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     Abstract—Previously, open circuit voltage of 960mV was 

reported on Se-free Cu(In,Ga)S2 solar cell with CdS buffer layer. 

In this paper, we report our latest progress toward 1000mV on 

Se-free Cu(In,Ga)S2 solar cell with Cd-free buffer layer.  Highest 

open circuit voltage of 973mV was demonstrated by  rapid 

thermal annealing and Zn1-xMgxO buffer layer application. 

 

Index Terms—Cu(In,Ga)S2, High open circuit voltage, Rapid 

thermal annealing, Zn1-xMgxO buffer layer. 

 

I. INTRODUCTION 

reviously, we reported a new world-record efficiency (Eff) 

of 15.5% on Se-free Cu(In,Ga)S2 (CIGS) solar cell via 

KCN-free process[1]. Regarding open circuit voltage (Voc), 

960mV has been achieved[2]. It was the highest Voc in the field 

of chalcopyrite solar cells, however, it was still lower as 

compared with CdTe and perovskite solar cells[3,4]. Thus, we 

have been exploring the potential of over 1000mV on Se-free 

CIGS solar cells for further improvement of Eff. As a result, the 

highest Voc of 973mV has been demonstrated by rapid thermal 

annealing (RTA) for sulfurization and Zn1-xMgxO application 

for buffer layer, as shown in Fig. 1. In this paper, we report our 

latest progress toward 1000mV on Se-free CIGS solar cell.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. J-V and EQE characteristics of 973mV Se-free CIGS solar cell 
fabricated by KCN-free process with Cd-free Zn1-xMgxO buffer layer. 

II. EXPERIMENTAL CONDITION 

 In this experiment, we prepared Se-free CIGS solar cells with 

an area of approximately 0.45 cm
2
. Figure 2 shows a schematic 

image of our standard cell structure. First of all, Mo 

back-electrode layer, Cu, Ga and In metal-stack precursor 

layers were deposited by DC-sputtering onto glass substrate. 

The precursor layers were sulfurized only with H2S gas via 

RTA in a furnace to form a p-type Se-free CIGS absorber layer. 

CdS or Zn1-xMgxO buffer layers were deposited onto the 

absorber layers by chemical bath deposition (CBD) or atomic 

layer deposition (ALD). Then, intrinsic ZnO (i-ZnO) and 

In2O3:Sn layers were deposited by ALD and ion evaporation 

respectively. Finally, Ni/Al front-electrode and MgF2 layers 

were deposited by electron-beam evaporation. 

 The current density-voltage (J-V) characteristics of our solar 

cells were measured at 25C under standard air mass (AM) 1.5 

spectrum condition with a constant-light solar simulator. The 

spectral content of the light is determined by the use of a xenon 

lamp (KXL-5000HFW) and five halogen lamps 

(JCD-100V-1000WC/Z) with an intensity of 100mW/cm
2
 with 

optical lenses inside the solar simulator. The radiation power is 

calibrated regularly by means of a silicon reference solar cell. 

External quantum efficiency (EQE) characteristics of the 

pure-sulfide CIGS cells were investigated. The elemental 

composition and the depth profile of the absorber layers were 

measured by using inductively coupled plasma atomic emission 

spectroscopy (ICP-AES) and glow discharge optical emission 

spectrometry (GD-OES), respectively. In order to investigate 

the band-alignment between the buffer and the absorber layer, 

ultraviolet photoelectron spectroscopy (UPS) with He I light 

source (21.22 eV) was performed after the buffer layer 

deposition. For the depth-resolved UPS measurements, Ar
+
 

(3kV) ion beam sputtering equipped in the UPS system was 

used. The reference level is the Fermi level, and the calibration 

was performed with Au as a standard sample. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Schematic image of our device structure. 
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III. RESULT AND DISCUSSIONS 

A. Sulfurization via RTA 

 In this section, the benefits of sulfurization on Se-free CIGS by 

RTA are discussed. We used RTA for sulfurization to shorten 

the fabrication process. Figure 3 shows the dependence of 

ramp-up speed on the electrical parameters of Se-free CIGS 

solar cells with CdS buffer layers. It is clear that higher 

ramp-up speed contributed to the improvement of cell 
performance. It is assumed that the higher ramp-up speed has 

benefits of low Ga content on the surface of the absorber and 

superior Ga grading at the back. Figure 4 shows Ga depth 

profile of various ramp-up speeds (20, 40 and 140C/min) 

obtained from GD-OES analysis. Absorbers with various 

ramp-up speeds clearly show a different Ga depth profiles. The 

absorber fabricated with ramp-up speed of 20C/min shows a 

high Ga/(Ga+In) ratio of 15% at the surface compared with the 

others. In addition, its depth profile shows a more gradual 

gradient. The absorber fabricated by 40C/min shows a low 

Ga/(Ga+In) ratio at the surface. However, the Ga grading is less 

steeper than the absorber fabricated with 140C/min. In the 

absorber fabricated by 40C/min, both the Ga/(Ga+In) ratio at 

the surface and its inclination were improved. Eff of sample 

fabricated by 20C/min was low because of very poor electrical 

parameters. The poor electrical parameters are possibly caused 

by the high Ga/(Ga+In) ratio at the surface and the gradual Ga 

grading of absorber. For the sample processed with 40C/min, 

the cell performance improves to Eff of 14% from 7~9% due to 

the low Ga composition at the surface. Sample of 140C/min 

boosted the Eff due to the improvement of Voc and Jsc, 

attributed by the increased Ga content toward the back surface 

(CIGS/Mo). Thus, the benefits of low Ga composition at the 

surface and high Ga grading at the back surface have been 

brought to light. Based on the depth-profile results of Ga in 

Se-free CIGS cells, as one of several possibilities, we believe 

that low Ga/(Ga+In) ratio on the surface contributes to reduced 

GaCu defects and steep Ga grading can accelerate the electrons 

toward the space charge region. Hence, it may indicate that Ga 

grading can enhance Jsc and Voc. Furthermore, the results also 

suggest that Ga contents on the surface and Ga grading of the 

absorbers are controllable by tuning the ramp-up speed. 

Regarding FF, it was also significantly improved by higher 

ramp-up speed, which suggests another benefits resulted from 

the ramp-up speed condition. We will try our best to find the 

mechanism of FF improvement in the near future. 

 Finally, the minority carrier lifetime was measured by 

time-resolved photoluminescence (PL) as a gauge to evaluate 

the absorber quality. The PL measurement was performed at 

room temperature, using a pulsed laser with a wavelength of 

532nm and an excitation power of 4.67mW (excitation 

intensity of about 595mW/cm
2
). Figure 5 shows the PL lifetime 

of Se-free absorber fabricated by high ramp-up speed. 

Although with a high efficiency, its lifetime was merely 0.97ns.  

This short lifetime indicates that there is further room to 

improve the Se-free CIGS absorbers. 

 

 

 

 

 
Fig. 3. Dependence of ramp-up speed on electrical parameters of Se-free 

CIGS solar cells with CdS buffer layers. 

 
Fig. 4. GD-OES Ga/(Ga+In) ratio as a function of film depth of various 

ramp-up speed. 
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Fig. 5. PL lifetime of our Se-free CIGS absorber. 

 

B. Zn1-xMgxO buffer layer 

 Figure 6 shows the dependence of Mg contents in Zn1-xMgxO 

buffer layer on the electrical parameters of Se-free CIGS solar 

cells using absorbers fabricated via the ramp-up speed of 

140C/min. Higher Mg contents contribute to the improvement 

of cell performance. It is assumed that the conduction 

band-offset (CBO) between absorber and buffer layers was 

modulated because the Eg of Zn1-xMgxO buffer layer is known 

to be controllable by Zn to Mg ratio[4]. In this work, the CBO 

was calculated from the valence band-maximum (VBM) and 

the conduction band-minimum (CBM). The VBM of the 

Zn1-xMgxO buffer and Se-free CIGS absorber layers was 

measured by the UPS measurement. The CBM of the 

Zn1-xMgxO (x=0.26), Zn1-xMgxO (x=0.15) and Se-free CIGS 

was estimated by using Eg value of 3.7eV, 3.9eV and 1.55eV, 

respectively[5]. Zn1-xMgxO (x=0.26) cell shows that the CBM 

of buffer layer in the vicinity of the interface can be increased 

when compared with the Zn1-xMgxO (x=0.15) cell. This upward 

shift of CBM is potentially relevant to the Voc improvement as 

shown in Fig. 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 6. Dependence of Mg contents in Zn1-xMgxO buffer layer on electrical 

parameters of Se-free CIGS solar cells. Higher Mg contents contributed 

improvement of cell performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Comparison of band-offset at buffer/absorber interface for Se-free CIGS 

cells with Zn1-xMgxO (x=0.26) and (x=0.15) buffer layers. 
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C. Voc deficit 

 Figure 8 summarizes a comparison between Voc and Eg of our 

Se-free CIGS cells fabricated via various ramp-up speed with 

CdS and Zn1-xMgxO buffer layers. Each triangle marker with 

black, blue, green, orange and red circle shows 20, 40, 60, 

140C/min of ramp-up speed with CdS buffer layer and 

140C/min of ramp-up speed with Zn1-xMgxO buffer layer, 

respectively. Higher Voc was achieved by higher ramp-up speed 

during sulfurization, with drastically improved Voc deficit 

(Eg/q-Voc=delta V). In addition, the Voc improvement was 

confirmed by applying the Zn1-xMgxO buffer layer. This result 

suggests that both the absorber quality and the interface 

between the buffer and the absorber layers are among the key 

factors to enhance Voc, and it is very effective to apply 

Zn1-xMgxO buffer layer into the Se-free CIGS cells for Voc 

improvement. Finally, the lowest Voc deficit of 595mV was 

achieved with absorber’s Eg of 1.57eV. It has much better Voc 

deficit compared with the other Se-free chalcogenide solar cell 

such a Cu2ZnSnS4 cell[6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Correlation between Voc and Eg on our Se-free CIGS cells fabricated 

via four kinds of ramp-up speed (20, 40, 60, 140C/min) with CdS and with 

Zn1-xMgxO buffer layers. 

 

IV. CONCLUSION 

 The Voc of 973mV was achieved on chalcopyrite solar cell 

thanks to the Se-free CIGS fabrication via RTA and the 

application of Cd-free Zn1-xMgxO buffer layer. The higher 

ramp-up speed was effective to reduce Ga/(Ga+In) ratio of the 

absorber’s surface and to produce steeper Ga grading at the 

back. In addition, Voc was boosted by optimizing Mg content of 

Zn1-xMgxO buffer layer. We believe that further research based 

on these results will boost the Voc of chalcopyrite solar cells 

toward 1000mV, and we are now intensively developing the 

Se-free CIGS solar cells. 
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