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ABSTRACT
The enormous increase of data in RDF format calls for effi-
cient storage and retrieval approaches. Being a highly con-
nected data, RDF generates massive amounts of interme-
diate results during query processing. Many of the current
RDF storage approaches involve large amounts of inter-node
data movement even for simple selective query patterns.
We propose JARS, a join-aware distributed RDF storage
system with a dual-hash partitioning strategy coupled with
two layered distributed clustered indexing and a rule-based
query-execution approach. JARS eliminates the inter-node
communication for star patterns and mitigates the commu-
nication cost for chain pattern SPARQL queries. Our ex-
periments indicate that JARS achieves significant perfor-
mance enhancement over the state-of-the-art RDF storage
systems.

Categories and Subject Descriptors
A.m [General]: Database Management, Semantic Web

Keywords
RDF, SPARQL, Clustered Index, Dual-hash Distribution

1. INTRODUCTION
The Resource Description Framework (RDF) was orig-

inally designed as a metadata data model, by providing
statements representing information in the web resources
in a format that comprises a subject, a predicate and an
object. The ⟨subject(s) ->predicate(p) ->object(o)⟩ rela-
tionship is called as triple, where the subject and object de-
note resources and the predicate expresses the relationship
between subject and object. Spurred by the Linking Open
Data Project [2], which links data using semantic web tech-
nologies, an ever-increasing volume of data are published in
RDF format.
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There is a flurry of research efforts aiming to build ef-
ficient high performance RDF data management systems.
Various approaches adopted different storage strategies such
as in-memory storage: RDF data is stored in main memory,
native storage: provide dedicated persistent databases such
as Virtuoso [3], and relational storage: relational tables are
used to store RDF data such as Jena [8]. The in-memory
stores are capable of storing only limited data. The native
graphical approaches assume data to be static and require
high preprocessing cost for partitioning.

We adopt the relational approach by taking into account
of various advantages such as efficient storage and query-
ing, transaction support, security, locking and compression
which are not available in native stores. Within the re-
lational approach, there are various physical organization
techniques such as triple-table, horizontal partitioning and
vertical partitioning approach. Triple-table stores the entire
RDF data in a single 3-column table, where each row is a
RDF statement. Though it performs well, the large size po-
tentially requires large number of self-joins. The horizontal
representation conceptually stores all the RDF data in a sin-
gle table and the table dedicates a column for each predicate
value in the RDF graph. This wide-table approach supports
multi-valued attributes, but results in large number of empty
cells due to sparse attributes. The vertical partitioning ap-
proach rewrites the triple table into n two-column tables
where n is the number of unique properties in the data and,
this approach is used in works such as Abadi et al; [1] . It is
very easy to implement and performs well for queries that
specify the predicate values, but else not a good approach.

In the past years, many researches focused on centralized
RDF data management techniques such as Jena, RDF-3X
[11] and Hexastore [18]. But, the rapid growth of data led
to the requirement for scalable distributed storage systems.
So, we attempt to implement a scalable distributed triple-
table storage approach by overcoming the disadvantages of
the triple-table through appropriate clustered indexes and
data partitioning strategy. We distribute data among the
cluster through a novel variant of hash partitioning tech-
nique, dual-hash partitioning coupled with distributed clus-
tered indexing.

There have been some clustered RDF database systems
such as Virtuoso [3], and SHARD [14], that adopted hash
partitioning approach, but they have proven to work well
only for star queries and simple index-lookup queries. For
more complex queries, the results were far from optimal.

We introduce JARS, a Join-AwareRDF Storage approach
with two layered clustered indexes, with dual-hash distribu-
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Figure 4: SPARQL star pat-
tern
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Figure 5: SPARQL chain pattern

tion of triples based on the subject and the object, coupled
with alternative combination indexes for the subject, pred-
icate and object. We particularly attempt to address the
inter-node communication cost through efficient co-location
of join-able triples, which greatly improves the query ex-
ecution performance. As a result, star- and simple-chain
SPARQL queries can be executed locally, whereas compos-
ite queries can be decomposed and executed in parallel. We
avoid predicate-based hash partitioning, since most SPARQL
joins involve s-s, s-o, o-o joins, where predicate joins are
negligible. Besides, predicate-based hash distribution cre-
ates big skew due to the presence of many triples with the
predicate rdf:type, thereby hampers optimized load balanc-
ing. Our approach helps to meaningfully partition the RDF
data, minimize the communication cost to a large extent in
majority of the queries and, improves query-response time.

SPARQL.
Simple Protocol and RDF Query Language, SPARQL [16]

is the standard language for querying RDF data. It com-
prises a set of RDF triple patterns (< s, p, o > ) called as
Basic Graph Pattern (BGP), where each position can be a
variable. Answering SPARQL involves matching the vari-
ables with the real constant values from the RDF graph.
The two common patterns in SPARQL queries are star pat-
tern and chain pattern. Former is the most common pat-
tern, in which many triple patterns share the same subject,
as shown in Figure 4, whereas later comprises a sequence of
triple patterns in which the object of the previous pattern
is the subject of the next pattern, as shown in Figure 5.

1.1 Contributions
We summarize the novelty and advantages of our work as

follows.

i) We introduce a novel join-aware distributed RDF stor-
age system, JARS with a dual-hash partitioning strat-
egy, which replicates RDF triples based on hash of
subject and object and proves that by doing so, join-
able triples are localized. As a result, the common star
and simple chain SPARQL patterns can be executed
without inter-node communication, whereas complex
queries can be decomposed and executed in parallel.

ii) We provide an easy-to-implement, scalable RDF stor-
age paradigm that does not require any data prepro-
cessing and maintenance cost.

2. RELATED WORKS
Here, we give a brief overview of relevant related works

by discussing some efficient centralized and distributed RDF
storage systems.

Centralized systems.
RDF-3X and Hexastore are highly efficient centralized

RDF storage systems which implement exhaustive, but space-
efficient clustered triple indexes for better performance.

Distributed Systems.
Distributed systems characterize a data partitioning strat-

egy for improving the query performance. SHARD is a dis-
tributed approach that stores RDF triples directly in HDFS
as flat files and runs one Hadoop [5] job for each triple pat-
tern in the SPARQL query. A heuristic-based system [7]
stores RDF triples in HDFS by hashing on predicates and
runs one Hadoop job for each join in the SPARQL query.
However, predicate-based hashing can lead to skewed stor-
age. Virtuoso Cluster, and ClusteredTDB [12] are few other
distributed systems which involve hash-partitioning strat-
egy, but different from JARS. However, many of these ap-
proaches suffer from high communication costs.

Another approach adopted by Huang et al; [6] partitions
RDF graph into smaller sub graphs through a n-hop strat-
egy, and are stored in separate nodes running RDF-3X. This
method guarantees parallel SPARQL processing within n-
hop limits, but incurs huge computational cost. The dis-
tributed semantic hash partitioning approach [9] extends the
simple hash partitioning method through direction-based
triple groups and triple replications. However, this approach
also requires significant preprocessing time and maintenance
cost on data updates. Though JARS is similar to these
approaches with respect to the data partitioning strategy,
JARS doesn’t incur the preprocessing cost. In JARS, adding
/ deleting data is very simple, hassle free and requires zero
maintenance cost. Also, many of these systems handle data
partitioning using graph partitioners such as METIS, which
crashes for large data sets and therefore, limits the data
size. The approach adopted by Wang et al; [17] combines
the advantages of RDF-3X and Map/Reduce framework and
is similar to JARS, with a query processing strategy to re-
duce the amount of intermediate results for minimized query
latencies. But, it requires significant data preprocessing and
additional data structures before performing data distribu-
tion to the respective nodes.

Problems of Relational RDF Storage Methods.
In the relational approach, especially in the triple-table

method, answering a SPARQL query requires many self-
joins. This leads to a performance bottleneck caused by the
huge amount of data transfer among computing nodes. From
the careful analysis of the SPARQL query patterns, com-
posed of star and chain, we observed the large involvement of
s-s, s-o and o-o joins. So, we devised a join-aware approach
which co-locates triples with the same subject/object in the
same server and avoids joins across nodes. Our join-aware
approach is discussed in detail in section 3.2.

3. STORAGE AND ARCHITECTURE
We actualize a distributed storage architecture for JARS,

as shown in Figure 6. JARS accepts triples in any RDF
format and the data in the < s, p, o > format is hashed
twice based on the subject and object. The MD5 message-
digest algorithm [10], a cryptographic hash function with a
128-bit hash value, is used to obtain the hash value of the
subject and the object. The remainder of the division of
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Figure 1: Sample RDF graph from LUBM Benchmark
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Figure 2: Triple table - hashed by subject
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Figure 3: Triple table - hashed by object

the resultant value by number of worker nodes would be the
target location node of the respective triple.
The triples are therefore stored twice, with all triples that

have the same subject/object, targeted to the same server.
The database in each server contains two tables, one for
holding all triples with the same hash value for the sub-
ject and the other for holding all triples with the same hash
value for the object, as shown in Figures 2 and 3 with re-
spect to the RDF Graph in Figure 1. The mechanism is
demonstrated in Figure 7. Here, the subject of the triple is
Article123 and the hash value is 0. This triple is therefore
directed to the subject table in Server0 based on the hash
value of the subject. Similarly, the object is PaulErdoes

and the hash value is 2 and is sent to the object table in
Server2. The same triple is therefore routed to Server1 as
well as Server2 based on the hash value of the subject and
object. We use PostgreSQL database for our storage and
concurrent batch insertion of data is performed. With the
cost of storage reducing day by day, we can ignore the space
cost involved in the replication.

3.1 Clustered Indexes
To improve query performance, the vertical represented

tables are stored in multiple sorted orders based on permu-
tations of the RDF elements < s, p, o > . Clustered BTrees
help to retrieve results quickly due to availability of triples in
multiple sort patterns and facilitate fast merge joins. How-
ever, they require much storage space and care should be
taken to obtain a successful trade-off between the storage
and the query efficiency.
However, given that the majority of the SPARQL joins

involve s-s, s-o and o-o joins, this skew in the self-joins can
be utilized to reduce the number of indexes.
The index patterns are carefully selected after analyz-

ing join patterns in real life, in addition to the benchmark
queries in the SP2 SPARQL Benchmark [15] and the Lehigh
University Benchmark (LUBM) [4]. In JARS, the favored
clustered indexes are selected based on the cardinality of
the triple variables, constant variables with a single value,
join variables with values sharing the same hash key, and
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Figure 8: SPARQL variables

free variables which are literals. For example, for the
SPARQL query shown in Figure 8, the join variables are
?article, ?inproc and ?person, the constant variables are
rdf:type, bench:Article, bench:Inproceedings and
foaf:name, the free variable is ?name and the projection vari-
ables are ?person and ?name.

Analysis of join pattern.
The triples in the query patterns can be either one-variable

triples such as ⟨?s, p, o⟩, ⟨s, ?p, o⟩ and ⟨s, p, ?o⟩, or two-
variable triples such as ⟨?s, ?p, o⟩, ⟨?s, p, ?o⟩, and ⟨s, ?p,
?o⟩, or three-variable triples such as ⟨?s, ?p, ?o⟩. The join
patterns are analyzed and based on the position of hash vari-
able, appropriate indexes are selected. Considering only the
typical join patterns, s-s, s-o and o-o joins, we figured out
three varieties of indexes: Constant-Constant-Join (CCJ)
index: for patterns with two constants and one join vari-
able, Constant-Join-Free (CJF) index: for patterns with one
constant, one join and one free variable, and Join-Free-Free
(JFF) index: for patterns with one join and two free vari-
ables. The hash variable is underlined to indicate the hash
position, whether subject or object.

• Triple with one variable - CCJ-type index

– For ⟨?s, p, o⟩ pattern, pos or ops can be used.

– For ⟨s, ?p, o⟩ pattern, sop or osp can be used.

– For ⟨s, p, ?o⟩ pattern, spo or pso can be used.

• Triple with two variables - CJF-type index

– For ⟨?s, p, ?o⟩ pattern, pso can be used.
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– For ⟨?s, p, ?o⟩ pattern, pos can be used.

– For ⟨?s, ?p, o⟩ pattern, osp can be used.

– For ⟨?s, ?p, o⟩ pattern, ops can be used.

– For ⟨s, ?p, ?o⟩ pattern, sop can be used.

– For ⟨s, ?p, ?o⟩ pattern, spo can be used.

• Triple with three variables - JFF-type index

– For ⟨?s, ?p, ?o⟩ pattern, spo or sop can be used.

– For ⟨?s, ?p, ?o⟩ pattern, osp or ops can be used.

– For ⟨?s, ?p, ?o⟩ pattern, pso or pos can be used.

Based on the triple-join-pattern analysis, and concentrating
on the s-s, s-o and o-o joins, four clustered indexes are se-
lected for each table: pos, pso, osp and spo are applied on the
subject table and pos, pso, sop and ops on the object table.
The indexes sop/osp, ops, spo, pso/ pos are neglected after
considering only the s-s, s-o and o-o joins. This selection of
indexes has two main advantages:

• We can perform an inexpensive merge join of the re-
sults from all servers after performing the join opera-
tions to obtain the end result.

• All SPARQL triple patterns that involve s-s, s-o and
o-o patterns can be processed efficiently using a single
index scan of the corresponding index.

As discussed earlier, a typical join pattern will involve a s-s,
s-o and o-o pattern because they represent the majority of
the patterns. Therefore, the triple patterns with predicate
as the join variable are ignored.

3.2 Join-Aware Triple Distribution
Consider the example of a range-partitioned clustered in-

dex on a database table, where data is mapped to partitions
based on the range of key values that are established for
each partition. As illustrated in Figure 9, suppose we need
to join the triples of the patterns, (s1, p1, ?v) and (?v, p2,
o2), the candidate results may not be in the same server.
(s1, p1, v1) and (v1, p2, o2) are stored in separate servers
and would therefore require remote calls to perform the join
operations and increase query latency.

The dual-hash partitioning coupled with the clustered in-
dexing in the join-aware approach helps to eliminate remote
calls to a great extent and thereby improves the query exe-
cution time. For example, consider the chain triple pattern
in this SPARQL query with the join variable ?student:

?x rdf:type ?student (T1)
?student ub:takesCourse ub:GraduateCourse0 (T2)

The candidate triples for both the triple patterns (denoted
by T), T1 and T2 will be in the same server. Suppose the
first triple pattern, T1 is stored in server1 based on the
hash of object, the candidate results for the second triple
pattern, T2 will also be stored in the same server, server1
based on the hash of the subject. This efficient retrieval of
results by utilizing the clustered indexes, pso and the ops
are illustrated in Figure 10. Moreover, the candidate result
sets for the patterns (p1, s1, v1) and (o2, p2, v1) would be
stored in the same server. Therefore, no remote calls are
needed for the execution of this query.
Similarly, consider the BGP of a star pattern SPARQL query
with join variable ?student:

?student rdf:type ub:GraduateStudent . (T3)
?student takes:Course ub:GraduateCourse0 (T4)
?student ub:memberOf ?z (T5)

Again, for this scenario, no intercommunication is required
among the servers to obtain the result set. Therefore, this
replication mechanism greatly mitigates the data transfer
for s-s, s-o and o-o joins.

4. QUERY PROCESSING
Query processing is an extremely important aspect of the

overall process, because SPARQL queries typically include
multiple joins on the same or different variables. Therefore,
we devised a rule-based join pattern analysis and execution,
which basically performs concurrent bushy joins as shown in
11 as the initial step.

4.1 Query Processing Architecture
Before delving into the details of the query processing,

the overall query processing architecture is discussed and
illustrated in Figure 13. The SPARQL query provided by
the user is processed in this order: Query Parsing, Query
Conversion, Query Distribution, Result Redistribution and
Aggregation and finally Output of Results.

4.2 SPARQL Query Parsing and SQL Con-
version

In the first step, SPARQL Query Parsing, we use Jena
Parser to confirm whether the query is syntactically accurate
and convert it to an algebraic operator tree. After that, we
convert it to SQL format.

4.3 Join Operations in SPARQL
The query processing in JARS comprises two phases. The

first phase is the Join Pattern Scan Phase, in which the
query planner scans the Basic Graph Pattern (BGP) to de-
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Figure 9: Range-partitioned Clustered Index
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Figure 10: Clustered Index layout example in
JARS
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termine the types of variables: join, constant, free and pro-
jection variables. Algorithm 1 is used to decide the join and
query execution order for the query.

4.4 Query Processing Algorithm
We have devised a rule based query-processing algorithm,

in which the primary step is to check whether the query
can be computed without inter-node communication. So,
we check the number of triple patterns in the BGP and
the number of join variables. In this implementation, all
queries with one join variable do not require any inter-node
communication. In all other cases, the query planner es-
timates the query processing order based on the number
of join variables, constants and the cardinality estimates,
such that the amount of intermediate results is maintained
minimal. Higher the number of intermediate results, higher
the inter-node communication and query latency. Query-
processing methods based on the number of triple patterns
in the BGP (denoted as #BGP) and join variables are based
on the following cases:

Case 1.
If the #BGP = 1, then the constant variable position in

the SPARQL Algebra is checked. If the constant variable
is in the subject position, the subject table present in the
server is queried else vice-versa.

Case 2.
If the #BGP > 1 and #join variables = 1, the query

planner checks for the join variable position in each triple
pattern. If the join variable position is the subject position,
the subject table in the nodes are queried (and object tables
for object positions).
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Figure 13: Query Processing Architecture

Case 3.
If #join variables ≥ 2, the query planner decomposes the

query into sub-queries based on the join variable as shown
in the query of Figure 12 and the number of join variables
in each sub-query is estimated.

1) Check the number of join variables in each sub-query.

(a) If any sub-query, SQ contains all the join vari-
ables, push it to the bottom of query-execution
order. Process all other sub-queries concurrently
and hash distribute the results based on the com-
mon join variable with SQ. Finally, merge join
the results with remaining SQ that is not yet ex-
ecuted.

(b) If all sub-queries contain all join variables, concur-
rently execute all the sub-queries and redistribute
results based on combination of hash of common
triple ids. In this case, number of intermediate
stages = number of sub-queries-1.



(c) In all other cases, concurrently process all the sub-
queries and redistribute results based on hash of
common join variable.

Algorithm 1 Join Planner Algorithm

Input:SPARQL
Output: Query Processing plan

JV ← joinvariables
if JV = 1 then

ConcurrentExecute()
end if
if JV ≥ 2 then

for each JV do
Decompose(tripleList)

end for
for each query in QueryList[] do

getCount(JV )
if getcount(QueryList[i].JV ) == JV then

Flag ++
end if

end for
if (Flag == JV ) then

QueryList[i].ConcurrentExecute()
HashDistribute(result, hashkey(tripleid))

end if
if (Flag < JV andSubQuery[i].JV == JV ) then

ExecutionList.InsertLast(Subquery[i]
ExecuteQuery(ExecutionList[i])

else
QueryList[i].execute()
HashDistribute(result, hashkey(tripleid))

end if
BushyJoinExecute(QueryList[i])
HashDistribute(result, hashkey(tripleid))

end if

Consider the LUBM query Q9, one of the complex queries
with a triangular relationship among the sub-queries.

?x rdf:type ub:UndergraduateStudent . (T6)
?z rdf:type ub:FullProfessor. (T7)
?y rdf:type ub:Course. (T8)
?x ub:advisor. ?z (T9)
?x ub:takesCourse ?y (T10)
?z ub:teacherOf ?y (T11)

The above query would be split based on the join vari-
ables, ?x, ?y and ?z to form three sub-queries with triple
patterns, SQ1 (T6, T9, T10), SQ2 (T8, T10, T11), and SQ3
(T7, T9, T11). In the stage 1 of the query processing, each
server processes the sub-queries as “bushy joins“ in parallel,
as shown in Figure 11. After stage 1, we obtain three re-
sult sets from each server, denoted R0, R1 and R2 as shown
in Figure 12. At this stage, no communication is required
among the servers.
A triangular relationship exists among the sub-queries;

SQ1 and SQ2 with T10 in common, SQ1 and SQ3 with T9
in common and SQ2 and SQ3 with T11 in common. The
join-variables ?x, ?y and ?z are present in all the three sub-
queries. We perform the concurrent execution of all sub-
queries and the results are re-distributed based on the hash
value of common triple ids, in such a way that the amount of
intermediate results and the number of intermediate tables

are reduced. The results of SQ1 and SQ2 are distributed
based on the hash of common triple id, T10. The result set
obtained after joining SQ1 and SQ2 and the results from
SQ3 from each node are again redistributed based on the
combination of hash of common triple ids (T9, T11) in SQ3.
The final result set is obtained after performing merge join in
each node. The entire process requires only 4 intermediate
tables in each node.

SPARQL UNIONs are processed in such a way that the
sub-queries within the UNION operator are treated individ-
ually and are concurrently processed. SPARQL OPTIONAL
feature is implemented through the SQL-equivalent, left join.

To summarize the query processing, the query processing
order is decided by the Join Planner Algorithm, presented in
Algorithm 1. Each node executes the queries in parallel and
the results are finally integrated to obtain the final result
set.

4.5 Query Optimization
Frequency histograms and cardinality estimates of the in-

termediate result set play huge role in reducing the query
latency, by determining the sub-query execution order in
case of complex queries. The statistics about the number of
triples in each sub-class can be used to build a frequency
histogram. This table can be also modified dynamically
by updating it based on the cardinality of triples with the
most frequent attribute combinations, but that is beyond
the scope of this research.

5. EXPERIMENTS
For the experiments, we used the LUBM [4] benchmark

data and queries for performance evaluation and SP2 bench-
mark [15] for analyzing the query patterns. LUBM bench-
mark contains data that describes universities, students and
the activities related to them, with a set of 14 benchmark
queries to assess various performance criteria such as input
data size, selectivity, and complexity. However like most
works, we have also removed the OWL reasoning in queries
by replacing the main-class with sub-class. For example, we
replaced ub:Student with ub:UndergraduateStudent and
ub:Professor with ub:FullProfessor.

Our experimental setup comprises a variable number of
nodes (fifteen nodes is the default), each with a 16-core
E5620 Intel Xeon CPU@2.40 GHz, 24 GB of RAM and
is scalable to large data sets. We utilize the LUBM data
sets: LUBM-1000, LUBM-2000 and LUBM-5000 which con-
tains OWL files for 1000, 2000 and 5000 universities, respec-
tively, with number of triples varying from: 140,000,000,
300,000,000 and 700,000,000 triples, and RDF file size in
.NT format ranging from 24.1 GB to 118.8 GB.

6. PERFORMANCE EVALUATION

6.1 Data-Load Time
Figure 14 illustrates the data-load time comparison of

JARS with various systems. JARS has a better data-load
time accounting to the parallel batch insertion of data into
all nodes. It takes approximately 6 hours for JARS to load
the LUBM-5000 data which includes the time for RDF triple
parsing, format conversion and dual-hash partitioning. As
well as, it should be noted that twice the data is inserted
into JARS accounting to the triple-replication. Since we



Figure 14: Data-Load Time comparison

avoid predicate-based hashing, we achieve better load bal-
ancing and the Relative Standard Deviation% of the number
of triples in each node for the LUBM-5000 data is 0.04% for
the subject tables and 46% for object tables.

6.2 Scalability
We measured the scalability of our system by comparing

the query performance of LUBM queries on varying data
sizes and varying cluster sizes.

Varying cluster size.
The query performance by varying the size of cluster with

4, 8 and 15 computing nodes over LUBM-1000 is illustrated
in Figure 15. For a better understanding, we use three query
varieties, a fast query, Q1, a complex query, Q9 and a data-
intensive query, Q14. The performance of queries that use
index-look ups and with smaller result size, such a Q1 and
Q3, remains same irrespective of the cluster size. Also, in
the case of 1-BGP queries with large input such as Q6 and
Q14, adding more number of machines does not improve the
performance, since our distribution is in such a way that
all candidate results are on the same node. The complex
queries such as Q2 and Q9 require inter-node communication
and JARS could successfully make use of the number of
computing nodes and the I/O bandwidth available in the
cluster to improve the query response time. Scaling out
the cluster causes the data set in each machine to be small
enough and thus reduces the disk I/O. Therefore, cluster size
has a good impact on complex queries rather than simple 1-
BGP and 2-BGP queries.

Varying data sizes.
Figure 16 shows the query-response time over LUBM queries

for varying data sizes, LUBM-50, LUBM-100, LUBM-1000,
LUBM-2000 and LUBM-5000, using a 15-machine cluster.
In most of the queries, the query-response time increases as
the data size increases except for certain fast queries such
as Q1 and Q3, which require only index lookups.

6.3 Query Performance Comparisons
For a better peformance analysis, we compare JARS with

a centralized system, RDF-3X and some existing distributed
systems which use similar hash partitioning strategies such
as SHARD with simple hash partitioning technique, 1-hop
and 2-hop graph partitioning techniques implemented in [6]
and semantic hash partitioning in [9]. These works are
briefly explained in 2 and are similar to JARS in their data
partitioning strategies and utilization of clustered indexes.
The query-response time comparison results with RDF-3X
are shown in Figure 17. JARS exhibits various orders of

Figure 15: Scalability - By varying cluster size

Figure 16: Scalability - By varying data size

magnitude better performance than RDF-3X for majority
of the queries.

The query-response time comparisons with [6], [9] and
SHARD are performed on LUBM-2000, illustrated in Fig-
ure 18. LUBM-2000 is used, since the compared systems use
graph partitioner, METIS which crashes for large data sets
like LUBM-5000. We have selected a subset of simple, com-
plex and data intensive queries such as Q2, Q4, Q9, Q11
and Q14 for comparisons. JARS out-performs other sys-
tems with orders of magnitude on majority of the queries.
For complex queries, JARS has only a comparable perfor-
mance due to the powerful data processing platforms like
Hadoop in other systems. We have also selected SHARD
for our comparison because, it helps to compare the perfor-
mance of our dual-hash partitioning method against the sim-
ple hash partitioning technique employed in SHARD. How-
ever, SHARD’s hash partitioning technique only helps to
optimize the subject-subject joins.

From these results, we deduce that JARS outperforms
many of the relational state-of-the-art RDF storage
approaches for all the common star - and chain-pattern
SPARQL queries, irrespective of the selectivity and data in-
tensiveness. The query-response time results for LUBM-
5000 is illustrated in Table 1.

Unlike the other storage approaches, the maintenance cost
due to data updates is significantly low in JARS. Addi-
tion/deletion of data does not require any modification in
the relational schema like property table and vertical parti-
tioning approach. The high cost incurred for data prepro-
cessing and updates in graphical approach pose a serious
setback to it’s maintenance.

6.4 Discussion
We have conducted some preliminary evaluations on the

required disk space consumption after RDF compression,
by mapping the RDF URIs to unique IDs. The on-disk
cumulative size, with the triple duplication and indexes, is



Figure 17: Comparison with RDF-3X Figure 18: Comparison with distributed systems

Table 1: Performance on LUBM-5000 in seconds
Query-Response Time

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q14
0.05 195 0.05 0.07 0.05 115 0.12 0.15 245 0.07 0.04 0.14 113.5

approximately 355 GB for LUBM-5000, 145 GB for LUBM-
2000 and 80 GB for LUBM-1000. Even though, there is
further scope for compression, considering the reduced cost
of storage, we are currently ignoring the space cost.

7. CONCLUSION AND FUTURE WORK
This paper presents JARS, a relational join-aware dis-

tributed RDF storage system, which co-locates join-able RDF
triples through a novel dual-hash partitioning and selec-
tive clustering approach. JARS eliminates any inter-node
communication in the processing of star- and simple chain-
pattern SPARQL queries and mitigates the inter-node com-
munication required for composite-pattern SPARQL queries,
thereby improving the overall query-response time. We mea-
sured the data-load time, query-response time and evaluated
the scalability of our system through extensive experiments,
which indicates that JARS out-performs many of the exist-
ing RDF storage systems, in terms of query-response time,
preprocessing and maintenance cost.
As a future work, we plan to make our system more space-

efficient through compression of repeating RDF resources
due to co-located triples and thus, maintain a balance be-
tween space efficiency and query efficiency by reducing the
storage cost for indexes. Also, we hope that performance of
JARS will improve on replacing with a better hashing algo-
rithm on top of fast query processing platforms like Hadoop.
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