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Abstract By using the algebraic construction outlined in Carinci et al. (arXiv:1407.3367,
2014), we introduce several Markov processes related to theUq(su(1, 1)) quantum Lie alge-
bra. These processes serve as asymmetric transportmodels and their algebraic structure easily
allows to deduce duality properties of the systems. The results include: (a) the asymmetric
version of the Inclusion Process, which is self-dual; (b) the diffusion limit of this process,
which is a natural asymmetric analogue of the and which turns out to have the Symmetric
Inclusion Process as a dual process; (c) the asymmetric analogue of the KMP Process, which
also turns out to have a symmetric dual process. We give applications of the various duality
relations by computing exponential moments of the current.

1 Introduction

1.1 Motivations

Exactly solvable stochastic systems out-of-equilibrium have received considerable attention
in recent days [7,9,10,14,19,27,30]. Often in the analysis of these models duality (or self-
duality) is a crucial ingredient by which the study of n-point correlations is reduced to
the study of n dual particles. For instance, the exact current statistics in the case of the
asymmetric exclusion process is obtained by solving the dual particle dynamics via Bethe
ansatz [6,21,29].
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240 G. Carinci et al.

The duality property has algebraic roots, as was first noticed by Schütz and Sandow for
symmetric exclusion processes [28], which is related to the classical Lie algebra su(2). Next
this symmetry approach was extended by Schütz [29] to the quantum Lie algebraUq(su(2))
in a representattion of spin 1/2, thus providing self-duality of the asymmetric exclusion
process (see [31] for a recent work on currents in ASEP, using the quantum Lie algebra
Uq(su(2))). Notice that the connection between Markov processes and quantum spin chains
has been studied extensively by Alcaraz et al., see e.g. [1,2]. However, in this literature no
connection with duality or self-duality is made.

Recently Markov processes with the Uq(su(2)) algebraic structure for higher spin value
have been introduced and studied in [13]. This lead to a family of non-integrable asymmetric
generalization of the partial exclusion process (see also [25]).

In [16,17] the algebraic approach to duality has been extended by connecting dual-
ity functions to the algebra of operators commuting with the generator of the process.
In particular for the models of heat conduction studied in [17] the underlying alge-
braic structure turned out to be U (su(1, 1)). This class is richer than its fermionic
counterpart related to the classical Lie algebra U (su(2)) which is at the root of
processes of exclusion type. In particular, the classical Lie algebra U (su(1, 1)) has
been shown to be related to a large class of symmetric processes, including: (a) an
interacting particle system with attractive interactions (Inclusion Process [17,18]); (b)
interacting diffusion processes for heat conduction (Brownian Energy Process [12,17]);
(c) redistribution models of KMP-type [11,22]. The dualities and self-dualities of all
these processes arise naturally from the symmetries which are built in the construc-
tion.

It is the aim of this paper to provide the asymmetric version of these models with (self)-
duality property, via the study of the deformed quantum Lie algebra Uq(su(1, 1)). This
provides a new class of bulk-driven non-equilibrium systems with duality, which includes in
particular an asymmetric version of the KMP model [22]. The diversity of models related to
the classicalU (su(1, 1)) will also appear here in the asymmetric context where we consider
the quantum Lie algebra Uq(su(1, 1)).

1.2 Models and Abbreviations

For the sake of simplicity, we will use the following acronyms in order to describe the class
of new processes that arise from our construction.

(a) Discrete representationswill provide interacting particle systems in the class of Inclusion
Processes. For a parameter k ∈ R+, the Symmetric Inclusion Process version is denoted
by SIP(k), and ASIP(q, k) is the corresponding asymmetric version, with asymmetry
parameter q ∈ (0, 1).

(b) Continuous representations give rise to diffusion processes in the class of Brownian
Energy Processes. For k ∈ R+, the Symmetric Brownian Energy Process is denoted by
BEP(k), and ABEP(σ, k) is the asymmetric version with asymmetry parameter σ > 0.

(c) By instantaneous thermalization, redistribution models are obtained, where energy or
particles are redistributed at Poisson event times. This class includes the thermalized ver-
sion of ABEP(σ, k), which is denoted by Th-ABEP(σ, k). In the particular case k = 1/2
the Th-ABEP(σ, k) is called the Asymmetric KMP (Kipnis-Marchioro-Presutti) model,
denoted by AKMP(σ ), which becomes the KMP model as σ → 0. The instantaneous
thermalization of the ASIP(q, k) yields the Th-ASIP(q, k) process.

123



Asymmetric Stochastic Transport Models... 241

1.3 Markov Processes with Algebraic Structure

In [13] we constructed a generalization of the asymmetric exclusion process, allowing 2 j
particles per site with self-duality properties reminiscent of the self-duality of the standard
ASEP found initially by Schütz [29]. This construction followed a general scheme where
one starts from the Casimir operator C of the quantum Lie algebra Uq(su(2)), and applies
a coproduct to obtain an Hamiltonian Hi,i+1 working on the occupation number variables
at sites i and i + 1. The operator H = ∑L−1

i=1 Hi,i+1 then naturally allows a rich class
of commuting operators (symmetries), obtained from the n-fold coproduct applied to any
generator of the algebra. This operator H is not yet the generator of a Markov process.
But H allows a strictly positive ground state, which can also be constructed from the sym-
metries applied to a trivial ground state. Via a ground state transformation, H can then be
turned into a Markov generator L of a jump process where particles hop between nearest
neighbor sites and at most 2 j particles per site are allowed. The symmetries of H directly
translate into the symmetries of L , which in turn directly translate into self-duality func-
tions.

This construction is in principle applicable to every quantum Lie algebra with
a non-trivial center. However, it is not guaranteed that a Markov generator can be
obtained. This depends on the chosen representation of the generators of the alge-
bra, and the choice of the co-product. Recently the construction has been applied
to algebras with higher rank, such as Uq(gl(3)) [5,23] or Uq(sp(4)) [23], yielding
two-component asymmetric exclusion process with multiple conserved species of parti-
cles.

1.4 Informal Description of Main Results

In [17]we introduced a class of processeswith su(1, 1) symmetrywhich in fact arise from this
construction for the Lie algebra U (su(1, 1)). In this paper we look for natural asymmetric
versions of the processes constructed in [17], and [11]. In particular the natural asymmetric
analogue of the KMP process is a target. The main results are the following

(a) Self-duality of ASIP(q, k). We proceed via the same construction as in [13] for the
algebraUq(su(1, 1)) to find the ASIP(q, k)which is the “correct” asymmetric analogue
of the SIP(k). The parameter q tunes the asymmetry: q → 1 gives back the SIP(k). This
process is then via its construction self-dual with a non-local self-duality function.

(b) Duality between ABEP(σ, k) and SIP(k). We then show that in the limit ϵ → 0 where
simultaneously the asymmetry is going to zero (q = 1 − ϵσ tends to unity), and the
number of particles to infinity ηi = ⌊ϵ−1xi⌋, we obtain a diffusion process ABEP(σ, k)
which is reminiscent of the Wright–Fisher diffusion with mutation and a selective drift.
As a consequence of self-duality ofASIP(q, k)we show that this diffusion process is dual
to the SIP(k), i.e., the dual process is symmetric, and the asymmetry is in the duality
function. Notice that this is the first example of duality between a truly asymmetric
system (i.e. bulk-driven) and a symmetric system (with zero current).

(c) Duality of instantaneous thermalization models. Finally, we then consider instantaneous
thermalization of ABEP(σ, k) to obtain an asymmetric energy redistribution model of
KMP type. Its dual is the instantaneous thermalization of the SIP(k) which for k = 1/2
is exactly the dual KMP process.
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242 G. Carinci et al.

1.5 Organization of the Paper

The rest of our paper is organized as follows. In Sect. 2 we introduce the process ASIP(q, k).
After discussing some limiting cases, we show that this process has reversible profile product
measures on Z+ (but not on Z).

In Sect. 3 we consider the weak asymmetry limit of ASIP(q, k). This leads to the diffusion
process ABEP(σ, k), that also has reversible inhomogeneous product measures on the half-
line. We prove that ABEP(σ, k) is a genuine non-equilibrium asymmetric system in the sense
that it has a non-zero average current. Nevertheless in the last part of Sect. 3 we show that
the ABEP(σ, k) can be mapped – via a global change of coordinates – to the BEP(k), which
is a symmetric system with zero-current. In Sect. 3.6 this is also explained in the framework
of the representation theory of the classical Lie algebra U (su(1, 1)).

In Sect. 4 we introduce the instantaneous thermalization limits of both ASIP(q, k) and
ABEP(σ, j) which are a particle, resp. energy, redistribution model at Poisson event times.
This provides asymmetric redistribution models of KMP type.

In Sect. 5 we introduce the self-duality of the ASIP(q, k) and prove various other duality
relations that follow from it. In particular, once the self-duality of ASIP(q, k) is obtained,
duality of ABEP(σ, k) with SIP(k) follows from a limiting procedure which is proved in
Sect. 5.2. In the limit of an infinite number of particles with weak-asymmetry, the original
process scales to ABEP(σ, k), whereas in the dual process the asymmetry disappears because
the number of particles is finite. Next the self-duality and duality of thermalized models is
derived in Sect. 5.3.

In Sect. 6 we illustrate the use of the duality relations in various computations of expo-
nential moments of currents. Finally, the last section is devoted to the full construction of
the ASIP(q, k) from a Uq(su(1, 1)) symmetric quantum Hamiltonian and the proof of self-
duality from the symmetries of this Hamiltonian.

2 The Asymmetric Inclusion Process ASIP(q, k)

2.1 Basic Notation

Wewill consider as underlying lattice the finite lattice$L = {1, . . . , L} or the periodic lattice
TL = Z/LZ. At the sites of$L we allow an arbitrary number of particles. The particle system
configuration space is %L = N$L . Elements of %L are denoted by η, ξ and for η ∈ %L ,
i ∈ $L , we denote by ηi ∈ N the number of particles at site i . For η ∈ %L and i, j ∈ $L such
that ηi > 0, we denote by ηi, j the configuration obtained from η by removing one particle
from i and putting it at j .

We need some further notation of q-numbers. For q ∈ (0, 1) and n ≥ 0 we introduce the
q-number

[n]q = qn − q−n

q − q−1 (2.1)

satisfying the property limq→1[n]q = n. The first q-natural number’s (n ∈ N0) are thus given
by

[0]q = 0, [1]q = 1, [2]q = q + q−1, [3]q = q2 + 1+ q−2, . . .
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Asymmetric Stochastic Transport Models... 243

We also introduce the q-factorial for n ∈ N0

[n]q ! := [n]q · [n − 1]q · · · · · [1]q for n ≥ 1, and [0]q ! := 1

and the q-binomial coefficient
(
n
m

)

q
:= [n]q !

[m]q ![n − m]q !
for n ≥ m (2.2)

and, for m ∈ N, α ∈ (−1, 1)
(
m + α

m

)

q
:= [m + α]q · [m − 1+ α]q · . . . · [1+ α]q

[m]q !
(2.3)

Further we denote

(a; q)m := (1 − a)(1 − aq) · · ·
(
1 − aqm−1) . (2.4)

2.2 The ASIP(q, k) Process

We introduce the process in finite volume by specifying its generator.

Definition 2.1 (ASIP(q,k) process)

1. The ASIP(q, k) with closed boundary conditions is defined as the Markov process on
%L with generator defined on functions f : %L → R

(L
ASI P(q,k)
(L) f )(η) :=

L−1∑

i=1

(L
ASI P(q,k)
i,i+1 f )(η) with

(L
ASI P(q,k)
i,i+1 f )(η) := qηi−ηi+1+(2k−1)[ηi ]q [2k + ηi+1]q( f (ηi,i+1) − f (η))

+ qηi−ηi+1−(2k−1)[2k + ηi ]q [ηi+1]q( f (ηi+1,i ) − f (η)) (2.5)

2. The ASIP(q, k) with periodic boundary conditions is defined as the Markov process on
NTL with generator

(L
ASI P(q,k)
(TL )

f )(η) :=
∑

i∈TL

(L
ASI P(q,k)
i,i+1 f )(η) (2.6)

Since in finite volume we always start with finitely many particles, and the total particle
number is conserved, the process is automatically well defined as a finite state space con-
tinuous time Markov chain. Later on (see Sect. 6.1) we will consider expectations of the
self-duality functions in the infinite volume limit. In this way we can deal with relevant infi-
nite volume expectations without having to solve the full existence problem of theASIP(q, k)
in infinite volume for a generic initial data. This might actually be an hard problem due to
the lack of monotonicity.

2.3 Limiting Cases

The ASIP (q, k) degenerates to well known interacting particle systems when its parameters
take the limiting values q → 1 and k → ∞ recovering the cases of symmetric evolution or
totally asymmetric zero range interaction. Notice in particular that these two limits do not
commute.

• Convergence to symmetric processes

123



244 G. Carinci et al.

(i) q → 1, k fixed The ASIP(q, k) reduces to the SIP(k), i.e. the Symmetric Inclusion
Processwith parameter k. All the results of the present paper apply also to this symmetric
case. In particular, in the limit q → 1, the self-duality functions that will be given in
theorem 5.1 below converge to the self-duality functions of the SIP(k) (given in [11]).

(ii) q → 1, k → ∞ Furthermore, when the Symmetric Inclusion Process is time changed
so that time is scaled down by a factor 1/2k, then in the limit k → ∞ the symmetric
inclusion converges weakly in path space to a system of symmetric independent random
walkers (moving at rate 1).

• Convergence to totally asymmetric processes

(iii) k → ∞, q fixed If the limit k → ∞ is performed first, then a totally asymmetric
system is obtained under proper time rescaling. Indeed, by multiplying the ASIP(q, k)
generator by (1 − q2)q4k−1 one has

(
1 − q2

)
q4k−1

[
L ASI P

i,i+1 f
]
(η) = q4k

(
q2ηi − 1

)(
q4k − q−2ηi+1

)
(
1 − q2

)
[
f
(
ηi,i+1) − f (η))

]

+
(
q−2ηi+1 − 1

)(
1 − q2ηi+4k)

(
q−2 − 1

)
[
f
(
ηi+1,i ) − f (η))

]

Therefore, considering the family of processes y(k)(t) := {y(k)i (t)}i∈$L labeled by
k ≥ 0 and defining

y(k)i (t) := ηi
(
(1 − q2)q4k−1t

)

one finds that in the limit k → ∞ the process y(k)(t) converges weakly to the Totally
Asymmetric Zero Range process y(t) with generator given by:

(
L

q−TAZRP
su(1,1) f

)
(y) =

L−1∑

i=1

q−2yi+1 − 1
q−2 − 1

[
f
(
yi+1,i ) − f (y)

]
, f : %L → R

(2.7)

In this system, particles jump to the left only with rates that are monotone increas-
ing functions of the occupation variable of the departure site. Note that the rates are
unbounded for yi+1 → ∞, nevertheless the process is well defined even in the infinite
volume, as it belongs to the class considered in [4]. This is to be compared to the case
of the deformed algebra Uq(sl2) [13] whose scaling limit with infinite spin is given by
[6]

(
L

(q−TAZRP)
su(2) f

)
(y) =

L−1∑

i=1

1 − q2yi

1 − q2

[
f
(
yi,i+1) − f (y)

]
, f : %L → R (2.8)

Here particles jump to the right only with rates that are also a monotonous increasing
function of the occupation variable of the departure site, however now it is a bounded
function approaching 1 in the limit yi → ∞. In [15] it is proved that the totally
asymmetric zero range process (2.8) is in the KPZ universality class. It is an interesting
open problem to prove or disprove that the same conclusion holds true for (2.7) [26].
We remark that the rates of (2.7) are (discrete) convex function and this also translates
into convexity of the stationary current j (ρ) as a function of the density ρ, whereas for
(2.8) we have concave relations.
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(iv) k → ∞, q → 1 In the limit q → 1 the zero range process in (2.7) reduces to a system
of totally asymmetric independent walkers. This is to be compared to item (ii) where
symmetric walkers were found if the two limits were performed in the reversed order.

2.4 Reversible Profile Product Measures

Here we describe the reversible measures of ASIP(q, k).

Theorem 2.1 (Reversible measures of ASIP(q, k)) For all L ∈ N, L ≥ 2, the following
results hold true:

1. the ASIP(q, k) on $L with closed boundary conditions admits a family labeled by α of
reversible product measures with marginals given by

P(α)(ηi = n) = αn

Z (α)
i

(
n + 2k − 1

n

)

q
· q4kin n ∈ N (2.9)

for i ∈ $L and α ∈ [0, q−(2k+1)) (with the convention
(2k−1

0

)
q = 1). The normalization

is

Z (α)
i =

+∞∑

n=0

(
n + 2k − 1

n

)

q
· αnq4kin = 1

(αq4ki−(2k−1); q2)2k
(2.10)

and for this measure

E(α)(ηi ) =
2k−1∑

l=0

1
q−2l(αq4ki−2k+1)−1 − 1

. (2.11)

(2) The ASIP(q, k) process on the torus TL with periodic boundary condition does not admit
homogeneous product measures.

Proof The proof of item (2) is similar to the proof of Theorem 3.1, item (d) in [13] and
we refer the reader to that paper for full details. The main idea is that if we have the rate
c+(ηi , ηi+1) (resp. c−(ηi , ηi−1)) for a particle to jump from i to i+1 (resp. from i to i−1) and
there exists a homogeneous product measure µ̄ with marginals µ(ηi ), then the stationarity
condition implies that the function

F(η1, η2) = c+(η1 + 1, η2 − 1)+ c−(η2 + 1, η1 − 1) − c+(η1, η2) − c−(η2, η1)

is of the form g(η1)−g(η2), which is not the case, as can be seen from the explicit expressions
of the rates just as in [13].

To prove item (1) consider the detailed balance relation

µ(η)cq(η, ηi,i+1) = µ(ηi,i+1)cq(ηi,i+1, η) (2.12)

where the hopping rates are given by

cq(η, ηi,i+1) = qηi−ηi+1+2k−1[ηi ]q [2k + ηi+1]q
cq(ηi,i+1, η) = qηi−ηi+1−2k−1[2k + ηi − 1]q [ηi+1 + 1]q

and µ denotes a reversible measure. Suppose now that µ is a product measure of the form
µ = ⊗L

i=1µi . Then (2.12) holds if and only if

µi (ηi − 1)µi+1(ηi+1 + 1)q−2k[2k + ηi − 1]q [ηi+1 + 1]q
= µi (ηi )µi+1(ηi+1)q2k[ηi ]q [2k + ηi+1]q (2.13)
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which implies that there exists α ∈ R so that for all i ∈ $L

µi (n)
µi (n − 1)

= αq4ki
[2k + n − 1]q

[n]q
. (2.14)

Then (2.9) follows from (2.14) after using an induction argument on n. The normalization
Z (α)
i is computed by using Corollary 10.2.2 of [3]. We have that

Z (α)
i < ∞ if and only if 0 ≤ α < q−4ki+(2k−1) for any i ∈ $L (2.15)

As a consequence (since q < 1 and i = 1 is the worst case) α must belong to the interval
[0, q−(2k+1)). The expectation (2.11) is obtained by exploiting the identity

E(α)(ηi ) = α
d
dα

ln Z (α)
i .

⊓+
The following comments are in order:

(i) vanishing asymmetry: in the limit q → 1 the reversible product measure of ASIP(q, k)
converges to a product of Negative Binomial distributions with shape parameter 2k and
success probability α, which are the reversible measures of the SIP(k) [11].

(ii) monotonicity of the profile: the average occupation number E(α)(ηi ) in formula (2.11)
is a decreasing function of i , and limi→∞ E(α)(ηi ) = 0.

(iii) infinite volume: the reversible product measures with marginal (2.9) are also well-
defined in the limit L → ∞. One could go further to [−M,∞)∩Z for α < q4kM+2k−1

(but not to the full line Z). These infinite volumemeasure concentrate on configurations
with a finite number of particles, and thus are the analogue of the profile measures in
the asymmetric exclusion process [24].

3 The Asymmetric Brownian Energy Process ABEP(σ, k)

Here we will take the limit of weak asymmetry q = 1 − ϵσ → 1 (ϵ → 0) combined with
the number of particles proportional to ϵ−1, going to infinity, and work with rescaled particle
numbers xi = ⌊ϵηi⌋. Reminiscent of scaling limits in population dynamics, this leads to
a diffusion process of Wright–Fisher type [12], with σ -dependent drift term, playing the
role of a selective drift in the population dynamics language, or bulk driving term in the
non-equilibrium statistical physics language.

3.1 Definition

We define the ABEP(q, k) process via its generator. It has state spaceXL = (R+)L , R+ :=
[0,+∞). Configurations are denoted by x ∈ XL , with xi being interpreted as the energy at
site i ∈ $L .

Definition 3.1 (ABEP(σ, k) process)

1. Let σ > 0 and k ≥ 0. The Markov process ABEP(σ, k) on the state space XL with
closed boundary conditions is defined by the generator working on the core of smooth
functions f : XL → R via

[
L ABEP(σ,k)

(L) f
]
(x) =

L−1∑

i=1

[
L ABEP(σ,k)

i,i+1 f
]
(x) (3.1)
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with
[
L ABEP(σ,k)

i,i+1 f
]
(x) = 1

4σ 2

(
1 − e−2σ xi

)(
e2σ xi+1 − 1

) ( ∂

∂xi
− ∂

∂xi+1

)2

f (x)

− 1
2σ

{(
1−e−2σ xi

)(
e2σ xi+1 −1

)
+2k

(
2−e−2σ xi −e2σ xi+1

) }

×
(

∂

∂xi
− ∂

∂xi+1

)
f (x)

2. The ABEP(σ, k) with periodic boundary conditions is defined as the Markov process on
RTL
+ with generator

[
L ABEP(σ,k)

(TL )
f
]
(x) :=

∑

i∈TL

[
L ABEP(σ,k)

i,i+1 f
]
(x) (3.2)

The ABEP(σ, k) is a genuine asymmetric non-equilibrium system, in the sense that its
translation-invariant stationary state may sustain a non-zero current. To see this, let E denote
expectation with respect to the translation invariant measure for the ABEP(σ, k) on TL . Let
fi (x) := xi , then from (3.1) we have

[
L ABEP(σ,k)

fi
]
(x) = *i,i+1(x) − *i−1,i (x) (3.3)

with

*i,i+1(x) = − 1
2σ

{(
1 − e−2σ xi

)(
e2σ xi+1 − 1

)
+ 2k

(
2 − e−2σ xi − e2σ xi+1

) }
(3.4)

So we have
d
dt

Ex [ fi (x(t))] = Ex
[
*i,i+1(x(t))

]
− Ex

[
*i−1,i (x(t))

]

and then, from the continuity equation we have that, in a translation invariant state,Ji,i+1 :=
−E

[
*i,i+1

]
is the instantaneous stationary current over the edge (i, i + 1). Thus we have

the following

Proposition 3.1 (Non-zero current of ABEP(σ, k))

Ji,i+1 = −E
[
*i,i+1

]
< 0 if k > 1/2

and

Ji,i+1 = −E
[
*i,i+1

]
> 0 if k = 0.

Proof In the case k > 1/2, taking expectation of (3.4) we obtain

E
[
*i,i+1

]
= 1

2σ

{
(1 − 4k)+ (2k − 1)E

(
e2σ xi+1 + e−2σ xi

)
+ E

(
e2σ (xi+1−xi )

)}

Since expectation in the translation invariant stationary state of local variables are the same
on each site and cosh(x) ≥ 1 one obtains

E
[
*i,+1

]
≥ 1

2σ

{
(1 − 4k)+ 2(2k − 1)+ E

[
e2σ (xi+1−xi )

]}

Furthermore, Jensen inequality and translation invariance implies that

E
[
*i,i+1

]
>

1
2σ

{
(1 − 4k)+ 2(2k − 1)+ 1

}
= 0

123
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In the case k = 0 one has

E
[
*i,i+1

]
= 1

2σ
E
[(
1 − e−2σ xi

)(
1 − e2σ xi+1

)]
< 0

which is negative because the function is negative a.s. ⊓+

3.2 Limiting Cases

• Symmetric processes

(i) σ → 0,k fixed: we recover the Brownian Energy Process with parameter k, BEP(k)
(see [11]) whose generator is

L BEP(k)

i,i+1 = xi xi+1

(
∂

∂xi
− ∂

∂xi+1

)2

− 2k(xi − xi+1)

(
∂

∂xi
− ∂

∂xi+1

)
(3.5)

(ii) σ → 0,k → ∞: under the time rescaling t → t/2k, one finds that in the limit k → ∞
the BEP(k) process scales to a symmetric deterministic system evolving with generator

[
L DEP

i,i+1 f
]
(x) = −(xi − xi+1)

(
∂

∂xi
− ∂

∂xi+1

)
f (x) (3.6)

This deterministic system is symmetric in the sense that if the initial condition is given
by (xi (0), xi+1(0)) = (a, b) then the asymptotic solution is given by the fixed point( a+b

2 , a+b
2

)
where the initial total energy a + b is equally shared among the two sites.

• Wright–Fisher diffusion

(iii) σ ≃ 0,k fixed: the ABEP(σ, k) on the simplex can be read as a Wright Fisher model
with mutation and selection, however we have not been able to find in the literature the
specific form of selection appearing in (3.1) (see [12] for the analogous result when
σ = 0). For fixed k, to first order in σ one recovers the standard Wright–Fisher model
with constant mutation k and constant selection σ , i.e.

L WF(σ,k) = xi xi+1

(
∂

∂xi
− ∂

∂xi+1

)2

− (2σ xi xi+1 + 2k(xi − xi+1))

(
∂

∂xi
− ∂

∂xi+1

)

• Asymmetric Deterministic System

(iv) k → ∞, σ fixed: if the limit k → ∞ is taken directly on the ABEP(σ, k) then, by time
rescaling t → t/2k one arrives at an asymmetric deterministic system with generator

L ADEP(σ )

i,i+1 = − 1
2σ

(
2 − e−2σ xi − e2σ xi+1

) ( ∂

∂xi
− ∂

∂xi+1

)
(3.7)

This deterministic system is asymmetric in the sense that if the initial condition is given
by (xi (0), xi+1(0)) = (a, b) then the asymptotic solution is given by the fixed point

(A, B) :=
(

1
2σ

ln

(
1+ e2σ (a+b)

2

)

, a + b − 1
2σ

ln

(
1+ e2σ (a+b)

2

))

where A > B.
(v) k → ∞, σ → 0: in the limit σ → 0 (3.7) converges to (3.6) and one recovers again

the symmetric equi-distribution between the two sites of DEP process with generator
(3.6).

(vi) k → ∞, σ → ∞: in the limit σ → ∞ one has the totally asymmetric stationary
solution (a + b, 0).
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3.3 The ABEP(σ, k) as a Diffusion Limit of ASIP(q, k)

Here we show that the ABEP(σ, k) arises from the ASIP(q, k) in a limit of vanishing asym-
metry and infinite particle number.

Theorem 3.1 (Weak asymmetry limit of ASIP(q, k)) Fix T > 0. Let {ηϵ(t) : 0 ≤ T } denote
the ASIP(1 − σϵ, k) starting from initial condition ηϵ(0). Assume that

lim
ϵ→0

ϵηϵ(0) = x ∈ XL (3.8)

Then as ϵ → 0, the process {ηϵ(t) : 0 ≤ t ≤ T } converges weakly on path space to the
ABEP(σ, k) starting from x.

Proof The proof follows the lines of the corresponding results in population dynamics lit-
erature, i.e., Taylor expansion of the generator and keeping the relevant orders. Indeed, by
the Trotter–Kurtz theorem [24], we have to prove that on the core of the generator of the
limiting process, we have convergence of generators. Because the generator is a sum of terms
working on two variables, our theorem follows from the computational lemma below. ⊓+

Lemma 3.1 If ηϵ ∈ %L is such that ϵηϵ → x ∈ XL then, for every smooth function
F : XL → R, and for every i ∈ {1, . . . , L − 1} we have

lim
ϵ→0

(L ASI P(1−ϵσ,k)
i,i+1 Fϵ)(η

ϵ) = L ABEP(σ,k)
i,i+1 F(x) (3.9)

where Fϵ(η) = F(ϵη), η ∈ %L .

Proof Define xϵ = ϵηϵ . Then we have, by the regularity assumptions on F that

Fϵ((η
ϵ)i,i+1) − Fϵ(η)

= ϵ

(
∂

∂xi+1
− ∂

∂xi

)
F(xϵ)+ ϵ2

(
∂

∂xi
− ∂

∂xi+1

)2

F(xϵ)+ O(ϵ3) (3.10)

and similarly

Fϵ((η
ϵ)i+1,i ) − Fϵ(η)

= −ϵ

(
∂

∂xi+1
− ∂

∂xi

)
F(xϵ)+ ϵ2

(
∂

∂xi
− ∂

∂xi+1

)2

F(xϵ)+ O(ϵ3) (3.11)

Then using q = 1 − ϵσ , and

(1 − ϵσ )x
ϵ
i /ϵ = e−σ xi − 2xiσ 2e−2σ xi ϵ + O(ϵ2)

straightforward computations give

[
L ϵ

i,i+1F
]
(xϵ) =

[

Bϵ(xϵ)

(
∂

∂xi+1
− ∂

∂xi

)
+ Dϵ(xϵ)

(
∂

∂xi
− ∂

∂xi+1

)2
]

F(xϵ)+ O(ϵ)

with

Bϵ(x) =
1
2σ

{
(1 − e−2σ xi )(e2σ xi+1 − 1)+ 2k

(
2 − e−2σ xi − e2σ xi+1

) }
+ O(ϵ)

Dϵ(x) =
1

4σ 2 (1 − e−2σ xi )(e2σ xi+1 − 1)+ O(ϵ) (3.12)
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Then we recognize
[

Bϵ(xϵ)

(
∂

∂xi+1
− ∂

∂xi

)
+ Dϵ(xϵ)

(
∂

∂xi
− ∂

∂xi+1

)2
]

F(xϵ)

=
(
L ABEP(σ,k)

i,i+1 F
)
(xϵ)

which ends the proof of the lemma by the smoothness of F and because by assumption,
xϵ → x . ⊓+

The weak asymmetry limit can also be performed on the q-TAZRP. This yields a totally
asymmetric deterministic system as described in the following theorem.

Theorem 3.2 (Weak asymmetry limit of q-TAZRP) Fix T > 0. Let {yϵ(t) : 0 ≤ T } denote
the qϵ-TAZRP, qϵ := 1 − σϵ, with generator (2.7) and initial condition yϵ(0). Assume that

lim
ϵ→0

ϵyϵ(0) = y ∈ XL (3.13)

Then as ϵ → 0, the process {yϵ(t) : 0 ≤ t ≤ T } converges weakly on path space to the
Totally Asymmetric Deterministic Energy Process, TADEP(σ ) with generator

(L T ADEP
i,i+1 f )(z) = −

(
1 − e2σ zi+1

2σ

)(
∂

∂zi
− ∂

∂zi+1

)
f (z), f : RL

+ → R (3.14)

initialized from the configuration y.

Proof The proof is analogous to the proof of Theorem 3.1

3.4 Reversible Measure of the ABEP(σ, k)

Theorem 3.3 (ABEP(σ, k) reversible measures) For all L ∈ N, L ≥ 2, the ABEP(q, k) on
XL with closed boundary conditions admits a family (labeled by γ > −4σk) of reversible
product measures with marginals given by

µi (xi ) :=
1

Z
(γ )
i

(1 − e−2σ xi )(2k−1)e−(4σki+γ )xi xi ∈ R+ (3.15)

for i ∈ $L and

Z
(γ )
i = 1

2σ
Beta

(
2ki + γ

2σ
, 2k

)
(3.16)

where Beta(s, t) = ,(s),(t)/,(s + t) is the Beta function.

Proof The adjoint of the generator of the ABEP(σ, k) is given by

(
L ABEP(σ,k)

(L)

)∗
=

L−1∑

i=1

(
L ABEP

i,i+1

)∗
(3.17)

with
(
L ABEP

i,i+1

)∗
f = 1

4σ 2

(
∂

∂xi
− ∂

∂xi+1

)2 ( (
1 − e−2σ xi

) (
e2σ xi+1 − 1

)
f
)

− 1
2σ

(
∂

∂xi+1
− ∂

∂xi

)({(
1 − e−2σ xi

) (
e2σ xi+1 − 1

)

+ 2k
[(
1 − e−2σ xi

)
−
(
e2σ xi+1 − 1

)]}
f
)
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Letµ be a productmeasurewithµ(x) = ∏L
i=1 µi (xi ), then in order forµ to be a stationary

measure it is sufficient to impose that the conditions

1
4σ 2

(
∂

∂xi+1
− ∂

∂xi

) (
1 − e−2σ xi

) (
e2σ xi+1 − 1

)
µ(x)

− 1
2σ

{(
1 − e−2σ xi

) (
e2σ xi+1 − 1

)
+ 2k

[(
1 − e−2σ xi

)
−
(
e2σ xi+1 − 1

)]}
µ(x) = 0

are satisfied for any i ∈ {1, . . . , L − 1}. This is true if and only if

µ′
i (xi )

µi (xi )
− 2σ

2k − e−2σ xi

1 − e−2σ xi
+ σ = µ′

i+1(xi+1)

µi+1(xi+1)
+ 2σ

e2σ xi+1 − 2k
e2σ xi+1 − 1

− σ (3.18)

for any xi , xi+1 ∈ R+. The conditions (3.18) are verified if and only if the marginals µi (x)
are of the form (3.15) for some γ ∈ R, Z (γ )

i is a normalization constant, and the constraint
γ > −4σk is imposed in order to assure the integrability of µ(·) on XL . Thus we have
proved that the product measure with marginal (3.15) are stationary. One can also verify that
for any f : XL → R

L ABEP f = 1
µ

(
L ABEP

)∗
(µ f )

which then implies that the measure is reversible. ⊓+

Remark 3.1 In the limit σ → 0 the reversible product measure of ABEP(σ, k) converges to a
product of Gamma distributions with shape parameter 2k and scale parameter 1/γ , which are
the reversible homogeneous measures of the BEP(k) [11]. In the case σ ̸= 0 the reversible
product measure of ABEP(σ, k) has a decreasing average profile (see Proposition 4.1).

3.5 Transforming the ABEP(σ, k) to BEP(k)

In this subsection we show that the ABEP(σ, k), which is an asymmetric process, can be
mapped via a global change of coordinates to the BEP(k) process which is symmetric. Here
we focus on the analytical aspects of such σ -dependent mapping. In Sect. 3.6 we will show
that this map induces a conjugacy at the level of the underlying su(1, 1) algebra. This implies
that the ABEP(q, k) generator has a classical (i.e. non deformed) su(1, 1) symmetry. This
is remarkable because ABEP(q, k) is a bulk-driven non-equilibrium process with non-zero
average current (as it has been shown in Proposition 3.1) and yet its generator is an element
of the classical su(1, 1) algebra.

Definition 3.2 (Partial energy) We define the partial energy functions Ei : XL → R+,
i ∈ {1, . . . , L + 1}

Ei (x) :=
L∑

ℓ=i

xℓ, for i ∈ $L and EL+1(x) = 0. (3.19)

We also define the total energy E : XL → R+ as

E(x) := E1(x).

Definition 3.3 (The mapping g) We define the map g : XL → XL

g(x) := (gi (x))i∈$L with gi (x) :=
e−2σ Ei+1(x) − e−2σ Ei (x)

2σ
(3.20)
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Notice that g does not have full range, i.e. g[XL ] ̸= XL . Indeed

E(g(x)) = 1
2σ

(
1 − e−2σ E(x)

)
≤ 1

2σ
(3.21)

so that in particular g[XL ] ⊆ {x ∈ XL : E(x) ≤ 1/2σ }. Moreover g is a bijection fromXL
to g[XL ]. Indeed, for z ∈ g[XL ] we have

(g−1(z))i =
1
2σ

ln

{
1 − 2σ

∑L
j=i+1 z j

1 − 2σ
∑L

j=i z j

}

(3.22)

Theorem 3.4 (Mapping from ABEP(σ, k) to BEP(k)) Let X (t) = (Xi (t))i∈$L be the
ABEP(σ, k) process starting from X (0) = x, then the process Z(t) := (Zi (t))i∈$L defined
by the change of variable Z(t) := g(X (t)) is the BEP(k)with initial condition Z(0) = g(x).

Proof It is sufficient to prove that, for any f : XL → R+ smooth, x ∈ XL and g defined
above

[
L BEP

i,i+1 f
]
(g(x)) =

[
L ABEP

i,i+1 ( f ◦ g)
]
(x) (3.23)

for any i ∈ $L . Define F := f ◦ g, then

[L ABEP( f ◦ g)](x)

= [L ABEP(F)](x) = 1
4σ 2 (1 − e−2σ xi )(e2σ xi+1 − 1)

(
∂

∂xi+1
− ∂

∂xi

)2

F(x)

+ 1
2σ

{
(1−e−2σ xi )(e2σ xi+1 −1)+2k

(
2−e−2σ xi −e2σ xi+1

) }( ∂

∂xi+1
− ∂

∂xi

)
F(x)

(3.24)

The computation of the Jacobian of g

∂g j

∂xi
(x) =

⎧
⎪⎨

⎪⎩

−2σg j (x) for j ≤ i − 1

e−2σ E j (x) for j = i

0 for j ≥ i + 1

(3.25)

implies that

(
∂

∂xi+1
− ∂

∂xi

)
g j (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for j ≤ i − 1

−e−2σ Ei+1(x) for j = i

e−2σ Ei+1(x) for j = i + 1

0 for j ≥ i + 2

(3.26)

and
(

∂

∂xi+1
− ∂

∂xi

)
F(x) = e−2σ Ei+1(x)

[(
∂

∂zi+1
− ∂

∂zi

)
f
]
(g(x)) (3.27)

(
∂

∂xi+1
− ∂

∂xi

)2

F(x) = −2σe−2σ Ei+1(x)
[(

∂

∂zi+1
− ∂

∂zi

)
f
]
(g(x))

+ e−4σ Ei+1(x)

[(
∂

∂zi+1
− ∂

∂zi

)2

f

]

(g(x)). (3.28)
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Then, using (3.27) and (3.28), (3.24) can be rewritten as

[L ABEP
i,i+1 ( f ◦ g)](x)

= 1
4σ 2 (1 − e−2σ xi )(e2σ xi+1 − 1)e−4σ Ei+1(x)

[(
∂

∂zi+1
− ∂

∂zi

)2

f

]

(g(x))

+
{
2σ + 1

2σ

(
(1 − e−2σ xi )(e2σ xi+1 − 1)+ 2k

(
2 − e−2σ xi − e2σ xi+1

) )}
e−2σ Ei+1(x)

×
[(

∂

∂zi+1
− ∂

∂zi

)
f
]
(g(x))

Simplifying, this gives

[L ABEP
i,i+1 ( f ◦ g)](x)

=
{
e−2σ Ei+1(x) − e−2σ Ei (x)

2σ
· e

−2σ Ei+2(x) − e−2σ Ei+1(x)

2σ

[(
∂

∂zi+1
− ∂

∂zi

)2

f

]

(g(x))

− k
σ

(
e−2σ Ei (x) − 2e−2σ Ei+1(x) + e−2σ Ei+2(x)

) [( ∂

∂zi+1
− ∂

∂zi

)
f
]
(g(x))

=
[
L BEP

i,i+1 f
]
(g(x))

⊓+

TheABEP(σ, k)has a single conservation lawgiven by the total energy E(x) = ∑
i∈$L

xi .
As a consequence there exists an infinite family of invariant measures which is hereafter
described.

Proposition 3.2 (Microcanonical measure of ABEP(σ, k)) The stationary measure of the
ABEP(σ, k) process on $L with given total energy E is unique and is given by the inhomo-
geneous product measure with marginals (3.15) conditioned to a total energy E(x) = E.
More explicitly

dµ(E)(y) =
∏L

i=1 µi (yi )1{∑i∈$L
yi=E}dyi

∫
. . .

∫ ∏L
i=1 µi (yi )1{∑i∈$L

yi=E}dyi
(3.29)

Proof We start by observing that the stationary measure of the BEP(k) process on $L with
given total energy E is unique and is given by a product of i.i.d. Gamma random variable
(Xi )i∈$L with shape parameter 2k conditioned to

∑
i∈$l

Xi = E . This is a consequence of
duality between BEP(k) and SIP(k) processes [17]. Furthermore, an explicit computation
shows that the reversible measure of ABEP(σ, k) conditioned to energy E are transformed
by the mapping g (see Definition 3.3) to the stationary measure of the BEP(k) with energy
E given by

E = 1
2σ

(
1 − e−2σ E

)
.

The uniqueness for ABEP(σ, k) follows from the uniqueness for BEP(σ, k) and the fact that
g is a bijection from XL to g[XL ].
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3.6 The Algebraic Structure of ABEP(σ, k)

First we recall from [17] that the BEP(k) generator can be written in the form

L BEP(k) =
L−1∑

i=1

(
K+
i K−

i+1 + K−
i K+

i+1 − 2Ko
i K

o
i+1 + 2k2

)
(3.30)

where

K+
i = zi (3.31)

K−
i = zi

∂2

∂z2i
+ 2k

∂

∂zi

K o
i = zi

∂

∂zi
+ k

is a representation of the classical su(1, 1) algebra. We show here that the ABEP(σ, k) has
the same algebraic structure. This is proved by using a representation of su(1, 1) that is
conjugated to (3.31) and is given by

K̃ a
i = Cg ◦ Ka

i ◦ Cg−1 with a ∈ {+,−, o} (3.32)

where g is the function of Definition 3.3 and

(Cg−1 f )(x) = ( f ◦ g−1)(x)

(Cg f )(x) = ( f ◦ g)(x).

Explicitly one has

(K̃ a
i f )(x) =

(
Ka
i f ◦ g−1) (g(x)) with a ∈ {+,−, o} (3.33)

Theorem 3.5 (Algebraic structure of ABEP(σ, k)) The generator of the ABEP(σ, k) process
is written as

L ABEP(σ,k) =
L−1∑

i=1

(
K̃+
i K̃−

i+1 + K̃−
i K̃+

i+1 − 2K̃ o
i K̃

o
i+1 + 2k2

)
(3.34)

where the operators K̃ a
i with a ∈ {+,−, o} are defined in (3.32) and provide a representation

of the su(1, 1) Lie algebra.

Proof The proof is a consequence of the following two results:

L ABEP(σ,k) = Cg ◦ L BEP(k) ◦ Cg−1 (3.35)

and the operators K̃ a
i with a ∈ {+,−, o} satisfy the commutation relations of the su(1, 1)

algebra. The first property is an immediate consequence of Theorem 3.4, as Eq. (3.35) is
simply a rewriting of Eq. (3.23) by using the definition of Cg and Cg−1 . The second property
can be obtained by the following elementary Lemma, which implies that the commutation
relations of the K̃ a

i operators with a ∈ {+,−, o} are the same of the Ka
i operators with

a ∈ {+,−, o}. ⊓+
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Lemma 3.2 Consider an operator A working on function f : XL → R and let g : XL →
X ⊂ XL be a bijection. Then defining

Ã = Cg ◦ A ◦ Cg−1

we have that A → Ã is an algebra homomorphism.

Proof We need to verify that

Ã + B = Ã + B̃ and ÃB = Ã B̃

The first is trivial, the second is proved as follows

ÃB = Cg ◦ AB ◦ Cg−1 =
(
Cg ◦ A ◦ Cg−1

)
◦
(
Cg ◦ B ◦ Cg−1

)
= Ã B̃

As a consequence

[̃A, B] = [ Ã, B̃].

⊓+

4 The Asymmetric KMP Process, AKMP(σ )

4.1 Instantaneous Thermalizations

The procedure of instantaneous thermalization has been introduced in [17]. We consider a
generator of the form

L =
L−1∑

i=1

Li,i+1 (4.1)

where Li,i+1 is such that, for any initial condition (xi , xi+1), the corresponding process
converges to a unique stationary distribution µ(xi ,xi+1).

Definition 4.1 (Instantaneous thermalized process) The instantaneous thermalization of the
process with generator L in (4.1) is defined to be the process with generator

A =
L−1∑

i=1

Ai,i+1

where

Ai,i+1 f = lim
t→∞(etLi,i+1 f − f )

=
∫
[ f (x1, . . . , xi−1, yi , yi+1, xi+2, . . . , xL)

− f (x1, . . . , xL)]dµ(xi ,xi+1)(yi , yi+1) (4.2)

In words, in the process with generator A each edge (i, i + 1) is updated at rate one, and
after update its variables are replaced by a sample of the stationary distribution of the process
with generator Li,i+1 starting from (xi , xi+1).
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Notice that, by definition, if a measure is stationary for the process with generatorLi,i+1
then it is also stationary for the process with generator Ai,i+1.

An example of thermalized processes is the Th-BEP(k) process, where the local redistri-
bution rule is

(x, y) → (B(x + y), (1 − B)(x + y)) (4.3)

with B a Beta(2k, 2k) distributed random variable [12]. In particular for k = 1/2 this gives
the KMP process [22] that has a uniform redistribution rule on [0, 1]. Among discrete models
we mention the Th-SIP(k) process where the redistribution rule is

(n,m) → (R, n + m − R) (4.4)

where R is Beta-Binomial(n+m, 2k, 2k). For k = 1/2 this corresponds to discrete uniform
distributions on {0, 1, . . . , n + m}. Other examples are described in [12]. In the following
we introduce the asymmetric version of these redistribution models.

4.2 Thermalized Asymmetric Inclusion Process Th-ASIP(q, k)

The instantaneous thermalization limit of the Asymmetric Inclusion Process is obtained as
follows. Imagine on each bond (i, i+1) to run theASIP(q, k) dynamics for an infinite amount
of time. Then the total number of particles on the bond will be redistributed according to the
stationarymeasure on that bond, conditioned to conservationof the total number of particles of
the bond.We consider the independent randomvariables (M1, . . . ,ML) distributed according
to the stationary measure of the ASIP(q, k) at equilibrium. Thus Mi and Mi+1 are distributed
according to

p(α)i (ηi ) := P(α)(Mi = ηi ) =
αηi

Z (α)
i

(
ηi + 2k − 1

ηi

)

q
· q4kiηi ηi ∈ N (4.5)

and

p(α)i+1(ηi+1) := P(α)(Mi+1 = ηi+1) =
αηi+1

Z (α)
i+1

(
ηi+1 + 2k − 1

ηi+1

)

q
· q4k(i+1)ηi+1 ηi+1 ∈ N

(4.6)

for some α ∈ [0, q−(2k+1)).
Hence the distribution of Mi , given that the sum is fixed to Mi + Mi+1 = n + m has the

following probability mass function:

νASI P
q,k (r | n + m) := P(Mi = r | Mi + Mi+1 = n + m) (4.7)

= p(α)i (r)p(α)i+1(n + m − r)
∑n+m

l=0 p(α)i (l)p(α)i+1(n + m − l)

= C̃q,k(n + m) q−4kr
(
r + 2k − 1

r

)

q
·
(
2k + n + m − r − 1

n + m − r

)

q

where r ∈ N and C̃q,k(n + m) is a normalization constant.

Definition 4.2 (Th-ASIP(q, k) process) The Th-ASIP(q, k) process on $L is defined as the
thermalized discrete process with state space %L and local redistribution rule

(n,m) → (Rq , n + m − Rq) (4.8)
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where Rq has a q-deformed Beta-Binomial(n + m, 2k, 2k) distribution with mass function
(4.7). The generator of this process is given by

L
ASI P(q,k)
th f (η) =

L−1∑

i=1

ηi+ηi+1∑

r=0

[
f (η1, . . . , ηi−1, r, ηi + ηi+1 − r,

ηi+2, . . . , ηL) − f (η)
]

νASI P
q,k (r | ηi + ηi+1) (4.9)

4.3 Thermalized Asymmetric Brownian Energy Process Th-ABEP(σ, k)

Wedefine the instantaneous thermalization limit of theAsymmetricBrownianEnergyProcess
as follows. On each bondwe run the ABEP(σ, k) for an infinite time. Then the energies on the
bond will be redistributed according to the stationary measure on that bond, conditioned to
the conservation of the total energy of the bond. If we take two independent random variables
Xi and Xi+1 with distributions as in (3.15), i.e.

µi (xi ) :=
1

Z
(γ )
i

(1 − e−2σ xi )(2k−1)e−(4σki+γ )xi xi ∈ R+ (4.10)

µi+1(xi+1) :=
1

Z
(γ )
i+1

(1 − e−2σ xi+1)(2k−1)e−(4σk(i+1)+γ )xi+1 xi+1 ∈ R+ (4.11)

then the distribution of Xi , given the sum fixed to Xi + Xi+1 = E , has density

p(xi |Xi + Xi+1 = E) = µi (xi )µi+1(E − xi )
∫ E
0 µi (x)µi+1(E − x) dx

= Cσ,k(E) e4σkxi
[(
1 − e−2σ xi

) (
1 − e−2σ (E−xi )

)]2k−1

where Cσ,k(E) is a normalization constant. Equivalently, let Wi := Xi/E , then Wi is a
random variable taking values on [0, 1]. Conditioned to Xi + Xi+1 = E , its density is given
by

νσ,k(w|E) = Ĉσ,k(E) e2σ Ew
{(

e2σ Ew − 1
) (

1 − e−2σ E(1−w)
)}2k−1

(4.12)

with

Ĉσ,k(E) :=
∫ 1

0
e2σ Ew

{(
e2σ Ew − 1

) (
1 − e−2σ E(1−w)

)}2k−1
dw (4.13)

Definition 4.3 (Thermalized ABEP(σ, k)) The Th-ABEP(σ, k) process on $L is defined as
the thermalized process with state space XL and local redistribution rule

(x, y) → (Bσ (x + y), (1 − Bσ )(x + y)) (4.14)

where Bσ has a distribution with density function νσ,k(·|x + y) in (4.12). Thus the generator
of Th-ABEP(σ, k) is given by

L ABEP(σ,k)
th f (x) =

L−1∑

i=1

∫ 1

0

[
f (x1, . . . , w(xi + xi+1),

(1 − w)(xi + xi+1), . . . , xL) − f (x)
]
νσ,k(w|xi + xi+1) dw (4.15)
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In the limit σ → 0, the conditional density ν0+,k(·|E) does not depend on E , and for any
E ≥ 0 we recover the Beta(2k, 2k) distribution with density

ν0+,k(w|E) = 1
Beta(2k, 2k)

[w(1 − w)]2k−1 . (4.16)

Then the generator L ABEP(0+,k)
th coincides with the generator of the thermalized Brownian

Energy Process Th-BEP(k) defined in Eq. (5.13) of [11].
The redistribution rule with the random variable Bσ in Definition 4.3 is truly asymmetric,

meaning that—on average—the energy is moved to the left.

Proposition 4.1 Let Bσ be the random variable on [0, 1] distributed with density (4.12),
then E[Bσ ] ≥ 1

2 . As a consequence Bσ and 1 − Bσ are not equal in distribution and for
(X1, . . . , XL ) distributed according to the reversible product measure µ of ABEP(σ, k)
defined in (3.15), we have that the energy profile is decreasing, i.e.

Eµ[Xi ] ≥ Eµ[Xi+1], ∀ i ∈ {1, . . . , L − 1}. (4.17)

Proof Let X = (X1, X2) be a two-dimensional randomvector taking values inX2 distributed
according to the microcanonical measureµ(E) of ABEP(σ, k)with fixed total energy E ≥ 0,
defined in (3.29). Then, from Definition 4.3,

(X1, X2)
d= (EBσ , E(1 − Bσ )) with Bσ ∼ νσ,k(·|E) (4.18)

Then, as already remarked in the proof of Proposition 3.2, Z := g(X) with g(·) as in
Definition 3.3 is a two-dimensional random variable taking values in g[X2] ⊂ X2 and
distributed according to the microcanonical measure of BEP(k) with fixed total energy E =
1
2σ (1 − e−2σ E ). It follows from (4.3) that

g(X) d= (E B, E (1 − B)) with B ∼ Beta(2k, 2k). (4.19)

Then, by (3.22) we have

(1 − Bσ )E = (g−1(Z))2 =
1
2σ

ln
{

1
1 − 2σ (1 − B)E

}
(4.20)

and therefore

Bσ = 1+ 1
2σ E

ln
(
1 − B(1 − e−2σ E )

)
(4.21)

Put 2σ E = 1 without loss of generality, for simplicity. Then to prove that E[Bσ ] > 1/2 we
have to prove that

E
(
1+ ln

(
1 − B

(
1 − e−1))) ≥ 1

2

Defining a = 1 − e−1 we then have to prove that

E(− ln(1 − aB)) ≤ 1
2

(4.22)

It is useful to write

− ln(1 − aB) =
∞∑

n=1

an Bn

n
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and remark that for a Beta(α,α) distributed B one has

E(Bn) =
n−1∏

r=0

α + r
2α + r

.

So we have to prove that

ψ(α, a) :=
∞∑

n=1

an

n

n−1∏

r=0

α + r
2α + r

< 1/2

First consider the limit α → ∞ then we find

lim
α→∞ φ(α, a) =

∞∑

n=1

an

2nn
= − ln

(
1 − 1

2

(
1 − e−1)

)
= − ln

(
1
2
+ e−1

2

)
≈ 0.379 < 1/2

Next remark when α = 0 the B is distributed like 1
2 δ0 + 1

2 δ1 which gives

E(− ln(1 − aB)) = −1
2
ln(e−1) = 1

2

Now we prove that ψ is monotonically decreasing in α. To see this notice that

d
dα

α + r
2α + r

= −r
(2α + r)2

< 0

So the derivative

d
dα

ψ(α, a) =
∞∑

n=1

n−1∑

r ′=0

an

n

⎛

⎝
n−1∏

r=0,r ̸=r ′

α + r
2α + r

⎞

⎠ −r ′

(2α + r)2
< 0

Therefore ψ(α, a) is monotonically decreasing in α and ψ(α, a) ≤ 1
2 . Thus the claim

E[Bσ ] > 1/2 is proved.
Now let X = (X1, X2) be a two-dimensional r.v. distributed according to the profile

measureµ defined in (3.15) with L = 2 and with abuse of notation let νσ,k [Bσ |E] = E [Bσ ].
Then we can write X = (E Bσ , E(1 − Bσ )) where now E is a random variable. We have

Eµ [X2] = Eµ

[
Eµ [X2| E]

]
= Eµ

[
Eµ [E(1 − Bσ )| E]

]
= Eµ

[
E νσ,k [(1 − Bσ )| E]

]

≤ Eµ

[
E νσ,k [Bσ | E]

]
= Eµ

[
Eµ [X1| E]

]
= Eµ [X1] (4.23)

The proof can be easily generalized to the case L ≥ 2, yielding (4.17). ⊓+

For k = 1/2 and σ → 0 the Th-ABEP(σ, k) is exactly the KMP process [22]. For k = 1/2
and σ > 0

νσ,1/2(w|E) = 2σ E
e2σ E − 1

e2σ Ew, w ∈ [0, 1] (4.24)

The Th-ABEP(σ, 1
2 ) can therefore be considered as the natural asymmetric analogue of the

KMP process. This justifies the following definition.
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Definition 4.4 (AKMP(σ ) process) We define the Asymmetric KMP with asymmetry para-
meter σ ∈ R+ on $L as the process with generator given by:

L AKMP(σ ) f (x) =
L−1∑

i=1

{
2σ (xi + xi+1)

e2σ (xi+xi+1) − 1
·
∫ 1

0

[
f (x1, . . . , w(xi + xi+1),

(1 − w)(xi + xi+1), . . . , xL) − f (x)
]
e2σw(xi+xi+1) dw

}

5 Duality Relations

In this section we derive various duality properties of the processes introduced in the previous
sections. We start by recalling the definition of duality.

Definition 5.1 Let {Xt }t≥0, {X̂t }t≥0 be two Markov processes with state spaces % and %̂

and D : % × %̂ → R a bounded measurable function. The processes {Xt }t≥0, {X̂t }t≥0 are
said to be dual with respect to D if

Ex
[
D(Xt , x̂)

]
= Êx̂

[
D(x, X̂t )

]
(5.1)

for all x ∈ %, x̂ ∈ %̂ and t > 0. In (5.1) Ex is the expectation with respect to the law of
the {Xt }t≥0 process started at x , while Êx̂ denotes expectation with respect to the law of the
{X̂t }t≥0 process initialized at x̂ .

5.1 Self-Duality of ASIP(q, k)

The basic duality relation is the self-duality of ASIP(q, k). This self-duality property is
derived from a symmetry of the underlying Hamiltonian which is a sum of co-products of
the Casimir operator. In [13] this construction was achieved for the algebra Uq(su(2)), and
from the Hamiltonian a Markov generator was constructed via a positive ground state. Here
the construction and consequent symmetries is analogous, but for the algebra Uq(su(1, 1)).
For the proof of the following Theorem we refer to Appendix, where we implement the steps
of [13] for the algebra Uq(su(1, 1)).

Theorem 5.1 (Self-duality of the finite ASIP(q, k)) The ASIP(q, k) on $L with closed
boundary conditions is self-dual with the following self-duality function

D(L)(η, ξ) =
L∏

i=1

(ηi
ξi

)
q(ξi+2k−1

ξi

)
q

· q(ηi−ξi )
[
2
∑i−1

m=1 ξm+ξi

]
−4kiξi · 1ξi≤ηi (5.2)

or, equivalently,

D(L)(η, ξ) =
L∏

i=1

(q2(ηi−ξi+1); q2)ξi
(q4k; q2)ξi

· q(ξi−4ki+2Ni+1(η))ξi · 1ξi≤ηi (5.3)

with (a; q)m as defined in (2.4) and

Ni (η) :=
L∑

k=i

ηk . (5.4)
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Remark 5.1 For n ∈ N, let ξ (ℓ1,...,ℓn) be the configurations with n particles located at sites
ℓ1, . . . , ℓn .

Then for the configuration ξ (ℓ) with one particle at site ℓ

D(η, ξ (ℓ)) = q−(4kℓ+1)

q2k − q−2k ·
(
q2Nℓ(η) − q2Nℓ+1(η)

)
(5.5)

and, more generally, for the configuration ξ (ℓ1,...,ℓn) with n particles at sites ℓ1, . . . , ℓn with
ℓi ̸= ℓ j

D(η, ξ (ℓ1,...,ℓn)) = q−4k
∑n

m=1 ℓm−n2

(q2k − q−2k)n
·

n∏

m=1

(
q2Nℓm (η) − q2Nℓm+1(η)

)

The duality relation with duality function (5.3) makes sense in the limit L → ∞. Indeed,
if Ni (η) = ∞ for some i , then limL→∞ D(L)(η, ξ) = 0 for all ξ with ξi ̸= 0. If the initial
configuration η ∈ %∞ has a finite number of particles at the right of the origin, then from the
duality relation, we deduce that it remains like this for all later times t > 0, which implies
that Nℓ(ηt ) < ∞ for all t ≥ 0. Conversely, if η is such that N0(η) = ∞, then N0(ηt ) = ∞
for all later times because, from the duality relation, Eξ [D(η, ξt )] = 0 for all t > 0. To
extract some non-trivial informations from the duality relation in the infinite volume case, a
suitable renormalization is required (see Sect. 6.1).

5.2 Duality Between ABEP(σ, k) and SIP(k)

We remind the reader that in the limit of zero asymmetry q → 1 the ASIP(q, k) converges to
the SIP(k). Therefore from the self-duality of ASIP(q, k), and the fact that the ABEP(σ, k)
arises as a limit ofASIP(q, k)with q → 1, a duality betweenABEP(σ, k) and SIP(k) follows.

Theorem 5.2 (Duality ABEP(σ, k) and SIP(k)) The ABEP(σ, k) on $L with closed bound-
ary conditions is dual to the SIP(k) on$L with closed boundary conditions, with the following
self-duality function

Dσ
(L)(x, ξ) =

∏

i∈$L

,(2k)
,(2k + ξi )

(
e−2σ Ei+1(x) − e−2σ Ei (x)

2σ

)ξi

(5.6)

with Ei (·) the partial energy function defined in Definition 3.2.

Proof The duality function in (5.6) is related to the duality function between BEP(k) and
SIP(k), D0

(L)(x, η) (see e.g. Sect. 4.1 of [11]) by the following relation

Dσ
(L)(x, ξ) = D0

(L)(g(x), η) (5.7)

where g(·) is the map defined in (3.3). Thus, omitting the subscript (L) in the following,
from (3.35) we have

[
L ABEP(σ,k)Dσ (·, η)

]
(x) =

[
L ABEP(σ,k) (D0(·, η) ◦ g

)]
(x)

=
[
L BEP(k)D0(·, η)

]
(g(x))
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=
[
L SIP(k)D0(g(x), ·)

]
(η)

=
[
L SIP(k)Dσ (x, ·)

]
(η) (5.8)

and this proves the Theorem. ⊓+

Remark 5.2 In the limit as σ → 0 one recovers the duality D0
(L)(·, ·) between BEP(k) and

SIP(k). However it is remarkable here that for finite σ there is duality between a bulk driven
asymmetric process, the ABEP(σ, k), and an equilibrium symmetric process, the SIP(k).
Indeed, the asymmetry is hidden in the duality function. This is somewhat reminiscent of the
dualities between systems with reservoirs and absorbing systems [11], where also the source
of non-equilibrium, namely the different parameters of the reservoirs has been moved to the
duality function.

The following proposition explains how Dσ
(L)(x, ξ) arises as the limit of ASIP(q, k) self-

duality function for q = 1 − N−1σ , N → ∞.

Proposition 5.1 For any fixed L ≥ 2 we have

lim
N→∞

( σ

N

)|ξ |
DASIP(1−σ/N ,k)
(L) (⌊Nx⌋, ξ) = DABEP(σ,k)

(L) (x, ξ) (5.9)

where DASIP(q,k)
(L) (η, ξ) denotes the self-duality function of ASIP(q, k) defined in (5.3) and

DABEP(σ,k)
(L) (x, ξ) denotes the duality function defined in (5.6).

Proof Let

N := |η| :=
L∑

i=1

ηi , q = 1 − σ

N
, x := N−1η, (5.10)

then

DASIP(q,k)
(L) (η, ξ) =

L∏

i=1

[ηi ]q [ηi − 1]q . . . [ηi − ξi + 1]q
[2k + ξi − 1]q [2k + ξi − 2]q . . . [2k]q

× q
(ηi−ξi )

[
2
∑i−1

m=1 ξm+ξi

]
−4kiξi · 1ξi≤ηi (5.11)

Now, for any m

[ηi − m]1− σ
N
= [Nxi − m]1− σ

N

= N
2σ

[
eσ xi − e−σ xi + O(N−1)

]

= N
σ

sinh(σ xi )+ O(1) (5.12)

hence

ξi−1∏

m=0

[Nxi − m]1− σ
N
=
(
N
σ

sinh(σ xi )+ O(1)
)ξi

(5.13)
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On the other hand

[2k + m]1− σ
N
= 2k + m + O(N−1) thus

ξi−1∏

m=0

[2k + m]1− σ
N
= ,(2k + ξi )

,(2k)
+ O(N−1)

(5.14)

finally, let fi (ξ) := 2
∑i−1

m=1 ξm + ξi and gi (ξ) := −ξi

[
2
∑i−1

m=1 ξm + ξi

]
− 4kiξi we have

qηi fi (ξ) =
(
1 − σ

N

)Nxi fi (ξ) = e−σ xi fi (ξ) + O(N−1), and

qg(ξ) =
(
1 − σ

N

)g(ξ)
= 1+ O(N−1) (5.15)

then (5.9) immediately follows. ⊓+

5.3 Duality for the Instantaneous Thermalizations

In this section we will prove that the self-duality of ASIP(q, k) and the duality between
ABEP(σ, k) and SIP(k) imply duality properties also for the thermalized models.

Proposition 5.2 If a process {η(t) : t ≥ 0} with generator L = ∑L−1
i=1 Li,i+1 is dual to

a process {ξ(t) : t ≥ 0} with generator L̂ = ∑L−1
i=1 L̂i,i+1 with duality function D(·, ·) in

such a way that for all i
[
Li,i+1D(·, ξ)

]
(η) = [L̂i,i+1D(η, ·)](ξ)

then, if the instantaneous thermalization processes of ηt , resp. ξt both exist, they are each
other’s dual with the same duality function D(·, ·).

Proof Let A , resp. Â be the generators of the instantaneous thermalization of ηt , resp. ξt ,
then, from (4.2) we know that

A =
∑

i∈$L

Ai,i+1, Ai,i+1 = lim
t→∞

(
etLi,i+1 − I

)

and

Â =
∑

i∈$L

Âi,i+1, Âi,i+1 = lim
t→∞

(
etL̂i,i+1 − I

)

where I denotes identity and where the exponential etLi,i+1 is the semigroup generated by
Li,i+1 in the sense of the Hille Yosida theorem. Hence we immediately obtain that

[ (
etLi,i+1 − I

)
D(·, ξ)

]
(η) =

[ (
etL̂i,i+1 − I

)
D(η, ·)

]
(ξ)

which proves the result. ⊓+

As a consequence of this Proposition we obtain duality between the thermalized
ABEP(q, k) and the thermalized SIP(k) as well as self-duality of the thermalized ASIP(q, k).

Theorem 5.3 (a) The Th-ASIP(q, k)with generator (4.9) is self-dual with self-duality func-
tion given by (5.2).

123



264 G. Carinci et al.

(b) The Th-ABEP(σ, k) with generator (4.15) is dual, with duality function (5.6) to the
Th-SIP(k) in $L whose generator is given by

L SI P(k)
th f (ξ) =

L−1∑

i=1

ξi+ξi+1∑

r=0

[
f (ξ1, . . . , ξi−1, r, ξi + ξi+1 − r,

ξi+2, . . . , ξL) − f (ξ)
]

νSI P
k (r | ξi + ξi+1) (5.16)

where νSI P
k (r | n + m) is the probability density of a Beta-Binomial distribution of

parameters (n + m, 2k, 2k).

Remark 5.3 For k = 1/2 (5.16) gives the KMP-dual, i.e., the Asymmetric KMP has the
same dual as the symmetric KMP, but of course with different σ -dependent duality function
given by

DAKMP(σ )
(L) (x, ξ) =

∏

i∈$L

1
ξi !

(
e−2σ Ei+1(x) − e−2σ Ei (x)

2σ

)ξi

(5.17)

6 Applications to Exponential Moments of Currents

The definition of the ASIP(q, k) process on the infinite lattice requires extra conditions on
the initial data. Indeed, when the total number of particles is infinite, there is the possibility of
the appearance of singularities, since a single site can accommodate an unbounded number
of particles. By self-duality we can however make sense of expectations of duality functions
in the infinite volume limit. This is the aim of the next section.

6.1 Infinite Volume Limit for ASIP(q, k)

In this section we approximate an infinite-volume configuration by a finite-volume configu-
ration and we appropriately renormalize the self-duality function to avoid divergence in the
thermodynamical limit.

Definition 6.1 (Good infinite-volume configuration)

(a) We say that η ∈ NZ is a “good infinite-volume configuration” for ASIP(q, k) iff for
η(L) ∈ NZ, L ∈ N, the restriction of η on [−L , L], i.e.

η
(L)
i =

{
ηi for i ∈ [−L , L]
0 otherwise

(6.1)

the limit

lim
L→∞

∏

i∈Z
q−2ξi Ni+1(η

(L)) Eξ

[
D(η(L), ξ(t))

]
(6.2)

exists and is finite for all t ≥ 0 and for any ξ ∈ NZ finite (i.e. such that
∑

i∈Z ξi < ∞).
(b) Let µ be a probability measure on NZ, then we say that it is a “good infinite-volume

measure” for ASIP(q, k) iff it concentrates on good infinite-volume configurations.

Proposition 6.1 (1) If η ∈ NZ is a “good infinite-volume configuration” for ASIP(q, k)
and ξ (ℓ1,...,ℓn) is the configurations with n particles located at sites ℓ1, . . . , ℓn ∈ Z, then
the limit
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lim
L→∞

n∏

m=1

q−2Nℓm+1(η
(L)) Eη(L)

[
D(η(t), ξ (ℓ1,...,ℓn))

]
(6.3)

is well-defined for all t ≥ 0 and is equal to

lim
L→∞

n∏

m=1

q−2Nℓm+1(η
(L)) Eξ (ℓ1,...,ℓn )

[
D(η(L), ξ(t))

]
(6.4)

(2) If η ∈ NZ is bounded, i.e. supi∈Z ηi < ∞, then it is a “good infinite-volume configura-
tion”.

(3) Let us denote byNλ(t) a Poisson process of rate λ > 0, and by E[·] the expectation w.r.
to its probability law. If µ is a probability measure on NZ such that for any λ > 0 the
expectation

Eµ

[
E
[
e
∑Nλ(t)

i=1 ηℓ+i

]]
(6.5)

is finite for all t ≥ 0 and for any ℓ ∈ Z, then µ is a “good infinite-volume measure”.

Proof (1) If η ∈ NZ is a good infinite volume configuration, then the duality relation with
duality function (5.3) makes sense after the following renormalization:

Eη(L)

[
D(η(t), ξ (ℓ1,...,ℓn))

] n∏

m=1

q−2Nℓm+1(η
(L))

= Eξ (ℓ1,...,ℓn )

[
D(η(L), ξ(t))

] n∏

m=1

q−2Nℓm+1(η
(L)) (6.6)

then the first statement of the Theorem follows after taking the limit as L → ∞ of (6.6).
(2) Let ξ be a finite configuration in NZ. We prove that for any bounded η ∈ NZ the family

of functions

SL (t) :=
∏

i∈Z
q−2ξi Ni+1(η

(L)) Eξ

[
D(η(L), ξ(t))

]
, L ∈ N (6.7)

is uniformly bounded.Without loss of generality we can suppose that ξ = ξ (ℓ1,...,ℓn), for
some {ℓ1, . . . , ℓn} ⊂ Z, n ∈ N. Moreover we denote by (ℓ1(t), . . . , ℓn(t)) the positions
of the n ASIP(q, k) walkers starting at time t = 0 from (ℓ1, . . . , ℓn). We then have
ξ(t) = ξ (ℓ1(t),...,ℓn(t)), and

SL(t) =
n∏

m=1

q−2Nℓm+1(η
(L)) Eξ (ℓ1,...,ℓn )

[
D(η(L), ξ(t))

]

= Eξ (ℓ1,...,ℓn )

[ L∏

i=1

(q2(η
(L)
i −ξi (t)+1); q2)ξi (t)
(q4k; q2)ξi (t)

· qξ2i (t) · 1
ξi (t)≤η

(L)
i

×
n∏

m=1

q−4kℓm (t)+2[Nℓm (t)+1(η
(L))−Nℓm+1(η

(L))]
]
.

As a consequence, since
(
q2(η−ξ+1); q2

)

ξ
· qξ2 · 1ξ≤η ≤ 1 (6.8)
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and

sup
ℓ≤n

1
(q4k; q2)ξ

≤ c (6.9)

for some c > 0, we have that there exists C > 0 such that

∣∣SL(t)
∣∣ ≤ C Eξ (ℓ1,...,ℓn )

[
n∏

m=1

q−4kℓm (t)+2[Nℓm (t)+1(η
(L))−Nℓm+1(η

(L))]
]

(6.10)

for all L ∈ N, t ≥ 0. Then, from the Cauchy–Schwarz inequality, in order to find an
upper bound for (6.10), it is sufficient to find an upper bound for

sL ,m(t) := Eξ (ℓ1,...,ℓn )

[
qκ{−4kℓm (t)+2[Nℓm (t)+1(η

(L))−Nℓm+1(η
(L))]}

]

for any fixed m ∈ {1, . . . , n} and κ ∈ N. Now, let M := supi∈Z ηi < ∞, then
∣∣Nℓm (t)+1(η

(L)) − Nℓm+1(η
(L))

∣∣ ≤ M |ℓm(t) − ℓm |
hence there exists C ′,ω > 0 such that

∣∣sL ,m(t)
∣∣ ≤ C ′ Eξ (ℓ1,...,ℓn )

[
eω|ℓm (t)−ℓm |

]
(6.11)

for any L ∈ N, t ≥ 0. Since ξ(t) has a finite number of particles, for eachm ∈ {1, . . . , n}
the process |ℓm(t) − ℓm | is stochastically dominated by a Poisson process N (t) with
parameter

λ := max
0≤η,η′≤n

{
qη−η′+(2k−1)[η]q [2k + η′]q

}
∨ max

0≤η,η′≤n

{
qη−η′−(2k−1)[2k + η]q [η′]q

}

(6.12)

then the right hand side of (6.11) is less or equal than

E
[
eωN (t)

]
= e−λt

∞∑

i=0

eωi (λt)
i

i ! < ∞. (6.13)

This proves that SL(t) is uniformly bounded.
(3) Suppose that the probability measure µ satisfies (6.5). Then, in order to prove that it is

a “good” measure, it is sufficient to show that

lim
L→∞

Eµ

[
∏

i∈Z
q−2ξi Ni+1(η

(L)) Eξ

[
D(η(L), ξ(t))

]]

< ∞ (6.14)

By exploiting the same arguments used in the proof of item 2), we claim that, in order
to prove (6.14) it is sufficient to show that for each fixed m = 1, . . . , n, κ > 0, the
function

*L ,m(t) := Eµ

[
Eξ (ℓ1,...,ℓn )

[
qκ{−4kℓm (t)+2[Nℓm (t)+1(η

(L))−Nℓm+1(η
(L))]}

]]
(6.15)

is uniformly bounded. We have that

*L ,m(t)

= Eµ

[
Eξ (ℓ1,...,ℓn )

[
q−4κkℓm (t)

(
q−2κ

∑ℓm (t)
i=ℓm+1 η

(L)
i 1ℓm<ℓm (t) + q2κ

∑ℓm
i=ℓm (t)+1 η

(L)
i 1ℓm (t)<ℓm

)]]

≤ Eµ

[
Eξ (ℓ1,...,ℓn )

[
q−4κkℓm (t)

(
q−2κ

∑ℓm (t)−ℓm
i=1 η

(L)
i+ℓm 1ℓm<ℓm (t) + 1

)]]
.
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Then the result follows as in proof of item 2) from the fact that the process ℓm(t)−ℓm is
stochastically dominated by a Poisson process of rate λ (6.12), and from the hypothesis
(6.5).

Later on, if we write expectations in the infinite volume we always refer to the limiting
procedure described above. Namely, for a “good infinite-volume configuration” η ∈ NZ, with
an abuse of notation we will write

n∏

m=1

q−2Nℓm+1(η) Eη

[
D(η(t), ξ (ℓ1,...,ℓn))

]

:= lim
L→∞

n∏

m=1

q−2Nℓm+1(η
(L)) Eη(L)

[
D(η(t), ξ (ℓ1,...,ℓn))

]
(6.16)

and
n∏

m=1

q−2Nℓm+1(η) Eξ (ℓ1,...,ℓn ) [D(η, ξ(t))]

:= lim
L→∞

n∏

m=1

q−2Nℓm+1(η
(L)) Eξ (ℓ1,...,ℓn )

[
D(η(L), ξ(t))

]
(6.17)

6.2 q-Exponential Moment of the Current of ASIP(q, k)

We start by defining the current for the ASIP(q, k) process on Z.

Definition 6.2 (Current) Let {η(t), t ≥ 0} be a càdlàg trajectory on the infinite-volume
configuration space NZ, then the total integrated current Ji (t) in the time interval [0, t] is
defined as the net number of particles crossing the bond (i − 1, i) in the right direction.
Namely, let (ti )i∈N be the sequence of the process jump times. Then

Ji (t) =
∑

k:tk∈[0,t]

(
1{η(tk )=η(t−k )i−1,i } − 1{η(tk )=η(t−k )i,i−1}

)
(6.18)

Lemma 6.1 (Current) The total integrated current of a càdlàg trajectory (η(s))0≤s≤t with
η(0) = η is given by

Ji (t) = Ni (η(t)) − Ni (η) := lim
L→∞

(
Ni (η

(L)(t)) − Ni (η
(L))

)
(6.19)

where Ni (η) is defined in (5.4) and η(L) is defined in (6.1). Moreover

lim
i→−∞

Ji (t) = 0 (6.20)

Proof (6.19) immediately follows from the definition of Ji (t), whereas (6.20) follows from
the conservation of the total number of particles. ⊓+
Proposition 6.2 (Current q-exponential moment via a dual walker) Let η ∈ NZ a good
infinite-volume configuration in the sense of Definition 6.1, then the first q-exponential
moment of the current when the process is started from η at time t = 0 is given by

Eη

[
q2Ji (t)

]
= q2(N (η)−Ni (η)) −

i−1∑

n=−∞
q4kn En

[
q−4km(t) (1 − q−2ηm(t)

)
q2(Nm(t)(η)−Ni (η))

]

(6.21)
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where m(t) denotes a continuous time asymmetric random walker on Z jumping left at rate
q−2k[2k]q and jumping right at rate q2k[2k]q and Ei denotes the expectation with respect to
the law of m(t) started at site i ∈ Z at time t = 0. Furthermore N (η) − Ni (η) =

∑
n<i ηn

and the first term on the right hand side of (6.21) is zero when there are infinitely many
particles to the left of i ∈ Z in the configuration η.

Proof To prove (6.21) we consider the configuration ξ (i) ∈ NZ with a single dual particle at
site i . Since the ASIP(q, k) is self-dual the dynamics of the single dual particle is given an
asymmetric random walk m(t) on Z whose rates are computed from the process definition
and coincides with those in the statement of the Proposition. From (6.16), (6.17) and item
(1) of Proposition 6.1 we have that

q−2Ni (η) Eη

[
D(η(t), ξ (i))

]
= q−(4ki+1)

q2k − q−2k q−2Ni (η) Eη

[
q2Ni (η(t)) − q2Ni+1(η(t))

]

is equal to

q−2Ni (η) Eξ (i)

[
D(η, ξ (m(t)))

]

= q−2Ni (η)
q−1

q2k − q−2k Ei

[
q−4km(t)(q2Nm(t)(η) − q2Nm(t)+1(η))

]

Then from (6.19) we get

Eη

[
q2Ji (t)

]
= q−2ηi Eη

[
q2Ji+1(t)

]

+ q4ki Ei

[
q−4km(t)(q2(Nm(t)(η)−Ni (η)) − q2(Nm(t)+1(η)−Ni (η))

)]
(6.22)

By iterating the relation in (6.22), for any n ≥ 0 we get

Eη

[
q2Ji+1(t)

]
= q2(Ni−n(η)−Ni+1(η)) Eη

[
q2Ji−n(t)

]

−
n∑

j=0

q2(Ni− j (η)−Ni+1(η))q4k(i− j)

×Ei− j

[
q−4km(t)(q2(Nm(t)(η)−Ni− j (η)) − q2(Nm(t)+1(η)−Ni− j (η))

)]
.

(6.23)

By taking the limit n → ∞ we get

Eη

[
q2Ji+1(t)

]
= lim

n→∞ q2(Ni−n(η)−Ni+1(η)) Eη

[
q2Ji−n(t)

]

−
∞∑

j=0

q−2Ni+1(η)q4k(i− j) Ei− j

[
q−4km(t)(q2Nm(t)(η) − q2Nm(t)+1(η)

)]

and using (6.20) we obtain (6.21). ⊓+

We continue with a lemma that is useful in the following (for the proof see e.g. [20]).

Lemma 6.2 Let x(t) be the random walk on Z jumping to the right with rate a ≥ 0 and to
the left with rate b ≥ 0, let α ∈ R, and A ⊆ R then

lim
t→∞

1
t
lnE0

[
αx(t)

∣∣∣ x(t) ∈ A
]
= sup

x∈A
{x ln α − I (x)} − inf

x∈A
I (x) (6.24)
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with

I (x) = (a + b) −
√
x2 + 4ab + x ln

(
x +

√
x2 + 4ab
2a

)

(6.25)

Remark 6.1 Let m(t) be the random walk defined in Proposition 6.2, then (6.24) holds with

I (x) = [4k]q −
√
x2 + (2[2k]q)2 + x ln

{
1

2[2k]qq2k
[
x +

√
x2 + (2[2k]q)2

]}
(6.26)

We denote by E⊗µ the expectation of the ASIP(q, k) process on Z initialized with the
homogeneous product measure on NZ with marginals µ at time 0, i.e.

E⊗µ[ f (η(t))] =
∑

η

(⊗i∈Zµ(ηi ))Eη[ f (η(t))].

Proposition 6.3 (q-moment for product initial condition)Consider an homogeneous product
probability measure µ on N. Then, for the infinite volume ASIP(q, k), we have

E⊗µ
[
q2Ji (t)

]
= E0

[(
q−4k

λq

)m(t)

1m(t)≤0

]

+E0

[
q−4km(t)

(
λ
m(t)
1/q −λ1/q+λ−1

q

)
1m(t)≥1

]

(6.27)

where λy := ∑∞
n=0 y

nµ(n) and m(t) is the random walk defined in Proposition 6.2. In
particular we have

lim
t→∞

1
t
ln e⊗µ[q2Ji (t)] = sup

x≥0

{
x lnMq − I (x)

}
− inf

x≥0
I (x) (6.28)

with Mq := q−4kλ1/q and I (x) given by (6.26).

Proof It is easy to check that an homogeneous product measure µ verifies the condition
(6.5) in Proposition 6.1, thus it is a good infinite-volume probability measure in the sense of
Definition 6.1. For this reason we can apply Proposition 6.2, and from (6.21) we have

E⊗µ
[
q2Ji (t)

]
=

∫
⊗µ(dη)Eη

[
q2Ji (t)

]

=
∫

⊗µ(dη)q2(N (η)−Ni (η))

+
i−1∑

n=−∞
q4kn

∫
⊗µ(dη)En

[
q−4km(t) (q−2ηm(t) − 1

)
q2(Nm(t)(η)−Ni (η))

]

(6.29)

Since
∫

⊗µ(dη)q2(Nm (η)−Ni (η)) = λi−m
q 1{m≤i} + λm−i

1/q 1{m>i} (6.30)

then, in particular,
∫

⊗µ(dη)q2(N (η)−Ni (η)) = 0 since λq < 1, where we recall the interpre-
tation of N (η) − Ni (η) from Proposition 6.2. Hence
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E⊗µ
[
q2Ji (t)

]
=

i−1∑

n=−∞
q4kn

∑

m∈Z
Pn (m(t) = m) q−4km

×
∫

⊗µ(dη)
[
q2(Nm+1(η)−Ni (η)) − q2(Nm (η)−Ni (η))

]

=
(
λ−1
q − 1

)
A(t)+

(
λ1/q − 1

)
B(t) (6.31)

with

A(t) :=
∑

n≤i−1

q4kn
∑

m≤i

Pn (m(t) = m) q−4kmλi−m
q (6.32)

and

B(t) :=
∑

n≤i−1

q4kn
∑

m≥i+1

Pn (m(t) = m) q−4kmλm−i
1/q (6.33)

Now, let α := q−4kλ−1
q , then

A(t) =
∑

n≤i−1

q4knλiq
∑

m≤i

Pn (m(t) = m)αm

=
∑

j≥1

λ
j
q

∑

m̄≤ j

P0 (m(t) = m̄)αm̄

=
∑

m̄≤0

αm̄P0 (m(t) = m̄)
∑

j≥1

λ
j
q +

∑

m̄≥1

αm̄P0 (m(t) = m̄)
∑

j≥m̄

λ
j
q

= 1
1 − λq

{
λq E0

[
αm(t) 1m(t)≤0

]
+ E0

[
q−4km(t) 1m(t)≥1

]}
(6.34)

Analogously one can prove that

B(t) = 1
λ1/q − 1

{
E0

[
βm(t) 1m(t)≥2

]
− λ1/qE0

[
q−4km(t) 1m(t)≥2

]}
(6.35)

with β = q−4kλ1/q then (6.27) follows by combining (6.31), (6.34) and (6.35).
In order to prove (6.28) we use the fact that m(t) has a Skellam distribution with parame-

ters ([2k]qq2k t, [2k]qq−2k t), i.e. m(t) is the difference of two independent Poisson random
variables with those parameters. This implies that

E0

[(
q−4k

λq

)m(t)

1m(t)≤0

]

= E0

[
λm(t)
q 1m(t)≥0

]
.

Then we can rewrite (6.27) as

E⊗µ
[
q2Ji (t)

]
= E0

[
λm(t)
q 1m(t)≥1

]
+ P0 (m(t) = 0)

+
(
λ−1
q − λ1/q

)
E0

[
q−4km(t)1m(t)≥1

]
+ E0

[
Mm(t)

q 1m(t)≥1

]

= E0

[
Mm(t)

q 1m(t)≥0

]
(1+ E1(t)+ E2(t)+ E3(t)+ E4(t)) (6.36)

with

E1(t) :=
E0

[
Mm(t)

q 1m(t)≥1

]

E0

[
Mm(t)

q 1m(t)≥0

] , E2(t) :=
P0 (m(t) = 0)

E0

[
Mm(t)

q 1m(t)≥0

]
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and

E3(t) :=
E0

[
λ
m(t)
q 1m(t)≥1

]

E0

[
Mm(t)

q 1m(t)≥0

] , E4(t) :=

(
λ−1
q − λ1/q

)
E0

[
q−4km(t)1m(t)≥1

]

E0

[
Mm(t)

q 1m(t)≥0

] (6.37)

To identify the leading term in (6.36) it remains to prove that, for each i = 1, 2, 3 there exists
ci > 0 such that

sup
t≥0

|Ei (t)| ≤ ci (6.38)

This would imply, making use of Lemma 6.2, the result in (6.28). The bound in (6.38) is
immediate for i = 1, 2, 3. To prove it for i = 4 it is sufficient to show that there exists c > 0
such that

λ−1
q E0

[
q−4km(t)1m(t)≥1

]
≤ cE0

[(
q−4kλ1/q

)m(t)
1m(t)≥1

]
. (6.39)

This follows since there exists m∗ ≥ 1 such that for any m ≥ m∗ λ−1
q ≤ λm1/q and then

λ−1
q E0

[
q−4km(t)1m(t)≥1

]
≤ λ−1

q E0

[
q−4km(t)11≤m(t)<m∗

]
+ E0

[
q−4km(t)λ

m(t)
1/q 1m(t)≥m∗

]

≤ λ−1
q E0

[
q−4km(t)11≤m(t)

]
+ E0

[
q−4km(t)λ

m(t)
1/q 1m(t)≥1

]

≤
(
1+ λ−1

q

)
E0

[(
q−4kλ1/q

)m(t)
1m(t)≥1

]
. (6.40)

This concludes the proof. ⊓+

6.3 Infinite Volume Limit for ABEP(σ, k)

Definition 6.3 (Good infinite-volume configuration)

(a) We say that x ∈ RZ
+ is a “good infinite-volume configuration” for ABEP(σ, k) iff for

x (L) ∈ RZ
+, L ∈ N, the restriction of x to [−L , L], i.e.

x (L)i =
{
xi for i ∈ [−L , L]
0 otherwise

(6.41)

the limit

lim
L→∞

∏

i∈Z
e2σξi Ei+1(x (L)) Eξ

[
Dσ (x (L), ξ(t))

]
(6.42)

exists and is finite for all t ≥ 0 and for any ξ ∈ NZ finite (i.e. such that
∑

i∈Z ξi < ∞).
(b) Let µ be a probability measure on RZ

+, then we say that it is a “good infinite-volume
measure” for ABEP(σ, k) iff it concentrates on good infinite-volume configurations.

Proposition 6.4 (1) If x ∈ RZ
+ is a “good infinite-volume configuration” for ABEP(σ, k)

and ξ (ℓ1,...,ℓn) is the configurations with n particles located at sites ℓ1, . . . , ℓn ∈ Z, then
the limit

lim
L→∞

n∏

m=1

e2σ Eℓm+1(x (L)) Ex (L)

[
Dσ (x(t), ξ (ℓ1,...,ℓn))

]
(6.43)
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is well-defined for all t ≥ 0 and is equal to

lim
L→∞

n∏

m=1

e2σ Eℓm+1(x (L)) Eξ (ℓ1,...,ℓn )

[
Dσ (x (L), ξ(t))

]
(6.44)

(2) If x ∈ RZ
+ is bounded, i.e. supi∈Z xi < ∞, then it is a “good infinite-volume configura-

tion” for ABEP(σ, k).
(3) Let us denote byNλ(t) a Poisson process of rate λ > 0, and by E[·] the expectation w.r.

to its probability law. If µ is a probability measure on RZ
+ such that for any λ > 0 the

expectation

Eµ

[
E
[
e
∑Nλ(t)

i=1 xℓ+i

]]
(6.45)

is finite for all t ≥ 0 and for any ℓ ∈ Z, then µ is a “good infinite-volume measure” for
ABEP(σ, k).

Proof The proof is analogous to the proof of Proposition 6.1. ⊓+

Later on for a “good” infinite-volume configuration x ∈ RZ
+ we will write

∏

i∈Z
e2σξi Ei+1(x) Eξ

[
Dσ (x, ξ(t))

]
:= lim

L→∞

∏

i∈Z
e2σξi Ei+1(x (L)) Eξ

[
Dσ (x (L), ξ(t))

]

(6.46)

and
n∏

m=1

e2σ Eℓm+1(x) Ex

[
Dσ (x(t), ξ (ℓ1,...,ℓn))

]

:= lim
L→∞

n∏

m=1

e2σ Eℓm+1(x (L)) Ex (L)

[
Dσ (x(t), ξ (ℓ1,...,ℓn))

]
(6.47)

6.4 e−σ -Exponential Moment of the Current of ABEP(σ, k)

We start by defining the current for the ABEP(σ, k) process on Z.

Definition 6.4 (Current) Let {x(t), t ≥ 0} be a càdlàg trajectory on the infinite-volume
configuration space RZ

+, then the total integrated current Ji (t) in the time interval [0, t] is
defined as total energy crossing the bond (i − 1, i) in the right direction.

Ji (t) = Ei (x(t)) − Ei (x(0)) := lim
L→∞

(
Ei (x (L)(t)) − Ei (x (L))

)
(6.48)

where Ei (x) is defined in (3.2) and x (L) as in (6.41).

Lemma 6.3 (Current) We have limi→−∞ Ji (t) = 0.

Proof It immediately follows from the conservation of the total energy. ⊓+

Proposition 6.5 (Current exponential moment via a dual walker) The first exponential
moment of Ji (t) when the process is started from a “good infinite-volume initial config-
uration” x ∈ RZ

+ at time t = 0 is given by
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Ex

[
e−2σ Ji (x(t))

]
= e−4kt

∑

n∈Z
e−2σ (En(x)−Ei (x)) I|n−i |(4kt) (6.49)

where In(t) is the modified Bessel function.

Proof Let ξ (ℓ) ∈ RZ
+ be the configurationwith a single particle at site ℓ. Since theABEP(σ, k)

is dual to the SIP(2k) the dynamics of the single dual particle is given by a continuous time
symmetric random walker ℓ(t) on Z jumping at rate 2k. Since x is a good configuration we
have that the normalized expectation

e2σ Ei (x) Ex

[
D(x(t), ξ (ℓ))

]
= 1

4kσ
e2σ Ei (x) Ex

[
e−2σ Eℓ+1(x(t)) − e−2σ Eℓ(x(t))

]

and, from the duality relation (5.5) this is also equal to:

e2σ Ei (x) Eξ (ℓ)

[
D(x, ξ (ℓ(t)))

]
= 1

4kσ
e2σ Ei (x) Eℓ

[
e−2σ Eℓ(t)+1(x) − e−2σ Eℓ(t)(x)

]

where Eℓ denotes the expectation with respect to the law of ℓ(t) started at site ℓ ∈ Z at time
t = 0. As a consequence, for any ℓ ∈ Z

e2σ Ei (x) Ex

[
e−2σ Eℓ+1(x(t))

]
= e2σ Ei (x) Ex

[
e−2σ Eℓ(x(t))

]

+ e2σ Ei (x) Eℓ

[
e−2σ Eℓ(t)+1(x) − e−2σ Eℓ(t)(x)

]
(6.50)

from which it follows

e2σ Ei (x) Ex

[
e−2σ Ei (x(t))

]
= e2σ Ei (x)

∑

ℓ≤i−1

Eℓ

[
e−2σ Eℓ(t)+1(x) − e−2σ Eℓ(t)(x)

]

= e2σ Ei (x)
∑

ℓ≤i−1

E0

[
e−2σ Eℓ(t)+ℓ+1(x) − e−2σ Eℓ(t)+ℓ(x)

]

= e2σ Ei (x)
∑

m≤i

E0

[
e−2σ Eℓ(t)+m (x)

]
−

∑

ℓ≤i−1

E0

[
e−2σ Eℓ(t)+ℓ(x)

]

= e2σ Ei (x) E0

[
e−2σ Eℓ(t)+i (x)

]

= e2σ Ei (x) Ei

[
e−2σ Eℓ(t)(x)

]
. (6.51)

Thus we have arrived to

Ex

[
e−2σ Ji (t)

]
= Ei

[
e−2σ(Eℓ(t)(x)−Ei (x))

]
(6.52)

and the result (6.49) follows since

Ei ( f (ℓ(t)) =
∑

n∈Z
f (n) · Pi (ℓ(t) = n)

with

Pi (ℓ(t) = n) = P(ℓ(t) = n | ℓ(0) = i)

= e−4kt I|n−i |(4kt) (6.53)

where In(x) is the modified Bessel function. ⊓+
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Remark 6.2 Let ℓ(t) be a continuous time symmetric random walk on Z jumping at rate 2k,
then (6.24) holds with

I (x) = 4k −
√
x2 + (4k)2 + x ln

{
1
4k

[
x +

√
x2 + (4k)2

]}
(6.54)

We denote by E⊗µ the expectation of the ABEP(σ, k) process on Z initialized with the
omogeneous product measure on RZ with marginals µ at time 0, i.e.

E⊗µ[ f (x(t))] =
∫

(⊗i∈Zµ(dxi )) Ex [ f (x(t))] (6.55)

Proposition 6.6 (Exponential moment for product initial condition) Consider a probability
measure µ on R+. Then, for the infinite volume ABEP(σ, k), we have

E⊗µ
[
e−2σ Ji (t)

]
= P0 [ℓ(t) = 0]+ E0

[(
λ

ℓ(t)
+ + λ

ℓ(t)
−

)
1ℓ(t)≥1

]
(6.56)

where λ± :=
∫
µ(dy)e±2σ y and ℓ(t) is the randomwalk defined in Remark 6.2. In particular

we have

lim
t→∞

1
t
ln e⊗µ[e−2σ Ji (t)] = sup

x≥0
{x ln λ+ − I (x)} − inf

x≥0
I (x) (6.57)

with I (x) given by (6.54).

Proof It is easy to check that an homogeneous productmeasureµ verifies the condition (6.45)
in Proposition 6.1, thus it is a good infinite-volume probability measure for ABEP(σ, k) in
the sense of Definition 6.3. Thus we can apply Proposition 6.5, in particular from (6.52) we
have

E⊗µ
[
e−2σ Ji (t)

]
=
∫

⊗µ(dx)Ex

[
e−2σ Ji (t)

]

=
∫

⊗µ(dx)Ei

[
e−2σ(Eℓ(t)(x)−Ei (x))

]

=
∑

n∈Z
Pi (ℓ(t) = n)

∫
⊗µ(dx)e−2σ (En(x)−Ei (x)).

Since
∫

⊗µ(dη)e−2σ (Ex (η)−Ei (η)) = λi−n
− 1{n≤i} + λn−i

+ 1{n>i} (6.58)

it follows that

E⊗µ
[
e−2σ Ji (t)

]
=

∑

n≤i

Pi (ℓ(t) = n) λi−n
− +

∑

n≥i+1

Pi (ℓ(t) = n) λn−i
+

= Ei

[
λ
i−ℓ(t)
− 1ℓ(t)≤i + λ

ℓ(t)−i
+ 1ℓ(t)≥i+1

]

= E0

[
λ

−ℓ(t)
− 1ℓ(t)≤0 + λ

ℓ(t)
+ 1ℓ(t)≥1

]

= E0

[
λ

ℓ(t)
− 1ℓ(t)≥0 + λ

ℓ(t)
+ 1ℓ(t)≥1

]
(6.59)

where the last identity follows from the symmetry of ℓ(t). Then (6.56) is proved.
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In order to prove (6.57) we rewrite (6.56) as

E⊗µ
[
e−2σ Ji (t)

]
= E0

[
λ

ℓ(t)
+ 1ℓ(t)≥0

]
(1+ E1(t)+ E2(t)) (6.60)

with

E1(t) :=
E0

[(
λ

ℓ(t)
+ + λ

ℓ(t)
−

)
1ℓ(t)≥1

]

E0

[
λ

ℓ(t)
+ 1ℓ(t)≥0

] , E2(t) :=
P0 (x(t) = 0)

E0

[
λ

ℓ(t)
+ 1ℓ(t)≥0

]

where for i = 1, 2 there exists ci > 0 such that

sup
t≥0

|Ei (t)| ≤ ci (6.61)

This and the result of Remark 6.2 conclude the proof of (6.57). ⊓+

Appendix: Algebraic Construction of ASIP(q, k) and Proof of the Self-
Duality

In this section we give the a sketch of the proof of Theorem 5.1. Because it follows closely
the lines of [13] we will only indicate the places where there are significant differences with
the proof in [13]. The main steps are

1. Central element Start from a central element C in a Lie algebra (in our case the Casimir
element of Uq(su(1, 1))).

2. Coproduct, Hamiltonian and ground state Apply a coproduct to turn C into a two-
site Hamiltonian Hi,i+1, and into a L-site Hamiltonian via H(L) =

∑L−1
i=1 Hi,i+1. This

Hamiltonian has by construction symmetries and the zero state |0⟩⊗ . . .⊗ |0⟩ as a ground
state. By acting with a suitable symmetry S+(L), we obtain a strictly positive ground state.

3. Markov generator Turn the Hamiltonian into a Markov generator using the positive
ground state.

4. Self-dualityA self-duality function is obtained by acting with a symmetry obtained from
S+(L) on the cheap self-duality functiond(η, ξ) = 1

µ(η)δη,ξ withµ(η) a reversiblemeasure.

The Quantum Lie Algebra Uq(su(1, 1)), Casimir Element and Representation

For q ∈ (0, 1) we consider the algebra with generators K+, K−, K 0 satisfying the commu-
tation relations

[K+, K−] = −[2K 0]q , [K 0, K±] = ±K± , (7.1)

where [·, ·] denotes the commutator, i.e. [A, B] = AB − BA, and

[2K 0]q := q2K
0 − q−2K 0

q − q−1 . (7.2)

This is the quantum Lie algebra Uq(su(1, 1)) (for more details see e.g. [8]), that in the limit
q → 1 reduces to the Lie algebra su(1, 1). The Casimir element is

C = [K 0]q [K 0 − 1]q − K+K− (7.3)
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For our constructionwe chose the following unitary representation of the quantumLie algebra
Uq(su(1, 1)) is given by

⎧
⎪⎨

⎪⎩

K+|n⟩ = √[n + 2k]q [n + 1]q |n + 1⟩
K−|n⟩ = √[n]q [n + 2k − 1]q |n − 1⟩
K 0|n⟩ = (n + k) |n⟩.

(7.4)

k ∈ N. Here the collection of columnvectors |n⟩, with n ∈ N, denote the standard orthonormal
basis with respect to the Euclidean scalar product, i.e. |n⟩ = (0, . . . , 0, 1, 0, . . . , 0)T with
the element 1 in the nth position and with the symbol T denoting transposition. Here and in
the following, with abuse of notation, we use the same symbol for a linear operator and the
matrix associated to it in a given basis. In the representation (7.4) the ladder operators K+

and K− are one the adjoint of the other, namely

(K+)∗ = K− (7.5)

and the Casimir element is given by the diagonal matrix

C |n⟩ = [k]q [k − 1]q |n⟩.
The choice of the representation (7.4) is mainly motivated by the fact that, after ground state
transformation the Hamiltonian in Definition 6.5 below becomes the generator of the SIP in
the limit q → 1.

Co-product

A co-product for the quantum Lie algebra Uq(su(1, 1)) is defined as the map 6 :
Uq(su(1, 1)) → Uq(su(1, 1)) ⊗ Uq(su(1, 1))

6(K±) = K± ⊗ q−K 0 + qK 0 ⊗ K± ,

6(K 0) = K 0 ⊗ 1+ 1 ⊗ K 0. (7.6)

The co-product is an isomorphism for the quantum Lie algebra Uq(su(1, 1)), i.e.

[6(K+),6(K−)] = −[26(K 0)]q , [6(K 0),6(K±)] = ±6(K±). (7.7)

The Quantum Hamiltonian

A natural candidate for the quantum Hamiltonian operator is obtained by applying the co-
product to the Casimir operator C in (7.3). Using the co-product definition (7.6), simple
algebraic manipulations yield the following definition.

Definition 6.5 (Quantum Hamiltonian) For every L ∈ N, L ≥ 2, we consider the operator
H(L) defined by

H(L) :=
L−1∑

i=1

Hi,i+1
(L) =

L−1∑

i=1

(
hi,i+1
(L) + c(L)

)
, (7.8)

where

c(L) =
(
q2k − q−2k) (q2k−1 − q−(2k−1))

(q − q−1)2
1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

L times

(7.9)
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and

hi,i+1
(L) := 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

(i−1) times

⊗6(Ci ) ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
(L−i−1) times

(7.10)

and, from (7.3) and (7.6),

6(Ci ) = 6(K+
i )6(K−

i ) − 6([K 0
i ]q)6([K 0

i − 1]q) (7.11)

Explicitely

6(Ci ) = qK 0
i

{
K+
i ⊗ K−

i+1 + K−
i ⊗ K+

i+1

}
q−K 0

i+1

+ K+
i K−

i ⊗ q−2K 0
i+1 + q2K

0
i ⊗ K+

i+1K
−
i+1

− 1
(q − q−1)2

{
q−1q2K

0
i ⊗ q2K

0
i+1 + qq−2K 0

i ⊗ q−2K 0
i+1 − (q + q−1)

}
(7.12)

Remark 6.3 1. The diagonal operator c(L) in (7.9) has been added so that the ground state
|0⟩(L) := ⊗L

i=1|0⟩i is a right eigenvector with eigenvalue zero, i.e. H(L)|0⟩(L) = 0 as it
is immediately seen using (7.4).

2. In the representation (7.4) the operator H(L) is self-adjoint. This follows essentially from
the fact that, in this representation, (K+)∗ = K− and K 0 is self-adjoint.

Symmetries of the Hamiltonian

The symmetries It is easy to construct symmetries for the operator H(L) by using the property
that the co-product is an isomorphism for the Uq(su(1, 1)) algebra. These are the basic
symmetries. From them, using a q-deformed exponential we construct a non-trivial symmetry
generating both the positive ground state as well as the self-duality functions. We state the
main result, and refer for the proof to [13] which can be followed literally, up to a few changes
of sign.

Theorem 6.1 (Symmetries of H(L)) Recalling (7.6), we define the operators

K±
(L) := 6L−1(K±

1 ) =
L∑

i=1

qK 0
1 ⊗ · · · ⊗ qK 0

i−1 ⊗ K±
i ⊗ q−K 0

i+1 ⊗ . . . ⊗ q−K 0
L ,

K 0
(L) := 6L−1(K 0

1 ) =
L∑

i=1

1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
(i−1) times

⊗K 0
i ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸

(L−i) times

. (7.13)

They are symmetries of the Hamiltonian (7.8), i.e.

[H(L), K
±
(L)] = [H(L), K

0
(L)] = 0. (7.14)

Construction of ASIP(q, k) from the Quantum Hamiltonian via a Positive Ground
State

In order to construct the suitable (i.e., positive) ground state of the quantum Hamiltonian,
we act with a non-trivial symmetry on the trivial groundstate. This symmetry is defined via
a q-exponential of 6(L−1)(qK0K+), where the q-exponential is defined via

expq2(x) =
∑

n≥0

xn

[n]q !
q−n(n−1)/2 (7.15)
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From that ground state is then constructed a Markov process.

Theorem 6.2 1. The operator

S+(L) := expq2(6
(L−1)(qK0K+)) (7.16)

is a symmetry of H(L). Its matrix elements are given by

⟨η1, ..., ηL |S+(L)|ξ1, ..., ξL ⟩ =
L∏

i=1

√(
ηi

ξi

)

q

(
ηi + 2k − 1
ξi + 2k − 1

)

q

· 1ηi≥ξi q
(ηi−ξi )

[
1+k+ξi+2

∑i−1
m=1(ξm+k)

]

(7.17)

2. As a consequence

|g⟩ = S+(L)|0, . . . , 0⟩ =
∑

ℓ1,ℓ2,...,ℓL≥0

L∏

i=1

√(
2k + ℓi − 1

ℓi

)

q
· qℓi (1−k+2ki) |ℓ1, ..., ℓL ⟩

is a ground state of H(L).
3. The operator

L (L) = G−1
(L)H(L)G(L) (7.18)

where

G(L)|η1, . . . , ηL ⟩ = |η1, . . . , ηL ⟩⟨η1, . . . , ηL |S+|0, . . . , 0⟩ (7.19)

is a Markov generator explicitly given by

(L (L) f )(η) =
L−1∑

i=1

(Li,i+1 f )(η) with

(Li,i+1 f )(η) = qηi−ηi+1+(2k−1)[ηi ]q [2k + ηi+1]q( f (ηi,i+1) − f (η))

+ qηi−ηi+1−(2k−1)[2k + ηi ]q [ηi+1]q( f (ηi+1,i ) − f (η)) (7.20)

4.

G−1
(L)S

+
(L)G

−1
(L) (7.21)

is a self-duality function for the process generated by L (L). It is exactly the self-duality
function of (5.2).

Proof As in [13], using pseudo factorization, and acting with S+(L) on the trivial duality
function coming from the reversible measure µ(η) given by µ(η) = ⟨η|G2

(L)|η⟩. ⊓+
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