T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	風応答観測記録に基づく超高層免震建物の免震ダンパーの疲労損傷評 価 その1 免震層変位波形および疲労損傷度の分析
Title(English)	Fatigue Damage Evaluation of Steel Damper of the High-Rise Seismic Isolated Building based on Wind-induced Response Observation Data Part1 Analysis of Displacement Wave and Fatigue Damage Evaluation
著者(和文)	吉江慶祐, 村上智一, 佐藤大樹, 田村哲郎, 普後良之, 佐藤利昭, 北村春幸, 笠井和彦
Authors(English)	Keisuke Yoshie, Tomokazu Murakami, Daiki Sato, TETSURO TAMURA, Yoshiyuki Fugo, Toshiaki Sato, Haruyuki Kitamura, KAZUHIKO KASAI
出典(和文)	日本建築学会大会学術講演梗概集, vol. B-1, ,pp. 269-270
Citation(English)	, vol. B-1, , pp. 269-270
発行日 / Pub. date	2016, 8

風応答観測記録に基づく超高層免震建物の免震ダンパーの疲労損傷評価 その1 免震層変位波形および疲労損傷度の分析 正会

風応答観測	超高層免震建物	免震ダンパー
平均成分	疲労損傷評価	

1. はじめに

近年、超高層建物にも免震構造が積極的に採用されるように なってきた。建物が高層化すると地震力に対して相対的に風荷 重が大きくなるのに加え、風荷重は地震に比べ継続時間が長い といった特徴があるため、免震ダンパーの疲労損傷の評価が重 要になってきている。現行の日本の耐風設計は、原則として構 造物の弾性範囲に対する設計となっており、構造物の風応答時 の最大荷重効果(各部の変形や応力)を評価して行われている。 この時、風速の変動を平均化時間 10 分とした統計データをも とにしているため、耐風設計もこれに従って評価時間 10 分間 として構築されている。しかし, 疲労損傷等の累積的な荷重効 果を考える場合には、当然ながら風の作用時間や10分を超え る変動に関する情報が必要になる。1 台風の風速変動を考慮し た疲労評価は吉田らの研究があるが 1), 建物の供用期間中の風 応答による疲労評価は、評価期間中の風速別累積作用時間を確 率統計的方法と台風シミュレーションを組合せて評価し、各風 速に対する単位時間当たりの疲労損傷との積により行われてい る^{2,3)}。いわば、平均化時間10分での応答を評価して、それら の累積によって疲労損傷を評価する方法であり、建物の供用期 間中の累積疲労損傷の評価には実用的な方法であるが、強風や 台風の1イベント中の経時変化と10分間での疲労損傷の対応 を確認する必要がある。この点について、比較検討した例は殆 ど無く、特に観測記録を用いた検討は皆無であるといえる。

そこで本報では、実観測記録に基づき検討を行い、10分間 毎に分割した免震層変位の時刻歴波形を用いて、平均成分を有 する強風イベント全体における免震ダンパーの疲労損傷評価が 出来る手法を提案する。その1では、東京工業大学すずかけ台 キャンパス(神奈川県横浜市)J2棟(以後,J2棟)で観測さ れた 5 つの強風イベント ⁴⁵⁾を対象として、強風イベント全体 の疲労損傷度と 10 分毎のデータの疲労損傷度の合計を比較す る。

建物および観測概要

J2 棟 (図 1) では複数層における応答加速度,免震層変位お よび建物頂部北側の風向風速が常時観測されている。J2 棟は, 2005 年竣工,地上 20 階,塔屋 2 階,高さ 91.35m の総合研究 棟であり,搭状比約 5.3,辺長比 3 の非常に扁平な形状の超高 層免震建物である⁹。表1に鋼製ダンパー概要を示す。図2 に 免震層の概要を示す⁷⁾。免震層は天然ゴム系積層ゴム支承 (NRB1100, NRB1200)計 16 基,U型鋼製ダンパー計 14 基, オイルダンパー 2 基から構成されている。免震層には、小変

Fatigue Damage Evaluation of Steel Damper of the High-Rise Seismic Isolated Building based on Wind-induced Response Observation Data Part1 Analysis of Displacement Wave and Fatigue Damage Evaluation

正会員	〇吉江	慶祐* ²	同	村上	智 一* 1
同	佐藤	大樹*1	同	田村	哲郎* ¹
同	普後	良之*3	同	佐藤	利昭*4
同	北村	春幸*5	同	笠井	和彦*1

形用(±100 mm レンジ)の変位計が X 方向(短辺)に2箇所, Y方向(長辺)に1箇所設置されている。X方向では、捩れ中 心が2つの変位計の中央にあることを確認しているため8,両 変位計の平均を用いることで捩れ成分を除き、並進成分を算出 している。建物頂部の北側には三杯式風速計、矢羽根式風向計 が設置されている。風速データは3秒ごとに平均し、瞬間風速 として記録される。風向は正 16 方位で記録される。本報では、 caseA~caseEの5つの強風イベントに対して検討を行なう^{4,5)}。 本報では、観測記録より頂部風速 5m/s 以下を免震層が変位し ない微風と判断し、風速 5m/s から再び風速が 5m/s 以下になる までを1つの強風イベントとして疲労損傷評価の対象時間とし ている。なお、免震層の時刻歴波形は各強風イベントの開始直 前の 10 分間の平均値を初期値のずれとしてゼロ点補正(オフ セット)を行っている。図3に強風イベントの一例として caseD (2007年10月27日, 台風20号) における風速風向を 示す。なお、風向は10分間毎の最多風向を示している。

3. 疲労損傷度算出方法

本報では、X 方向および Y 方向それぞれに対して損傷評価 を行う。疲労損傷度(D値)は、Rainflow 法 9,10 より算出した 免震層変位の全振幅 δ_k 毎に、Miner 則を用いて算出する。

$$D = \sum D_k = \sum_{k=1}^{np} \frac{N_k}{N_{f(\delta_k)}} \tag{1}$$

ここで、 D_k : 全振幅 δ_k の疲労損傷度、np: 全振幅 δ_k の総数

 $N_k: 全振幅 \delta_k のサイクル数(1または 1/2 サイクル)$

 $N_{f(\delta_k)}: \delta_k$ における破断回数(式(6))である。

鋼材ダンパーの疲労性能を評価する疲労曲線として、Manson-Coffin 式を適用する。破断回数 N_fは免震層の平均せん断変形角

γ_κ(%) との関係(式(2))に, Newton 法を用いて数式を回帰する ことで算出する。なお、γk は、全変位振幅 δk を免震ダンパー 高さh(表1)で除した(式(3))で表される¹¹⁾。

$$\gamma_{k} = 35N_{f(\delta_{k})}^{-0.15} + 3620N_{f(\delta_{k})}^{-0.80} \qquad (2), \quad \gamma_{k} = \frac{\delta_{k}}{h} \times 100 \qquad (3)$$

本報では変位計の分解能 $^{\circ}$ より, 0.1 mm 以下を除いた全ての δ_k を対象として D 値の評価を行なう。

周期が10分を超える変動による疲労損傷の分析 4

図4に caseD における免震層変位の時刻歴波形を示す。図4 より免震層変位波形は平均成分および変動成分が時々刻々と変 化している様子が確認できる。また、最大変位発生時刻付近に 着目すると、変動成分の最大振幅は、5mm 程度に対し、平均 成分を含む変位は 7mm 程度である。全振幅に対する破断回数 は式(3)に示すように対数的な変化をするため平均成分が D 値

に与える影響は無視できないことが伺える。図5に caseDのX 方向における免震層変位のピークファクタを示す。図5より、 免震層変位のピークファクタは正側と負側で大きく差が生じて いる箇所が存在することが確認できる。これは実際の免震層変 形の変動成分の最大値と最小値が異なることを表している。

図6に caseD における強風イベント全体の免震層変位波形か ら全振幅ごとに算出した D 値と波形の周期の分析を示す。こ こでの D 値は平均成分の影響が加味されている。波形の周期 は、Rainflow 法により各全振幅に分解した波形を、1 または 1/2 サイクルとしてカウントし、それぞれの開始と終了時間の 差から算出している。図6より、平均成分を有する強風イベン ト全体の免震層変位波形には 10 分以上の周期をもつ波形が数 多く存在しており、かつ比較的 D 値が大きいものも多いこと が確認できる。図7に各強風イベントにおける。強風イベント 全体の D 値 (D_F) と 10 分間毎のデータの D 値の合計 $(\Sigma D'_{10})$ を示す。図7より, 強風イベント, 方向で異なるが, $\Sigma D'_{10}$ が、 D_F に対して約 0.1~約 0.6 倍と小さい値を示した。こ の差は図6に示す10分以上の周期をもつ全振幅のD値によっ て生じたものである。つまり、10分間の時刻歴波形に基づき 算定した D 値を足し合わせる手法では、平均成分を有する強 風イベント内に存在する周期が 10 分以上の波形による D 値を 評価出来ておらず、過小評価をしていることを確認した。

まとめ 5.

その1 では、超高層免震建物の実観測記録を用いて、平均成 分を有する5つの強風イベントを対象に, 強風イベント全体の 疲労損傷度と 10 分毎のデータの疲労損傷度の合計を比較した。 以下に知見を示す。

- (1) 強風イベント全体の免震層変位波形には 10 分以上の周期 をもつ波形が数多く存在しており、かつ比較的 D 値が大 きいものも多いことが確認された。
- (2) 10 分間毎のデータの D 値の合計は強風イベント全体の D 値に対してイベント, 方向で異なるが約 0.1~約 0.6 倍と 小さい値を示した。つまり、10分間の時刻歴波形に基づ き算定した D 値を足し合わせる手法では、平均成分を有 する強風イベント内に存在する、周期が10分以上の波形 による D 値を評価出来ないことを確認した。

謝辞および参考文献はその2にまとめて示す

* ¹ 東京工業大学	* ¹ Tokyo Institute of Technology	*2日建設計	* ² Nikken Sekkei Ltd
*3風工学研究所	* ³ Wind Engineering Institute	*4九州大学	* ⁴ Kyushu University

- *5 東京理科大学
- d Engineering Institute
- *5 Tokyo University of Science