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Chapter 1

Introduction

1.1 Backgrounds

As data in numerous working communication systems across noisy channels in-
creases, the demand for its reliability grows tremendously. On such a problem for
reliable data transmission, C. E. Shannon observed that reliable communication
systems across noisy channels could be represented by the block diagram shown
in Figure 1.1 and showed an epoch-making and farseeing work so called the chan-
nel coding theorem [55]. This theorem states that appropriate codeword set with
rate below channel capacity and sufficiently large length enables to achieve an
arbitrary small error probability of transmitting data. Although the determinis-
tic design of such codes has not been presented yet, their establishment has been
the ultimate goal of data communication. On the other hand, from the com-
binatorial and constructive viewpoint, R. W. Hamming firstly presented single
error-correcting codes called Hamming codes [24], and coding theory originated
in their works.

A fundamental problem of coding theory is to find and design constructive
good codes with reasonable encoding and decoding complexity. In this disserta-
tion, good codes mean that their length, information rate and relative minimum
distance are generally large.

Linear codes form an important class among all codes. In particular, they

Encoder Channel - Decoder
Message Codeword Recel\éed Message
wor

Noise

Figure 1.1: Block diagram of a reliable communication system.



provide the reasonable encoding complexity because their encoding is established
by a matrix multiplication, and also infinitely many sequences of linear codes
asymptotically attain the Gilbert-Varshamov bound [37, 68] which is known as
a criterion of good linear codes. So far many good linear codes with reasonable
decoding complexity have been designed, for example BCH codes [25, 5], Reed-
Solomon codes [49], Goppa codes [16] and so on.

Reed-Solomon codes are known as maximum distance separable codes, that
is, they have theoretical largest relative minimum distance for any possible in-
formation rate. However, the length of Reed-Solomon codes are restricted to at
most finite field size plus one. On the other hand, the design of length and infor-
mation rate of BCH codes is considerably flexible, and also BCH codes include
many good codes. However, their relative minimum distance at positive informa-
tion rate becomes arbitrary small for sufficiently large length [2]. Goppa codes
overcome the shortcoming of BCH codes mentioned above, as an appropriate
sequence of Goppa codes asymptotically achieves the Gilbert-Varshamov bound
[17]. Unfortunately, the design of good Goppa codes with sufficiently large length
has not been established. Thus, for a long time, the design of constructive good
linear codes with sufficiently large length was an open problem for linear codes.

In 1981, V. D. Goppa presented a new class of linear codes by using algebraic
curves over finite fields and a lower bound of their minimum distance [19, 20, 21],
in his deep sight that the Goppa codes could be regarded as linear codes on
algebraic lines [18]. Nowadays, these codes are called algebraic geometric codes
or geometric Goppa codes, and the lower bound of their minimum distance is
called the Goppa designed distance or Goppa bound. Because of the connection
between the genus and Goppa designed distance, good algebraic geometric codes
are composed of any algebraic curve with many rational points as compared with
its genus, where genus is an invariant of the algebraic curve. Thus, a fundamental
problem of algebraic geometric codes is to find such an algebraic curve and design
codes on this one explicitly. In particular, Miura [39] presented two extensive
families of plane curves which were denoted by C’g and TC’Z and provided their
parity check matrices. Also, these families CZ and TC’Z include the well-known
elliptic, hyper-elliptic and Hermitian curves, and besides many maximal curves
which mean that their rational points are maximal as compared with their genus.
Therefore, the class of codes on algebraic curves in C% and ,C® include many
constructive good codes. In fact, the codes on many algebraic curves in C’Z and
,C" have better parameters than the conventional algebraic codes [42, 70, 71].

Thara [26] and Tsfasman et al. [62, 60] showed the existence of algebraic curves
which attained the Drinfeld-Vladut bound by studying the number of rational
points and genera on modular curves over finite fields. This means that there
exists a sequence of codes satisfying the Tsfasman-Vladut-Zink bound which is
better than the Gilbert-Varshamov bound in a certain range when finite field size
is a square and at least 49. Furthermore, Katsman et al. [29, 67, 68] showed that
the construction of the modular curves and the corresponding codes could be done



with polynomial complexity of degree 20 for classical modular curves and degree
30 for Drinfeld modular curves. The degree for the latter was reduced to 17 by
Lopéz [35]. These remarkable works provided a solution for the polynomial-time
design of good codes with sufficiently large length, and hence attracted many
coding theoreticians to algebraic geometric codes. However, the construction of
codes on modular curves still has too high complexity for practical applications.
On the other hand, Garcia and Stichtenoth [14, 15] recently presented two distinct
towers of Artin-Schreier extensions of algebraic function fields over finite fields,
which attained the Drinfeld-Vladut bound. These towers have an advantage
over sequences of modular curves in that they have the explicit descriptions.
At the present time, many coding theoreticians have attempted to give explicit
descriptions of codes from any algebraic function field on these towers, for example
[69, 23, 64, 46, 47]. Unfortunately, this objective is not quite finished yet.

In another aspect of algebraic geometric codes, their class was extremely ex-
tensive among all linear codes, for example this class included Reed-Solomon
codes as algebraic geometric codes on algebraic lines. Goppa claimed that ev-
ery linear code could be represented by algebraic geometric codes on appropriate
algebraic curves [20], and unfortunately his proof was not sufficient. In 1991,
Pellikaan et al. [48] eventually, completely solved this problem. Therefore, all
linear codes can be classified in compliance with their algebraic geometric repre-
sentation.

In 1989, Justesen et al. [28] first developed a decoding algorithm for algebraic
geometric codes on plane curves. Further, Skorobogatov and Vladut [56] extended
this algorithm to arbitrary algebraic curves. These algorithms can be decoded up
to half the Goppa designed distance minus the genus. These remarkable works
caused an active period of research on decoding algorithms for algebraic geometric
codes. In 1993, Feng and Rao [9] eventually completed this decoding problem by
using the majority voting among unknown syndromes. The decoding algorithm
proposed by Feng and Rao can correct up to half the Goppa designed distance
with polynomial complexity of at most degree three. Furthermore, the majority
voting among unknown syndromes supplied a new lower bound of the minimum
distance beyond the Goppa bound. Now, this lower bound of the minimum
distance is called the Feng-Rao designed distance or Feng-Rao bound.

Summarizing the results above for algebraic geometric codes, Goppa’s con-
struction provides many constructive good codes with reasonable decoding com-
plexity. However, as the theory of algebraic geometric codes depended heavily on
methods and results from algebraic curves, many beginners required much time
and effort on the comprehension of this theory. So this fact yielded the move-
ment to give an elementary treatment for algebraic geometric codes. The earlier
works concerned with this movement were given by Lint et al. [34] and Justesen
et al. [28]. From the viewpoint of majority voting among unknown syndromes,
Feng et al. [9, 11, 13] simplified the construction, decoding and parameter de-
termination for algebraic geometric codes without directly using the theory of



algebraic curves. Besides, Feng and Rao [12] proposed a new construction of
linear codes on arbitrary algebraic varieties and gave several examples such that
the proposed codes had better parameters than the ordinary algebraic geometric
codes when their information rate was sufficiently large. Based on these works
for algebraic geometric codes, Miura [42, 43] formulated the decoding by major-
ity voting among unknown syndromes and the Feng-Rao designed distance for
arbitrary linear codes by introducing the notion of ordered bases. Consecutively,
Miura [42, 43, 44] presented an explicit construction of linear codes on algebraic
varieties and curves by using the monomial orders and Grobner bases.

1.2 Objects and Outline of the Dissertation

The generalization of construction and decoding from the codes on algebraic
curves to arbitrary linear codes yields optimization problems for the Feng-Rao
designed distance. This dissertation deals with the design and optimization of lin-
ear codes with Feng-Rao designed distance in compliance with their construction
methods.

The dissertation consists of six chapters. After the introduction, Chapter
2 is devoted to show the fundamental concepts of error-correcting codes. We
first show the basic concept of block codes and their encoding and decoding
problems. Next, we introduce linear codes for the purpose of simplifying the
encoding and decoding. Lastly, we briefly survey algebraic geometric codes by
Goppa’s formulation and their basic properties.

In Chapter 3, we provide a criterion for linear codes with Feng-Rao designed
distance. We first investigate the equivalent relation for ordered bases to have
the identical Feng-Rao designed distance. As a result, we obtain a representative
of ordered bases which provide the identical Feng-Rao designed distance. This
representative is called standard normal form. Furthermore, we present a trans-
lation of any ordered basis to ordered basis whose Feng-Rao designed distance is
not less than the former.

In Chapter 4, we show an optimization problem of monomial orders for the
Feng-Rao designed distance of the codes on the Hermitian curve. We present
explicit descriptions of the Hermitian codes for any monomial order. Then, we
investigate the relationship between the monomial orders and well-behaving pairs.
As a result, we obtain various conditions for monomial orders to have the large
Feng-Rao designed distance, and then present a class of monomial orders which
provide the largest Feng-Rao designed distance for any redundancy.

In Chapter 5, we consider the third function field on a Garcia-Stichtenoth’s
tower of function fields. This function field has many rational places as compared
with its genus, and therefore generates many good algebraic geometric codes. We
present an explicit and complete description of one-point codes from the third
function field. Also, we optimize the decoding complexity of the proposed codes



in the viewpoint of the number of generators of nongaps. Especially, a proposed
code has the parameter [4047,1047,2504] whereas the corresponding BCH code
has the parameter [4047,1047,1980]. This code can be decoded up to more 261
errors than the corresponding BCH codes.

Chapter 6 summarize results of the dissertation.

Notation: Let K denote a field and K its algebraic closure. Let F, = GF(q)
denote the finite field with ¢ elements. Let R denote the field of real numbers
and Q the field of rational numbers. Let Z denote the set of integers, N the set of
positive integers, and Ny the set of nonnegative integers. Let [m, n| denote the set
of integers which are at least m and at most n. The cardinality of a finite set .S is
denoted by #S. Let 0 and 1 denote (0,0,---,0) and (1,1,---,1), respectively.
The transpose of any matrix M is denoted by M.



Chapter 2

Fundamental Concepts of
Error-Correcting Codes

In this chapter, we give a brief survey of the concepts of error-correcting codes.
Suppose that we wish to transmit a sequence of finite alphabet across a noisy
channel. If we transmit any symbol, then the transmitted symbol will probably
be received. Occasionally, however, the channel noise will cause a transmitted
symbol to be mistakenly interpreted as another symbol. Although we are unable
to prevent the channel from causing such errors, we can reduce their undesirable
effects with the use of coding. The basic idea of error-correcting codes is simple.
We take a set of £ massage symbols which we wish to transmit, annex to them
r check symbols, and transmit the entire block of n = k 4+ r symbols. Assuming
that the channel noise changes sufficiently few of these n transmitted symbols,
the r check symbols may provide the receiver with sufficient information to enable
him to detect and correct the channel errors. This is shown in Figure 2.1.
According to the method of coding, error-correcting codes can be divided
broadly into block codes and tree codes. In this dissertation, we consider the

k digit n digit n digit k digit
block block block block
Encoder Channel ; Decoder
Message Codeword Received Message

word
Noise
Message: k digits
Codeword: n digits

Information rate: k/n

Figure 2.1: Error-correcting codes across a noisy channel.



block codes as the object of our research. This chapter is organized as follows.
In Section 2.1, we show the basic concept of the block codes and their encoding
and decoding problems. In Section 2.2, we introduce linear codes which are
block codes with some algebraic structure. Their algebraic structure simplify
their encoding and decoding problems. In Section 2.3, we provide the definition
of algebraic geometric codes by Goppa’s formulation and develop their main
properties.

2.1 Block Codes

We briefly formalize the error-correcting principle based on block codes. As for
the deep and general analysis for the block codes, we refer to [3, 4, 27, 36, 31].
Let F be a finite alphabet with ¢ symbols, say F = {0,1,2,--- ,¢ — 1}. Let
F™ denote the set of m-tuples of F for any positive integer m. An element of F™
means a sequence of length m. An encoder is formulated by an injective map

£:FF - T, (2.1)

and the image of this map & forms an [n, k] block code C. The number n, k
and r = n — k are called length, number of information symbols and redundancy,
respectively. Also, the number k/n means an efficiency of transmission and is
called information rate. A decoder for the block code C' is formulated by a map

D: T~ CU{?) (2.2)

such as D(¢) = ¢ for any codeword ¢, where outcome “?” means a decoding failure
which occurs when the decoder will not decode the received word into any of the
possible transmitted codeword. A decoding error of the decoder occurs when the
decoded word is different from the transmitted codeword. For any two n-tuples

x = (x1,T9, -+ ,x,) and y = (y1, Y2, "+ , Yn), the Hamming distance or simply
distance d(z,y) of « and y is defined by

The Hamming distance is a metric on F”. That is, for any n-tuples «, y and
z, d(x,y) > 0 if equality holds only if & = y, d(x,y) = d(y, x), and d(z,y) <
d(z,y) + d(y,z). If ¢ is a transmitted codeword and y is the corresponding
received word, then the Hamming distance d(e, y) is nothing else but the number
of errors caused by the channel noise.

Definition 2.1.1. A munimum distance decoder for a block code C'is a decoder D
such that D(y) assigns one of the codewords which are closest in all the codewords
with respect to Hamming distance for any n-tuple y of F. O



input 1—p output
0 0
p
p
1 - 1
L=p

Figure 2.2: Binary symmetric channel.

If we are using a channel with the property that an error in position ¢ does not
influence other positions and a symbol in error can be each of the remaining ¢ — 1
symbols with equal probability, then the Hamming distance is a good way to
measure the error content of the received message. Such a channel is called a
q-ary symmetric channel, and is formulated by

| 1-p if a =0,
P“'“"{p/(q—l) if 0 # b,

where P(b|a) is the conditional probability of a symbol b given a symbol a and
p is a real number such that 0 < p < (¢ — 1)/¢q. The g-ary symmetric channel
in binary case, that is, the binary symmetric channel is illustrated in Figure 2.2.
In fact, when we are using a ¢-ary symmetric channel, the minimum distance
decoding is equivalent to the mazimum likelihood decoding, which minimizes the
probability of a decoding error [42, p. 17, Lemma 2.1].

The minimum distance d = d(C') of the block code C'is the Hamming distance
of the pair of codewords with smallest Hamming distance. That is,

d=d(C) =min{d(z,y) |x,y € C and = # y}. (2.4)

The [n, k] block code with minimum distance d is also denoted by the [n, k, d]
block code. If ¢ errors occur such as

d>2t+1, (2.5)

then the decoder will properly correct the errors if it presumes that the closest
codeword to the received word was actually transmitted. It may be possible
sometimes to correct certain error patterns with ¢ errors even when the inequality
(2.5) is not satisfied. However, t-error correction can not be guaranteed if d <
2t 4+ 1, because it then depends on which codeword is transmitted and on the
actual pattern of the ¢ errors within the block.



codewords

Figure 2.3: Decoding spheres.

Definition 2.1.2. Let ¢ be any nonnegative integer satisfying (2.5). A decoder
D for a block code C is called a bounded distance decoder which corrects t errors
if

c ifce C and d(e,y) <t,

?  otherwise, (2.6)

Ply) = {
for any n-tuple y of F. In particular, if d = 2t +1 or d = 2t + 2, then the decoder
D is said to decode up to half the minimum distance. O

As the minimum distance d becomes large as compared with n, more errors may
be corrected by using appropriate bounded distance decoders. Therefore, the
number d/n means an error-correction capability for the [n, k, d] block code and
is called relative minimum distance.

The bounded distance decoder which corrects ¢ errors is geometrically illus-
trated with Figure 2.3. Note that arbitrary codewords are centered in the sphere
of radius ¢. Figure 2.3 tells us that the spheres of radius ¢ around the codewords
are disjoint. The rule (2.6) means that any received word in a sphere is decoded
as the codeword at the center of that sphere. If ¢ or fewer errors occur, then the
received word is always in the proper sphere and the decoding is correct. If the
received word has more than ¢ errors and does not lie in any decoding sphere,
then the decoder yields a decoding failure. On the other hand, if the received
word has more than ¢ errors and lies in a certain sphere, then the decoder yields
a decoding error.

Summarizing the arguments above, we would like to find a block code whose



information rate and relative minimum distance are both large. However, there is
a limit to the number of spheres of radius ¢ which put into whole space of n-tuples
of F. This means that the number of information symbols k is limited when the
length n and minimum distance d are given. Conversely, the minimum distance d
is limited when the length n and number of information symbols £ are given. From
the heuristic arguments, we have a trade-off between the information rate k/n
and the relative minimum distance d/n. Further, the following is a fundamental
result of the theory of block codes: as the length n is large for given k/n and
d/n, the error probability becomes small. Therefore, a fundamental problem of
block codes is to find one which has generally large length, information rate and
relative minimum distance, if we take no thought of its encoding and decoding
methods.

2.2 Linear Codes

We now turn to the problem of constructing block codes which have some alge-
braic structure. Their algebraic structure will provide guidance in the search for
good block codes and also help to make the encoders and decoders practical. The
first idea is to take the finite field F, with ¢ elements as alphabet, and to take a
linear subspace C' of the n-dimensional linear space Fy as block code.

Definition 2.2.1. A linear code C is a linear subspace of the n-dimensional
linear space Fy over F,. If C' has dimension k, then C is called an [n, k| linear
code. O

The Hamming weight or simply weight w(x) of an n-tuple & = (1, z2,- -+ , x,)
of F, is defined by

w(z) :=d(x,0) = #{i € [1,n]|z; # 0}. (2.7)

Since the Hamming distance d(x, y) between two n-tuples & and y is the number
of positions in which they differ, d(x,y) is equal to w(x — y). If  and y are
both codewords of a linear code, then & —y must also be a codeword. Therefore,
the Hamming distance between any two codewords equals the Hamming weight
of some other codeword, and the minimum distance d(C) of a linear code C' is
equal to the minimum weight of its nonzero n-tuples, that is,

d(C) = min{w(c) | e € C and ¢ # 0}. (2.8)

This property is extremely helpful in analyzing the distance structure of linear
codes.

Next, we introduce a matrix representation for linear codes. A generator
matriz G for an [n, k| linear code C' is defined by a k£ x n matrix G whose rows

10



form a basis of the subspace C. At this time, an encoder £ of any [n, k| linear
code C can be realized efficiently by using a generator matrix G as follows:

)=z G, (2.9)

for any k-tuple x of ;. With this expression defining the encoder, the corre-
spondence between messages and codewords depends on the choice of generator
matrix for the linear code C', and however the total set of codewords is unaffected.
The generator matrix is a concise way to describe a linear code. For example,
a binary [100, 80] linear code is described by 100 x 80 = 8000 bits, and however
needs more than 10%% bits if we list all codewords.

The standard inner product on Fy is defined by

-yl =i 4 Top 4+ -+ Ty (2.10)

for any n-tuples & = (z1, 29, ,2,) and y = (y1, Y2, ,Yn). The dual code C*+
of a linear code C' is defined by

Ct:={xeF"|z-c" =0forall ce C}. (2.11)

From [4, p. 41, Theorem 2.6.9], the dual code of an [n, k| linear code is an [n, n—k]
linear code.

Now, we present an alternative matrix representation of linear codes. Let C
be any [n, k] linear code. A generator matrix H of the dual code C* is called a
parity check matriz for C. Since C* is the [n, n — k] linear code, any parity check
matrix H for C' is an (n — k) X n matrix with rank n — k, and therefore we obtain

C={xcF, |z -H =0} (2.12)

This means that a received word y is a codeword if and only if y - H” is all zero
(n — k)-tuple. Thus, a parity check matrix checks whether a received word y is
a codeword or not.

Let ¢ be a codeword of a linear code C' with weight w, and H a parity check
matrix for C'. Since ¢-H” = 0 and w(c) = w, some w columns of H are linearly
dependent. Conversely, if some w columns of H are linearly dependent, then
there exists a codeword with weight w. As a result, the following proposition is
obtained.

Proposition 2.2.1. [36, p. 33, Theorem 10] Let C' be any linear code and H
any parity check matrix for C'. Then, the linear code C' has minimum distance
d if and only if every d — 1 columns of H are linearly independent and some d
columns are linearly dependent. O

Any parity check matrix H for an [n, k] linear code C' has rank n — k, and hence
linearly independent columns of H is at most n — k. Therefore, we obtain the
following bound.

11



Proposition 2.2.2. (Singleton Bound). [36, p. 33, Theorem 11] Let C' be any
[n, k, d] linear code. Then,
k+d<n+1. (2.13)

O

Linear codes with k +d = n + 1 are called mazimum distance separable (MDS)
codes. Reed-Solomon codes are celebrated as MDS codes. The Singleton bound
does not take into consideration the alphabet volume. Therefore, several other
known upper bounds (for example, Hamming bound, Plotkin bound and so on)
are stronger than the Singleton bound if n is large as compared with ¢. As for
the upper bounds above, we refer to [3, 4, 27, 36, 31].

Next, we consider the general decoding problem for linear codes. Let C' be
any [n, k| linear code and H any parity check matrix of C. If y is any received
word, the (n — k)-tuple y - H” is called the syndrome. The syndrome has much
information of channel errors. The set of all words with the same syndrome as y
is the coset y + C. An element of the coset y + C of minimal weight is called a
coset leader. A simple minimum distance decoder consists of an exhaustive search
for a coset leader. An alternative would be to make a list of all coset leaders.
Unfortunately, both the previous decoding methods have exponential complexity
as a function of the length. Especially, the problem of computing the minimum
distance of a linear code is NP-hard, and the corresponding decision problem is
NP-complete [66].

2.3 Algebraic Geometric Codes

In this section, we give a brief survey of the notions of algebraic geometric codes
by Goppa’s formulation [19, 20, 21, 22] and their properties. As for the deep and
general properties of algebraic geometric codes, we refer to several text books
[22, 33, 45, 58, 61].

Let F, denote the algebraic closure of the finite field F,. Let P! = P!(F,)
denote the t-dimensional projective space over Fq. An F-rational point or rational
place in P* is a point whose coordinates are in F,.

Let X denote a projective, nonsingular, absolutely irreducible curve defined
over F, in P!, and X (F,) the finite set of all F -rational points on the curve X.
Assume that X'(F,) is not empty. The function field on X over F, is denoted by
F,(X). Then, there exists a rational function f € F (X) such that F,(X) is a
finite algebraic extension of F,(f) and F, is algebraically closed in F,(X) by the
assumption that X'(F,) is not empty. That is, F,(X) is an algebraic function field
of one variable over ;. Let {2y denote the linear space of rational differential
forms on X. Let Aut(F,/F,) denote the group of automorphisms of F, over F,.

12



An F-rational divisor G of F,(X) is defined by a formal finite sum
G = Z np - P

with coefficients np in Z such that

an-P:an-a(P

pPeXx Pex

where o(P) := (o(ag) : o(ay) : -+- : o(ay)) for any point P = (ag : ay : -+ :
a;) € X. Note that o(P) € X for any P € X. The degree of an F, ratlonal
divisor G = Y np - P is defined by deg(G) := > np. The support of an F,-
rational divisor GG, which is the set of points with nonzero coefficient in G, is
denoted by supp(G). A partial order on F -rational divisors of X is defined by
> np-P>> mp-Pifnp > mp for any point P € X. The discrete valuation at
P € X is denoted by vp. For any rational function f € F,(X')\ {0}, the principal
divisor of a rational function f is defined by

=Y vp(f)

pPeXx

and then the divisor (f) is an F,-rational divisor. The principal divisor of f
is uniquely represented by the difference (f) = (f)o — (f)e with (f)o > 0 and
(f)oo = 0, where (f)o is the divisor of zeros and (f)« is the divisor of poles of f.
For any F,-rational divisor G on X, a subset of F,(X) is defined by

L(G) = {f € Fy(X) | f =0 or (f) = =G} (2.14)

This subset L(G) forms a finite-dimensional linear space over F,, and its dimen-
sion is denoted by [(G). The genus of X is defined by the finite nonnegative
integer

g(X) = max{deg(G) — I(G) + 1| G is any F,-rational divisor of X'}, (2.15)

simply denoted by g if it is clear which curve is meant. At any point P on X
there exists a local parameter u € F,(X) such that vp(u) = 1, and then for any
nonzero rational differential form w there exists a rational function f such that
w = fdu. At this time, the valuation vp(w) of w at P is defined by vp(f), and
then the divisor of w is defined by

(w) := Z vp(w) - P,

which is called the canonical divisor. The divisor (w) is also an F-rational divisor,
and has the properties that deg((w)) = 2¢g—2 and [((w)) = ¢. For any F,-rational
divisor GG, a subset of 0y is defined by

QG) ={weQx|w=0or (w) > G}, (2.16)
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which is a finite-dimensional linear space over F,. The dimension of Q(G) is
denoted by i(G). The Riemann-Roch theorem provides the relation between
[(G) and i(G) for any Fy-rational divisor G.

Proposition 2.3.1. (Riemann-Roch Theorem). [58, p. 28, Theorem 1.5.15] Let
G be any Fj-rational divisor on X. Then,

I(G) = deg(G) — g+ 1+ i(G). (2.17)
O

Let P, Py, --- , P, € X(F,) be n distinct F,-rational points on X'. The divisor
P+ P, + -+ P, is denoted by D. Let G be an F,-rational divisor on X" of

degree m with support disjoint from the support of D. The evaluation map evp
from L(G) into Fy is defined by

evp(f) = (f(P), [(P2), -~ f(Fn)) (2.18)

for any rational function f € L(G). Further, the residue map resp from Q(G — D)
into [y is defined by

resp(w) := (resp, (w), resp, (w), - - - ,resp, (w)). (2.19)

for any rational differential form w € Q(G — D), where resp(w) is the residue of
w at P.

Definition 2.3.1. The linear code CL(X, D, G) is defined by
CL(X,D,G)={evp(f)| f € L(G)}. (2.20)

The code Cp(X, D, G) is called the functional Goppa code associated with D and
G. The linear code Cq(X, D, ) is defined by

Co(X,D,G) = {resp(w) |w € Qx}. (2.21)

The codes Cq(X, D, G) is called the residue Goppa code associated with D and G.
Both the codes C(X, D, G) and Cq(X, D, G) is called the algebraic geometric or
geometric Goppa codes. The codes Cp (X, D, G) and Cq(X, D, G) are abbreviated
to C(D,G) and Cq(D, G) respectively, if it is clear which curve is meant. O

In particular, if the F,-rational divisor G is of form m() for some integer m and
F,-rational point @, then both the codes C,(D, mQ) and Cq (D, mQ) is called the
one-point algebraic geometric or simply one-point codes. The algebraic structure
of one-point codes is extremely helpful in analyzing the dimension, minimum
distance and decoding complexity.

The length, the dimension, and the minimum distance of the algebraic geo-
metric codes Cr(D,G) and Cq(D, G) are related as follows:
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Proposition 2.3.2. [58, p. 43, Theorem I1.2.2 and p. 45, Theorem 11.2.7]
(a) The code Cr(D,G) is an [n, k, d] linear code with
k>1(G)—-1(G—- D) and d>n—m. (2.22)

The integer dg := n — m is called the Goppa designed distance or Goppa
bound of Cr,(D,G). In particular, if m < n, then £ = [(G) > m — g + 1,
and furthermore if 2g —2 < m < n, then k =m — g+ 1.

(b) The code Cq(D,G) is a linear [n, k,d] code with
k=1i(G— D) —i(G) and d>m—2g+2. (2.23)

The integer dg := m —2g—2 is called the Goppa designed distance or Goppa
bound of Cq(D,G). In particular, if 29 — 2 < m, then k = (G — D) >
n—m+ g—1, and furthermore if 2g —2 <m < n, then k=n—m+g¢g—1.

O
From (2.22) and (2.23), both the codes C(D,G) and Cq(D, G) have
k+d>n—g+1, (2.24)
and hence
R+s>1-7, (2.25)
n

where R and 0 denote the information rate and relative minimum distance, re-
spectively. Equation (2.25) means that good algebraic geometric codes have
many [F -rational points as compared with its genus. Therefore, a fundamental
problem of algebraic geometric codes is to find such an algebraic curve. As a
measure of parameters of algebraic geometric codes, the Hasse-Weil upper bound
is celebrated.

Proposition 2.3.3. (Hasse-Weil upper bound). Let N denote the number of
F,-rational points on a curve X with genus g. Then,

N <q+1+29/q. (2.26)
O

The relation between the functional Goppa codes and the residue Goppa codes
is provided by the following two proposition.

Proposition 2.3.4. [58, p. 46, Theorem I1.2.8] The algebraic geometric codes
Cr(D,G) and Cq(D,G) are dual to each other, that is,

Ca(D,G) = CL(D,G)*. (2.27)

O
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Proposition 2.3.5. [58, p. 47, Lemma I1.2.9 and p. 48, Proposition 11.2.10]
There exists a differential form 7 such that a simple pole at P; and resp, () = 1
for any i € [1,n]. Then,

Co(D,G) = C(D, D — G + (). (2.28)
O

The linear code C' is called algebraic geometric if there exists a projective,
nonsingular, absolutely irreducible curve X defined over F, with genus g, n dis-
tinct ¥ -rational points Py, P, ---, P, on X and a F -rational divisor G with
support disjoint from the support of D, where D = P, + P, + --- 4+ P,, such
that C' = C(X, D,G). At this time, the triple (X, D, Q) is called the algebraic
geometric representation of C. From Proposition 2.3.5, C is algebraic geometric
if and only if C' = Cq(X, D, G) for some curve X and divisors D and G. Pellikaan
et al. has shown the following remarkable result in their paper [48].

Proposition 2.3.6. [48, p. 591, Theorem 2] Let C' be any linear code over F,,.
Then, C has an algebraic geometric representation (X, D, G). O

This theorem enables to classify in compliance with their algebraic geometric
representation.
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Chapter 3

A Criterion for Linear Codes
with Feng-Rao Designed Distance

Feng and Rao [9] developed an elegant decoding algorithm for any one-point codes
Cqo (D, m@), which can be corrected up to half the Goppa designed distance with
complexity at most O(n3) by using the majority voting among unknown syn-
dromes. Duursma [8] extended this decoding algorithm to codes on arbitrary
algebraic curves. Further, as a result of the majority voting, it was noticed that
one can even correct beyond half the Goppa designed distance when their re-
dundancy is small as compared with their length [11]. This was formalized by
Kirfel and Pellikaan [30] who introduced the Feng-Rao designed distance or the
Feng-Rao bound for algebraic geometric codes. Via the decoding by majority vot-
ing among unknown syndromes, Feng et al. presented simple approaches for the
construction and the determination of parameters of algebraic geometric codes
without directly using the theory of algebraic curves [9, 11, 13]. Furthermore,
Feng and Rao [12] proposed a new construction of linear codes on arbitrary al-
gebraic varieties by using the notion of well-behaving sequence. These codes are
called improved geometric Goppa codes which can correct up to equal or more
errors by majority voting as compared with ordinary algebraic geometric codes
at the same redundancy. Grounding on the these achievements for algebraic
geometric codes, Miura formulated the decoding by majority voting among un-
known syndromes and the Feng-Rao designed distance for arbitrary linear codes
by introducing the notion of ordered bases [42, 43].

In this chapter, we investigate the Feng-Rao designed distance of linear codes
over the finite field ;. The Feng-Rao designed distance of linear codes is dom-
inated by the ordered bases, which are defined in Section 3.1. A fundamental
problem of linear codes with Feng-Rao designed distance is to specify a class of
order bases which provide the largest Feng-Rao designed distance for any redun-
dancy. The brute method to specify such a class of ordered bases is to calculate
and compare their Feng-Rao designed distances for all possible ordered bases.
However, now that the number of all distinct ordered based has O(q"Q), such a

17



method is intractable. Therefore, it plays an important role in engineering to
reduce ordered bases that one should search.

In this chapter, we firstly clarify that the Feng-Rao designed distance of linear
codes depends on the subspace sequence which is introduced in Sections 3.1 and
3.2. This means that all the ordered bases having the same subspace sequence
provide the same Feng-Rao designed distance for any redundancy. Also, we clarify
that under any column permutation of an ordered basis the Feng-Rao designed
distance is invariant for any redundancy. At this time, the ordered bases that one
should search can be restricted to in standard normal form which is introduced
in Section 3.2. In particular, any ordered basis is put in standard normal form as
the Feng-Rao designed distance is kept by using the Gaussian elimination only
with the elementary row operation and column permutation. Further, we present
the following algorithm: The input to the algorithm is any ordered basis. The
output to the algorithm is the ordered basis in standard normal form whose first
vector entries are all one in F,. Then, the Feng-Rao designed distance for the
output ordered basis is larger than or equal to that for the input ordered basis.
As a consequence of these, ordered bases that one should search can be restricted
to in standard normal form whose first vector entries are all one in F,, and then
their number exactly has g2 372 The results in this chapter is based in part
on a study presented at IEICE Information Theory Workshop [65].

3.1 Linear Codes with Feng-Rao Designed Dis-
tance

In this section, we introduce the Miura’s formulation for linear codes with Feng-
Rao designed distance [42, 43].

A positive integer n is designed as the length of linear codes. Let Fy denote
the set of n-tuples of F,. It is well-known that Fy is the linear space over F, with
dimension n under ordinary summation and scalar multiplication. Further, the
product of © = (21,29, -+ ,2,) and Yy = (Y1, ¥, - ,Yn) in Fy is defined by

-y = ($1y1,$2y27 T ,JTn?/n),

and then F7 has a structure of F -algebra. The zero element and identity element
of Fy are denoted by 0 := (0,0,---,0) and 1 := (1,1,---,1), respectively. An
ordered basis of Fy is defined as an n-tuple

Bn = (b17b27 e 7bn)

of Iy such that B, := {b1,by, -+ ,b,} is a basis of F. The set of ordered bases of
7 is denoted by O,. Any ordered basis B,, = (b1, ba, - -+ , b,) has the one-to-one
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correspondence to the following n X n nonsingular matrix with entries in I,

The order of the sequence B, play a crucial role to provide a lower bound for
the minimum distance of codes constructed in this section. The total number
of ordered bases of Fy, which corresponds to the total number of nonsingular
matrices with entries in Fg, is

n—1 n—1

Therefore, the total number of ordered bases has the order O(¢"").

Hereafter, we define linear codes from the ordered basis B,,. Designing r €
[0,n — 1] as the redundancy, let H = {hy, ho,--- , h,} be any subset of B,, with
cardinality r and define the corresponding r x n matrix

hi
by

H:= (3.2)

h,
Definition 3.1.1. The linear code C'(B,,, H) over F, is defined as the null space
of the matrix H given by (3.2), that is,

C(Bn,H) :={ceF;|c-H" =0},

where H” is the transposed matrix of H. The code C(B,, H) is called by the
linear code associated with B, and H. If it is clear which ordered basis is meant,
C(B,, H) is abbreviated to C'(H). O

The linear code C(H) have the length n and the dimension k£ = n—r. Hereafter,
we introduce the Feng-Rao designed distance for the linear code C'(H) at Miura’s
formulation [42, 43].

Define the set By := {0} and B := {by, by, --- , by} for any s € [1, n]. Further,
the s-dimensional linear subspace spanned by B, is denoted by V; := Span{B;}
for any s € [0, n]. The sequence of subspaces, denoted by V, := (Vi, Vo, -+, V},),
has the following properties:

0} = VocVicVyC - - CV, = F™,
{ 10} =Wehelae ¢ “ (3.3)

dimVy=s  forall s € [0,n].
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This sequence of subspaces V), is called the subspace sequence of Fy generated by
B,. Any ordered basis generates a unique subspace sequence. The map ordg,
from Iy onto [0, n] is defined by

ordg, (x) := min{s |z € V,}. (3.4)

for € Fy. This map ordg, is called the order map of Fy corresponding to B,
and abbreviated to ord if it is clear which ordered basis is meant. A fundamental
property of the order map is presented as follows:

Proposition 3.1.1. [43, p. 1396, Lemma 3.2.1] For any =,y € F; and o, 8 € T,
ord(azx + fy) < max{ord(x),ord(y)}. (3.5)
In particular, if « # 0, 8 # 0 and ord(x) # ord(y), then
ord(ax + fy) = max{ord(x),ord(y)}. (3.6)
O

Next, we introduce the notion of well-behaving which plays a crucial role to
determine a lower bound for the minimum distance of the linear code C'(H).

Definition 3.1.2. A pair (i,7) in B, is said to be well-behaving if ord(b,b,) <
ord(b;b;) for any pair (u,v) € [1,n]* with (u,v) <p (i,]), where the relation >p
on [1,n)? is a partial order defined by (u,v) <p (4,j) ifu<iand v <j. O

A nonnegative integer N; is defined by
Ny == #{(i,j) € [1,n]* | ord(b;b;) = s and (4, ) is well-behaving} (3.7)
for any s € [1,n]. The sequence of n nonnegative integers
N(B,) := (N1, Ng, - , N,) (3.8)

is called the evaluation sequence for the ordered basis B,,. This sequence N(B,,)
has the following properties:

Proposition 3.1.2. [43, p. 1389, Lemmas 3.1 and 3.2] Let N(B,) be the eval-
uation sequence for any ordered basis B,. Then, 0 < N, < s for any s € [1,n],
that is,

N(B,) € [0,1] x [0,2] x --- x [0, n].

Furthermore, N(B,,) can be calculated with complexity O(n*). O

Definition 3.1.3. The Feng-Rao designed distance or Feng-Rao bound of the
linear code C'(H) is defined by

dpr(C(H)) == min{N, | b, ¢ H}. (3.9)

O
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By Definition 3.1.3, we can see that the Feng-Rao designed distance dpr(C(H))
of the linear code C(H) is dependent only on the ordered basis B,, and the subset
B of B,. The linear code C(H) associated with B,, and H has the following
properties:

Proposition 3.1.3. [43, p. 1389, Theorem 3.4 and 3.5] The linear code C'(H)
given by Definition 3.1.1 has the length n, the dimension £ = n — r, and the
minimum distance dy;n (C(H)) satisfying

dmin(C(H)) = dpr(C(H)). (3.10)

The Feng-Rao decoding algorithm [9, 13] can be decoded up to half the Feng-Rao
designed distance drpr(C(H)) with complexity at most O(n?) for the linear code
C(H). O

Remark 3.1.1. Let w := (wy, we, - - - , wy,) be an n-tuple of F,\{0}. The diagonal
matrix of w is defined by

For the linear code with a parity check matrix H - D(w), using the Feng-Rao
decoding algorithm, one can be also decoded up to [(dpr(C(H)) —1)/2] errors
with complexity at most O(n?). This is the reason that ¢-w is a codeword of the
linear code C'(H) with the parity check matrix H if ¢ is a transmission word. This
technique is equal to the decoding technique of alternant codes used a decoding
algorithm of BCH codes. In this chapter, we do not consider such a modification
of decoding since the matrix H is essentially used in the decoding. O

Next, according to the formulation above, we consider a class of the linear
codes with largest Feng-Rao designed distance for given the ordered basis B,, and
the redundancy r. Let N(B,) = (Ni, Ny, ---,N,) be the evaluation sequence
for B,. Let m be a permutation of [1,n] such that Ny < Ny if ¢ < j. In
general, the permutation 7 is not always uniquely determined. The subset H, of
By, is defined by H; := {b1), bx(2), -+ , br(r)}. By the definition of the Feng-Rao
designed distance, we obtain

drr(CHy)) = Nuirary 2 drr(C(H)),

for any subset H of B, with cardinality r. Therefore, the linear code C(H,)
is a linear code with largest Feng-Rao designed distance for given the ordered
basis B,, and the redundancy r. Therefore, a class of linear codes with largest
Feng-Rao designed distance is uniquely determined with respect to the ordered
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basis B, and the redundancy r. In this dissertation, one linear code in such a
class is represented by C..(B,,) or simply by C, if it is clear which ordered basis
is meant. The linear codes C,(B,) is called the linear codes associated with B,
and r. Hereafter, when the ordered basis B, is given, we consider only the linear
code C,.(B,) in this dissertation. The sequence of n nonnegative integers

N(Bn) = (Nw(l)yNﬁ(Q)a s ,Nw(n)) (3.11)

is called the designed distance sequence for any ordered basis B,,. This sequence
displays the Feng-Rao designed distance dpg(C;) = Nx(r41) of the linear code C,
for any redundancy r.

The choice of the ordered basis B,, affects the Feng-Rao designed distance
for any redundancy. For given the length n and redundancy r, we would like to
find the ordered basis B,, which provides the linear code C, with largest Feng-
Rao designed distance dpr(C,). The brute method to find such an ordered basis
is to calculate and compare the Feng-Rao designed distances for all possible
ordered bases. However, the total number of ordered bases is too numerous to
calculate the designed distance sequences for all possible ordered bases. In the
next sections, we show the various relations with respect to ordered bases in order
to reduce ordered bases that one should search.

3.2 Criteria for Linear Codes to Have Identical
Feng-Rao Designed Distance

In this section, we provide two sufficient conditions for the linear code C.(B,,) to
have the identical Feng-Rao designed distance dpg(C,(B,)). The ordered basis
B, and B], are called evaluated equivalent if both the evaluation sequences of B,
and B], are identical, that is,

N(B,) = N(B,).

If the ordered bases B, and B! are evaluated equivalent, both the Feng-Rao
designed distance dpr(C,(B,)) and dpr(C,(Bl,)) are identical for any redundancy
r.

3.2.1 Subspace Sequence

In this subsection, we firstly provide a sequence of subspaces V,, = (V, Vo, -+, V)
satisfying the conditions (3.3). This sequence is called the subspace sequence of
F7. Let b, and b} be two n-tuples in V; \ V,_; for any s € [1,n]. Then, both
the sequences B, := (by, by, - ,b,) and B/, := (b}, b,,--- ,bl) are the ordered
bases having the same subspace sequence V), and hence said to be generated by
the subspace sequence V,,. Then, both the order maps of B,, and B/, are identical
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by the definition (3.4). These maps ordg, and ordg are called the order map
corresponding to the subspace sequence V,, and denoted by ordy, in suitable case.

Lemma 3.2.1. Let B, = (by,bs,--- ,b,) and B, = (b}, b,,---, b)) be two or-
dered bases having the same subspace sequence. If a pair (i, j) in either B,, or B,
is well-behaving, then
ord(b;b;) = ord(b;b)).
O

Proof. Without loss of generality, we can assume that a pair (7, j) in B, is well-
behaving. The n-tuples b; and b} can be represented by

i J
b= ayb, and b= ajmbn
=1 m=1

for some g, o, € Fy where a;; # 0 and a;; # 0. Then, the product bib} is
represented as follows:

i

J
b =Y Y iatjmbibn,.

/=1 m=1

By the assumption that the pair (i, j) in B, is well-behaving and (3.5), we obtain

i J
ord(bb) = ord (Z > awajmbgbm> — ord(b;b;).

{=1 m=1

(Q.E.D.)

The contraposition of Lemma 3.2.1 is that if ord(b;b;) # ord(b;b];), then both the
pairs (i,7) in B, and B!, are not well-behaving. Using this result, the following
theorem can be provided.

Lemma 3.2.2. Let B, = (b1, bs,--- ,b,) and B, = (b, b,,--- b)) be two or-
dered bases having the same subspace sequence. A pair (i,7) in B, is well-
behaving if and only if a pair (i, ) in B, is well-behaving. O

Proof. Assume that the pair (i,7) in B, is well-behaving and the pair (i,7) in
B! is not well-behaving. Since the pair (i,7) in B, is well-behaving, we obtain
ord(b;b;) = ord(b;b}) by using Lemma 3.2.1. Define the nonnegative integer

s := max{ord (b, b)) | (u,v) <p (i,7)}.

By the assumption that the pair (i,7) in B/, is not well-behaving, we obtain
s > ord(b;b}). Then, there exists a pair (¢,m) <p (i,7) such that ord(byb;,) = s
and the pair (¢,m) in B!, is well-behaving. With respect to this pair (¢, m),

ord(beb,,) < ord(b;b;) = ord (b)) < ord(b}b,)
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holds. Since ord(byb,,) < ord(byb),), both the pairs (¢,m) in B, and B, are not
well-behaving by using Lemma 3.2.1. This is a contradiction since the pair (¢, m)
in B] is well-behaving. Therefore, the pair (i,j) in B, is well-behaving if and
only if the pair (i,7) in B, is well-behaving. (Q.E.D.)

From Lemmas 3.2.1 and 3.2.2, the following theorem can be obtained.

Theorem 3.2.3. Let B,, and B], be two ordered bases having the same subspace
sequence. Then, B, and B/, are evaluated equivalent, that is,

N(B,) = N(B,).
m

Proof. This follows Lemmas 3.2.1 and 3.2.2 and the definition (3.7). (Q.E.D.)

Theorem 3.2.3 means that the evaluation sequence is essentially dominated by
the subspace sequence V,,.

Let B, = (by,bs, -+ ,b,) and B, = (b}, b,,--- ,b) be ordered bases. The
ordered bases B,, and B!, are called ordered equivalent if B,, and B!, have the same
subspace sequence. This relation forms an equivalence relation on ordered bases.
The ordered bases B, and B;, are ordered equivalent if and only if there exists a
unique nonsingular lower triangular matrix A such that

b, b

b b

Pl=al (3.12)
b b,

Next, we provide a representative for all ordered bases generated by some sub-
space sequence.

Let @ = (w1, 73, -+ ,x,) be a nonzero n-tuple of F,. The first nonzero com-
ponent of @ is called the leading of . An ordered basis B,, = (b, ba, - , b,) is
said to be in standard form if the following two conditions hold:

1. For each i € [1,n], the leading of row vector b; is one.
2. If h;j =1 is the leading of row vector b;, then hyj = 0 for any ¢ € [i + 1, n].

Any ordered basis B, = (by, by, ---,b,) can be uniquely put in standard form
B, = (51, by, - - ,En) such that B, and B, are ordered equivalent by using Gaus-
sian elimination only with elementary row operation. Hence, any subspace se-
quence has a unique ordered basis in standard form. Consequently, ordered bases
that one should search can be restricted to all ordered bases in standard form.
The set of ordered bases in standard form is denoted by S,. By using (3.12),
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we estimate the total number of ordered bases in standard form. Since the to-
tal number of n x n nonsingular lower triangular matrices with entries in I, is

(g — 1)"q%(”2*”), the total number of ordered bases in standard form is

n—1 5_1_1_1 n—1 £

#S, =1 — =112 (3.13)

=0 £=0 m=0

q—1

which is the quotient dividing the number (3.1) by (¢ — 1)"¢2™~™). Hence, the
number of ordered bases that one should search can be reduced from O(q”2) to
O(gztv*=m).

3.2.2 Column Permutation

Let o be an arbitrary permutation of [1,n] and B, = (b, by, ,b,) an ordered
basis of Fy. For any n-tuple & = (71,72, ,7,) of Fy, define the n-tuple of I,

o(x) = (%(1),%(2), T ,%(n))-
Besides, define the
o(By) := (a(by),0(by), - ,0(by))-

Then, this sequence o(B,,) forms an ordered basis of [, since any column per-

mutation preserves the linear independency of by, by, -+ | b,,.

Theorem 3.2.4. Let B, = (b1, by, --- ,b,) be any ordered basis and o any per-
mutation of [1,n]. Then, the ordered bases B, and o (B,,) are evaluated equivalent,
that is,

Proof. Any n-tuple x of F, can be represented by
wZOél'b1+C¥2'b2+"'+Oén'bn

for some oy, ag, -+ , @, € F,. Let s denote ordg, (), and then ay # 0 and oy =0
for any ¢ € [s + 1,n]. Since

o(x) =a;-o(b) +ay-o(by) +- 4+ ay-o(by,),
we obtain ord,g,)(o(x)) = s. Hence, for any pair (i, j) € [1,n]?,
ordg, (bib;) = ords(s,)(0(bib;)) = orde(s,) (o (bi)a(b;)).
This means N(B,) = N(o(B,)). (Q.E.D.)
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Let B, = (b1, by, -+ ,b,) be the ordered basis in standard form which is ordered
equivalent to B,. For each i € [1,n], let h; ;;) denote the leading of the n-tuple

b; where o is a permutatlon of [L,n]. If b; is o 1(b;) for any i € [1,n], then the
ordered basis B, (bl, b, - - ,bn) corresponds to an n X n nonsingular upper
triangular matrlx with diagonal entries one. By Theorems 3.2.3 and 3.2.4, we
obtain

N(B,) = N(B,),

and hence

dFR(Or(Bn)) = dFR(OT(Bn))

for any redundancy .

Any ordered basis corresponding to an n x n nonsingular matrix with diag-
onal entries one is said to be in standard normal form. From the argument in
previous paragraph, any ordered basis B, = (b1, by, -+, by) is put in standard
normal form B, = (bl, by, by ) such that B, and B, are evaluated equivalent
by using Gaussian elimination only with elementary row operation and column
permutation. Therefore, ordered bases that one should search can be restricted
to all ordered bases in standard normal form. The set of ordered bases in re-
duced standard form is denoted by R,,. The total number of all ordered bases in
standard normal form is

#S, =[] d" = 2™ . (3.14)

Hence, the number of ordered bases that one should search can be reduced from
Ol to g30°-)

3.3 A Criterion for Linear Codes to Have Large
Feng-Rao Designed Distance

In this section, for any given ordered basis B,, we provide an ordered basis B,
such that the Feng-Rao designed distance dpg(C,(B),)) is larger than or equal to
drr(C,(B,)) for any redundancy r.

The set of all ordered bases in standard normal form whose first components
are identity element 1 = (1,1,---,1) of F} is denoted by U,. We consider the
map ¢ from R, onto U, defined by

U(By) == (1,bs,bs, -, by) (3.15)

for any ordered basis B,, = (b1, by, - - , b,) in standard normal form.
In order to prove the main result in this section, we introduce the following
proposition.
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Proposition 3.3.1. [43, p. 1396, Lemma 3.2.2] Let B,, = (b1, bs,--- , b,) be any
ordered basis and & any n-tuple of F,. If ord(b;x) is smaller than 7, then there
exists j € [1,7 — 1] such that ord(b;x) < ord(b;x). O

By Proposition 3.3.1, for any ordered basis B,, = (b1, by, - , by,), if ord(b;b;) < i
or ord(b;b;) < j, then the pair (7,j) in B, is not well-behaving. Therefore, the
Ny can be redefined by

= #{(i,5) € [1,5]* | ord(b;b;) = s and (4, 5) is well-behaving} (3.16)

for any s € [1,n]. Note that the first part of Proposition 3.1.2 in Section 3.1
follows (3.16).
The following lemma is the main result in this section.

Lemma 3.3.2. Let B,, = (b, b, - - - , b,) be any ordered basis in standard normal
form and ¢ the map defined by (3.15). Let N(B,) = (Ni, Ny,---,N,) be the
evaluation sequence for B,, and N(u(B,)) = (Ny,Na,---,N,) the evaluation
sequence for (B,). Then, N, > N, for any s € [1,n], that is,

N(u(Bn)) Zp N(By)
where >p is the ordinary partial order on [0, n]". O

Proof. The proof of this lemma is divided into several steps.

Step 1. ordg, (b;b;) = ord,(s,)(b;b;) for any pair (i,j) € [2,n]*.

Let (4,7) be any pair in [2,n]?. Without loss of generality, we may assume
that 7 > j. If b;b; is equal to 0, then

ordBn(bibj) = ordL(Bn)(bibj) =0.

Assume that b;b; is unequal to 0. From the definition of standard normal
form, we obtain

b;b; € Span{b;, b;+1,--- ,b,} \ {0}.
Hence, from the definition (3.4) of the order map, we obtain
ordg, (bib;) = ord,s,)(b;b;).
Step 2. The pairs (i,1) and (1,4) in ¢(B,) is well-behaving for any i € [1,n].
For any i € [1,n],
ord,g,)(1 - b;) = ord,s,)(b; - 1) = ord,(s,)(b;) = 1. (3.17)

Hence the pairs (i,1) a

and (1,1) in «(B,) is well-behaving for any i € [1,n].
In particular, N; = 1, Ny =

2 and N, > 2 for any s € [3,n].
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Step 3. For any s € [3,n], let any pair (i,7) € [2, s—1]? such that ordg, (b;b;) = s
If (,7) in B, is well-behaving, then (i, j) in ¢(B,) is well-behaving.

Without loss of generality, we may assume that 7 > j. Assume that (i, j) in
B, is well-behaving. Note that ord,s,)(b;b;) = s from Step 1. We obtain

ord,(s,) (buby) = ordg, (byb,) < s
for any pair (u,v) <p (i,7) with u # 1 and v # 1, and further
ord, s (b, - 1) = ord, s, (b,) = u < 5
for any u € [1,i]. Therefore, (i,7) in ¢(B,) is well-behaving.

Now, we are in a position to finish the proof of Lemma 3.3.2. We obtain
N; < Ny and Ny < N, by Proposition 3.1.2 and Step 2. For any s € [3, n],

No =1 {(l J) € [L,sf (();,il;nfl?zg;) ijviezlilr—lgehaving }
< # {(l"]) €Ls—1] (();dﬁni(r?igj)ijvffealllr—lgehaving } +2 (3.18)
<a{p o phethisemd e e
:#{( j) €L | (()f;,(‘%lginri(f(ilgi))i:siv:lri—dbehaving } (3:20)
=N,

where (3.18) follows the fact that there exists at most one pair (7, s) (resp. (s,J))
which is well-behaving, (3.19) follows Step 3, and (3.20) follows Step 2.
Consequently, Ny > N for any s € [1,n]. (Q.E.D.)

As a consequence of these, the following theorem is obtained.

Theorem 3.3.3. Let B, = (b1, by, -+, b,) be any ordered basis. Then, there
exists an ordered basis B, = (1, b, b}, - -+ , b)) such that N(B.) >p N(B,).
O

Proof. An ordered basis B}, = (1, by, by, -+, b)) such that N(B.,) >p N(B,) can
be systematically constructed by using Gaussian elimination only with elementary
row operation and column permutation, and then the map ¢ defined by (3.15).

(Q.ED.)

From the argument in Section 3.2 and Lemma 3.3.2, in order to find ordered
bases which provides the largest Feng-Rao designed distance for any redundancy,
it is sufficient to investigate only ordered bases in standard normal form whose
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first component is identity element 1. These ordered bases have the matrix
representation

1 : (3.21)

The total number of ordered bases in standard normal form with first component
1is

#U, = qzmD-2), (3.22)
Therefore, the number of ordered bases that one should search can be reduced
from O(¢"") to gz D(n-2),

3.4 Conclusion

In this chapter, we firstly have shown that the Feng-Rao designed distance of
linear codes has depended on subspace sequence, that is, all the ordered bases
having the same subspace sequence have provided the same Feng-Rao designed
distance for any redundancy. Also, we have provided a representative for all or-
dered bases generated by any subspace sequence. This representative, which is
called in standard form, can be constructed for any ordered basis by using the
Gaussian elimination only with elementary row operation. Secondly, we have
shown that under the column permutation of any ordered basis, the Feng-Rao
designed distance has been invariant for any redundancy. At this time, the or-
dered bases to search can be restricted to the ordered bases in standard normal
form. In particular, any ordered basis can be put in standard normal form as its
Feng-Rao designed distance is kept by using the Gaussian elimination only with
elementary row operation and column permutation. Finally, we have presented
the following algorithm: The input to the algorithm has been any ordered basis.
The output to the algorithm has been the ordered basis in standard normal form
with first component 1. Then, the Feng-Rao designed distance for the output
ordered basis has been larger than or equal to that for the input ordered basis.
As a consequence of these, ordered bases that one should search can be restricted
to the ordered bases in standard normal form with first component 1, that is,

the number of ordered bases to search can be reduced from O(q"2) to exactly

q%(n2 —3n+2) )
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Chapter 4

Optimum Design of Monomial
Orders for Hermitian Codes

Linear codes on the Hermitian curve over F2, so called Hermitian codes, firstly
were appeared as an interesting example for algebraic geometric codes in Goppa’s
original papers [19, 20]. From their emergence, the Hermitian codes have been
paid attention by many coding theoreticians. This is the reason why the Hermi-
tian curve has the following two special features:

(1) The Hermitian curve attains Hasse- Weil upper bound (Proposition 2.3.3),
that is, this curve have maximal [F.-rational points as compared with its
genus. This means that the Hermitian codes are optimal in Goppa’s con-
struction.

(2) The Hermitian curve has a considerably simple structure in algebraic curves.
Hence, the Hermitian codes can be expected to furnish the simple and
efficient construction, encoding and decoding.

From the observation above, the Hermitian codes possessed both of the theoretical
and practical meaning.

In an earlier work [34], Lint and Springer calculated the parameters of some
Hermitian codes and showed an example that these codes were better than the
corresponding Reed-Solomon codes with the same information rate. Tiersma
[59] provided a theoretical approach to the Hermitian codes, and consequently
found explicit descriptions of their dual codes and automorphism groups. Suc-
cessively, Stichtenoth [57] presented explicit descriptions of generator and parity
check matrices for the Hermitian codes by working with an isomorphic curve
having only one point at infinity, and especially determined the exact minimum
distance of these codes for almost all dimension. Yang and Kumar [72] entirely
clarified the exact minimum distance of the Hermitian codes. In a practical view-
point, Yamanishi [71] precisely compared the subfield subcodes and concatenated
codes for Hermitian codes with the conventional algebraic codes. As a result, he
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found many good linear codes which were obtained from the Hermitian curve.
Recently, Rock and Stichtenoth [52] showed that the Hermitian curve was the
unique maximal curve over F 2 with genus g = (¢ — 1)¢/2. Thus, the Hermitian
curve increasingly take on importance in all algebraic curves.

The Hermitian curve contributes not only the discover of many new good
codes, but also the development of construction and decoding for algebraic geo-
metric codes. Miura [39] characterized the families C° and ,C” of plane curves
which described explicitly such as the Hermitian curve. Also, the Hermitian curve
has been employed as an example for the decoding of algebraic geometric codes
in many papers, for example [28, 9, 13]. Thus, the explication of the Hermitian
curve have related to those of algebraic geometric codes, and hence their research
has been sill attractive.

As shown in Chapter 3, Miura [42, 43] presented the decoding by majority
voting among unknown syndromes and the Feng-Rao designed distance for arbi-
trary linear codes by using the notion of ordered basis. Further, Miura proposed
an explicit construction method of linear codes on arbitrary affine algebraic va-
rieties by using monomial orders and Grobner bases. This construction method
generates an ordered basis which provides the large Feng-Rao designed distance
for given affine algebraic variety and monomial order. When an affine algebraic
variety is given, the monomial order plays a crucial role to determine the ordered
basis. This means that the choice of monomial orders affect the Feng-Rao de-
signed distance in this construction method. Unfortunately, if is not clear which
monomial order provides the largest Feng-Rao designed distance for given re-
dundancy. Now, an optimization problem of the Feng-Rao designed distance in
compliance with monomial orders is established.

In this chapter, we take up the Hermitian curve as an object of the opti-
mization problem above, and present a class of monomial orders which provides
the largest Feng-Rao designed distance. This chapter is organized as follows.
Section 4.1 is devoted to present an explicit construction method of algebraic
geometric codes on affine algebraic varieties, which proposed by Miura [42, 43].
The monomial orders and Grobner bases play a crucial role in this construction
method. We formalize an optimization problem for the Feng-Rao designed dis-
tance by using monomial orders. In Section 4.2, we provide the Hermitian codes
by Goppa’s and Miura’s construction and compare both the codes. Especially,
we observe that Goppa’s construction is Miura’s construction by using the weight
order which generates the structure sequence as for the Hermitian curve. Section
4.3 is the main part of this chapter. We provide sufficient conditions not to have
well-behaving pairs by using the extended delta sets. Next, necessary conditions
and sufficient conditions to have well-behaving pairs by using the weight order.
Then, by using their relation, we clarify a class of optimal monomial orders for
Hermitian codes. Also, we illustrate an example the case that finite field volume
is 16. The results in this chapter is based in part on a study published at TEICE
Transactions A [63].
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4.1 Algebraic Geometric Codes on Affine Alge-
braic Varieties

In this section, we review Miura’s construction method for linear codes on affine
algebraic varieties [42, 43]. This construction method provides a good lower
bound for the Feng-Rao designed distance of linear codes. We firstly introduce
the notion of monomial orders and Grébner bases which play a crucial role in
Miura’s construction method for linear codes on affine algebraic varieties.

4.1.1 Monomial Orders and Grobner Bases

In this subsection, we show the basic concepts of monomial orders and Grobner
bases. As for the detailed properties of monomial orders and Grobner bases, we
refer to [1, 6, 7].

Let K be an arbitrary field, and K[X] := K[X{, X5, -+, X;] the polynomial

ring in the indeterminates X, X5, -+ , X; with coefficients in K.
A monomialin Xy, Xs, -+, X; is a product of the form X® := X" X5? ... X"
for any t-tuple of nonnegative integers @ = (ay, as,- - - ,a;). The set of all mono-

mials in these indeterminates is denoted by M (X, X, -+, X;), or simply by
M. The set M is a multiplicative monoid with identity 1, and has the natural
one-to-one correspondence to the additive monoid Nj. The divisiblity relation |
on M is defined by X® X% if a — b € N). Further, a partial order >p on N}
is defined by @ >p b if @ — b € Ni. Then, X?| X% if and only if @ >p b. In
particular, we denote X® >p X? if X?| X% and X® # X?.

Definition 4.1.1. A monomial order on M is defined by a total order > on M
satisfying the following two conditions:

1. X2 > 1 for any monomial X® € M.
2. For any monomials X%, X% X¢¢c M, if X% > X? then X%t¢ > Xb+e
Further, X® > X? is also denoted by a > b. O

Hereafter, assume that any relation > on M is a monomial order. The relation
between any monomial order > and the divisiblity relation on M is provided the
following proposition.

Proposition 4.1.1. [1, p. 190, Theorem 5.5 (i)] Let > be a monomial order on
M. If two monomials X¢ and X° satisfy X?| X then X > Xb. O

Next, we introduce one important class of monomial orders.

Definition 4.1.2. Assume that an e x ¢t matrix M with entries in R satisfies the
following two conditions:
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1. All the row vectors of M are linearly independent over R,
2. All the column vectors of M are linearly independent over N,

3. The leading of v - M is positive for any v € N{ \ {0},

where the leading of a vector is the first nonzero component. Such the matrix M
is called a independent matriz. A total order on M is defined by X® >y XY if
the leading of (a — b) - M” € R¢ is positive. This order >y is called the matriz
order associated with by M. O

Any matrix order on M is a monomial order on M. In Robbiano’s papers [50]
and [51, Chapter 2], he has shown that the matrix order on M has the following
special feature:

Proposition 4.1.2. [50, p. 516, Theorem 5] Let > be any monomial order on
M. Then, there exists an independent matrix M such that X > X? if and only
if X@ >y X? for any monomials X® and X?. O

Proposition 4.1.2 means that any monomial order on M can be represented by
a matrix order defined by some independent matrix. For any t-tuples a = (ay,
ag,---,a¢) and b = (by,be, -+ ,b;) of No, let ¢ = (¢1,¢9,--- ,¢) where ¢; =
max{a;, b;} for each i € [1,¢]. Then, the monomial X¢ is called the least common
multiple of X and X?, denoted by X¢ = LCM{X?®, X%}

A polynomial F in the indeterminates X7, Xo,--- , X; with coefficients in K
can be uniquely represented as the following finite sum of monomials:

where a, € K \ {0}. Also, using a monomial order > on M, we can represent
the nonzero polynomial F as Y ;" g, X% with a4, # 0 such that a; > ay if
j > k. Then, the multidegree, the leading coefficient, the leading monomial and
the leading term of F is defined by Deg(F) := a,,, LC(F) := ag,,, LM(F) := X%
and LT(F') := LC(F)-LM(F), respectively. The ideal generated by a subset F of
K[X] is denoted by (F). For any polynomial F' and polynomial ideal I, Grébner
bases and the division algorithm provided by [7, p. 37, Proposition 2] are powerful
tools to decide a unique polynomial R such that F — R € [ and R ¢ I. Firstly,
Grobner bases is defined as follows:

Definition 4.1.3. Let > be a monomial order on M. A finite subset G =
{G1,Gy, --- G} of a polynomial ideal I is called a Grébner basis if

(LT(1)) = (LT(Gh), LT(Gy), - -, LT(Gln)), (4.1)

where LT(F) := {LT(F) | F € F} for any subset F of K[X].
Moreover, a Grobner basis G is called reduced if it is satisfied following two
conditions:
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1. LC(G;) =1 for any i € [1,m)].

2. LT(G;) ¢ (LT(G \ {G;})) for any i € [1,m].
O

Hereafter, assume that G = {G,Ga,--- ,Gy,} is a Grobner basis of 1. From [7,
p. 75, Corollary 6], every polynomial ideal I except {0} has a Grobner basis and
further any Grobner basis of I is a basis of I, that is, I = (G). Also, every polyno-
mial ideal I except {0} has a unique reduced Grobner basis from [7, p. 90, Propo-
sition 6]. For a polynomial F' and a Grobner basis G, the division algorithm of F
by a Grobner basis G = {G1, Gy, - -+, Gy, } is formulated as follows: The inputs in
this algorithm are a polynomial F' and a Grobner basis G = {G1, Gy, -+ , Gy}
The outputs in this algorithm are polynomials ()1, @2, , @, and R with

F=Q1-Gi+Q2-Go++Qn -Gn+R (4.2)

such that no term of R is divisible by LT(G;) if R # 0 and Deg(F') > Deg(Q; - G;)
if Q;-G; # 0 for any 7 € [1,m]. At this time, by [7, p. 79, Proposition 1], the
polynomial R is uniquely determined. This polynomial R is called the remainder
on division of F' by G and denoted by Fg, or simply F if it is clear which Grébner
basis is meant. The notion of S-polynomials defined by the following definition

plays a important role to test whether a finite polynomial subset G is a Grobner
basis of (G).

Definition 4.1.4. The S-polynomial of two nonzero polynomials F' and G is
defined by the polynomial

Xe¢ Xe¢
S(F,G):LT(F)-F—LT(G)-G, (4.3)
where the monomial X¢:= LCM{LM(F),LM(G)}. O

Using S-polynomials, the following criterion for deciding whether a basis of an
ideal is a Grobner basis can be provided.

Proposition 4.1.3. [7, p. 82, Theorem 6] Let I be a polynomial ideal. Then a
basis G = {G1,Ga, -+ ,Gp} of I is a Grobner basis if and only if the remainder
on division of S(G;, G;) by G for any pairs (i,7) € [1,m]? with i # j. O

Furthermore, S-polynomials also play an important role in Buchberger’s algo-
rithm [7, p. 87, Theorem 2] which is capable of constructing a Grébner basis
G from a finite basis F of [ in a finite number of steps. Buchberger’s algo-
rithm is formulated as follows: The input in this algorithm is a finite basis
F = {F,F,,--- ,F;} of I. The output in this algorithm is a Grdbner basis
G ={G1,Gy, -+ ,Gp} of I = (F) with F C G. Note that any polynomial ideal
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has a finite basis of an arbitrary ideals by the Hilbert basis theorem [7, p. 74,
Theorem 4].

Next, we consider the ring of residue classes of polynomials R := K[X]/I
modulo a polynomial ideal I. The coset of X; in R is denoted by z; for any
i € [1,t]. The element z{'z3*---zy* for any t-tuple of nonnegative integers a =
(ay,as, -+ ,a;) and the residue class ring R = K[z, %o, - , 2] are abbreviated
to x® and K[z], respectively. The delta set A(I) of the polynomial ideal I, which
is defined by the following definition, plays an important role to represent the
coset of any polynomial F'in R.

Definition 4.1.5. Let F be any subset of K[X]. The delta set of F is defined by

A(F):=Nj\ ] {Deg(F)+Nj} (4.4)
FeF\{0}

where Deg(F) + N} := {Deg(F') + a|a € N4}. In particular, A({0}) = N} and
A(K[X]) = 0. O

Hereafter, A(I) abbreviates to A. In particular,
A =Ny \ {Deg(F) | F € I\ {0}}, (4.5)

since [ is a polynomial ideal. From the definition and property of Grobner bases,
Xae = X for any @ € A and F can be uniquely represented as the linear
combination of { X% |a € A} over K for any polynomial F'. Further, the following
lemma and propositions can be obtained.

Lemma 4.1.4. Let A be the delta set of any polynomial ideal I. If a € A and
X?® X% then b € A. In particular, 0 € A. O

Proof. Assume that a € A, Xb|X% and b ¢ A. From the definition of delta
sets, there exists a polynomial F' € I such that LM(F)|X?. Hence, we obtain
LM(F)|X®. This contradicts that @ € A. In particular, 0 € A since X°(= 1)|X®
for any a € Nf. (Q.E.D.)

Proposition 4.1.5. [1, p. 207, Proposition 5.38 (iv)] Let A be and the delta set
of any polynomial ideal I. Assume that a finite set F = {F}, Fy,--- , F;} is a
subset of I. Then, F is a Grobner basis of I if and only if

A = AF) =N\ {Deg(F) + N (4.6)

O

Proposition 4.1.6. [43, p. 1392, Lemma 4.6 (4)] Let I be a polynomial ideal,
and A the delta set of I. Then, the set {z*|a € A} consists of a basis of the
linear space R = K|z] over K. O
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The coset f of any polynomial F in R is represented by F(z1, s, -+ , ;). Thus,
the division algorithm by a Grobner basis G is a powerful tool to represent the
coset f of a polynomial F in R as the linear combination of {z®|a € A}. Also,
the linear combination of a product fg of two elements f = F+ 1T and g =G+ 1
in R with F,G € K[X] can be calculated by dividing F'G by G.

4.1.2 Miura’s Construction Method

Let F, := GF(q) denote the finite field with ¢ elements, and F,[X] = F,[X;, X5,
.-+, X;] the polynomial ring in the indeterminates X, Xy, -+, X; with coeffi-
cients in F,. The ¢-dimensional affine space IFfI over [, is defined by the set of all
t-tuples of IF,.

For any subset F of Fy[X], a subset V(F) of I}, is defined by

V(F):={P eF | F(P)=0 forall F € F}, (4.7)

which is called the affine algebraic variety, or simply algebraic variety defined by
F. In particular, V/(F) = V((F)) for any polynomial subset F, where (F) is the
ideal generated by F. For any subset V of F,, a subset I(V') of F,[X] is defined
by

I(V):={F €F,[X]|F(P)=0forall PeV}, (4.8)

which is called the ideal of V. In particular, I(V) is an ideal of F,[X]. Now,
we have a function V' which maps subsets of F,[X] to algebraic varieties, and a
function I which maps subsets of IF'; to ideals. Their properties are summarized
in the following proposition:

Proposition 4.1.7. [43, p. 1390, Nullstellensatz over IF,] Let I be any polynomial
ideal and V' any subset of F,. Then,

1. V(I(V)) = V, that is, V is the affine algebraic variety defined by I(V).
This means that any subset of ]Ffl is an affine algebraic variety.

2. I(V(I)) =T+ (X! - X1, X — Xy, , X/ — X).
O

The ring of residue classes of polynomials I'(V) := K[X]/I(V) modulo the ideal
I(V) is called the coordinate ring of V. The coset of X; in I'(V) is denoted by
z; for any i € [1,¢], and then I'(V') = F [z, 2z, -+ , 2], simply denoted by F,[z].
Any f € I'(V) has a representation f = F' + I(V) for some F' € F,[X], and then
f(P) is defined by F(ay,az,---,aq) for any P = (oq,,--- ,0y) € F,. Then,
f(P) is well-defined.

Let V. ={Py, P5,---, P,} be the nonempty affine algebraic variety defined by
any finite polynomial set F = {Fy, F5,--- , F}. Note that n is at most #F,, = ¢".
The evaluation map evy from I'(V) onto F} is defined by

evy(f) == (f(71), f(P), -+ f(Fn)) (4.9)
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for any f € I'(V'). This map evy has the following property:

Proposition 4.1.8. [43, p. 1390, Lemma 4.4] Let V' be any algebraic variety of
]FZ and evy the evaluation map of V. Then, the map evy is an isomorphism from
['(V) onto Fy as F-algebra. O

From Proposition 4.1.8, the coordinate ring I'(V') is the n-dimensional linear space
over F,. An ordered basis of I'(V') is defined by an ordered n-tuple F, := (fi,
fay -+, fn) of T(V) such that F,, := {fi, fo, -+, fu} is a basis of I'(V'). Besides,
define

evy (Fn) = (evi(f1),evv(fa), -+ ,evi(fn)), (4.10)

and then evy (F,) is an ordered basis of Iy introduced in Section 3.1. Therefore,
the argument in Chapter 3 can be applied via the isomorphism evy. Here, all
the notions for ordered bases of Ff] in Chapter 3 is diverted to those for ordered
bases of I'(V') via the isomorphism evy .

In [42, 43], Miura presented a construction method which provides an ordered
basis by using monomial orders and Grobner bases introduced in Subsection 4.1.1.
This ordered basis of I'(V') provides linear codes with the large Feng-Rao designed
distance for any redundancy. Hereafter, we briefly explain Miura’s construction
method.

Let > denote any monomial order on M = M(X;, X5, -+, X;). Let G and
A be a Grobner basis and the delta set of I(V'), respectively. From Propositions
4.1.6 and 4.1.8, the set {z*|a € A} is a basis of the n-dimensional linear space
['(V), and hence the cardinality of A is n = #V. The following lemma is useful
in later section.

Lemma 4.1.9. Let V' be any nonempty affine algebraic variety with cardinality
n and F any finite subset of I(V). Then, F is a Grobner basis of I(V) if and
only if the cardinality of A(F) is equal to n. O

Proof. Let A be the delta set of I(V'). From Proposition 4.1.5, F is a Grobner
basis of I(V') if and only if A = A(F). Also, the cardinality of A is n. The proof
of this lemma is complete. (Q.E.D.)

Definition 4.1.6. The ordered basis M, (V,>) of I'(V) is defined by
M, (V,>) = (x*, 2%, -+ %)

such that a; € A for any s € [1,n] and a; > a; if ¢ > j, which is simply
denoted by M,,(V'), M,,(>), or more simply M,,. This ordered basis M,, is called
the monomial basis associated with V and >. In particular, from Lemma 4.1.4,
a; =0=(0,0,---,0), that is, z* = 1. O

Since % = 1, that is, evy(1) =1 = (1,1,---,1), the monomial basis M,
satisfies the criterion for linear codes to have the large Feng-Rao designed distance
in Theorem 3.3.3. The monomial basis M, has following property:
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Lemma 4.1.10. Let A and M,, = (2, 2%,.-- ;2% ) be the delta set of I(V)
and the monomial basis of I'(V'). Then, for any ¢-tuple @ € A and any s € [1,n],
If X®| X%, then a = a, for some u € [1, s]. O

Proof. This follows Proposition 4.1.1 and Lemma 4.1.4. (Q.E.D.)

Here, the Miura’s construction algorithm of the monomial basis M, (V,>) of
['(V) is provided as follows:

Algorithm 4.1.1. [43, p. 1392]

Input: a basis F := {Fy, F, -+, F;} of [ and a monomial order >.

Output: the monomial basis M,, = (2%, 2%, --- 2% ) associated with V' = V (I)
and >.

[Step 1] Search all points P € F; such that F(P) = Fy(P) = -+ = F,(P) = 0.

[Step 2] Calculate a Grobner basis G := {G1, G, -+ , Gy, } of I(V') by using Buch-
berger’s algorithm. Note that F U {X? — X |s € [1,¢t]} is a basis of I(V)
from Proposition 4.1.7.

[Step 3] Calculate the delta set A = {ay,as,--- ,a,} of I by using the Grobner
basis G, where a; > a; if i > j.
O

Remark 4.1.1. In Miura’s papers [42, 43], the output in this algorithm was
the ordered basis evy(M,) of Fy. In our dissertation, however, this algorithm
was finished by the derivation of the monomial basis M,,. Because, both of
the behavior of two ordered bases are the same from Proposition 4.1.8, and the
monomial basis M,, is more convenient than the ordered basis evy (M,,) for the
argument in later sections.
Also, Miura suggested that one may select an ordered basis F, := (fi, fo,
-, fn) of (V) such that f; € Span{z® }\{0} and f; € Span{z®', 2% .- 2% }\
Span{z® z% ... %1} for any s € [2,n]|. Unfortunately, from Theorem 3.2.3,
the evaluation sequences for such ordered bases are the same, that is, the Feng-
Rao designed distance is not varied by the choice of such ordered bases. Hence, in
this dissertation, we consider only the monomial basis M,, for simplicity. O

The monomial basis derived by Algorithm 4.1.1 has the following special feature:

Proposition 4.1.11. [43, p. 1393, Lemma 4.10] Let M,, = (z®,z% --.  z%)

be the monomial basis associated with any affine algebraic variety V' of IFZ. For

any pair (4,7) € [1,n)?, if a;+a; € A, then the pair (4, j) in M, is well-behaving.
O

From Proposition 4.1.11, each s-th component Ny in the evaluation sequence
N(M,,) has the following lower bound.

38



Proposition 4.1.12. [43, p. 1393, Theorem 4.12] Let M,, = (z®, z®* -+ %)
be the monomial basis associated with any affine algebraic variety V' of IFZ, where

a; = (a’sla As2, * - * ;a/sn) for any s € [1,”] Then’
t
N, > [J(asi +1) (4.11)
i=1

O

In our experience, the lower bound provided by Proposition 4.1.12 is considerably
better than the evaluation sequence for an arbitrary specified ordered basis of Fy.

Let M,, be the monomial basis associated with any algebraic variety V' of IF';
and monomial order > on M. Recall that the Feng-Rao designed distance of
linear codes depend only on the choice of the ordered basis, and moreover the
monomial basis depend only on the choice of the monomial order. Therefore, the
observation above leads to the following question:

Problem 4.1.1. Let V be any affine algebraic variety of Ff]. Find a monomial
order > on M such that the linear code C,(M,) associated with the monomial
basis M, has the largest Feng-Rao designed distance dpr(C,(M,,)) for the given
redundancy 7. O

In order to formulate Problem 4.1.1, we provide some definitions as follows:

Definition 4.1.7. Let V' be any affine algebraic variety of ]Fz. A monomial order

> on M is called r-optimal if the monomial basis M,, provides the linear code

Cr(M,,) with the largest Feng-Rao designed distance dpx(C,(M,)) in all possible

monomial bases for the given redundancy r. Especially, a monomial order > on

M is called optimal if the monomial order > is r-optimal for all r € [0,n — 1].
O

Problem 4.1.1 can be restated as follows: Find a monomial order > on M which
is r-optimal for the given redundancy r.

In Section 4.2, we consider the set of rational points on the Hermitian curve
as V', and in Section 4.3, we investigate a class of optimal monomial orders for
this affine algebraic variety V.

4.2 Linear Codes on Hermitian Curves

In this section, we present linear codes based on the Hermitian curve. The Her-
mitian curve has the maximal number of rational points as compared with its
genus, that is, it is maximal curve. Besides, the Hermitian curve has a consider-
ably simple structure in algebraic curves. Therefore, the codes on the Hermitian
curve investigated by many researchers [59, 57, 71, 72], and in the present they
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have been good examples for algebraic geometric codes. Now that all these results
for the linear codes on the Hermitian curve were based on Goppa’s construction
introduced in Section 2.3, we hereafter investigate the codes on the Hermitian
curve based on Miura’s construction introduced in Section 4.1. Firstly, we review
both the codes on the Hermitian code by Goppa’s and Miura’s constructions and
show their relation.

4.2.1 Hermitian Codes by Goppa’s Construction

Let F2 := GF(¢?) be the finite field with ¢* elements, and F, its algebraic
closure. Let F,2[X, Y] be the polynomial ring in two indeterminates X and Y.

Definition 4.2.1. The Hermitian curve X over F,. is defined by
YiZ+YZ9= X" (4.12)

that is, X := {(a: B :1)|a,8 € Fzand 87+ 3 = a?™JU{(0:1:0)}. The
Hermitian curve X is a projective, nonsingular, absolutely irreducible curve.
O

Let P, s and @) denote the points (a: 5 :1) and (0:1:0), respectively. The set
of F2-rational points is provided by

X(Fp2)={Pasla,B €Fpe and g+ 3= a’}U{Q}. (4.13)

For any a € F 2, the equation 87+ 8 = a*! has ¢ distinct roots 3 € F,.. Hence,
the number of F2-rational points of on X is ¢* +1. On the other hand, the genus
of X is provided by

9= %q(q —1). (4.14)

Therefore, the curve X attains the Hasse-Weil upper bound.

The polynomial F = F(X,Y) = Y74+ Y — X9 in F2[X,Y] is called the
Hermitian polynomial. The cosets of X and Y in F2[X,Y]/(F) is denoted by x
and y, respectively. Then, x(P, 3) = a and y(P,3) = 3 for any point P, 3 on X
except ). The function field F2(X) = F2(z,y) is called the Hermitian function
field. For any o, 8 € 2, the rational functions z — o and y — 8 have the following
principal divisors:

(w—a)= > Pp—q-Q (4.15)
pi+p=a
(¢+1)-Pop—(¢+1)-Q if f7+ =0,
(y—p5) = > Pas—(g+1)-Q if B+ #£0. (4.16)
aitl=pBa143
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From [57, p. 1346, Proposition 1], a basis of L(m@) is provided by
{z'y’|i € No, j € [0,¢ — 1] and g~ i+ (¢ +1) - j < m}, (4.17)

for any nonnegative integer m.

Let P, P, ---, P, be all Fj-rational points on X except (), and then n is
equal to ¢*. Let D be the Fp-rational divisor P, + P, + --- + P,. For any
nonnegative integer m, the algebraic geometric code

Ca(D,mQ) = {evp(z'y’) |i € Ny, j € [0,¢—1] and ¢-i+(qg+1)-5 < m}* (4.18)

associated with D and m() is called the Hermitian codes by Goppa’s construction.
Hereafter, let the code Cq(D, m@) abbreviate to Cq(m@).
The subset Sg of Ny is defined by

Sg :={m € Ny | dim Co(mQ) + 1 = dim Cq((m — 1)Q)}. (4.19)

By [41, p. 428, Lemmal, the cardinality of Sq is n, 0 is included in Sg, and m € S
if and only if I(mQ@Q) =I((m —1)Q) + 1 and (=D + mQ) = I(—=D + (m — 1)Q).
Let Sg = (pi|i € [1,n]) denote the sequence of all elements of Sy in increasing
order, so p; = 0. This sequence Sy is called the structure sequence at . At this
time, the redundancy for Cq(p,Q) is r. The nonnegative integer n; is defined by

ns = #{(i,7) € [Ln]*| pi + pj = ps}.
The Feng-Rao designed distance of Cq(p,Q) is defined by

dFR(OQ(prQ)) = min{ns | re [S + 1,71]},

and then the Feng-Rao decoding algorithm [9, 13] can be decoded up to half
the Feng-Rao designed distance dpr(Cq(p,Q)). In particular, from [30, p. 1725,
Theorem 3.8] and [41, p. 429, Theorem]

drr(Ca(prQ)) > 1 —g+1,

and equality holds if 3¢ — 1 < r <n — g — 1. Furthermore, for any redundancy
r, the minimum distance of Cq(p,Q) is equal to the Feng-Rao designed distance
of Cq(p,Q), that is,

d(Ca(pQ)) = drr(Cal(p,Q))

from [72, p. 100, Theorem 1], [40, p. 80, Main Theorem 2] and [41, p. 429,
Theorem]|.

Remark 4.2.1. Miura proposed the family of nonsingular plane curves C’Z over
F, in his paper [39]. He clarified one-point codes on any plane curves in C? and
provided many examples of curves which are maximal. The Hermitian curve over
2 is included in the family Cg“. Also, Miura extended the notion of the curve

family Cg to a higher-dimensional affine space [42, 44| O
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4.2.2 Hermitian Codes by Miura’s Construction

In this subsection, we investigate the linear codes on the set of F2-rational points
on the affine Hermitian curve by using Miura’s construction method in Section
4.1.

Let V' be the set of all Fj.-rational points on the affine Hermitian curve, that
is,

Vi={(c,B)|a,B €Fpe and B+ =o'} (4.20)
Then, the cardinality of V is n = ¢®. The affine algebraic variety V is denoted
by {Pi, P», -+, P,} where the order of Fp-rational points is the same as in pre-

vious subsection. The polynomial ideal I(V') is represented by (X4 — X, Y7 —
Y,F(X,Y)) from Proposition 4.1.7. Let I'(V') := F.2[X,Y]/I(V') be the coordi-
nate ring of V. The coset of X and Y in T'(V') are denoted by x and y, respectively.
Note that x and y in this subsection differ from those in previous subsection.

The reduced Grobner basis and the delta set of I(V) is explicitly provided by
the following lemma for any monomial order > on M(X,Y).

Lemma 4.2.1. Let > be a monomial order on M(X,Y). The reduced Grébner
bases G and the delta set A of I(V') are provided as follows:

(a) In the case of Y4 > X4t1,
g:{XQQ _XaF(X7Y)}7 (421)
A=10,¢*—1] x[0,q—1]. (4.22)

b) In the case of X7t > Y1,
(b)

G = { -V, X- Z 1)ty ta-b —F(X,Y)}, (4.23)

A= {0} x[0,¢" ~ 1] [1,4] x [0,¢* — ¢ —1]. (4.24)

Proof. The proof of this lemma parts into the following two cases.
(a) In the case of Y4 > X4t1,
Let F := {F}, F,} where F} :== X% — X and F, := F(X,Y). Then,

A(f) = [an2_1] X [O,Q—l],

and the cardinality of A(F) is n = ¢*. Therefore, F is the reduced Grobner basis
from Definition 4.1.3 and Lemma 4.1.9.

(b) In the case of X9t > Y.
Since the equation 3¢+ 3 = 0 has ¢ distinct roots in Fp, (Y7 —Y)/(Y9+Y)
is a polynomial with coefficients in F2. If (o, ) € V and a # 0, then BT —B=0
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and 87+ = o' #£ 0, and hence X - (Y7 —Y)/(Y9+Y) € I(V). We obtain

YO Y yoe-l - -

X . —  -_X.— ~_X. -1 €+lyé(q71)
Yi+Y Yol +1 ;( ) ’
since
q q+1 q
(Y- 1+1 Z £+1Y£q 1) _ Z( Yéq 1) +Z £+1Yzq 1)
£=0 =1 £=0

= (—1)7Hy Tt
Note that if ¢ is even then (—1)4t!' = —1 = 1. Now, let
F = {F17F27F3}7

where

Fl:=Y"_-Y, F:=X- Z *y D and Fy:=—F(X,Y).

Then,
A(f) = {0} X [an2 - 1] U [Lq] X [an2 —q— 1];
and the cardinality of A(F) is n = ¢®. Therefore, F is the reduced Grobner basis

from Definition 4.1.3 and Lemma 4.1.9.
The proof of this lemma is complete. (Q.E.D.)

By Lemma 4.2.1, the monomial basis M,, associated with V' for any monomial
order > is explicitly determined, and hence Algorithm 4.1.1 can be omitted with
respect to the set of F2-rational points on the Hermitian curve. Let ((a;,b;) |i €
[1,n]) denote the sequence of all elements of A in increasing order with respect to
the monomial order >. By Proposition 4.1.12, the evaluation sequence N(M,,)
for the monomial basis M,, has a lower bound

Ng > (as+1)(bs+1) (4.25)

for any s € [1,n].

Next, we investigate the relation between both the codes on Hermitian curves
by Goppa’s and Miura’s constructions. For that reason, we introduce weight
order on M(X,Y’) provided by the following definition.

Definition 4.2.2. Let 4 and v be any relatively prime positive integers. A total
order on M(X,Y) is defined by X*Y? >, , x) XY (resp. X°V? >(,,y) XV?)
if X?Y?® and X°Y? satisfy one of the following conditions

l.a-p+b-v>c-p+d-v,
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2.a-p+b-v=c-pu+d-vanda>c(resp. a < c).

This order >, x) (resp. Z(u,yyy)) is called the weight order associated with the
weight (p, v, X) (resp. (i, v,Y)). The set of all weights is denoted by W. O

The weight order >,, associated with any weight w € ¥V is a monomial order
on M(X,Y). Also, if the weight w is (p, v, X) (resp. (u,v,Y")), then the weight
order >, ., x) (resp. Z(u,yyy)) can be represented by the matrix order >y; with

=[5 o] (e |5 1])- (4.26)

Further, since the delta set of I(V') for any monomial order > is finite, we obtain
following lemma.

Lemma 4.2.2. Let M, (>) be any monomial basis associated with V. Then,
there exists a weight order >,, such that

O

Proof. By Definition 4.1.2 and Proposition 4.1.2, all the monomial orders except
the matrix order given by (4.26) can be represented by

10 01
Ml':{o 1]’ M2'2[1 0]
or
Ma::[a 1]

for any positive real number « which is not rational number. The monomial
basis M, (>wm,) is identical with M,,(>(,21,x)) associated with the weight order
> (g2,1,x)- Similarly, the monomial basis M, (>wm,) is identical with M (>(1 42,v))
associated with the weight order >y 2 y).

Next, we consider about the case of Y4 >y X% that is, a is smaller than
q/(g+1). Let A denote the delta set for the monomial order M,. Let A denote
the set

{(a—c,b—d)|(a,b), (c,d) € A, a—b>0, and XV’ >y, XV,

Since A is finite, there exist relatively prime positive integers y and p such that

a-(a—c)+b-d)>E (a—c)+(b-d) >0

14

for any (a —c,b—d) € A. Here, we consider the weight order >, .y on M(X,Y).
Since Y9 >, X% the set A is also the delta set for the weight order > (uwy)
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by Lemma 4.2.1. At this time, we will show that X?Y? >y X¢Y'? if and only
if XY >(,,.) XYV for any pairs (a,b), (¢c,d) € A. Assume that X*Y? >y,
XY? If a > ¢, then (a — ¢,b — d) € A and hence

a-(a—c)+(b—d)>g-(a—c)+(b—d)>o.

If a < ¢, then
5-(a—c)+(b—d)za-(a—c)+(b—d)>o.

Therefore, X*Y?* >,y X°V% Conversely, assume that X°Y? >, , ) XY If
a > ¢, then

a-(a—c)+(b—d)2%-(a—c)+(b—d)>0.

If a < cand X°Y? <pp, XY then (¢ —a,d —b) € A and hence
a.(c—a)+(d—b)>g-(c—a)+(d—b)>o.

that is, X*Y? <,y XV% Therefore, X*Y? >y, XY4. As a consequence of
these,
Mn(ZMa) - Mn(Z(u,u,-))-

In the case of X9t >y Y9 the proof can be done in a similar way. The
proof of this lemma is complete. (Q.E.D.)

Remark 4.2.2. The proof of Lemma 4.2.2 is hardly used the assumption that
V' is the set of Fgj.-rational points on the affine Hermitian curve. Hence, with
respect to any affine algebraic variety of Fg, the following similar statement can
be proved. Let V be an arbitrary affine algebraic variety of IFg. Then, for any
monomial order > on M(X,Y), there exists a weight order >,, on M(X,Y)
such that the monomial basis M, (V,>) is identical with the monomial basis
My (V> ). O

Let w be the weight (¢,q +1,Y). Since Y? >,, X9 the reduced Grobner
basis G and the delta set A of I(V) can be provided by (4.21) and (4.22), re-
spectively. Let M,, denote the monomial basis associated with V" and >,,. The
set

{g-a+(¢+1)-b[(a,b) € A}
is identical with Sg defined by (4.19). From [38, Lemma 3.8], if r < 3¢ — 1, then

drr(Cr(My)) > dpr(Cal(peQ)), (4.28)
and if r > 3g — 1, then
Cr(M;) = Ca(p:Q).
The inequality (4.28) follows the technique of improved geometric Goppa codes
proposed by Feng and Rao [12]. Consequently, Miura’s construction extends

Goppa’s construction to arbitrary monomial orders with respect to Hermitian
codes. Hereafter, Hermitian codes indicate those by Miura’s construction.
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4.3 Optimal Monomial Orders for Linear Codes
on Hermitian Curves

In this section, we investigate only linear codes on the Hermitian curve by Miura’s
construction in Subsection 4.2.2. We show which monomial order provides the
largest Feng-Rao designed distance of Hermitian codes. Firstly, we provide suf-
ficient conditions not to have well-behaving pairs by using the extended delta
sets. Next, we show necessary conditions and sufficient conditions to have well-
behaving pairs by using the weight order. Finally, we clarify a class of optimal
monomial orders for Hermitian codes. This class includes the weight order which
generates the structure sequence. All notations in previous section is also used
in this section.

4.3.1 Sufficient Conditions Not to Be Well-Behaving

Let A and M,, be the delta set of (V') and the monomial basis associated with
V for any monomial basis > on M(X,Y’). Recall that the evaluation sequence
N(M,,) for the monomial basis M,, defined by the number of well-behaving pairs
(i,7) in M,, which are mapped the same number by order map. Let ((a;,b;)|i €
[1,n]) denote the sequence of all elements of A in increasing order with respect
to the monomial order > on M(X,Y’). The extended delta set 2A is defined by

2A = {(a+c¢,b+d)|(a,b), (c,d) € A}.

For convenience sake, the sum (a;, b;)+(a;, b;) is denoted by (a;;, b;;) in 2A. Here,
we illustrate the range of the pair (a;;, b;;) which always provide not well-behaving
pair (4,7). We obtain Lemma 4.3.1 in the case of Y4 > X! and Lemma 4.3.2
in the case of X7t > Y4,

Lemma 4.3.1. Let > be any monomial order with Y7 > X% Assume that a
pair (a;;, b;j) satisfies one of the following conditions

1. iy € [q272q2 - 2]7
2. a;j €[> —q—1,¢*>— 1] and b;; € [¢,29 — 2].
Then, the pair (i, ) is not well-behaving. O

Proof. From Lemma 4.1.10, for any monomials XY with X?Y? <p X%y,
there exists a pair (u,v) € [1,n]®> with (u,v) <p (4,j) such that XV =
Xawybw  We will show that there exists a monomial X°Y? with (a,b) € 2A
and
XY <p X ybi (4.29)
such that
LM(XeY?) >, LM (X Yb) (4.30)
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for any pair (7,j) satisfying the assumption of this lemma. To find the pair
(a,b) which satisfies (4.29) and (4.30) means that the pair (7,7) in M, is not
well-behaving. The proof of this lemma can be done in three cases.

[Case 1] a;; € [¢* —q¢—1,¢* — 1] and b;; € [¢,2q — 2].
The remainder of X% Y?i by G is provided by

X i Ybi; — X0i—a+a+2ybij—q _ yaiybi—at+l
For a monomial XY %! which satisfies (4.29), we obtain
Xuiyrt >, Xoi—a®+at2ybii—a  anq X eiy9d-! >p X0y bii—at!

since a;; — ¢* + ¢+ 2 € [1,¢ + 1]. Therefore, the pair (i,7) in M, is not well-
behaving.

[Case 2] a;; € [¢?,2¢* — 2] and b;; € [0,q — 1].
X Yhiy = X0 CHybi < xO1ybi <, Xy,
[Case 3] a;; € [¢%,¢* — 2] and b;; € [¢,2q — 2].
LM(XaYb5) <p X1y 0 ! <p X0y,
The proof of this lemma is complete. (Q.E.D.)

Lemma 4.3.2. Let > be any monomial order with X' > Y. If a pair (a;;, b;;)
satisfy one of the following conditions

1. a;; = 0 and b € [¢%,2¢* — 2],
2. a;; €[1,q] and b;; € [¢* — q,2¢* — ¢ — 2],
3. a;; =q+1and b € [¢* — q,2¢* — 2q — 2],
4. aij € [q¢+2,2q] and b; € [¢* — 2¢,2¢* — 2q — 2],
then the pair (,7) is not well-behaving. O

Proof. This lemma can be also proved such as Lemma 4.3.1. The proof of this
lemma can be done in several cases.

[Case 1] a;; = 0 and b;; € [¢?, 2¢* — 2].
LMCTTTH) — Y01 < o1 <y xoy s,
[Case 2] a;; € [1,q] and b;; € [¢* — q,¢* — 2].
LM(W) = Xeiybi—atl <, Xy € a1 <p XOybi,
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[Case 3] a;; € [1,q] and b;; = ¢* — 1.
LM(X@iYb) = X% <p X4 y? =07 <, Xy,
[Case 4] a;; € [1,q] and b;; € [¢°,2¢*> — q — 2].
LM(X@iYhi) = X4yl O+l <p Xxuy @l <, xeuybi,
[Case 5] a;; = ¢+ 1 and by; € [¢* — ¢, ¢* — 2].
Xty @ el < Xy b

and
LM (Xt y@=a-1) = YO~ >, IDM(X e Ybi) = YPut!,

[Case 6] a;; =q+1 and b;; € [q2 —1,2¢> — 29 — 2.
LM(XoY0) = yhs=rt+es1 <, Xoydt=i-t ) yauybs,

[Case 7] a;; € [q +2,2q] and b;; € [¢* — 2¢,¢* — ¢ — 2].

If ¢ is even, then
Xwy e -2t <p Xyt

and
LM(X iY@ —20-1) = X% 01y e a1 > [M(XeiYhi) = X% 0 1ybi—a+2,

If ¢ is odd, then
Xy T2t <p X4y

and
LM(X iy @=20-1) = X %0~y @ ==l >, [M(X e Ybi) = X%—a-Tybis+1,
[Case 8] a;; € [¢ +2,2q] and b;; € [¢* —q—1,¢° — 3].
LM (X Yby) = Xou—0-lybi=at2 <, xoy ==t <, xoybi,
[Case 9] a;; € [q +2,2q] and b;; € [¢* — 2,2¢* — 2q — 2]
LM (X Ybi) = X a-lybi—a* et < oyl o ey b

The proof of this lemma is complete. (Q.E.D.)
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Not well-behaving

Well-behaving

a%-g-1

0 g?-q-2

Figure 4.1: The extended delta set in the case of Y4 > X1,

Hereafter, we consider only the case of Y4 > X%t From Proposition 4.1.11,
if
(aij,bij) cEA= [0,(]2 — 1] X [0,(] — 1],
then the pair (7, j) is well-behaving. Also, if a pair (a;;, b;;) satisfies the assump-
tion of Lemma 4.3.1, then the pair (7, j) is not well-behaving. These are shown
in Figure 4.1. Now, as shown in Figure 4.1, it is unknown whether the pairs (i, j)
which corresponds to

(aij, bij) € [0,¢° — g — 2] x [g,2q] (4.31)

is well-behaving or not. Therefore, if all the pairs (7, j) which corresponds to
(4.31) would be well-behaving, then Hermitian codes could have the largest Feng-
Rao designed distance for any redundancy in the case of Y4 > X%t In the
following subsection, we investigate a class of monomial orders such that all
the pairs (4, 7) which corresponds to (4.31) are well-behaving. Also, in the case
of X9 > Y% we can give a similar consideration from the consequence of
Proposition 4.1.11 and Lemma 4.3.2.

4.3.2 Necessary Conditions and Sufficient Conditions to
Be Well-Behaving

In this subsection, we provide necessary conditions and sufficient conditions to
have well-behaving pairs by classifying the weight order. For convenience sake,
we introduce the following total order on W.

Definition 4.3.1. Let (p,v1,-) and (p9, 2, 0) be any distinct weights in W. A
total order on W is defined by (u1,11,+) > (pa, v2,0) if (p1,v1,+) and (ua, 9, 0)
satisfy one of the following conditions

L /v > po/ve,

2. p1/v1 = po/ve and the dot - in (py,vq,-) is X.
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Let (p1,v1,-) and (po,v9,0) be any weights in W such that (pq,vq,-) >
(o, v, 0). If X2Y? > (1,v2,0) XY? and a > ¢, then X°Y? > (u1ny) X¢Y?. Con-
versely, X°Y? >, ,, ) X°Y% and a < ¢, then X°Y" >(,, ., o) XY, From these
observations, as the weight is large with respect to the total order > on W, the
exponent of X is given the higher priority than the exponent of Y. Next, we show
some relations between weight orders and well-behaving pairs. We part into the
two cases (a) and (b) in Lemma 4.2.1.

(a) In the Case of Y4 >, ) X7

The relation Y9 >(,, ) X" means
(n,v,) 2 (g, ¢+ 1Y), (4.32)

Let A denote the delta set of I(V) for the weight order >(,,.) on M(X,Y).
From the observation in Subsection 4.3.1, any pair (7, 7) such that

(a5, bi5) €0, ¢ —q- 2] x [q,2q — 2]. (4.33)

is not yet decided whether well-behaving or not. We provide a necessary condition
for the pair (7,7) with (4.33) to be well-behaving.

Lemma 4.3.3. Let M,, be the monomial basis associated with the weight order

>(uw)- I a pair (i,7) with (4.33) is well-behaving, then the weight (u,v, ")
satisfies
(,U,,V,')E (Qq_bij_laQ+17X)' (434)
O

Proof. Assume that a pair (7,j) with (4.33) is well-behaving. We obtain
XYy = Xoitatlybi—a _ xeiybiy=atl
If LM(XaiiYbi) = X Yb=91 then
X yPi-atl <, ey al <, Xy
and hence the pair (7, j) is not well-behaving. Therefore, we obtain
Xogtatlybi=t > Xeybi—oth

and hence
(p’al/?') i (17q+ ]-7X)

Since the pair (i, 7) is well-behaving, we obtain
LM(XY?) <(y,) X0t ybia—a
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for any pair (a,b) € 2A with X°Y? <p X% Y% For any pair (a,b) € [0, a;;] X
[q, b”] \ {(aij, bij)}7 we obtain

LM(X“Y”) — Yotatlyb—q <p X @i tatlybii—q
For any pair (a,b) € [0,a;] x [0,q — 1], we obtain the inequality
pra+v-b<p-(a;+q+1)+v-(b;—q),

if equality holds only if the dot - in the weight (x,v,-) is X since a < a;; + ¢+ 1.
At this time, since the maximum value of p-a+v-bis p-a;; +v-(q¢—1), we
obtain
pratv-(q—1) <p-(ag+q+1) +v- (b —q),
if equality holds only if the dot - in (u,v,-) is X. Therefore, we obtain
(:U”Va ) = (2q - bzy - 1aq_|_ 17X)
The proof of this lemma is complete. (Q.E.D.)

Furthermore, we provide a sufficient condition that all the pairs (7, j) with (4.33)
are well-behaving by the following theorem.

Theorem 4.3.4. Let M,, be the monomial basis associated with the weight order
> (uw,)- 1f the weight (u, v, -) satisfies

(q_1>q7X)j(M7l/7)j(Qaq+17Y)> (435)
then all the pairs (7, ) with (4.33) are well-behaving. O

Proof. Assume that the weight (u, v, -) satisfies (4.35). Assume that any pair (4, j)
satisfies (4.33) and any pair (u,v) satisfies (u,v) <p (i,7). From the property of
monomial orders, we obtain

X YPe <, XY, (4.36)

For any two pairs (a,b), (¢,d) € A, since 0 < |b—d| < ¢—1 and p and v are
relatively prime, if p > g and p-a+vb=p-c+v-d, then (a,b) = (¢,d). From
this consequence, when p > ¢, the relation (4.36) can be rewritten as

u-aw—l—y-bw<u-aij+l/-bij. (437)
Hereafter, we assume that p > ¢. Assume that
poaii+v-by=p-(a;+q+1)+v-(bj—q),

that is,



By (4.37), we obtain
N'auv+y'buv <M'(aij+Q+1)+V'(bij_Q)-

This means
LM (X uvY buv) <(uy’) LM (X@iYbis),

and hence the pair (i,7) is well-behaving. Therefore, if (pu,v, ) = (¢,¢ + 1,Y),
then all the pairs (i, j) with (4.33) are well-behaving.

Furthermore, the monomial basis M,,(>(,,,,.) associated with any weight or-
der satisfying (4.35) is identical. The proof of this theorem is complete. (Q.E.D.)

From Theorem 4.3.4, if the weight satisfies (4.35), then all the pairs (i, ) with
(4.33) are well-behaving, that is, all the pairs (a;;, b;j) of the unknown area in Fig-
ure 4.1 are well-behaving. This means that any monomial basis M,, = M,,(>,)
such that the weight w satisfies (4.35) provides the linear code C,(M,,) such that

dpr(Cr(My)) > dpr(Cr(Mn(>)))

for any redundancy r, where > is any monomial order with Y¢ > X%t Note
that all the weight orders satisfying (4.35) generate a unique monomial basis.
For the monomial basis associated with any weight order satisfying (4.35), the
corresponding N for any s € [1,n] is provided by the following theorem.

Theorem 4.3.5. Let M, be the monomial basis associated with any weight
order satisfying (4.35). Then, the evaluation sequence for the monomial basis
M,, is provided by

(as+1)-(bs+1)
if (as, bs) € [0,¢] x [0,q — 1],

Ny = 4.38
0 (0= 0) + 1) (bt 1) )
O
Proof. For any pair (7, ) with (4.33), we obtain
LM (XaiuYbi) = X@itatlybi—a — xosybs
for some pair (as, bs) € A. From Theorem 4.3.4, the N, with
(asybs) S [q+1aq2 - 1] X [O,Q_Q] (439)

is larger than the lower bound (as + 1) - (bs + 1) provided by (4.25). Conversely,
the N, without (4.39) is identical with the lower bound (as + 1) - (bs + 1). By
the definition of the N, the N with (4.39) is given by adding the lower bound
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(as 4+ 1)(bs + 1) to the number of all the pairs (7,7) such that (a;j,b;;) = (a5 —

q — 1,bs + q). Hence, the N, with (4.39) is provided by
Ny = (as+1) - (bs + 1) + #{(i, 4) | (asj, bij) = (as —q — 1,b5 + q)}
= (a5 +1) - (bs + 1) + #{(i,4) | (a5, bi) = (a5 — g — 1 — a;,bs + ¢ — j)}
=(as+1)-(bs+1)+#[0,a5 —q—1] x [bs + 1,q — 1]
=(as+1) - (bs+1) + (a5 —q) - (¢ — 1 = by)
=q-(as—q) +(g+1)-(bs+1)

In particular, for any (as, bs) € [¢+ 1,¢* — 1] x {g — 1}, we obtain

(as +1) - (bs +1) = (as + 1) - (bs + 1) + (a5 — q) - (¢ = 1 = by).

(Q.E.D.)
(b) In the case of X9t >, ) Y.
The relation X% >, , ) Y9 means
(n,vy) = (g4 + 1, X). (4.40)

Let A denote the delta set of I(V) for the weight order >,y on M(X,Y). Any
pair (i, ) such that

(aij, bij) € {g+1} x [0,¢° —q—1]U[g+2,2¢] x [0,¢° —2¢ —1].  (4.41)

is not yet decided whether well-behaving or not. We provide a necessary condition
for the pair (7,7) with (4.41) to be well-behaving.

Lemma 4.3.6. Let M,, be the monomial basis associated with the weight order
>(uw,)- If a pair (4,7) with (4.41) is well-behaving, then the weight (yu,v,-)
satisfies
(,1,) < (4,20 — iy +1,Y). (4.42)
O

Proof. Assume that a pair (7,7) with (4.41) is well-behaving. We obtain
Nau Yy — Yei—a-lybiy+e _ yai—a—lybi+1
Since the pair (i, j) is well-behaving, we obtain
LM(XY?) <(,) X070 ybiata
for any pair (a,b) € 2A with
Xyt <p Xy, (4.43)
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For any pair (a,b) € [q+ 1,a;;] X [q,bi5] \ {(aij, bij) }, we obtain
LM(Xay?) = Xo e lybte < X bybite,

For any pair (a,b) € [0, ¢] x [0, b;;], we obtain the inequality
pratv-b<p-(ag—q—1)+v-(b+q),

if equality holds only if the dot - in the weight (4,7, -) is Y since b < b;; + ¢. At
this time, since the maximum value of - a+v-bis p-q+ v - b;;, we obtain

pog+v-by <pe(ag—q—1)+v- (b +q),
if equality holds only if the dot - in (u,v,-) is Y. Therefore, we obtain
(o v,) = (.2q — a3 +1,Y).
The proof of this lemma is complete. (Q.E.D.)

Furthermore, we provide a sufficient condition that all the pairs (7, j) with (4.41)
are well-behaving by the following theorem.

Theorem 4.3.7. Let M,, be the monomial basis associated with the weight order
> (uw,)- 1f the weight (u, v, -) satisfies

(¢:¢+1,X) = (p,v,) 2(1,1,Y), (4.44)
then all the pairs (i, j) with (4.41) are well-behaving. O

Proof. Assume that the weight (p, v, ) satisfies (4.44). Assume that any pair (7, j)
satisfies (4.41) and any pair (u,v) satisfies (u,v) <p (i,7). From the property of
monomial orders, we obtain

Xowybew <, X4y, (4.45)
For any two pairs (a,b), (c,d) € A, since 0 < |a —¢| < ¢ and p and v are
relatively prime, if v > ¢+ 1 and p-a+vb= pu-c+v-d, then (a,b) = (¢, d).
From this consequence, when v > ¢ + 1, the relation (4.45) can be rewritten as
/L'Cbuv—f—l/'buv</ﬁ'ai]’+l/'bij. (446)
Hereafter, we assume that v > ¢ + 1. Assume that
pea+v-bij=p-(aij—q—1)4+v-(bj+q),

that is,



By (4.46), we obtain
P Qyy +V by < pie(aij —q— 1)+ v (bij +q).

This means
LM (X uvY buv) <(uy’) LM (X@iYbis),

and hence the pair (i, j) is well-behaving. Therefore, if (u,v, ) = (¢,q + 1, X),
then all the pairs (i, j) with (4.41) are well-behaving.

Furthermore, the monomial basis M,,(>(,,,,.) associated with any weight or-
der satisfying (4.44) is identical. The proof of this theorem is complete. (Q.E.D.)

From Theorem 4.3.7, if the weight order satisfies (4.44), then all the pairs (i, j)
with (4.33) are well-behaving. This means that any monomial basis M, =
M., (>4) such that the weight w satisfies (4.44) provides the linear code C,(M,,)
such that

for any redundancy r, where > is any monomial order with X! > Y9  Note
that all the weight orders satisfying (4.35) generate a unique monomial basis.
For the monomial basis associated with any weight order satisfying (4.44), the
corresponding N for any s € [1,n] is provided by the following theorem.

Theorem 4.3.8. Let M, be any monomial basis associated with the weight
order satisfying (4.44). Then, the evaluation sequence for the monomial basis
M., is provided by

(as+1)-(bs+1)
B if (as,bs) € [0,¢] x [0,q — 1],
M= g a0+ g+ D) (4 D) (447

if (as,b5) € {0} x [q,¢* —1JU[1,q] x [¢,¢* —q—1].

O
Proof. For any pair (i, j) with (4.41), we obtain
LM(X@iYbi) = Xui—a-tybite — xasyt:
for some pair (as,bs) € A. From Theorem 4.3.7, the N, with
(as,bs) € {0} x [g,¢" = 1JU[L,q = 1] x [¢,¢" —q — 1] (4.48)

is larger than the lower bound (as + 1) - (bs + 1) provided by (4.25). Conversely,
the N, without (4.48) is identical with the lower bound (as + 1) - (bs + 1). By
the definition of the N, the N, with (4.48) is given by adding the lower bound
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(as + 1)(bs + 1) to the number of all the pairs (i, j) such that (a;;, b;;) = (as +
q+1,bs — q). Hence, the N, with (4.48) is provided by

Ng=(as+1)-(bs + 1)+ #{(i,7) | (ai, bi;) = (as + ¢+ 1,bs — q)}
= (ay+ 1) (b + 1)+ #{(0,3) | (a5, b)) = (a5 + g+ 1= a5,b, — ¢ — b))}
:(as+1)'(bs+1)+#[as+1aQ] X [Oabs_Q]
=(as+1)  (bs+1)+ (¢ —as) - (bs—q+1)

=q-(as—q) +(qg+1)-(bs+1).
The proof of this theorem is complete. (Q.E.D.)

4.3.3 Optimal Monomial Orders for Hermitian Codes

In this subsection, we provide a class of monomial orders which have the largest
Feng-Rao designed distance for Hermitian codes by Miura’s construction. From
the proofs in the previous subsection, the monomial basis M,,(>,4+1,y)) pro-
vides the largest Feng-Rao designed distance in the monomial bases associated
with all monomial order > such that Y¢ > X! On the other hand, the mono-
mial basis My, (>(q.¢+1,x)) Provides the largest Feng-Rao designed distance in the
monomial bases associated with all monomial order > such that X! > Y4
It remains to compare the monomial basis M, (>(4,4+1,y)) With the monomial
basis Mp(>(gq+1,x))- As a matter of fact, both the evaluation sequences for
M (>(g.9+1,y)) and My (>(4q4+41,x)) are identical. As a consequence in this chap-
ter, we prov1de the following theorem.

Theorem 4.3.9. The weight order >, , . such that

(q - 1>Q7X) j (M?l/? ) j (1> 17Y) (449)

is an optimal monomial order on M(X,Y") associated with V. In particular, both
the evaluation sequences given in Theorems 4.3.5 and 4.3.8 are identical. O

Proof. 1t is sufficient to consider two monomial bases associated with MS) =
M (Z(gai1yy) and MY = Mo (>qi1x). Let GO and AD denote the re-
duced Grobner basis and the delta set with the weight order >4 ,41,y), respec-
tively. Similarly, let G® and A denote the reduced Grébner ba51s and the delta
set with the weight order > (g 411,x), respectlvely Let ((a E ) b\t b; N|i € [1,n]) and
denote the sequence of all elements of A() in increasing order with respect to
the monomial order >( ¢,¢+1,Y) on M(X,Y). Let ((a @ 5P) i € [1,n]) and
denote the sequence of all elements of A() in increasing order with respect to the
monomial order >(¢,¢ +1,X) on M(X,Y).

For any pair (a,b) € A®M), the nonnegative integer Q(a) and R(a) are defined
by the following division:

a=Q(a) (¢g+1)+ R(a) and 0<R(a)<q+1.
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The map © from A into N2 is defined by
O(a,b) := (R(a),Q(a)-q+b)

for any pair (a,b) € AM. Since 0 < a < ¢, we obtain 0 < Q(a) < ¢, and then
0 < Qa)-q+0b< q* In particular, if a = ¢> — 1, then ¢ — 1 < ¢* —q+ b < ¢*
and b=0. ffa#¢*—1,then 0 < Qa) <g—1and 0 < Q(a) - ¢+b < ¢*>—q.
Therefore, the map © is a map from A® into A®). Further, for any pairs (a, b)
and (c,d) in AW if O(a,b) = O(c,d), that is, b —d = (Q(a) — Q(c)) - ¢ and
R(a) = R(c), then (a,b) = (¢,d) since 0 < |b — d| < q. As a result, the map © is
a bijective map from A®™ to A®). Here, for any (a,b) € AWM, if we are using the
weight order >4 .41,x), then

Xoyt? — xR@yQ@ath | xR@)y Q@+

and hence
LM(X“ng2) — x R(a)yQa)q+b

This means that A .

a% gy € Span{z® g’ | € [1,4]}
for any number i € [1,n]. Therefore, both the monomial bases M and MY
have the same subspace subspace. Therefore, from Theorem 3.2.3, we obtain

N(M(l)) — N(M(Q))

n n

As a consequence of these, any weight order with (4.49) is an optimal monomial
order for V. (Q.E.D.)

This theorem provides a class of optimal monomial orders for Hermitian curves.
Especially, the weight order associated with (¢, q + 1,Y") generates the structure
sequence for the Hermitian codes by Goppa’s construction. Therefore, improved
geometric codes of Goppa’s construction are optimal as for the Hermitian curve.

In Figure 4.2, we illustrate the Feng-Rao designed distance as for several
weight orders when ¢ = 4. The horizontal and vertical axes represents the redun-
dancy and distance, respectively. The weight order associated with (4,5,Y) is
an optimal monomial order, since the weight (4, 5,Y") satisfies (4.49) in Theorem
4.3.9. On the other hand, the weight order associated with (1,16,Y") is not opti-
mal. Note that both the delta sets are same, and but both the monomial bases
are different. In fact, as shown in Figure 4.2, the Feng-Rao designed distance as-
sociated with the weight (4,5,Y) is equal to or larger than that associated with
the weight (1,16,Y"). Especially, the Feng-Rao designed distance associated with
the weight (4,5,Y") exactly plot between Goppa bound and Singleton bound. The
Feng-Rao designed distance associated with the weight (1,16,Y") is exactly equal
to the lower bound provided in (4.25). This means that the Feng-Rao designed
distance associated with any monomial order satisfying Y4 > X® is always equal
to or larger than that associated with the weight (1,16,Y").
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Figure 4.2: The Feng-Rao Designed Distance for Hermitian Codes over Fyg.

4.4 Conclusion

Miura’s construction method for algebraic geometric codes on affine algebraic
varieties has provided an optimization problem for Feng-Rao designed distance
with respect to the monomial orders. In this chapter, we have taked up the
Hermitian curve as an object of the optimization problem above, because the
Hermitian curve have been optimal in the sense of Goppa’s construction.

Firstly, we have provided the reduced Grobner basis and the delta set associ-
ated with any monomial order. This means an explicit description of Hermitian
codes by Miura’s construction. Also, we have shown that any the monomial basis
can be represented by a monomial basis associated with some weight order. Based
on these results, we have shown the relation between both the linear codes on
the Hermitian curve by Goppa’s and Miura’s construction. As for the Hermitian
curve, Goppa’s construction has included in Miura’s construction method. Next,
we have shown sufficient conditions not to have well-behaving pairs by using the
exponents of monomials. Further, we have shown necessary conditions and suf-
ficient conditions to have well-behaving pairs by using the weight order. Then,
by using their relation, we have clarified a class of optimal monomial orders for
linear codes on the Hermitian curve. Also, we have illustrated an example the
case that finite field volume is 16.
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Chapter 5

One-Point Codes from
Artin-Schreier Extensions of
Hermitian Function Fields

In 1982, Tsfasman et al. [62, 60] discovered a sequence of algebraic geometric
codes over I, which asymptotically exceeds the Gilbert-Varshamov bound when
q is a square and g > 49 by studying the number of rational points and genera
on modular curves over finite fields. Furthermore, Katsman et al. [29, 67, 68|
showed that the construction of the codes on modular curves can be done with
polynomial complexity of degree at most 30. Unfortunately, the construction of
codes on modular curves has too high complexity for practical applications.

Garcia and Stichtenoth [14] discovered a tower of Artin-Schreier extensions
of algebraic function fields attaining the Drinfeld-Vladut bound. This means
that a sequence of codes from these towers asymptotically exceed the Gilbert-
Varshamov bound. This tower has an advantage over sequences of modular curves
in that they have the explicit descriptions. Therefore, one may give the explicit
descriptions of the codes on this tower. Further, this tower has the following
properties: algebraic geometric codes from the first and second algebraic function
fields on this tower are known as Reed-Solomon codes and Hermitian codes,
respectively. Both the codes are optimal in Goppa’s construction, since these
algebraic function fields have maximal rational places as compared with their
genera. Therefore, one expects that the codes from third function field are good
algebraic geometric codes. In 1997, Voss and Hgholdt [69] showed an explicit
description of generator matrices of algebraic geometric codes from the third
algebraic function field. However, the class of their codes did not entirely include
all one-point codes from the third function field. Also, it requires some efforts
to understand their description since bases for the linear spaces involved in the
description are monomials with negative exponents.

On the other hand, Miura [42, 44] presented powerful tools to transfer from
any algebraic function field into an affine nonsingular absolutely irreducible curve
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by using the theory of Grobner bases. This curve is useful to construct one-point
codes from the given algebraic function field.

In this chapter, we provide an explicit description of one-point codes from the
third algebraic function field. This chapter is organized as follows. Section 5.1 is
the part of preliminaries. We introduce the basic properties of one-point codes
and the third algebraic function field on Garcia-Stichtenoth’s tower. Also, we
present an explicit description of all rational places of the third algebraic function
field. Section 5.2 is the main part in this chapter. At first, we clarify rational
functions of the third algebraic function field which correspond to generators
of semigroup of nongaps at a specific rational place and further the number
of generators is minimal. These rational functions and rational places of the
third algebraic function field enable us to provide a explicit description of one-
point codes from the third algebraic function field. Further, we illustrate the
comparison between the Feng-Rao designed distance of our codes and the BCH
designed distance of some BCH codes. As a result, the proposed codes are better
than the BCH codes for almost all redundancy when the finite field volume is
large. Especially, we obtain an one-point codes with parameters [4047, 1047, 2504]
which can correct more 261 errors than the corresponding BCH code.

We summarize several advantages of the proposed codes as follows:

(1) The fast implementation [54] of the decoding algorithm up to the Feng-Rao
designed distance can be applied to the proposed codes.

(2) The decoding complexity of the proposed codes from the viewpoint of the
number of generators is optimal.

(3) The length of the proposed codes is longer than that of codes suggested
by Voss and Hgholdt, as we preserve the redundancy and the Feng-Rao
designed distance.

The results in this chapter is based in part on a study published at IEICE Trans-
actions on Fundamentals [64].

5.1 Preliminaries

This section corresponds to the part of preliminaries of our work. Firstly, we
investigate the basic properties of one-point codes from algebraic function fields.
Next, we present the basic properties of numerical semigroup. This part play a
crucial role in the analysis of the nongap sequence at a place. Lastly, we introduce
a tower of Artin-Schreier extensions of algebraic function fields which is proposed
by Garcia and Stichtenoth [14].
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5.1.1 Fundamental Properties of One-Point Codes

In this subsection, we introduce one-point codes based on algebraic function fields.
As for main properties of algebraic function fields and algebraic geometric codes,
we refer to [58].

Let F, := GF(q) denote the finite field with ¢ elements, and F/F, an alge-
braic function field with the constant field F,. Note that Section 2.3 starts with
algebraic curves whereas this section starts with algebraic function fields since
Garcia-Stichtenoth’s tower founds on the theory of algebraic function fields.

Let Pr be the set of places of F//F,, and P}, the set of rational places of F/F,.
The genus of F//F, denoted by ¢g(F) or simply by g which algebraic function field
is meant. The number of rational places of F//F, is denoted by N(F') or simply
by N.

Let Py, P, ---,P,, and P be n distinct rational places of F//F,. Then, the
number n is properly less than the number of rational places N. The divisor
P+ P, +---+ P, is denoted by D. For any integer m, the evaluation map evp
from the linear space L(mP) onto Fy is defined by

evp(f) == (f(Pr), f(P2), -+, f(Pn)),

such as Section 2.3. This mapping is F,-linear, and injective when m < n. An
one-point code associated with divisors D and mP is defined by

CrL(D,mP) :={evp(f) | f € L(mP)},
Cq(D,mP) := C(D,G)*, (5.2)

where St is the dual space of a subset S in [Fy. The kernel of the mapping evp
is L(mP — D), and hence

dim Cp,(D,mP) = l(mP) — I(mP — D). (5.3)
The parameters of algebraic geometric codes satisfy
k+d>n—g+1,

where k£ and d are their dimension and minimum distance, respectively. As special
features of one-point codes Cq(D, mP), one can easily estimate the Feng-Rao
designed distance drg [30], and apply the fast implementation [54] of the decoding
algorithm up to |(dpr — 1)/2] errors.

Now, we introduce the ring K., (P) and the numerical semigroup of nongaps
at P, since they play an important role to provide an explicit description of
one-point codes in later section. K (P) is defined by a subring of F//F ;. whose
elements have no pole at any places except P, that is,

Ko(P) = | J L(mP). (5.4)
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An integer m is called nongap at P if [((mP) = I[((m — 1)P) 4+ 1. Otherwise, m
is called gap at P. An integer m is a nongap at P if and only if there exists
a rational function which has a pole of order m at P and no other poles. The
number of gaps of P is equal to the genus g of algebraic function field since

I[mP)=m—g+1

if m is greater than 2¢g — 2 by Riemann-Roch theorem (Proposition 2.3.1). Espe-
cially, we obtain
1=1(0) <I(P) < - < U(2g— 1)P) = g.
If m; and my are nongaps at P, then m; 4+ my is also a nongap at P, since
(f)oo = miP and (f3)ee = moP mean (fif2)ee = (my + ma)P. Thus, the
nongaps at any place form a semigroup in Ny. Let (o0; |7 € N) be an enumeration
of all the nongaps at P in increasing order, so oy = 0. The semigroup of nongaps
at P is given by
{—vp(f) eNo | f € Ko(P)\ {0}},

where vp is the discrete valuation of F//IF, corresponding to P.

5.1.2 Semigroups

In order to analyze the semigroup of nongaps in previous section, we show the
general properties of semigroups. As for the formulation of semigroups in this
section, we refer to [42, 44].

Let A := (ay,a9, -+ ,a;) be a sequence of ¢ distinct positive integers, and
define the set Sy := {ai,as,--- ,a;}. We assume that gcd Sy = 1, where ged S
is the greatest common divisor of S. The semigroup generated by S, in Ny is
denoted by (S4), that is

¢
(Sa)y =A{ Zuiai | u; € Ny for all i € [1,1]}.

=1

By the assumption that the greatest common divisor of S, is equal to 1, the
cardinality of the set Ny \ (S4) is finite An element in (S4) is called a nongap of
(S4) and an element of Ny \ (S4) is called a gaps of (S4). The number of gaps is
denoted by g(A). From [42, 44], we obtain g(A) = 3% |bi/a, | where

b; := min{b € (S4)|b =i mod a,}. (5.5)

The set S4 is called minimal set of generators of (Sa) if a; & (Sa \ {a;}) for any
i € [1,t]. Note that every semigroup has a finite set of generators and that every
set of generators contains a unique minimal set of generators.
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Next, we introduce total ordering on Nf. Consider the surjective mapping ¥ 4
from Nf to (S4) given by

t

Ua((my,ma, -+ ,my)) = Zaimi.

i=1
Then, define a total ordering >4 on Nf as follows: for M = (mq,ma, - ,my),
N = (ny,ng, -+ ,ny) € Nb, M >, Nifand only if U4(M) > W4 (N), or Uu(M) =
U4(N) and my; = ny,mg = ng,--- ,m; < n;. We call >4 by A-weight order. For
a € (Sa), let

My(a) := rgin{M e NL|WA(M) =a} (5.6)

where min. , is the minimum element in N} with respect to A-weight order.
M 4(a) is uniquely determined for each a € (Sy4).

5.1.3 A Tower of Artin-Schreier Extensions of Algebraic
Function Fields

In this subsection, we introduce a tower of Artin-Schreier extensions of algebraic
function fields which was presented by Garcia and Stichtenoth [14]. As for main
properties of this tower, we refer to [14, 69]. Hereafter, we apply the notations
in Section 5.1.1 to the finite field F .

Definition 5.1.1. Let F} := Fp(z;) be the rational function field over F . For

n>1, let

Foi1:= Fuy(zny1) (5.7)
such that z,i satisfies 2], | + 2,41 = 227, where z, := z,/x,_1 forn > 2. In
particular, F5/F ;2 is the Hermitian function field. O

For the sequence (F;|i € N),
N(F;
lim (F})
i—00 g(FZ)
that is, (F;|i € N) attains the Drinfeld-Vladut bound. For i € N, we obtain
[Fiy1: F] = q.
Next, we consider rational places of the function field F5/Fp. Let PCS) be

=q-—1, (5.8)

the pole of z; in Fj. Since P(S) is totally ramified in F3/F, P(S) has a unique
extension P, in F5. P, is the common pole of x1, 2o, and z3 in F;. To describe
all rational places of F3/F,» except P.,, we prepare two sets

A= {(a,8,7) €Fpla#0, f+f=a’, and 1"+ = (o)™},
Ay :={e €Fp|e!+¢e=0}.

Then, all places P € ]P’}wg \ {Px} are uniquely classified by three values z;(P),
29(P) and z3(P) as follows:
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Type 1. Py, for v € A,.

For each v € A, there is a unique place P € P, such that z;(P) = 0,
29(P) =0, and z3(P) = . We denote this place P by Py, .

Type 2. Pys. for € Ay \ {0}.

For each 3 € Ay \ {0}, there is a unique place P € P}, such that z;(P) =0,
29(P) = /3, and z3(P) = co. We denote this place P by Pyg..

Type 3. Py, for (o, 5,7) € A.

For each (a, ,7) € A, there is a unique place P € P, such that z,(P) = a,
29(P) = /3, and z3(P) = y. We denote this place P by P,g,.

The number of rational places of F;/Fgp. for Type 1, Type 2 and Type 3 are g,
g — 1 and ¢* — ¢?, respectively. As a result, the number of rational places of
F3/F,» is N(F3) = ¢* — ¢* + 2¢ by counting Ps,. On the other hand, the genus of
F3/Fp is g(F3) = ¢* — 2¢ + 1.

From now on, we consider only algebraic function field F5/F 2, and we abbre-
viate ¢(F3) and N(F3) by g and N, respectively.

5.2 An Explicit Description of One-Point Codes
from the Third Algebraic Function Field

In this section, we provide an explicit description of one-point codes from the
third function field F3/F 2 on the Garcia-Stichtenoth’s tower (F; |i € N). Firstly,
we consider a basis of the linear space L(mP) over Fp. Especially, we explicitly
describe a basis of the linear space L(mP) by using 2¢ rational functions. The
nongaps of these rational functions forms the minimal generators of nongaps at
P,.. These results are related with an explicit description of one-point codes
from the third algebraic function field F3/F ;.. Finally, we compare the Feng-Rao
designed distance of these codes with the BCH designed distance of some BCH
codes.

5.2.1 An Explicit Description of Basis for L(mP,)

Voss and Hgholdt clarified a basis for linear space L(mP,) over F,» by using
monomials in x1, z; and z3 with negative exponents, and nongaps at P, [69,
Theorem 4.3 and Corollary 4.10]. Also, they provided generators of semigroup
of nongaps at P, in case of ¢ = 2, 3 and 4 [69, Example 4.11]. In this chapter,
for any prime power ¢, we provide generators of semigroup of nongaps at P, and
corresponding rational functions of F3 by using polynomials in 1, 2o and z3. As
a result, we obtain a [F2-basis of monomial type for L(mPy).
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To express the principal divisors of 1, zo and z3, consider two divisors

D() = Z P007 and E() = Z Poﬂ*.
7€A0\{0} peAo\{0}

Then, the principal divisors of x1, 2, and 23 are given by

(z1) = Pooo + Do + qEo — ¢° P,
(22) = (¢+ 1)Pooo + (¢ + 1) Dy — q(q + 1) Pw,
(23) = q(q+ 1) Pooo — (¢ + 1) Ey — (g + 1) Px,

respectively [69]. From above equations, for i, j, k € Z, x' 225 € K..(Py) if and
only if
i+ (¢+1)j+q(g+1)k >0,
i+(qg+1)j >0, (5.9)
gt = (¢ + 1)k >0,

holds. Next theorem is our main result.

Theorem 5.2.1. Let y; := x4, Yo := 29,

L 24§ 1+j
Y345 := Xy "2z 7,
1+j

Yq+2+j = x(fﬂzz_lzgﬂ = (Zg_l +1)2377,
for j € [0,¢q — 2]. Then,

KOO(POO) = ]FqQ[?Jl,?h, e 7y2q]>

and the semigroup of nongaps at Py is generated by Sy, for As := (a1, ag, -+,
as,) where a; :== —vp_(y;) for ¢ € [1,2q]. Moreover, Sy, is the minimal set of
generators of semigroup of nongaps at P... O

Proof. Proof of the theorem can be done in two parts.

(Part 1) Koo(Pso) = Fp2yr, y2, -+, y2q)-

For any i € [1,2¢], y; satisfies (5.9). Hence, Fp2[y1, y2, - -+ , ya4] is included in
K (Px). Thus, we obtain g < g(Aj3).

To show that Ko (Ps) = Fp2[y1,¥2, - -, y24] and the semigroup of nongaps at
P, is generated by Sy, it is enough to prove g = g(A3). Since a; = —vp,_(y;)
for i € [1,2q], we obtain

Cll:qz,
ay = ¢* + ¢,
asy; = (J+2)> + (G +1)g+j+1,
gpor = ¢ +jq+Jj+1,

65



for j € [0,¢q — 2]. Then,
a; < ag < <Gy < Qgro < - < gy < Qgpr- (5.10)

Consider the following nonnegative integers

oy = as(l + 1)
= ({1 +1)¢*+ (1 +1)g,
C34jl = A34j + Cl2l

= +1+2)@+ (G +I+D)g+j+1+1,
Cq+2+35,0 = Qg+2+
=q¢ +jg+i+1,
for j,1 € [0,¢—2]. Let ¢;; be the remainder when ¢, is divided by a; = ¢%. Then,
for .]71 € [07(] - 2]7
62,1 = (l + ]-)q7

. (G+l+1g+j+1 ifj+1€[0,q—2],
BTV GHl4+1—q)g+i+1 ifj+1€[q 29— 4],

Cot2+40 = Jq4+ 7+ 1,

¢;,’s are distinct each other, and their number is ¢> — 1. Hence, for any i €
[1,a; — 1] there is a unique ¢;; such that i = ¢;;. Therefore, there is a unique
¢ju such that b; < ¢j; and ¢;; = i mod ay by the definition of b; (5.5). Since

g(Az) = >0 71{5 /a1,

g=¢*—2¢+1

= ai:l LMJ

=1
~|c 2% e
S Z{ 21J + L 3+]ZJ + \‘ q+2+]0J
1=0 1=0 j=0 §=0
q—2 q—2
=D 0+D+ DY G2+ D (GHI+)+D g
=0 jHI<q—2 H>g—1 =0
q—2 q—2 q—2
=D N G2+ D> 14+¢ -1
=0 1=0 j=0 GH>q-1
q—2 1 q—2 q—2
_ 2
=D l+5—1) 2+q+2)+ ) I+¢ -1
=0 =0 =0
1 1
=5+ -Dg=2)+50¢-1)g+2)+¢" -1
—q3—2q+1
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Hence, g = g(A3). Consequently, Ko (Px) = Fyly1, y2, -+, y2] and the semi-
group of nongaps at P, is generated by S4,.

(Part 2) Sa, is minimal.

We show that S4, satisfies the definition of minimal set given in Section 5.1.2.

Since a; = min Sy4,, as = min{Sy, \ {a1}}, and ay is not multiple of a;, a;
and ay are included in the minimal set of generators of (Sy,).

Now, we show that asi; & (Sa, \ {as4;}) for any j € [0,¢ — 2]. Since (5.10)
and agy1 < ay + agio4 for any [ € [0,¢ — 2], it is enough to show as;; ¢

(ar,as,- -+ ,asy;). Assume that for any j € [0, ¢—2] there are nonnegative integers
Uy, U, * ++ , U4 such that agy; = Zfif u;a;. We can expand above equation as

(left-hand) = (j +2)¢> + (j + )g +j + 1,
(right-hand) = v2¢? + v1q + vg (5.11)

= wyq” + wiq + wy,

._ 247 (. ._ 245 ._
where vy 1= w4+ uy + D050 — Dug, v = ug + D 75(1 — 2)u; and vy =
Zfig(z — 2)u;, and choose wy, wy and wy such that wy,w; € [0, — 1]. We
separate into the following two cases.

e Case 1. v; > q.

Then, wy is greater than ¢ since v, > v;. Since j + 2 is at most ¢, this is a
contradiction.

e Case 2. v; <q.

Then, ws, w; and wy are equal to vy, v and vy, respectively since vy > vy.
By assumption (5.11), wy — wy is equal to 1, i.e. uy +ug + -+ - + ugy; = 1.
This is a contradiction.

Hence, a3 & (a1,az,--- ,as4;) for any j € [0,q — 2.

Finally, we show that agio4; & (Sa, \ {ag12+,}) for any j € [0,¢ — 2]. Since
(5.10) and agi24+; < a1 + agyo for any I € [0, ¢ — 2], it is enough to show agyo4; &
(ay,as, -+ ,a,). This can be shown in a similar manner as the proof of az,; ¢
(S \ {ases}) for j € [0, — 2]

As a consequence of these results, Sy, is the minimal set of generators of

(Si). (QED)

For M = (my,my, -+ ,my,) € N3%, we denote y™y7™ - < yge " by yM. From

Theorem 5.2.1, we have [(mPy) = [(S4,) N [0,m]|, and a Fp-basis of monomial
type for L(mP,,) can be given by
{yM4:() € Fy|a € (Sa,) N [0,m]}, (5.12)

where My, is defined by (5.6).
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Remark 5.2.1. The F,2-basis given by (5.12) depends on the order of ay, as, - - -,
asq. On the other hand, the codes constructed in Section 5.2.2 do not depend

on the order ay,as,--- ,as. Therefore, we only consider the order indicated in
Theorem 5.2.1 for convenience. However, in case of practical use, the order of
ay,az,- - ,az, should be considered. O

5.2.2 A Generator Matrix of C(D,mPy)

For the divisor

D= Y P

PEPL, \{Pac}

Voss and Hgholdt [69] considered algebraic geometric codes of type Cp(D —
Eo,lEy + mP,) for appropriate [,m € Ny. In this chapter, we consider one-
point codes of type Cr(D, mPy,) for any m € Z. Obviously, the length of our
codes is longer than that of codes considered by Voss and Hgholdt. Let us denote
the length and the dimension of Cp (D, mPy) by n := |supp(D)| = N — 1 and
k := dim Cp (D, mP,,), respectively.

First, we show how to evaluate f(P) € Fp for any f € Ko(Ps) and P €
Pp, \ {Px}. For this purpose, we change the viewpoint from algebraic function
fields to algebraic geometry by using Theorem 5.2.1. As for main properties of
this change of viewpoint, please refer to [44].

Let F,2 be the algebraic closure of Fz. Let A%(F,:) and A%(F,) be 2¢-
dimensional affine space over F,> and F, respectively, and F2[Yy, Yo, + -+, Ya]
the polynomial ring in 2¢g variables over F 2. Consider the homomorphism

qu[yi7)/27"' 7}/2q] _>]Fq2[y17y27"' >y2q]

given by putting y; into Y; for every i € [1,2¢], and denote the kernel of this
homomorphism by I. Define the algebraic set

Vi={Q € A*(Fp) | F(Q)=0forall F €I}

where @ is a point in A?¢(F2), and denote the set of Fz-rational points of V by
V(F,z2) :=V NA?(F_). Consider the mapping

b ]P’}73 \ {Px} — A¥(F,2)

given by ®(P) := (y1(P), y2(P),- -+ ,y24(P)). Then, ®(P) € V(F,2) for all P €
Pp, \ {Ps}, since

F(®(P)) = F(ys, 52, ,y24)(P) =0

for any F' € I [44]. Furthermore, since Ko (Ps) = Fp2[y1, Y2, -+, Yoq], V is an
affine, nonsingular, absolutely irreducible curve over Fj. which has only a point
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in the hyperplane at infinity, and the mapping ® from Py, to V(Fg2) is bijective
[44]. If P,g, € P}, is of Type 1 and Type 3 in Section 5.1.3, we can evaluate
®(P,p,) by replacing xq, 2o, and z3 with a, /3, and 7 respectively. As for Pyg, of
Type 2, since (y;) > Ey for any i € [3,2¢], we obtain ®(Pys.) = (0, 5,0,---,0).
Hence, we explicitly have all points of V(F ).

Let P be a rational place of F3/F 2 except Py, and let ®(P) = Q = (a1, ao,

©,Qoq). Forany f = f(yi,y2, * ,Y2q) € Kso(Px), we can evaluate f(P) € Fe

by replacing y; with «; for every i € [1,2¢], i.e. f(P) = f(ay, a9, -+, agy). Thus
we can calculate f(P) for any f € Ko (Py) and P € Pp, \ {Px}. Hereafter, we
describe f(P) by f(®(P)).

When m < n, we can show generator matrices of Cp(D,mP,) since the
mapping evp is injective. In order to obtain a generator matrix of C,(D, mPy,)
for any m € Z, the set Sp_ is defined by

Sp, :={m € Z|dim Cr,(D,mP) = dim Cp(D, (m — 1)Py) + 1}. (5.13)
Then, by using Theorem 5.2.1, we obtain the following theorem.

Theorem 5.2.2. Sp_ can be described by using the semigroup (S4,) as follows:

Sp. = {Sa;) \ L_j{q4 +i(¢> +q+ 1)+ (Sa,)} C[0,n+2g —1]. (5.14)

O

Proof. First, we prepare some new definitions. An integer m is called (—D)-
nongap at Py, if [(mPyx — D) = I((m — 1)Px — D) + 1. Otherwise, m is called
(—D)-gap at P.,. Let S be the set of (—D)-nongaps at Ps. Since the kernel of
the mapping evp from L(mPx) to Fy, is L(mPs — D), we obtain Sp,, = (Sa,)\S.
Hence, it is enough to show S = U0 {q* +i(¢®> + ¢+ 1) + (S4,)}.

Consider an element z := x'{z — 1. Since (z) = D + (¢ — 1)Ey — ¢*Px,
(zxi2%)o > D and (27%2%)s = (¢* +i(¢? + ¢ + 1)) Py hold for any i € [0,q — 1],
where (f)o and (f)s are the zero and pole divisor of f respectively. That is,
¢*+i(¢*+q+1) € S for any i € [0,q — 1]. Moreover, if f € L(mPs), then
frztzt € L((m+q* +i(¢* + g+ 1)) Py — D) for any i € [0,q — 1]. Consequently,
S DU {g" +i(g® + g+ 1)+ (Sa,)} holds.

Lastly, since S has g (—D)-nongaps in n -+ Ny, we can show [Ny \ %, {i(¢> +
g+ 1)+ (Sa,)}H = & — ¢*(= g — (n — ¢*)) in a similar manner as the proof of
Theorem 5.2.1. (Q.E.D.)

Let Q1,Q2,---,Q, be n distinct points in V(Fpz), and (p;|¢ € [1,n]) a
sequence in order of increasing in Sp_. The dimension k of Cp(D, mPy) is
max{i € [1,n]|p; € [0,m]}, and a generator matrix of C(D, mPy) is obtained
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" y" Q1) yM(Q2) -y
Q) @) e Q) (5.15)

yMe(Q1) yMH(Q2) oo yMH(Qn) |,

where M; := M, (p;) for every i € [0,n]. The Matrix (5.15) is also a parity check
matrix of Cq(D, mP,,) with redundancy k.

The decoding complexity of one-point codes Cq(D, mP,,) increases as the
number of generators of semigroup of nongaps increases. Since we minimize the
number of generators in Theorem 5.2.1, we optimize the decoding complexity
from the viewpoint of the number of generators.

Remark 5.2.2. In [69], Voss and Hgholdt have shown that a code Cp(D —
Eo,lEy+mPy) is identical with Cq(D — Ey, ' Eg+m'Py,) for appropriate I',m’ €
Ny. Hence, both generator and parity check matrix can be obtained explicitly.
Similarly, we can pose a problem if there exist m,m’ € Z such that

C’L(D,mPoo) = CQ(D,mIPOO).

Unfortunately, there do not exist such integers m, m’ in general. Hence, the parity
check matrix of C,(D, mPx) can not be obtained by using Matrix (5.15). O

Example 5.2.1. The number of rational places of F3/F4 is 16 and the genus of
F3/F4 is 5. By using Theorem 5.2.1, we obtain Ay = (4,6,11,9) and K (Px) =
Fo2[y1, Yo, ys, ya] where y1 = 1, yo = 29, y3 = 2323 and yg = (2 + 1)23. Hence,
yMi’s are given by

?/Ml = 17 yM2 =1, yM3 = Y2, yM4 = y%a yM5 = Y4,

vy =gy, Y=y, M=y, Y =g M =yl

v =wys, vt =ylye, Y = yiye, yt = yiys, M =g

On the other hand, all points in V(Fg) are given by

Ql = (070’070)’ QQ = (070,07 1)) Q?) — (O, 1,050)7
Qs = (1,a,0,1), Qs = (1, 0,02, ), Qs = (1,02 a,a?),
Q7 = (1,042,(1/2, 1)7 QB = (a7a7 1, 1)7 QQ = (aaaaaa&)a

QIO — (CY,O!2, 1,a2)7 Qll — (CY,O!2,C¥, 1)7 Q12 — (0525 «, 0523 1)7
Q13 = (062,C¥, 1) a)a Q14 = (a27a27a27a2)7 Q15 — (0525 a2a 1a 1)

where « is a primitive element of F4. From these descriptions of monomials and
F,-rational points, a generator matrix of C,(D, mPy,) (or a parity check matrix
of Cq(D, mPy)) can be completely described for any m € Z.

In Table 5.1, for the redundancy r, we evaluate the Goppa designed distance
dg(= m — 2g + 2) and the Feng-Rao designed distance dpg of Cqo(D, mP,,) ob-
tained by our construction. For comparison, Table 5.1 also includes the Feng-Rao
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Table 5.1: The Feng-Rao designed distance over Fy.

(v J01 23456 7 89 10 11 12 13 14 15
da | - 01 2345 6 8 9 10 12 -
drp |1 2 2 2 2 2 2 446 6 8 9 10 12 -
dpp |1 2 2 2 2 3 4 45 6 6 8 9 10 12 -

designed distance d}p of improved geometric Goppa codes [12] for Cq (D, mPy,).

Obviously, improved geometric Goppa codes for Cq(D, mP,,) are superior to

original codes Cq (D, mP,,) for some redundancy r with respect to the Feng-Rao

designed distance. However, the Feng-Rao designed distance d},j is not superior

to the designed distance of some BCH codes with length 15 for any dimension.
|

5.2.3 A Comparison with BCH Codes

In this subsection, we compare one-point codes from F3/F 2 with BCH codes over
F,. Let a be a primitive element of F,4«. A BCH code C; over F . is defined by
a code with parity check matrix

1 1 1

q*—2
Loa “ (5.16)
1 ad_2 .. a(q4_2)(d_2)

Then, the length and the minimum distance of C; are ¢* — 1 and at most d,
respectively. Here, this lower bound for minimum distance is called the BCH
designed distance or the BCH bound for Cj.

We take up the case of ¢ = 8, that is, the finite field volume is 64. The number
of rational places of the third function fields F3/Fg, is 4048. The genus of F3/Fg,
is 497. At this time, the length of an one-point code Cq(D, mPy,) is 4047. On
the other hand, the length of a BCH code Cy is 4095. The difference between
both the length is 48.

In Figure 5.1, we compare the Feng-Rao bound of one point codes with the
BCH bound of BCH codes for any redundancy in the region [2650,3350]. As
shown in Figure 5.1, one-point codes are better than BCH codes in this region.
For example, an one-point code have the parameter [4047,1047,2504] whereas
the corresponding shorten BCH code have the parameter [4047,1047,1980]. The
difference between both the designed distance is 524. At this time, this one-point
code can be decoded up to more 261 errors than the corresponding shorten BCH
code.
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Figure 5.1: The comparison between Feng-Rao and BCH bounds over Fg,.

5.3 Conclusion

In this chapter, we have presented an explicit description of one-point codes from
the third function field F3/F,2 on Garcia-Stichtenoth’s tower by using Miura’s
method. In order to obtain such a description, we have firstly clarified a basis of
L(mPy,) over F 2 whose elements can be represented by monomials in 2¢ rational
functions. Further, we have shown that this number 2¢ is minimal. This fact
is connected with an optimization of decoding complexity for one-point codes.
Also, we have given an explicit description of all rational places of the third
function field F5/F,2, and hence determined all Fj-rational points in the curve
corresponding the third function field F3/F,.. These have led us an explicit
description of one-point codes from the third function field F3/F ;2. Furthermore,
we have compared the designed distance of the proposed codes with that of the
BCH codes in the case of the finite field Fg4, and have provided many new better
codes than the conventional algebraic codes. For example, an one-point code has
had the parameter [4047,1047,2504] whereas the corresponding BCH code has
had the parameter [4047,1047,1980]. At this time, this one-point code can be
decoded up to more 261 errors than the corresponding BCH codes. We have
summarized several advantages of the proposed codes as follows:
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(1) The fast implementation of the decoding algorithm up to half the Feng-Rao
designed distance can be applied to the proposed codes.

(2) The decoding complexity of the proposed codes from the viewpoint of the
number of generators has been optimal.

(3) The length of the proposed codes has been longer than that of codes sug-
gested by Voss and Hgholdt, as we have preserved the redundancy and the
Feng-Rao designed distance.

As future researches, we have considered the following:

(a) Construct a sequence of one-point codes from the tower of algebraic function
fields (F;|i > 4).

(b) Estimate the Feng-Rao designed distance of its code sequence asymptoti-
cally.
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Chapter 6

Concluding Remarks

The generalization of construction and decoding from the codes on algebraic
curves to arbitrary linear codes has yielded an optimization problem for the
Feng-Rao designed distance. This dissertation has dealt with the design and
optimization of linear codes with Feng-Rao designed distance in compliance with
their construction methods.

In Chapter 3, we have shown that the Feng-Rao designed distance of linear
codes depends on subspace sequence. Also, we have provided a representative
for all ordered bases generated by any subspace sequence. This representative
can be constructed for any ordered basis by using the Gaussian elimination only
with elementary row operation. Next, we have shown that under the column
permutation of any ordered basis, the Feng-Rao designed distance is invariant for
any redundancy. Then, the ordered bases can be restricted to the ordered bases
in standard normal form. In particular, any ordered basis can be put in standard
normal form as its Feng-Rao designed distance was kept by using the Gaussian
elimination only with elementary row operation and column permutation. Fi-
nally, we have presented the following algorithm: The input to the algorithm is
any ordered basis. The output to the algorithm is the ordered basis in standard
normal form whose first vector entries are all one. Then, the Feng-Rao designed
distance for the input ordered basis has been larger than or equal to that for the
output ordered basis for any redundancy. As a consequence of these, ordered
bases can be restricted to the ordered bases in standard normal form whose first
vector entries are all one.

In Chapter 4, we have shown an optimization problem of monomial orders
for the Feng-Rao designed distance of the codes on the Hermitian curve. Firstly,
we have presented explicit descriptions of the Hermitian codes for any monomial
order. Also, we have shown that any the monomial basis can be represented by
a monomial basis associated with some weight order. Based on these results, we
have shown the relation between both the linear codes on the Hermitian curve
by Goppa’s and Miura’s construction. As for the Hermitian curve, Goppa’s con-
struction has included in Miura’s construction method. Next, we have shown
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sufficient conditions not to have well-behaving pairs by using the exponents of
monomials. Furthermore, we have shown necessary conditions and sufficient con-
ditions to have well-behaving pairs by using the weight order. Then, by using
their relation, we have clarified a class of optimal monomial orders for linear codes
on the Hermitian curve. Also, we have illustrated an example the case that finite
field volume is 16.

In Chapter 5, we have presented an explicit and complete description of one-
point codes from the third function field on Garcia-Stichtenoth’s tower by using
Miura’s method. In order to obtain such a description, we have first clarified a
basis whose elements can be represented by monomials in several rational func-
tions. Furthermore, we have shown that the number of generators of nongaps
is minimal. This fact is connected with an optimization of decoding complexity
for one-point codes. Also, we have given an explicit description of all rational
places of the third function field, and hence determined all rational points in the
curve corresponding the third function field. These results have led us an ex-
plicit description of one-point codes from the third function field. Furthermore,
we have compared the designed distance of the proposed codes with that of the
BCH codes in the case that finite field size is 64 and have provided many new
better codes than the conventional algebraic codes. For example, an one-point
code has the parameter [4047,1047, 2504] whereas the corresponding BCH code
has the parameter [4047,1047,1980]. At this time, this one-point code can be
decoded up to more 261 errors than the corresponding BCH codes. Finally, we
have summarized several advantages of the proposed codes as follows: (1) The
fast implementation of the decoding algorithm up to half the Feng-Rao designed
distance can be applied to the proposed codes. (2) The decoding complexity of
the proposed codes from the viewpoint of the number of generators is optimal.
(3) The length of the proposed codes is longer than that of codes suggested by
Voss and Hgholdt, preserving the redundancy and the Feng-Rao designed dis-
tance. As future researches, we shall consider providing explicit descriptions of
one-point codes from other algebraic function fields on the Garcia-Stichtenoth’s
tower and estimating their Feng-Rao designed distance.

I6)



Bibliography

[1]

[10]

T. Becker and V. Weispfenning, Grobner bases: a computational approach to
commutative algebra (Graduate Texts in Mathematics, vol. 141). Springer-
Verlag, 1993.

E. R. Berlekamp, “Long primitive binary BCH codes have distance d ~
InR'/logn---,” IEEE Transactions on Information Theory, vol. IT-18,
no. 3, May 1972.

E. R. Berlekamp, Algebraic coding theory. Revised 1984 Edition, Aegean
Park Press, 1984.

R. E. Blahut, Theory and practice of error control codes, Addison-Wesley,
1983.

R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary
group codes,” Information and Control, vol. 3, pp. 68-79, March 1960.

B. Buchberger, “Grobner bases: An algorithmic method in polynomial
ideal theory,” in Multidimensional Systems Theory: Progress, Directions and
Open Problems in Multidimensional Systems, (N. K. Bose, ed.), Reidel, 1985.

D. Cox, J. Little and D. O’Shea, Ideals, varieties, and algorithms: an intro-
duction to computational algebraic geometry and commutative algebra (Un-
dergraduate Texts in Mathematics). Second Edition, UTM, Springer, 1996.

I. M. Duursma, “Majority coset decoding,” IEEE Transactions on Informa-
tion Theory, vol. 39, no. 3, pp. 1067-1070, May 1993.

G. L. Fend and T. R. N. Rao, “Decoding algebraic-geometric codes up to the
designed minimum distance,” IEEE Transactions on Information Theory,
vol. 39, no. 1, pp. 37-45, January 1993.

G. L. Feng and T. R. N. Rao, “A class of algebraic geometric codes from
curves in high-dimensional projective spaces,” in Applied Algebra, Alge-
braic Algorithms and Error-Correcting Codes, (G. Cohen, T. Mora, and
O. Moreno, Eds.), Lecture Notes in Computer Science, vol. 673, Puerto
Rico, Springer-Verlag, pp. 132-146, March 1993.

76



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

G. L. Fend and T. R. N. Rao, “A simple approach for construction of
algebraic-geometric codes from affine plane curves,” IEEE Transactions on
Information Theory, vol. 40, no. 4, pp. 1003-1012, July 1994.

G. L. Feng and T. R. N. Rao, “Improved geometric Goppa codes - Part I:
Basic theory,” IEEE Transactions on Information Theory, vol. 41, no. 6,
pp. 1678-1693, November 1995.

G. L. Feng, V. K. Wei, T. R. N. Rao and K. K. Tzeng, “Simplified un-
derstanding and efficient decoding of a class of algebraic-geometric codes,”
IEEE Transactions on Information Theory, vol. 40, no. 4, July 1994.

A. Garcia and H. Stichtenoth, “A tower of Artin-Schreier extensions of func-
tion fields attaining the Drinfeld-Vladut bound,” Inventiones Mathematicae,
vol. 121, pp. 211-222, 1995.

A. Garcia and H. Stichtenoth, “On the asymptotic behaviour of some towers
of function fields over finite fields,” Journal of Number Theory, vol. 61, no. 2,
1996.

7

V. D. Goppa, “A new class of linear error-correcting codes,” Problemy
Peredachi Informatsii, vol. 6, no. 3, pp. 24-30, July—September 1970. Trans-
lation: Problems of Information Transmission, vol. 6, no. 3, pp. 223-229,
January 1971.

V. D. Goppa, “A rational representation of codes and (L, g)-codes,” Prob-
lemy Peredachi Informatsii, vol. 7, no. 3, pp. 41-49, July—September, 1971.
Translation: Problems of Information Transmission, vol. 7, no. 3, pp. 223—
229, January 1972.

V. D. Goppa, “Codes associated with divisors,” Problemy Peredachi Infor-
matsii, vol. 13, no. 1, pp. 33-39, January—March 1977. Translation: Problems
of Information Transmission, vol. 13, no. 1, pp. 22-26, July 1977.

V. D. Goppa, “Codes on algebraic curves,” Doklady Akademii nauk SSSR,
vol. 46, pp. 1289-1290, 1981. Translation: Sowviet Mathematics Doklady,
vol. 24, pp. 170-172, 1981.

V. D. Goppa, “Algebraico-geometric codes,” Izvestiia Akademii nauk SSSR,
vol. 46, 1982. Translation: Mathematics of the USSR izvestiya, vol. 21, pp.
75-91, 1983.

2

V. D. Goppa, “Codes and information,” Russian Mathematical Surveys,

vol. 39, pp. 87-141, 1984.

V. D. Goppa, Geometry and codes (Mathematics and its applications,
vol. 24). Kluwer, 1991.

7



23]

[24]

[25]

[26]

[27]
28]

[29]

[30]

31]

32]

33]

[34]

[35]

[36]

G. Haché, “Construction effective des codes géométriques,” Ph.D. disser-
tation, Institut National de Recherche en Informatique et en Automatique
(INRIA), Paris, France, September 1996. (in French)

R. W. Hamming, “Error detecting and error correcting codes,” Bell System
Technical Journal, vol. 29, pp. 147-160, April 1950.

A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres, vol. 2, pp. 147—
156, 1959. (in French)

Y. Ihara, “Some remarks on the number of rational points of algebraic curves
over finite fields,” Journal of the Faculty of Science, the University of Tokyo,
Sect. 1A, vol. 28, pp. 721-724, 1981.

H. Imai, Coding theory, IEICE, 1990. (in Japanese)

J. Justsen, K. J. Larsen, H. E. Jensen, A. Havemose and T. Hgholdt, “Con-
struction and decoding of a class of algebraic geometric codes,” IEEE Trans-
actions on Information Theory, vol. 35, no. 4, pp. 811-821.

G. L. Katsman, M. A. Tsfasman and S. G. Vladut, “Modular curves and
codes with a polynomial construction,” IFEE Transactions on Information
Theory, vol. I'T-30, no. 2, pp. 353-355, March 1984.

C. Kirfel and R. Pellikaan, “The minimum distance of codes in an array com-
ing from telescopic semigroups,” IEEE Transactions on Information Theory,
vol. 41, no. 6, pp. 1720-1732, November 1995.

W. W. Peterson and E. J. Weldon, Jr. Error-correcting codes. Second Edi-
tion, MIT Press, 1972.

J. H. van Lint, Introduction to coding theory (Graduate Texts in Mathemat-
ics, vol. 86). Second Edition, Springer-Verlag, 1992.

J. H. van Lint and G. van der Geer, Introduction to coding theory and alge-
braic geometry (DMV Seminar, vol. 12). Basel, Birkhduser-Varlag, 1988.

J. H. van Lint and T. A. Springer, “Generalized Reed-Solomon codes from
algebraic geometry,” IEEE Transactions on Information Theory, vol. IT-33,
no. 3, pp. 305-309, May 1987.

B. Lopéz, “Plane models of Drinfeld modular curves,” Ph.D. dissertation,
Complutense University, Madrid, Spain, March 1996.

F. J. McWilliams and N. J. A. Sloane, The theory of error-correcting codes
(North-Holland Mathematical Library, vol. 16). North-Holland, 1977.

78



[37]

[38]

39]

[40]

[41]

[47]

48]

[49]

[50]

Yu. I. Manin, “What is the maximum number of points on a curve over Fy?,”
Journal of the Faculty of Science, the University of Tokyo, Sect. 1A, vol. 28,
pp. 715-720, 1981.

R. Matsumoto, “Linear codes on nonsingular curves are better than those
on singular curves,” to appear in IEICE Transactions on Fundamentals.

S. Miura, “Algebraic geometric codes on certain plane curves,” IEICE Trans-
actions A, vol. J75-A, no. 11, pp. 1735-1745, November 1992. (in Japanese)

S. Miura, “On the minimum distance of codes from some maximal curves,”
IEICE Technical Report, 1T92-147, March 1993.

S. Miura, “On Feng-Rao designed minimum distance of geometric Goppa
codes,” in Proceedings of the 16th Symposium on Information and Its Appli-
cations, pp. 427-430, November 1993. (in Japanese)

S. Miura, “Studies on error-correcting codes based on algebraic geometry,”
Ph.D. dissertation, University of Tokyo, Tokyo, Japan, 1997. (in Japanese)

S. Miura, “Linear codes on affine algebraic varieties,” IEICE Transactions
A, vol. J81-A, no. 10, pp. 1386-1397, October 1998. (in Japanese)

S. Miura, “Linear codes on affine algebraic curves,” IEICE Transactions A,
vol. J81-A| no. 10, pp. 1398-1421, October 1998. (in Japanese)

C. J. Moreno, Algebraic curves over finite fields (Cambridge Tracts in Math-
ematics, vol. 97). Cambridge University Press, 1991.

R. Pellikaan, “Asymptotically good sequences of curves and codes,” in Pro-

ceedings 34th Annual Allerton Conference on Communication, Control, and
Computing, Urbana-Champaign, pp. 276-285, October 1996.

R. Pellikaan, “On the missing functions of a pyramid of curves,” to appear
in Proceedings 35th Allerton Conference on Communication, Control, and
Computing, Urbana-Champaign, September 1997.

R. Pellikaan, B. -Z. Shen and G. J. M. van Wee, “Which linear codes are
algebraic-geometric?,” IEEE Transactions on Information Theory, vol. 37,
pp- 583-602, 1991.

I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
pp. 300-304, June 1960.

L. Robbiano, “Term orderings on the polynomial ring,” in European Confer-
ence on Computer Algebra, Linz, 1985, (B. F. Cabiness, ed.), Lecture Notes
in Computer Science, vol. 204, Springer-Verlag, 1985.

79



[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]
[62]

[63]

L. Robbiano, “On the theory of graded structures,” Journal of Symbolic
Computation, vol. 2, pp. 139-170, 1986.

H. G. Riick and H. Stichtenoth, “A characterization of Hermitian function
fields over finite fields,” Journal fuer die Reine und Angewandte Mathematik,
vol. 457, pp. 185-188, 1994.

K. Saints and C. Heegard, “Algebraic-geometric codes and multidimensional
cyclic codes: A unified theory and algorithms for decoding using Grobner
bases,” IEEE Transactions on Information Theory, vol. 41, no. 6, pp. 1733-
1751, November 1995.

S. Sakata, H. E. Jensen, and T. Hgholdt, “Generalized Berlekamp-Massy
decoding of algebraic-geometric codes up to half the Feng-Rao bound,” IEEFE
Transactions on Information Theory, vol. 41, no. 6, November 1995.

C. E. Shannon, “A mathematical theory of communications,” Bell System
Technical Journal, vol. 27, pp. 379423, 623-656, July—October 1948.

A. N. Skorobogatov and S. G. Vladut, “On the decoding of algebraic-
geometric codes,” IEEE Transactions on Information Theory, vol. 36, no. 5,
pp- 1051-1060, September 1990.

H. Stichtenoth, “A note on Hermitian codes over GF(¢?)”, IEEE Transac-
tions on Information Theory, vol. 34, pp. 1345-1348, September 1988.

H. Stichtenoth, Algebraic function fields and codes. Springer-Verlag, 1993.

H. J. Tiersma, “Remarks on codes from Hermitian curves,” IEEE Transac-
tions on Information Theory, vol. IT-33, pp. 605-609, July 1987.

M. A. Tsfasman, “Goppa codes that are better than the Varshamov-
Gilbert bound,” Problemy Peredachi Informatsii, vol. 18, no. 3, pp. 36,
July-September 1982. Translation: Problems of Information Transmission,
vol. 18, no. 3, pp. 163-166, January 1983.

M. A. Tsfasman and S. G. Vladut, Algebraic-geometric codes. Kluwer, 1991.

M. A. Tsfasman, S. G. Vladut, and T. Zink, “Modular curves, Shimura
curves and Goppa codes, better than the Varshamov-Gilbert bound,” Math-
ematische Nachrichten, vol. 109, pp. 21-28, 1982.

D. Umehara, S. Miura, T. Uyematsu and E. Okamoto, “On optimality of
Feng-Rao designed minimum distance for Hermitian codes constructed by
weight order based on pole order,” IEICE Transactions A, vol. J81-A, no. 4,
pp. 733-742, January 1998. (in Japanese)

80



[64]

[65]

[66]

[67]

[68]

D. Umehara and T. Uyematsu, “One-point algebraic geometric codes from
Artin-Schreier extensions of Hermitian function fields,” IEICE Transactions
on Fundamentals, vol. E81-A, no. 10, pp. 2025-2031, October 1998.

D. Umehara, T. Uyematsu and K. Sakaniwa, “On the relation between the
sequence of subspaces and the Feng-Rao designed minimum distance for
geometric Goppa codes,” IEICE Technical Report, IT96-37, October 1996.
(in Japanese)

A. Vardy, “The intractability of computing the minimum distance of a code,”
IEEFE Transactions on Information Theory, vol. 43, no. 6, pp. 1757-1766,
November, 1997.

S. G. Vladut, G. L. Katsman, and M. A. Tsfasman, “Modular curves and
codes with polynomial complexity of construction,” Problemy Peredachi In-
formatsii, vol. 20, no. 1, pp. 47-55, January—March 1984. Translation: Prob-
lems of Information Transmission, vol. 20, no. 1, pp. 35—42, July 1984.

S. G. Vladut and Yu. I. Manin, “Linear codes and modular curves,” Itogi
Nauki v Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie Dos-
tizheniya, vol. 25, pp. 209-257, 1984. Translation: Journal of Soviet Mathe-
matics, vol. 30, pp. 2611-2643, 1985.

C. Voss and T. Hgholdt, “An explicit construction of a sequence of codes
attaining the Tsfasman-Vladut-Zink bound,” IEEE Transactions on Infor-
mation Theory, vol. 43, no. 1, pp. 128-135, January 1997.

K. Yamanishi, “On derivation of good codes based on elliptic codes and
hyper-elliptic codes,” IEICE Transactions A, vol. J71-A, no. 10, pp. 1936—
1946, October 1988. (in Japanese)

K. Yamanishi, “On construction and performance evaluation of Fermat
codes,” IEICE Transactions A, vol. J72-A, no. 3, pp. 597-607, March 1989.
(in Japanese)

K. Yang and P. V. Kumer, “On the true minimum distance of Hermi-
tian codes,” in Coding Theory and Algebraic Geometry, Luminy, 1991,
(H. Stichtenoth, M. A. Tsfasman eds.), Lecture Notes in Mathematics,
vol. 1518, Springer-Verlag, pp. 99-107, 1992.

81



Author’s Publications Related to
the Dissertation

Regular papers

1. D. Umehara, S. Miura, T. Uyematsu and E. Okamoto, “On optimality of
Feng-Rao designed minimum distance for Hermitian codes constructed by
weight order based on pole order,” IEICE Transactions A, vol. J81-A, no. 4,
pp. 733-742, January 1998. (in Japanese)

2. D. Umehara and T. Uyematsu, “One-point algebraic geometric codes from
Artin-Schreier extensions of Hermitian function fields,” IEICE Transactions
on Fundamentals, vol. E81-A, no. 10, pp. 2025-2031, October 1998.

International conferences

1. D. Umehara and T. Uyematsu, “One-point algebraic geometric codes from
Artin-Schreier extensions of Hermitian function fields,” in Proceedings of In-
ternational Symposium on Information Theory and Its Applications, Mexico
City, pp. 196-199, October 1998.

Domestic conferences and workshops

1. D. Umehara, S. Miura, T. Uyematsu and E. Okamoto, “On the optimum
designed minimum distance of Hermitian codes based on monomial order-
ing,” IEICE Technical Report, IT95-47, January 1996. (in Japanese)

2. D. Umehara, T. Uyematsu and K. Sakaniwa, “On the sequence of designed
minimum distance for geometric Goppa codes,” in Proceedings of the 1996
IEICE general conference, A-154, September 1996. (in Japanese)

3. D. Umehara, T. Uyematsu and K. Sakaniwa, “On the relation between the
sequence of subspaces and the Feng-Rao designed minimum distance for

82



geometric Goppa codes,” IEICE Technical Report, 1T96-37, October 1996.
(in Japanese)

. D. Umehara and T. Uyematsu, “On codes from Artin-Schreier extensions
of Hermitian function fields,” in Proceedings of the 20th Symposium on
Information Theory and Its Applications, vol. 1, pp. 153-156, December
1997.

83



