
論文 / 著書情報
Article / Book Information

Title Customizable Strokes for Localized Stylization of View-Dependent
Lines Extracted from 3D Models

Authors Luis Cardona, Suguru Saito

Citation Proceedings of the 2013 International Conference on Cyberworlds, pp.
140-146

Pub. date 2013, 12

DOI http://dx.doi.org/10.1109/CW.2013.62

URL http://www.ieee.org/index.html

Copyright (c)2013 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

Note This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/10.1109/CW.2013.62
http://www.ieee.org/index.html
http://t2r2.star.titech.ac.jp/

Customizable Strokes for Localized Stylization of View-Dependent
Lines Extracted from 3D Models

Luis Cardona
Tokyo Institute of Technology:

Graduate School of Information Science and Engineering
Tokyo, Japan

Email: luis@img.cs.titech.ac.jp

Suguru Saito
Ochanomizu University:

Graduate School of Humanities and Science /
Tokyo Institute of Technology:

Graduate School of Information Science and Engineering
Tokyo, Japan

Email: suguru@is.ocha.ac.jp

Abstract—We propose a method to stylize individual lines
and preserve their properties as the viewpoint is modified. As
the camera position changes and view-dependent lines move
across the surface, we track each line in order to extract
and store the areas of the surface in which they appear. Each
line has an unique reference that we use to check an indexed
table from which we can recover its stylization after arbitrary
camera movements. We call this region the tracked area of the
line. Additionally, we provide a method for line segmentation
of occluding contours. In our algorithm, we divide the contour
lines at inflection points in order to segment them in a way that
is suited for localized stylization as well as to better approximate
artist strokes. We also optimize the line tracking process by
making use of the Gaussian curvature to separate the elliptic
and hyperbolic areas of the surface. In this paper we show
how each line only appears in a limited area of the surface
corresponding to its tracked area. We also discuss how to
eliminate the over-segmentation caused by numerical instability
of the approximations in polygonal surfaces as well as how
smoothing can be used in order to deal with highly detailed
models. Finally, we highlight the achievements of our system
for localized stylization of the contour lines of 3D models.

Keywords-NPR; line drawings; stylization; segmentation;
tracking;

I. INTRODUCTION

A. Background and purpose

Computer-generated 3D models have been extensively
used in applications that try to replicate realistic imagery.
However, there is another branch of computer graphics
called NPR (Non-photorealistic rendering), that focuses on
how to imitate the principles of abstraction used by artists.
NPR research covers different topics like line extraction
algorithms, stylization and animation coherence. Yet, there
is still many problematics to solve in order to generate
imagery with the same degree of abstraction and stylization
as human-made drawings.

c©IEEE. the final version of this paper can be obtained here: http://
ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6680106&tag=1

As stated in a recent study[2], most of the lines drawn by
artist to convey 3D shape can be explained by some of the
most commonly-known line extraction algorithms. However,
artists often make global decisions such as the omission of
implicit lines or stylistic decisions which tend to depart from
realism. Therefore, there is a need for flexible user interfaces
which enables designers to customize the appearance of
drawings as well as to emphasize or omit some of its details.

Usually line drawings have a consistent style for all
the scene but artists also include subtle sytilization
differences in each stroke. However, algorithms for
extracting lines only provide local information like the
location of lines or curvature data for each vertex of the
mesh. Our system performs a segmentation of the extracted
lines to differentiate individual continuous lines and divide
them at inflection points. Once a line is selected, the user
can customize it by changing its shape. We also provide an
user interface to easily select each of them individually or
select every line inside a Gaussian curvature area.

The main problem to solve in order to successfully
achieve localized stylization of individual lines is how to
recognize each of them as the same entity as the viewpoint
changes.

B. Related work

Various methods have been proposed in order to extract
lines from 3D models. Image-space algorithms focus on
image processing methods such as edge detection to extract
the lines at each pixel of the output image[3], [4], [5], [6].
This type of algorithm generates quite convincing images
but suffers from noise problems and are unsuitable for
further stylization.

Object-space algorithms are based on the field of
differential geometry which analyzes the properties of
curves and surfaces. Previous research has successfully
characterized different type of lines by making use of

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6680106&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6680106&tag=1

derivatives of different order. The main contributions in this
category are occluding contours[1], suggestive contours[7],
[8], ridges and valleys[9] and apparent ridges[10].

Recently, some researches have focused on how to
propagate the parameters of the lines in order to maintain
the coherence of stylized strokes as the viewpoint changes
or the 3D model is animated[11], [12], [13], [14], [15].

Previous papers have stated the need for user interfaces
to provide better control of the rendering styles[16], [17].
These systems are useful to quickly define the style of the
whole scene but do not provide the means to customize
individual details.

Finally, 3D model segmentation algorithms have focused
in how to divide surfaces into meaningful parts consistent
with how humans perceives the shape of objects[18].

II. ALGORITHM

In this paper, we make the assumption that the inflections
of contour lines have high probability to be chosen by
artists as terminal points. We will start by describing the
relationship between inflections points and surface curvature.

The apparent curvature κapp is the curvature of the
contours in image-space[19]. κapp is positive at convex
parts of contours, negative in the concave parts and zero
at inflections. Koenderink[1] described the relationship
between the apparent curvature κapp and the Gaussian
curvature K as follows:

κapp =
dK

κr
(1)

with d being the distance to the camera and κr the radial
curvature.

Since visible occluding contours only appear where
κr is positive, both κapp and K have the same sign.
Consequently, we use K instead of κapp to divide the
contours at inflections(where K = 0).

In the case of suggestive contours, the lines only appear at
hyperbolic regions(where K < 0). As result, we can not
segment these lines in the same way as occluding contours.

A. Gaussian curvature areas

We segment the surface using the sign of the Gaussian
curvature by separating the elliptic (K > 0) and the
hyperbolic (K < 0) parts of the model (Fig. 1). We call
these regions Gaussian curvature areas. The benefit of
the Gaussian curvature segmentation is that not only it
enables us to divide the line tracking problem in similar

subproblems but also it is directly related to the inflection
points of contour lines. In the case of suggestive contours,
the zero-crossings of K can not be related to inflection
points. However, the Gaussian curvature areas are still
useful to apply different styles and thresholds on different
areas.

We make use of the connectivity data of the triangles
as well as the zero-crossings of K to determine at which
area each vertex belongs to. Afterwards, we pass the K
zero-crossing data to a fragment shader in order to assign
an unique color for each area. This shader also builds the
boundaries between the areas by assigning different colors
to each side of the triangles containing a zero-crossing of
K. It should also be noted that, in the case of non-animated
models, the Gaussian curvature is view-independent, i.e.
constant, which means that the segmentation can be
pre-computed. Additionally, we added the functionality of
manually merge areas because the user may want to decide
if a line should be segmented at the boundary between two
areas or not.

Figure 1. Gaussian curvature areas separated by the boundary where
K = 0 (red)

1) Smoothing: Meshes with high level of detail usually
result in a highly fragmented segmentation. Depending
on the drawing style we want to replicate, we may want
to ignore some of the surface detail in favor of a more
simplified line segmentation.

Smoothing is commonly used for noise removal of
rough meshes, e.g. 3D scan reconstructions of physical
objects. A frequently used method for smoothing meshes is
Laplacian smoothing. Laplacian smoothing can be thought
as the equivalent of lowpass filtering in signal processing.
Desbrun et.al. [20] describes the discrete approximation of
the Laplacian as a weighted sum of the one-ring neighbors
of a vertex:

L(xi) =
∑
j∈N

wij(xj − xi) (2)

where xj are the neighbors of the vertex xi and N is the
set of neighbor vertices.

Figure 2. Original segmentation and Laplacian smoothing applied to the vertices positions (top) and the Gaussian curvature (bottom) for 5, 25 and 100
iterations.

For a given vertex, the most simple of the proposed
approximations defines the Laplacian as the vector to the
barycenter of its one-ring neighbors. This is also known as
the umbrella operator and uses equal weights:

wi,j =
1

m
(3)

where m is the number of neighbors vertices.

The smoothed vertex positions can then be calculated
as follows:

Pi(n+ 1) = Pi(n) +
1

m

∑
j∈N

(Pj(n)− Pi(n)) (4)

Alternatively, Laplacian smoothing can also be directly
applied to the values of the Gaussian curvature as follows:

Ki(n+ 1) = Ki(n) +
1

m

∑
j∈N

(Kj(n)−Ki(n)) (5)

The results of both smoothing methods (Fig. 2) shows
that as the number of iterations increases, the number of
segmented areas decreases. Applying Laplacian smoothing
directly to the Gaussian curvature is considerably faster be-
cause no recalculation of normals and curvatures is needed.
Furthermore, the direct method tends to eliminate the over-
segmentation caused by numerical instability. In comparison,

the method that includes the recalculation yields better
results because it does not modify as much the shape of the
boundaries of the areas but the numerical instability of the
approximation of K still produces unwanted areas. However,
this problem can be solved by merging the unwanted areas
as described in the following section.

2) Numerical instability: For polygonal surfaces, K is
just an approximation which can introduce undesirable
artifacts (especially where the minimum curvature κ2 is
around 0). In our case, we want to get rid of the areas which
results in over-segmentation of the contour lines, i.e. the
areas which are almost flat or are only bent in one direction.

We make use of a modified Sigmoid function to constrain
the infinite values of the Gaussian curvature. The Sigmoid
function is defined as:

sα(x) =
1

1 + e−αx
(6)

where α defines the shape of the Sigmoid function.

The following modified version takes values between
0 and 1 for positive values of x:

Sα(x) =
2

1 + e−αx
− 1 (7)

For each area, we calculate the average κ2 of all the vertices
contained inside it:

Figure 3. Modified Sigmoid function with different values of α

κ̄2 =
1

N

∑
i∈V

Sm(|κ2i |) (8)

where V is the set of vertices of the area.

Finally, we merge the areas which have only one adjacent
area and fulfill the following condition (Fig. 4):

κ̄2 < δ (9)

where δ is an user-defined threshold.

Figure 4. The unwanted areas produced by numerical instability are
eliminated

B. Generation of Tracked Areas

One of the main problems we face is that for view-
dependent lines, the shape and position of each line changes
depending on the viewpoint. Consequently, recognizing
each contour line from frame to frame is essential to be
able to stylize individual lines.

1) Line tracking: In our method, we check the squared
distance of both start and end of a given line with all terminal
points of the lines of the next frame. For the line currently
being checked, we define the points sk and ek as the start and

end points respectively. A line in the frame k is considered
the same as a line in frame k−1 if the following conditions
are fulfilled:
• sk and ek are matched to the same line in frame k− 1
• s and e are matched to different terminal points, i.e
sk−1 6= ek−1

Additionally, we sample a number of equidistant points
along each line and check the similarity of the matched lines
using the Hausdorff distance:

h(A,B) = max
a∈A

(min
b∈B

(d(a, b)) (10)

H(X,Y) = max(h(X), h(Y)) (11)

With X and Y being the sets of sampled point of the two
lines being checked.

Therefore, in order to prevent mismatches we add the
following condition:

H(X,Y) < δ (12)

With δ being a distance threshold.

As previously stated, we decided to segment the lines
at inflections points. This actually corresponds to dividing
the lines as they cross the boundaries between Gaussian
curvature areas in object-space. Therefore, we can optimize
the tracking process by checking only the lines contained
in the same Gaussian curvature area.

2) Tracked areas: As the camera position changes,
view-dependent lines move across the surface until they
eventually merge with other lines or completely disappear.
Consequently, not all contour lines can be tracked at every
viewpoint. It is then essential to be able to store and retrieve
their references after arbitrary camera movements. Since
contour lines can only appear inside a limited area, we store
their references in a color-coded texture map containing
the regions of the surface where each line has previously
appeared (Fig. 5). We call these regions the tracked areas.
It should be noted that the tracked areas can be considered
as subsets of the Gaussian curvature areas (Fig. 6).

For any given line, we retrieve the reference from the
texture map only if both of its terminal points and sampled
internal points are in the same tracked area. The reference
can then be used to recover the line stylization from the
properties table (Table I). In our algorithm, the purpose
of line tracking is limited to building the tracked areas
corresponding to each contour line. Since these areas can
be used to identify each line, pre-computing all the tracked

Figure 5. Five lines of a 3D model as the viewpoint changes (up) and the evolution of their tracked areas (down)

Figure 6. The original segmentation (left) and the tracked areas of 5 lines
added as a subset of their corresponding Gaussian curvature area (right)

Reference Line properties
0 ω, αT , αL, ...
.. ..
.. ..
.. ..
n ω, αT , αL, ...

Table I
THE PROPERTIES TABLE INDEXED BY EACH LINE REFERENCE

areas would allow us to just retrieve the reference directly
from the color-coded texture map, making further tracking
unnecessary.

C. Line rendering

We chose a commonly used method for line rendering
that extrudes triangles strips along the zero-crossings in the

normal direction. As opposed to other line primitive based
methods, this rendering method enable us to change the
width along lines as much as we want. We also added length
dependent width and tapering[21] using the same modified
Sigmoid function defined in (7) of section II-A2. We can
obtain a variety of line shapes by changing the α coefficients
of the Sigmoid functions. We can then calculate the width
at a certain position of a line as follows:

W = ωSαL
(L)SαT

(l) (13)

With ω being the user-defined base width, L the total length
of the line and l a scalar taking normalized values increasing
as we move away from the nearest terminal point.

III. RESULTS

In our implementation, the user can select each line
separately and change its properties or select a Gaussian
curvature area and modify at once all the lines contained
inside it. The process to stylize a line only needs to be
done for one viewpoint because its properties are preserved
as the camera moves. As result, our system not only frees
the user from the tedious process of customizing all lines
for every viewpoint and but also as opposed to previous
stylization approaches[16], [17], we are able to stylize each
line individually. For an experienced user, the whole process
of stylizing the contour lines of the models shown in Fig. 7, 8
and 9 can be done in a few minutes. Additionally, we showed
how unwanted areas caused by numerical instability can be

eliminated and also compared two smoothing methods for
highly detailed models.

IV. CONCLUSION

We have proposed a method for localized stylization
of occluding contours that preserves the properties of the
lines as the viewpoint change. However, future approaches
should implement more robust tracking methods to prevent
incorrect matches. Our system only provides control over
the line shape and therefore we should extend the range
of customizable properties. In addition, given that different
lines may appear in common regions, we should add support
for overlapping tracked areas. We should also note that our
algorithm partially supports localized stylization of sugges-
tive contours but it is still lacking compared to occluding
contours. Finally, the segmentation of contour lines may be
extended to consider other important points like the extremas
of contour points as possible candidates for terminal points.

REFERENCES

[1] J.J. Koenderink et al. What does the occluding contour tell
us about solid shape. Perception, 13(3):321–330, 1984.

[2] Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher,
Heather Stoddart Barros, Adam Finkelstein, Thomas
Funkhouser, and Szymon Rusinkiewicz. Where do people
draw lines? Commun. ACM, 55(1):107–115, January 2012.

[3] Takafumi Saito and Tokiichiro Takahashi. Comprehensible
rendering of 3-d shapes. SIGGRAPH Comput. Graph.,
24(4):197–206, September 1990.

[4] Philippe Decaudin. Cartoon looking rendering of 3D scenes.
Research Report 2919, INRIA, June 1996.

[5] A. Hertzmann. Introduction to 3d non-photorealistic render-
ing: Silhouettes and outlines. Non-Photorealistic Rendering.
SIGGRAPH, 99, 1999.

[6] Yunjin Lee, Lee Markosian, Seungyong Lee, and John F.
Hughes. Line drawings via abstracted shading. In ACM
SIGGRAPH 2007 papers, SIGGRAPH ’07, New York, NY,
USA, 2007. ACM.

[7] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and
Anthony Santella. Suggestive contours for conveying shape.
ACM Trans. Graph., 22(3):848–855, July 2003.

[8] Doug DeCarlo, Adam Finkelstein, and Szymon Rusinkiewicz.
Interactive rendering of suggestive contours with temporal
coherence. In Proceedings of the 3rd international symposium
on Non-photorealistic animation and rendering, NPAR ’04,
pages 15–145, New York, NY, USA, 2004. ACM.

[9] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel.
Ridge-valley lines on meshes via implicit surface fitting. ACM
Trans. Graph., 23(3):609–612, August 2004.

[10] Tilke Judd, Frédo Durand, and Edward Adelson. Apparent
ridges for line drawing. In ACM SIGGRAPH 2007 papers,
SIGGRAPH ’07, New York, NY, USA, 2007. ACM.

[11] Robert D. Kalnins, Philip L. Davidson, Lee Markosian, and
Adam Finkelstein. Coherent stylized silhouettes. In ACM
SIGGRAPH 2003 Papers, SIGGRAPH ’03, pages 856–861,
New York, NY, USA, 2003. ACM.

[12] Pierre Bénard, Forrester Cole, Aleksey Golovinskiy, and
Adam Finkelstein. Self-similar texture for coherent line styl-
ization. In Proceedings of the 8th International Symposium
on Non-Photorealistic Animation and Rendering, NPAR ’10,
pages 91–97, New York, NY, USA, 2010. ACM.

[13] Bert Buchholz, Noura Faraj, Sylvain Paris, Elmar Eisemann,
and Tamy Boubekeur. Spatio-temporal analysis for pa-
rameterizing animated lines. In Proceedings of the ACM
SIGGRAPH/Eurographics Symposium on Non-Photorealistic
Animation and Rendering, NPAR ’11, pages 85–92, New
York, NY, USA, 2011. ACM.

[14] Kevin Karsch and John C. Hart. Snaxels on a plane. In Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium
on Non-Photorealistic Animation and Rendering, NPAR ’11,
pages 35–42, New York, NY, USA, 2011. ACM.

[15] Pierre Bénard, Jingwan Lu, Forrester Cole, Adam Finkelstein,
and Joëlle Thollot. Active strokes: coherent line stylization
for animated 3d models. In Proceedings of the Symposium
on Non-Photorealistic Animation and Rendering, NPAR ’12,
pages 37–46, Aire-la-Ville, Switzerland, Switzerland, 2012.
Eurographics Association.

[16] Robert D. Kalnins, Lee Markosian, Barbara J. Meier,
Michael A. Kowalski, Joseph C. Lee, Philip L. Davidson,
Matthew Webb, John F. Hughes, and Adam Finkelstein.
Wysiwyg npr: drawing strokes directly on 3d models. ACM
Trans. Graph., 21(3):755–762, July 2002.

[17] Stéphane Grabli, Emmanuel Turquin, Frédo Durand, and
François X. Sillion. Programmable rendering of line drawing
from 3d scenes. ACM Trans. Graph., 29(2):18:1–18:20, April
2010.

[18] Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser.
A benchmark for 3d mesh segmentation. ACM Trans. Graph.,
28(3):73:1–73:12, July 2009.

[19] Szymon Rusinkiewicz, Forrester Cole, Doug DeCarlo, and
Adam Finkelstein. Line drawings from 3d models. In
ACM SIGGRAPH 2008 classes, SIGGRAPH ’08, pages 39:1–
39:356, New York, NY, USA, 2008. ACM.

[20] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H.
Barr. Implicit fairing of irregular meshes using diffusion
and curvature flow. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques,
SIGGRAPH ’99, pages 317–324, New York, NY, USA, 1999.
ACM Press/Addison-Wesley Publishing Co.

[21] Suguru Saito, Akane Kani, Youngha Chang, and Masayuki
Nakajima. Curvature-based stroke rendering. Vis. Comput.,
24(1):1–11, November 2007.

Figure 7. A monkey 3D model without stylization (up) and with localized stylization (down) as the viewpoint changes

Figure 8. A dog 3D model without stylization (up) and with localized stylization (down) as the viewpoint changes

Figure 9. Stanford bunny without stylization (up) and with localized stylization (down) as the viewpoint changes

