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Abstract. We discuss a strategy of sparse approximation that is based on 
the use of an overcomplete basis, and evaluate its performance when a random 
matrix is used as this basis. A small combination of basis vectors is chosen from 
a given overcomplete basis, according to a given compression rate, such that 
they compactly represent the target data with as small a distortion as possible. 
As a selection method, we study the 0� - and 1� -based methods, which employ 
the exhaustive search and 1� -norm regularization techniques, respectively. The 
performance is assessed in terms of the trade-o relation between the distortion 
and the compression rate. First, we evaluate the performance analytically in 
the case that the methods are carried out ideally, using methods of statistical 
mechanics. The analytical result is then confirmed by performing numerical 
experiments on finite size systems, and extrapolating the results to the infinite-
size limit. Our result clarifies the fact that the 0� -based method greatly 
outperforms the 1� -based one. An interesting outcome of our analysis is that 
any small value of distortion is achievable for any fixed compression rate r 

Y Nakanishi-Ohno et al

Sparse approximation based on a random overcomplete basis

Printed in the UK

063302

JSMTC6

© 2016 IOP Publishing Ltd and SISSA Medialab srl

2016

2016

J. Stat. Mech.

JSTAT

1742-5468

10.1088/1742-5468/2016/6/063302

PAPER: Disordered systems, classical and quantum

6

Journal of Statistical Mechanics: Theory and Experiment

© 2016 IOP Publishing Ltd and SISSA Medialab srl

ournal of Statistical Mechanics:J Theory and Experiment

IOP

Original content from this work may be used under the terms of the Creative Commons Attribution 3.0  
licence. Any further distribution of this work must maintain attribution to the author(s) and  
the title of the work, journal citation and DOI.

1742-5468/16/063302+30$33.00

mailto:nakanishi@mns.k.u-tokyo.ac.jp
mailto:obuchi@sp.dis.titech.ac.jp
mailto:okada@k.u-tokyo.ac.jp
mailto:kaba@dis.titech.ac.jp
http://stacks.iop.org/JSTAT/2016/063302
http://dx.doi.org/10.1088/1742-5468/2016/06/063302
http://crossmark.crossref.org/dialog/?doi=10.1088/1742-5468/2016/06/063302&domain=pdf&date_stamp=2016-06-10
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


Sparse approximation based on a random overcomplete basis

2doi:10.1088/1742-5468/2016/06/063302

J. S
tat. M

ech. (2016) 063302

in the large-size limit of the overcomplete basis, for both the 0� - and 1� -based 
methods. The dierence between these two methods is manifested in the size 
of the overcomplete basis that is required in order to achieve the desired value 
for the distortion. As the desired distortion decreases, the required size grows 
in a polynomial and an exponential manners for the 0� - and 1� -based methods, 
respectively. Second, we examine the practical performances of two well-known 
algorithms, orthogonal matching pursuit and approximate message passing, 
when they are used to execute the 0� - and 1� -based methods, respectively. 
Our examination shows that orthogonal matching pursuit achieves a much 
better performance than the exact execution of the 1� -based method, as well as 
approximate message passing. However, regarding the 0� -based method, there is 
still room to design more eective greedy algorithms than orthogonal matching 
pursuit. Finally, we evaluate the performances of the algorithms when they are 
applied to image data compression.

Keywords: analysis of algorithms, heuristics, source and channel coding, 
statistical inference
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1. Introduction

Information processing based on the sparseness of various data is an active area of 
research. This sparseness means that data are typically expressed by a small combina-
tion of non-zero components when a proper basis is used. The significance of sparseness 
for information processing had already begun to be noted when principal component 
analysis was invented, in 1901 [1]. Low-rank approximation of a matrix is known to be 
a useful method of collaborative filtering for recommendation systems [2–4]. In neuro-
science, the sparse-coding hypothesis has gradually been accepted as a method of elu-
cidating visual and auditory systems [5–10]. Recent interest in information processing 
with sparse data has been triggered by compressed sensing, since it was demonstrated 
that 1� -norm minimization can give exact solutions in a reasonable time, under appro-
priate conditions [11–14].

In this study, we discuss sparse data processing from a dierent viewpoint, namely 
that of sparse approximation. This refers to a technique of approximately representing 
target data by a small number of non-zero elements, the purpose of which is to achieve 
a better trade-o relation between the distortion caused by the approximation and the 
compression rate [15–24]. We adopt a strategy of sparse approximation that utilizes an 
overcomplete basis (OCB), which is also termed a ‘frame’ in the field of signal process-
ing. OCBs contain more basis vectors than the dimension of target data. This means 
that a better and smaller set of basis vectors may be chosen to compactly express the 
data. Therefore, in terms of the trade-o relation, the OCB-based strategy is expected 
to outperform naive strategies such as random projection.

For selecting basis vectors from an overcomplete basis, we discuss the 0� - and 

1� -based methods, which employ the exhaustive search and 1� -norm regularization tech-
niques, respectively. Our adoption of these methods is motivated by their application 
in compressed sensing [25, 26]. Focusing on the trade-o relation, we evaluate the per-
formance of sparse approximation from two dierent viewpoints. First, we theoretically 
analyze the ideal performance that is achieved when the 0� - and 1� -based methods are 
performed exactly, by using methods of statistical mechanics. We regard the distortion 
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and the compression rate as the thermal averages of physical quantities derived from 
partition functions. In the large-system limit, these are assessed by the replica method 
and the saddle-point method [27, 28]. In order to validate the results of our analysis, 
we extrapolate physical quantities in the limit, from finite-size results obtained using 
the exchange Monte Carlo method [29, 30] and quadratic programming. Second, we 
investigate the practical performance of the OCB-based strategy. We examine the 
performances of two well-known algorithms, orthogonal matching pursuit [31, 32] and 
approximate message passing [33], when they are employed to approximately execute 
the 0� - and 1� -based methods, respectively. We also apply the approximate algorithms 
to a task of image data compression and evaluate their performances, as a practical 
example.

The rest of this paper is organized as follows. In section 2, we set up the problem of 
sparse approximation that we will focus on, and explain the 0� - and 1� -based methods 
and related work. In section 3, we analyze the ideal performances of these methods, in 
terms of the trade-o relation. In section 4, we discuss the practical performance of the 
OCB-based strategy, and its application to image data. In section 5, we conclude this 
paper.

2. Problem setting

2.1. Sparse approximation using a random overcomplete basis

Given a data vector y M∈R  and a compression rate r, the purpose of sparse approximation 
is to obtain a sparse representation x N∈R  using a basis matrix A a a, , N

M N
1( )= … ∈ ×R , 

while keeping the distortion ε caused by the approximation as small as possible. The 
compression rate r is defined as the ratio of the number of non-zero components of x to 
the dimension of the data vector. That is,

x
r

M
,0∥ ∥

= (1)

where 0∥ ∥⋅  denotes the so-called 0� -norm of a vector. The 0� -norm represents the num-

ber of non-zero elements of a vector, defined as ∥ ∥ | |= ∑v vi i0 0, where vi 0| |  is equal to 0 
(vi  =  0) or 1 (v 0i ≠ ). We measure the distortion using the mean squared error, as

y Ax
M

1

2
,2

2∥ ∥= −ε (2)

where 2∥ ∥⋅  is the 2� -norm of a vector, defined as = ∑v vi i2
2∥ ∥ . The distortion given by 

(2) indicates how similar the approxitame expression Ax is to the original data y. Note 
that this is dierent from the reconstruction error, which is often used to measure the 
proximity between an original sparse signal x0 and an estimated sparse representation 
x̂ in research on compressed sensing. For our purpose of an analytical evaluation of ε, 
we consider the case where the elements of the data vector y are independently and 
identically distributed (i.i.d.) random variables from the normal distribution, whose 

mean and variance are 0 and y
2σ , respectively, and together are denoted by 0, y

2( )σN . 

http://dx.doi.org/10.1088/1742-5468/2016/06/063302
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The elements of the basis matrix A are also i.i.d. random variables from N( )−M0, 1 . 
Then, the matrix A is almost surely of rank M Nmin ,( ), and the distortion becomes a 
random variable.

If N  =  rM, the minimization of (2) is nothing but the method of least squares (LS), 
and the corresponding compressed vector is easily obtained as

x A y,ˆ = +
 (3)

where A+ is the pseudoinverse of A, given by

A A A A .T 1 T( )=+ − (4)

Let us call this the naive method, which is illustrated in figure 1(a). In the large-size 
limit M → ∞, the corresponding distortion converges to

r1

2
,ynaive

2σ=
−

ε (5)

with probability one. In general, in the limit M → ∞ certain random variables, such as 
ε, have the so-called self-averaging property, and will almost surely converge to their 
average values. This enables us to present a clear discussion, and hereafter we focus on 
this limit.

On the other hand, for N  >  rM we have a lot of options in choosing a combina-
tion of rM basis vectors from the matrix, as illustrated in figure 1(b). If the chosen 
combination is more suitable for representing the data vector than one that is chosen 
randomly, then the distortion becomes smaller than naiveε . This is the idea behind the 
OCB-based strategy. However, this strategy presents the problem of how to choose the 
combination of basis vectors. As representative solutions for this problem, we focus on 
the 0� - and 1� -based methods below.

2.2. Methods

2.2.1. 0� -based method. The basic idea of the 0� -based method is to minimize the dist-
ortion by choosing the best combination of rM basis (column) vectors from a given 

Figure 1. Schematic diagrams of sparse approximation. (a) Naive method.  
(b) OCB-based strategy.

http://dx.doi.org/10.1088/1742-5468/2016/06/063302
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OCB. More generally, we would like to define the distortion as a function of the chosen 
combination of basis vectors, and to control it in a simple manner. This motivates us 

to introduce a binary vector c 1, 0 N{ }∈ , to store information on whether each basis vec-
tor is chosen (ci  =  1) or not (ci  =  0). We also introduce a distortion, labelled by c, with

�ε { }( | ) ∥ ( )∥= −c y A y A c x
M

, min
1

2
,

x
2
2

 (6)

where    is the Hadamard product of two vectors, defined as v w v wi i i( ) =� . In addition, 
we define an entropy function y As ,( )|ε  to represent the number of configurations c that 
give a value of ε for the distortion, as follows:

= = ∧ =y A c c c y As
M

rM,
1

ln # , ,0ε ε ε( | ) ( {  | ∥ ∥ ( | ) }) (7)

where # denotes the number of elements of the following set.
This entropy function is expected to be analytic and convex upward with respect to 

ε, and cannot be negative, by definition. A typical shape of the entropy is depicted in 
figure 2. There are two zero points in the entropy function and the smaller and larger 
ones are denoted by 0ε  and +ε , respectively. The smaller zero point 0ε  of the entropy 
function, s 00( ) =ε , gives the minimum value of the distortion

ε ε( ) ( | )     ∥ ∥= =y A c y A c rM, min , subj. to .
c

0 0 (8)

Hence, our original motivation for introducing the 0� -based method, to find the mini-
mum distortion led by the best combination of basis vectors, can be achieved through 
the evaluation of the entropy function. In addition, the evaluation of the entropy 
function is easier than the direct evaluation of 0ε , and moreover the entropy function 
provides more information about the space of the variables c, which can be useful for 
practical applications such as designing algorithms. Thus, the entropy function s( )ε  is 
the primary object of our analysis in the 0� -based method. A similar analysis has been 
proposed for examining the weight space structure of multilayer perceptrons [34].

Figure 2. A schematic shape of the entropy function. The smaller zero point of 
the entropy, ε0, corresponds to the minimum of the distortion connected to the 
best combination of the basis vectors. The point giving the largest entropy value 
accords to εnaive because the typical combinations of rM basis vectors chosen from 
a typical sample of ×M N  random matrices constitute typical samples of ×M rM  
random matrices.

http://dx.doi.org/10.1088/1742-5468/2016/06/063302


Sparse approximation based on a random overcomplete basis

7doi:10.1088/1742-5468/2016/06/063302

J. S
tat. M

ech. (2016) 063302

2.2.2. 1� -based method. The 0� -based method is the most closely matched to the origi-
nal idea of the OCB-based strategy. However, its algorithmic realization of searching 
combinations of basis vectors is computationally inecient, because it requires an 
exponentially growing computational cost as the system size N increases. In practical 
situations, instead of the 0� -based method, a method based on 1� -norm regularization 
can be employed. This motivates us to examine the following 1� -based method.

Our 1� -based method arises from the following minimization problem:

{ }ˆ ∥ ∥ ∥ ∥ξ ξ ξλ= − +
ξ

y Aarg min
1

2
,2

2
1 (9)

where 1∥ ∥⋅  is the 1� -norm of a vector, defined as ∥ ∥ | |= ∑v vi i1 , with the absolute value 

denoted by |⋅| . The solution of this minimization problem, ξ̂, provides useful information 
for finding the sparse vector we desire. This minimization problem is equivalent to the 
least absolute shrinkage and selection operator, also known as LASSO [35]. The main 
benefit of this approach represented by (9) is the computational ease of performing the 
minimization. As the objective function of (9) is convex, its minimization can be exactly 
carried out with a computational time in O(N 3), using versatile algorithms of quadratic 

programming. Furthermore, the 1� -norm term in (9) results in a sparsifying eect in ξ̂, 
and its coecient λ is adjusted according to the compression rate. Namely, λ is chosen 

so that ∥ ˆ∥ξ = rM0 .

Our aim in the analysis in the 1� -case is to evaluate the distortion resulting from ξ̂. 
The expression of the distortion is given by

y A
M

1

2
.1 2

2ˆ∥ ∥ξ= −ε (10)

An inconvenience presented by this distortion is that it is not minimized on the set of 

basis vectors chosen by ξ̂, owing to the presence of the 1� -norm term. In order to remove 
this extra distortion, we determine again the values of the non-zero components by 
purely minimizing the distortion, after the support estimation of the sparse vector by 
the 1� -norm regularization. This procedure is described as follows:

ξ= −y A x
M

min
1

2
,

x
1
LS

0 2
2�ε { }ˆ∥ (| | )∥ (11)

where 0|⋅|  of a vector is defined by v vi i0 0( )| | =| | . This can be carried out by the method 

of LS for the sub-matrix of A that is composed of columns corresponding to | ˆ |ξ = 1i 0 . 

These two quantities, 1ε  and 1
LSε , are the objects of our analysis in the 1�  case.

2.3. Related work

Sparse approximation, which is also known as N-term approximation [17, 18, 36], has 
been studied widely in the fields of signal processing, statistics and information theory. 
To our best knowledge, the problem of approximating y by a linear combination of a 
small number of column vectors of A was first addressed by [15], in which finding the 
optimal support (combination of the columns) was shown to be NP-hard. Since then, 

http://dx.doi.org/10.1088/1742-5468/2016/06/063302
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much eort has been made for analyzing properties of approximate algorithms. The 
approximation performance of a greedy algorithm termed orthogonal matching pursuit  
(OMP) [31, 32] has been examined actively by using various bounding techniques  
[21–23, 37, 38]. A sucient condition that guarantees OMP to successfully find the 
optimal support was also provided in [23]. Reference [24] examined the condition for 
correctly recovering the true support for the 1� -based method and matching pursuit 

algorithms in the case where y is generated as y Ax n0= +  from a true sparse vector 

x N0 ∈R  and a noise vector n M∈R .
All of the above studies oer mathematically rigorous sucient conditions for guar-

anteeing a certain desired performance. However, empirically, such sucient conditions 
are often overly cautious for explaining results of experiments, and therefore, another 
approach is necessary for accurately clarifying the abilities and limitations of sparse 
approximation. The aim of this paper is to accomplish this task in the large system 
limit utilizing methods of statistical mechanics while the mathematical guarantee of the 
obtained results is suspended.

3. Analysis of ideal performance

3.1. Analytical treatment in the limit M → ∞

We investigate the limit M → ∞, as stated above. For this purpose, we employ some 
statistical mechanical tools, which provide useful assistance investigating this limit. 
According to the terminology of statistical mechanics, we call the limit M → ∞ the 
thermodynamic limit, and the average over y and A the configurational average, which 
is denoted by y A,[ ]⋅ . In taking the limit M → ∞, the aspect ratio of the basis matrix, 

M N/α = , is fixed.

3.1.1. 0� -based method. A versatile technique of statistical mechanics is to introduce a 
generating function Z of an energy function H, called a partition function. This defines 
a canonical distribution p. In the 0�  case, we define the energy function, partition func-
tion, and canonical distribution respectively as follows:

∫β
β

= −
β

− −c y A x; ,
1

ln d e ,c
y A c x

0 2 2
2�H ( | ) ∥ ( )∥

 
(12)

H H( | ) ( ∥ ∥ ) ( | ) ( | )∑µ β δ= − ≡µ β µ β− −y A cZ Mr, , e Tr e ,
c

c y A

c

c y A
0 0

; , ; ,0 0

 
(13)

µ β
µ β

δ= − µ β−c y A
y A

cp
Z

Mr; , ,
1

, ,
e ,c y A

0
0

0
, ,0H( | )

( | )
( ∥ ∥ ) ( | )

 (14)

where xdc i∫  is equal to xd i∫  (ci  =  1) or 1 (ci  =  0).
The energy function is related to the distortion of a given basis-vector choice c as 

follows:

http://dx.doi.org/10.1088/1742-5468/2016/06/063302
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εH ( | ) ( | )β =
β→∞

c y A c y A
M

1
lim ; , , .0 (15)

In addition, (7) means that the number of c’s that provide c y A,( )| =ε ε  is given 
as y AMsexp ,( ( ))|ε . In the limit of →β ∞, these provide us with another expression  
of (13) as

y A y AZ M slim , , d exp , ,0( ) ( ( ( ) ))
→ ∫µ β µ| = | −

β ∞
ε ε ε (16)

which, in conjunction with employment of the saddle point evaluation for the integra-
tion with respect to ε, leads to a formula

y A y A y A
M

Z slim
1

ln , , max , , ,0 0
0

( ) { ( ) } ( )
→ ⩽ ⩽

µ β µ φ µ| = | − ≡ |
β ∞ +

ε ε
ε ε ε

 (17)

where y A,0( )φ µ|  plays the role of the cumulant generating function of ε. Note that the 
maximization problem of (17) that originates from the saddle point assessment of (16) 
must be solved on the well-defined region of s, which requires appropriate bounds the 
minimum value of distortion 0ε  and the maximum value of distortion +ε . Overall, we can 
calculate the object of our analysis, s( )ε , through the inverse Legendre transformation, 
once we have obtained 0φ . Therefore, we turn our attention to the calculation of 0φ .

The cumulant-generating function has the self-averaging property, as does the 
entropy, and we assess the configurational average, given by

( ) [ ( | )]φ µ φ µ= y A, .y A0 0 , (18)

We employ the replica method in order to calculate this average, and a detailed analy-
sis is provided in appendix A. Under the replica symmetric (RS) ansatz, which may not 
be appropriate, 0( )φ µ  is evaluated as

}
( )

( )
( )

( )

ˆ ˆ ˆ ˆ ( )

ˆ ⎪

⎪
⎧
⎨
⎩
⎛
⎝
⎜

⎞
⎠
⎟ ∫

φ µ
χ

χ µ

µ σ

χ µ

χ
µ

χ
α

=
+

+ + −
−

+

+ + −

+ + − + + +

Θ Q q

q

Q q

rr QQ qq z Y

extr
1

2
ln

1

1

1

2 1

1

2

1
D ln 1 ,

y
0

2

0

 

(19)

where ⋅Θextr { } denotes the operation of extremization with respect to Θ, Θ̂ =0   

χ χQ q r Q q, , , , , ,{ ˆ ˆ ˆ ˆ}, and zD e
zd

2

z2

2∫ ∫=
π

− , and we set

Y
Q

Q q
e .

r
q

Q q
z1

2
1
2

2ˆ ˆ
ˆ ˆ

ˆ ˆ
ˆ ˆ

χ
≡

+

+

− +
+ (20)

By applying the extremization condition, we obtain the following equations of state 
(EOSs):

q

1 1 1
,

y2

2

2
ˆ

( )( ) ( )⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎫
⎬
⎭

χ µ
χ χ µ

σ

χ µ
=

∆
+ + + ∆

+
+

+ + ∆ (21a)
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Q
q1

1 1
,

y
2

2
ˆ ( )

( )⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎫
⎬
⎭

µ
χ µ

µ σ

χ µ
=

+ + ∆
−

+

+ + ∆ (21b)

q
q

1
,

y2

2

2
ˆ

( )
µ

σ

χ µ
=

+

+ + ∆
 (21c)

r z
Y

Y

1
D

1
,∫α

=
+ (21d)

r

Q
,

ˆ ˆχ
µ

χ
=

+ (21e)

Q r
q

Q Q q

q

Q q
z z

Y

Y

1
D

1
,

2

2ˆ ˆ
( ˆ ˆ)( ˆ ˆ)

ˆ
( ˆ ˆ)

 ∫
χ

χ α
=

−

+ +
+

+ + (21f)

q
q

Q q
z z

Y

Y

1
D

1
.

2

2
2ˆ

( ˆ ˆ)
 

⎛
⎝
⎜

⎞
⎠
⎟∫α

=
+ + (21g)

where we write Q q∆ = − . From the EOSs, we obtain some simple and general rela-
tions, which we summarize here for later convenience:

Q
1

,ˆ ˆχ
µ

χ
+ =

+ (22a)

Q q
1

,ˆ ˆ µ
χ µ

+ =
+ + ∆ (22b)

q
1 1

,
2

ˆ ˆ
( )( )

χ
µ

χ χ µ
− =

∆
+ + + ∆ (22c)

r

r1
.χ =

− (22d)

The relation involving the entropy, (17), enables us to employ a convenient parametric 
form of ( )µε  and s s( ) ( ( ))µ µ= ε , and (21) and (22) allow us to simplify ( )µε , as

2
,0

2
( )

( ) ˆ
µ

φ µ
µ

χ
µ

= −
∂

∂
=ε (23)

µ φ µ µ µ= +s .0 ε( ) ( ) ( ) (24)

The explicit form of s( )µ  is not enlightening, and therefore we omit it. As the value of 
μ is increased from 0µ = , the point of s,( )ε  moves along the entropy curve from the 
maximum point ( 0µ = ) in the direction of decreasing the distortion ( 0µ > ) as shown in 
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figure 2. When the entropy curve crosses the zero-entropy line at 0µ µ= , the minimum 
distortion is given by

.0 0( )µ=ε ε (25)

Here, we make a technical remark on the derivation of (19). In contrast to the 
usual prescription of the replica method, we require two dierent replica numbers for 
the present analysis, because we have two dierent integration variables, x and c, in 
the calculation of 0φ . Using (15) and (18), and introducing a variable /ν µ β= , we can 
rewrite 0( )φ µ  as

{ }
( )

( )
( ) ∥ ( )∥

∥ ( )∥

�

�

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫

∫

φ µ =

=

ν

µ
ν

ν

ν

µ
ν

ν

→

− −

→ →

− −

x

x

M

Mn

lim
1

lnTr d e

lim lim
1

ln Tr d e .

c
c

y A c x

y A

c
c

y A c x

y An

n

0
0

1
2

,

0 0

1
2

,

2
2

2
2

 

(26)

In the last line, we use the replica identity X n Xln lim 1/ lny A y An
n

, 0 ,[ ] ( ) [ ]→= . We iden-
tify n and ν as the two replica numbers, and assume that they are natural numbers, 
which enables us to expand the powers and to calculate the configurational average. 
The remaining calculations follow the usual procedure of the replica method, and we 
assume the RS ansatz in the order parameters.

Our present framework in calculating 0φ  is actually similar to the one-step replica-
symmetry-breaking (1RSB) ansatz. In this identification, ν is identified as the 1RSB 
breaking parameter (usually written as m), and each configuration of c corresponds to 
a pure state in the 1RSB free-energy landscape; the entropy can be regarded as com-
plexity. The analytical results obtained on the basis of RS assumption will be justified 
later, in a comparison with numerical calculations.

3.1.2. 1� -based method.
Derivation of ε1. Similarly to the case of the 0� -based method, the energy function, 
partition function, and canonical distribution of the 1�  case are defined respectively as

ξ ξ ξλ= − +y A y A,
1

2
,1 2

2
1H ( | ) ∥ ∥ ∥ ∥ (27)

y AZ , , d e ,y A
1

,1 0( )   ( ( ) ∥ ∥ )∫ ξµ κ| = ξ ξµ κ− | +H
 (28)

y A
y A

p
Z

; , ,
1

, ,
e .y A

1
1

,1 0( )
( )

( ( ) ∥ ∥ )ξ µ κ
µ κ

| =
|

ξ ξµ κ− | +H
 (29)

The parameter κ is introduced for technical convenience in evaluating the compression 
rate r, and the limit of 0→κ  is taken in the end. The energy function 1H  is exactly the 
object for the minimization in (9). We also introduce the averaged free-energy density, 
given by

( ) [ ( | )]µ κ
µ

µ κ= − y Af
M

Z,
1

ln , , ,y A1 1 , (30)
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which plays the role of the cumulant-generating function that is given by 0φ  in the 0�  
case. In the limit →µ ∞, the minimizer of the energy function becomes dominant in 
p1, and we focus on this limit. Any quantity of interest can be calculated from f1. For 
example, the compression rate r and the distortion 1ε  are calculated as

r flim lim , ,
0

1( )
→ → κ

µ κ=
∂

∂µ κ∞
 (31)

⎛
⎝
⎜

⎞
⎠
⎟µ

µ
λ

λ
µ= +

∂
∂

−
∂

∂µ→∞
flim 1 , 0 .1 1ε ( ) (32)

An analytically compact form of f1 is assessed by using the replica method in the 
limit M → ∞, through the replica identity, as

y Af
M n

Z, lim
1

ln , , .y A
n

n
1

0
1 ,( ) [ ( )]

→
µ κ

µ
µ κ= − | (33)

As in the 0�  case, we assume the replica-symmetric solution. The details of the neces-
sary calculations are presented in appendix B. The result is given by

⎪ ⎪

⎪ ⎪
⎧
⎨
⎩

⎛
⎝
⎜

⎞
⎠
⎟
⎫
⎬
⎭

µ κ
σ

χ
χ χ

χ

α
θ θ θ θ

π
→ ∞ =

+

+
− − − + − θ

Θ
+ − + −

− +f
P

PP
P

, extr
1

2 1

1

2 2
1 2 erfc

2
e ,

y

p
p p

p
1

2

1

2

( ) ( ˆ ˆ )
ˆ

ˆ ( ) ( )
ˆ

 
(34)

where P Pˆ , , ,p p1 { ˆ ˆ }χ χΘ = , 
P2

2 p

ˆ

ˆ
θ = λ κ

χ±
±

, and erfc( )⋅  is the complementary error func-

tion, defined as x terfc d e
x

t2 2( ) ∫=
π

∞ − . The extremization condition gives the following 

EOSs for the present case:

P

1
,p

y

p

2

2
ˆ

( )
χ

σ

χ
=

+

+ (35a)

P
1

1
,

p

ˆ
χ

=
+ (35b)

P

P1
erfc

2
e ,p

p

2

ˆ ( )
ˆ

ˆ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟χ

α
θ

κ
χ π

= + θ
+

− + (35c)

P
P P

1 2 erfc
2

e erfc .
p

2

2ˆ
ˆ

( ) ( ) ˆ ( )
⎛
⎝
⎜

⎞
⎠
⎟

χ

α
θ θ θ θ

π
κ

α
θ= + − +θ

+ − + −
−

++ (35d)

By using (31) and (32), we obtain

r
1

erfc( )
α

θ= (36)
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P
PP

P

1

2 1

1

2 2
1 2 erfc

2
e ,

y

p
p p

p
1

2

2 2( ˆ ˆ )
ˆ

ˆ ( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟

σ

χ
χ χ

χ

α
θ θ θ

π
=

+

+
− − − − + θ−ε  (37)

where 
2 pˆ

θ = λ
χ

. In addition, a simple formula

1

2
.p1 χ̂=ε (38)

is derived from the EOSs of (35) in the limit of 0→κ , and a useful relation

r

r1
,pχ =

− (39)

which is similar to (22d ), is oered by (35) and (36).

Derivation of ε1
LS. We also evaluate 1

LSε , as defined in (11). The computations are 
rather technical, and there we defer the details to appendix B. Here, we present an 
outline of the analysis, and the result.

Again, we use the energy function defined in the 0�  case, but here the argument is 

0ξ| | , determined by p1( )ξ . Thus, we obtain

y A x; ,
1

ln d e .y A x
0 0 2

0

0 2
2

( ) ∥ ( )∥∫ξ β
β

| | | = − ξ
ξβ

| |
− − | | �H (40)

Since the vector ξ is drawn from p1, we calculate the average value of M1/ 0 0( ) ( )ξ| |H  
over p1, in addition to the configurational average. Taking the limits of →µ ∞ and then 

→β ∞ afterward, we obtain the desired distortion 1
LSε  as follows:

y A y A
M

plim lim
1

d ; , 0 , ; , .
y A

1
LS

1 0 0
,

  ( ) ( )
→ →

⎡
⎣⎢

⎤
⎦⎥∫ ξ ξ ξµ β= | | | |

β µ∞ ∞
ε H (41)

By utilizing the replica method again, we can calculate this. We defer the details of the 
calculations to appendix B, and here write down the resultant formula:

ε
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(42)

where C Q C Qˆ , , , , , , ,c q c q1

LS
{ ˆ ˆ ˆ ˆ }χ χ χ χΘ = , and 

2 pˆ
θ = λ

χ
. One point to remark on is that 

we should not take the extremization condition with respect to P Pˆ , , ,p p1 { ˆ ˆ }χ χΘ =  in 

this expression. Instead, we should substitute the extremizer of (34) into it. Applying 

the extremization condition with respect to ˆLS
Θ  gives
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(43f)
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From the EOSs, we can obtain the following simple relations:

r

r1
,q pχ χ=

−
= (44a)

Q P
1

1
,

p

ˆ ˆ
χ

= =
+ (44b)

1

2
.q1

LS χ̂=ε (44c)

We now make some comments regarding the derivation of (42). In order to calculate 
the configurational average, we are required to deal with two dierent factors, Z1 in 

p Z1/ e1 1
1( )= µ− H , and the logarithm in 0H  . Correspondingly, as in the 0�  case, we intro-

duce replicas of two dierent kinds: n replicas to handle 1/Z1, and ν replicas to handle 
the logarithm. Using them, we can rewrite (41) as
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(45)

It is now possible to calculate the configurational average by assuming n and ν are nat-
ural numbers, and we can follow the usual prescription of the replica method. However, 
there remains a technical point concerning the limits n 0→  and 0→ν  in the present 
formulation. The region around n 0ν= =  has an unusual property. The extremiza-
tion condition with respect to the order parameters yields several dierent solutions. 
Among these solutions, by employing a versatile tool of spin-glass theory to analyze a 
probabilistic model conditioned by another probabilistic model, called the Franz–Parisi 

potential, we should choose the one analytically connected to ˆ
1Θ  in (34) in the limit 

0→ν . This is achieved by the remark given below (42) [39].

3.2. Numerical validation using simulations on finite M

3.2.1. 0� -based method. We examine the analytical results, using numerical simula-
tions of finite-size systems. When M is suciently small, we can obtain the cumulant-
generating function 0φ  by exhaustively searching all possible combinations of basis 
vectors. In cases where M is less small, we use the exchange Monte Carlo (MC) method 
to sample basis vector combinations obeying the canonical distribution at various 
temper ature points [29, 30], and then estimate the cumulant-generating function 0φ  
using the multi-histogram method [40].

In all simulations, we set 0.5α =  and 1y
2σ = . We treat two values of r equal to 0.2 

and 0.4. In the case of r 0.2 0.4 ( )= , we calculate cumulant-generating function values 
at 15 temperature points, which are distributed according to the geometric progression 
in the range between 1 and 10 (between 1 and 35) in the value of μ. We conduct the 
exhaustive search for M 25 15⩽  ( ), and use the exchange MC method for larger M. The 
configurational average is calculated by taking the median over 1000 dierent samples 
of y A,( ). The error bars are estimated by the Bootstrap method.

The procedure for our MC method will now be explained. At every temperature 
point, we randomly choose the initial vector c among those satisfying ∥ ∥ =c rM0 . 
For r  =  0.2, the number of MC steps required for thermalization and sucient sam-

pling is 2, 3, 4, 7, 10 104×  for M  =  30, 35, 40, 45, 50, respectively, while for r  =  0.4 it 
is 2, 4, 8, 15, 30 104×  for M  =  20, 25, 30, 35, 40, respectively. The first half of the MC 

steps are discarded for thermalization. One MC step consists of two parts. First, updat-
ing once at every temperature point, and then exchanging once between every pair of 
neighboring temperature points. In each update of c, we randomly choose one index 
i such that ci  =  1 and another j such that cj  =  0 to flip into the opposite state. That 
is, we set ci  =  0 and cj  =  1, and accept or reject this trial according to the Metropolis 
criterion based on the energy values calculated from 0H  (12). The Metropolis criterion 
is also used in the exchange of cs of dierent temperature points.

The results of the numerical simulations are presented in figure 3. Figure 3(a) shows 
the results of the cumulant-generating function value at 1µ = . On the vertical axis, the 
circles represent extrapolated values from finite-size results. The extrapolation lines are 
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given by the linear regression using an asymptotic form a bM cM Mln0
1 1 1φ ≈ + +− − − . 

The regression is conducted by employing the method of least squares, as follows:

a b
M

c
M M

Mmin
1

2

1 1
ln

1
.

a b c M, ,
0

2

( )⎜ ⎟
⎛
⎝

⎞
⎠∑ φ+ + − (46)

The asymptotic form is based on the Stirling’s formula and is exact at 0µ = , which 
motivates us to use the form even for 0µ ≠ . The cumulant-generating function and 
entropy density in the limit M → ∞ are presented in figures 3(b) and (c), respectively. 
The lines represent the analytical results. The circles represent the extrapolated values 
from the numerical results. The analytical solutions are seen to be consistent with the 
numerical ones. Hence, the numerical results clearly validate the analytical results in 
the 0� -based method.

3.2.2. 1� -based method. Similarly to the case of the 0� -based method, we examine the 
analytical results of the 1� -based method by performing numerical simulations on finite-
size systems. We carry out the 1� -norm regularization using quadratic programming, 
and evaluate the distortion before the method of LS, 1ε ; the distortion after the method 

of LS, 1
LSε ; and the compression rate r.

The values of α and y
2σ  are fixed as 0.5α =  and 1y

2σ =  for all simulations. We treat 

two values of λ equal to 1 and 2. We calculate (9) and (11) using quadratic program-
ming and the method of LS for M 50, 100, , 250= … .

The results of the numerical simulations are shown in figure 4. Figures 4(a)–(c) 
plot the numerically evaluated distortion before the method of LS, distortion after the 
method of LS, and the compression rate, respectively, against the system size M. On 
the vertical axes, the circles and crosses represent extrapolated and analytical values in 

the M → ∞ limit, respectively. The extrapolation lines are given by the linear regression 

using the asymptotic forms ≈ + −a bM1
1ε , ≈ + −c dM1

LS 1ε , and ≈ + −r e fM 1. We see 

that the analytical solutions are very close to the extrapolated values. This correlation 
clearly demonstrates the reliability of the analytical results.

3.3. Comparison in the trade-o relation

We compare the ideal performance in the M → ∞ limit for dierent methods in terms 
of the trade-o relation between the distortion and the compression rate. Figure 5(a) 
shows the trade-o relations in the case of 0.5α = . We see that both of the OCB-based 
methods achieve a better trade-o relation than the naive one. In the OCB-based strat-
egy, the 0� -based method significantly outperforms the 1� -based one, even if the method 
of LS is operated after carrying out support estimation by the 1� -norm regularization. 
We attribute the inferiority of the 1� -based method to the regularization term. Indeed, 
as shown in figure 5(b), the regularization term is necessary to decrease the rate, but 
it distorts the original purpose of minimizing the distortion, as clearly seen from (27).

For a further comparison of the OCB-based methods, figure 6 shows the trade-o 
relations where dierent values of α control the degree of overcompleteness. Figures 6(a) 
and (b) present the results of the 0� - and 1� -based methods, respectively. In the 1� -based 
method, the method of LS has been operated after the support estimation. Both methods 
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achieve a better trade-o relation as the degree of overcompleteness increases, or α 
decreases. Another interesting observation is the superiority of the 0� -based method 
compared to the 1� -based one, regardless of the degree of overcompleteness.

3.3.1. In the large limit of the degree of overcompleteness, 0→α . From figure 6 we 
see that the distortion becomes smaller as α decreases, both for the 0� - and 1� -based 
methods. An interesting question is whether the distortion vanishes or not in the limit 

0→α , or more quantitatively, how ε is scaled by α in the small limit.

Figure 3. Cumulant-generating function φ0 and entropy density s of the �0-based 

method with σ = 1y
2 , α = 0.5, and r  =  0.2, 0.4. (a) Plots of numerically evaluated 

φ0 at µ = 1. The lines are given by the linear regression. On the vertical axis, the 
circles and crosses represent the extrapolated and analytical values in the → ∞M  
limit, respectively. The lengths of the error bars are comparable to the sizes of 
symbols. (b) Plots of φ0 in the → ∞M  limit. The lines and circles represent the 
analytical and extrapolated values, respectively. The lengths of the error bars are 
comparable to the sizes of symbols. (c) Plots of s against ε in the → ∞M  limit. 
The lines and circles represent the analytical and extrapolated values, respectively. 
These are calculated from the values of φ0 in (b).

Figure 4. Plots of numerically evaluated values of the �1-based method with σ = 1y
2 , 

α = 0.5, and λ = 1, 2. The extrapolation lines are given by the linear regression. 
On the vertical axes, the circles and crosses represent the extrapolated and 
analytical values in the → ∞M  limit, respectively. The lengths of the error bars 
are comparable to the sizes of symbols. (a) Distortion before the method of LS, ε1. 
(b) Distortion after the method of LS, ε 1

LS. (c) Compression rate, r.
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Deferring the detailed calculations to appendix A.2 and B.2, here we summarize our 
analytical results on the behavior of ε in the limit 0→α

α∝ →− 0,
r
r0

2
1ε (47)

r O
1

2
1 1 ,y1

2 2→ ( ) ( )σ− =ε (48)

ln 0.1
LS 1 →α∝ | |−ε (49)

The asymptotic behaviors of 0ε  and 1
LSε  are examined using numerical solutions of the 

corresponding EOSs, (21) and (43a–43h), in figure 7. Our analytic formulas show an 

excellent agreement with the numerical results.
We stress the consequence of (47)–(49). First, they give a firm indication that it is 

reasonable to apply the method of LS after the 1� -norm regularization, which is heuristi-
cally employed in related problems such as compressed sensing in practical situations. 
The dierence in (48) and (49) indicates that the method of LS actually diminishes the 
distortion, and even eliminates it in the ideal limit 0→α , which never happens with 
only the use of 1� -norm regularization. Second, (47) provides a general bound for the 
computational cost of searching the appropriate basis vectors. From (47), given a target 
value of the distortion ε̂  and some data on the length M, the required size N M,req( ˆ )ε  of 
the basis matrix to achieve this distortion value is scaled as

N M M, .
r

rreq
1
2 0( ˆ ) ˆ  ( )∝ − −
�ε ε (50)

Figure 5. Results of the analysis in the → ∞M  limit with σ = 1y
2  and α = 0.5. (a) 

Trade-o relations of the naive, �0-based, and �1-based methods (before and after 
the method of LS). (b) Relation between the rate and the regularization coecient 
in the �1-based method.
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This grows in a polynomial manner as the target distortion value ε̂  decreases, and 
the exponent of the polynomial negatively grows as the compression rate r decreases. 
This quantitative information will provide a theoretical basis in designing algorithms. 
Finally, (49) manifests the limit of the 1� -based method. The size Nreq required to 
achieve the target distortion ε̂  in this case is scaled as

N M M, e , LS .req
1

1( ˆ )  ( )ˆ∝ +�ε ε (51)

This grows exponentially as ε̂  decreases, which is considered to be reasonable. If it were 
a polynomial, versatile algorithms exactly solving the 1� -norm regularization could be 
applied to solve the problem with a computational cost of a polynomial order of the 
system size and the precision, which is believed not to be possible. However, (51) can 
still be useful, because it provides a quantitative comparison between the data size M 
and the acceptable distortion ε̂  in an unified manner.

4. Examination of practical performance

4.1. Algorithms and their performances

A lot of computational time is required to conduct the exhaustive search used in 
the 0� -based method. However, it is considered that certain greedy algorithms might 
work well for practical applications. Orthogonal matching pursuit (OMP, figure 8) is 
a greedy algorithm that may be suitable for the present purpose [31, 32]. OMP only 
requires a computational time of order O(M 4) for the current purpose. We compare the 
performance of OMP with the ideal performances of both the 0� - and 1� -based methods.

Figure 6. Trade-o relations at various values of α in the case of σ = 1y
2 . (a) 

Results of the �0-based method. (b) Results of the �1-based method (after the 

method of LS). For both the methods, against a fixed r, the distortion ε becomes 
smaller as α decreases.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(a)

ε

r

Naive
α=1
α=0.5
α=0.1

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b)

ε
r

Naive
α=1
α=0.5
α=0.1

http://dx.doi.org/10.1088/1742-5468/2016/06/063302


Sparse approximation based on a random overcomplete basis

20doi:10.1088/1742-5468/2016/06/063302

J. S
tat. M

ech. (2016) 063302

In addition to OMP, we also examine approximate message passing (AMP, figure 9), 
as a representative algorithm carrying out the 1� -norm regularization. From the view-
point of quadratic programming, 1� -norm regularization is solved exactly using versatile 
algorithms, which require a computational time of order O(M 3). In contrast, AMP only 
requires a computational time of order O(M 2) per update. Despite the low computa-
tional cost, AMP is known to be able to recover the results of those versatile algo-
rithms, in certain reasonable situations [33]. The present case, where the basis matrix 
A and the data vector y are generated from i.i.d. normal distributions, is expected to 
be one such situation. Hence, we can fairly compare the result of AMP with the ideal 
performance of the 1� -based method, and therefore with that of OMP.

We evaluate the performances of OMP and AMP when they are employed for 

sparse approximation with the OCB-based strategy. We examine the case with 1y
2σ =  

and 0.5α = . Figure 10 presents the results of the performance evaluations of OMP and 
AMP. Figure 10(a) shows the results for finite-size systems, namely M 50, 100, , 250= … , 
and the extrapolation by the linear regression using an asymptotic form of ≈ + −a bM 1ε . 
The compression rate is set to r  =  0.5 when evaluating OMP, and the regularization 
coecient λ is set to 0.65 when evaluating AMP, so that r 0.5≈ . We evaluate the 
performance of AMP based on the distortion after the method of LS. In figure 10(b), 
we compare the extrapolated performances of OMP and AMP at various rates with 
the achievable trade-o relation analyzed in section 3. The AMP result compares 
well with the ideal performance of the 1� -based method, while that for OMP does not 
reach the ideal result of the 0� -based method. However, a notable finding is that OMP 
considerably outperforms the 1� -based results. This motivates the exploration of bet-
ter algorithms for the 0� -based method, in the context of sparse approximation. Such 
exploration is currently under way.

4.2. Application to image data

We investigate the performance of sparse approximation, when it is applied to a task 
of image data compression. We compress image data composed of 256 256×  pixels. The 
experimental procedure of compression is as follows. First, image data are normalized 

Figure 7. Plots of ε against α in the small α limit, derived by solving (21) and 

(43a–43h) numerically. The left panel represents ε0, and the right panel represents 

ε 1
LS. The lines are the fits based on our analytical formulas, (47) and (49), and these 

show excellent agreement with the points obtained by the numerical evaluations.
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so as to set the mean and variance to 0 and 1, respectively. Next, 256 256×  pixels are 
randomly permuted, in order to obtain 1024 column vectors, whose dimension is 64. 
Following these operations, the data can be regarded as random numbers with a mean 
and variance of 0 and 1, which approximates the properties of the data to the situation 
which we have already studied theoretically and numerically. Finally, setting r  =  0.5, 
we compress each of the column vectors into a sparse vector by using a 64 128×  ran-
dom matrix, namely 0.5α = . We examine the performances of OMP and AMP. When 
applying AMP, we set the regularization coecient to 0.65, so that r 0.5≈ , and the 
method of LS is operated after the support estimation by the 1� -norm regularization. 
The results of experiments are presented in figure 11. Although OMP requires a com-
putational time that is several times larger than that of AMP, OMP outperforms AMP 
in terms of appearance and peak signal-to-noise ratio (PSNR), defined as

Figure 8. The procedure of OMP. ∅ is the empty set. ( )⋅supp  is the support set.

Figure 9. The procedure of AMP. ( )⋅sign  is the sign function. ( )Θ ⋅  is the Heaviside 
step function.
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I I
PSNR 10 log

255
,

N ij ij ij
10

2

1 2( ˆ )
=

∑ − (52)

where I Iij{ }=  and I Iijˆ { ˆ }=  represent an original image and a sparse-approximated 

image, respectively, and N is the number of image pixels.
If the scope of application is limited to image data compression, more convenient 

bases, such as a discrete wavelet transformation, will achieve much better results in 
the performance and computational time [41, 42]. However, in general contexts it is 
not easy to find a proper basis for sparse approximation in advance. A solution to this 
problem is to use blind compressed sensing and related techniques such as dictionary 
learning [43–45], but the computational costs are rather high. Our OCB-based strat-
egy may overcome this diculty, because it avoids the learning of the dictionary by 
preparing many candidates for basis vectors and choosing a suitable combination. Our 
theoretical analysis and numerical experiments positively support this possibility.

5. Conclusion

In the present paper, sparse-data processing has been discussed from the viewpoint of 
sparse approximation. We have focused on a strategy of sparse approximation that is 
based on a random OCB, and have explored the abilities and limitations of the 0� - and 

Figure 10. Performances of OMP and AMP in the case with σ = 1y
2  and α = 0.5. 

The performance of AMP is evaluated after the method of LS. (a) Plots of the 
numerically evaluated distortions in the case of r  =  0.5. The extrapolation lines 
are given by the linear regression. On the vertical axis, the symbols represent 
extrapolated values in the → ∞M  limit. The lengths of the error bars are comparable 
to the sizes of symbols. In OMP r is set to r  =  0.5, and in AMP λ is set to 0.65, 
so that ≈r 0.5. (b) Trade-o relations in the → ∞M  limit. The circles and crosses 
represent extrapolated values of OMP and AMP, respectively.
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1� -based methods. We have analyzed the ideal performances of these methods in the 
large-system limit in a statistical-mechanical manner, which has been validated by 
numerical simulations on finite-size systems and their extrapolation to the infinite-size 
limit. Our results have indicated that the 0� -based method outperforms the naive and 

1� -based methods in terms of the trade-o relation between the distortion and the com-
pression rate. A notable result is that any small distortion is achievable for any finite 
fixed value of the compression rate, by increasing the degree of overcompleteness, for 
both the 0� - and 1� -based methods. This result allows us to determine both the theor-
etical limit of the OCB-based strategy and the limit for practical algorithms based on 
the 1�  regularization. In addition, it provides a firm basis for the use of the method of 
LS after the 1�  regularization, which is frequently applied in related problems such as 
compressed sensing in practical situations.

In addition to the ideal performance analyzed in section 3, we also investigated the 
practical performance of our strategy in section 4. We evaluated the performances of 
OMP and AMP as algorithms to approximately perform the 0� - and 1� -based methods, 
respectively. Our evaluation showed that OMP surpasses both AMP and the exact 
execution of the 1� -based method, in terms of the trade-o relation. This suggests that 
greedy algorithms are more suitable for sparse approximation using our strategy than 
convex relaxation algorithms, although there is still room to design more eective greedy 
algorithms than OMP. We are currently undertaking further research in this direction.

We considered the application of our method to image data compression, as a prac-
tical example, and evaluated its performance when OMP and AMP are utilized. OMP 
outperforms AMP in appearance and PSNR, although OMP requires a computational 
time that is several times larger. In order to eciently decrease the computational time 
of our strategy, it is important to find a proper basis. This suggests the use of some 
prior knowledge in constructing the overcomplete basis. Some further possibilities, such 
as combining our methods with dictionary learning, are still open, and would be inter-
esting to address in future work.

Figure 11. Application of sparse approximation with the OCB-based strategy to 
image data compression. The degree of overcompleteness is α = 0.5. (a) Original 
image data. (b) Sparsely-approximated image data obtained using OMP. The 
compression rate is r  =  0.5. PSNR is 28.2. The time required is approximately 55 sec.  
(c) Sparsely-approximated image data obtained using AMP. The regularization 
coecient is λ = 0.65, so that ≈r 0.5. The AMP-based sparse representation is 
given after the method of LS. PSNR is 22.9. The time required is approximately 
4.5 sec. Copyright Playboy Enterprises, Inc.

(a) (b) (c)
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Appendix A. Calculations for the 0� -based method

A.1. Derivation of φ0

Based on (26), we define

xn
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The cumulant-generating function 0φ  is recovered from 0ψ , as ( ) ( ) ( )φ µ ψ ν µ= ν→ n nlim 1/ , ,n0 , 0 0 .  
When n,( )ν  are positive integers, we obtain
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where ∫ δ= ∏ − ∑α β α β α β
α βQ MQ c x c xTr dQ a b a b a b i i
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, ( )( )( )( ) ( ) ( )( ) ( )( ) , and the brackets Qy s, a[ ] { }⋅ |α   

denote the average over y and saα, which is conditioned by the variance Q a b( )( )α β  as 
explained above.

After introducing the Fourier representation of the delta function, Xd e
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the saddle-point method is employed to obtain
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where Q r Q, ,0 { ˜ ˜}Θ = . For the extremizer, we search the subspace with Q Q,a b a b( ˜ )( )( ) ( )( )α β α β  
equal to Q Q,( ˜) (a b, α β= = ), q q,1 1( ˜ )−  (a b, α β= ≠ ), or q q,0 0( ˜ )−  (a b≠ ), with r rã ˜= . 

This is the RS in the present formula of two replica numbers n and ν. Then, we obtain

( )( )( )

˜ ˜ ( ) ˜ ( ) ˜

˜

|

˜ ˜ ˜ ˜ ˜ ˜

∫ ∫ ∫

∫ ∫ ∑

ψ ν µ

ν ν ν ν

α

=

+ + − − − −

+

µ
ν σ

ν

ν

ν

Θ

− − − − − −

− −
+

+ − +

⎜ ⎟

⎪

⎪

⎧
⎨
⎩

⎛
⎝

⎞
⎠

⎛

⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞

⎠
⎟

⎫
⎬
⎭

n y w v u

nrr n QQ n q q n n q q

z t

, , extr ln D D D D e

1

2

1

2

1

2
1

1

2
1

1
ln D D Tre ,

y q w q q v Q q u
n

c x c

r c
Q q

cx t q q cx z q cx

n

0 2

1 1
2

0 0

2 2

y

0

0 1 0 1
2

1 2
1 0 0

 

(A.5)

where Q q q r Q q q˜ , , , , , ,0 1 0 1 0{ ˜ ˜ ˜ ˜ }Θ =  and ∫= xTr dx c c| . We assume that (A.5) is true not 

only for positive integers n,( )ν  but also for real numbers n,( )ν . In taking the limits 

n, 0, 0( ) → ( )ν , we introduce Q q1( )χ β= − , q  =  q0, r rˆ ˜= , Q Q q q1
2

1
ˆ ( ˜ ˜ ) ˜ν ν= + − , q2 1ˆ ˜χ ν= , 

and q q2 0ˆ ˜ν= , which are assumed to be of the order O(1) in these limits. Following some 
straightforward calculations, the replica identity is given by
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thus yielding (19).

A.2. The limit α→ 0 in the 0�  case

We examine the behavior of the zero point of entropy, 0ε , in the large-size limit of the 
basis matrix, 0→α . The parameter μ corresponding to the zero point 0ε , 0µ , can be 
formally written using (23) and (24), as
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(A.7)

A numerical calculation indicates the behavior of 0 →µ ∞ as 0→α , while Q q Q q O, , , , 1ˆ ˆ ( )χ ∼  
are kept finite. We will determine the scalings of the relevant variables for 0→α  so as 
to agree with these observations. A crucial observation from (21d) is that the factor Y 
should vanish, in order to cancel the vanishing α, yielding
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where we introduce an exponent ρ controlling the divergence speed of r̂ and 0µ . Since we 
assume the divergence of 0µ , ρ must be larger than unity. The value of ρ is determined 
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by solving (A.7) in a self-consistent manner. The scaling of the remaining order para-
meter χ̂ is determined by

q

1
.

y0
2

2
ˆ →

( )
→χ

µ α
χ

σ

+
+

+

∆
∞ (A.9)

Now, we know all of the scalings of the order parameters, and can reduce (A.7) to the 
dominant part, as

r2 ln ln 1
.

q

0
1

0

y0
2

2

( )
µ

ρ α χ µ
≈

+

+ + + ∆

µ
χ

σ

+

+

∆ (A.10)

By solving this in the leading scaling, we obtain

r
O

1

1
,

e
1 .

r
r0

1
2
1

1

  ( )
( )

ρ µ α=
−

≈
∆

+
χ+

− −

−

 (A.11)

By inserting (A.9) and (A.11) into (23), we get (47)

Appendix B. Some calculations for the 1� -based methods

B.1. Derivations of f 1 and 1
LSε

Based on (45), we introduce
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By calculating this in the case of positive integers n,( )ν , we obtain
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where ( ){ }
| | | |∫ ξ= ∏ξ

µ λ ξ κ ξ
=

− ∑ + ∑Tr d ea
n a

1
a i i

a
i i

a
0 , and ∫= ∏ ξα

ν α
=α xTr dx 1 1

0{ } | | . Let us introduce 

the variables ′ ξ= ∑s Aj
a

i ji i
a, s A xj i ji i i

1ξ= ∑ | |α α, Pab M i i
a

i
b1 ξ ξ= ∑ , C xa M i i i i

a1 1
0( )ξ ξ= ∑ | |α

α , and  

Q x x
M i i i i i
1 1

0
1

0( )( )ξ ξ= ∑ | | | |αβ
α β . As in the 0�  case, we can rewrite the variables { }′ αs s,j

a
j  as 

random variables from a zero-mean multivariate normal distribution, with the covari-

ances ′ ′ δ=s s PAj
a

k
b

jk ab[ ] , ′ δ=α
αs s CAj

a
k jk a[ ] , and s s QAj k jk[ ] δ=α β

αβ. The application of the 

central limit theorem here is justified by the nonzeroness of compression rate r shown 
in figure 5(b) derived from (36). Using these variables, we obtain
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where P MPTr d
P

a b ab ab i i
a

i
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0 . After introducing the Fourier repre-

sentation of the delta function, the saddle-point method is employed, to obtain
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where P C Q P C Q, , , , ,1 { ˜ ˜ ˜}Θ = . For the extremizer, we search the subspace with 

P P,ab ab( ˜ ) equal to P P,( ˜) (a  =  b) or p p,( ˜)−  (a b≠ ); C C,a a( ˜ )α α  equal to C C,( ˜ )−  (a  =  1) or 

c c,( ˜)−  (a 1≠ ); and Q Q,( ˜ )αβ αβ  equal to Q Q,( ˜) (α β= ) or q q,( ˜)−  (α β≠ ). This is the RS 

assumption for the present case. Thus, we obtain
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where C c Q q C c Q q˜ , , , , , , ,1

LS
{ ˜ ˜ ˜ ˜}Θ =  and P p P p˜ , , ,1 { ˜ ˜}Θ = .
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The free-energy density f1 is now derived as
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In the limit →µ ∞, we introduce P pp ( )χ µ= − , P P p1ˆ ( ˜ ˜)µ= +− , and pp
2ˆ ˜χ µ= − , which 

are assumed to be of the order O(1). Taking the →µ ∞ limit in (B.7) leads to (34).
On the other hand, in order to evaluate 1

LSε , in addition to P Pˆ , , , ˆp p1
ˆχ χΘ = , in taking 

the limit →µ ∞ we define the parameters C cc ( )χ β= − , Q qq ( )χ β= − , C C c1ˆ ( ˜ ˜)β= +− , 

cc
2ˆ ˜χ β= − , Q Q q1ˆ ( ˜ ˜)β= +− , and qq

2ˆ ˜χ β= − , which are assumed to be of the order O(1). 
Then, through the formula

nlim lim lim lim
1

, , , , 0 ,
n

1
LS

0 0
1( )

→ → → → βν
ψ ν β µ= −

β µ ν∞ ∞
ε (B.8)

we obtain (42).

B.2. The limit α→ 0 in the 1�  case

The EOSs (35) show that in the limit 0→α  we have

P O, , 1 .p p
ˆ ˆ ( )χ χ = (B.9)

From (36) and the asymptotic formula of the complementary error function erfc( )⋅ , we 
see in the limit 0→α  we have

O O
e

2
1 , ln ,

1
2

2

( ) ( ) →
α π θ

θ α= ⇒ = | | ∞
θ−

 (B.10)

which is realized by controlling λ as O ln( )α| | . Using these scalings, and the asymp-

totic expansion of the complementary error function for large θ in (35d), we obtain

P O O ln 0.2 1( ) ( ) →θ α= = | |− −
 (B.11)

By inserting these scalings into (38), we obtain (48).
The asymptotic form of 1

LSε  can be similarly obtained. Following some lengthy but 

straightforward calculations, we obtain

O ln 0,q
1ˆ ( ) →χ α= | |− (B.12a)

Q O 1 ,ˆ ( )= (B.12b)
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O ln 0,c
1ˆ ( ) →χ α= | |− (B.12c)

C O 1 ,ˆ ( )= (B.12d )

O 1 ,q ( )χ = (B.12e)

Q O ln 0,1( ) →α= | |− (B.12f  )

O 1 ,c ( )χ = (B.12g)

C O ln 0.1( ) →α= | |− (B.12h)

By substituting these scalings into (44c), we obtain (49).
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