T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

論題(和文)	免震建物の耐震性能評価指標の提案に関する基礎的検討 (その2 モデ ル建物による評価例)		
Title(English)	glish) Basic Study on Proposal of Seismic Performance Evaluation Index for Seismic Isolation Building Part2: Evaluation Example of Model Building		
著者(和文)	山下忠道, 清水英, 犬伏徹志, 佐藤大樹, 高山峯夫		
Authors(English)	Tadamichi Yamashita, Suguru Shimizu, Tetsushi INUBUSHI, Daiki Sato, Mineo Takayama		
出典(和文)	日本建築学会大会学術講演梗概集, vol. B-2, ,pp. 517-518		
Citation(English)	, vol. B-2, , pp. 517-518		
発行日 / Pub. date	2016, 8		

免震建物の耐震性能評価指標の提案に関する基礎的検討

(その2 モデル建物による評価例)

耐震性能評価指標	地震入力倍率	地震再現期間
応答加速度	応答層間変形角	免震層変位

1. はじめに

本報では、耐震設計された建物(非免震モデル)と、上 部構造を非免震モデルと同じとした免震建物(免震モデル) を用い、非免震モデルの最大応答値と同等になる免震モデ ルの地震入力倍率および地震動再現期間の算定例を示す。 地震動再現期間の算定はその1で示した方法に基づき、非 免震モデルの応答値を基準として行う。

2. 例題モデル概要

本検討で用いる建物は、梁間方向スパンが 10m、桁行方 向スパンが 11m、階高が 6.67m である 5 階建ての倉庫であ る。構造形式は柱が RC 造、梁が S 造の混合構造とし、架 構形式は両方向とも純ラーメン構造とした。各階の床は厚 さ 180mm のコンクリートスラブとし、床荷重は 14.7kN/m²である。屋根は折版とした。

本建物は、保有水平耐力計算で設計を行い、一次設計時の標準せん断力係数は C₀=0.2 とした。また、必要保有水 平耐力計算時の構造特性係数は、梁崩壊型のため D_s=0.25 とした。地震応答解析モデルとして、非免震モデルでは 5 質点系等価せん断モデルに置換し、復元力特性は剛性逓減 型の武田モデル(除荷時の係数は 0.4)とした。また、粘 性減衰定数は上部構造の一次固有周期に対して 3%とし、 減衰マトリクスは初期剛性比例型とした。表1に非免震モ デル(免震モデル上部構造)の解析諸元を示す。

表1 非免	霍モデル	(免雲モデ)	レト部構造)(の解析諸元

層	W_i (kN)	K_1 (kN/m)	Q_1 (kN)	$\alpha 2$	Q_2 (kN)	α 3
6	16756.6	628623.0	19470.0	0.145	23835.9	0.000
5	91812.1	2171049.0	49831.8	0.301	78890.1	0.001
4	91586.9	2648967.0	56348.4	0.355	110952.1	0.010
3	91654.5	3151341.0	60965.5	0.345	129403.1	0.010
2	91654.5	5785551.0	49063.0	0.345	141331.3	0.005
基礎	138644.8	-	-	-	-	_

【記号】

W_i:各層の地震時重量、K₁:第一剛性、Q₁:第一折点の層せん断力、α₂:第二剛性の第一剛性に対する比、Q₂:第二折点の層せん

断力、α3:第三剛性の第一剛性に対する比

Basic Study on Proposal of Seismic Performance Evaluation Index for Seismic Isolation Building

Part2: Evaluation Example of Model Building

正会員	○山下忠道*1	同	清水 英 ^{*2}
同	犬伏徹志*3	同	佐藤大樹*4
同	高山峯夫*5		

免震モデルは、非免震モデルの基礎部に免震層を設けた ものとする。使用する免震材料は、全て鉛プラグ入り積層 ゴム支承とした。図1に免震部材の配置を、表2に免震層 の諸元を示す。免震層の降伏せん断力係数は *C*₂=0.05、免 震周期は *T*_f=4.0sec とした。免震部材の復元力特性は歪依 存型のバイリニアとし、ハードニングは考慮しない。上部 構造の粘性減衰は非免震モデルと同じとし、免震部材は 0%とする。

LRB	п	K_d (kN/m)	Q_d (kN)	$n \cdot K_d$ (kN/m)	$n \cdot Q_d$ (kN)
ϕ 1000	20	1543	391.3	30860	7826.0
ϕ 1100	28	1857	391.3	51996	10956.4
ϕ 1200	22	2201	391.3	48422	8608.6

【記号】

n:免震部材の基数、K_d:降伏後剛性、Q_d:降伏荷重

地震応答解析に用いる地震動は、EL CENTRO NS、 TAFT EW、HACHINOHE NS、JMA-KOBE NS の4波とし、 非免震モデルでは、レベル2地震動としてそれぞれの最大 速度を 50 cm/s に基準化して用いる。免震モデルも使用す る地震動は同じであるが、最大速度を漸増させ、非免震モ デルの応答値と同等になる地震入力倍率を求める。

3. 解析結果と評価

図 3(a)、(b)に非免震モデルの最大応答加速度と最大応答 層間変形角を示す。2~5 階床で最大応答加速度は 250~ 600cm/s²程度、最大応答層間変形角は 1/300~1/90 程度と なっている。最上階の応答加速度が 800~1000cm/s² 程度 となっているのは、屋根が折版で重量が軽く、大きく振ら れたためである。なお、層の塑性率は 1.0~5.9 程度である。 図 4(a)~(c)に、それぞれの応答が限界状態に達する時の免 震モデルの最大応答加速度と最大応答層間変形角、免震層 の最大応答変形を示す。表 3 にそれぞれの地震動入力倍率

(再現期間換算係数 Rv と同義)と算定した再現期間を示 す。免震モデルの限界状態として応答加速度、応答層間変 形角が非免震モデルと同程度になる時の地震入力倍率はそ れぞれ 8.39 倍、6.36 倍となった。最大応答加速度は 5 階 床で 606.5 cm/s²、最大応答層間変形は 2 階で 1/87 となり、 非免震モデルの限界状態と同じ応答となった。図 4 には、 免震モデルと同じ応答値を示した非免震モデルの最大応答 値を表示している。一方免震層の応答変位がせん断ひずみ 400%相当(80 cm) に達する時の地震入力倍率は約 3.01 倍

> YAMASHITA Tadamichi, SHIMIZU Suguru, INUBUSHI Tetsushi, SATO Daiki, and TAKAYAMA Mineo

表3 再現期間換算係数と再現期間

	応答加速度	応答層間 変形角	免震層変位
地震波入力最大速度 (cm/s)	419.6	318.0	150.3
再現期間換算係数 R _V	8.39	6.36	3.01
再現期間 r (年)	5139	3075	768

で最も小さい。それぞれの Rv を地震動の再現期間に換算 すると、応答加速度では5139年、層間変形角では3075年 と非常に長い。免震層変位では再現期間は768年となり、 レベル2地震動の再現期間500年の約1.54倍である。し たがって、上部構造が同じであれば免震層変位により免震 モデルの限界状態が決まり、非免震モデルに比べて約1.54 倍の再現期間の地震動に耐えられる性能を有しているとい える。あるいは、免震モデルは非免震モデルに比べ、同じ 入力レベルの地震動に対して、1.54倍の耐震性能を有して いることと同等であるといえる。

図5に入力地震動の最大速度と免震層変位の関係を示す。

*1 大和ハウス工業(株)

- *2 ダイナミックコントロールデザインオフィス
- *3 神奈川大学
- *4 東京工業大学
- *5 福岡大学

図中には、レベル2地震動(50cm/s)と表3に示す各限界状 態時に達する時の最大速度をプロットしており、免震層変 位と明確な線形関係が見られる。

本報では免震部材のハードニングや擁壁衝突は考慮して いないが、それらを考慮した際には上部構造の応答が増大 するため、再現期間換算係数 *Rv* は大きく変化すると考え られる。

4. まとめ

本報では、その1で示した方法により、非免震モデルの 最大応答値と同等になる免震モデルの地震入力倍率および 地震動再現期間の算定例を示した。非免震モデルの応答値 を基準として、免震モデルの耐震性能がどの程度であるか を評価したことになるが、今後はその1で示した評価項目 のランクに対して、非免震モデルと免震モデルの応答を比 較し、再現期間の算定を行うとともに、両者の耐震性能の 比較を行う予定である。

- *1 Daiwahouse Industry Co., Ltd.
- *2 Dynamic Control Design Office
- *3 Kanagawa University
- $\ast 4$ Tokyo Institute of Technology
- *5 Fukuoka University