T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	ホウ素中性子捕捉療法(BNCT)中性子源用高速リチウム液膜流の安定形 成		
Title(English)	Stable formation of high-speed lithium film flows for the neutron source in Boron Neutron Capture Therapy (BNCT)		
著者(和文)	 中川順達, 高橋実, 古林徹, 有冨正憲		
Authors(English)	Masamichi NAKAGAWA, Minoru TAKAHASHI, Toru KOBAYASHI, Masanori ARITOMI		
 出典(和文)	日本機械学会第22期関東支部総会講演会講演論文集,, No. 160-1,		
Citation(English)	,,No. 160-1,		
発行日 / Pub. date	2016, 3		

GS0507 ホウ素中性子捕捉療法(BNCT)中性子源用高速リチウム液膜流の安定形成

Stable Formation of High-Speed Lithium Wall Film Flows for the Neutron Source in Boron Neutron Capture Therapy (BNCT)

○正中川 順達(東工大)正高橋 実(東工大)古林 徹(マックスメディカル)正百富 正憲(東工大)

Masamichi NAKAGAWA, Tokyo Institute of Technology, 2-12-1-NE-6 Ohokayama, Meguro-ku, Tokyo Minoru TAKAHASHI, Tokyo Institute of Technology, 2-12-1-N1-18 Ohokayama, Meguro-ku, Tokyo Tooru KOBAYASHI, Max Medical Co. Ltd, 4-5-1-10F, Nishinakajima, Yodogawa-ku, Osaka Masanori ARITOMI, Tokyo Institute of Technology, 2-12-1 Ohokayama, Meguro-ku, Tokyo

The stable high-speed and thin film flow (30 m/s in velocity and 0.6 mm in thickness) of liquid lithium was successfully formed on a wall for the neutron source in Boron Neutron Capture Therapy (BNCT), which makes cancers and tumors curable with cell-level selections and hence high QOL. The object of our research is to materialize the thin and high-speed wall film flows of liquid lithium in a high-vacuum (10⁻³ Pa) as an accelerator target. We proved that it is neutrally stable within the limits of linear stability theory under the short wave approximation on the basis of the wave length, $\lambda \approx 2$ mm, measured from the photographs (10 µs in shutter speed) of the ripples on the surface of the film flow. The locus of experimental points (*Re, k*) on the *Re-k* plane seems to be located across the unstable region surrounded with a critical curve of neutral stability.

Key Words: BNCT (Boron Neutron Capture Therapy), Liquid lithium, Wall film flow, Ripple, Flow stability

1. 緒 言

我が国では、癌が日本人の死亡原因の第1位であり、総死 亡の約3割を占めており、癌対策は喫緊の課題となっている ⁽¹⁾.近年、癌や腫瘍を細胞単位で選択して治療可能で、癌治 癒後の QOL(生活の質)が高く、夢の癌治療法と言われる BNCT (Boron Neutron Capture Therapy:ホウ素中性子捕捉療 法)⁽²⁾⁻⁽⁴⁾が注目されている.その中性子源用陽子線加速器タ ーゲットとして計画される、液体リチウムの高速で薄い液幕 噴流⁽⁶⁾ないし壁面液膜流を実現するため、前報⁽⁸⁾では、壁面 液膜流の線形安定性の解析結果⁽⁷⁾と、高橋らの実験結果⁽⁵⁾を 比較・考察した.

本研究対象は、加速器利用環境下の高真空(10⁻³ Pa)中の 流れであり、かつ液体リチウムが加速器ターゲット自身の冷 却材を兼ねるから、十分な流送除熱性能を確保するため高速 流れであること、さらに治療に不要かつ有害なy線の発生を 減らすため、液幕ないし液膜には核反応ターゲットとしてあ る範囲の薄さが要求されること等の制約がある.反面、治療 用中性子線を原子炉から取り出さずに得られる長所がある.

本報では、古林らの最新の実験結果⁽⁹⁾で形成された、リチウム温度 220°C、液膜厚さ $h_{\rm F} = a = 0.6$ mm, 流速 U = 30 m/sの安定なリチウム液膜流について、高橋らの実験結果⁽⁵⁾と併せて、著者らの線形安定性解析結果⁽⁷⁾と対比させて考察する.

2. 線形安定性解析の結果(7)

神部・Drazin の著書(11)が, Landau & Lifshitz の教科書(10) の **§ 26**から引用しているように,「運動方程式の解の全てが, … 現実に起こるわけではない. … 流れは, 流体力学の方程 式に従うだけでなく, 安定でなければならない.」すなわち, 「不安定な流れは存在しない」ため,工学的にも実現できな いから,流れの安定性の判別は,設計上極めて重要である. 本研究の壁面液膜流は,壁面上の流下距離 L (≈ 60 mm⁽⁵⁾) が十分短く,壁面摩擦はあまり効かないと考えられるから, 液幕噴流の線形安定性解析⁽⁶⁾と同様,液面波の安定性判別を 優先して,液体リチウムの粘性を無視し,非粘性,非圧縮, 渦無しの仮定の下で,線形安定性解析を行い,次式を得た⁽⁷⁾. $k \rho (\omega/k-U)^2 \tanh ka = k^2 \sigma$ (1)

この分散関係式(1)を展開して整理し、ωについて解くと、

$$\omega = kU \pm \sqrt{\frac{k^3 \sigma / \rho}{\tanh ka}}$$
(2)

上式 (2) の波について, 既報⁶⁰や前報⁽⁷⁾と同様に, 長波近似, すなわち, 液膜厚さ $h_{\rm F} = a$ が, 波長 $\lambda = 2\pi/k$ に比べ十分薄い ka << 1 のとき, $\tanh ka \approx ka$ (3)

の近似の下で安定性を評価すると、分散関係は次式となる.
∴ ω/k≈U±√σ/ρa (4)
式(4)の波速(根号部分)をオーダ評価すれば、

$$\sqrt{\sigma / \rho a} \approx \sqrt{0.388 / 508 / 5.5 \times 10^{-4}} = 1.18 \text{ m/s}$$

<<tbody><< U ~ 5.0~30 m/s (5)</td>ゆえに、① この波は、密度 ρ の慣性力に対して、表面張力 σ aを復元力とする波である.② 分散関係式(4)または波速の式(5)の根号内が負にならないから、いかなる波に対しても、高真空中の壁面上の薄いリチウム液膜流は不安定にならない、③ 上記①の波速の波は、壁面上で、この波速に比べて1桁前後大きな流速Uの液膜流に押し流される(超臨界流).④ 波は非分散性(波速が k によらない).⑤ 波速の根号内が負にならないから、角速度 ω は複素数 ω_{Real} ± β_{Imag} にならない、すなわち、不安定の増幅率 β_{Imag} =0(中立安定)である.(ここで、添字 Real:実部、Imag.:虚部)

薄い高速リチウム液膜流の安定形成実験結果⁽⁹⁾の考察 1 液膜流の横幅方向の収縮現象および収縮角

図1(a)に、古林ら⁽⁹⁾の実測写真(シャッター速度1ms) を引用する.この液膜流の流下距離Lは、高橋ら⁽⁵⁾の実験結 果の約60mmより長く,液膜流が約100mmに亘って安定に 形成されていることがわかる.また、この液膜流でも、横幅 方向の収縮現象が認められるが、液幕噴流⁽⁶⁾の場合ほど強い 収縮ではない.液膜流の両縁(小))に沿って、流下方向に対し て僅かに内向き角を持って盛り上がった液面のしわが、液膜 流の横幅方向の収縮を明白に示しているが、液膜流の縁(小) の横幅は、スリットノズルの横幅(60mm)を維持している. この液膜流の盛り上がった液面のしわの内向き角(収縮角) は、図1(a)から左右共約7°と読み取れる.この角度は、 液幕噴流の収縮角(22~8°)⁽⁶⁾の約1/3~0.9倍であった.

3.2 液膜流表面の流下方向の波数およびレイノルズ数

図1 (b) に,古林ら⁽⁹⁾の実測写真(シャッター速度10 µs) を引用する.シャッター速度10 µs の写真内の液面の流動は, 30 [m/s] ×10×10⁻⁶ [s] = 0.3 [mm]

に納まるから、画面は暗いものの、準静止写真が得られる. 液膜流表面からの液滴の発生はないように見える.この写真 から、流下方向の波長 λ を読み取って波数 $k = 2\pi/\lambda$ を求め、

高橋ら⁽⁵⁾の写真から読み取れた波数と併せて、表1に示す.
壁面上の液膜流内の境界層流れの層流/乱流を判定するためには、代表長さを流下距離Lに採った流下レイノルズ数
Re_{x=L} = UL/v

局所レイノルズ数には、代表長さを排除厚さ δ *にした⁽¹²⁾⁽¹³⁾

$$Re = U\delta^* /_{\mathcal{V}} = 1.73 \sqrt{\mathrm{Re}_{x=L}} \tag{7}$$

を表1に併記する.流下レイノルズ数が,遷移レイノルズ数 5×10⁵~5×10⁶を越え増加しているから,液膜底面の境界層は 層流で,それが下流側から乱流に遷移中であると判定できる. 3.3 液膜流の短波(深水波)近似下での安定性の再評価

図 1 (b) の写真における液面上の流下方向のさざ波(凹凸) は, 波長 $\lambda \approx 2 \text{ mm}$ (波数 $k = 2\pi/\lambda \approx 3 \times 10^3$) とかなり短いので, 式 (2) の波について,図 1 (b) の実測写真に基づく評価

 $ka \approx 3 \times 10^3 \times 0.6 \times 10^{-3} = 1.8$ $\therefore \tanh ka \approx \tanh 1.8 \approx 0.95$ あるいは、誤差 5%込みで、短波(深水波)近似、すなわち、 波長 $\lambda = 2\pi/k$ が液膜厚さ $h_{\rm F} = a$ に比べ十分小さい

ka >> 1のとき, $\tanh ka \approx 1$ (8) の近似下で安定性を再評価すれば,分散関係は次式となる. $\therefore \omega/k \approx U \pm \sqrt{k\sigma/\rho}$ (9)

式 (9) の波速 (根号部分) をオーダ評価すれば, 220 ℃ で,

$$\sqrt{k\sigma/\rho} \approx \sqrt{3 \times 10^3 \times 0.391/510} = 1.52 \text{ m/s}$$

 $<< U \sim 30 \text{ m/s}$ (10)

よって、① このさざ波は、密度 ρ の慣性力に対して、表面張 力 $k\sigma$ を復元力とする波である。② 分散関係式(9)または 波速の式(10)の根号内が負にならないから、いかなる波に 対しても、高真空中の壁面上の薄いリチウム液膜流は不安定 にならない。③ 上記①の波速の波は、壁面上で、この波速 に比べ約 20 倍大きな流速 Uの液膜流に押し流される(超臨 界流).④ 波は分散性(波速がkに依存).⑤ 波速の根号内 が負にならないから、角速度 ω は複素数 ω_{Real} ± β_{Imag} にならな い、すなわち、不安定の増幅率 $\beta_{Imag}=0$ (中立安定)である。

3.4 中立安定曲線と実験点の軌跡との位置関係

表1と上2節から,線形安定性解析で重要な中立安定曲線

$$\beta_{\text{Imag.}} = 0$$
を満たす陰関数 $f(Re, k) = 0$ (11)

および 臨界点 (
$$Re_c, k_c$$
), ただし, $Re_c = \min Re(k)$ (12)

- Fig.1 Photographs of the surface of liquid lithium film flows on the concaved wall in a high-vacuum (< 10^{-3} Pa), i.e., at the saturation pressure of lithium, at the temperature : 220 °C, film thickness : h = 0.6 mm, and flow velocity : U = 30 m/s. Shutter speeds of the camera were (a) 1 ms and (b) 10 µs, respectively. These figures are quoted from Fig.7(a) and (b). in the paper experimented by Kobayashi, et. al.⁽⁹⁾.
 - Table 1. Flow velocity, wave number and Reynolds numbers of liquid lithium film flows on the wall in a high-vacuum; the joint data experimented by Takahashi, et. al. ⁽⁵⁾ and Kobayashi, et. al. ⁽⁹⁾.

Velocity	Wave number	Reynolds numbers [–]		
U[m/s]	<i>k</i> [1/m]	$Re_{x=L} = UL / v$	$Re=1.73\sqrt{Re_{x=L}}$	
5.0 10.0 15.0 30	≈0 illegible illegible 3×10 ³	$\begin{array}{c} 2.86 \times 10^{5} \\ 5.76 \times 10^{5} \\ 8.69 \times 10^{5} \\ 2.70 \times 10^{6} \end{array}$	925 1313 1613 2843	

を考える. *Re-k* 平面上の中立安定曲線の概形(平板境界層型の中立安定曲線⁽¹²⁾ (¹³⁾に該当:右下を根元とし,左上に伸びる舌状ないしバナナ形)と実験点(*Re, k*)の軌跡との位置関係は,実験点の軌跡が,式(11)の中立安定曲線で囲まれた上述のバナナ形の不安定領域を,その左下側(*Re, k*) = (925, ≈0)から右上側(2843, 3×10³)へ横切っていることが推定できる.

参考文献

- (1) 開がん研究振興財団, 癌の統計'13, (2013), p.25.
- Tanaka, K., Kobayashi, T., et. al., Physics in Medicine and Biology, 47 (2002), pp.3011-3032.
- (3) Bengua, G., Kobayashi, T., et. al., Physics in Medicine and Biology, 51 (2006), pp.4095-4109.
- (4) Kobayashi, T., et. al., Physics in Medicine and Biology, 52 (2007), pp.645-658.
- (5) Takahashi, M., Kobayashi, T., et. al., Journal of Power and Energy Systems, 6-2 (2012), pp.324-338.
- (6) 中川,高橋,有富,古林,日本機械学会論文集,80-819 (2014), DOI:10.1299/transjsme.2014fe0316.
- (7) 中川, 高橋, 古林, 有富, 機構論(2015 年度年次大会) No.15-1 (2015), S0510404.
- (8) 中川,高橋,古林,有富,機構論(第93期流体工学部門) No.15-34 (2015), 0215.
- Kobayashi, T., et. al., Applied Radiation and Isotopes, 88, (2014), pp.198-202.
- Landau, L. D. and Lifshitz, E. M., (竹内均訳), 流体力学1, (1970), \$26, 東京図書.
- (11) 神部勉, Drazin, P. G., 流体力学 安定性と乱流, (1998), p.6, 東京大学出版会.
- (12) 巽友正,後藤金英,流れの安定性理論,(1976),産業図書.
- (13) 巽友正, 流体力学, (1982), pp.378-380, 培風館.
- (14) 水島二郎,藤村薫,流れの安定性,(2003),朝倉書店.