
論文 / 著書情報
Article / Book Information

Title A performance model for the communication in fast multipole methods
on high-performance computing platforms

Author Huda Ibeid, Rio Yokota, David Keyes

Journal/Book name International Journal of High Performance Computing Applications, Vol.
30, No. 4, pp. 423--437

Issue date 2016, 3

DOI http://dx.doi.org/10.1177/1094342016634819

Note このファイルは著者（最終）版です。
This file is author (final) version.

Powered by T2R2 (Science Tokyo Research Repository)

http://dx.doi.org/10.1177/1094342016634819
http://t2r2.star.titech.ac.jp/

A Performance Model for the Communication in Fast
Multipole Methods on HPC Platforms

Huda Ibeid, Rio Yokota, and David Keyes
Division of Computer, Electrical and Mathematical Sciences and Engineering

King Abdullah University of Science and Technology, Saudi Arabia

Abstract

Exascale systems are predicted to have approximately one billion cores, assuming Gigahertz cores. Lim-
itations on affordable network topologies for distributed memory systems of such massive scale bring new
challenges to the currently dominant parallel programing model. Currently, there are many efforts to evalu-
ate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application
performance and to understand what changes need to be made to ensure extrapolated scalability. The fast
multipole method (FMM) was originally developed for accelerating N -body problems in astrophysics and
molecular dynamics, but has recently been extended to a wider range of problems, including preconditioners
for sparse linear solvers [31]. Its high arithmetic intensity combined with its linear complexity and asyn-
chronous communication patterns make it a promising algorithm for exascale systems. In this paper, we
discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus
on inter-node communication. We focus on the communication part only; the efficiency of the computa-
tional kernels are beyond the scope of the present study but see, e.g., [3]. We develop a performance model
that considers the communication patterns of the FMM, and observe a good match between our model
and the actual communication time on four HPC systems, when latency, bandwidth, network topology, and
multi-core penalties are all taken into account. To our knowledge, this is the first formal characterization of
inter-node communication in FMM that validates the model against actual measurements of communication
time. The ultimate communication model is predictive in an absolute sense; however, on complex systems,
this objective is often out of reach, or of a difficulty out of proportion to its benefit when there exists a
simpler model that is inexpensive and sufficient to guide coding decisions leading to improved scaling. The
current model provides such guidance.

1 Introduction

N -body problems arise in many areas of physics (e.g.,
astrophysics, molecular dynamics, acoustics, electro-
statics). In these problems, the system is described
by a set of N particles and the dynamics of the sys-
tem arise from interactions that occur between every
pair of particles. This requires O(N2) computational
complexity. For this reason, many efforts have been
directed at producing fast N -body algorithms. More
efficient algorithms of the particle interaction prob-
lem can be provided by a hierarchical approach using
tree structures. In this approach, the computational
domain is hierarchically subdivided, and the parti-
cles are clustered into a hierarchical tree structure.
An approximation of tunable accuracy is applied to
far-field interactions, whereas near-field interactions
are summed directly. When the far-field expansion

is calculated against the particles directly, this ap-
proach called a treecode [1]. When the far-field effect
is translated to local-expansions before summing their
effect, it is called a fast multipole method (FMM)
[15, 5]. These approaches bring the complexity down
to O(N logN) and O(N) for treecode and FMM, re-
spectively. FMM has been listed as one of the top
ten algorithms of the twentieth century [8] due to its
wide applicability and impact on scientific comput-
ing. It was originally developed for applications in
electrostatics and astrophysics, but continues to find
new areas of application such as aeroacoustics [29],
fluid dynamics [14], magnetostatics [28], and electro-
dynamics [33]. Because of its linear complexity, FMM
scales well with respect to the problem size, if imple-
mented efficiently. For future computer systems the
conservation of flops is less important than the con-
servation of distant loads and stores to supply the

1

arguments for the flops. FMM stands out among hi-
erarchical O(N) algorithms for its strong arithmetic
intensity.

Since the performance of a single-processor core has
plateaued, future supercomputing performance will
depend mainly on increases in system scale rather
than improvements in single-processor performance.
Processor counts are already in the millions for the
top system. Modeling application performance at
such scales is required to guide algorithmic choices
and tunings on existing architectures and evaluate
contemplated architectures. Since the performance
of the FMM has a large impact on a wide variety of
applications across a wide range of disciplines, it is
important to understand the challenges that FMM
implementations face on architectures with increased
parallelism, as well as to predict and locate bottle-
necks that might cause performance degradation. On
future architectures where computation becomes rel-
atively cheap compared to data movement, we antic-
ipate that inter-node communication will become the
bottleneck. The priority of the present study is the
communication model of FMM.

To model the performance, we start with the base-
line model, namely (α, β) model for communication,
where α is the latency and β is the inverse bandwidth.
Then, some penalties are added to the baseline model
based on machine constraints. These penalties in-
clude distance and reduced per-core bandwidth. Our
performance model is related to universal communi-
cation features and can be applied regardless of lo-
cal FMM implementation choices, core-scale machine
characteristics that do not affect communication, and
arithmetic workload associated with other aspects of
the computation. Of course, the importance of com-
munication as a bottleneck depends strongly on the
cost of other tasks, but it is important to be able to
evaluate communication costs as a component in an
overall cost model. The Byte-count parameters in our
model makes it adaptable to any of the various FMM
implementations, while the penalties in our model are
tunable to various architectures. We validate our per-
formance model on four different architectures, Sha-
heen (BG/P), Mira (BG/Q), Titan (Cray XK7), and
Piz Dora (Cray XC40).

The focus of this paper is on characterizing the
FMM communication, not on introducing a new
model. For this purpose, we apply a performance
model developed originally and applied to multigrid
methods, which have a different communication pat-
tern. A new application of an existing tool emphasizes
the versatility of the tool. Meanwhile, such detailed
analysis of the communication in FMM has not pre-
viously been reported, so there is particular relevance

to the FMM community, and to the HPC commu-
nity that exploits, or will exploit at exascale, FMM
solvers.

The paper is organized as follows. Section 2 gives
an overview of related work. Section 3 summarizes
some performance challenges that face FMM on par-
allel machines. These challenges include massive par-
allelism and degradation due to inter-node communi-
cation. In Section 4, an exposition of the fast mul-
tipole method sufficiently detailed to expose commu-
nication properties is given. Section 5 describes our
performance model. Experiments done to validate the
performance models are provided in Section 6 and we
conclude in Section 8.

2 Related work

Performance modeling and characterization for un-
derstanding and predicting the performance of sci-
entific applications on HPC platforms have been
targeted by many related projects. For example,
Clement and Quinn developed a performance predic-
tion methodology through symbolic analysis of their
source code [6]. Mendes and Reed focused on pre-
dicting scalability of an application program execut-
ing on a given parallel system [24]. Mendes proposed
methodology to predict the performance scalability of
data parallel applications on multi-computers based
on information collected at compile time [23]. The ap-
proach of combining computation and communication
to obtain a general performance model is described by
Snavely et al. [27]. DeRose and Reed concentrate on
tool development for performance analysis [7]. Per-
formance models for implicit CFD codes have been
considered [17]. The efficiency of the spectral trans-
form method on parallel computers has been evalu-
ated by Foster [10]. Kerbyson et al. provide an ana-
lytical model for the application SAGE [19]. Perfor-
mance models for AMG were developed by Gahvari
et al. [11], who have also analysed the performance
of AMG over a dragonfly network in [12]. Traditional
evaluation of specific machines via benchmarking is
presented by Worley [30].

Scaling FMM to higher and higher processor counts
has been a popular topic [25, 18], while extensive
study of single-node performance optimization, tun-
ing, and analysis of FMM has also been of interest
[4]. However, there has been little effort to model the
inter-node communication of FMMs. Lashuk et al.
derive the overall complexity of FMM on distributed
memory heterogeneous architectures [20], but do not
validate the model against the actual performance.
The present work is based on the communication

2

model for AMG [11], and extends their theory to
FMM. To our knowledge, this is the first formal char-
acterization of inter-node communication in FMM,
which validates the model against actual measure-
ments of communication time.

3 Performance challenges

High performance computing systems have shown a
sustained exponential growth with performance im-
provement of approximately 10x every 3.6 years as
measured, for instance, by the Gordon Bell Prizes
or the Top500 benchmark over the past 2.5 decades.
This performance improvement comes at a cost in
code complexity and introduces many challenges.
Furthermore, the development of an exascale com-
puting capability will cause significant and dramatic
changes in computing hardware architecture relative
to current petascale computers. In this section we
present some of the challenges faced by FMMs to
achieve good parallel performance on future exascale
systems.

3.1 Trends in Computer Hardware

Computers consisting of nodes in the tens of thou-
sands with cores per node in the hundreds have
emerged as the most widely used high-performance
computing platforms. These nodes communicate by
sending messages through a network, which leads to
lower scalability and less performance due to cores on
a single node contenting for access to the intercon-
nect. We discuss multicore and manycore issues in
more detail when presenting our performance models
that take this into account.

3.2 Communication

Two types of costs in terms of time and energy are
usually analyzed separately: computation (flops) and
communication (Bytes). Communication involves
moving data between levels of a memory hierarchy in
case of sequential algorithms and exchanging data be-
tween processors over a network in the case of parallel
algorithms. Therefore, without considering overlap,
the running time of an algorithm is the sum of three
terms: the number of flops times the time per flop,
the number of words moved divided by the bandwidth
(measured as words per unit time), and the number
of messages times the latency. The last two terms de-
termine the time consumed by communication. The
time per flop is already an order of magnitude less
than reciprocal bandwidth and latency and the gaps

between computation and communication are grow-
ing exponentially with time. (See Table 2 under the
machine descriptions in Section 6 below.) Communi-
cation performance models can guide development of
algorithms to help reduce the communication.

4 Fast multipole method

N -body methods are most commonly used to simulate
the interaction of particles in a potential field, which
has the form

f(xi) =

N∑
j=1

qjK(xi,xj) (1)

Here, f(xi) represents a field value evaluated at a
point xi which is generated by the influence of sources
located at xj with weights qj . K(xi,xj) is the kernel
that governs the interactions between evaluation and
source particles. The direct approach to simulate the
N -body problem is relatively simple; it evaluates all
pair-wise interactions among the particles. While this
method is exact to within machine precision, the solu-
tion is O(N2) in its computational complexity, which
is prohibitively expensive for even modestly large data
sets. However, its simplicity and ease of implementa-
tion make it an appropriate choice when simulating
small particle sets (N < 1000) where high accuracy is
desired [26]. For a larger number of particles, many
faster algorithms have been invented, e.g., treecodes
[1] and, the fast multipole method (FMM) [15]. The
main idea behind these fast algorithms is to coarse
grain the effect of sufficiently far particles as permit-
ted by rigorous analysis. The most common way to
achieve this approximation is to cluster the far par-
ticles into successively larger groups by constructing
a tree. The treecode clusters the far particles and
achieves O(N logN) complexity. The FMM further
clusters the near particles in addition to the far par-
ticles to achieve O(N) complexity.

In this section, we present an overview of fast algo-
rithms that have been developed for the calculation
of N -body problems. First, the spatial hierarchy and
the fast approximate evaluation of these algorithms
are discussed. Then, a description of the communi-
cation introduced by the domain partitioning scheme
used in these algorithms is provided. The main focus
is on the data flow of the FMM algorithm for which
we develop the performance model.

4.1 FMM Overview

This overview is intended to introduce some key in-
gredients of the FMM. The mathematics behind the

3

(a) 2-D view (b) Tree view

Figure 1: Hierarchical decomposition

specific FMM kernels is well documented elsewhere
and its detail conveniently decouples, given a simple
interface to the communication model. For details
of the mathematics we refer the reader to previous
publications on FMM [2, 5].

4.1.1 Basic Component

Both treecodes [1] and the FMM [15] are based on two
key ideas: the tree representation for the spatial hier-
archy, and the fast approximate evaluation. The spa-
tial hierarchy means that the computational domain
is hierarchically decomposed into increasing levels of
refinement, and then the near and far subdomains can
be identified at each level. The three-dimensional spa-
tial domain of the treecode and FMM is represented
by octrees, where the space is recursively subdivided
into eight cells until the finest level of refinement or
“leaf level. Figure 1 illustrates such a hierarchical
space decomposition for a two-dimensional domain
(a), associated to a quad-tree structure (b). The orig-
inal FMM [16] is based on a series expansion of the
Laplace Green’s function (1/r) and therefore can be
applied to the evaluation of related potentials and/or
forces [13]. The approximation reduces the number
of operations in exchange for accuracy.

4.1.2 Flow of Calculation

Figure 2, shows the flow of FMM where the effect of
the source particles, shown in red in the lower left
corner, are calculated on the target particles, shown
in blue in the lower right corner. The schematic is
a 2-D representation of what is actually a 3-D octree
structure. The calculation starts by transforming the
mass/charge of the source particles to a multipole
expansion (P2M). Then, the multipole expansion is
translated to the center of larger cells (M2M). Then,
the influence of multipoles on the particles is calcu-
lated in three steps. First, it translates the multipole

expansion to a local expansion (M2L). Next, the cen-
ter of expansion is translated to smaller cells (L2L).
Finally, the effect of the local expansion in the far
field is translated onto the target particles (L2P). All
pairs interaction is used to calculate the effect of near
field on target particles (P2P).

4.2 FMM Communication Scheme

Partitioning of the FMM global tree structure and
communication stencils is shown in Figure 3. The bi-
nary tree on the left side is a simplification of what
is actually an octree in a 3-D FMM. Likewise, the
schematics on the right are a 2-D representation of
what is actually a 3-D grid structure. Each leaf of the
global tree is a root of a local tree in a particular MPI
process, where the global tree has Lglobal levels, and
the local tree has Llocal levels. Each process stores
only the local tree, and communicates the halo region
at each level of the local and global tree as shown
in the red hatched region in the four illustrations on
the right. The blue, green, and black lines indicate
global cell boundaries, process boundaries, local cell
boundaries, respectively. The switch between local
and global trees produces a change in the communi-
cation pattern, as revealed in the heat map in Figure
4, where the switch is between levels 3 and 4.

5 Modeling Performance

Performance modeling is a key ingredient in high per-
formance computing. It has a great importance in
the design, development and optimization of applica-
tions, architectures and communication systems. It
also plays a crucial role in understanding important
performance bottlenecks of complex systems. For this
reason, performance models are used to analyze, pre-
dict, and calibrate performance for systems of inter-
est. The tree-based communication of FMM is in-

4

M2M
multipole to multipole

M2L
multipole to local

L2L
local to local

L2P
local to particle

P2P
particle to particlesource particles

target particles

P2M
particle to multipole

M2L

Figure 2: Data-flow of FMM calculation. Data dependency is between red and blue points.
.

Lglobal

rank 0 rank 1

Local P2P

Local M2L

Global M2M

Global M2L
Level : 0

Level : 1

Level : 2

Level : Lglobal-2

Level : Lglobal-1

Level : Lglobal

Level : Lglobal+1

Level : Lglobal+Llocal-2

Level : Lglobal+Llocal-1

Level : Lglobal+Llocal-3

global cell boundaries
process boundaries
local cell boundaries

Llocal

Many local cells in one process

Many process in one global cell

Figure 3: Splitting of the local and global tree in FMM.

creasingly important in HPC applications, both of
FMM itself and, for instance, of hierarchically low-
rank (or “rank-structured”) matrices, which are un-
der active development in theory and software. The
application of a model of demonstrated relevance to
one application to an entirely different application
makes a statement about the value and general ap-
plicability of the model. In this section we develop
a performance model to understand the performance
of the communication in FMM through a phase-by-
phase analysis based on four principal phases.

We start with a baseline model that is a combina-

tion of the latency and inverse bandwidth. We sub-
sequently refine this baseline model to reach a more
realistic model that is able to cover the relevant sys-
tem architecture properties, with the exception that
overlapping communication with computation is not
considered in this work.

5.1 FMM Communication Phases

As shown in Figure 3, our FMM uses a separate tree
structure for the local and global tree. In order to con-
struct a performance model for the communication in

5

(a) Level=7 (b) Level=6 (c) Level=5

(d) Level=4 (e) Level=3 (f) Level=2

Figure 4: Heat maps for level-by-level communication patterns for the M2L phase of an FMM with N=62,500
per process using 128 processes. Areas of black indicate zero messages between processes, the peak commu-
nication volume is represented in red. In this example, the switch between global and local trees is between
Level 3 and Level 4.

FMM, we estimate the amount of data that must be
sent at each level of the hierarchy. Table 1 shows the
number of cells that are sent, which correspond to
the illustrations in Figure 3. Lglobal is the depth of
the global tree, Llocal is the depth of the local tree.
We define N as the global number of particles, and P
as the number of processes (MPI ranks). The global
tree is constructed so that each MPI process is a leaf
node in the global tree. Therefore, the depth of the
global tree only depends on the number of processes
P and not N . The depth of the global tree grows
with log8 P , whereas the depth of the local tree grows
with log8(N/P). For the current calculations we are
assuming a nearly uniform particle distribution (as in
explicit solvent molecular dynamics) and therefore a
full octree structure.

5.1.1 Global M2L

In Table 1 we show the number of cells to send per
level and the total amount of communication for all
levels. There are four types of communication in our
FMM, which correspond to the four stages shown
with the red hatching in Figure 3. The first is the
“Global M2L” communication, which sends 26 × 8
cells at each level, as shown at the top right of Figure
3. The green lines are the process boundaries and the
blue lines are the cell boundaries, which means one
FMM cell belongs to many processes in the global
tree. In order to avoid redundant communication, we
index each process that shares a global cell and per-
form a one-to-one communication between the pro-
cesses with matching indices only. In order to further
reduce the communication, we select one process for a
group of eight cells to do the communication. There-

6

fore, the number of processes to communicate with
(pi) is always 26 and the number of cells to send is
always 8 for every process and for every level in the
global tree. In other words, for the “Global M2L”
communication the message size and number of sends
is constant regardless of N and P , and only the num-
ber of hops between the processes will increase de-
pending on the network topology. On torus networks,
we map the MPI ranks to the torus and synchronize
the direction of the 26 one-to-one communications.
The communication per level is O(1) and the number
of levels in the global tree is O(logP), so the total
communication complexity for this stage is O(logP)
as shown in Table 1.

5.1.2 Global M2M

The second type of communication is the “Global
M2M”, which sends 7 cells at each level, as shown in
Figure 3. We use a similar technique to the “Global
M2L” case to avoid redundant communication by
pairing the MPI ranks for the one-to-one communica-
tion when many processes share the same global cell.
The number of processes to communicate with is al-
ways seven and the number of cells to send is always
one for every process and for every level in the global
tree. Similar to the “Global M2L” case, only the num-
ber of hops during the one-to-one communication will
increase, and the rate depends on the network topol-
ogy. The communication per level is O(1) and the
number of levels is O(logP), so the total communi-
cation is O(logP) for the “Global M2M” stage.

5.1.3 Local M2L

The third type of communication is the “Local M2L”,
which is shown in the red hatching in the second pic-
ture from the bottom on the right side of Figure 3.
The process boundaries shown in green are coarser
than the local cell boundaries shown in black, which
means that one process contains many cells, in con-
trast to the previous two communication types. In a
full octree structure, we know that all cells are non-
empty so we simply need to send two layers of halo
cells for the M2L calculation at each level, as shown
in Figure 3. Therefore, the number of processes to

Table 1: Amount of communication in FMM

Cells to send / level Total comm.
Global M2L 26× 8 O(logP)
Global M2M 7 O(logP)
Local M2L (2i + 4)3 − 8i O((N/P)2/3)
Local P2P (2i + 2)3 − 8i O((N/P)2/3)

communicate with is always the 26 neighbors, and
the number of cells to send depends on the level. At
level i of the local tree, there are 2i cells in each direc-
tion. Two layers of halo cells on each size will create
a volume of (2i+4)3 cells, and subtracting the center
volume 8i will give (2i+4)3− 8i as shown in Table 1.
The leading term is O(4i) since the 8i term cancels
out. Since the number of levels in the local tree grow
as log8(N/P) the communication complexity for the
“Local M2L” is O(4log8(N/P)) = O((N/P)2/3). This
can also be understood as the surface to volume ra-
tio of the bottom two illustrations in Figure 3. Since
N/P is constant for weak scaling and decreases for
strong scaling, this part does not affect the asymp-
totic weak/strong scalability of the FMM.

5.1.4 Local P2P

The fourth type of communication in the FMM is the
“Local P2P”, which is shown in the bottom picture
on the right side of Figure 3. This communication
only happens at the bottom level of the local tree.
Similar analysis to the “Local M2L” stage shows that
(2i +2)3 − 8i cells must be sent, as shown in Table 1.
In this case, i is exactly log8(N/P) and we obtain
the same asymptotic amount of communication of
O((N/P)2/3). Similar to the “Local M2L”, this part
does not affect the asymptotic weak/strong scalabil-
ity of the FMM. However, the content of the data is
different from the previous three cases where the mul-
tipole expansion coefficients were being sent. In the
P2P communication the coordinates and the charges
of every particle that belongs to the cell must be sent.
Therefore, the asymptotic constant of O(N/P)2/3 is
typically much larger than that of the “Local M2L”,
and this could be the dominant part of the communi-
cation time depending on the number of particles per
leaf cell.

5.2 Baseline Model ((α, β) model)

To model interprocess communication, we begin with
the basic (α, β) model, where α represents commu-
nication latency, where β is the send time per-Byte
(inverse bandwidth). Using the basic model, a mes-
sage send cost can be represented as

Tα−β = α+ nβ (2)

where n is the number of Bytes in the message.
This basic model describes the communication over

an ideal architecture where the communication cost
does not depend on processor locations or network
traffic caused by many processors communicating at
the same time [9]. For a more realistic architecture,

7

a more detailed model is needed. For this reason, we
add penalties to this basic model to take into account
machine-specific performance issues. In particular,
we consider communication distance, interconnection
switching delay, limited bandwidth, and the effect of
multiple cores on a single node contending for avail-
able resources.

5.3 Distance Penalty ((α, β, γ) Model)

Following [11], we refine the assumption that distance
between processors in interconnected networks does
not have effect on communication time. To take into
account the effect of distance we refine the baseline
model according to the number of extra hops a mes-
sage travels

Tα−β−γ = α+ nβ + (h− hm)γ, (3)

where h is the number of hops a message travels, hm

is the smallest possible number of hops a message can
travel in the network, and γ is the delay per extra hop.
If there is no network contention and all messages
travel with minimum number of hops, this distance
penalty should have no effect.

5.4 Bandwidth Penalty on β

The peak hardware bandwidth is rarely achieved
in message passing. Therefore, we multiply β by
Bmax/B to incorporate the ratio between the peak
hardware per-node bandwidth Bmax and the effective
bandwidth from the benchmark B.

Tβ−Penalty = α+ nβ
Bmax

B
+ (h− hm)γ (4)

5.5 Multicore Penalty on α or γ

Increasing the number of cores per node increases the
data traffic between nodes, and could potentially re-
sult in congestion. Furthermore, larger number of
cores per node introduces more noise caused by ac-
cess to resources shared by multiple cores. To model
these effects, we multiply α and/or γ by the number
of active cores per node c. This model focuses on
the worst case behavior where a machine’s aggregate
bandwidth could be exceeded by all cores communi-
cating simultaneously. The resulting models are

Tα−Penalty = cα+ nβ + (h− hm)γ (5)

Tγ−Penalty = α+ nβ + c(h− hm)γ (6)

6 Model Validation

6.1 Machine Description

To validate our performance models we benchmark
our FMM code on four different architectures; Sha-
heen, Mira, Titan, and Piz Dora.

Shaheen is 16 racks of an IBM BlueGene/P. Each
rack contains 1024 PowerPC 450 CPUs with 4 cores
running at 850MHz with 32kB private L1 cache and
8MB shared L3 cache. Each compute node has 2GB
RAM with 13.6 GB/s memory bandwidth. The nodes
are connected by 3-D torus network with 5.1GB/s
injection bandwidth per node.

Mira is 48 racks of an IBM BlueGene/Q. Each
rack contains 1024 Power A2 CPUs with 16+ 1 cores
running at 1.6GHz with 16kB private L1 cache and
32MB shared L2 cache. Each compute node has 16GB
RAM with 42.6GB/s memory bandwidth. The nodes
are connected by a 5-D torus network with 20GB/s
injection bandwidth per node.

Titan is a Cray XK7 system with 18, 688 com-
pute nodes each equipped with an AMDOpteron 6274
CPU and NVIDIA Kepler K20X GPU. The CPU has
16 cores running at 2.2 GHz with 16 kB L1 cache, 2×4
MB L2 cache, and 8× 2 MB L3 cache. The GPU has
15×64 cores running at 730 MHz with 64+48 kB L1
cache and 1.5 MB L2 cache. Each compute node has
32 GB of RAM with 51.2 memory bandwidth. The
nodes are connected by a 3-D torus with 20GB/s of
injection bandwidth per node. We do not use any of
the GPUs in the current study.

Piz Dora is a Cray XC40 with 1256 compute
nodes, each with two 12-core Intel Haswell CPUs
(Intel R©Xeon R©E5-2690 v3). Piz Dora has a total of
30144 cores (24 cores per node). Out of the total, 1192
nodes feature 64GB of RAM each, while the remain-
ing 64 compute nodes have 128GB of RAM each (fat
nodes). The nodes are connected by a dragonfly net-
work using the Aries interconnect where the routers
in each group are arranged as rows and columns of
a rectangle, with all-to-all links across each row and
column but not diagonally.

In order to obtain the machine parameters, the
b eff benchmark in the HPC Challenge suite [22] was
used to determine the parameters α and β. We report
the best-case latency and bandwidth measurements.
To find the parameter γ, we followed the same proce-
dure as Gahvari et al. [11]. The machine parameters
for Shaheen, Mira, Titan, and Piz Dora are shown
in Table 2. Note that our definition of β is defined
as send time per Byte, whereas Gahvari et al. define
their β as send time per element (8 Bytes).

8

Table 2: Machine parameters for latency α, inverse
bandwidth β, and distance penalty γ, on Shaheen,
Mira, Titan, and Piz Dora.

Shaheen Mira Titan Piz Dora
α 4.12 µs 5.33 µs 1.67 µs 0.457 µs
β 2.14 ns 1.32 ns 1.62 ns 0.4054 ns
γ 29.9 ns 134 ns 284 ns 0.4838 µs

6.2 Experimental Setup

We ran the FMM code for 10 steps and measured
the time spent on the communication for the “Global
M2L” and “Local M2L” phases. The results are then
divided by 10 to get the average time spent at each
level. The “Global M2M” phase was negligible and
the “Local P2P” phase only occurs at the bottom
level and is irrelevant to the scalability of the FMM,
so we do not consider these two phases in the cur-
rent analysis. We used the Laplace kernel in three
dimensions with random distribution of particles in a
cube. We use periodic boundary conditions so that
there is no load imbalance at the edges of the domain.
The number of MPI processes was varied between
P = {128, 1024, 8192}, while the number of particles
per process was kept constant at N/P = 62, 500. On
all machines we used the maximum number of cores
on each node before increasing the number of nodes.
Timings were measured with gettimeofday() after a
MPI Barrier() call. We used the default rank map-
ping to the nodes that the system provides.

Table 3 shows communication information and
statistics when running the FMM on 128, 1024, and
8192 processes. “Level” is the level within the tree
structure and goes from 0 to Lglobal+Llocal−1, where
Llocal = 4 for N/P = 62, 500. Therefore, the bottom
four levels in Table 3 (a), (b), and (c) belong to the
local tree. The depth of the global tree Lglobal is 4, 5,
and 6 for 128, 1024, and 8192 processes, respectively.
“Cells” is the total number of cells at that level of
the tree structure, which is simply 8Level for a full
octree. “Sends” is the number of processes to which
sends. As mentioned in Section 5.1 we have devel-
oped a communication scheme that limits the number
of sends to 26 regardless of the problem size, number
of processes, or the level. “Bytes” is the aggregate
data size that is sent by a given process at each level
of the tree. As shown in Table 1, the number of cells
for the “Global M2L” communication is 26 × 8. For
each cell we are sending 56 multipole expansion coef-
ficients in single precision (4 Bytes). Therefore, the
total number of Bytes for the “Global M2L” phase is
26 × 8 × 56 × 4 = 46592. We can see from Table 1
that the amount of cells involved in the “Local M2L”

Table 3: Statistics of the M2L communication.

(a) 128 Processes
Level Cells Sends Bytes
0 1 0 0
1 8 0 0
2 64 26 46592
3 512 26 46592
4 4096 26 46592
5 32768 26 100352
6 262144 26 272384
7 2097152 26 874496

(b) 1024 Processes
Level Cells Sends Bytes
0 1 0 0
1 8 0 0
2 64 26 46592
3 512 26 46592
4 4096 26 46592
5 32768 26 46592
6 262144 26 100352
7 2097152 26 272384
8 16777216 26 874496

(c) 8192 Processes
Level Cells Sends Bytes
0 1 0 0
1 8 0 0
2 64 26 46592
3 512 26 46592
4 4096 26 46592
5 32768 26 46592
6 262144 26 46592
7 2097152 26 100352
8 16777216 26 272384
9 134217728 26 874496

communication can be calculated by (2i + 4)3 − 8i,
where i is the level in the local tree (not the “Level”
shown in Table 3). For example, for level one in the
local tree, the amount of cells will be (21 + 4)3 − 81

which is equivalent to 26×8. This is why the “Bytes”
is the same for the “Global M2L” and the first level
of the “Local M2L” in Table 3.

6.3 Model Validation

We compare the actual communication time for the
M2L communication with our performance model on
Shaheen, Mira, Titan, and Piz Dora. We compare
against same combination of models as in the multi-
grid study [11]. The combinations are:

9

1. Baseline model (α− β model)

2. With distance penalty (α− β − γ model)

3. With distance and bandwidth penalty (β
penalty)

4. With distance and bandwidth penalty, plus mul-
ticore penalty on latency (α, β penalty)

5. With distance and bandwidth penalty, plus mul-
ticore penalty on distance (β, γ penalty)

6. With distance and bandwidth penalty, plus mul-
ticore penalty on latency and distance (α, β, γ
penalty)

The results on Shaheen are shown in Figure 5. The
actual measured performance is shown as a black line,
where an error bar is drawn according to the standard
deviation in communication time among the different
MPI ranks. By comparing the Bytes in Table 3 with
the communication time in Figure 5, we see that the
deepest four levels that belong to the “Local M2L”
phase have a communication time that is proportional
to the data size being sent. The main discrepancy
in the models is caused by the β penalty, for which
the ratio between the theoretical injection bandwidth
and the b eff benchmark results is accounted for.
The actual communication time agrees well with the
models with α, β, and γ penalties.
For the shallow levels that belong to the “Global

M2L” phase, the communication time increases as the
level decreases/coarsens. Here, and in Figures 7, 8,
and 9 to follow, the “Global M2L” levels are 3 in
part (a), 3 and 4 in part (b), and 3, 4, and 5 in part
(c). The reason for the increase can be understood by
looking back at Figure 3, where the “Global M2L” is
communicating with farther processes at coarser lev-
els of the tree. Since we are mapping the geometric
partitioning of the octree to the 3-D torus network of
Shaheen, the proximity in the octree directly trans-
lates to the proximity in the network. Therefore, even
though the data size is constant for all levels in the
“Global M2L” phase, the number of hops is larger,
which accounts for switching delays and also network
contention to some extent. This increases the com-
munication time at coarser levels and the models that
incorporate γ are able to predict this behavior.
In Figure 6, the M2L communication time on Sha-

heen is plotted against the MPI rank to show the load
balance between the processes. Each color shows M2L
communication at a different level of the tree struc-
ture, and the numbers in the legend represent the lev-
els. The communication time of each level is stacked
on top of each other so that the total hight of the area

2 3 4 5 6 7 8
Level

10 -4

10 -3

10 -2

10 -1

T
im

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(a) 128 processes

2 3 4 5 6 7 8 9
Level

10 -4

10 -3

10 -2

10 -1

T
im

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(b) 1024 processes

2 3 4 5 6 7 8 9 10
Level

10 -4

10 -3

10 -2

10 -1

T
im

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(c) 8192 processes

Figure 5: Performance model prediction and actual
time for M2L communication phase on Shaheen.

10

20 40 60 80 100 1200

0.002

0.004

0.006

0.008

0.01

0.012

MPIRANK

tim
e

[s
]

7
6
5
4
3

(a) 128 processes

200 400 600 800 10000

0.002

0.004

0.006

0.008

0.01

0.012

MPIRANK

tim
e

[s
]

8
7
6
5
4
3

(b) 1024 processes

2000 4000 6000 80000

0.002

0.004

0.006

0.008

0.01

0.012

MPIRANK

tim
e

[s
]

9
8
7
6
5
4
3

(c) 8192 processes

Figure 6: Load balance of M2L communication phase
on Shaheen.

plot represents the total M2L communication time
shown in Figure 5. The MPI ranks are sorted accord-
ing to the total M2L communication time for better
visibility in the small differences between processes.
As can be seen from the figure, the load balance is
quite good. The imbalance seems to come from the
finest levels, which are 7, 8, and 9 for 128, 1024, and
8192 processes, respectively.

The M2L communication time on Mira is plotted
along with the six model predictions in Figure 7. Sim-
ilarly to the runs on Shaheen, the main difference
in the model predictions is caused by the β penalty.
We also see a discrepancy between the model predic-
tions with and without the α penalty for the “Global
M2L” phase (coarser levels). The multicore penalty is
very small on the Bluegene/Q. This lack of multicore
penalty has been observed in other applications where
the use of hybrid OpenMP+MPI approach did not
improve the performance over a flat MPI approach
[21]. Contrary to the runs on Shaheen, the commu-
nication time has a nearly flat profile for the “Global
M2L” phase. This is because the 5-D torus network
minimizes the number of hops and network contention
so the degradation at coarse levels of the tree is min-
imal. Far nodes in the octree are not so far in the
Bluegene/Q network topology.

Figure 8 shows the M2L communication time on
Titan along with the six model predictions. Similarly
to the previous two cases, the difference between the
model predictions is mainly due to the correction for
the inverse bandwidth. This difference in the the-
oretical injection bandwidth and measured effective
bandwidth seems to have the largest effect on all three
architectures. What is different from the previous two
cases is the large jump in the actual communication
time for the “Global M2L” phase. For example, for
the 8192 process run level 5 is taking about 10 times
more than level 6 even though the message size is
46, 592 Bytes for both cases. The γ term in the cur-
rent performance models anticipates such behavior.
The error bars in the actual timings are quite large,
which indicates that there is a large load imbalance
compared to the previous two systems. The concave-
convex switch at level 5 in 8(b) is not well predicted
by the models, but the more refined models do pick it
up at level 6 in 8(c). Though a good match between
the measurements and simple models is not realized
for M2L at all granularities on Titan, performance
trends are generally well predicted.

The M2L communication time on Piz Dora is plot-
ted along with the six model predictions in Figure 9.
In the case of 128 processes, the best fitting model
is the baseline model plus only the distance penalty.
Increasing the number of processes increases the pos-

11

2 3 4 5 6 7 8
Level

10 -4

10 -3

10 -2

10 -1

T
im

e
(s

)
actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(a) 128 processes

2 3 4 5 6 7 8 9
Level

10 -4

10 -3

10 -2

10 -1

T
im

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(b) 1024 processes

2 3 4 5 6 7 8 9 10
Level

10 -4

10 -3

10 -2

10 -1

T
im

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(c) 8192 processes

Figure 7: Performance model prediction and actual
time for M2L communication phase on Mira.

2 3 4 5 6 7 8
Level

10 -4

10 -3

10 -2

10 -1

T
im

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(a) 128 processes

2 3 4 5 6 7 8 9
Level

10 -4

10 -3

10 -2

10 -1

T
im

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(b) 1024 processes

2 3 4 5 6 7 8 9 10
Level

10 -4

10 -3

10 -2

10 -1

T
im

e
(s

)

actual
,-- Model
,---. Model
- Penalty
,,- Penalties
-,. Penalties
,,-,. Penalties

(c) 8192 processes

Figure 8: Performance model prediction and actual
time for M2L communication phase on Titan.

12

2 3 4 5 6 7 8

10
−4

10
−3

10
−2

10
−1

Level

T
im

e
(s

)

actual
α−β Model
α−β−γ Model
β Penalty
α,β Penalties
β,γ Penalties
α,β,γ Penalties

(a) 128 processes

2 3 4 5 6 7 8 9

10
−4

10
−3

10
−2

10
−1

Level

T
im

e
(s

)

actual
α−β Model
α−β−γ Model
β Penalty
α,β Penalties
β,γ Penalties
α,β,γ Penalties

(b) 1024 processes

2 3 4 5 6 7 8 9 10

10
−4

10
−3

10
−2

10
−1

Level

T
im

e
(s

)

actual
α−β Model
α−β−γ Model
β Penalty
α,β Penalties
β,γ Penalties
α,β,γ Penalties

(c) 8192 processes

Figure 9: Performance model prediction and actual
time for M2L communication phase on Piz Dora.

sibility of contention and makes the model with all
penalties the best fitting model. Similar to the runs
on Titan, there is a large jump in the actual com-
munication time for the “Global M2L” phase with
even worse load balancing suggested by the large er-
ror bars. The performance model is able to predict
the poor performance at the coarse levels.

7 Conclusion

The goal of this work is to model the global commu-
nication of the FMM, to be able to anticipate chal-
lenges on future exascale machines. To improve model
fidelity, we consider penalties based on machine con-
straints including distance effects, reduced per core
bandwidth, and the number of cores per node. We
observe a good match between the (α, β, γ) model
with multicore penalties and the actual communica-
tion time. The discrepancy between the other models
means that all components of the model; latency (α),
bandwidth (β), hops (γ), and multicore penalty must
be taken into account when predicting the communi-
cation performance of FMM.

In our benchmark tests, we compare the perfor-
mance models with measurements for the M2L com-
munication, since this is the dominant part of the
FMM communication. Our observations are con-
sistent with those of the studies by Gahvari et al.
[11], where the performance of an algebraic multigrid
method is analyzed using the same model. The mea-
surements fall within the bounds of the performance
models, and match best with the model where latency,
bandwidth, hops, and multicore penalty are all taken
into account.

The present communication model is able to pre-
dict the performance on four HPC systems possessing
different characteristics. To our knowledge, this is the
first formal characterization of inter-node communi-
cation in FMM, which validates the model against ac-
tual measurements of communication time. Further-
more, the FMM implementation considered in this
paper has a provably best theoretical communication
complexity among FMM algorithms [32], so demon-
strations for other implementations may be less rele-
vant in practice.

Our current FMM code does not support asyn-
chronous data transfer so we are not able to provide a
reference implementation for the performance model
that includes asynchronous data transfers.

The ultimate communication model is predictive
in an absolute sense; however, on complex systems,
this objective is often out of reach, or of a difficulty
out of proportion to its benefit when there exists a

13

simpler model that is inexpensive and sufficient to
guide coding decisions leading to improved scaling.
The current model provides such guidance.
Looking into the future, we will most likely be

seeing more network topologies with larger diameter
(more hops). Large radix networks seem to be the
current trend, but with the exponential increase in
the node count the increase of the network diame-
ter is unavoidable. Our communication model with
the distance penalty is able to capture the increase in
communication time at the coarse levels of the FMM
communication on Titan’s torus network. This should
allow predicting the communication bottlenecks on
future networks with larger diameter.
The performance model herein is applicable to

evolving heterogeneous systems, such as GPUs or
Xeon Phis. This is because the accelerators and co-
processors affect the per-node computation but not
the inter-node communication. Nor is the model af-
fected by the on-node computational performance of
FMM, as long as the accelerators and coprocessors
are not using more than one MPI process, which is
the optimal way to use the current generation of such
hardware.

Acknowledgements

We acknowledge system access and the generous as-
sistance of the staffs at four facilities for the per-
formance tests herein: the KAUST Supercomputing
Laboratory; the Argonne Leadership Computing Fa-
cility at Argonne National Laboratory, which is sup-
ported by the Office of Science of the U.S. Depart-
ment of Energy under contract DE-AC02-06CH11357;
the Oak Ridge Leadership Computing Facility at Oak
Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725; and the
Swiss National Supercomputing Centre (CSCS), un-
der project ID g81.

Author Biographies

Huda Ibeid received her BSc degree in Computer En-
gineering from the University of Jordan and is cur-
rently a PhD candidate in Computer Science at the
King Abdullah University of science and Technology
(KAUST). Her research interests include fast algo-
rithms for particle-based simulations, fast algorithms
on parallel computers and GPUs, design of paral-
lel numerical algorithms, parallel programming mod-
els and performance optimizations for heterogeneous
GPU-based systems.

Rio Yokota obtained his PhD from Keio University,
Japan, in 2009 and worked as a postdoctoral re-
searcher with Prof. Lorena Barba at the University of
Bristol and then Boston University. He has worked
on the implementation of fast N -body algorithms on
special-purpose machines such as mdgrape-3, and
then on GPUs after CUDA was released, and on
vortex methods for fluids simulation. He joined the
King Abdullah University of Science and Technology
(KAUST) as a research scientist, where he continued
to work on fast multipole methods. He is now at the
Tokyo Institute of Technology as an Associate Pro-
fessor.

David Keyes is the director of the Extreme Com-
puting Research Center at KAUST and an Adjoint
Professor of Applied Mathematics at Columbia Uni-
versity. Keyes graduated in Aerospace and Mechani-
cal Sciences from Princeton University and earned a
doctorate in Applied Mathematics from Harvard Uni-
versity. He did postdoctoral work in the Computer
Science Department of Yale University. He works at
the algorithmic interface between parallel computing
and the numerical analysis of partial differential equa-
tions, across a spectrum of aerodynamic, geophysical,
and chemically reacting flows.

References

[1] J. Barnes and P. Hut. O(N logN) force-calculation
algorithm. Nature, 324:446–449, 1986.

[2] R. Beatson and L. Greengard. A short course on fast
multipole methods. In Wavelets, Multilevel Methods
and Elliptic PDEs, pages 1–37. Oxford Science Pub-
lications, 1997.

[3] A. Chandramowlishwaran, K. Madduri, and
R. Vuduc. Diagnosis, tuning, and redesign for
multicore performance: A case study of the fast
multipole method. In SC ’10 Proceedings of the
2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and
Analysis, 2010.

[4] A. Chandramowlishwaran, S. Williams, L. Oliker,
I. Lashuk, G. Biros, and R. Vuduc. Optimizing and
tuning the fast multipole method for state-of-the-art
multicore architectures. In Proceeding of the Inter-
national Parallel Distributed Processing Symposium
(IPDPS), pages 1–12, 2010.

[5] H. Cheng, L. Greengard, and V. Rokhlin. A fast
adaptive multipole algorithmin three dimensions.
Journal of Computational Physics, 155(2):468–498,
1999.

[6] M. J. Clement and M. J. Quinn. Symbolic perfor-
mance prediction of scalable parallel programs. In

14

Proceedings of the International Parallel Processing
Symposium, pages 635–639, April 1995.

[7] L. DeRose and D. A. Reed. SvPablo: A multi-
language, architecture-independent performance
analysis system. In Proceeding of the International
Conference on Parallel Processing, pages 311–318,
Augest 1999.

[8] J. Dongarra and F. Sullivan. Guest Editors Intro-
duction to The Top 10 Algorithms. Computing in
Science and Engineering, 2:22–23, 2000.

[9] I. Foster. Designing and Building Parallel Programs.
Addison-Wesley, 1995.

[10] I. T. Foster and P. H. Worley. Parallel algorithms for
the spectral transform method. SIAM Journal on
Scientific and Statistical Computing, 18(3):806–837,
1997.

[11] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang,
K. E. Jordan, and W. Gropp. Modeling the perfor-
mance of an algebraic multigrid cycle on HPC plat-
forms. In ICS ’11 Proceedings of the International
Conference on Supercomputing, pages 172–181, 2011.

[12] H. Gahvari, W. Gropp, K. E. Jordan, M. Schulz, and
U. M. Yang. Algebraic multigrid on a dragonfly net-
work: First experience on a Cray XC30. In Pro-
ceeding of the 5th International Workshop on Per-
formance Modeling, Benchmarking and Simulation
of High Performance Computer Systems (PMBS14),
November 2014.

[13] N. L. Gorn and D. V. Berkov. Adaptation and per-
formance of the fast multipole method for dipolar
systems. Journal of Magnetism and Magnetic Mate-
rials, 272-276:698–700, 2004.

[14] L. Greengard, M. C. Kropinski, and A. Mayo. Inte-
gral equation methods for Stokes flow and isotropic
elasticity in the plane. Journal of Computational
Physics, 125:403–414, 1996.

[15] L. Greengard and V. Rokhlin. A fast algorithm
for particle simulations. Journal of Computational
Physics, 73(2):325–348, 1987.

[16] L. Greengard and Rokhlin V. On the efficient imple-
mentation of the fast multipole algorithm. Research
Report RR-602, Yale University, 1988.

[17] W. D. Gropp, D.K. Kaushik, D.E. Keyes, and B.F.
Smith. Toward realistic performance bounds for im-
plicit CFD codes. In Proceedings of Parallel CFD’99,
pages 23–26, May 1999.

[18] P. Jetley, L. Wesolowski, F. Gioachin, L. V. Kale,
and T. R. Quinn. Scaling hierarchical N-body sim-
ulations on GPU clusters. In SC ’10 Proceedings of
the 2010 ACM/IEEE International Conference for
High Performance Computing, Networking, Storage
and Analysis, pages 1–11, 2010.

[19] D. Kerbyson, H. Alme, A. Hoisie, F. Petrini,
A. Wasserman, and M. Gittings. Predictive perfor-
mance and scalability modeling of a large-scale appli-

cation. In Proceedings of the 2001 ACM/IEEE con-
ference on Supercomputing, pages 1–12, 2001.

[20] I. Lashuk, A. Chandramowlishwaran, H. Langston,
T.-A. Nguyen, R. Sampath, A. Shringarpure,
R. Vuduc, L. Ying, D. Zorin, and G. Biros. A mas-
sively parallel adaptive fast multipole method on het-
erogeneous architectures. In Proceedings of the Con-
ference on High Performance Computing Network-
ing, Storage and Analysis, pages 1–12, 2009.

[21] M. Lee, N. Malaya, and R. D. Moser. Petascale di-
rect numerical simulation of turbulent channel flow
on up to 768k cores. In Proceedings of the Confer-
ence on High Performance Computing Networking,
Storage and Analysis, Denver, CO, USA, Novermber
16-22 2013.

[22] P. Luszczek and J. Dongarra. Introduction to the
HPC Challenge Benchmark Suite. Technical Report
ICL-UT-05-01, University of Tennessee, Knoxville,
March 2005.

[23] C. L. Mendes. Performance Scalability Prediction on
Multicomputers. PhD thesis, University of Illinois,
Urbana-Champaign, May 1997.

[24] C. L. Mendes and D. A. Reed. Integrated compila-
tion and scalability analysis for parallel systems. In-
ternational Conference on Parallel Architectures and
Compilation Techniques (PACT’98), pages 385– 392,
October 1998.

[25] J. M. Perez-Jorda and W. Yang. On the scaling of
multipole methods for particle-paticle interactions.
Chemical Physics Letters, 282:71–78, 1998.

[26] W. T. Rankin. Efficient Parallel Implementations of
Multipole Based N-body Algorithm. PhD thesis, Duke
University, 1999.

[27] A. Snavely, N. Wolter, and L. Carrington. Model-
ing application performance by convolving machine
signatures with application profiles. In Proceeding of
the IEEE Workshop on Workload Characterization,
pages 149–156, December 2001.

[28] B. Van de Wiele, F. Olyslager, and L. Dupre. Ap-
plication of the fast multipole method for the eval-
uation of magneto-static fields in micromagnetic
computations. Journal of Computational Physics,
227:9913–9932, 2008.

[29] W. R. Wolf and S. K. Lele. Aeroacoustic integrals
accelerated by fast multipole method. AIAA Journal,
49(7):1466–1477, 2011.

[30] P. H. Worley. Performance evaluation of the IBM SP
and the Compaq AlphaServer SC. In Proceeding of
the ACM International Conference of Supercomput-
ing 2000, pages 235–244, 2000.

[31] R. Yokota, J. Pestana, H. Ibeid, and D. E. Keyes.
Fast multipole preconditioners for sparse matrices
arising from elliptic equations. arXiv:1308.3339v2,
2014.

15

[32] R. Yokota, G. Turkiyyah, and D. Keyes. Communi-
cation complexity of the fast multipole method and
its algebraic variants. Supercomputing Frontiers and
Innovations, 1(1):63–84, 2014.

[33] J.-S. Zhao and W.-C. Chew. Three-dimensional mul-
tilevel fast multipole algorithm from static to electro-
dynamic. Microwave and Optical Technology Letters,
26(1):43–48, 2000.

16

