T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	ホウ素中性子捕捉療法(BNCT)中性子源用高速リチウム壁面液膜流の実 験結果の考察				
Title(English)	Considerations on experimental results of high-speed lithium film flows on the wall for the neutro source in Boron Neutro Capture Therapy (BNCT)				
著者(和文)	 中川順達, 高橋実, 古林徹, 有富正憲				
Authors(English)	Masamichi NAKAGAWA, Minoru TAKAHASHI, Toru KOBAYASHI, Masanori ARITOMI				
出典(和文)	日本機械学会 第93期流体工学部門講演会講演論文集, , No. 15-34,				
Citation(English)	, , No. 15-34,				
発行日 / Pub. date	2015, 11				

ホウ素中性子捕捉療法(BNCT)中性子源用高速リチウム壁面液膜流の実験結果の考察

Considerations on experimental results of high-speed lithium wall film flows for the neutron source in Boron Neutron Capture Therapy (BNCT)

OE	中川	順達	(東エ大)	正	高橋	実	(東エ大)
	古林	徹	(京大)	正	有冨	正憲	(東エ大)

Masamichi NAKAGAWA, Tokyo Institute of Technology, Ohokayama 2-12-1-NE-6, Meguro-ku, Tokyo 152-8550 Minoru TAKAHASHI, Tokyo Institute of Technology, Ohokayama 2-12-1-N1-18, Meguro-ku, Tokyo 152-8550 Toro KOBAYASHI, Kyoto University, Asashiro-nishi 2, Kumatori-cho, Sennan-gun, Osaka 590-0494 Masanori ARITOMI, Tokyo Institute of Technology, Ohokayama 2-12-1, Meguro-ku, Tokyo 152-8550

The stability of high-speed liquid lithium film flows on a wall was analytically studied for the neutron source in Boron Neutron Capture Therapy (BNCT), which makes cancers and tumors curable with cell-level selections and hence high QOL. The object of our research is to materialize the thin and high-speed wall film flows of liquid lithium in a high-vacuum as an accelerator target. Linear analysis approach is made to the stability on thin film flows of liquid lithium in a high-vacuum. We experimentally observed the splitting phenomena of film flows on a wall with 0.5 mm in film thickness and over 10.0 m/s in flow velocity, caused by the slit-nozzle was stopped up with the contaminant particulate of nitrous lithium. We also obtained the knowledge to materialize the desired wall film flows.

Key Words: BNCT (Boron Neutron Capture Therapy), Liquid lithium, Film flow, Flow stability, Surface tension

1. 緒 言

我が国では、癌は日本人の死亡原因の第1位であり、総死 亡の約3割を占めており、癌対策は喫緊の課題となっている ⁽¹⁾. 近年、癌や腫瘍を細胞単位で選択して治療可能で、癌治 癒後の QOL (生活の質)が高く、夢の癌治療法と言われる BNCT (Boron Neutron Capture Therapy:ホウ素中性子捕捉療 法)⁽²⁾⁻⁽⁴⁾が注目されており、我が国の成長戦略の重要な柱の 一つとなっている.その中性子源用陽子線加速器ターゲット として計画される、高速で薄い液体リチウムの液幕噴流ない し壁面液膜流を実現するため、前報⁽⁵⁾の壁面液膜流の線形安 定性解析結果と、高橋らの実験結果⁽⁶⁾を比較・考察する.

本研究対象は、加速器利用環境下の高真空(10⁻³ Pa)中の 流れであり、かつ液体リチウムが加速器ターゲット自身の冷 却材を兼ねるから、十分な流送除熱性能を確保するため高速 流れであること、さらに治療に不要かつ有害なy線の発生を 減らすため、液幕ないし液膜には核反応ターゲットとしてあ る範囲の薄さが要求されること等の制約がある反面、治療用 中性子線を原子炉から取り出さずに得られる長所がある.

本報では、2008~2010 年度に文部科学省 科学研究費補助 金・基盤研究(A)(課題番号:20240054)として東京工業大 学 原子炉工学研究所で実施された、高真空(10^{-3} Pa)中の 液体リチウム流動実験⁽⁰⁾において、実際に実現された壁面上 の厚さ $h_F = a = 0.5 \text{ mm}$ の液体リチウム液膜流について、既報 ⁽⁷⁾で議論した液幕噴流と対比させながら、その線形安定性解 析結果を長波近似の下で評価した結果と、比較・考察する.

2. 線形安定性解析の結果⁽⁵⁾

前報⁽⁵⁾では,高真空中の壁面上の薄いリチウム液膜流について,既報⁽⁷⁾の液幕噴流の線形安定性解析をベースにして, これを縮約する形で理論を再構成した.

既報⁽⁷⁾の液幕噴流では,自由表面が表裏2面存在したが, 本報で扱う壁面液膜流では,壁面に接する側の液体面が壁面 によって自由を拘束されるため,自由表面が残りの側の1面 だけに減少している.ゆえに,液幕噴流では,表裏それぞれ に表面波が1つずつ,合計して2つの表面波が存在すること ができたが,壁面液膜流では,存在できる表面波は,1つだ けに限られる. 本研究の壁面液膜流は、壁面上の流下距離L($\approx 60 \text{ mm}^{(6)}$)が十分短く、壁面摩擦はあまり効かないと考えられるから、既報⁽⁷⁾の液幕噴流における線形安定性解析と同様、液体リチウムの粘性を無視した.非粘性、非圧縮、渦無しの仮定の下で、線形安定性解析を行った結果⁽⁵⁾、次式を得た.

$$k \rho \left(\omega/k - U \right)^2 \tanh ka = k^2 \sigma \tag{1}$$

ここで, k:波数, ρ:密度,ω:角速度,U:流速, σ:表面張力係数

この分散関係式(1)を展開して整理し、ωについて解くと、

$$\omega = kU \pm \sqrt{\frac{k^3 \sigma / \rho}{\tanh ka}}$$
(2)

上式 (2) の波について, 既報⁽⁷⁾や前報⁽⁵⁾と同様に, 長波近似, すなわち, 液膜厚さ $h_{\rm F} = a$ が, 波長 $\lambda = 2\pi/k$ に比べ十分薄い

 $ka \ll 1 \mathcal{O} \succeq \mathfrak{F}, \quad \tanh ka \approx ka$ (3)

の下で安定性を評価すると、分散関係は次式となる.

$$\therefore \ \omega / k \approx U \pm \sqrt{\sigma / \rho a} \tag{4}$$

式(4)の波速(根号部分)をオーダ評価すれば,

$$\sqrt{\sigma / \rho a} \approx \sqrt{0.384 / 506 / 5 \times 10^{-4}} = 1.23 \text{ m/s}$$

$$<< U \sim 5.0 \sim 15.0 \text{ m/s}$$
 (5)

ゆえに、① この波は、密度 ρ の慣性力に対して、表面張力 σ/a を復元力とする波である.② 分散関係式(4)または波速の 式(5)の根号内が負にならないから、いかなる波に対して も、高真空中の壁面上の薄いリチウム液膜流は不安定になら ない.③ 上記①の波速の波は、壁面上で、この波速に比べ て1桁近く大きな流速*U*の液膜流に押し流される(超臨界流), ④ 波は非分散性(波速が k によらない).⑤波速の根号内が 負にならないから、角速度 ω は複素数 $\omega_{\text{Real}\pm i}\beta_{\text{Imag}}$.にならない, すなわち、不安定の増幅率 $\beta_{\text{Imag}} = 0$ (中立安定)である.(こ こで、添字 Real:実部、Imag.:虚部)

3. 実験結果⁽⁶⁾の考察

3.1 実測写真(壁面液膜流の安定性と分裂現象)の考察

図1に、本報の共著者である Takahashi らの実験⁽⁶⁾におけ る高真空中の壁面上のリチウム液膜流の実測写真 Fig.9 を引 用して示す.図1(a), (b), (c)の各上端は、スリットノズル出口 (スリット長さ60 mm、スリット幅0.5 mm) である.

図 1(a)では、流速 U = 5.0 m/s のとき、ノズル出口直後の中 央付近の 2 か所の小さな三角形領域で、液膜流に裂け目が見 られるものの、液膜流の表面は、ほぼ平滑($k \approx 0$)に近い穏 やかさで、壁面にしっかり貼り付いているように見える.こ の状態が、流下距離 L = 60 mmまで良く維持されている。

液膜流の裂け目(分裂)の縁の角度 ar は、既報⁽⁷⁾の液幕 噴流における横方向の二等辺三角形状ないし二等辺台形状 の収縮現象の収縮角 a (≈ 22~8°)とほぼ同じ傾きに見える. このことは,前報⁽⁵⁾の壁面液膜流の線形安定性解析で得られ た波速と,既報⁽⁷⁾の液幕噴流の線形安定性解析で得られた波 速が,同じ式(4)となる,すなわち,両者の表面張力の波 の分散関係が共通であることに起因すると考えられる.

図1(b)では、流速 U = 10.0 m/sのとき、壁面に貼り付いた 液膜流が、3ヶ所で裂けているように見える.このように分 裂している壁面液膜流は、それぞれがほぼ左右対称であり、 各々の分裂流れの片方の辺が流下方向(鉛直下向き)となす 角を、分裂角 α r と定義し、左右の分裂角 α r を読み取ると、 流速 U = 10.0 m/sに対して、 α r ≈ 5~20°であることがわかる.

また,各々の分裂流れの流下に伴って両側の辺の境界から 内側へ及ぶ(狭まる)表面張力の影響は,既報^のの液膜噴流 に比べて弱いように見える.このことは,壁面に貼り付いて いる壁面液膜流(自由表面は1表面のみ)に働く表面張力が, 表裏2表面を持つ液膜噴流の半分になることから説明できる.

図1(c)では、流速 U=15.0 m/s になると、壁面上のリチウム液膜流は、乱れがかなり大きくなっているように見える. Takahashi ら⁽⁶⁾は、このように液膜流が分裂した原因として、 窒化リチウムの硬い粒子がスリットノズルに詰まったこと を挙げているから、その濾過除去が不可欠なことがわかる。

Kobayashi らは, 最新の実験結果⁽⁸⁾で, リチウム温度 220°C, 液膜厚さ $h_F = a = 0.6$ mm, 流速 U = 30 m/s の安定なリチウム 液膜流が壁面上に形成できた実測写真を発表している.この 実験結果も考え合わせれば、液体リチウムは, 温度が低め (269°C よりは 261°C, さらに 220°C)の方が, かつ液膜厚 さが少し厚め (0.5 mm よりは 0.6 mm)の方が, 液膜流がよ り裂けにくく, より安定なようである.

3.2 表面張力の効果(液膜流の分裂角)の考察

Taylor⁽⁹⁾は実験で,濡れ案内ガラス細管を工夫し利用している.これは,既報⁽⁷⁾ 5・3 節で触れた,表面張力の大きな貼り付き効果を利用する着想と試みであるが,壁面上に液膜流を流すことは,壁面そのものが,言わば「濡れ案内」壁面であると考えられる.よって,壁面液膜流は,この表面張力の効果を上手に利用できれば,より裂けにくく(分裂角を0に近づける),より安定化することができると考えられる.

また Taylor は、実験中のスリットノズルのスリットに1個 の空気泡が入り込んだため、流出している水幕が2つに分裂 させられたときの写真を公表している⁽¹⁰⁾.彼はこのとき、注 射針のような細い管から吹き出す細い空気噴流を、水幕に擾 乱として作用させて、その噴流が発生させた液表面の波が、 上述の分裂した水幕の縁(小)と平行なことを指摘している.

すなわち, 3・1 節で論じた壁面液膜流の分裂現象は, Taylor の実験⁽¹⁰⁾においてスリットノズルに入り込んだ空気泡の役 割を, Takahashi らの実験⁽⁰⁾では, 窒化リチウム粒子が演じた と理解できる.両実験結果は,壁面液膜流上に現れる表面張 力の波の伝播に関する共通の普遍性を持つ物理現象(2章の ③超臨界流,および3.1節の分裂角 *a*_F)であると解釈できる.

(a) 261 °C, U = 5.0 m/s.

(b) 265 °C, U = 10.0 m/s,

Fig.1 Photographs of liquid lithium film flows on the wall in a high-vacuum, i.e., at the saturation pressure of lithium..
(Photographic conditions are 1 Hz in stroboscope frequency, and 1 s in shutter speed of camera.) These figures are quoted from Fig.11 in the experimental paper by Takahashi, et. al.⁽⁶⁾

引用文献

- (1) (財がん研究振興財団, がんの統計'13, (2013), p.25.
- (2) Tanaka, K., Kobayashi, T., et. al., Physics in Medicine and Biology, **47** (2002), pp.3011-3032.
- (3) Bengua, G., Kobayashi, T., et. al., Physics in Medicine and Biology, 51 (2006), pp.4095-4109.
- (4) Kobayashi, T., et. al., Physics in Medicine and Biology, 52 (2007), pp.645-658.
- (5) 中川, 高橋, 古林, 有富, 機構論(2015年度年次大会) No.15-1 (2015), S0510404.
- (6) Takahashi, M., Kobayashi, T., et. al., Journal of Power and Energy Systems, **6**-2 (2012), pp.324-338.
- (7) 中川,高橋,有富,古林,日本機械学会論文集,80-819
 (2014), DOI:10.1299/transjsme.2014fe0316.
- (8) Kobayashi, T., et.al., Applied Radiation and Isotopes, 88, (2014), 198-202
- (9) Taylor, S. G., Proceedings of Royal Society London, A, 253 (1959), pp.296-312
- (10) Taylor, S. G., Proceedings of Royal Society London, A, 253 (1959), pp.313-321