[2R2 Exflsks U H—FURI Y

Science Tokyo Research Repository

Od/dodn
Article / Book Information

Title Dynamic Modification of Continuous Queries by Using RDF Metadata of
Information Sources

Author Yousuke Watanabe, Haruo Yokota
Journal/Book name Proc. of 015 10th International Conference on P2P, Parallel, Grid,
Cloud and Internet Computing (3PGCIC), , , pp. 754-759
Issue date 2015, 11
o | wpikdogonoPocc o
RL | mesesiessogmecu
Comight | (2015 IEEE. Personaif use ofhs materal s peited, Permisson

from IEEE must be obtained for all other users, including
reprinting/republishing this material for advertising or promotional
purposes, creating new collective works for resale or redistribution to
servers or lists, or reuse of any copyrighted components of this work in
other works.

Note OO0000000000000O00O0d
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/10.1109/3PGCIC.2015.105
http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

Dynamic Modification of Continuous Queries by
Using RDF Metadata of Information Sources

Yousuke Watanabe
Institute of Innovation for Future Society
Nagoya University
Furocho, Chikusa-ku, Nagoya, Japan
watanabe @coi.nagoya-u.ac.jp

Abstract—Continuous queries over data streams have been
used in many applications. They incrementally produce their
query results according to data arrival and time progress. How-
ever, existing continuous query languages strongly assume that
all information sources to be accessed by queries are explicitly
specified and permanently fixed. There are more sophisticated
requirements such as changing information sources and rewriting
filter conditions during query execution. This paper proposes
a dynamic query modification scheme for continuous queries.
Our continuous query language treats not only stream data
from information sources, but also metadata of the information
sources and queries themselves. Internally, a continuous query is
represented as a dataflow, which is an RDF graph of operators.
Thus, modifying a continuous query can be regarded as rewriting
the corresponding RDF graph. Searching information sources
which satisfy the conditions can be also regarded as searching
RDF graphs descripting metadata of information sources. Our
scheme achieves both continuous searching information sources
and rewriting dataflows.

Keywords—Data stream; Continuous query; RDF; Dynamic
rewriting;

I. INTRODUCTION

The number of stream-based information sources such as
sensors and cameras is increasing. Query processing on stream
data has become one of important research issues. Thus, Data
Stream Management Systems (DSMSs)[1], [2], [3], [4], [5],
[6], [71, [8], [9], which achieve query processing on stream
data, have been focused.

The query processing scheme in DSMSs is called continu-
ous query [10], [11]. Since stream data are continuously pro-
duced, continuous queries are repeatedly evaluated. According
to data arrival and time progress, a DSMS produces query
results incrementally. Once a query is posed to a DSMS, its
query processing is continued until the owner unregisters it
explicitly. Continuous queries have much longer lifetimes than
conventional queries in DBMSs.

During execution of continuous queries, the real-world
changes dynamically. Statistics of data, arrival rates of data,
available computational resources (CPU load), and available
network bandwidth may change over time. How to detect
changes in the environment and how to adapt DSMSs to the
changes have been studied [12], [13], [14], [15], [16], [17].

However, the previous work does not consider that user
requirements may also change during query execution. Ex-

Haruo Yokota

Graduate School of Information Science and Engineering

Tokyo Institute of Technology
2—-12—-1 Oh-okayama, Meguro, Tokyo, Japan
yokota@cs.titech.ac.jp

isting continuous query languages strongly assume that all
information sources to be accessed by queries are explicitly
specified and permanently fixed. For example, a user would
like to get stream data from the nearest information sources
according to user’s location. This means that we cannot specify
an information source to be accessed. The continuous query
should be dynamically rewritten based on the user’s location.
To deal with above situation in existing continuous query
languages, we have to interrupt query execution and manually
rewrite the query. It is inconvenient when changes occur
frequently.

Therefore, we propose flexible query specification scheme
that allow dynamic modification of continuous queries. Our
continuous query language treats not only stream data from
information sources, but also metadata of the information
sources and queries themselves. Internally, a continuous query
is represented as a dataflow, which is an RDF (Resource
Description Framework [18]) graph of operators. Thus, mod-
ifying a continuous query can be regarded as rewriting the
corresponding RDF graph. We also use RDF graphs to ex-
press metadata of information sources. Searching information
sources which satisfy the conditions can be also regarded as
searching RDF graphs descripting metadata of information
sources. Our scheme achieves both continuously searching
information sources and rewriting dataflows.

We summarize the contributions of this paper:

1) we point out a limitation of existing continuous query
languages.

2) we propose a new query specification scheme with
dynamic modification for continuous queries.

The remaining part of this paper is organized as follows:
Section II presents an example scenario. Section IIT describes
a data stream management system we assume in this paper.
Section IV proposes our query modification scheme. Section
VI introduces related work. Section VII concludes this paper.

II. EXAMPLE SCENARIO

To illustrate our objective, we show an example scenario.
Here, we suppose a kind of moving object tracking (Figure 1).
A person to be monitored (the tracking target) freely moves in
the two dimensional space. The position of the tracking target
is detected by GPS and provided as stream data. Multiple
network cameras are located in the space. These cameras

Quer
Data Stream
Management System
Position k
stream @y
G.”ﬁ

. EEE]
Video streams

; T /jn/uv T
D Ts T

Fig. 1.

Example Scenario

provide live video streams via network when we access them.
We assume that a location of each camera and its schema are
known.

An example requirement in this environment is “a user
would like to receive video data from cameras which are
located near the tracking target (distance between the tracking
target and a camera is less than 10)”. Since a camera to be
accessed depends on the current position of the tracking target,
we cannot specify an information source in advance.

In the existing continuous query languages, there are two
approaches to achieve this requirement.

1) Rewriting queries: When the current position of the
tracking target is notified, we can identify cameras
near the tracking target. A new continuous query is
generated by using the name of the camera. However,
according to movement of the tracking target, we
need to interrupt execution of the query and rewrite
the query again.

2) Union of all video streams: Union operator enables
us to assemble one stream including video data from
all cameras. However, this approach consumes much
computational resources and network bandwidth, be-
cause it needs to collect all data from information
sources.

The existing continuous query languages are originated from
the query languages in DBMS such as SQL. In SQL, there
is a strong assumption that a user has enough knowledge
about relations to be accessed. A FROM clause in an SQL
query should be fixed during query execution. The existing
continuous query languages still keep this assumption. This is
the cause of the above limitation.

A. Requirement Analysis

To cope with above requirement, a DSMS should perform
the following steps.

1) The DSMS obtains position data of the tracking target
from GPS stream.

2) The DSMS finds a camera (C,,eqr) Which is close
to the tracking target. It computes distance between
the tracking target and camera. We need to provide a
position of each camera.

3) Once a camera to be accessed is found, we can
construct a dataflow to handle the video stream from
the camera. The DSMS establishes a connection to
the camera. We need to provide an IP address and an
access method (URL) for the camera C,,eqr

4) The DSMS receives video data from camera Ci,eqr-
We need to provide a schema information of
Chear(A1, ..., Ay). Video data are also processed by
continuous queries in the DSMS.

5) The DSMS closes a connection to a camera, when
the camera becomes no longer close to the tracking
target.

We need to provide camera’s metadata such as position, IP
address, access method and so on.

III. DSMS ARCHITECTURE FOR DYNAMIC
MODIFICATION

In this section, we describe an architecture of DSMS in this
paper. We assume that data stream provided from information
sources are based on relational model. Each data item is
represented as a tuple. From Section II-A, metadata handling
is also needed. In our proposal, we employ RDF [18] format
to represent metadata. We achieve a mechanism which can
integrate relational stream and metadata.

A. Architecture

Figure 2 shows an architecture of the DSMS we propose.
It consists of the following components:

e Query Parser: A user specifies his requirement as a
continuous query. Our query language is explained in
Section IV. A continuous query is analyzed by Query
parser and converted into a dataflow. A dataflow is a
graph of operators. It is registered into both Executor
and Graph store.

e Executor: Executor processes stream data. When a
new tuple is obtained, Executor applies operators to
the tuple according to registered dataflows. In this
paper, we consider basic relational operators.

e Wrapper: A wrapper is a component to receive tuples
from an information sources. By wrapper, the data
format of the information source is converted into
relational stream. A type of wrappers should be chosen
based on the access method of the information source.

e Wrapper Manager: An instance of wrappers is cre-
ated/deleted by Wrapper Manager.

e Graph store: Graph store manages RDF graphs. Meta-
data of information sources and dataflows are stored.

B. Metadata of information sources

Metadata of information sources are represented as RDF
graphs. Figure 3 shows an example of metadata descripting
information sources. A data item in RDF graph is a triple
(subject, predicate, object). In the figure, subjects and ob-
jects are expressed by nodes. Predicates are expressed by
edges. Cameral is an instance of InformationSource. It
has two attributes Cameral.Al and Cameral.A2. The data
type of Cameral.A2 is video data.

\ Query Parser
A

<> GraphStore
'Wrapper info.

Wrapper Manager

etadata of
dataflows

Executor

Stream
data

etadata of
information sources,

“-. Create instance |

Wrapper —

@ leps

Wrapper

'r'cameral ig

camera2 "‘camera3

Fig. 2. System architecture

Metadata Information Source “Cameral”
type @
N Cameral
il resource 5[22 | | Camera.Al Camera.A2

~_——locationX -

s] 1
cation H

i T : 2 &
L e type 1
L o> oo
E | [|

Position of camera1: (11,15) | (g
Access URL: rtsp://192.168.172.1/...

Fig. 3. Metadata descripting information sources

C. Metadata of dataflow

A continuous query written in our query language (Section
IV) is converted into a dataflow by Query Parser. A dataflow
is a directed-acyclic-graph (DAG) of operators. It is also
represented as a RDF graph.

Figure 4 shows an example of metadata descripting a
dataflow. This dataflow includes two operators: root and se-
lection. A selection reads tuples from C'ameral. By rewriting
a RDF graph, we can modify the corresponding dataflow. Sup-
pose we would like to access Camera2 instead of Cameral.
In this case, we add an edge from C'amera2 to the selection,
and remove the edge from C'ameral to the selection.

IV. QUERY SPECIFICATION

Based on the requirement analysis in Section II-A, our
query specification scheme needs to provide the following
functions (Figure 5):

e Metadata search: In the example, the DSMS finds
cameras which are close to the tracking target. Gen-
erally, we need to retrieve RDF graphs.

e Handling both stream data and RDF graphs: A DSMS
must treat both relational stream and metadata. In
the example, the position of the tracking target is
converted into a filter condition for metadata of in-
formation sources. A dataflow to process video data
is constructed from metadata of cameras. We need
bidirectional conversion from relational stream to
metadata and vice versa.

e Manipulating dataflows in the query language: Since
information sources to be accessed change dynam-
ically, we cannot write the name of information
source directly. We should provide variables which

Cameral rdf:type rdf:type

input
R output

input
condition

rdf:type

nformation
Source

rdf:type

Camera2

Fig. 4. Metadata descripting dataflow

are dynamically replaced with actual source name and
column name.

e Dynamic connection establishment to sources: DSMS
has to dynamically establish connections to informa-
tion sources by using metadata of the information
sources.

The proposed query language is based on a hybrid of CQL
[11] and SPARQL [19]. CQL-like queries are for stream data,
and SPARQL-like queries are for RDF graphs.

Figure 6 is an example query corresponding to the example
scenario. SELECT-FROM clauses in Line 4-5 follow the
CQL syntax. They specify stream processing for video data
from cameras. ?camera and Tvideo are metadata variables,
whose actual values are continuously obtained by evaluating
the following METADATA clause. Expressions in a META-
DATA clause follow the SPARQL syntax (Line 7-15). They
specify how to find information sources which satisfy the
conditions. ns : in formationSource is a RDF object which
corresponds to the class of information sources in the DSMS.
ns : locationX and ns : locationY are RDF predicates for
position coordinates of the tracking target. A VALUES clause
in Line 16 is an extension of SPARQL syntax. This clause
controls binding between metadata variables and intermediate
result of stream processing. Metadata variables 7tz and 7ty are
replaced with a coordinate (z,y) from GPS stream (specified
in Line 17-18).

A. Evaluation of queries

Evaluation of the example query is illustrated in Figure 7.
When a new data item arrives from GPS stream, values of 7tx
and 7ty are updated. Then, metadata search is performed. The
result of metadata search is bound to variables 7camera and
?video. Changing values of 7camera and 7video means infor-
mation sources to be accessed change. The DSMS establishes
a connection to the new information sources. After that, the
DSMS starts to receive video data and applies operators to the
video data.

V. DyNAMIC CONNECTION MANAGEMENT

The DSMS establishes a connection to an information
source according to intermediate result of metadata search.
It continuously monitors changes in the result of metadata
search. When it detects changes, Wrapper Manager in the
DSMS creates a new instance of Wrapper.

As described in Section III-B, an access method for each
information source is also included in metadata. By retrieving
the access method of the information source, Wrapper Manager

Data Descripting

. . Operators :
manlpulat,on/ p connections

Data !é \
Conversion

Stream data Metadata
(Relation) (RDF graph)
Information
Source

Y S .

Data delivery Descripting

properties

Fig. 5. Relationship between stream data and metadata
1 PREFIX rdf: http://...
2 PREFIX ns: <http://...>
3
4 SELECT ?video
5 FROM ?camera [1 sec]
6 METADATA {
7 SELECT ?camera, ?video
8 WHERE {
9 ?camera rdf:type ns:informationSource .
10 ?camera ns:locationX ?cx.
11 ?camera ns:locationY ?cy.
12 FILTER (DISTANCE(?cx, ?cy, ?tx, ?ty) <10).
13 ?camera ns:hasAttribute ?video .
14 ?video rdf:type ns:VideoData .
15 }
16 VALUES (?tx, ?ty){
17 SELECT Gps.x, Gps.y
18 FROM Gps [1 sec]
19 }
20 }
Fig. 6. An example query with dynamic modification

determines the Java class fitting to the information source. An
instance of wrapper establishes a connection to the information
source.

VI. RELATED WORK

Many Data Stream Management Systems and continuous
query languages are proposed in the previous work. The
existing continuous query languages are classified into two
categories: declarative approach and dataflow approach.

SQL-like declarative query languages are applicable to
relational streams (infinite sequence of tuple). CQL [11] is one
of major declarative continuous query languages. It provides
three types of operators, stream-to-relation, relation-to-relation,
relation-to-stream. A sliding-window is a stream-to-relation
operator. It gets a finite set of tuples from stream. Relation-
to-relation operators are traditional relational operators such
as selection and join. I-stream, D-stream, and R-stream are
relation-to-stream operators, which are used to obtain differ-
ences from the result produced in the previous evaluation. A
part of our query language is based on CQL syntax.

SELECT Cameral.A2 SELECT ?camera, ?video
Stream data WHERE {

processing 2 FROM Cameral [1second] ?camera rdf:type nsinformationSource

- ?camera ns:locationX ?cx .

SELECT ?video ?2camera ns:locationY ?cy .
FROM ?camera [1second] Replacing metadata FILTER DISTANCE(?cx, ?cy, ?tx, ?ty) < 10) .

variables ?camera ns:hasAttribute video .
" 2ideo rdf:type ns:VideoData
?camera | ?video } i
Cameral Cameral.A2 Cl:
2ty Metadata
search

TORIZ)

SELECT Gps.x, Gps.y
FROM Gps [1sec]

1 10

12

Metadata
processing

RDF graph

Stream data
processing 1 locationX
VALUES (?tx, ?ty) o

{

o 11
nY

Cameral. A2
15

type
Y,

“hasAttribute-~
\lqcatio

}

Integer

Fig. 7. Evaluation of the example query

C-SPARQL [20] is a declarative continuous query language
for RDF streams. Its syntax is based on SPARQL. A data
item in C-SPARQL is a pair of timestamp and RDF triple
(timestamp, (subject, predicate, object)).

In some DSMSs [4], [5], [6], [7], a user can specify
dataflows directly. A dataflow is a DAG of operators handling
stream data. Dataflow approach is applicable to not only
relational streams but also object streams (infinite sequence of

objects). Our query language is converted to dataflow inside
of the DSMS.

Existing continuous query languages strongly assume that
all information sources to be accessed by queries are explic-
itly specified and permanently fixed. This paper proposes a
dynamic query modification scheme for continuous queries.

VII. CONCLUSION

This paper pointed out the limitation of existing contin-
uous query languages. Most continuous query languages are
originated from query language in database systems. They do
not consider that information sources accessed by queries may
change dynamically. To avoid the problem, this paper proposed
dynamic modification scheme for continuous queries. It can
handle both RDF graph and stream data. Its syntax is a hybrid
of CQL and SPARQL. By using metadata, our DSMS can
establish connections to information sources to be accessed.

We have been developing a prototype system. Performance
evaluation is one of future research issues.

ACKNOWLEDGMENT

This work was supported in part by JSPS KAKENHI Grant
Number 24700087 and 25240014.

REFERENCES

[1] J. Chen, D. J. DeWitt, F. Tian, Y. Wang. NiagaraCQ: a scalable
continuous query system for Internet databases. Proc. ACM SIGMOD,
pp- 379-390, 2000.

[2] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,
G. Manku, C. Olston, J. Rosenstein, and R. Varma. Query processing,

resource management, and approximation in a data stream management
system. In Proc. CIDR, pages 245-256, 2003.

(3]

[4]

(5]

(6]

(7]
(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and
M. A. Shah. Telegraphcq: Continuous dataflow processing. In Proc.
the 2003 ACM SIGMOD International Conference on Management of
Data, pages 668-668. 2003.

D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.
Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new model
and architecture for data stream management. The VLDB Journal,
12(2):120-139, 2003.

D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang,
W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik. The design of the borealis stream processing engine. In
Proc. CIDR, pp. 277-289, 2005.

L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed stream
computing platform. In Proc. the 2010 IEEE International Conference
on Data Mining Workshops, pages 170-177, 2010.

Storm project, https://storm.apache.org/

M. Zaharia, T. Das, H. Li, S. Shenker, and L. Stoica. Discretized streams:
An efficient and fault-tolerant model for stream processing on large
clusters. In Proceedings of the 4th USENIX Conference on Hot Topics
in Cloud Ccomputing, HotCloud * 12, pages 10-10, 2012.

U. Cetintemel, J. Du, T. Kraska, S. Madden, D. Maier, J. Meehan, A.
Pavlo, M. Stonebraker, E. Sutherland, N. Tatbul, K. Tufte, H. Wang,
S. B. Zdonik. S-Store: A Streaming NewSQL System for Big Velocity
Applications. In Proc. VLDB, pp. 1633-1636, 2014.

D. Terry, D. Goldberg, D. Nichols, and B. Oki. Continuous queries over
append-only databases. SIGMOD Rec., 21(2):321-330, 1992.

A. Arasu, S. Babu, and J. Widom. The cql continuous query lan-
guage: Semantic foundations and query execution. The VLDB Journal,
15(2):121-142, 2006.

R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query
processing. In Proc. the 2000 ACM SIGMOD international conference
on Management of data, pp. 261-272, 2000.

S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously
adaptive continuous queries over streams. In Proc. the 2002 ACM
SIGMOD international conference on Management of data, pp. 49-60,
2002.

S. Chandrasekaran and M. J. Franklin. PSoup: a system for streaming
queries over streaming data. The VLDB Journal, 12(2):140-156, 2003.

S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. Widom.
Adaptive Ordering of Pipelined Stream Filters. In Proc. of SIGMOD
2004, June 2004

R. C. Fernandez, M. Migliavacca, E. Kalyvianaki, P. Pietzuch. Integrat-
ing scale out and fault tolerance in stream processing using operator
state management. In Proc. ACM SIGMOD, pp. 725-736, 2013.

Y. Wu and K. Tan. ChronoStream: Elastic stateful stream computation
in the cloud. In Proc. ICDE, pp. 723-734, 2015.

Resoure Description Framework.

http://www.w3.org/RDF/

SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/

D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, M. Grossniklaus. Querying
RDF streams with C-SPARQL. SIGMOD Record, Vol.39 No.1, pp.20—
26, 2010.

