, t = −1) =

∫ q

0

1

1− ζ
w(ζ)dζ, (3.5)

where Cw(q, t = 1) and Cw(q, t = −1) are the costs for target trials and non-

target trials respectively. The cost functions given by Eq (3.4) results in a

proper scoring rule for any normalizable w(ζ) (Buja et al., 2005). By using

w(ζ) = 1, the logistic regression loss (Ĉllr) is obtained and by using w(ζ)

equal to Dirac’s impulse at τ , we obtain the actDCF for that OP. An elegant

framework for choosing w(ζ) was proposed by Buja et al. (2005) and further

developed and applied to AT-Cal in speaker verification by Brümmer and

Doddington (2013). In the latter, the Brier loss which emphasizes more

narrowly around the targeted OP than the logistic regression loss was very

effective. It is given by

lBrier(th, sh, τ) =
1(

1 + exp th
(
sh(θ)− τ

))2 . (3.6)

The Brier loss corresponds to using w(ζ) = 6t(1− t).



Previous work on discriminative training 36

3.3 Problems in previous approaches

3.3.1 Statistically dependent training data

In GT, each speaker is a class and each utterance is an observation of such

a class. However, DT aims directly at improving the LLR score using trials

as training data. The features of a trial can be, e.g., a pair of i-vector as in

Scr-UC or simply the score as in AT-Cal. The labels of a trial is either same
or different speaker, i.e., there are only two labels. The trials need to be

constructed from the available training data, ideally over all possible trials.

However, when a training utterance (or just the same speaker) is used in

more than one trial, the trials will be statistically dependent which violates

the assumptions in the training objective. To put it in a different way, unless

the statistical dependencies are taken into account, we have ignored a lot

of information about which speaker and utterance ID. In GT on the other

hand, no information about the training data is ignored.

3.3.2 Over/under-fitting

In general, DT usually overfits to the training data more easily than GT (Ng

and Jordan, 2002). This has been verified empirically also for PLDA. For

example, in Cumani and Laface (2014), Scr-UC was worse than GT when

the number of training speakers were less than around 1600. AT-Cal on

the other hand is so constrained that it may not utilize the full potential of

DT. Further, when the parameters γ are optimized directly, rather than the

original PLDA model parameters, m, V and D, the properties of the PLDA

model discussed in Section 2.6.4 are not preserved and the consequence

of this is not obvious. The methods proposed by Borgström and McCree

(2013) avoids these problems but optimizing the parameters m, V and D

is difficult due to the complex relation between these parameters and the

LLR score. The proposed gradient calculations are only approximate and it

was not addressed how to efficiently use all possible training trials.

3.3.3 The choice of loss function

The application-specific loss functions has only been applied to AT-Cal. In

principle, the application-specific loss functions proposed for score calibra-

tion can be used for discriminative training of all the model parameters in
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a speaker verification system (Brümmer and Doddington, 2013). However,

when training a large number of model parameters, the non-convexity of

the application-specific loss functions becomes a serious problem. In addi-

tion, when the training focuses only on a small range of operating points,

i.e., the subset of the training trials whose score is close to the threshold

of the operating point, the risk of over-training may increase. It is there-

fore necessary to explore if, and how, application-specific loss functions can

benefit DT schemes with more parameters to be estimated than AT-Cal.



Chapter 4

Baseline experiments

4.1 i-Vector + PLDA baseline experiments

This section describes our baseline system. It consists a generatively trained

PLDA model using i-vectors as features. The feature extraction was made

by the HTK toolkit (Young et al., 2006). training of the i-vector extractor

as well as i-vector extraction was done with the JFA cookbook (Glembek,

2008). PLDA training and scoring as well as score calibration were done

with our own MATLAB implementations. Finally, evaluation was done with

the Bosaris toolkit (Brümmer and de Villiers, 2011). We report the results

all the evaluation metrics described in Section 2.2. Our main interest are

in the calibration-sensitive evaluation metrics, actDCF and Ĉmin
llr since this is

what matters in applications. Also, it should be noticed that DT aims at re-

ducing calibration-sensitive evaluation metrics. The calibration-insensitive

evaluation metrics are only indirectly affected since they cannot be higher

than the actual costs.

4.1.1 Experimental set-up

We conducted experiments on the male part of three sets, the NIST SRE

2006 core task (SRE06), NIST SRE 2008 core task condition-6 (SRE08) and

NIST SRE 2010 core task condition-5 extended (SRE10). We used SRE06

as the development set for tuning the regularization parameter, ρ, and for

the weight-adjustment parameter, α. For some experiments (see subsection

5.3.1), we also used SRE06 for calibration. SRE08 and SRE10 were used as

the evaluation sets. A few trials in SRE06 and SRE08 were excluded because

38
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of their inconsistent meta-data. The number of trials were 22123, 12356

and 179338 for SRE06, SRE08 and SRE10 respectively. It should be noted

that SRE08 could be too small to give a reliable estimate of actDCF10. The

evaluation metrics were calculated with the BOSARIS toolkit (Brümmer and

de Villiers, 2011) which uses the PAV algorithm for calculating the minimum

version of the evaluation metrics.

For training the UBM and the T matrix, we used NIST SRE 2004 (SRE04),

NIST SRE 2005 (SRE05), Switchboard II Phase 1 (SB2P1), Switchboard II

Phase 2 (SB2P2), Switchboard II Phase 3 (SB2P3), Switchboard Cellular

Part 1 (SBCP1) and Switchboard Cellular Part 2 (SBCP2). For SRE04, we

used speech files included in the training lists of one, three, eight and sixteen

single-channel conversation sides and in the test list of one single-channel

conversation side. For SRE05, we used speech files included in the training

lists of one, three and eight two-channel conversation sides and in the test

list of one single-channel conversation side. For the Switchboard datasets,

we used all non-empty speech files.

For training PLDA models, we used the same data except SB2P1. In ad-

dition, from the Switchboard data, we excluded speech distorted by echo or

crosstalk or background noise according to the meta-data in the databases.

MIXER PIN and PIN were used as unique speaker IDs for NIST SRE and

Switchboard datasets respectively. For the files whose MIXER PIN were miss-

ing, we used model IDs as speaker IDs. This gave 1153 speakers with in total

9152 utterances.

We used 15 PLP coefficients (Hermansky, 1990) along with log-energy

and applied feature warping (Pelecanos and Sridharan, 2001). After that,

we appended the first-order and second-order derivatives, resulting in 48

elements per frame. Non-speech parts were then removed by using a spec-

tral subtraction-based voice activity detector (Mak and Yu, 2010). Our UBM

had 2048 Gaussian components and d, i.e., the rank of T , was set to 400.

The i-vectors went through the process of centering, whitening, and length-

normalization (Garcia-Romero and Espy-Wilson, 2011).

Generative PLDA training was performed with the EM algorithm (Brüm-

mer, 2010). The number of columns of V was set to d.
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Table 4.1: Results of GT in the calibration insensitive evaluation metrics. ‘%Spkr’
is the percentage of the training speakers used for model training. 100%
equals 1152 speakers.

Set % Spkr minDCF08 minDCF10 Ĉmin
llr EER

SRE08
100 0.0250 0.000728 0.175 0.0480

90 0.0254 0.000713 0.176 0.0497

SRE10
100 0.0101 0.000385 0.079 0.0198

90 0.0103 0.000403 0.081 0.0201

4.1.2 Experimental results

Table 4.1 shows the results in the calibration insensitive evaluation metrics

using 100% and 90% of the training speakers. Overall, reducing the number

of training speakers by 10% did not result in any substantial degradation of

the performance.

4.2 DT Experiments

In this section we present results for AT-Cal and Scr-UC which will serve as

baselines for our later experiments.

4.2.1 Experimental set-up

We followed the experimental set-up given in Section 4.1.1. Additional

details for the discriminative training were as follows. We implemented

the methods in MATLAB. For optimization, we used the L-BGFS (Liu and

Nocedal, 1989) implementation in Schmidt (2012). We used its default

stopping criteria and in addition, we stopped the training if no change in

minDCF08 had been observed on the development set for 20 iterations. As

in Burget et al. (2011) and Cumani et al. (2011), we used all the trials that

could be constructed from the training data, except that we excluded target

trials where an utterance is scored against itself. The number of unique

target trials in the training data was 52,709 and the number of unique

non-target trials was 41,822,267. We used the effective prior of SRE08,

Peff = 0.0917, to balance target and non-target trials and for setting τ . For

Scr-UC we applied L2 regularization. The regularization parameter, ρ, was
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Table 4.2: Baseline results in calibration sensitive evaluation metrics. For Scr-
UC we applied L2 regularization. The regularization parameter, ρ, was
tuned to optimize for Ĉllr on the development set.

Set Method actDCF08 actDCF10 Ĉllr

SRE08
AT-Cal 0.0256 0.00130 0.201

Scr-UC 0.0334 0.000876 0.235

SRE10
AT-Cal 0.0143 0.000678 0.100

Scr-UC 0.0304 0.000916 0.180

Table 4.3: Baseline results in calibration insensitive evaluation metrics. For Scr-
UC we applied L2 regularization. The regularization parameter, ρ, was
tuned to optimize for Ĉllr on the development set.

Set Method minDCF08 minDCF10 EER Ĉmin
llr

SRE08
AT-Cal 0.0250 0.000728 0.0480 0.175

Scr-UC 0.0304 0.000743 0.0564 0.212

SRE10
AT-Cal 0.0101 0.000385 0.0198 0.0788

Scr-UC 0.0183 0.000598 0.0370 0.1368

optimized over the steps 10−3, 10−2, . . . , 104 on the development set, SRE06.

The optimal value was 102.

4.2.2 Results

The results for the two baselines AT-Cal and Scr-UC in the calibration insen-

sitive calibration metrics actDCF08, actDCF10 and Ĉllr are shown in Table

4.3. As could be expected, AT-Cal was clearly better for this amount of train-

ing data. The exception was actDCF10 for SRE08, but as discussed earlier,

DCF08 may not be reliably estimated for SRE08. For reference, the results

in the calibration insensitive evaluation metrics are shown in 4.3.



Chapter 5

Compensation for statistically
dependent training data

In this chapter we address the problem of having statistically dependent

training data described in Section 3.3.1. The chapter is divided in three

sections. In Section 5.1 we discuss the effect of using statistically dependent

training data and propose a compensation method for it. The method is not

specific to speaker recognition nor to PLDA but requires knowledge of the

pairwise correlations between the losses of all the training trails. In Section

5.2 we propose how to estimate these correlations for the specific statistical

dependencies that arise in our speaker verification task, i.e., when the same

speakers and utterances are used in more than one training trial. Finally,

in Section 5.3, we experimentally evaluate the proposed methods on AT-Cal

and Scr-UC.

5.1 The effect of statistically dependent training data

In this subsection we discuss how DT is affected by the use of statistically de-

pendent trials. We argue that using an equal weight for all target trials and

another equal weight for all non-target trials in the training objective is not

optimal when the trials are statistically dependent. For example, consider

the correlations due the same speakers being used in many training trials.

If each trial has equal weight, speakers with many trials will influence the

model more than speakers with few trials. In order to avoid this speaker
dependency in the model and make it good for the general population, the
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weights for speakers with many trials need to be reduced. The remaining

discussion in this subsection does not consider the reason for the statistical

dependencies. In section 5.2 we show how to apply the principles discussed

in this subsection specifically to the statistical dependencies that arise when

all possible training trials are used in DT of speaker verification systems.

A trial consists of a label T ∈ [1,−1] and two i-vectors Ωi and Ωj . Here,

we use upper case letters to denote that we treat these variables as random

variables. We collect the i-vector pair of a trial in a vector denoted Ω(p) =

[ΩT
i ,Ω

T
j ]T . The loss of a trial, L(θ) = l

(
T, s(θ,Ω(p))

)
, is then also a random

variable. The training trials are observations of these random variables.

Analogously, we use l̄(θ) to denote the average loss of an observed set of

training trials as in Eq. (3.2), and L̄(θ) to be the corresponding random

variable, i.e., the average loss of a set of trials treated as random variables.

The expected loss of a single trial is given by

ET,Ω(p)L(θ) = ET,Ω(p)

(
l(θ, T,Ω(p))

)
=

∑
T=−1,1

P(T )

∫
R2d

l
(
T, s(θ,Ω(p))

)
P(Ω(p)|T )d2dΩ(p) (5.1)

where P(T = 1) = Peff, P(T = −1) = 1 − Peff and P (Ω(p)|T ) is the prob-

ability density function for the i-vector pair conditioned on the trial label.

Discriminative training aims to find the θ that minimizes ET,Ω(p)

(
L(θ)

)
by

minimizing l̄(θ). In order for this approach to be successful, L̄(θ) must be a

good estimator of ET,Ω(p)

(
L(θ)

)
for each value of θ.

Let us generalize the DT objective as

L̂(θ) = P̃effL̂1(θ) + (1− P̃eff)L̂−1(θ), (5.2)

where 0 ≤ P̃eff ≤ 1,

L̂1(θ) =
∑
h:th=1

βhl
(
th,θ,Ω

(p)
h

)
, (5.3)

L̂−1(θ) =
∑

h:th=−1

βhl
(
th,θ,Ω

(p)
h

)
, (5.4)

and ∑
h:th=1

βh =
∑

h:th=−1

βh = 1. (5.5)

Here L̂1(θ) and L̂−1(θ) are estimators of the expected loss of a target and

non-target trial respectively, and βh is the weight for trial h. The expected
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loss of a trial with label t, EΩ(p)|t(L(θ)), is not affected by the fact that the

trials are statistically dependent. As long as Eq. (5.5) is fulfilled, P̃eff = Peff

therefore gives an unbiased estimate of the expected loss, ET,Ω(p)

(
L(θ)

)
(for

any θ). In addition, we propose to adjust the trial weights, βh, so that the

variances of L̂1(θ) and L̂−1(θ) is minimized. This gives the best linear un-

biased estimator (BLUE) (Kay, 1993, ch. 6) of the expected loss. From here

on, we use t ∈ [−1, 1] also as a suffix to indicate target or non-target trial.

Let the i-vector pairs, Ω
(p)
h , of the training trials with label t be collected in

a vector ~Ωt ∈ R2dNt . Further, let the weights for the corresponding trials be

collected in a vector βt ∈ RNt , and let Σt ∈ RNt×Nt be the covariance matrix

for the losses of these trials.1 Then, var
[
L̂t

(
θ, ~Ωt

)]
is given by

E~Ωt|It

(
L̂t(θ, ~Ωt)− E~Ωt|ItL̂t(θ,

~Ωt)
)2

= E~Ωt|It

 ∑
h:th=t

βhl
(
t,θ,Ω

(p)
h

)
− EΩ(p)|tL (θ)

2

= βTt Σtβt, (5.6)

where It denotes any information about how ~Ωt is generated that affects

Σt.

Previous studies have set βh to 1/N1 for the target trials and 1/N−1 for

the non-target trials. From Eq. (5.6) it is clear that when Σt is diagonal

whose all elements are equal, this choice of βh is optimal and results in the

well-known formula for the variance of the sample mean of IID variables.

However, when the trials are correlated, this choice of βh is not optimal. By

using a Lagrange multiplier to enforce the constraint in Eq. (5.5) it can be

shown that, as long as Σt is non-singular,2 the minimizer is given by,

βt =
Σ−1
t 1

1TΣ−1
t 1

, (5.7)

where 1 is a column-vector of length Nt whose all elements equal 1.

According to Eq. (5.7), the optimal βt is not affected by a scaling of

the covariance matrices. Since all target/non-target trial losses have the
1For simplicity, we do not consider the statistical dependencies between a target trial and

a non-target trial in this study.
2A singular Σ would mean that the losses of two trials have correlation 1 or that the

variance of a trial loss is 0. These are not realistic scenarios.
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same variance, we therefore only need to know the correlation between the

trials. We denote the correlation matrices Rt = Σt/vt, where v1 and v−1 are

the variances for the target and non-target trial losses respectively. These

correlation matrices have one entry per observation, In order to estimate

them, it is therefore necessary to impose a structure on them so that they

depend on a small number of parameters. In Section 5.2, we propose how

to do this for the correlations that arise from using the same speakers and

utterances in several training trials.

It should be noticed that same results can be obtained by regarding the

trial losses lt(θ) = [l1(θ), . . . , lNt(θ)]T as one multivariate observation fol-

lowing normal distribution with mean η = [η, . . . , η]T and covariance matrix

Σt and then using the ML estimate of η as loss estimator, i.e.,

L̂t(θ) = arg max
η

1√
(2π)Nt |Σt|

exp

(
−1

2
(l(θ)− η)TΣ−1

t (l(θ)− η)

)
= lt(θ)T

Σ−1
t 1

1TΣ−1
t 1

. (5.8)

In fact, any elliptical density with covariance matrix Σt gives the above

result. Among them only the normal distribution has the property that

a diagonal covariance matrix is equivalent to the losses being statistically

independent but the ML estimate ignores higher order dependencies than

covariance.

5.2 Estimation of Rt

In Subsection 5.1, we showed that using an equal weight for all target trials

and another equal weight for the non-target trials is typically not optimal

when the trials are statistically dependent. We argued that it is preferable

to adjust the weights of the trials to obtain the BLUE for the loss estimator,

L̂(θ), and showed that in order to do this, we need to know the correlation

between the losses of the training trials. In this section, we propose prac-

tical methods for weight-adjustment of training trials that are statistically

dependent due to each speaker and utterance being used in more than one

trial.
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Table 5.1: Different kinds of trial pairs and the notation of their correlation. Cap-
ital letters refer to speakers and their indices refer to utterances. ‘Corr’
is the notation of the correlation coefficient.

Set Things in common Trial pair example Corr.
Ta

rg
et

1 utt. (A1, A2) - (A1, A3) ca

Spk. (A1, A2) - (A3, A4) cb

Nothing (A1, A2) - (B1, B2) 0

N
on

-t
ar

ge
t

1 utt., 1 spk. (A1, B1) - (A1, B2) c−a

2 spk. (A1, B1) - (A2, B2) c−b

1 utt. (A1, B1) - (A1, C1) c−c

1 spk. (A1, B1) - (A2, C1) c−d

Nothing (A1, B1) - (C1, D1) 0

5.2.1 Weight-adjustment formulas

Let capital letters denote different speakers in our training data. Let NX

be the number of utterances of speaker X, Xi be the i-th utterance of this

speaker, and l(Xi, Yj ,θ) be the loss for the trial involving utterance Xi and

Yj . We would like to make some assumptions about Σ1 and Σ−1 that allow

us to calculate the optimal weights βt by means of Eq. (5.7). Since the opti-

mal weight vector only depends on the correlation between the trial losses,

we can let the variances of the trial losses be functions of θ. However, if the

correlation coefficients depend on θ, the optimal weights will also depend

on θ. For simplicity, we therefore assume that the correlation coefficients do

not depend on θ, but only on what the trials have in common. For example,

we assume:

corr
(
l(A1, A2,θ), l(A1, A3,θ)

)
= ca, (5.9)

where the correlation coefficient, ca, is the same for all target trial pairs that

share one utterance. All the possible relations between two trials as well as

the notation for the correlation coefficients are given in Table 5.1. Notice

that two trials that have nothing in common are statistically independent so

that, e.g., corr (l(A1, A2,θ), l(B1, B2,θ)) = 0.

In this study, we use all the trials that can be constructed from the train-

ing data except those where both the utterances are the same. Under the

assumptions given in the previous paragraph, the optimal weight for each
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target trial of speaker A is then given by (see A.3.1 for proof)

βA =
k1

1 + 2(NA − 2)ca + (NA − 2)(NA − 3)cb/2
, (5.10)

where k1 is set so that the sum of the weights equals 1. Since we do not use

target trials where both the utterances are the same, a speaker with only

one utterance is never used for target trials, i.e., NA = 1 is never used in the

above formula. For a speaker with two utterances, there is only one unique

target trial so the second and third term in the denominator will be 0. For a

speaker with three utterances, we can construct two trials with one shared

utterance but not two trials with no shared utterances. In this case, the third

term in the denominator will be 0. Notice that if all correlations equals 0, or

if each speaker has the same number of utterances, each trial will obtain the

same weight. If all correlations equal 1, each speaker will obtain the same

weight.

In order to derive the weights for the non-target trials, we do some ap-

proximations. The approximately optimal weight for each non-target trial of

speaker A and B, is then

βAB ≈
k−1

WAB
(5.11)

where k−1 is set so that the sum of the weights equals 1 and,

WAB = 1 + c−a(NA +NB − 2)

+ c−b(NA − 1)(NB − 1)

+
(
2c−c + c−d(NA +NB − 2)

) ∑
I 6=A,B

NI . (5.12)

The derivation including the approximations is given in A.3.2.

5.2.2 Estimation of correlation coefficients

Ideally, we would have knowledge about ca, cb, c−a, c−b, c−c and c−d. In this

study we explore two ways to find their values. The first is to approximate

them with functions that depend on one tunable parameter. The second is

to estimate them based on sample correlations in the training data.

Estimation by a one-parameter model

Consider first the target trials. We assume that two target trials from the

same speaker are correlated, and that two target trials where one utterance
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is the same are more correlated, so that 0 ≤ cb ≤ ca ≤ 1. In order to obtain

only one parameter to tune we set

ca = α1,

cb = α2
1, (5.13)

where 0 ≤ α1 ≤ 1 will be tuned. For a numeric example of this formula, let

us compare the target trial weights for a speaker, A, with 2 utterances and

a speaker, B, with 10 utterances. Speaker A has 1 trial and speaker B has

45 trials. If α = 0.5, the total weight for the trials of speaker A is k1 and the

total weight for the trials of speaker B is k145/23. In other words, speaker A

has 5 times as many utterances as speaker B, but will obtain approximately

2 times more weight. For further illustration, the trial weights for different

values of α1, are given in Fig. 5.1. Notice that, even for small values of

α1, the number of utterances of a speaker has large impact on the optimal

weights for that speaker.

For the non-target trials, we can apply the same strategy, i.e., assume

that a shared speaker makes the trials correlated and a shared utterance

makes them more correlated. However, the relation between c−b and c−c is

not clear. The former gives the correlation between non-target trial losses

where both speakers are the same. The latter gives the correlation between

non-target trial losses that has one common utterance. While it is clear

that having one common utterance should give larger correlation than only

having one common speaker, we cannot guess the relation between one same
utterance and two same speakers. Therefore, we set

c−a = α−1, c−b = α2
−1, c−c = α2

−1, c−d = α3
−1, (5.14)

with 0 ≤ α−1 ≤ 1. In this study, we will make a further simplification and

set, α1 = α−1, denoted α from here on. This parameter will be tuned on

a development set which, similarly to DT, can compensate for inaccuracies

introduced by our assumptions and approximations. In other words, the

model is tuned for good performance, instead of for fitting the data.

Estimation by sample correlation

Let l̄1(θ) and v̄1(θ) be the sample mean and sample variance of the loss of

the target trials for the parameter θ. Given Na target trial pairs with one
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Figure 5.1: Optimal target trial weights for speaker A. ‘NA’ is the number
of utterances for the speaker and ‘βA’ is the weight according to
Eqs. (5.10) and (5.13). The normalization, k1, is calculated assuming
equally many trials of each N . Another distribution would change the
relative position of the lines. Further, the scale of the y-axis depends
on the total number of trials.

utterance in common (see Table 5.1), we calculate the sample correlation

for those trials as

c̄a =
1

v̄1(θ)Na

Na∑
h=1

(
l
(
ω

(h)
1 ,ω

(h)
2 ,θ

)
− l̄1(θ)

)
×
(
l
(
ω

(h)
1 ,ω

(h)
3 ,θ

)
− l̄1(θ)

)
. (5.15)

The sample correlations for the other correlation coefficients are calculated

analogously. Compared to the one-parameter model, this method makes

fewer assumptions about the data. It relies on the assumption that the cor-

relation coefficients are independent of θ and the same for each trial of the

same kind (as defined in Table 5.1). On the other hand, since the correlation

coefficients are not tuned for performance, but to fit the data, this method
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may be more sensitive for incorrect model assumptions. For this method,

we estimate the sample correlations based on trial losses calculated with

the corresponding DT model without weight-adjustment.

5.3 Experiments

We followed the experimental set-up given in Section 4.1.1 and 4.2.1. The

weight-adjustment parameter, α, was optimized over the steps 0, 0.1, . . . , 1.0.

Sample correlations were estimated based on the losses of 106 trial pairs of

each kind (sampled with replacement).

5.3.1 Results

Weight-adjustment for AT-Cal

For the initial exploration, we first evaluated the weight-adjustment with

the one-parameter model for AT-Cal. We trained a PLDA model with the

training data described in Subsection 5.3, and used data from the test set

of SRE06 for calibration. We selected the calibration data in a way that the

effect of the weight-adjustment should be easily observed, i.e., few speakers

with large variation in their number of utterances. Specifically, we ran-

domly selected 11, 14 or 21 speakers, and then for each of them, we ran-

domly selected their number of utterances uniformly in the interval 1 to the

number of available utterances (between 1 and 36, around 6 on average).

Notice that this choice of calibration data was for demonstrating the effect

of weight-adjustment. It is generally better to use all the available data. The

actDCFs and Ĉllr for the α that was the optimal on the development set,

as well as α = 0 which gives the standard equal weight to each trial, are

shown in Table 5.2. For reference, the result in the calibration-insensitive

evaluation metrics are given in Table 4.1. In Figure 5.2, Ĉllr vs. α is shown.

We observed a large improvement in Ĉllr for 11 calibration speakers. The

optimal α on the development set was 0.5 but any value in between 0.1 and

0.6 gave similar results. For 14 and 21 speakers, the improvements were

marginal. A general rule for the optimal value of α is therefore not possible

to infer from this experiment.

The differences in actDCF08 were insignificant in most cases. Both act-

DCF08 and actDCF10 consider a small value of Peff (0.0917 and 0.0010 re-
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Table 5.2: Calibration results using SRE06 as calibration data. α = 0 is the stan-
dard approach with equal weight to each trial. A ‘*’ indicates that this
value was optimal for Ĉllr on the development set.

Set #Spkr actDCF08 actDCF10 Ĉllr α

SRE08

11
0.0270 0.01525 3.660 0

0.0271 0.01500 2.440 *0.5

14
0.0343 0.00688 0.256 0

0.0334 0.00552 0.245 *0.1

21
0.0316 0.00266 0.215 0

0.0291 0.00281 0.211 *1.0

SRE10

11
0.0113 0.001556 2.124 0

0.0110 0.001518 1.363 *0.5

14
0.0104 0.000468 0.087 0

0.0104 0.000413 0.085 *0.1

21
0.0103 0.000462 0.087 0

0.0102 0.000452 0.082 *1.0

spectively). Ĉllr on the other hand, considers all values of Peff (Brümmer

and du Preez, 2006). For the training sets with 11, 14 and 21 speakers,

the proportion of target-trials were 0.0774, 0.0736 and 0.0583 respectively.

These values are close to Peff of actDCF08. The expected loss is therefore

likely to be better estimated for this value of Peff than others, so that the

benefit of an improved estimation procedure becomes smaller.

In the above experiment we used additional data for the calibration. Re-

sults using only the original training data for weight-adjustment both based

on the one-parameter model and based on sample correlations are shown in

Table 5.3. We considered the following training conditions:

1. Use the data from 90% of the training speakers for model training,

and the data from the remaining training speakers for calibration.

2. Use all training data both for model training and for calibration.

3. As Condition 2, but in addition preserve the balance between the NIST

SRE and the Switchboard corpora when weight-adjustment is utilized.

Condition 3 was motivated by the fact that the data is made-up by sev-
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Figure 5.2: Ĉllr vs. the weight-adjustment parameter α. The lines without circles
denote Ĉmin

llr . Lines with circles denote Ĉllr for 11 (upper), 14 (middle)
and 21 (lower) calibration speakers, respectively.

eral different corpora and as a side-effect of weight-adjustment, the bal-

ance between these corpora may change. In fact, the Switchboard corpora

has much fewer utterances per speaker than the NIST SRE corpora. Since

the weight-adjustment increases the weights for speakers with fewer tri-

als, the weight for Switchboard is increased. Again, we confirmed that

the weight-adjustment is effective, although the effect was smaller than

in our previous experiment. We did not see any significant difference be-

tween weight-adjustment based on the one-parameter model and weight-

adjustment based on sample correlations. It was overall better to use all

data both in model training and in calibration, than to split the data. Using

calibration trials from i-vectors that have been used in PLDA training is not

ideal since it does not resemble the test situation where the trials are from

new i-vectors, while in our experiments, the benefit of having more data

for training outweighed this problem. Preserving the balance between NIST

SRE and Switchboard was useful, in which case we obtained an relative

improvement in Ĉllr of 5% by weight-adjustment on SRE10.

Weight-adjustment for Scr-UC

We have already confirmed that the weight-adjustment improves the per-

formance of At-Cal. In this experiment we explore the effect of weight-
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Table 5.3: Calibration results for three training/calibration conditions. The condi-
tions are described in Subsubsection 5.3.1. ‘W.-adj’ refers to weight-
adjustment, ‘sp.’ to sample correlation, and ‘α’ refers to the one-
parameter model, tuned for Ĉllr on the development set.

Set Cond. actDCF08 actDCF10 Ĉllr W.-adj.

SR
E0

8

1
0.0267 0.00151 0.286 no

0.0278 0.00146 0.268 α = 0.2

2,3 0.0256 0.00130 0.201 no

2 0.0251 0.00130 0.199 sp.

2 0.0253 0.00131 0.197 α = 1.0

3 0.0251 0.00130 0.196 α = 1.0

SR
E1

0

1
0.0178 0.000623 0.168 no

0.0182 0.000658 0.158 α = 0.2

2,3 0.0143 0.000678 0.100 no

2 0.0141 0.000678 0.098 sp.

2 0.0141 0.000688 0.098 α = 1.0

3 0.0135 0.000678 0.095 α = 1.0

adjustment on Scr-UC. The former is important because this DT scheme

performed the best on SRE10. Since Scr-UC is have more parameters to

be estimated and therefore is more sensitive to over-fitting, it could be ex-

pected that weight-adjustment is more effective for this method than for AT-

Cal. As in the baseline experiments, we applied regularization towards 0.

We used the same regularization as for Scr-UC without weight-adjustment

(which was tuned on the development set). The results are given in Ta-

ble 5.4 and 5.5 in the calibration sensitive and insensitive evaluation met-

rics, respectively. As expected, the effect of weight-adjustment was larger

than for AT-Cal, in particular actDCF08 where we observed improvements

of around 5% and 8% for SRE08 and SRE10, respectively. The difference

between the weight-adjustment based on the one-parameter model and the

weight-adjustment based one sample correlations were as for AT-Cal small.

In general, the minimum costs are much less effected by weight-adjustment

than the actual costs. It should be noticed that the training objective aims at

reducing actual costs. The minimum costs are only indirectly affected since

they cannot be higher than the actual costs.
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Table 5.4: Results of weight-adjustment for Scr-UC in the calibration sensitive
evaluation metrics. The weight-adjustment parameter, α was tuned to
optimize Ĉllr on the development set. L2 regularization towards 0 was
applied.

Set actDCF08 actDCF10 Ĉllr Weight-adj

SRE08

0.0334 0.000876 0.235 no

0.0317 0.000851 0.231 α = 0.2

0.0314 0.000851 0.231 Sample corr.

SRE10

0.0304 0.000916 0.180 no

0.0278 0.000888 0.173 α = 0.2

0.0275 0.000888 0.173 Sample corr.

Table 5.5: Results of weight-adjustment for Scr-UC in the calibration insensitive
evaluation metrics. The weight-adjustment parameter, α was tuned to
optimize Ĉllr on the development set. L2 regularization towards 0 was
applied.

Set minDCF08 minDCF10 EER Ĉmin
llr Weight-adj.

SRE08

0.0304 0.000743 0.0564 0.212 no

0.0302 0.000739 0.0570 0.213 α = 0.2

0.0300 0.000740 0.0572 0.213 Sample corr.

SRE10

0.0183 0.000598 0.0370 0.137 no

0.0182 0.000612 0.0369 0.137 α = 0.2

0.0183 0.000616 0.0368 0.138 Sample corr.

Reduced training data size

In the final experiment, we evaluated AT-Cal and SCR-UC using half smaller

numbers of training speakers, with and without weight-adjustment. For

simplicity, we did not preserve the balance between the NIST SRE and the

Switchboard corpora. The same training data was used both in the GT step

and the DT step. Since previous experiments showed very small differences

between weight-adjustment based on the one-parameter model based on

sample correlations, we use only the former in this experiment. In Table 5.6

the results using half of the training speakers are shown. Scr-UC benefited

mostly from weight-adjustment where actDCF08 improved around 10% for
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Table 5.6: Results for weight-adjustment using half of the training speakers in the
calibration-sensitive evaluation metrics. The weight-adjustment param-
eter, α was tuned to optimize Ĉllr on the development set. For Scr-UC,
L2 regularization towards 0 was applied .

Set Method actDCF08 actDCF10 Ĉllr α

SRE08

AT-Cal
0.0281 0.00092 0.201 0

0.0286 0.00115 0.202 0.2

Scr-UC
0.0591 0.001000 0.349 0

0.0533 0.000997 0.328 0.4

SRE10

AT-Cal
0.0127 0.000743 0.101 0

0.0125 0.000705 0.099 0.2

Scr-UC
0.0646 0.001000 0.327 0

0.0593 0.001000 0.302 0.4

Table 5.7: Results for weight-adjustment using half of the training speakers in the
calibration-insensitive evaluation metrics. Notice that for these evalu-
ation metrics, AT-Cal has no effect, i.e., the results are the same as if
only GT had been used. The weight-adjustment parameter, α was tuned
to optimize Ĉllr on the development set. For Scr-UC, L2 regularization
towards 0 was applied .

Set Method minDCF08 minDCF10 EER Ĉmin
llr α

SRE08

AT-Cal 0.0263 0.000793 0.0523 0.187 -

Scr-UC
0.0340 0.000790 0.0724 0.248 0

0.0329 0.000819 0.0722 0.247 0.4

SRE10

AT-Cal 0.0111 0.000396 0.0229 0.090 -

Scr-UC
0.0239 0.000695 0.0479 0.176 0

0.0238 0.000737 0.0479 0.176 0.4

both SRE08 and SRE10, and Ĉllr improved around 6% for both SRE08 and

SRE10. For reference, the results in the calibration insensitive evaluation

metrics are shown in Table 5.7.
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Table 5.8: Estimated correlations for AT-Cal, and Scr-UC. ‘c0’ and ‘c−0’ are the
estimated correlations for trials that have nothing in common, and ac-
cordingly should be 0.

Set Corr. coeff. AT-Cal Scr-UC

Target

ca 0.378 0.364

cb 0.040 0.108

c0 4.79× 10−4 2.15× 10−4

Non-target

c−a 0.768 0.770

c−b 0.534 0.507

c−c 0.010 0.006

c−d 7.75× 10−4 9.31× 10−4

c−0 −3.15× 10−4 3.20× 10−4

5.3.2 Analysis

In this subsection, we analyze how accurate the assumptions leading to the

weight-adjustment formulas in Eqs. (5.10) and (5.12) are.

The weight-adjustment did not always work well. For example, in condi-

tion 1 in Table 5.3. The fact that the weight-adjustment did not always work

may indicate that the assumptions behind it are not accurate enough. Let

us recall the assumptions. First, we assumed that the correlation between

the losses of two trials does not depend on the model parameters, θ, but

only on what the trials have in common, e.g., one utterance might be the

same in both trials. For the one-parameter model, we further assumed that

all correlations are given by a parameter α which was tuned on the devel-

opment set. The estimated sample correlations are shown in Table 5.8. We

can see that there is a clear correlation between trials involving the same

utterance or speaker. Moreover, the results for the three models are quite

similar, which suggests the dependence on θ may not be large. However, our

assumptions about how the correlations depends on α are not that accurate.

In particular, it is noticeable that using the same two speakers in both trials

causes much more correlation than using only one same utterance, i.e., that

c−b � c−c.



Chapter 6

Constrained discriminative
PLDA training

In this chapter we address the problem of over- or underfitting described

in Section 3.3.2 as well as examine the issues with direct optimization of

the PLDA LLRs score function. As discussed in Section 3.3.2, AT-Cal is a

very constrained DT scheme that is likely to underfit the training data. On

the other hand, the other baseline, Scr-UC, easily overfits to the training

data as showed in the experiments in Chapter 4.2. In those experiments, L2

regularization was crucial for decent performance. This was also concluded

in Burget et al. (2011); Cumani et al. (2011).

Finding the right regularization is, however, difficult. Letting the regu-

larization parameter be equal for all model parameters, as is typical, could

be far from optimal. On the other hand, tuning many different regulariza-

tion parameters is complicated. Here, we therefore propose two training

schemes where a small number of parameters estimated by DT are used to

adjust the score function of a PLDA model estimated by GT. This approach

is in the spirit of AT-Cal but the training schemes we propose are less con-

strained. Based on the discussion in Subsection 2.6.4, we also propose a DT

scheme that preserves the properties of P andQ. In total, we propose three

new DT schemes with varying degree of flexibility. As mentioned in Section

3.1.2, Borgström and McCree (2013) also reduced the number of parame-

ters to be optimized. Contrary to that study we derive exact solutions for

the gradient calculations of our proposed methods. These calculations are

efficient enough for using all possible combinations of the training utter-

57
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ances as training data. The gradients for the training schemes we propose

can be derived based on the gradients for Scr-UC given in Cumani et al.

(2011). The proposed DT schemes are presented in Section 6.1, the details

of gradient calculations as well as the initializations are given in A.4 and ex-

periments that compares the proposed DT schemes with the two baselines

are given in Section 6.2.

6.1 Constrained DT schemes

In this section we present the three proposed constrained DT schemes for

PLDA. The first two estimates fewer parameters than Scr-UC. The third one

estimates as many parameters to as Scr-UC but restricts the values that these

parameters can take.

The constrained DT schemes do not change the form of the PLDA score

function, i.e., the function given in Eqs (2.38) and (2.44). This may seem

to be a limitation but in fact, it has been shown that the second order Taylor

expansion1 of any (analytic) score function that is symmetric with respect

to i-vector swapping, has this form (Cumani et al., 2013). Scr-UC can there-

fore be seen as discriminatively trained approximation of the best possible

score function. By the constrained DT schemes we aim to make reasonable

limitations of the score functions in order to avoid overfitting.

6.1.1 Reducing the number of parameters to be estimated

Using 4 parameters

As an option with O(1) parameters, we propose to scale each part of the

PLDA LLR score function:

sij = aPω
T
i Pωj + aPω

T
j Pωi + aQω

T
i Qωi + aQω

T
j Qωj

+ac(ωi + ωj)
Tc+ akk, (6.1)

where aP, aQ, ac and ak are trained discriminatively, and P , Q c and k are

obtained by GT. In other words, we let the discriminative training adjust the

weight of each feature kind in the original model parameters. The definite-

ness properties P andQ given in Subsection 2.6.4 were, in our experiments,
1The Taylor expansion needs to be done around a symmetric point such as (0,0) but this

is reasonable since the mean both the i-vectors are 0.
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almost always satisfied by itself (see Subsection 5.3.2), so we did not add

any other constraints for this purpose. We refer to this method as Scr-4par.

It should be noted that if aP = aQ = ac in Eq. (6.1), we obtain AT-Cal.

Using d+ 1 parameters

As an option with O(d) parameters, we propose to scale all the elements of

the i-vector. Either one scaling for each of P , Q and c, or a common scaling

can be used. In either case, we use a scaling of k. Accordingly this gives

3d + 1 or d + 1 parameters to be estimated. In this study, we use the latter

and refer to it as iV-elmnt. Another natural option with O(d) parameters is

to scale the eigenvalues of P and Q, but the advantage of iV-elmnt is that

we do not have to consider whether to preserve the PLDA properties.

For generative ML training, letting rank(V ) = r < d has been reported

to be beneficial (Matejka et al., 2011). As explained in Section 2.6.4, this re-

duces the rank ofP and ofQ from d to r as well. Based on results in (Bishop,

2006, p. 577) it follows that the number of parameters to be estimated will

be reduced from d2 + 2d+ 1 = O(d2) to r(2d− r) + d+ r+ 1 = O(dr). How-

ever, a large reduction of the number of parameters in this way limits the

model too much. As an extreme example, if we want the same number of

parameters as iV-elmnt, we have to set r = 1, which means that the i-vectors

are projected into a one-dimensional space.

6.1.2 Preserve the properties of P and Q

Scr-UC optimizes the parameters of LLR score, [vec(P )T , vec(Q)T , cT , k]T =

γ, directly, whereas the DT scheme proposed in Borgström and McCree

(2013) optimizes the parameters of the PLDA model, m, V and D. The

discriminative training objective in Eq. (3.2) depends on the scores, sh, of

the training trials. Since the scores according to Eq (2.44) are given by a

linear function of γ, direct optimization of γ is most straight-forward. How-

ever, if no constraints are imposed on γ, this may result in a model with

different properties than a PLDA model.

As the least constrained option, we propose to just preserve the defi-

niteness constraints of P and Q. In this case the number of parameters

to be estimated is not reduced, but the values they can take are limited.

In this subsection, we propose reparameterizations of P and Q such that
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when these parameters are optimized instead of P and Q, the definiteness

constraints will be preserved.

The matrix P is positive-semidefinite if

P = PAP
T
A , (6.2)

where PA is a d× r matrix with real elements. Accordingly, in order to keep

P positive-semidefinite, we train PA instead of P . The rank of P is equal to

r and can therefore be selected by selecting the number of columns in PA.

If we wish to control the rank without keeping P positive definite, we can

use P = PAPB where PB 6= P T
A .

In order to keep Q negative-semidefinite, we set

Q = −QAQ
T
A, (6.3)

and train QA instead of Q.

In order to enforce the third constraint, we use Q = −QAQ
T
A but set

P +Q = RAR
T
A, (6.4)

instead of P = PAP
T
A . We then optimize RA and QA. In this study, we

apply the three definiteness constraints of P and Q in this way without

reducing their rank. We refer to this method as Scr-Def.

Regularization

As for Scr-UC, we apply L2 regularization to Scr-Def. That is, we add the

term ρ‖θ − θ̃‖2 to the training objective in Eq. (7.1), where ‖·‖ denotes the

Euclidean norm and the regularization parameter, ρ, is tuned on a develop-

ment set. This forces the parameter vector, θ, to be close to θ̃. For Scr-UC

and Scr-Def, we use either 0 or the model from GT. For Scr-Def, we use reg-

ularization in terms of P and Q rather than RA and QA. For example, the

contribution to the regularization term from Q is

ρ‖vec(Q− Q̃)‖2 = ρ‖vec(−QAQ
T
A − Q̃)‖2, (6.5)

rather than ρ‖vec(QA − Q̃A)‖2, where Q̃ and Q̃A denotes either 0 or the

parameters obtained by GT.

The optimal ρ depends on the size of the training data. Instead of tuning

ρ for each training data size, we use a modified training objective given by

L̂′(θ) = κL̂(θ) + ρ‖θ − θ̃‖2 (6.6)
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where κ = N1 + N−1. We then tune ρ for the full training data and use

this value also for smaller amounts of training data. This means that the

influence of the regularization becomes larger for the smaller training data.

6.2 Experiments

In this section we evaluate the different DT schemes. Here we do not utilize

the weight-adjustment proposed in Chapter 5. See Chapter 8 for experi-

ments that combines the constrained DT schemes with weight-adjustment.

We followed the experimental set-up given in Section 4.1.1 and 4.2.1.

Comparison of DT schemes

We evaluated the different discriminative PLDA training schemes without

weight-adjustment. Since in the previous experiment, using all training data

both for the GT step and the DT step was better in almost all cases, we con-

tinued to use this approach. The results are shown in Table 6.1 and 6.2 for

the calibration sensitive and insensitive evaluation metrics, respectively. If

we ignore the methods for which regularization towards the GT model was

applied, there is a clear pattern in the results. Overall, one of the baselines,

AT-Cal, performed best for SRE08 and Scr-4par performed best for SRE10,

where the relative improvement over AT-Cal was 14%. The less constrained

iV-elmnt performed worse than these two methods but better than Scr-UC

which has no constraints other than regularization. One possible reason

that the most constrained DT scheme, AT-Cal, was the best for SRE08 might

be that this database has a larger mismatch with the training data than

SRE10. In such case DT might be more risky unless it is very constrained.

Compared to SRE10, SRE08 contains non-english speech and possibly also

speech recorded with a microphone. The training data contains only a small

ratio of such speech.

For Scr-Def and Scr-UC, we had to apply regularization in order to avoid

overfitting. The regularization parameter, ρ was chosen to minimize Ĉllr on

the development set, SRE06. In terms of Ĉllr, these two methods performed

worse than AT-Cal and Scr-4par. Applying regularization towards the GT

model, gives mixed results. Both SCR-Def and SCR-UC performed well in

actDCF08 but they did not perform well in actDCF10 and Ĉllr. This indi-
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Table 6.1: Results for different DT schemes in the calibration sensitive evaluation
metrics. AT-Cal and Scr-UC R. 0 are baselines.‘R. GT’ and ‘R. 0’ mean
L2 regularization towards the model obtained by GT and regularization
towards 0, respectively. The regularization parameter, ρ, was tuned to
optimize for Ĉllr on the development set.

Set Method actDCF08 actDCF10 Ĉllr ρ

SR
E0

8

AT-Cal 0.0256 0.00130 0.201 -

Scr-4par 0.0274 0.00257 0.202 -

iV-elmnt 0.0269 0.00171 0.225 -

Scr-Def. R. GT 0.0269 0.01278 1.415 102

Scr-UC. R. GT 0.0268 0.01269 1.416 102

Scr-UC. R. 0 0.0334 0.000876 0.235 101

SR
E1

0

AT-Cal 0.0143 0.000678 0.100 -

Scr-4par 0.0117 0.000574 0.086 -

iV-elmnt 0.0146 0.000563 0.119 -

Scr-Def. R. GT 0.0110 0.001523 0.663 102

Scr-UC. R. GT 0.0111 0.001495 0.664 102

Scr-UC. R. 0 0.0304 0.000916 0.180 101

cates that these systems are only good for the effective prior that has been

specified in the training objective. The bad performance for the other effec-

tive priors is, however, surprising since the logistic regression loss function

emphasizes on a broad range of effective priors (Brümmer and du Preez,

2006). Moreover, the optimal ρ was quite large and the effect on minDCF08

was minor. It should also be noted that the optimal ρ varies depending on

which evaluation metric is considered. In particular, this was a problem for

Scr-Def with regularization towards 0 so we did not include that result in

the table. The problem of this method method might be because its objective

function is non-convex.

All the results taken into account, AT-cal and Scr-4par seems to be the

best methods for this amount of training data or smaller.

Reduced training data size

In the final experiment, we evaluated Scr-4par and the two baselines AT-Cal

and SCR-UC using half the number of training speakers. The same training
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Table 6.2: Results for different DT schemes in the calibration insensitive evalu-
ation metrics. AT-Cal and Scr-UC R. 0 are baselines.‘R. GT’ and ‘R. 0’
mean L2 regularization towards the model obtained by GT and regu-
larization towards 0, respectively. The regularization parameter, ρ, was
tuned to optimize for Ĉllr on the development set.

Set Method minDCF08 minDCF10 EER Ĉmin
llr ρ

SR
E0

8

AT-Cal 0.0250 0.000728 0.0480 0.175 -

Scr-4par 0.0254 0.000802 0.0471 0.177 -

iV-elmnt 0.0262 0.000669 0.0478 0.182 -

Scr-Def. R. GT 0.0253 0.000809 0.0461 0.178 102

Scr-UC. R. GT 0.0253 0.000809 0.0459 0.178 102

Scr-UC. R. 0 0.0304 0.000743 0.0564 0.212 101

SR
E1

0

AT-Cal 0.0101 0.000385 0.0198 0.0788 -

Scr-4par 0.0100 0.000375 0.0188 0.0744 -

iV-elmnt 0.0121 0.000412 0.0253 0.0962 -

Scr-Def. R. GT 0.0103 0.000377 0.0204 0.0805 102

Scr-UC. R. GT 0.0103 0.000380 0.0203 0.0801 102

Scr-UC. R. 0 0.0183 0.000598 0.0370 0.1368 101

Table 6.3: Results for three DT schemes in the calibration insensitive evaluation
metrics using half of the training speakers.. For Scr-UC, L2 regulariza-
tion towards 0 was applied.

Set Method actDCF08 actDCF10 Ĉllr

SRE08

AT-Cal 0.0281 0.00092 0.201

Scr-4par 0.0322 0.00177 0.220

Scr-UC 0.0591 0.001000 0.349

SRE10

AT-Cal 0.0127 0.000743 0.101

Scr-4par 0.0116 0.000657 0.095

Scr-UC 0.0646 0.001000 0.327

data was used both in the GT step and the DT step. The results are shown

in Table 6.3 and 6.4 for the calibration sensitive and insensitive evaluation

metrics respectively. Looking at the Ĉllr column we can see that reducing

the amount of training data deteriorated the performance more, the less

constrained the models were as can be expected.
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Table 6.4: Results for three DT schemes in the calibration insensitive evaluation
metrics using half of the training speakers. For Scr-UC, L2 regularization
towards 0 was applied.

Set Method minDCF08 minDCF10 EER Ĉmin
llr

SRE08

AT-Cal 0.0263 0.000793 0.0523 0.187

Scr-4par 0.0274 0.000921 0.0515 0.190

Scr-UC 0.0340 0.000790 0.0724 0.248

SRE10

AT-Cal 0.0111 0.000396 0.0229 0.090

Scr-4par 0.0106 0.000394 0.0217 0.085

Scr-UC 0.0239 0.000695 0.0479 0.176

6.3 Analysis

In this section, we first perform an error analysis to figure out why did not

see any improvement over AT-Cal on SRE08. Second, we analyze whether

the definiteness properties of P and Q discussed in Subsection 2.6.4 are

important.

6.3.1 Error analysis

Our proposed DT scheme, Scr-4par, outperformed AT-Cal on SRE10 but not

on SRE08. In order to understand the reason for the poor performance

on SRE08, we need to consider the differences between SRE08 and SRE10

more in detail. Each NIST evaluation focuses on a variety of issues in

speaker verification. For example, transmission channels (telephone, mi-

crophone), varying utterance lengths, multiple enrollment utterances, very

short utterances, vocal effort (whispering, normal speech, screaming) etc.

All such factors can affect the merit of a method. In our experiments though,

we used the core task condition-6 for SRE08 and the (extended) core task
condition-5 for SRE10. These two conditions excludes most of the above

mentioned factors by involving only telephone speech in both the enroll-

ment and the authentication data, having fairly matched utterance lengths

of the enrollment and authentication utterances, only one enrollment utter-

ance per target speaker and so on. Moreover, they are quite well matched

with the properties of our training data (SRE04, SRE05 and the Switchboard

corpora, see Section 4.1.1). This set-up is suitable when studying funda-
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Table 6.5: Error analysis for SRE08. The error rates are calculated using the deci-
sion threshold for DCF08. The FA cost and FR cost are calculated using
the effective prior for DCF08, Peff = 0.0917, i.e., the FA cost equals the
FA rate times 1 − Peff and the FR cost equal the FR rate times Peff. Ac-
cordingly, the actDCF is the sum of the cost for FA and FR.

Method Data FA rate FR rate FA cost FR cost actDCF Ĉllr

AT-Cal All 0.0116 0.164 0.0151 0.0105 0.0256 0.201

Eng. 0.0028 0.132 0.0025 0.0121 0.0146 0.119

Other 0.0216 0.195 0.0196 0.0179 0.0375 0.288

Scr- All 0.0183 0.117 0.0166 0.0108 0.0274 0.202

4par Eng. 0.0042 0.085 0.0038 0.0078 0.0116 0.111

Other 0.0343 0.149 0.0311 0.0137 0.0448 0.302

mental techniques rather then one of specific challenges mentioned above.

However, there is one important difference between the SRE08 core task

condition 6 (SRE08) and the SRE10 core task condition-5 (SRE10). Namely

that SRE08 contains a large portion of non-English data whereas SRE10 con-

tains only English data. The training data contains very little speech from

languages other than English. Since a less constrained DT scheme more eas-

ily overfits to the training data, this kind of mismatch between the training

and evaluation data can therefore be a reason for the bad performance of

Scr-4par compared to AT-Cal. In order to check this hypothesis we evalu-

ate the performance of the methods for the English and non-English trials

separately. The results in actDCF08 and Ĉllr are shown in Table 6.5. For

further analysis, we also check the FA rate and FR rate for actDCF08. As

can be seen, for the English trials Scr-4par outperforms AT-Cal but for the

non-English trials AT-Cal is clearly better. This analysis suggests that when

there is a mismatch between the training and the test data, one need to

use more constrained DT schemes. It is interesting to notice that for both

English and non-English trials, the FA rate is lower for AT-Cal and the FR

rate is lower for Scr-UC. For the English trials, the lower FR rate of Scr-4par

outweighs its higher FA rate. Naturally, for other values of Peff, the decision

threshold would have been different and hence the error rates. The fact that

Ĉllr improves (as well as the improvements in actDCF10 for SRE10) tells us

that Scr-4par outperforms AT-Cal for other values of Peff too.
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6.3.2 Definiteness properties of P and Q

As already revealed, for Scr-4par, the definiteness constraints on P and Q

were almost always preserved by itself. P was always kept positive defi-

nite and Q was always kept negative definite. Out of the 8 training sizes,

it happened once that the matrix P + Q was not positive definite, but in

this case, only one of its eigenvalues were negative. We did not see any

difference in performance between Scr-Def and Scr-UC but an inspection

of the eigenvalues reveals that the definiteness constraints were never ful-

filled for Scr-UC, regardless of whether regularization was applied towards

the model obtained by GT, or towards 0. However, we also investigated

whether ωTPω > 0, ωTQω < 0 and ωT (P + Q)ω > 0 for each i-vector,

ω, in the PLDA training set and in the development set, SRE06. When regu-

larization towards the GT model was applied, the number of violations was

very few. This means that the constraints are, in some sense, practically ful-

filled for i-vectors that are normally observed. This may be because the DT

model remains close to the GT model and therefore keeps its properties. In-

terestingly though, when regularization towards 0 was applied, there were

many violations against the second constraint, ωTQω < 0, but no violations

against the other two constraints. Recall from Section 2.6.4 that the second

constraint is related to a length property of the model, which is unlikely to

be useful when the i-vectors are length-normalized. While this supports our

analysis in Section 2.6.4, it also shows that, at least for the training sizes

used in our experiment, the training procedure tends to learn the useful

properties from the data.



Chapter 7

Application-specific loss
functions

As discussed in Sections 3.2 and 3.3.3, the choice of loss function in DT

is important but far from trivial. In order to obtain calibrated LLR scores,

we should use proper scoring rules as loss functions. Among them Ĉllr,

emphasizes on a broad range of OPs. As opposed the logistic regression

loss, we refer to loss function that focus on a narrower range of OPs as

application-specific. In many applications the evaluation metric of interest

is actDCF of one specific OP (and if several OPs are of interest, we could

usually train one system for each of them). However, it is not certain DT

with a loss function that focus only on the specific OP, i.e., a 0-1 loss, will

result in the best performance due to the difficulty of optimization. In this

chapter we explore this issue. Specifically, we aim to minimize actDCF08

for Scr-UC. To this end we evaluate the Brier loss and the (approximate)

0-1 loss as well as the tuning of peff. The contribution of this chapter lies

in the experimental analysis rather than in any technical novelty. In section

7.1, we discuss the theoretical considerations and in Section 7.2 we present

our experiments. Experiments that combines the application-specific loss

function with the methods proposed in Chapters 5 and 6 are presented in

Chapter 8.

67
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7.1 Motivation

Recall that our training objective is to minimize

l̄(θ) =
∑
h:th=1

Peff

N1
l (th, sh(θ), τ) +

∑
h:th=−1

1− Peff

N−1
l (th, sh(θ), τ) , (7.1)

where l (th, sh, τ) is the loss function. In other words, we minimize the av-

erage of l (th, sh, τ) of the training trials balanced with Peff. By doing this

we aim to minimize the expected loss of l (th, sh, τ) of a test trial when the

probability of a target trial is Peff (see the beginning of Chapter 5 for details

regarding the expected loss of test trial). In this thesis, we have up until now

l (th, sh, τ) employed the logistic regression loss. In many applications the

relevant evaluation metric is actDCF for some OP. It may therefore tempt-

ing to use actDCF as a loss function, i.e., the 0-1 loss function. However,

this has several problems. The optimization is difficult because the 0-1 loss

is a non-differentiable and non-convex function. These problems becomes

worse when there are many parameters to optimize as in Scr-UC. Further-

more, the 0-1 loss easily overfits to the training data since it only cares about

getting the scores on the right side of the threshold. For AT-Cal, this would

be equivalent to tuning the threshold which we argued is sensitive to over-

fitting in Section 2.3.1 and again, this problem will get worse when there

are more parameters to optimize. The advantage of the 0-1 loss is that it is

robust to outliers since the cost is bounded.

A compromise between the logistic regression loss and the 0-1 loss is the

Brier loss. This loss function focus on a narrower range of operating points

than the logistic regression loss but a not as extremely narrow (i.e., one

OP) as the 0-1 loss. For AT-Cal, Brümmer and Doddington (2013) obtained

better results with the Brier loss when the evaluation metric was Cprimary of

the NIST SRE 2012 (an average of actDCF with Peff = 0.01 and actDCF with

Peff = 0.001).

Aside for the choice of loss function, the choice of Peff needs to be con-

sidered. We have previously argued that in order to minimize the expected

loss of a test trial, Peff must be set according to Eq (2.5). However, this is

true only when the loss function used in the training objective is the same

as we want to minimize in the testing phase. If our aim is to minimize

actDCF (the 0-1 loss) of the test trials, bu we in order to avoid overfitting,

use logistic regression or the Brier loss in the training objective, there is not
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guarantee that thePeff given by Eq (2.5) is the optimal one. Furthermore,

there are other, more practical reasons why the optimal value of Peff can

be different. One reason is that in the NIST test data, all target trials are

from different telephone numbers. This is not the case in the training data

where most target trials are from the same telephone number. In order for

the different-number target trials to obtain appropriate influence over the

model, Peff may have to be adjusted.1

7.1.1 Loss functions

Here we give an summary of the key properties of the three loss functions.

The shapes of the loss functions are shown in Figure 7.1 and the correspond-

ing weight for different LLR thresholds are shown in Figure 7.2.

Logistic regression loss

Uses the weight function w(ζ) = 1⇔ w(τ ′) = 1/(2 + exp(x) + exp(−x)).

lLR(t, s; τ) = log(1 + exp(−t(s− τ)), (7.2)

• Focuses on a wide range of OPs

• Convex

• Can be sensitive to outliers

Brier loss

Uses the weight function w(ζ) = 6ζ(1 − ζ) ⇔ w(τ ′) = 6/(2 + exp(x) +

exp(−x))2.

lBrier(t, s; τ) =
3

(1 + exp t(s− τ))2
, (7.3)

• Focuses on a narrow range of OPs

• Non-convex
1We thank one anonymous reviewer of our Odyssey paper (Rohdin et al., 2014b) four

pointing this out.



Application-specific loss functions 70

−2 −1 0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

LR
Brier
0-1, α=100
0-1, α=10
0-1, α=1

Figure 7.1: Comparison of loss functions. The Brier and the 0-1 loss functions
have been normalized to have a maximum of 1.

0-1 loss

Uses the weight function w(ζ) = δ(0) ⇔ w(τ ′) = δ(τ ′ − τ), where δ(τ ′) is

the Dirac impulse at τ ′.

l0−1(t, s; τ) =

{
1 if t(s− τ) < 0,

0 else.
(7.4)

• Focuses on one OP

• Non-convex

• Non-differentiable

To obtain a differentiable loss function we use a standard trick to approxi-

mate it with the sigmoid function Nguyen and Sanner (2013),

lσ(t, s; τ) =
1

1 + exp(αt(s− τ))
. (7.5)

This function is differentiable and can become arbitrary close to the 0-1 loss

function if α is increased. We will refer to this as the approximate 0-1 loss.

In order for it to be a good approximation to the 0-1 loss, we need to make

α large enough. As can be seen in Figure 7.1, α = 100 approximates the 0-1

well on the relevant scale.
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Figure 7.2: The LLR threshold weight for different loss functions functions. Here,
we used τ = 0.

7.1.2 Optimization procedure

Since the Brier and the approximate 0-1 loss are non-convex we may get

stuck in a bad local minima during the optimization process. A simple ap-

proach to deal with the non-convexity of the approximate 0-1 loss was pro-

posed in Nguyen and Sanner (2013). In this work they gradually increase

the values of α during optimization. Although the loss function is non-

convex for any choice of α, it was empirically shown that lower values of α

results in fewer local minima. We will use this with α = [1, 10, 100]. For the

Brier loss we will use two steps, first the approximate 0-1 loss with α = 1

and then the Brier loss. In both cases we will start from the LR model. It

should be noted that the work in Nguyen and Sanner (2013) in addition to

this strategy tried to escape local minima by systematically searching their

neighborhood for lower points.
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Table 7.1: Comparison of loss functions in the calibration sensitive evaluation met-
rics. L2 regularization towards 0 was applied. The regularization pa-
rameter, ρ, was tuned to optimize actDCF08 on the development set.

Set Method actDCF08 actDCF10 Ĉllr ρ

SRE08

Logistic regression 0.0334 0.000876 0.235 10

Brier 0.0322 0.000938 0.285 10

Approximate 0-1 0.0312 0.001000 1.626 100

SRE10

Logistic regression 0.0304 0.000916 0.180 10

Brier 0.0287 0.000978 0.229 10

Approximate 0-1 0.0453 0.001000 1.627 100

7.2 Experiments

We used the experimental set-up described in Chapter 4. But notice that

aim of the experiments in this Chapter is to minimize one specific evacua-

tion metric, namely actDCF08. Other evaluation metrics could therefore be

expected to degrade. We conducted 2 experiments. In the Subsection 7.2.1,

we compare the three loss functions for Scr-UC. In the Subsection 7.2.2, we

evaluate the effect of varying Peff. 2

7.2.1 Comparison of loss functions

The results for the different loss functions in the calibration-insensitive eval-

uation metrics are given in in Table 7.1. The Approximate 0-1 loss per-

formed well on SRE08 very bad on SRE10. The optimal regularization was

also higher than for the other two loss function, which is reasonable since

the 0-1 loss more easily overfits. The Brier loss performed better than the

baseline on both SRE08 and SRE10 in actDCF08. In the other evaluation

metrics, it performed worse but this is expected since our target was to op-

timize the system for actDCF08 only.

The results for the different loss functions in the calibration-insensitive
2Notice that the experimental set-up here is quite different from the one in Rohdin et al.

(2014b). There we used rank(V ) = 250 and a larger training data set. Further, we used
regularization towards the ML models which our experiments in Chapter 6 showed is prob-
lematic. Also, when varying Peff, τ was kept fixed at the original value. In the experiment in
this thesis, we updated τ according to Eq (2.6).
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Table 7.2: Comparison of loss functions in the calibration insensitive evaluation
metrics. L2 regularization towards 0 was applied. The regularization
parameter, ρ, was tuned to optimize actDCF08 on the development set.

Set Method minDCF08 minDCF10 EER Ĉmin
llr ρ

SR
E0

8 Logistic regr. 0.0304 0.000743 0.0564 0.212 10

Brier 0.0305 0.000743 0.0550 0.211 10

Approx. 0-1 0.0304 0.000785 0.0667 0.231 100

SR
E1

0 Logistic regr. 0.0183 0.000598 0.0370 0.1368 10

Brier 0.0180 0.000594 0.0357 0.1325 10

Approx. 0-1 0.0208 0.000630 0.0436 0.1593 100

evaluation metrics are given in in Table 7.2 As can be seen, the methods

performed very similar in minDCF08. A possible explanation for this could

be that model has not changed from much the logistic regression model that

we used as starting point in the optimization. Although, it changed enough

to affect the calibration sensitive evaluation metrics significantly. This issue

deserves further analysis in the future.

7.2.2 Effect of the weight in the training objective

In order to see the effect of varying Peff, we substituted Peff with P ′eff =

γPeff/(γPeff + (1− γ)(1− Peff)). For γ = 0.5 this gives P ′eff = Peff, for γ = 1,

it gives P ′eff = 1 and for γ = 0, it gives P ′eff = 0. We then train an Scr-UC

model with the Brier loss for γ between 0.1 and 0.9. The results shown in

Figure 7.3.

The choice of β seemed to be important for actDCF but less important

for minDCF.
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Figure 7.3: The effect of changing Peff. The x-axis shows γ as defined in the text.



Chapter 8

Combining the proposed
methods

In this chapter we analyze the combinations of the methods from Chapter

5, 6 and 7. It should be noted that while the methods of Chapters 5 and 6

aims at improving speaker verification in general, i.e., for all evaluation met-

rics, the application-specific loss functions of Chapter 7 aims at improving

the performance for one or a few OPs on the expense of worsened perfor-

mance for other OPs. This is not always desirable. The organization of this

chapter is as follows. In Section 8.1 we hypothesize what can be expected

when combining the methods, based on the discussions and experiments

in the previous Chapters. In Section 8.2 we then present experiments with

various combinations of the methods. We devote one subsection to each

combination of two methods and one subsection to the combination of the

three methods. Finally, we end this Chapter by a summary of the results as

well as recommendations for how and when to use the different methods in

Section 8.3.

8.1 Expectations

Based on the the discussions in Chapter 5, 6 and 7 we can expect the fol-

lowing:

• By reducing the variance of the training objective, weight adjustment

has a similar effect as adding training data. Therefore it should be

75
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more useful for less constrained DT schemes. In fact, this was con-

firmed in Chapter 5 were we showed that weight-adjustment was

more effective for Scr-UC than the more constrained AT-Cal. Our best

DT scheme was Scr-4par. This DT scheme is only slightly less con-

strained than AT-Cal, so the benefit of applying weight-adjustment to

it can be expected to be similar to that of AT-Cal. We evaluate this in

Section 8.2.1.

• Application specific loss functions are more sensitive to overfitting

since it puts no or little emphasize on scores that are not close to

the decision threshold, τ . Therefore they need more training data

for robust parameter estimation and accordingly, weight-adjustment,

should be more useful since it has a similar effect as increasing the

training data. We evaluate this in Section 8.2.2.

• Since constrained DT schemes are not flexible enough to provide ac-

curate LLRs for all OPs, application specific loss functions can be ex-

pected to be more useful for more constrained DT schemes. We eval-

uate this in Section 8.2.3.

8.2 Experiments

8.2.1 Weight-adjustment and constrained DT

In Chapter 5 we showed that the proposed weight-adjustment of the train-

ing trials improves the performance of the two baselines, Scr-UC with reg-

ularization toward 0, and At-Cal. In Chapter 6 we found the the proposed

constrained DT scheme, Scr-4par outperformed AT-Cal on SRE10 but not on

SRE08. In this experiment we explore the effect of weight-adjustment on

Scr-4par. For simplicity, we did not preserve the balance between the NIST

SRE and the Switchboard corpora. The same training data was used both in

the GT step and the DT step.

Results using all training speakers

The results using all training data are given in Table 8.1 and 8.2 for the

calibration-sensitive and calibration-insensitive evaluation metrics respec-

tively. At-Cal which was the best baseline is included for comparison. For
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Table 8.1: Combination of weight-adjustment and constrained DT. Results in
calibration-sensitive evaluation metrics. The weight-adjustment param-
eter, α was tuned to optimize Ĉllr on the development set.

Set Method. actDCF08 actDCF10 Ĉllr Weight-adj

SRE08

At-Cal

0.0256 0.00130 0.201 no

0.0253 0.00131 0.197 α = 1.0

0.0251 0.00130 0.199 sp.

Scr-4par
0.0274 0.00257 0.202 no

0.0276 0.00256 0.204 Sp.

SRE10

At-Cal

0.0143 0.000678 0.100 no

0.0141 0.000688 0.098 α = 1.0

0.0141 0.000678 0.098 sp.

Scr-4par
0.0117 0.000574 0.086 no

0.0116 0.000569 0.085 Sp.

Table 8.2: Combination of weight-adjustment and constrained DT. Results in
calibration-insensitive evaluation metrics. Notice that for these evalu-
ation metrics, AT-Cal has no effect, i.e., the results are the same as if
only GT had been used.

Set Method. minDCF08 minDCF10 EER Ĉmin
llr W.-adj

SRE08

At-Cal 0.0250 0.000728 0.0480 0.175 -

Scr-4par
0.0254 0.000802 0.0471 0.177 no

0.0254 0.000804 0.0476 0.178 Sp.

SRE10

At-Cal 0.0101 0.000385 0.0198 0.079 -

Scr-4par
0.0100 0.000375 0.0188 0.0744 no

0.0099 0.000375 0.0188 0.0742 Sp.

the one-parameter model, we did not obtain any improvement in Ĉllr on

the development set. Therefore, only the α = 0 is included. The effect of

weight-adjustment based on sample correlations were small. In general, the

minimum costs are much less effected by weight-adjustment than the actual

costs.
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Results using fewer training speakers

In this experiment, we evaluated Scr-4par and At-Cal for smaller numbers of

training speakers, with and without weight-adjustment. Since previous ex-

periments showed very small differences between weight-adjustment based

on the one-parameter model based on sample correlations, we use only the

former in this experiment. In Table 8.3 and 8.4 the results using half of

the training speakers, for the calibration-sensitive and-insensitive evaluation

metrics, respectively. In Fig. 8.1, Ĉllr vs. the number of training speakers is

shown for SRE10. It is clear that Scr-4par gave better results than AT-cal and

that the weight-adjustment in most cases improved the performance of both

methods. The relative improvements of Scr-4par with weight-adjustment

compared to the baseline, AT-Cal without weight-adjustment, ranged from

7% to 19% for the different training sizes. It is interesting that the gap be-

tween the two methods became larger when the amount of training data

increased. This is reasonable since more training data is needed in order to

take advantage of the extra flexibility of Scr-4par. However, in accordance

with the experiment in Subsubsection 6.2, AT-Cal was better on SRE08 in

most cases. As in the experiments with AT-Cal in Subsubsection 5.3.1, the

effect of weight-adjustment disappears when the number of training speak-

ers became large. For other evaluation metrics than Ĉllr, the trend was less

clear.

8.2.2 Weight-adjustment and application-specific loss functions

In this section, we apply weight-adjustment proposed in Chapter 5 and one

of the application-specific loss functions presented in Chapter 7, the Brier

loss, on Scr-UC. We choose the Brier loss since had a more stable behavior

than the 0-1 loss and was effective for both SRE08 and SRE10. As in Chapter

7, we used the effective prior of DCF08, Peff = 0.0917. We applied L2 regu-

larization with the regularization parameter, ρ being tuned for α = 0, i.e., no

weight-adjustment. The results in the calibration sensitive evaluation met-

rics are shown in Table 8.5. It is clear that the benefits of weight-adjustment

and the Brier loss are complementary for actDCF08. However, contrary to

the expectation, the Brier loss did not benefit more than the logistic regres-

sion loss from weight-adjustment. This could perhaps partly be explained by

the fact that the Brier loss gave a better actDCF08 and therefore is harder to
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Table 8.3: Weight-adjustment for constrained DT using half of the training speak-
ers. Results in calibration-sensitive evaluation metrics. The weight-
adjustment parameter, α was tuned to optimize Ĉllr on the development
set.

Set Method actDCF08 actDCF10 Ĉllr Weight-adj

SRE08

AT-Cal
0.0281 0.00092 0.201 no

0.0286 0.00115 0.202 α = 0.2

Scr-4par 0.0322 0.00177 0.220 no

0.0319 0.00217 0.219 α = 0.3

SRE10

AT-Cal
0.0127 0.000743 0.101 no

0.0125 0.000705 0.099 α = 0.2

Scr-4par 0.0116 0.000657 0.0950 no

0.0114 0.000607 0.0934 α = 0.3

Table 8.4: Weight-adjustment for constrained DT using half of the training speak-
ers. Results in calibration-insensitive evaluation metrics. Notice that for
these evaluation metrics, AT-Cal has no effect, i.e., the results are the
same as if only GT had been used. The weight-adjustment parameter, α
was tuned to optimize Ĉllr on the development set.

Set Method minDCF08 minDCF10 EER Ĉmin
llr Weight-adj

SR
E0

8 AT-Cal 0.0263 0.000793 0.0523 0.187 -

Scr-4par
0.0274 0.000921 0.0515 0.190 no

0.0273 0.000910 0.0519 0.189 α = 0.3

SR
E1

0 AT-Cal 0.0111 0.000743 0.0229 0.090 -

Scr-4par
0.0106 0.000657 0.0217 0.0848 no

0.0106 0.000607 0.0219 0.0850 α = 0.3

improve. As explained in Chapter 7, the application-specific loss functions

improves the performance on one or a small range of OPs, on the expense

of worsened performance on the other OPs. Since we target the OP corre-

sponding to DCF08, it is not surprising that the performance is reduced for

actDCF10 and Ĉllr.
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Figure 8.1: Ĉllr for SRE10 vs. the percentage of training speakers. 100% equals
1152 speakers. The weight-adjustment parameter, α, was chosen to be
optimal for the development set for each training-size.

Table 8.5: Combination of weight-adjustment and the Brier loss for Scr-UC. The
results for the logistic regression loss are included for comparison. A ‘*’
indicates that the value of the parameter was optimal on the develop-
ment set, SRE06.

Set Loss fcn. Wght-adj. actDCF08 actDCF10 Ĉllr ρ

SRE08

Log. Reg. α = 0 0.0334 0.000876 0.235 *10

Log. Reg. ∗α = 2 0.0317 0.000851 0.231 10

Brier α = 0 0.0322 0.000938 0.285 *10

Brier ∗α = 3 0.0309 0.000931 0.288 10

SRE10

Log. Reg. α = 0 0.0304 0.000916 0.180 *10

Log. Reg. ∗α = 2 0.0278 0.000888 0.173 10

Brier α = 0 0.0287 0.000978 0.229 *10

Brier ∗α = 3 0.0270 0.000969 0.228 10

8.2.3 Constrained DT and application-specific loss functions

In this section we combine the best performing DT scheme of Chapter 6,

Scr-4par, and the Brier loss presented in Chapter 7. As in previous experi-

ments, we target actDCF08. The results are shown in Table 8.6. The most

noticeable was the very bad results for other evaluation metrics than act-
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Table 8.6: Scr-4par trained with the Brier loss. The results for Scr-4par and AT-Cal
trained with the logistic regression loss are included for comparison.

Set Loss fcn. DT scheme actDCF08 actDCF10 Ĉllr

SRE08

Log. reg. AT-Cal 0.0256 0.00130 0.201

Log. reg. Scr-4par 0.0274 0.00257 0.202

Brier Scr-4par 0.0257 0.01516 8633.739

SRE10

Log. reg. AT-Cal 0.0143 0.000678 0.100

Log. reg. Scr-4par 0.0117 0.000574 0.086

Brier Scr-4par 0.0122 0.001482 5551.906

DCF08. An inspection of the estimated model parameters, aP, aQ, ac and ak,

reveals that when the Brier loss is used for Scr-4par, they become very large

in magnitude. Looking at Eq. (6.1), we can see that if all of these parameters

equals one, the scores from the model obtained by GT are unchanged. On

the other hand, if they have large magnitude, only a few scores correspond-

ing to a small range of the variables (ωTi Pωj+ωTj Pωi), (ωTi Qωi+ω
T
j Qωj),

(ωi+ωj)
Tc and k will undergo a small change from the GT model. The rest

of the scores will be changed largely. Assuming that the scores from the GT

model were in reasonable range, this suggest that training procedure have

cares almost only on the scores close to the threshold. Since the optimal

decision threshold may vary slightly between the training set and evalua-

tion set due to data mismatch, this behavior may not be beneficial even for

the targeted OP which could explain the inconclusive results for actDCF08.

It is worth noting that the problem with very large model parameters and

accordingly, scores, did not occur for Scr-UC in the experiments in Section

7.2. The most likely explanation is that we used a regularization term for

that method. Further, this problem will not occur for the logistic regression

loss since the scores on the wrong side of the threshold would obtained too

large costs due to the unboundedness of the logistic regression loss.

8.2.4 All three methods

In this section, we finally evaluate the combination of weight-adjustment

proposed in Chapter 5, our best DT Scheme from Chapter 6, Scr-4par, and

the Brier loss presented in Chapter 7. The results together with two base-
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Table 8.7: Scr-4par trained with the Brier loss and weight-adjustment. The results
for the two baselines are shown in the first and second row. The param-
eters α and ρ are the weight-adjustment and regularization parameter,
respectively. α = 0 means no weight-adjustment. A ‘*’ indicates that the
value of the parameter was optimal on the development set, SRE06.

Set Loss Scheme α actDCF08 actDCF10 Ĉllr ρ

SR
E0

8

LR AT-Cal 0 0.0256 0.00130 0.201 -

LR Scr-UC 0 0.0334 0.00088 0.235 *10

Brier Scr-4par 0 0.0257 0.01516 8633.739 -

Brier Scr-4par *1 0.0266 0.01644 8384.825 -

SR
E1

0

LR AT-Cal 0 0.0143 0.000678 0.100 -

LR Scr-UC 0 0.0304 0.000916 0.180 *10

Brier Scr-4par 0 0.0122 0.001482 5551.906 -

Brier Scr-4par *1 0.0117 0.001736 5272.156 -

lines, AT-Cal and Scr-UC trained with the logistic regression loss (LR) with-

out weight-adjustment are shown in Table 8.7. Considering the previous

results in this chapter, the result here are what could be expected. Applying

the Brier loss to a DT scheme without regularization gives extreme values of

the model parameters and bad performance for other OPs than the targeted

one. The effect of weight-adjustment on Scr-4par for this training data size

was marginal.

8.3 Summary and recommendations

In this section, we summarize the most important findings about weight-

adjustment, constrained DT of PLDA, and the usage of application-specific

loss functions as well as give recommendations for when to use the different

methods and what to consider in such a case.

Weight-adjustment was almost always beneficial in our experiments.

The effect of it is larger for smaller amounts of training data and less con-

strained DT schemes. The consequence of this method is that training speak-

ers with many utterances obtains a lower weight per trial than training

speakers with fewer utterances. This is intuitively sound since otherwise

the model might become biased toward training speakers with many utter-
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ances. However, as discussed in Chapter 6, there can be a bad side-effect

of this when the training data is not sampled from a homogeneous popula-

tion. For example, in our experiments the training data consists of several

corpora and the average number of utterances per speaker differs for the dif-

ferent corpora. A corpora with many utterances per speaker will be down-

weighted when weight-adjustment is applied which may not be good if this

corpora is more similar to the evaluation set. Therefore, we recommend

using weight-adjustment in general but if the training data inhomogeneous,

one may have to compensate for it as we did in the experiments in Section

5.3.1.

Among the PLDA DT schemes, the baseline AT-Cal and our proposed

Scr-4par were usually the best in our experiments. These are the two most

constrained DT schemes. Further, our analysis in Section 6.3.1 showed that

AT-Cal, which is most constrained, was better for utterances containing non-

English speech but Scr-4par was better for utterances containing English

speech. The training data contains very little non-English speech so this

result is reasonable considering that less constrained DT schemes tends to

overfit the training data more easily. There is therefore no DT scheme that is

the best for any given situation. The general guideline is that the less train-

ing data that is available and the larger the mismatch between the training

and the test data is, the more DT needs to be constrained.

The Brier loss proved useful for Scr-UC with L2 regularization for im-

proving actDCF. For Scr-4par, the Brier loss gave strange results, most likely

due to the lack of a regularization term. Scr-UC with Brier loss was not

as good as Scr-4par with logistic regression loss for the training data sizes

used in our experiments. However, if there is enough training data for Scr-

UC to be the best DT scheme, combining it with the Brier loss and weight-

adjustment seems promising for improving actDCF. Further, for smaller train-

ing data sizes, one could try, e.g., Scr-4par with the Brier loss and L2 reg-

ularization but more studies are needed before anything could be said for

certain in this matter. The more extreme application-specific loss function,

the 0-1 loss which focuses on only one OP, was quite unstable and is not

recommended without further improvements.



Chapter 9

Conclusions and future work

9.1 Conclusions

In this thesis, we study discriminative training (DT) techniques in speaker

verification. Recent speaker verification systems aims at directly answer the

question whether two utterances are from the same speaker or not. Accord-

ingly they do not require specific models for each enrolled speaker, which

greatly reduces the amount of data needed to enroll a speaker. However,

the model assumptions behind these systems are clearly inaccurate which

motivates the use of DT. Indeed, previous work have shown that DT can

improve these systems under certain conditions. Still, current approaches

fail to take full advantage of DT. In this thesis we address three problems.

First, the training trials used in DT need to be constructed from the

available training data. However, when a training utterance (or just the

same speaker) is used in more than one trial, the trials will be statistically

dependent. To solve this problem, we propose to adjust the weights of the

trials in the training objective so that the training objective becomes a better

estimator of the expected loss of unseen trials, i.e, test data. For a DT scheme

with 2 parameters to be estimated, we observed relative improvements in

Ĉllr of more than 30% on both SRE08 and SRE10 when using 11 training

speakers. For around 1000 speakers, the effect of weight-adjustment was

minor for this DT scheme but for a DT scheme with a much larger number of

parameters to be estimated, the effect of weight adjustment was substantial.

Second, DT more easily overfits to the training data than generative

training. Previously proposed DT schemes are either very constrained, or

84
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hardly constrained at all. In order to find just the right constraints, we

propose three new constrained DT schemes, and systematically compare

them with existing training schemes. With one of these DT schemes, we ob-

tained a relative improvement in Ĉllr of 14% for SRE10. However, one of the

baselines, performed the best for SRE08. This was explained by the pres-

ence of non-English speech in SRE08. Excluding the non-English trials, our

method improved the results for SRE08 as well. In combination with weight-

adjustment, our proposed constrained DT scheme gave improvements in be-

tween 7% and 19% in Ĉllr on SRE10, depending on the training data size,

compared to the best of our baselines.

Third, to follow the true spirit of DT, one shall use the loss function that

is the relevant for the application. This is, however, not always the best

in practice. Application-specific loss functions are non-convex and more

vulnerable to overfitting. We evaluate several different loss functions as

well as examines training strategies to deal with their non-convexity. Using

application-specific loss functions, we obtained a reduction of actDCF08 of

3.6% on SRE08 and 5.6% on SRE10 compared to logistic regression loss.

9.2 Future work

Future directions are many. There are other phenomena that may cause

the training trials to be statistically dependent than common utterances or

speakers. For example, when the same microphone is used in more than one

training utterance. It would be interesting to apply the weight-adjustment

to deal with such dependencies. Although using the best linear unbiased

estimator for the expected loss is well motivated and works well, is possible

that the results could be improved by some other estimator than the BLUE.

For example, a non-linear estimator or an estimator that considers higher

moments than the variance. Our experiments indicate that the optimiza-

tion of the non-convex application-specific loss functions is difficult. Future

work will therefore include better optimization techniques. After a better

optimization strategy have been found, it would be interesting to investi-

gate more in detail what is the best loss function in various situations. In

particular, to analyze more in detail if focusing on a broad range of OPs is

more effective than other means of regularization. Another issue for future

consideration is that there might be a mismatch between the properties of
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the training trials and the properties of the test trials. Several studies in

domain adaptation have shown that the Switchboard and the NIST SRE cor-

pora have different properties (Garcia-Romero and McCree, 2014; Biswas

et al., 2015). Furthermore, the target trials in the test sets of the NIST SRE

are always from different telephone numbers whereas the majority of the

target trials used for DT are from the same telephone number.
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Appendix A

Derivations

A.1 The EM algorithm for PLDA

In this section we describe the EM algorithm with minimum divergence (MD)

for PLDA with the configuration used in this thesis, i.e.,

ω = m+ V y + ε, (A.1)

where ε ∼ N (0, D̃−1). With ε = Dz and D̃−1 = DDT (such a decompo-

sition always exists) the model in Eq (A.1) equals the model in Eq (2.35).

The presentation is based on Brümmer (2010) where the EM-algorithm for

PLDA including a channel term Ux (as given by Eq 2.34) is presented.

The maximum likelihood criterion is given by:

[m̂, V̂ , ˆ̃D] = arg max
S∏
s=1

Es∏
e=1

(ωse|m,V , D̃), (A.2)

where index s indicates the speaker, index e indicates the session, S is the

number of speakers and Es is the number of sessions for speaker s. If the

i-vectors of the training set are centered around their mean, the ML estimate

of m is 0.

We will denote the parameters to be optimized ζ. Initially, ζ = [V , D̃]

but in MD step we will (temporarily) consider more parameters. Let Y =

[y1, . . . ,yS ], Ψs = [ωs1, . . . ,ωsEs ], and Ψ = [Ψs, . . . ,ΨS ]. We will use the

following notation for the expectation conditioned on the current model
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parameters:

EY |Ψ,ζold [f(ζ)] =

∫
y
f(ζ)P (ys|Ψs, ζ

old)drys

=
〈
f(ζ)

〉
(A.3)

A.1.1 E-Step

The E-step is to calculate the auxiliary function:

Q(ζ|ζold) =
〈

logP (Ψ,Y |ζ)
〉

=
〈 S∑
s=1

logP (Ψs,ys|ζ)
〉

=
〈 S∑
s=1

logP (Ψs|ys, ζ)P (ys|ζ)
〉

=
〈 S∑
s=1

Es∑
e=1

logP (ωe|ys, ζ)
〉

(A.4)

+
〈∑

s

logP (ys|ζ)
〉
. (A.5)

We will refer to the term (A.4) as Q1(ζ|ζold) and to the term (A.5) as

Q2(ζ|ζold). Since Q2(ζ|ζold) does not depend on V or D̃, it can be ignored.

(It will considered in the MD step).
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For Q1(ζ|ζold) we have

Q1(ζ|ζold) =
〈 S∑
s=1

Es∑
e=1

logP (Ψs, |ys, ζ)
〉

=
1

2

〈 S∑
s=1

Es∑
e=1

[
− (ωse − V ys)T D̃(ωse − V ys) + log |D̃|

−r log 2π
]〉

=
1

2

〈 S∑
s=1

Es∑
e=1

[
− ωTseD̃ωse − yTs V T D̃V ys + ωTseD̃V ys

+yTs V
T D̃ωse + log |D̃|

]〉
+ const

=
1

2

〈 S∑
s=1

Es∑
e=1

[
− tr[ωseωTseD̃ − V ysyTs V T D̃ + 2V ysω

T
seD̃]

− log |D̃|
]〉

+ const

=
N

2
log |D̃| − 1

2
tr
[ S∑
s=1

Es∑
e=1

ωseω
T
seD̃ −

S∑
s=1

Es∑
e=1

〈
ysy

T
s

〉
V T D̃V

+2

S∑
s=1

Es∑
e=1

〈
ys

〉
ωTseD̃V

]
+ const

=
N

2
log |D̃| − 1

2
tr
[
SD̃ +RV T D̃V − 2TD̃V

]
+ const, (A.6)

where const refers to terms that does not contain V or D, S =
∑

seωseω
T
se,

R =
S∑
s=1

Es∑
e=1

〈
ysy

T
s

〉
(A.7)

and

T =
S∑
s=1

Es∑
e=1

〈
ys

〉
ωTse. (A.8)

In order to calculate these expectations, we need the posterior distribution
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of ys,

Pr(ys|Ψs, ζ
old) ∝ Pr(ys|ζold) Pr(Ψs|ys, ζold)

= N (ys|0, I)

Es∏
e=1

N (ωse|V ys, D̃)

∝ exp−1

2

(
yTs Iys +

Es∑
e=1

(ωse − V ys)T D̃(ωse − V ys)
)

∝ exp
( Es∑
e=1

yTs V
T D̃ωse −

1

2
yTs (EsV

T D̃V + I)︸ ︷︷ ︸
Ps

ys

)

= exp
(
yTs PsP

−1
s V T D̃

Es∑
e=1

ωse︸ ︷︷ ︸
ŷs

−1

2
yTs Psys

)

∝ N (ys|ŷs,P−1
s ). (A.9)

This gives

R =
S∑
s=1

Es∑
e=1

〈
ysy

T
s

〉
=

S∑
s=1

Es(P
−1 + ŷsŷs

T ) (A.10)

and

T =

S∑
s=1

Es∑
e=1

〈
ys

〉
ωse =

S∑
s=1

ŷs

Es∑
e=1

ωTse. (A.11)

A.1.2 M-Step

Using the matrix calculus results in Minka (2001) and the cyclic properties

of the trace operator, the differential is then given by

d(Q1) = d
(
N

2
log |D̃| − 1

2
tr
[
SD̃ +RV T D̃V − 2TD̃V

])
= −1

2
tr
[
−ND̃−1dD̃ + (dS)D̃ + SdD̃

+(dR)V T D̃V +R(dV T )D̃V +RV T (dD̃)V +RV T D̃dV

−2(dT )D̃V − 2T (dD̃)V − 2TD̃dV
]

= −1

2
tr
[
−ND̃−1dD̃ + D̃dS + SdD̃

+V T D̃V dR+RV T D̃dV + V RV TdD̃ +RV T D̃dV

−2D̃V dT − 2V TdD̃ − 2TD̃dV
]
. (A.12)
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Reading off the coefficients for dV , we get
d(Q1)

dV
= TD̃ −RV T D̃. (A.13)

Equating it to 0 gives

V T = R−1T . (A.14)

Reading off the coefficients for dD̃, we get
d(Q1)

dD̃
= −1

2

[
−ND̃−1 + S + V RV T − 2V T

]
. (A.15)

Equating it to 0 gives

D̃−1 =
1

N

(
S − 2V T + V RV T

)
.

=
1

N

(
S − V T

)
(A.16)

A.1.3 Minimum divergence

In the minimum divergence step we first use a more general prior for the Y :

p(ys) +N (ys|0,Y), (A.17)

and estimate Y. Q2 but not Q1 depends on Y.

Q2(Y|Yold) =
〈∑

s

logP (ys|Y)P (ys|Ψs,Yold)
〉

= −1

2

〈∑
s

log |Y|+ yTs Y−1ysP (ys|Ψs,Yold)
〉

+ const

= −1

2

〈∑
s

log |Y|+ tr
(
ysy

T
s Y−1

)
P (ys|Ψs,Yold)

〉
+ const.(A.18)

The differential is given b
dQ2

dY
= −1

2
tr
〈∑

s

(
Y−1dY + (dysyTs )Y−1 + ysy

T
s dY−1

)〉
= −1

2
tr
〈∑

s

(
Y−1dY + (dysyTs )Y−1 − ysyTs Y−1dYY−1

)〉
= −1

2
tr
〈∑

s

(
Y−1dY + (dysyTs )Y−1 − Y−1ysy

T
s Y−1dY

)〉
.(A.19)

Equating the coefficients in front of dY to 0 gives:

SY−1 =
∑
s

Y−1 < ysy
T
s > Y−1

Y =
1

S

∑
s

< ysy
T
s >

= P−1 + ŷŷT . (A.20)



Derivations 95

A.2 Constraints on the PLDA LLR score function

In this section, we derive the constraints on P and Q mentioned in Subsec-

tion 2.6.4. In this paper, we use the term definite only for symmetric matri-

ces. We use the term semidefinite when at least one eigenvalue of the matrix

is zero, i.e., it does not have full rank, and the term nonnegative-definite for

matrices which are either positive-definite or positive-semidefinite.

A.2.1 Rank of P and Q

In this subsection, we show that both the rank of P and the rank of Q is

equal to the rank of V .

Let S = Σtot − ΣacΣ
−1
tot Σac. Then,

rank(P ) = rank(Σ−1
tot ΣacS

−1) ≤ rank(Σac), (A.21)

rank(Σac) = rank(ΣtotPS) ≤ rank(P ). (A.22)

Hence, rank(P ) = rank(Σac) = rank(V ).

Using that S is positive definite (Boyd and Vandenberghe, 2004, Ch. A.5.5)

and the Woodbury identity (Petersen and Pedersen, 2012, Eq. (156)) we ob-

tain

Q = −Σ−1
tot ΣacS

−1ΣacΣ
−1
tot

= −Σ−1
tot ΣacS

−1/2(Σ−1
tot ΣacS

−1/2)T , (A.23)

where S−1/2 is the square root of S−1. Set M = Σ−1
tot ΣacS

−1/2. Then,

rank(Q) = rank(M) ≤ rank(Σac), (A.24)

rank(Σac) = rank(ΣtotMS1/2) ≤ rank(M). (A.25)

Hence, rank(Q) = rank(Σac) = rank(V ).

A.2.2 Definiteness of P and Q

In this subsection, we derive the following constraints on P and Q:

1. Q is negative-(semi)definite.

2. P is positive-(semi)definite.

3. P +Q is positive-(semi)definite.
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For these constraints, semi applies when rank(V ) < d. Constraint 1 follows

directly from Eq. (A.23) and the fact that rank(Q) = rank(V ). If SPS is

positive-(semi)definite, then S−1SPSS−1 = P is positive (semi)definite

(Harville, 1997, Thm. 14.2.9). A bit of processing of SPS gives

SPS = Σac − ΣacΣ
−1
tot Σac + ΣacΣ

−1
tot ΣwcΣ

−1
tot Σac, (A.26)

where Σwc = Σtot − Σac. From Eq. (A.26) it is clear that P is symmetric.

The last term in Eq. (A.26) is nonnegative-definite. The term Z = Σac −
ΣacΣ

−1
tot Σac is a Schur complement of Σtot in

M =

[
Σtot Σac

Σac Σac

]
. (A.27)

Z is positive-(semi)definite if M is positive-(semi)definite (Boyd and Van-

denberghe, 2004, Ch. A.5.5). By expanding [xT1 x
T
2 ]M [xT1 x

T
2 ]T for two

real vectors, x1 and x2, it can be verified that M is positive definite if

rank(Σac) = d, otherwise positive-semidefinite. Since, SPS, is a sum of

nonnegative-definite matrices, it is nonnegative definite. Since rank(P ) =

rank(V ), Constraint 2 follows.

P +Q can be rewritten as

P +Q = Σ−1
tot ΣacS

−1(I − ΣacΣ
−1
tot )

= S−1ΣacΣ
−1
tot (I − ΣacΣ

−1
tot ) (A.28)

= S−1(Σac − ΣacΣ
−1
tot Σac)Σ

−1
tot , (A.29)

where (A.28) comes from the symmetry of P = Σ−1
tot ΣacS

−1. If S1/2(P +

Q)S1/2 is positive (semi)definite, then S−1/2S1/2(P +Q)S1/2S−1/2 = P +

Q is positive (semi)definite. Since this matrix is symmetric, it is enough to

show that its eigenvalues are larger than, or equal to zero. For two matrices,

A and B, the eigenvalues of AB and BA are the same (Harville, 1997,

Thm. 21.10.1). Therefore, the eigenvalues of S1/2(P + Q)S1/2 are the

same as for

S(P +Q) = (Σac − ΣacΣ
−1
tot Σac)Σ

−1/2
tot Σ

−1/2
tot , (A.30)

whose eigenvalues in turn are the same as for

Σ
−1/2
tot (Σac − ΣacΣ

−1
tot Σac)Σ

−1/2
tot . (A.31)

The middle part is, as pointed out earlier, positive-definite if rank(V ) = d,

otherwise positive-semidefinite. Accordingly, Constraint 3 follows.
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A.3 Derivation of formulas for weight-adjustment

In this section, we derive the formulas for the trial weights given in Eqs. (5.10)

and (5.12).

A.3.1 Optimal weights for the target trials

From Eq. (5.7) we have

Σ1β = 1/(1TΣ−1
1 (θ)1). (A.32)

Consider the loss of one specific target trial of speaker A, l(A1, A2), and its

covariance with the loss of all other target trials. Let Σ
(A1,A2)
1 be the row in

Σ1, containing these covariances. Let the variance of the target trial losses

be denoted v1(θ). The covariances with the losses of the target trials from

the other speakers are 0. The covariances with the losses of the other target

trials of speaker A are either v1(θ)ca or v1(θ)cb. Let the number of such

trials be denoted na and nb respectively. Assume that the weights for all

target trials of speaker A are the same, βA, then

Σ
(A1,A2)
1 β = (1 + naca + nbcb)v1(θ)βA. (A.33)

Notice that the elements in β which are weights for another speaker than

speaker A are always multiplied with elements in Σ
(A1,A2)
1 that are 0, and

therefore they are not present on the right hand side of Eq. (A.33). Setting

Eq. (A.33) equal to the corresponding row in Eq. (A.32) gives

(1 + naca + nbcb)βA = 1/
(
v1(θ)1TΣ−1

1 (θ)1
)

= 1/(1TR−1
1 1)

= k1, (A.34)

where R1 = Σ1(θ)/v1(θ) is the correlation matrix which, according to our

assumptions, does not depend on θ. Since we are using all possible target

trials, the rows in Σ1 corresponding to the other target trials of speaker A

contains the same elements as Σ
(A1,A2)
1 but with a different order. These

rows therefore also results in Eq. (A.34). Thus, an equal weight for all

target trials of the same speaker gives a solution to Eq. (5.7) and since Σt is

invertible, it is the only solution.
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It remains to find na and nb. There are NA(NA − 1)/2− 1 unique target

trials of speaker A, excluding the trial (A1, A2). na is the number of trials

that include either A1 or A2 but not both, in total na = 2(NA − 2) trials. nb
is the remaining target trials of speaker A, except (A1, A2), in total

nb = NA(NA − 1)/2− 2(NA − 2)− 1

= (NA − 2)(NA − 3)/2. (A.35)

A.3.2 Approximately optimal weights for the non-target trials

Consider the loss of one specific trial, l(A1, B1) and its covariance with the

loss of other non-target trials. We use a similar approach as for the target

trials. However, the non-target trials where one speaker is different from A

and B will complicate matters. The number of non-target trials involving

the same speakers, A and B, where one utterance is either, A1 or B1, is

n−a = NA + NB − 2. The number of non-target trials involving the same

speakers but not the utterance A1 or B1, are n−b = (NA − 1)(NB − 1).

Now, assume that each non-target trial involving speaker A and B has same

weight, βAB, and similarly for the other speaker pairs. (It can be verified

that this gives a solution.) Then from Eq. (5.7), we have

1/(1TR−1
(−1)1) = (1 + n−ac−a + n−bc−b)βAB

+ c−c
∑

X 6=A,B
(βAX + βBX)NX

+ c−d
∑

X 6=A,B
((NA − 1)βAX + (NB − 1)βBX)NX , (A.36)

where R−1 = Σ−1/v−1(θ) is the correlation matrix and v−1(θ) is the vari-

ance for the non-target trial losses. The number of unknown variables in

this equation is equal to the number of speaker pairs and we have one such

equation per speaker pair. The number of speaker pairs is, however, very

large. Instead of solving this system of equations, we use the approxima-

tions: ∑
X 6=A,B

(βAX + βBX)NX ≈ 2
∑

X 6=A,B
βABNX , (A.37)
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and ∑
X 6=A,B

((NA − 1)βAX + (NB − 1)βBX)NX

≈
∑

X 6=A,B
((NA +NB − 2)βAB)NX . (A.38)

These approximations are quite reasonable since, e.g., a larger NA results in

a smaller values of both βAB and βAX . This results in

(1 + n−ac−a + n−bc−b + n−cc−c + n−dc−d)βAB ≈ k−1, (A.39)

where,

k−1 = 1/(1TR−1
−11), (A.40)

n−c = 2
∑

X 6=B,A
NX , (A.41)

and

n−d = (NA +NB − 2)
∑

X 6=B,A
NX . (A.42)

A.4 Initialization and calculation of gradients for con-

strained DT

A.4.1 states results given in previous studies. The gradients and initializa-

tions for Scr-4par, iV-elmnt and Scr-Def are then given in A.4.2, A.4.3 and

A.4.4, respectively. In this section, 1q×r denotes a matrix of dimension q× r
whose all elements are equal to 1.

A.4.1 Results from previous studies

The results in this subsection are given in Cumani et al. (2011). Let the n

training i-vectors be collected in a matrix, Ψ = [ω1 . . .ωn], and all the scores

of the training data be collected in a matrix S, i.e., Sij = sij , where sij is

given by Eq. (2.38). Then S = SP + SQ + Sc + Sk, where

SP = 2ΨTPΨ,

SQ = diag(ΨTQΨ)11×n + (diag(ΨTQΨ)11×n)T ,

Sc = ΨTc11×n + (ΨTc11×n)T ,

Sk = k1n×n. (A.43)
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The gradient of L̂(γ) in Eq. (3.2) is given by,

∇L̂(γ) =


∇P L̂(γ)

∇QL̂(γ)

∇cL̂(γ)

∇kL̂(γ)

 =


vec(P ′)

vec(Q′)

c′

k′

 , (A.44)

where

P ′ = 2ΨGΨT , (A.45)

Q′ = 2vec([Ψ ◦ (1d×nG)]ΨT ), (A.46)

c′ = 2[Ψ ◦ (1d×nG)Ψ]1n×1, (A.47)

k′ = 1Tn×1G1n×1, (A.48)

Gij =
∂lij
∂sij

, (A.49)

and

lij = l (tij , sij(γ), τ) . (A.50)

A.4.2 Scr-4Par

The derivative of L̂ with respect to aP, is

∂L̂

∂aP
=
∑
ij

∂lij
∂sij

∂sij
∂aP

=
∑
ij

GijSPij

= 1Tn×1(G ◦ SP)1n×1. (A.51)

The derivatives ∂L̂
∂aQ

, ∂L̂
∂ac

and ∂L̂
∂ak

are calculated in the same way. Each of aP,

aQ, ac and ak, are initialized to 1.

A.4.3 iV-elmnt

We collect the scalings of the i-vector elements in a diagonal matrix, D, so

that ω is replaced by Dω in Eq. (2.38), i.e.,

sij = ωTi DPDωj + ωTj DPDωi

+ωTi DQDωi + ωTj DQDωj

+(ωi + ωj)
TDc+ k. (A.52)

Let the contribution to the gradient from terms including P be denoted

∇(P )
diag(D)L̂ and similarly for Q and c. We will use matrix calculus (Minka,
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2001) with the convention that the elements of the matrix derivative are

laid out according to the transpose of the denominator. The contribution

from P to the differential is

dL̂ = tr(P ′dP T ). (A.53)

Replacing P with DPD we then get

dL̂ = tr
(
P ′d(DPD)T

)
= tr

(
PDP ′dD + P ′DPdD +DP ′DdP

)
, (A.54)

i.e.,

∇(P )
diag(D)L̂ = diag(PDP ′ + P ′DP ) . (A.55)

The contribution from the terms with Q is calculated in the same way. For

c, we get

dL̂ = c′d(Dc)T

= c′((dcT )DT + cTdDT ), (A.56)

i.e.,

∇(c)
diag(D)L̂ = diag(c′cT ) = c′ ◦ c. (A.57)

Finally,

∇diag(D)L̂ = ∇(P )
diag(D)L̂+∇(Q)

diag(D)L̂+∇(c)
diag(D)L̂. (A.58)

The derivative for k is calculated as in A.4.2. The scalings of the i-vector

elements and k are initialized to 1.

A.4.4 Scr-Def

The gradients for c and k in Eq. (A.44) are used without modification. The

contribution from P and Q to the differential is

dL̂ = tr
(
P ′dP T +Q′dQT

)
= tr

(
P ′dRAR

T
A + P ′dQAQ

T
A −Q′dQAQ

T
A

)
. (A.59)

Using the fact that P ′ is symmetric, we get for the first term

tr
(
P ′(dRAR

T
A)
)

= tr
(
P ′ (dRA)RT

A

)
+ tr

(
P ′RAdRT

A

)
= tr

((
(dRA)RT

A

)T
P ′T

)
+ tr

(
P ′RAdRT

A

)
= tr

(
2P ′RAdRT

A

)
. (A.60)
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The other terms are treated analogously, resulting in[
∇RA

L̂

∇QA
L̂

]
=

[
2vec(P ′RA)

2vec
(
(P ′ −Q′)QA

) ] . (A.61)

The regularization term is dealt with by adding 2(P−P̃ ) toP ′ and 2(Q− Q̃)

to Q′. For initialization, we use a model estimated by GT and calculate RA

and QA by means of eigendecomposition of R and Q respectively, e.g.,

QA = E(−Q)D(−Q)
1
2 , (A.62)

where the columns of E(−Q) are the eigenvectors of −Q and D(−Q) is a

diagonal matrix containing the corresponding eigenvalues.
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