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Introduction

In this thesis we study the hydrodynamic limit for a lattice gas model of
non-gradient type. The study of the hydrodynamic limit is an attempt of
mathematically understanding how a macroscopic evolution equation comes
from microscopic dynamics of a statistically large system regulated by con-
servation laws. Ideal models are Hamiltonian systems where particles evolve
deterministically according to Newton’s equations. If one assumes an Ansatz
that the equilibrium is locally established, one can derive a compressible Eu-
ler equation from a typical Hamiltonian system. Since the Ansatz has not
been verified mainly due to the lack of good ergodic properties of the system,
there has been traditionally introduced for simplification certain stochastic
dynamics, by which the intrinsic structure of the derivation of the macro-
scopic equation seems to be not altered and nice ergodicity is secured. There
are several models of such stochastic dynamics whose hydrodynamic limits
are studied. The lattice gas models are among them.

In the problem of hydrodynamic limit, one of the most important key
word is ‘gradient condition’. Though classical models like the Hamiltonian
system mentioned above or the system of interacting Brownian particles sat-
isfy the ‘gradient condition’, lattice gas models do not in general. Hydrody-
namic limit for a lattice gas satisfying ‘gradient condition’ is obtained in [1].
For the ‘non-gradient’ case, hydrodynamic limit is verified for a class of lattice
gases reversible under Bernoulli measures in [2], and for that reversible un-
der Gibbs measures with mixing condition in [8]. They introduced ‘gradient
replacement’ or ‘fluctuation dissipation equation’ formula. So-called ‘gradi-
ent replacement’ formula is introduced and verified in [7] for ‘non-gradient’
Ginzberg-Landau model.

In Chapter 1 we introduce a lattice gas model which has two conserva-
tion laws and study the hydrodynamic limit of this model. In this model
we consider the lattice gas model on a d-dimensional discrete torus Ty :=
{1,2,...N}?¢ (N is identified with 0). Each particle carries energy whose
value is a positive integer less than some prescribed constant. Each parti-
cle moves on the lattice subject to the exclusion rule (at most one particle
at one site) with a rate which may depend on the energy of the particle.
At the same time nearest neighboring two particles exchange their energy
according to a certain stochastic rule. The process on the space of particle-
energy configurations on Ty is a continuous time Markov process that is
reversible with respect to a certain product measure. In this model not only
the number of particles (as in the usual lattice gas) but also the total energy
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is conserved. It does not satisfy gradient condition. We consider empirical
measures for the number of particles and for the energy under the usual dif-
fusion scaling. It is proved that in the limit as N — oo the limit densities
p="p¥ p") €]0,00) (E and P indicate energy and particle, respectively)
satisfy a system of non-linear diffusion equations of the form

9 _
o’ =

where D(p) is a 2d X 2d matrix whose elements are functions of p and Vp =
t(VpP,VpP). Since we do not know of the uniqueness of a (weak) solution
to the Cauchy problem for this diffusion equation, we can not speak of the
convergence of the process of the empirical measures, nor of whether the limit
densities p are deterministic or not.

In Chapter 2 we introduce the “zerorange-exclusion process”, and obtain
an estimate of the spectral gap for it. The process is a kind of lattice gas. It
has two conserved quantities, the number of particles and the total energy.
It will be proved that the spectral gap for the process confined to a cube in
Z¢ with width n is bounded below by Cn~2, where C is independent of n but
depends on the particle and energy densities. This estimate is motivated by
the study of the hydrodynamic limit of the process; the obtained estimate is
sufficient for obtaining the characterization of the space of germs of closed
forms [8].

In Chapter 3 we study the gradient condition for one-dimensional sym-
metric exclusion processes. Given a Gibbs measure on the one dimensional
lattice Z with translation-invariant potential of finite range, we construct an
exchange rate for one-dimensional lattice gas which satisfies both the detailed
balance condition relative to the Gibbs measure and the gradient condition.
Based on an exchange rate which satisfies both the detailed balance condition
and the gradient condition, we can prove the hydrodynamic limit for every
one-dimensional lattice gas reversible under the Gibbs measure that is not
necessarily of gradient type, in a way parallel to [2| and [7] with the help of
the result of [5] on the spectral gap.
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1 Introduction

In this paper we study the hydrodynamic limit for a lattice gas model on
a d-dimensional discrete torus By := {1,2,...N}? (NN is identified with
0). Each particle carries energy whose value is a positive integer less than
some prescribed constant. Each particle moves on the lattice subject to the
exclusion rule (at most one particle at one site) with a rate which may depend
on the energy of the particle. At the same time nearest neighboring two
particles exchange their energy according to a certain stochastic rule. The
process on the space of particle-energy configurations on By is a continuous
time Markov process that is reversible with respect to a certain product
measure. In this model not only the number of particles (as in the usual
lattice gas) but also the total energy is conserved. It does not satisfy gradient
condition. We consider empirical measures for the number of particles and for
the energy under the usual diffusion scaling. It is proved that in the limit as
N — oo the limit densities p = *(p”, p¥’) € [0,00)? (F and P indicate energy
and particle, respectively) satisfy a system of non-linear diffusion equations
of the form

0

o’ =
where D(p) is a 2d x 2d matrix whose elements are functions of p and Vp =
E(VpP VpP). Since we do not know of the uniqueness of a (weak) solution
to the Cauchy problem for this diffusion equation, for the moment we can
not speak of the convergence of the process of the empirical measures, nor of
whether the limit densities p are deterministic or not.

The study of the hydrodynamic limit is an attempt of mathematically un-
derstanding how a macroscopic evolution equation comes from microscopic
dynamics of a statistically large system regulated by conservation laws. Ideal
models are Hamiltonian systems where particles evolve deterministically ac-
cording to Newton’s equations. If one assumes an Ansatz that the equilibrium
is locally established, one can derive a compressible Euler equation from a
typical Hamiltonian system. Since the Ansatz has not been verified mainly
due to the lack of good ergodic properties of the system, there has been tra-
ditionally introduced for simplification certain stochastic dynamics, by which
the intrinsic structure of the derivation of the macroscopic equation seems
to be not altered and nice ergodicity is secured. There are several models
of such stochastic dynamics whose hydrodynamic limits are studied. The
lattice gas models are among them.

V(D(p)Vp),



In the problem of hydrodynamic limit, one of the most important key
word is ‘gradient condition’. Though classical models like the Hamiltonian
system mentioned above or the system of interacting Brownian particles sat-
isfy the ‘gradient condition’, lattice gas models do not in general. Hydrody-
namic limit for a lattice gas satisfying ‘gradient condition’ is obtained in [1].
For the ‘non-gradient’ case, hydrodynamic limit is verified for a class of lattice
gases reversible under Bernoulli measures in [2], and for that reversible un-
der Gibbs measures with mixing condition in [7]. They introduced ‘gradient
replacement’ or ‘fluctuation dissipation equation’ formula. So-called ‘gradi-
ent replacement’ formula is introduced and verified in [6] for ‘non-gradient’
Ginzberg-Landau model.

The framework of our proof is essentially the same as that developed
in [7] except for the characterization of a class of closed forms. First we
estimate the lower bound of the spectral gap of the generator of our Markov
process uniformly in densities of particle number and of energy. We reduce
the problem of proving the hydrodynamic limit to that of estimating the
upper bound of the spectrum of certain operators involving currents. Using
the estimate of spectral gap and ‘fluctuation-dissipation equation’ we can
estimate the upper bound of the spectrum. To derive ‘fluctuation-dissipation
equation’ we have to characterize a class of closed forms. We project a closed
form from the class onto a space of cylinder functions of configurations on
a cube centered at the origin with width 2n 4+ 1. This projection results
in a closed form on the cube and a boundary term. Taking the limit as
n — o0, the boundary term converges weakly. In this model, the limit of
the boundary term is a linear combination of 2d specific functions that are
linearly independent, so that the dimension of the family of limiting boundary
terms is the same as d times the number of conservation laws. This situation
makes the analysis of the boundary term non trivial in our case where there
are two conserved quantities.

This paper is organized as follows: In Section 2 we describe the model and
state the main results. In Section 3 we give an outline of proof. We prove the
spectral gap inequality and two blocks estimate in Section 4, the tightness
in Section 5, and energy estimate in Section 6. The eigenvalue estimate is
proved in Section 7. In Section 8 and 9, we give a fluctuation-dissipation
equation. Finally, in Section 10, we give proofs for some well-known facts.



2 Model and result

Let By := {1,2,...,N}? be the discrete d-dimensional torus with width N
(N is identified with 0) . Denote by n = (9.)zen, the configuration of a
lattice gas where for each z, 7, € {0,1,2,...,k}. Let us define & := 1, 20}-
&: = 0 means that the site x is vacant, and {, = 1 means that there exists
a particle at site z. 7, =1 (for 1 < < k) means that the particle at site x
has energy I.

For a point z € Z?¢ we use two kinds of norms:

d
|$|1 3=Z|$i|,
=1
2| := max |;].
K3

Let 7(®% and n*~Y be the configurations defined by

Ny, if z=ux,

(n(mﬂl))z = { ne, if 2=y, (1)
1., otherwise,
n— 1, if z=ux,

(™). = { mt+1, ifz=y, (2)
Nz, otherwise,

and let us denote 7%y := nl@¥) and T*~Yy := p*~Y. Let 7(®¥) and 7*~Y
be operators defined by

@0 f@m) = fn) — f(n), (3)

V() = ™)~ f(n), (4)

for any local function f. Let ce(7), cge(r) be functions for r = 0,1,2...k

such that cex(0) = 0 and ce (1) > 0, for all 1 <1 < k, and cge(0) = cge(1) =0
and cge(l) > 0, for all 2 <[ < k.

Denote by b = (z,y) a directed bond; provided that |z — y|; = 1. This

convention will be followed in the rest of paper unless otherwise stated. For
any directed bond b, let L, be the operator defined by

Ly f(0) = cex(m:) (1 = E)T®Y (1) + e (1) Li<n, <ke13m™ Y F (0),

for any local function f. Let Lg, be the Markov operator defined by

LBN = Z Lb.

bEBN
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Consider the family of product measure on the product space {0,1,2, ...k} 5~
with marginal

1—p if I =0,
1
_ P ifl=1,
P, (n, =1):= a(p,p) - (5)
1 (a(p, p))

1 <I[<
P et @ @)@ o S
for 0 <p<1andp<p< kp, where Z,, ) is the normalizing constant and
a(p, p) is a positive constant depending on p and p and determined by the
relation

Ep,p[nm] =p.

From the definition, we have reversibility such that

cge(nw)l{lénwSkfl}Pp,p({n}) = cge((nw_)w)w)1{1S(nz“”)zSkfl}Pp,p({nw_)w})
Pp,p({n}) = Pp,p({n(m’w)})a (6)

for any p, p, for any z,w € By and n € {0,1,2,...k}B~. It is easy to check
that Lg, is symmetric under P, ,.

We speed up the process by N2, so that the generator of the process
is N?Lp, . Let us consider the system with initial density fJ with respect

0

to P, ,. We denote by PM{VN the probability law of Markov process, gener-
ated by N2Lg, and starting with initial distribution f¥P, ,, on the space of
trajectories 7(+).

Denote by T¢ the d-dimensional torus. Let us consider the empirical
measures for energy and for particle defined by

my N (d0) = Ay ) ()6,n(df), (7)
mfY(d) = Ay €06 (ds), ©

where § € T and Av is an averaging operator defined by

for any L C Z%. The measures (7), (8) induce (from PM{\?N) a distribution ch\?N
of (m®N(-,-), mPN(-,-)) on the Skorohod space X = D([0,T] — (M[T4])?),
where M is the space of nonnegative finite measures on T¢, the space which
we equip with the topology of weak convergence.



Theorem 2.1 Suppose that the initial distribution satisfies
Tm P |/m0ENd0 /po (8)d8] > 8] =0,
T Py |/m0PN (d6) /,00 (6)d6] > 8] =0,
for any smooth function J and posz’twe constant 0, then all limit points of

QN are concentrated on trajectories m™ (df) = p¥(t,0)d0 and mI™(df) =
pP(t,0)d0 that are weak solution of

2000) = 3 o (Dus(p) g™ (4,0) + D p(s) 0" (1,0))

O p4(10) = Za‘z (Dr.p(o) o (4,0) + Do) o (0,0))
0(0,0) = oE(0) (9
o(0,0) = o(0)

where D = (Dp ¢)pqcin,p} 15 a 2 X 2 matriz defined as follows.
Let D be a 2 x 2 matriz defined by the variational formula:

(o, Dax) i

= ) Doy
i,j€{E,P}

= inf {Eyp o lcunlmo) (1 — E{ap(m + 7O (L rou)
+ap(1+ 7O (Y m0)Y]
+EPP,pE [Cge(UO)l{lineSk—l}{aE(l + T(O_)E)(Z Tat))

ap(m ()Y},

where infimum w,v are taken over all local functions and 1, be shift operator

defined by

Tzh(n) = h(7zn),
(Tn:n)z =Nz

10



Put

E,p e [mg] — (p7)2 (1= p")p” ) _

X(pE, pP) = COVpP“DE (770’60) = ( (1 _ pP ,OE pP(l — ,OP)

Then

3 Outline of the proof

First we state a result on the lower bound of the spectral gap. Let P, g be
canonical measure defined by

PL,y,E(') = Pp,p(“ Z £ =Y, Z N = E),

€L €L
for any L CC Z4 and for any 0 <y < |L| and y < E < ky.

Proposition 3.1 (Spectral gap inequality) There exists a constant C such
that for any N,y, FE, we have

VBN,y,E(f) S CN2DBN,y,E(f)7

where V' denotes a variance and D denotes a Dirichlet form defined by

DBN,y,E(f) = _EBN,y,E[fLBNf]7

for each canonical measure.

We will give a proof of Proposition 3.1 in Section 4.
N
In the next step we prove the tightness of the measures {Q{\? }. To prove
the tightness, in view of Prohorov’s theorem, we have only to show the fol-
lowing.

Lemma 3.2 (Tightness) For any initial distribution f P, ,, for any smooth
function J and for any 6 > 0, it holds that

lim lim PM{\?N[ sup imy N (J) = mEN ()| >5] =0,
a—0 N—oo |s—t|<0,0<s,t<T
lim lim PM{\?N sup |mf’N(J) —mBPN(T)| > 6] =0,
a—0 N—oo |s—t|<a,0<s,t<T

11



where
mPN(1) = [ mPN(d0)I(0),

miN(J) = » miN (d6)J ().

We will give a proof of Lemma 3.2 in Section 5.
Since

lim | Av J( nz| < k|| J]]1,

N—oo zEBn

lim | AV J( ezl < |11,

N—oo z€B

N
under all limit points of Q{\? trajectories are functions from [0, 7] to abso-
lutely continuous measures with respect to the Lebesgue measures. Let us
write pP(t,0) and p(t,0) the densities of the measures.

N
Lemma 3.3 Let Q be a limit point of Q{\‘; . Then there exists a constant C
such that

EQ[/Tdt 105 (2P (1,6 l<c
At ,-:1(801-’)(’ )7 <C,

T
EQ[/ dt
0 Td

We will give a proof of Lemma 3.3 in Section 6.

Finally, we prove that @ in Lemma 3.3 is supported on a set of trajectories
whose densities are weak solution of (9). Denote by 7,; and Em,l the average
energy density and average particle density in a cube of width 2/ +1 centered
at x, namely

P(t,0))?| < C.
1(391-” F] <

ﬁz,l = Av My,
y:ly—z|<I

fz,l = Av
yily—e|<t >’

Theorem 3.4 (Identification of the equation) For any é > 0, let

Bl = {n(),€0): sup | Ay J(TIne(t) = Av J(5)ma(0)

0<t<T =€BN z€BN

12



+/ %zéé’N ae 152
X{[DE,E("?z,aN( ), fz,aN(S))][nm+bNe(S) - na:bee(S)]
HD5,p (7,an (5), Er.an ()] [€arone(s) — Eowe(s)]}s| > 6},

%}=Wwwmmmx>mwmx>M)

+/ 2b .'DGBN 60 )(ﬁ)

x{[DP,E(n:r,aN( ), fz,aN(S))”%+bNe(S) - nm—bNe(S)]
D p (e (5), Enar (5))][Essove(s) — Exe(s)]}ds| > 8.
Then

mwwm%*@M—o

lim lim lim PM [Bajfé] 0.

a—0b—0 N—oo
Outline of the proof of Theorem 3.4.
Denote by e the unit vectors of Z¢. Denote the currents for energy and for
particle by

wf::v—f—e(n) = ceX(nﬂC)(l - fm+e)77m - cex(nm-i—e)(]- - Ew)nw—}—e
+Cge (M) {1 <o <h—1} — Cge(Note) L{1<na<h—1}
wiw-}-e(lrl) = Cex(nm)(l - 5ﬂ2—|—6) - Cex(nx+e)(1 - 53:)7

respectively. Let us define V, by
Vh(z) = h(z +e) — h(x)

for all functions on Z%. From the definition of the currents, we have
T E E
AV (J()ma(0) - Av ( / UE (n(s))ds + ME(t)
x P( P
Av (J()6(0) - Av (5 /U 3))ds + M (1
where the drift terms U” and U? are defined by

UP(n) = N AV 30 (NVod (SN0 00 (1),

e>0

UP(TI) N AV Z (NV J( ))w(z z+e)( )

e>0

13



and M*” and M" are martingales. Let F{(n) := Av, J(%)n,. Then we have
T -
(ME@) = [ (VLo (FE0) — 2FE )N L, FEr) )t + I,

where M is a martingale. Since (F+r@¥F)(n) = F(n@¥), (F4+x*~YF)(n) =
F(n®Y), we have

(N*Lpy (F¥(n)* = 2F§ ()N Ly, Fy/ (1))

= 25 {1 = o) (g (NVeT ()2 = 7))

b e>0
1 x
+ Cge(ﬁm)1{1gqm+egk—1}(m(NVeJ(N))2}-

Hence we have .
5
Bl [ME@)?] < 27001,

In the same way we also have

Bl [(MET))?] < 1 CT,

Hence we can neglect the martingale terms. Our problem is reduced to

proving
1111(1”1)111(1] 11m Pyl |/ B Jds| > 6] =0,
lim [im Lim Py / B Lds| > 6] = 0.
a—0b—0 N—oo
where
SLE
Ba,b - { m‘eAgN ; J m m—|—e
+2bN A Z J
X{[DE,E(ﬁx,aN(S),fm,aN(S))][nm+bNe( ) — Nz—sne(s)]
+[DE P(ﬁz aN( ) 61 aN(s))] [€I+bNe(s) - Sm—bNe( )]}}a
5P
Bll,b o { g;éBYN ; J 3’1 m—|—e

14



2bN méBN ; J

X{[Dp,5(7,an (), fm,aN(S))] [Notbne(s) = No—bne(s)]
+Dpp(a,an (5), Ea,an ()] [Eaone(s) = Ea one(s)]} -

In our situation, we can reduce our problem to estimating the upper limit of
a spectrum like (12) below;

Lemma 3.5 Let Xy(t) be a Markov process with generator Ly starting from
wmatial distribution py. The Markov generator Ly 1s symmetric with respect
to a probability measure vy. Denote by || - ||,y a LP norm with respect to
vy. Denote by Pﬁv the probability law of the Markov process starting with
wnatial distribution py. If the relative entropy satisfies

H(pnlvn) < CN, (11)
and 1t holds that

- 1
]\ll_r)noo sup spec[V - W( LN)] <0 (12)

for any v > 0, where

sup Spec[V - (—CN)] = ffilily{)vﬂ {/szdyN — /f(—EN)deN} ,

then we have

lim P | / "V (Xn(s))ds > 6] =o. (13)

N—ooo HN 0

Furthermore, if it holds that

me,uN < exp[eN] (14)

for some 1 < p < oo and satisfies (12) for any v > 0, then we have
e
Jim. m1ogp [/0 V(Xn(s))ds > 6] = —oo. (15)

We will give a proof of Lemma 3.5 in Section 10.

15



Proposition 3.6 Let PV denote the grand canonical measure on {0,1, ..., k}P~.
Then there exists a constant c depending only on k and cge such that

me,PN S eXp[CNd]

for all 1 < p < co and for all probability measures uy on {0,1,...,k}P~,

Let us define

sup spec [V - (—L)] = sup {/Vf2dPN /f fdPN}

[ f2dPN=1

where PV is the grand canonical measure on {0,1,...,k}5~,
In view of Lemma 3.5 and Proposition 3.6, we have only to obtain the
following estimate

lim [im lim sup spec[:l:B — yN? beAL;/ (—Lp)] < 0. (16)
N

a—0b—0 N—oo
To this end, we use the perturbation theory of eigenvalues.

Lemma 3.7 Let P be a probability measure on a finite set B. Let £ be a
generator of a Markov process on B, which is symmetric with respect to P.
Suppose that —L has a spectral gap 6 > 0. Let f be a bounded function on
B. Let ||f||o denote the supremum norm of f. Assume that E[f] = 0. Then
we have

supspec(L + f) < E[f(—£)" 1f]+4||fH0052,

where

sup spec[f— (—ﬁ) = sup {/fgzdP /g gdP}.

[ g2dP=1

We will give a proof of Lemma 3.7 in Section 10.
Let A, := Ay, and A, , be a cube of side 2n + 1 centered at z, namely
Apn:={y € Z%: |z — y| < n}. Let us define

G = {h:hisalocal function and satisfies E,, , 1[h] =0

for some n and for all y, L}.

16



Let 7, be shift operator defined by

T:h(n) = h(1m),
(Tem)s = Mo
For any local function h € G we can define

VO (hy, E) := E, g éy Toh(—LOY ™t Av 7,.h),
z 19

IEAII

where |; =1 — \/Z, LW = Avyep, Ly. In Corollary 8.5 of Section 8 we obtain
that there exists a limit

lim E, » [V(l)(h; y, E)]
l—oo,(p,p")—=(pp) '

for any h € G and denote the limit by V(h;p, p).
Denote the density gradients for energy and for particle by
Ven = Veng = ne — 1o.
veg = Vefo = fe - 505
respectively.

Theorem 3.8 Fiz densities p and p. Suppose {g2}ecie,,. s} ,qe{E,P} 15 @ set
of (2d) local functions of n. For each direction e, let

E ’UJE E
be(g) == ( 21» ) =<wZ) ) + Lp, ( zZ»)JrD(p,p)(gZ?g),

where D is defined by (10). Then for any {a2} satisfying 3, ,(0d)? =1,

nf V(Y {al6l(g) + al¢f (9)}ip,p) =0.
We will prove Theorem 3.8 in Section 8. In this theorem, minimizing sequence
{92 .} depends on the densities p and p.

Proposition 3.9 For any {o?} satisfying Y. ,(a?)> =1 and § > 0, there
exists a positive integer n = n(6) and a vector valued function {g2(p, p,n)}
satisfying following properties.

For each p, p, each component depends only on {n, : © € A,}.

For each n each component is a smooth function of p, p.

It holds that
sup V(Y {alol (92(p p. ) + al 87 (9 (p, p, ) }ip, p) < 6.

p:p e

17



We will prove Proposition 3.9 in section 10.
In order to apply Proposition 3.9, we have to show that Lg is negligible.
By simple computation, we have

AV (T(5)ma(t)) = Av (T(5)m:(0)) + 2 (n(t)) = 2y(n(0))
= [[UF((s), g)ds + ME, (1)
AV T(5)6:(0) = AV T(5)6:(0) + 2 (n(1)) — 2 (n(0))

= /Ot UP(n(s), g)ds + M]{Zg(t)

where
% (n) = Av & (VYT ()a(ran),
US(1,9) = N AY 32 NV () (et (1) + Layg(ran),
U"(1,9) = N Av 32 (NI () (0 () + Lyg (),

and M ﬁ’g and M ﬁ,g are martingales. We can easily check that

B [(ME, ()] < G,
Bl (45, (1) < 00T,

From the definition, €2, is of order 1/N. Hence we can neglect both €, and
the martingale terms.

Let us consider the function g = g(n,p, p) which is a smooth function
of p and p, and a local function of 7. Assume that g depends only on
{nz : |z| <n}. Then we can easily check that forn <1 —1

_ _ 1
Lpyg(n, &0, o) = Z (Ls)g(n, o1, Toy) + 0(7),
beA;

namely L does not act on densities. Since the difference is only on b = (z,¥)
such that z € Ay and y ¢ Ay, or z ¢ A; and y € A;, The number of such b is
of order 197!, but L,g is at most of order [~%.
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Theorem 3.10 Suppose J is a 2d dimensional vector valued test function
and g = {g2(n,p,p)}eq s a 2d dimensional vector valued function whose
components are smooth functions of p, p for each n, and local functions of
for each p, p. Let us define a 2d dimensional vector ¢ by

¢% (9)(x) )
e(g)(x) :=
#(a)() ( ¢ (o))
— (w z+e) + L 9e (Tmnagﬂ?lanﬂ:l) ) + D(7, _z ( N,c,e( ) )
( (;c z+e) ) < (Tmna leanml) (?7 7l’€ J) N,c,e( )
where ¥ and VT are (d- dimensional) density gradients defined by
1

\Ifg,c,e(w) = ﬁ(nz—che - nz—cNe),
1
qjﬁ,c,e(m) = ﬁ(fﬂ:—l—cNa - fm—cNe)-

Then for any v > 0, there exists a constant C(vy) such that
hH(l) Il)lr% A}Hn sup spec[:l:(Bgf + BJ;D) YN? Abv(—Lb)]

< lim lim lim lim sup spec[ + NAVZ (Jf(%)d)f(g)(x)

l—o00 a—0b—0 N—oo >0
+ I () (9)(@)) = YN* Av(~Ly)] (17)
< C(’Y)HJHioSgPS;l;)V(Z@S(g);l’, p),
where « is taken over Y..(af)? + (af)? =1 and
E E
arN._ (B Py[ We +Lge E Ven
02(0) = (0,00 ( M5 T 1% )+ oE oDl (97 )-
We conclude the proof of Theorem 3.4, since we can choose g so that

the right hand side of (17) is arbitrarily small for any fixed 7 in view of
Proposition 3.9.

4 Spectral gap and Two blocks estimate

In this section we prove Proposition 3.1. Adapting the methods found in [3]
or [4], we have only to prove Lemmas 4.1 and 4.3 below. By the way we
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can prove two blocks estimate Lemma 4.4 by Lemma 4.1. We will also use
Lemma 4.3 in Section 9. In this section we omit the parameters of grand
canonical or canonical measures from the notations P, F, D,V. Estimates
involving these are understood to hold uniformly in these parameters unless

otherwise is stated.
Let v(z,y) denote the canonical path from z to y defined by

Yz, y) :=A{2(1) : 0 <i <o — g}, (18)
where z(7) is defined by

z(i) = (2(i)1,...,2(i)q) such that

2(1); = zj for i < Z |zr — Yk,
k=1
J

z(1); = y; for ¢ > Z |z — Yl

k=1
i1 I
2(@)j = x4+ (0= e — ) o ——
k=1 | T Z‘
Jj—1 J
for Z|xk—yk\ <1< Z|mk—yk\,
k=1 k=1

namely v(z,y) denotes the nearest neighbor path that goes from z to v,
moving successively as far as it has to in each of the coordinate directions,
following the natural order for the different coordinate directions.

Lemma 4.1 There exists a constant C such that for each grand canonical
or canonical measure and for any local function f, we have

D*7¥(f) = Elcge(na)lpugn<k-13 (77 F)(1))"]
< Clz—yl Y, Dy(f) (19)
bevy(z,y)
DEV(f) = Elcex(ns)(1 — &)((7™Y £)(n))?]
< Cle—yli Y. Do(f), (20)
bevy(z,y)

where y(x,y) is a canonical path from x to y, and Dy(f) is one site Dirichlet
form defined by

Dy(f) = Elege(n:)1 1 <nusr—y (777 F)(0))* + cex(:) (1 =€) (75 £) ()],
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for b= (z,w).
In the proof of Lemma 4.1, the next lemma plays an important role.

Lemma 4.2 There exists a constant C such that for each grand canonical
or canonical measure and for any local function f, we have

E[(x9)f)(n))*] < CDe(f).

This lemma is essentially proved in [3], since this lemma is obvious except
for the situation that both 0 and e are occupied by particles.

Proof of Lemma 4.2. Fix 1 < a < b < k, consider the configuration n with
o =a and 7, =b. For 0 <1< b— a, let ' be the configuration defined by

nl — Teaonlfl

=1,

if1<1<b—a,

Y

Then using the Schwarz inequality and reversibility (6) we have

B {gy=an. =5 (7 ) ())’]

b—a
< (b=a) Y03 PO )L tyomartion - 1)mbot)

=1 n
Xcge(a—i-l)---cge(a-{-l— 1)
Cge(D) -~ - Cae(b = 1)

Since cge and 1/cge are bounded, and the number of ¢4 in the last expression
is at most 2k, there exists a constant C' such that

E[l{nozame:b} ((ﬂ-(o,e)f) (77))2]

b—a

< Cb—a)d 3 P Y pematitmeb—i113 (F(1') — F0)7).

=17

(f(") = f( =)

Summing up over 1 < a < b < k, we have

E[L{o<n<ny (1) F)(1))"] < CK*Dio,0y ().

For 0 < n, < mg, we have the same estimate. Hence we conclude that

E[(x©9f)(n))?)
= E[((l — &) + &o(1 — &) + Lio<nocn} + 1{0<ne<no})(W(O’e)f)(n))2]
S CD(O,e)(f)'
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O
Proof of the Lemma 4.1. Let z(i) := 2, ,4(7) (0 <4 < |z — y|;) be defined by
(18), namely z(7) is the i-th point from x on canonical path v(z,y). We can
rewrite 7% and n(®¥) as
P = TEORD) o TEWE@) o . o (-1 -Dae-y1-1)
oT?(lz=yl1=1)=z(je—yl1)
o=t =Dsale=s1=2) . .. o T,
p@9) = TG0 o TEOAD) o .. o TE(e-y1-2)a(e=yh-1)
oT(lz—yli=1),2(Jz—yl1))
o= ~Dalle=s-2) . .. o PO,

From here we only consider the generalized exclusion type jump (19). Let

T;n be defined by Tyn :=n,
7"177 — T(Z(ifl)az(i))ﬂil/r]
for1<i<|z—yl|; —1, and
T\zfyhn = Tz(|m7y|171)_)2(‘m7y‘1)T|mfy\17177

and

T;n = TCECRRE-yh=i=)2Qle—yh =), p
for [x —y|; +1 <i< 2|z —y|; — 1. Then we have

2|z—y|—1

) = > (f(Ti) — f(Tizam)),

i=1
and ' '
F(Tim) = F(Ti—am) = aCCD20) (T, ).
for1<i<|z—yl|; —1, and
F@oeyym) = f(Tpmyy—am) = =70 L (T ),

and 4 4
F(Tim) ~ (L) = meCle st D) (7,
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for [t —y|1+1 < i < 2|z —y|; — 1. Using the Schwarz inequality and Lemma
42,

2|lz—yl1—1

D™V(f) < Q@le—yh = 1)Eege(n) > (f(Tin) = f(Ti-1m))’]

=1

< Cle—yli Y Du(f).
bey(z,y)
We can estimate the exclusion type jump (20) in the same way. O

Let L(;,) be an operator defined by
fm(l - fy)ﬂ(w’y) + 1{nm22}1{15ny§k—1}7rm_>y'
Let us define F;, for L C Z¢ by
F1, = o- algebra generated by {n, : z € L}.

Lemma 4.3 There exist finite constants Cy,Cy such that for each grand
canonical measure and for each Fy, -measurable function f

Bl FUVF]) € VI 4 Ca ) AY B[+ () (6, (21

where z € A, and z +e ¢ A, and A, , e = ToinelAn. In particular

SVl +n Av Y B+ em)) (£,

|An| YEAn 2 e ber(m)

E[(‘Cz,z-f-eE[f‘fAn])z] S

(22)
where V' denotes a variance, y(y, z) denotes the canonical path from y to z

defined by(18), and n, = n;, for b= (1, 7).

Proof. The inequality (22) is immediately obtained by (21) and Lemma 4.1.
Denote a configuration on A, by (w,(,) where w denotes the configuration
on A, \ {z} and (, denotes the configuration on {z}. Then let E[-|(w, (,)] be
a conditional expectation defined by

E[ - [(w, G = El - |, = (w0, )]
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Without risk of confusion, we simply write P(n) for P({n}) and P(n, = r)
for P({n: n, = r}) and so on. From our definition

Lz,z+eE[f|(w’ Cz)]
= é-z(l - €z+e){E[f|(w7 O)] - E[f|(w7 Cz)]} (23)
1> la<n, o< { E[f|(w, & — 1)] = E[f|(w, C)]}-

In order to estimate these terms, we use following two general equalities (24)
and (25). Denote a covariance of f, g with respect to E by

E[f; 9] :== E[fqg] — E[f]E[g].
Then for any f, g such that E[g] # 0,
1
E[f]Zm{E[fg]—E[f;g]}- (24)
For any f and any measurable event A,
E[f14] = P(A)E[F|A]. (25)
Let us define f(*% and f*~¥ by
FEP () = &1 - &) f(1™),
o) =Yg <ty Lasmesk- 13 F(0°)-

For the first term of (23), using (24) for each 1 < r < k we have

E[f|(w,r)]
1

= B0 Yy, i)

1
TR =ty 4 - Sl

For the first term, using (25), we have

Elf Av (1=&)l(w,7)]

n,z,e

= Av E[(1-§)(f - /) |(w,")] (26)

Yy n,2,€e

A, Pl =0l o)

Elln,=ry fl(w, 0)].
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Let us define M%" (n) by

n,2,€

1
M (n) = —— Av 1y _..
n,z,e(n) E[l{nyzv’}] yEAZz,e {ny=r}

It is obvious that E[M:%" |(w,0)] = 1. Then the second term of (26) is equal
to

Pl&, = 0f(w, ")[{E[f; M,
We conclude that

E[f'(war)] - E[f|(w,0)]
1

A
yeAZz,e P[é-z—ke = 0|(w’ T)]

(w, 0)] + E[f[(w, 0)]}-

E[(1 = &)(f = f*)|(w,7)] (27)

+E[f7 Ms),(z{‘e‘(w’ 0)] - E[(l _ §z1+e)|(w; T)]E[f, yeér}{z,e(l B {Sy)|(w’ 7-)]

We turn to estimate the second term of (23). Using (24) again, for each
1 <r<k—1we have

E[f|(w,r+1)]
1

= FE Av 1 _ (U,’f'+1
Elg<n,e<k—13|(w, 7+ 1)] [nyAn,z,e (1<ny<k—1}( )]

1
) Bl v 1 (w1
Elp<n, . <k-13l(w, 7+ 1)] L/ yeny,, ismsk l(w, m +1)]

For the first term, using (25) and reversibility (6), we have
Elf Av log<e-yl(w,r+1)

Av Pln, = T|77An\{z} = ]
YEAn,z e cge(T + 1) P[nz =7+ 1|77An\{z}
X{Eege(ny) (f*77 = [)la<n, <iyl (W, )] + Elcge(y) f1{z<n, <k | (w, )]}

Let us define M2%" (n) by

n,z,e

(28)

:w]

Plny = 7]

ME"(n) := A
(/’7) Cge(/r + 1)P[’I’]y =T + ].] yeAZz,e

n,z,e

c(ny)-

From reversibility (6), it is easy to check that
P(1<ne <k—=1)cge(r+1)P(ny =r+1) = P(ny =r)E[cg],
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for 1 <r <k — 1. Using this equality, we have
EIME \(w, m)] = Ellg<y,<k-13/(w,7)];
then the second term of (28) is equal to

ELf; M\, m)] + Bl cn, <k-13 (@, M E[f[(w, 7).

We conclude that

E[f|(w,r + 1)] - E[f|(w,r)]
! y=E w,T
= yeé:{z,e E[Cge‘nAn\{z} — w]E[Cge('ﬂy)(f f)‘( ’ )] (29)
1
_E[l{lﬁﬂm+eﬁk*1}|(w’ T+ 1)]
+E[f; ME|(w,r)].

n,z,e

Elf; Av lag<e-nl(@,r+1)]

We return to prove the main statement. By (23),(27),(29) and the Schwarz
inequality,

E[(‘Cz,z+eE[f‘:FAn])2]

< CP(&se =0) sz:P(W)P(Cz =)

w 7‘:1

X v 1 — — @I (w. r)])2
(G P oy Pl - &)U = £l n)

+ (BLf; M35% | (w, 0)])”

n,z,e

+ Elf; Av (1= &)l(w, )}

EA'n,z,e

1
El(1 = &e)l(w, 7))

k—1
+CP(1<mye<k—1)> Z Pw)P((,=7+1)
1 Y=z w,r)])?
X {(yeﬁzz@ E[Cgeml\n\{z} — W]E[Cge(ﬁy)(f f)l( ) )])

1
Bl @+ 1)
+ (BLf; ME | (w, 7))},

E[f Av 1{1Sny§k—1}‘(w: T+ 1)])2

b
yeAn,z,e
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Using the Schwarz inequality for the first term, we have

P(€z+e = 0) ZZIP(W)P(CZ = T)
1

s - — FE) (w, 7))
<yezAme[gz+e_0|(w S0 = &)U = £ ()

< Plen =0T Y PP =7
- e ol TV ey
1 2
< Ple =0 E L PG =g oy
x AV BI= ) = F @ Bl - &)](w,m)

ye n,z,e

= AV E[1-g)(f - o))

Using the same argument and reversibility (6) for the fourth term, we have

P(1<n.4e<k—1) Z%P(w)P(CZ =r+1)

w 7‘:1
1

y=z w, r)])?
(yGAZz’e E[Cge|77An\{z} = W]E[cge(ny)(f A7)

< CE[ Av culn) (/" = )7

For the second term, since P is product measure, for any fixed w we have

1 1—=P(n,=r)

VM el O = T P, = 1)

n,z,e

Using this equality and the Schwarz inequality, we have

CP(Ere =0) 3> P(w)P(C. = r)(E[f; M7 |(w, 0)])°

< CP(&ye=0)) ZIP(W)P(@ = 1)V |(w, OWVIM; | (w, 0)]
< | N P(&4e=0) ZZP VIf|(w,0)]

27



1

< C—kVI[f].
|An]
For the last term, using reversibility (6), for any fixed w and r we have
1 Vel
VIMES | (w,m)] = LIPS, <k —1).
[ An| Elcge]

From this equality and the Schwarz inequality, we have

CP(1 <y <k—1) ZZP G=r+1)
( [f; ME|(w,)])?
< |A VIV lesel

For the third term, it is easy to check that for any w and r,

V[ Av (1-&)|(w,r)] = —P(&, = 0)(1 - P(& = 0)).

YEAn, 2 e |An|

Then we have

k 1
EZ-I-E_O ;;P T)(E[(1—£z+e)‘(w,T)]
it oo
1 2
< CPEre=0)( [(1—§z+e)l(w,r)])
Zzlp =7r)V[fl(w,r)]V [ V,e(l_gy)‘(w:r")]
Co v

For the fifth term we can easily check that

k-1

CP(1<mye<k—1))> Pw)P((,=r+1)

w r=1

1
Elf: Av 1 1
(E[1{1Sn1+e§k71}|(w, T+ 1)] [f’ yEA,yz . {1<ny <k— 1}\(&) r+ )])

!

<

1
c
A
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From these bounds we conclude that

E[(‘Cz,z+eE[f‘fAn])2]
AV +C Av B[+ caely) Lyl

|An| YEAn 2 e

|

On using Lemma 4.1 and methods of [7], we can easily obtain the two
blocks estimate.

Lemma 4.4 (Two blocks Estimate) For any bounded continuous function h
and any v > 0,

I@V sup spec{ Av Av - [W(7ey) — h(ﬁyil)]Z — yN? sz(—Lb)} = 0,

z€BN y:ly—z|<aN

lim sup spec{ Av Av (&) — k(&) — YN? P?)V(_Lb)} = 0,

k,a,N z€BN y:|ly—z|<aN
where HLG,N = lim;_, lim,_o imy_,o in this order. In particular,
I@V sup spec{ IégN [h(Mzan) — h(Mzy)]” — YN? Abv(—L,,)} = 0,
l@v sup spec{ mégN[h(f_m,aN) — h(&)])? — YN? Abv(—L,,)} = 0.

Proof. We only prove the relation for energy part. From Lemma 4.1, we have
operator sense inequality

—L,.<Clw—2z > (—Ly).

bey(w,z)
Taking the average, we have operator sense inequality

Av Av Av  (-L,.) < CN?a? Av(—Ls).

xEBN y:2k<|y—z|<aN w,zE€EA; jUA,
Then we have only to estimate the largest eigenvalue of

Av Av  sup spec{ [A(fzg) — h(7,1))> —Ca™®  Av  (=Ly,.)}

z€By y:2l<|y—z|<aN w,z€A5 UAy
Since the operator

Ca™® Av  (=Ly,)

w,ZEAm’lUAy‘k
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has a spectral gap C(l)a™?, and h is a bounded function, on using Lemma

3.7, the largest eigenvalue is not greater than

sup  {E[{h(nag) — h(my0)})] + C'(1)a?}.

z,y:2l<|z—y|<aN

Since we take limits a — 0, | — oo in this order and our measure is product
measure, we conclude the proof. O

5 Tightness

The proof of the Lemma 3.2 given below is adapted from Varadhan [6]. It
depends on the next theorem found in [5];

Theorem 5.1 (Garsia Rademic and Rumsey) Let g and ® be strictly in-
creasing and continuous functions on [0,00) and g(0) = ®(0) = 0. Let T > 0
be given. Let ¢ be continuous function on [0,T]. Assume that there exists
B < oo such that

/ / |t—s(|))|)d dt < B. (30)

Then for any 0 < s <t < T, we have

o) o) <8 [ o7 () ().

We will give a proof of Theorem 5.1 in Section 10.

Lemma 5.2 For0< 6 <1, >0, T > §/2, and any continuous function
¢ on [0,T], we have

sup lp(t) — o(s)|| < 62/ / exp 8ﬂ|¢() ()|]dtds

exp
[\/StseOT] |t—s|<6 |t — s|

Proof. We will apply Theorem 5.1 where we take

®(u) := exp[8u] — 1,



Using integration by parts, we have

o)~ o) < [ tow (1427 )g(am)

4B |t — s t=sl . 8B\ Ju
= log(1+|t_s|2) 3 +/0 (71+i_§)7du.
Since the last term is not greater than 4,/|t — s|/3, we have
V6 4B
su t)—o(s)| < —slog(1+ —)+4¢.

e 16(0) = é(e)| < - {log (1+ 55) +4)

From the definition of B, we have
B 8ﬂ|¢ t) — ¢(s)|

exp | —=sup |p(t)—d(s < et 1+ / / —1tdtds|.

Since 1 — 47'/6? < 0, we have

exp [ﬁsupw(t) < 62/ / 8'8|¢ ()‘)dtds.

V6 VIt —s|

Proof of Lemma 3.2. Let us consider the continuous process

t T
_ 2 T\ N
—/0 N*Lg, m_él;/N J(—=)ny (s)ds,
depending on J, then we have

N N
Ay TN (@)~ Ay T (0) = YN+ M
where MY is a martingale. We have already proved that E[(MY)?] <
ﬁC’(J)T. By Doob’s inequality, we see that for the proof of Lemma 3.2
it suffices to show that P(sup, <, [V;¥ = YN| > 6) — 0 as N — oo and
« — 0 in this order. From Chebyshev’s inequality and the last part of the
proof of Lemma 3.5, we have only to show that

lim lim log F ex By| sup [YV}¥N —YV|| <o,
im Jm TN 0 p [ N‘\Hféa' -] <
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for any v, where E' is expectation with respect to the probability law of the
Markov process starting with an equilibrium distribution. By Lemma 5.2,
the left hand side of last inequality is not greater than

1 S| YN — YN
lim lim ——— log 62/ / Eexp[ | By |\/_| L l

|dtds.  (31)

By stationarity and from definition of Y, we have
NES S|YN — YN
|t — s |
VoYY
|t — s
VoYl
VIt —sl

Using Lemma 10.1 of Section 10, we have

Voyy s|]

[t —s|
< exp [\t — s|sup spec{

Bosp [y Y2

— Bexp [l

]

]+Eexp[—fy|BN|\/_ Y‘t .

< E'exp [’Y|BN|

Bexp 2|5y

v|Bn|V/8
VIt = sl

Since Lp, is a negative operator, we have

By |V
gl N|\/_N2L Av J(

NENVe ~ N*(~L
sup spec{ \/H Z‘EBN N) ( BN)}
7|BN|\/5N2

|t = s

MN2LB Av J(i)
F>0,Ef2=1 |t _ S| N z€EBN N

N’Lg, Av J( Y — N*(~Lg,)}]-

Tz€EBN

= sup E[ Lpy Av J( )iy f% — f(_LBN)f]

z€BN
n 2.

On using symmetry of L, the Schwarz inequality and simple computation,
the last term is not greater than




for some constant C; depending only on J. For the minus term we have the
same estimate. In view of these inequality (31) is not greater than zero. O

6 Energy estimate

In this section we will prove Lemma 3.3. In this paper, we only show the
energy estimate for p¥, since we can prove that for pf in the same way. We
have only to show that, for some finite C,

E9 sup{/ /( T)(t,0)p" (¢, 0)dtdo — %/()T/\J(t, 6)[2dtde}] < C

where supremum is taken over all smooth functions. At first we ignore the
supremum. Since we have the entropy bound we have only to show that

— 1 pea T z
J}@mmlogE N [exp {N/O ;J(t,ﬁ)%ven(t)}] (32)

c (T 9
<5 [ [1ac.0)aea,
0

where Py! is the probability law of the Markov process starting with an
equilibrium distribution. Using Lemma 3.5, we can estimate the left hand
side of (32) by the largest eigenvalue. If we denote

An(t) := supspec NZ J(t N )72Ven — N* > (= Ly)],
b

it is sufficient to prove

1
]\;@wm/ AN()dt<—/ /\Jt0|dtd0

Using operator sense inequality (—L;) > 0 for any b, we have

1 T 9
WAN( < e g sup spec [NJ(t, N)vaen - N b§ l(_Lb)]
for some fixed | > 0. Since the spectral gap for ZbeAz,,(_Lb) is greater than
C=C(l) >0 and ||Ven||eo < k, there exists C = C(I, k) by Lemma 3.7 such
that

I, &)

X
J(t, )2+ 4
7, 5P + 4G

Ql+~

supspec[NJ( N)vaen N? Z (—Lb)] <

bEAm,l
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This shows that

Tim i/TA ()dt < Q/T/u(t 9)|*dtdo
Nooo N4 Jo 7N — 2 Jo ’ ’

We have proved

—_ 1 Peq d
]\;@wmlogE N [exp[NF,]] <0,

but to conclude the proof, we have to prove

- 1 Pe‘l d
]\}EnoomlogE N [sgp exp|N“F,]] <0.

It is obvious that if G, := exp[N?F,], then

sup G, < Z G,.

Hence

E[sup G,] < #{a} sup E[G,],

then take a logarithm, multiply N=¢ and let N — oo for each side. If
#{«} is finite, the right hand side is not greater than 0 by our assumption.
Hence taking the increasing family of o and using the monotone convergence
theorem, we can obtain the required estimate.

7 Eigenvalue estimate

We recall some notations. We have set A,;:={y € Z¢: |z — y| =1},

G := {h:hisalocal function and satisfies Fy, , [h] =0,

for some n and for any y, L},

and
VO(hiy, B) = Ep, g6l Av 7:h(-LY)™" Ay k],
x 14

CEEAII

for any local function h € G where |; =1 — \/Z, LO = Avpen, L.
For the proof of Theorem 3.10, we use following two lemmas.

Lemma 7.1 For any v > 0 for any h € G, we have
l—s00 N—oo

- 1
- - 2 Oy N <
lim lim supspec[N méle Toh — YN I;Aex( Ly) S V& (h;-, )] <0.
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Proof. From Proposition 3.1, the spectral gap of N? Avyea,(—Lp) is of order
N?]=2=4 Using Lemma 3.7, we have

l4—|—2d

N)'

1
— 2 — _—yv® <
sup spec[N wéle h —~yN bAeXl( Ly) S V(h)] < O(

Let us define

KC.; = o-algebra generated by {7, f_ml} U{ny :y ¢ Asi}

Note that if [ < m and suppose f is K, ,, measurable function, then f is
automatically K, ; measurable function. For any h € G, let us define s = s,
the range of the function A by

sp:=min{s € N : E)_ , glh] =0, for any y, E'}. (33)
Lemma 7.2 Let h € G and G be a bounded and Ky, measurable function

where s = sp,. Then there exists a constant C), depending only on h such that

C
supspec[NAG — —2G? — yN? Av (—L)] < 0,
7

bEAS
for large enough N.

Proof. From the definition, we have

Ch o 2
sup spec|NhG — 7(1 — YN béXs(_Lb)]

_ C
= sup B, [NAGf — —=Gf = yN’f Av(-Ly)f]
Bp,[12)=1 g bens

_ 1o C
= sup By, [Ey[NKGS? = Z2GH = yN*f Ay (—L)fIFL]]

Ep,[£7]=1

Since G is Ky ; measurable, by Lemma 3.7 the last line is not greater than

_ _ _ s4+2d Ch
sup  En, |Ep, [f?|FAJ(G?(Ey, [h Av (—Ly)h|Fp,]]+O ——G?)|.
oS B (B[P0 (6 (Bualh Ay CLOMZL]+O(5m)) = —26))

Since spectral gap of (Avyea,(—Ly)) is of order s 2~ and s is defined by (33),
we have

sup E, 5 g[h(Av (=Ly)) 'h] < oco.
y’E beAs
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Hence we can choose C} depending only on A such that

C
sup spec[NhG — —2G? — yN? Av (—L)] <0,
’Y beEA,

for large enough N. |
Proof of Theorem 3.10. Recall that we have to prove following:

lim [im iy Tim supspec[ = N Av 3 (JF(5)¢£(9)(@)

100 a—0 ¢—0 N—00 weBy 5
+ 0 ()80 (9)(@)) = YN Av(=Ly)] (34)
< CNIM % Sgps;FyV(Ze?P?(g);p, p).
Let us define ®{(g,z) and ®](x) (i = 2,3) by

- vae
+(a¢eEa af)D(ﬁz,la gz,l) ( TmVeZ ) )

xz

N

T

¥ly(e) = (TEC) I

’

), I CON=D 0, E) + Do ans Exant)] ( iy, ) /

@ly(z) = (Jf(%)Jf(%»D(m,aN)(;zgjgzgjgjzig).

Consider the largest eigenvalues €;, (i = 1, 2, 3) represented as

J Y
Q1 = Sup SpeC[N mé};’N g) (De,l(ga .’IT) - §N2 bEAl;’N(_Lb)]’

Qy = supspec[N Av ZCI)6J2(33) ~IN? Ay (—Lp)],
r€BN >0 ’ 3

bEBN

Q3 = supspec[N Av Z@i:}(x) — %Nz Av (—Ly)].
>0

r€EBN e beEBN

Inequality (34) is reduced to showing
lim lim lim lim ©Q; < C(v)||J||% supsup V(Z o2, (9,2);p, p), (35)
(e p,p e

l—00 a—0c—0 N—oo

Tim Tm i Tm Q, < 0, (36)
l—00 a—0c—0 N—oo
fim Tom fm Tm Q5 < 0, (37)

l—o00 a—0 c—0 N—oo
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where « varies over constant unit vectors.
To estimate €2y, from the property of spectrum and shift invariance of the
measure, we have

y
< 2 a _ I ar2 _
Q < ||J] sgp{supspec[méjxl N®Z, (g,) 6N bé}\/l( Ly)

6
- gv(l)(ég,l(QJ IE), ) )]

6 Y
“vO(p <o) — LN? —
+supspec] Ay —VO(®7,(9,0)5-,) = N Ay (=L)]}.

By Lemma 7.1 the first term in the braces is not positive. For k > [, let
l 6 OFF
Vs 1= BV @nlg 7))
Then the second term in the braces is not greater than

6 o . y
sup spec[zégN(;V(l)(Qeyl(g, z);+,) = Upyp) — gNz b?gN(—Lb)] + Syl71EI1) Ut -

By Lemma 3.7 the first term is of order 1/N? for each fixed I. For each fixed
[, we can take the superior limit of sup, p U,i’y’ g- At the same time all limit
point of U,i,y, g 1s given by

_ 6 N
Epyl’[;v(l) ((be,l (g7 .’E), K )]

for some p, p. Hence we obtain (35).
For ©, applying Lemma 7.2, there exists a constant C' = C(J, ) such that

QZ S sup spec[ Av Z C'[_Dq,q’ (ﬁw,l; gz,l) + Dq,q’ (ﬁm,aNa gx,aN)F

veBN 9,9'€{E,P}
_ T2 _
3N bAeX,( Ly))

Since D is bounded and continuous,using Lemma 4.4 we have (36).
For €3, we claim that

5 1 cN
\Pe:2cN Z Tae Vel

rz=—cN+1
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Hence we can rewrite €25 as

Q3 = supspec|N Av ZCD N2 Av (=Ly)],

mEBN bEB

where
ly(2) = (I I = Dlean: Eaaw)

1 cN ~ _ Ve’)']
to Z D(772+ye,aNagz+ye,aN)} V&

2cN iy

Since we assume a > ¢, each component of

1 X _
{ D(nm aN, 'Sz‘ aN) + ﬁ Z D(ﬁm—kye,aN; éz—kye,aN)}
y=—cN+1

is at most Ky (4—c)ny measurable function. Then applying Lemma 7.2, 4.4 we
have (37). O

8 Computation of the variance

We recall the definition of the currents,

wf:w—f—e(n) = ceX(nﬂC)(l - fm+e)77m - Cex(%+e)(1 - Ew)nw—l—e
+Cge (M) L{1<na e <h—1} = Coe(Mate) L{1<n.<k-1},
w£w+e("7) = Cex(nm)(l - 5ﬂ2—|—6) - Cex(nx+e)(1 - 53:)

Recall that I; := [ — /I for large enough I, h®) = AVzEAzl T.h, G is a set
of local functions such that if ¢ € G there exists n such that for any k&, £
Ez, k.elg] =0, and LU == Avyey, L. If g € G then

V(l)(h; v, E) — EAl,y,E[h(l)(—L(l))’lh(l)]

is well-defined for large enough I. We have to define V (h;-) by limit of V),
In general, it is difficult but for some good g € G, we can take a limit of V.
For any local function h and any g € G, let

(g, h)o(p, p Z plgTah (38)

38



For any g € G, let

te(gip,p) = Y (e,2)Ep nayl,

T

se(gipp) = Y (e,2)Ep,[Exg].

T

From the definition of G, these are well-defined.
For large enough [, for any g,h € G, let

1
VO(h,g;y,E) = Z{V(”(h + g9, E) = VO(h — gy, E)}.

(39)

(40)

(41)

Since V¥ is a nonnegative quadratic form, for special g, h we can take a

limit.

If A is written as h = Lv for some local function v, then h is an element
of G. If h is written as h = Lv for some local function v, and if ¢ € G then

we have
(20 + 1)

- Ep, 0l Z TugTyv].

V(l) h V) = e
(hg2) = ~ 1 1) suehs

So we can take a limit and we have

V(h,g;p,p) = lim VO(h, g;p'p") = —(g,v)o(p, p)-
I—00,(p',p")—(p,p)

It is easy to check that

LAZ( Z (l‘, e)&w) = Z Twwfa

:EEAl IEAI
Ly( Z (z,e)ny) = Z mef.
TEA; TEN;

Then for any g € G, we have

V(wt, gp,p) = lim VOWE, g;p'0") = —se(g;p, p),

l—o00,(p',0")—(p,p)

V(wE gip,p) = lim VOWE, g;p'0") = —t.(g;p, p).

l—00,(p',p")—(p:p)

Proposition 8.1 For each fixed p and p, we have

Ep,p [Cge (WO)WO]Ep,p[l{ISneSk—l}] - Ep,p[cge (UO)]EP,p[WOI{ISneSk—l}]

= Ep plcge(mo) 1{157;651971}] .
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Proof. Without risk of confusion, we simply write « for a(p, p) and Z for
Za(p,p)- From our definition, we have

Ep,p [Cge (770)770]

Eoal e (1)1
2 e
1=2 Cge ) - Cge(l)
_mk 1 Oél 1(l+ )
Z & 0@l

k—1 | b1

po l l
=13 + § j .
Z { = Cge(2) . cge(l) = cee(2) .cge(l)}

For the other parts we can easily compute that

k—1 —1
po o
B plcge(mo)] = ,
: Z = cge(2) - cge(l)
B k—1 O‘{lfl
E,pli<n<i—13] = 5 ,
pollaswsen] = 7 2 oy

_ p
Ep,p[nol{lﬁnoskfl}] = A Cee(2)...c (l)
=1 ge - Lge

Hence we conclude that

E, plcee(m0)m0) Ep plLi1<n. <k—13) — Epplcee(10)] Ep p[m01{1<n. <k—1}]
pa it al1 p k=l o1

= L ). w2 ). el

= Ep,p[cge(%)l{lgnegk—u]-

O
From the definition of s.,t., (-, -)o and Proposition 8.1 we can easily compute
following;

se(whip, p) = —beu(1 = p)Epplce(no)],

te(TUS;paP) = —5e,e'(1_p)Epp[Cex(Uo)no]
se(wi;p,p) = —bee (1 —p)Ep p[cex(m0)m0]
te(wlipp) = —be{(1—p)Ep plcex(mo)np)]
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_l?p,p[Cge(WO)]Epf[ml{lSnoSk—l}]
+Ep plcee(n0)M0] Ep [l {1<no<k—131}
se(Lusp,p) = —Eppl(cex(mo)(1 = €)) (@) (3 mou)) (& — &),

te(Lu;p,p) = —Ep pl(cex(mo)(1 — &))(w“”e)(Z 7)) (Mo — 7e)]

+Ey p[cge(n0) 1 1<n. <k—13 (T ZTz
(Lu,v)o(p, p) = —{Ep,p[(cex(%)(l—fe))(ﬂ(o’e)(zTzu))(ﬂ(o’e)(zm))]
+Epp[cge(770)1{1<no<k 1} ZTmu) o= e(sz”))]}
se(Va&ipp) = —beep(l—p),
te(Ve&;p,p) = —bee(1—p)Ep,[ml,
(u, Ver)o(p,p) = 0,
Se(ve’n;pa p) = _66,6'(1 - p)EP,P[no]a
te(Ve'n;p,P) = _‘Se,e’(Ep,p[ng]_(Ep,p[nﬂ])z)a

(’U,, Ve”)O(pa p) = 0.
We collect these results to conclude the following lemma:

Lemma 8.2 For any {«a}, any local function g and any h € G, we have

V(Z(aEwE—i—oz wP) + Lg, h;p, p )

= = {aft(hip, p) + al's.(hp. p)} = (9, Wo(p, p).

In particular, for any {a}, and any local function g

V(Z(aEwE—i—a w, )+L972(OAEwE+a w") + Lg:p, p )
_Z{ poolCex (70) (1 = &) (g 770+7r(06)(27'g
+ B, plcex(m)(1 — &) (@F1 + 709 (3" 1,9))’]

+ Epplcge (UO)l{ISneSk—l}(afl + WO%(Z ng))Q]}-
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Proof of Theorem 3.8 and the diffusion coefficient. Fix densities p and p.
Let us define three classes of linear space of functions;

g(O) = {Ven: veg}ev
G = {w/, w; }e,

LG :={Lg: g is a local function}.

It is obvious that a linear combination of these three elements is an element
of G. Let us consider the relation ~ in G which is defined by

h ~ h'if and only if V(h — h') = 0.

Let us consider the quotient set of G relative to the relation ~. Since we only
consider the quotient set, without risk of confusion we denote the quotient
set by the same letter G. We shall prove that

V' is an inner product on G

G” + LG is dense in G (45)

where G is the closure of G relative to the inner product V. For the moment
taking these relations for granted we derive variational representation for
the diffusion coefficient matrix D. From the definition of the space and the
calculation of the (-, -)o, we have G0 I LG. From the calculation of the s, t,,
we see that the projection of the space G* onto G(®) has rank 2d. Since the
dimension of the G" is 2d, and we assume that G” + LG is dense in G, it
follows that
G© + LG is dense in G.

First we consider the case d = 1. Our diffusion coefficient matrix D =
(Dyp,q)p,qeir,py should satisfy following relation; for any e > 0, there exist
local functions g¥ and g% such that for any unit vector {a},

(eren(3)eo(5) ()<

On the other hands, since we assume GO + LG is dense in G and we have
GO 113G, if we project w? and w? onto G(¥, then there exists a matrix D
and some (¥ (P € LG such that

(o) =2 (%) =(&) X
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Comparing these two relations, — D should be our diffusion coefficient matrix.
Hence we have to show that the explicit formula of the D.
For each element of (46), taking inner product with w” and w”, we have

( V(w? 4+ ¢Fw?) V(w? + (¥, w) ) _ 15( —te(Ven)  —se(Ven) )
V(wP + CP, wE) V(wp + CPa wP) _te(veg) _se(veg) .

Note that the last matrix is —y. From our definition of (¥ and (%, w® + (¥
and w? + (F are elements of G(9, then the left hand side of last equality is
equal to

V(w” + (7w +¢7) V(w? +¢7 w” + (")
V(’U)P + CP’ ,wE + CE) V(’LUP + CP’ ’LUP + CP)

Denote this matrix by D. Since we project w? and w? onto G, applying

Lemma 8.2, we have a variational formula for D: for ‘a = (af, a?), we have

(@, Da) = inf {leex(m)(1 - &)
{0 + 7N mag™) + (14 7N 7ag )}
+Epp,pE [Cge (770)1{1§ne§k—1}

{a”(1+ 707 1.9") + o (77X g™} }-

For d > 2, the diffusion coefficient matrix D = (D, ¢; p.q)1<i,j<dp,qe{E,P}
is identified by

E E
w% Ven )
wel velg e1

c =D -]

E E
w%i Ve,n 4
wed vedf Ced

Lemma 8.3 Ford > 2 ife # ¢ then Do ,, =0, for all p,q € {E, P}.

Proof. We only show that D, . g g = D, g p = 0. Since we have

'erE = Z De7e*,E,Eve*n + Z De,e*,E,Pve*g + CeE’
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taking inner product with Vg7 and V&, we have
V(wf, Ve”?) = Z De,e*,E,EV(ve*na Ve’n) + Z De,e*,E,PV(Ve*gu Ve’n):

V(wfa ve’g) = Z De,e*,E,EV(Ve*na ve’g) + Z De,e*,E,PV(ve*é-, ve"g)a

Since V(w? Vn) and V(wP, V€) are zero if e # ', we have only to show
that if e* # €' then V(Ven, Van) and V(V€, Van) are zero. Denote by
0. the reflection operator with respect to the origin along the e direction.
We may extend 6, to the configuration space naturally by (6.7). = 7.
and (0.f)(n) — f(f.n). Since our model is symmetric under 6., we have
V(f,9) = V(0.f,0.9). Since 6.V.n is equal to V.7 if e # ¢’ and —Vun if
e = ¢, we have
V(ven; Ve’n) = _V(ven: ve’n) = 07

for all e # €. In the same way we have
V(Ven, V&) = =V (Ven, V&) =0,

for all e # ¢/. Hence we conclude the proof of the lemma. a

Next step we show the variational formula. Let us define V*(h, g) by

V*(h,g;p,p) := lim Ep [V(l)(h; y, E)],

l—o0,(p',p")—=(p,p)

for all h,g € G. From now on we omit the parameter of the grand canonical
measure for the notation E,V,V*. Let us recall F;, for L C Z¢ as

Fi, = o- algebra generated by {n, : z € L}.

Then for any h € G, there exists s = s, and F,, measurable local function
H such that

h = Z LyH.
bEA
Let us define
1
Ohe(n)=—= Y 7(r9H) (47)
T:TeeCAg
1
(D’g’ée(n) = Z 7o (m°7°H).
T:ToeEAg
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Lemma 8.4 For any h € G we have variational formula;

Vi(hyh) = sup 2B[ 3 {cex(m) (1 — £ (n) (@m0 + af + 1)

{a},u €

+ge(M0) L {12, <-1y O (1) (@ + 7°7%u) }] (48)
1 _

SB[ {ealm)(1 = &) (0P +af + 702

+Cge(770)1{lﬁneﬁkfl}(af + queu)z}] .

where ®"¢ and @gée are defined by (47) and supremum is taken over 2d
dimensional vectors {a} and all local functions u.

Remark. In view of Lemma 8.2 and simple computation of t., s., we have

2V (h — (afwf + afwl + Lu), (afw? + ol wl + Lu); p, p)
+V((efwf + afwl + Lu), (afw? + afw! + Lu);p, p)
= 2B Y {eex(mo) (1 — &)L ) (@Pmo + af + 70

+ Cge(0) L rene <k 1) P () () + WO_)BU)}]
— 3B X Lenlm)1 = €0 + ol + 70y (49)
+ cge(mo) Ln <ne<iy (0’ + WOHeUy}]

for all h € G, all 2d dimensional vectors {a} and all local functions u, where

®¢ and @¢ are defined by (47).
Remark. Let us define V,(h, g) by

Vi(h,g;p,p) = lim Ey y[VO(h,g;y, B)),

l—o0,(p',p")=(p,p)

for all h,g € G. For the finite case, we have

VO (h, hyy, E)
= VO(h - (@Pwf + afw! + Lu), h — (Pw? + aFw? + Lu);y, E)

+ 2V(l)(h — (afwf + afwf + Lu), (afwf + affwf + Lu);y, E)
+ V(l)((afwf + afwf + Lu), (af'wf + oszf + Lu);y, E)
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for all 2d dimensional vectors {a} and all Fy ; measurable local functions u.
Since the first line of the right hand side is not negative, taking the inferior
limit of the both sides, we have

Vi(h, h;p, p)
> 2V, (h — (afwl + afwl + Lu), (afw? + ofwl + Lu);p, p)

€

+ Vi((@fwf + afwf + Lu), (efwf + afwf + Lu); p, p)

for all 2d dimensional vectors {a} and all local functions u. By (49) we can
rewrite the right hand side by

2B[ 3 {eex(m) (1 — £ ()l + af + 1)
+ge(10) La <o <k} O (m) (@ + 70~ °u)}]
~ SB[ (calm)(1 = €)(aFm + o + 7O
+Cge(10) Lin<no<h1y (e + 70_)8“)2}] ;
where ®¢ and (bgée are defined by (47). By (48) we have
Vi(h, h;p, p) > V*(h, h;p, p) (50)
for all h € G. Hence there exists a limit

V(h;p, p) == lim Ey » VO (h;y, E)],
I=00,(p',p") = (pp)
for all h € G. Using (49) and (50), we have following corollary of Lemma 8.4.

Corollary 8.5 For any h € G we have variational formula;

V(h,h) = sup {2V(h, oPwE 4+ oFwl + Lu) — V(aPw?f + oFw? + Lu)}
{a},u

where supremum is taken over 2d dimensional vectors {a} and all local func-
tions u.

Note that the assertion (45) is immediately deduced from Corollary 8.5.
Proof of Lemma 8.4. First we prove

Vi(hh) > sup 2B 3 {eex(m0) (1 = £)PLE () 00 + o + 70 )
{a}iu €
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+cge(m0) L{1<ne <h-13 B0 () (@ + Wo_wu)}] (51)
" 2 eex(m)(1 — &) (@gmo + o + %)’
tege (M) L ne <1y (0f +7°7°u)’}].

From the definition V® is a nonnegative quadratic form, hence we have
VO (h, by, E) (52)
= suvp {2EAl,y,E[zéX1 Toh, v] — %EA””E[b:(m/’;,v)em{cex(%)(l _ fy)(ﬁ(z,y)v)z

+ o (1) Lm0y (),

for all y, E, where supremum is taken over F,, measurable functions. Take

V= [ > {(a¥, 2)n, + (o, 7)&} — 2 > Tmu]

el IeAll

for some d dimensional vectors o, ot and some local function u and take a
superior limit of the both sides of (52). Then using Lemma 8.2 we get

V*(h, h)
> lim {2EAl,y,E[mé[X1 2h, [mgl {(@, z)n, + (o, 7)€} Zw;m )
1
- §EAz,y,E[b:(f";;eAl{CeX(nm)(l —&y)
(@IS (", 2)me + (o, 2)6} -2 > mul)?
Tl z€A,

+ Cge(12) 1 (1<my <k-1)

(T Y {7 2, + (eF,2)6} -2 Y mu))’}]}

zel; mEAll

= E[Z {Cex(no)(l - fe)@gf(n) (afno + 055 + ,/T(O,e)u)

e

+ Ce(M0) Lin<ne<i1y DLl (m) (@ + 7~ u)}],

for all d dimensional vectors o, af and some local function w. Hence the
inequality (51) is proved.
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We turn to the proof of

V*(h,h) < sup 2B Y {cex(mo) (1 = &)@ () (afmo + af + 7))
+ge (M0) 1 {1<n. k-1 Pl () (@ + 7°“u)}] (53)
LB[ (a1~ E)(oF 4 0f + 70

+0go(M0) 1 f1<n, <k1y (@f +7°7¢u)}].

where ®"¢ and (bgée are defined by (47) and supremum is taken over 2d
dimensional vectors {a} and all local functions u.

Step 1. Let us define Db(f)an(fa g): Db(f7L7y7E)7Db(f:g7L7y7E) by

Dy(f) := Dy(f, f),

Dy(f, 9) := —E[f Logl,
Dy(f;L,y, E) == Db(f,f Ly, B),
Dy(f,9; L,y, E) := —ELy 5[f Lug),

for all local function f,g, L C Z¢, and integer y, E. Let us define V* :=
lim E[V®W(h,h)]. Suppose that [ is large enough so that, for some small
6 >0,

EVO(h,h)] >V =6

For V®, we have the following variational formula
VO(h, h;y, E)
= sup {2E’Al,y’E[ é/y Tyh, v]
v LCAL

;EAI yE[b {Cex(nm)(l —&)(m (z, y)v)Q

+cge<m>1{1gnygk-1}<wm v)?}},

1 ~
= S'lip {2EAl’y’E[zéjxl Tmh, U] — 5 éXl Db(fa Alaya E)}

for all y, E, where supremum is taken over F,, measurable functions. Hence
there exists u = u; such that u is a ), measurable and satisfies

VO(h, by, E)
1 ~
< {2Bx 6l Ay 7houl = 5 Av Di(fi Ay, B)f +6,
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for all y, E. We can assume that

E{ZEA”,E[ Ay Toh,u] — = LAy Dy(f; Ay, )} >0, (54)

bEl

since if this term is negative, then V* is 0 and the variational formula holds
as V(h,h) = 0. Since h € G, there exists s and F,, measurable function H
such that h = > ;.\, LyH. Hence we have

Bl(rhu) < 5= X Dy(a)+ 2C(),

b+xzeA;

for any constant v > 0 and = € A;,, where constant C(h) depends only on
h. Taking v = 2(2s + 1)¢, averaging both sides over x € A;, and using (54),
we have following bound uniformly in /;

Av Dy(u) < C.C(h).

Step 2. From the definition of H and D, we have

E[u(r,h)] = Elur, Z L,H| = — Z Dy(H,u).

bEAs b+x€As

Averaging the leftmost side and the rightmost side over z € A;,, we have

Av E|(1.h
& (b))
=— Av D, T.H,u
beA, (mEZAll )
1
- Y Dy > T.H,u)
(2l1 + 1)d beAll+5+1\All CEZCE+b€AS+1,CEEAll
1
+ oL 1) Z Dy( Z 7. H, u)
( 1+ ) bEA; \Ayy o1 T:Z+bEAs1,8EA

From step 1, we have uniform bound for Dy(u), hence the last two terms
tend to 0 as [ tends to co. Hence we conclude this step by

2 Av Dy( ) TzHu)——Ava( ) > V™ — 36.

bEAll CEEAII
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Step 3. Let us pick £ >> 1 and fix it. There must be a good box such that
Agr C Ay and

1
v E T — — v > ‘/ * _ i
2 béAAz,k Db(:]}EAll zH’ u) 2 béAAm,k Db(U) 46

If we replace u by @' := 7_, E[w|Fa,,] we still have

1
2 Av D H. i) — = Av Dy(@") > V* — 46.
Ay Dl 2o 7o) =5 Ay Dol 2

We can take (a subsequence and take) the limit I — oco. Since Dy(u) is
bounded uniformly in [, we have a limit function wj such that it is Fjy,
measurable and satisfies

1
2 Av Dy Z ToH, ug) — §b€AAv Dy(uy) > V* — 46.
z,k

bEAm,k IEA[
1

Using Jensen’s inequality, we have

1 *
2 Z D( Z T.H, méXk Tpllg) — 3 Z D.( Av myuy) > V™ —46.

e=(0,e):|e[1=1 TEA e=(0,e):|e[1=1

Recall that £, ) is the generator defined by

&(1— &)™) + 1 sy L cp, ey %
From the definition of Dy(f, g), Dy(f), ke, ®he L(z,y), and

ex ! ge b
(1—=&)lp<n<k 13 =0

we have

2B Y {eex(m0)(1 = £)OL (Lo ( D matr))

e:(O,e):‘ehzl TEAL

+ Cge (M) L1 <ny <k} O (L) (3 )}

TEA
1

B Y {eam)(1-6)(Laa( X mu)’

2 e=(0,e):|e|1=1 TEA}

+ Cge (1) L1 <my <k-13 (L0, ( D TxUk))2}}

TEA
>V —46.
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To complete the proof of Lemma 8.4, we have only to prove that all limit
point of Lge)(Xzen, Totk) is an element of Gy + G where Gy is the linear
space generated by

Lio>0} L{n.=0},

Mol =0} + Limo>23 L<ne <k},
Ge = {LoeXyezeTyg : g is a local function}, and Go + G is the closure of
Go + Gg relative to standard L? norm of P. On the other hands, in Lemma
9.1 we will show that all limit point of L(ge)(Xzen, Totx) is an element of the
representation of the translation covariant closed form which is defined in
Section 9. In Lemma 9.2, we will prove that a element of the representation

of the translation covariant closed form is an element of Gy + Gr. Hence we
have only to show that the Lemma 9.1, 9.2 in Section 9. O

9 Structure of the space of closed forms

We have set that L, ,) is the generator defined by

fm(l - Ey)ﬂ(w’y) + 1{nm22}1{15ny5k*1}7rm_>y'

For any directed bond b = (z,y), let T}, be operator defined by

n@¥) if £, =1 and & =0,

n*~Y ifn,>2and1<n <k-1,
Tyn = {
n otherwise.

For each fixed sequence of the directed bonds b1, bs, ..., b, and configuration
n, let n* for 0 < 7 < n be defined by n° = n and n* = T,,n""!. A set of
functions {®,}, is closed or closed form if the next condition holds: for each
fixed sequence of the directed bonds by, by, ..., b, and configuration 7, if it
holds that n™ = n then

n .
Z (bbi(’f]z_l) = 0.
=1
Let us define a set of translation covariant closed forms by

{{®s}s : {@s}s is closed, E[(®5)’] < oo and &, = 7,Pr,}
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We write G, for the set of the representation of translation covariant closed
forms: i.e.

Ge :={{®,e)}e : {Ps}s is a translation covariant closed form},

where e varies over unite vectors.

Lemma 9.1 Suppose a sequence of functions {uy}r satisfies following: For
each k, uy s Fa, measurable. There exists a constant C' such that

. 2
<
béXk E[(Lyur)’] < C
for all k. Let us define a set of functions {¢F}y by

qs?z,z—i—e) = qub(o,e)
¢2€0’e) = £(07e) yéXk [Tyuk]’

for all x and e : |e|; = 1. Then all limit point of {¢F}, is an element of
translation covariant closed form.

Proof. From the definition, {#F}, is translation covariant. Hence we have
only to prove that {¢F}; is bounded uniformly in k& and all limit point is
an element of the closed form. But the proof of these facts is parallel to
that of Lemma 9.2. Hence we only state the strategy. We prove that {¢F},
is bounded uniformly in &, by using Lemma 4.3. Hence we can take (a
subsequence and take) a weak limit of {#F},. We have only to prove that all
limit point is an element of the closed form. Since

b = |Ak Z LyTyuy

y€Zd

is an element of the closed form, we consider the difference ¢f —1F. We prove
that all limit point of ¢f — +F is an element of the closed form, furthermore
we can prove that the representation of all limit point of {¢F — ¥k}, is a
element of Gy which is defined in Lemma 9.2 below. O
Given a closed form {®,} for each finite box A,, we can ”integrate ” ®, and
get unique G™ such that

ﬁbGn(U) = dy
EAn,y,E[Gn] =

if b € A,,, and for all y, E.
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Lemma 9.2 We have G. C Gy + G where Gy s the linear space generated
by

1{710>0} 1{%:0}’
M0l {n.=0} + Lino>23 Lii<n. <k—1},

Gr = {Lo,e Xy 7yg ¢ g is a local function}, and Gy + Gg is the closure of Go +
Gr relative to standard L?* norm of P.

Proof. Since L, and conditional expectation E[-|F,.] commute if b € A,

{E[®y|Fp,, | }oens, is also closed on Aj,. We can ”integrate” and construct
G3" such that

LbG3n(77) = _[(I’b|fA3n],
EASnyy:E[ng] = O:

for all y, E. We define A" and ¥} by

Bto= E[G™|Fy

1
Uy = ——L Th".
S e 2

Since Wy are shift covariant, we only consider W, . Since h™ is F,, mea-
surable function, we decompose U™ as interior part {27 and boundary part
QF as

1

Q’f = 750,5 Z Tyhna
(2n+ 1)
% = Gyiler > ok + Gyt > ok

yeAn,y+e¢An y%An,y‘FeEAn

First we show the next lemmas:

Lemma 9.3 [t holds that
E[|®o. — Q2’| =0

as n — o0.
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Proof. Since Ly, and conditional expectation E[-|F,] commute if b is in A,
we have

1 — 1
Poe — N =—— Do — B Do | F,
0, 1 (2n+1)dyy+e€An[ 0, [@o,e|Fa, )l + o 1

Dq.

Since ®; is L% bounded, the second term of the right hand side of the last
equality is negligible. Hence we have to show that

lim E[|®o, — E[®o.|Fn, ][] =0 (55)

n—0o0

for any y. It is standard to see that E[(I)O,6|TAM] converges weakly to ®q.
But by Jensen’s inequality, we have E[E[®.|Fy,,]*] < E[®],], hence we
have (55). O
Next step we show that the boundary term is bounded.

Lemma 9.4 There exists a constant C' such that
sup E[|Q%]%] < C.
Proof. Using Lemma 4.3, we have to estimate two terms in (22). By spectral

gap inequality,

V(G*™) < C(3n)* Y E[®) < C'n2.
bEABn

By simple computation
E[(1+ cge(ny))(ﬁbG3")2] < CE[®) < C'.
These two inequality and (22) shows that there exists a constant C' such that
E[jQ3"] < C.
O

Since the boundary has 2d surfaces, we can decompose the boundary term
27 into 2d parts corresponding to each surfaces. Since the boundary term
27 is uniformly bounded, then we can take a weak limit of each parts of the
boundary term, and we write b?fi for each of them respectively.
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Lemma 9.5 For 1 <1 < d the limit point of bfi (n) depends only on ny and
Ne; -

Proof. We only show that b_. depends only on 7y and 7,,, and in this proof
we omit e;. By the construction, 4"~ is measurable with respect to the o-
algebra generated by {n,.,7, : € Z¢,x; < 0}. The weak limit b~ inherits
this property.

Next step we will show that if the bond b = (z, y) satisfies

‘Z_y‘lz]-;zisoa‘nd Zay7éoa (56)

then £, b~ = 0.
For each fixed n, let

0N, = 0N, —n i ={x € Ay : 2, = —n}.

Then for each fixed bond b = (z, y) satisfying the condition (56), there exists
ng = no(z) such that for any n > ny we have

#{lreN i z2€Nn,yEApporz2¢ App,y € Ayy}
0 d=1,

<< 2 d=2, (57)
22N +1)4=2 d >3,

#lr e, 2€ N0, y€E N} < (2n+ 1)d_1,

#{lr g AN z€ N, ydENpn} < (2n+ l)d_l.

By simple computation we have

roE[L._ 4G*"|F,] if both 2,y € Ang,

0 if both z,y ¢ A, .. (58)

Ly h™ = Ly B|G™ | Fy] = {
On using (57), (58), Lemma 4.3, and the Schwarz inequality, there exists a
constant C such that

Bl(eh Y] <

Hence we conclude that £, ;b= = 0. This implies that b is the exchangeable
function for {n, : x; < 0}. Using the Hewwitt-Savage 0-1 law, we conclude
the proof of the lemma. O
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We will make up equations for the boundary term. Without risk of con-
fusion we omit e; and simply write 1 for e;, 2 for 2e;, and —1 for —e;. By
our construction b, = Lo1 D zeon Toh". We write H,, for ) 55 7oh"™, then
for any n H,, depends only on {n, : z < 0}, i.e. H, does not depend on ;.
By simple computation, we have

Lo1by, (1) = Lo (Lo Hn)(n)
= —{Lmoe=1lim=0} L a<mo<i-1} + Lino>2} Lim=0} L imo=t)
T ino>2} L m =1} Lino>2} 105 (1)
~Linoz2y L m=0} L <m<h—1) L2,1b5 ()
Since b~ is the weak limit of b, this equality holds for b~.

Now we turn to the £o_; part. Denote the configuration by (n) =
(n'ym-1,7m0) Where 7' = nz\(0,1-

Lo,-1b, (1) = Lo,—1(Lo,1 Hn)(n)
= 1= L mo>0} =0} + Linoi=0y Lno>2y Lia<m <13 0~ (0)

+la<n s<k-13 L mo>2y Lim=0}
x{(Hn(n',n-1+1,0) — Hy(n',n1 4+ 1,1 — 1))
—(Hn(n’, n-1,0) — Hn(n', N-1,M0))}
Hl<n i <k-13 1 mo>2) L fim<k-1)
x{(Hn(n',n-1 4+ 1,m0 —2) — Ho(n',m-1+ 1,10 — 1))
—(Hn(n’, N-1,M0 — 1) — Hn(n', n-1,M0))}-

For the second and third term,

Hn(nla -1 + 1, Mo — 1) — Hn(nla -1, 770) - ‘CO,len(T’I: nN-1, 7)0)

= 2n+1q)2(77/a7771a770)7
1 n
Hn(nla N-1 + 17770 - 2) - Hn(77/777—1; Mo — ]—) = m + 1(I)b (77/77)—17770 - ]-)7
1
H,n.n14+1,n—1)—H,(n',n_ = —®*n',n_
(/'7”'7 1+ » 1o ) (77,77 1,770) 2’!L+1 b(nan lanO)a

where ®7 = E[®,|F,,| and b = (0,1). Since ®; is uniformly bounded in L2,
each term vanishes as n — oo . We must estimate the next;

Hn(nla MN-1 + 1; O) - Hn(nla -1, 0)
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= (blr)b(lrlla Oa -1 + 1) - (I)ZL(WIa Oa 77—1)
+Hn(77/7 07 N-1 + 1) - Hn(nla 07 77—1)

and the first two terms vanish as n — oo since @, is uniformly bounded in
L?. We can rewrite the last two terms as

Hn(nla Oa -1 + 1) - Hn(nla 0) -1 + 1) = LO,IHn(nla 0) 77—1)

if 1 < < k—1. On the other hands if we consider the configuration
w! = w!(n) defined by
n_y ifz=0
(wl(n)) = { l ifz=1 (59)
: 7,  otherwise,
then

Hn(nla 07 N-1+ 1) - Hn(nlv 07 N-1+ 1) = ‘CO,lHn(wl)

for all I, since H,, does not depend on 7;. This term tends to b (w') as
n — oo for 1 <[l < k—1. We conclude that

ﬁo,—lb_ (77)
= {1 =011 {mo>0y Lm=0y + Ln_1=0} Lime>2y Lia<m<i—13 30~ (n)
+la<n i <k-131{no>2} 1{n1=0}b_ (Wl)

for all 1 <1< k—1, where w' = w!(n) defined by (59). We get the equations
for the limit of the boundary term b—;

['2,157(77)
= —{Lmo=1}Lm=0) Lr<mo<k—1} + Limo>2} L{n=0} Lino=r}
F1ino>2} Lim=k-1}L{mo>2} 1o (1)
—1o>2} L m=0} L1 <m<—13L2,167 (n).
Lo,-1b7(n)
= =01 L mo>0) Lm=0} + Linoy=0) Lno>2) La<m<k—13 0~ (0)
1<y <h-1} L no22} Lm=opb ™ (@)
for all 1 < I < k — 1, where w' = w!(n) defined by (59). We can solve

this system of equations and find that a family of solutions is the linear
combination of

1 {no>0} 1 {m =0},
oL fm=0} + Lino>23 11 <n<k1)-
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10 Proof for well-known facts

In this section we give elementary proofs for well-known facts.
For the proof of Lemma 3.5 we have used following lemma

Lemma 10.1 Let £ be the generator of Markov process X; with reversible
wmvariant measure v. Let

u(z,t) == E, lexp (/OtV(X(S))dS)]’

where E, denotes the expectation with respect to the process starting at x.

Then .
T log/u(x,T)dz/(a:) < supspec{V — (=L)}.

Proof. By the Feynman-Kac formula, u is a solution of the equation ‘3—1: =

Lu + Vu with the initial condition u(z,0) = 1. Multiplying the equation by
u and integrating by parts we have
01

5132 u?dy = /{Vu2 —u(—=L)u}dv < supspec{V — (=L)} /uZdl/.

Since u(z,0) = 1, we have
/u(az, T)*dv < exp[2T supspec{V — (—L)}].

This inequality is the same as

1
T log/u(a:, T)dv < supspec{V — (—=L)}.

|

Proof of Lemma 3.5. First we consider the equilibrium process, namely puy =
vy. Using Lemma 10.1 and Chebyshev’s inequality, we have
1 N — (L)

—— supspec — (=
v Supspecly N

1
>
— T ~yNd

> exp[&yN‘ﬂ]%(/ﬂl\[d log P\ [/OT YNV (X (s))ds > 6] + (5).

log B\, [exp { /OT deV(X(s))ds}]
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Since 6 > 0 and v > 0 are arbitrary, we have (15) for equilibrium process.
From equilibrium process to nonequilibrium process, we use entropy in-
equality or the Holder inequality. First we claim that

dPILN _ d}LN
dPVN - dl/N'

If we assume entropy bound (11), we use a special case of entropy inequality,
that is

. log(1 + PJL(A)7)
where A = Ay = {Xn : f§ V(Xn(s))ds > 6}. Hence we have (13). If we

assume (14), using the Hélder inequality we have

dp
P (4) < (II—dVNllp,uN)(PJJVV(A))” 1
N

where ¢ = p/(1 — p). Hence we have (15). a
Proof of Lemma 3.7. Let ¢ be the first eigenvector of £ + f that is ¢ is the
function satisfies

supspec(L + f) = Elo(£ + f)¢l,
Elp’] =1
Let @ = ¢ — E[p]. Since LE][p] = 0, we have
ElpLy] = E[pLe].

Since E[f] = 0, we have

supspec(L + f) = E[gLF] + 2E[¢| E[f@] + E[f7").
Using the Schwarz inequality, we have

E[@Lp] + 2E[p|E[f @]
~E[p(~£)@] + 2|E[¢]|\ELf (—£)~ f]E[p(—L£) ]
(Elg]) ELf(-£)7 /]

E[f(=£) ' f]-

Y

IANIN A
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On the other hands, since E[p] = 0, using the spectral gap for —L, we have

E[f¢2]ﬁllf\\mE[<ﬁ]<\|f|\oo Elp(= )w]—\lfl\oo Elp(=L)¢l.

Since E[f] =0, sup spec(ﬁ + f) > 0, then we have

Elp(=L)¢]
< E[f¢’] < E[f(¢* — El¢]?)]
< E[f¢* — Elp)’]

E[f(¢+ El¢])(¢ — El¢])]
1£1leo\/El(# + E[)? El(¢ — El¢])?]
2/|f]coy/ E[7?]

2 7l

IN

IN

This inequality shows that

We conclude that
sup spec(£ + f)
= E[pLy] + 2E[0|E[f¢] + E[f¢’]
< Bl alll

O
Proof of Proposition 3.9. Denote by M, the standard mollifier defined by
means of the smooth function

cexp [; if p2 4+ p? < 1,
M(p, p) = P2+ —1
0 if p* 4+ p* > 1,

where the constant ¢ is chosen so that

/M(p, p)dpdp = 1.
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Let us define .
D p
ME(P, P) = —QM(E, g)

g

Let us define M, x f by

M. x f(p,p) = /Ma(p —p,0=0)fW, p0)dp'dp'.

Suppose that ¢ is small enough. For each n we can find the function g, =
{98 .(p, p,m)} satisfying following two properties.

For each p, p, each component is F,, measurable function.

For each p, p,

V(3 Al sE (92 (b, p,) + al8F (2. (ps 2, ) }s 2, p)
<V (X AalSE(f) + ol 6l ())}ip, p)
for any f € Fa,. Let us define

V(Y {eZ6E (g2 (. p,-) + L bl (92 (0, £, )i 1s )

fa(ps p) = if0<p<1,p<p<kp,
0 otherwise.

F.(p,p) = M. * fu(p, p)

for each n. From the definition f, is bounded function for each n, hence F,
is well defined. From the definition of g,,f.(p, p) is not increasing and tends
to 0 as n tends to oo for each p, p. Clearly F,(p, p) inherits these properties.
Applying Dini’s theorem, F,,(p, p) converges to 0 uniformly, i.e. for any 6 > 0
there exists ny such that for any n > ny

sup F(p, p) < . (60)

p.p

N| O

Given a 6 > 0, pick n such that (60) holds and fix it. Then define
se(p,p) = sup
p,0"(p—p')?+(p—p')?<e

V(Lo (98, (p, 9, ) + 0L SF (92 (b, p,)) i s )

V(X AlDl (g o (s ) + aF L (9 elps 0, ) Y0 ) |
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Since for each g, V' is a continuous function of p, p, s. is not increasing and
tends to 0 as ¢ tends to O for each p, p. If we consider M, x s.(p, p), then
applying Dini’s theorem again M, * s.(p, p) converges to 0 uniformly, i.e.
there exists € > 0 such that

M. xs.(p) <

| O

Since V' is a nonnegative quadratic form, we conclude that

V({0 o (M. % g2, ) (p, p)(0)) + 0F 85 (M. x g2 ) (p, ) () }; P, p)
< [ Mp =0 = V(LA 6E 0k 0,)

+al ¢l (gL, 0, )) }ip, p)dp'dp’
< Fo(p, p) + Meso(p,p) <6

for all p, p. O
Proof of Theorem 5.1. First, we will construct strictly decreasing sequences
{t,} and {d,}, satisfying certain conditions. Let us define d_; := T, and

[T p(lo) = ¢(s)l
1(t) ._/0 3( sl )ds.
Since fOT I(t)dt < B, there exists ty € (0,d_1) such that
I(ty) < ?.

For t,_, we take d,,_; holding

g(dnfl) = %g(tnl)'

Since g is strictly increasing function, we have d,,_; < t,_;. For the d,_;
there exists t,, € (0,d,_;) such that

1) < d2B ’ (61)
6(tn) — d(tn_1)|\ _ 21(ta_s)
o 9([tn — tus]) ) < PR (62)
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since if we could not choose such t,,, we would have either

(60 =600)
"1)>/ T

From our definition of ¢, and g, we conclude that {¢,} is a strictly decreasing

sequence and lim ¢, = 0. We also have

Using (62),(63),(61), in this order, we have
dy 4B
-1
B(tas) — plt)| <4 [ 7 (27 )g(du).
Taking summation over n, we have
T 4B
—1
9lto) = $(0) < 4 [ @7 (=7 ) g(du).
Using the same construction for ¢(T — t), we have
6(T) — b(ty)| < 4 / g(du).
Hence we have
6(T) — $(0)] < 8 / g(du). (64)

This inequality holds for any ¢ satisfying (30), and any g, ®. Hence let us
define

b(u) == ¢(s + ! ;Su)

t—s

on [0,7T]. We have

/ / g(|u—v|1)))‘)dudv< (tTS)QB =: B.
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From (64) we have

B0 —40) <8 [ 07 (D )g(am),

that is

o)~ o) <8 [ o (g

O
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1 Introduction

In this paper we introduce the “zerorange-exclusion process”, and obtain an
estimate of the spectral gap for it. The process is a kind of lattice gas. It
has two conserved quantities, the number of particles and the total energy.
It will be proved that the spectral gap, for the process confined to a cube in
Z?¢ with width n, is bounded below by Cn~%, where C is independent of n
but depends on the particle and energy densities. This estimate is motivated
by the study of the hydrodynamic limit of the process; it is sufficient for
obtaining the characterization of the space of germs of closed forms [2].

Let Ay be a d-dimensional cube with width N, centered at origin. and
N = (Nz)zen, denote the configuration of a lattice gas with energy where for
each x, n, € Z, and &, := 1y, 20). & = 0 means that a site x is vacant, and
&, = 1 means that there exists particle at site x with energy 7,.

We consider the two types of jump; firstly particles jump to vacant sites
and secondly the energy on an occupied site is transfered to one of its neigh-
boring occupied sites according to the zerorange law.

Let 7(®% and n*~Y be the configurations related with two types of jump
defined by

ny, if z =z,

(n(mﬂl))z = {7733’ if z = Y,

1., otherwise,
{nm—l, if z =z,

(nzay)z = ny+1, it z=y,

Nas otherwise,

Then define the operators 7(*¥) and 7*~¥ by

W(m’y)f(n) = f(n(m’y)) — f(n),
™ Vf(n) = f("Y) = f(n).

Let cex(7), Ce(r) be functions of r» € Z, such that

cex(0) = 0,

Cex(l) > 0, for any [ > 1,
C2e(0) = ce(1) =0,

(1) > 0, for any [ > 2.
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We assume technical conditions; there exists constant a; such that

|cre(k) — cre(k + 1) < ay (65)
and there exists ky and ay > 0 such that for any & > [ + k
Coe(k) — (1) > ay (66)

and there exists ag > 0 such that
cex(k) > asc,e(k).
For each directed bond b = (z,vy), let L, be the operator defined by
Lof (1) := cex(m) (1 = )T F (1) + cre(ma) &y f ().
Then Ly is defined by
Ly = Z Ly.

We call the Markov process generated by Ly the zerorange-exclusion process.
Consider the product measure whose marginals are given by

1
_ P ifl =1,
Pp,p(nw = l) = Za(p,P) 1

b
Za(p.p) C2e(2)Cze(3) - -+ cre(l)

for all z. Here Z is the normalizing constant and «(p, p) is a positive constant
depending on p and p and determined by the relation

Epp 1] = p-

The canonical measure on A, of the particle number y and the total energy

FE is defined by
Pn:y7E[ ) ]:Pp:p[ ) | Z é-m:y Z nZ:E]

TEAR TEAR

From the definition, we have reversibility such that

Ce ()€ Py, 6({11}) = Cae((17)w)(€"7 )a Py e({n"7})  (67)
Poys({n}) = Pay.s({n®"}),

for any n,y, F € Z, for any z,w € A,, and for any configuration n on A,.
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Theorem 1.1 There exists a constant C' such that for any positive integer
n,y, E, satisfying y < |A,| and E > y,

[
Yy
where V' denotes the variance and D denotes the Dirichlet form defined by

Dn,y,E(f) = _En,y,E[anf]-

2
Vn,y,E(f) S C’IL2 ( ) gDn,y,E(f):

2 Outline of Proof

In this section, we fix n,y, E, and simply write E[-| for E, , g[-]. For n € N
let 7, denote the

o-algebra generated by {£, : z € A, }.
Then
Vao(f) < 2E|(f = Blf|Fea))’] + 2B [(E[f|Fenl — ELD’)- (68)

To estimate the first term, we deduce the following lemma from results of
[1]-

Lemma 2.1 There exists a constant C such that

B[(f = U1 Feal)VFe] < OoB] X caunlm)balm ()| e

z,yeA

Lemma 2.2 There exists a constant C such that

B[ 3 culnde,mrim)] < on?ian 22 Epp)

|
z,y€An y y

We shall give proofs of Lemmas 2.1 and 2.2 in Section 4 and 3 respectively.
By successively applying Lemma 2.1 and 2.2, the first term on the right hand
side of (68) is bounded by

‘An‘ 1 T— 2
C E ze\'lr )Sy 4
™ [z (m)& (7"~ F())?]
2
<c (M> Eozn(p).
Yy Yy
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The second term on the right hand side of (68) is easy to dispose of. Since
E[f|Fe,n] depends only on &, we can use a spectral gap estimate for the simple

exclusion process to see that

E[(E|f|Fenl — ELf)’] <Cn?’E[ Y («"VE[f|Fea))’]-

T,y€An,|z—y|=1

Since if z,y € A, then the operator 7(*¥ and the conditional expectation

E[-|F¢ »] commute, on using Jensen’s inequality, the last term is at most

Cn’D(f).
Hence we conclude that
AN E
v(f)<c (%) D).

3 Proof of Lemma 2.2
For any = € Z% put )
=] = Z:l |-
Let v(z,y) denote the canonical path f_rom x to y defined by
Yz, y) = {z(i) : 0 < i < |w —yl},
where z(7) is defined by

z(i) = (2(i)1,...,2(i)q) such that

]

z(i); = xj for i < |zr — Yk,

e
S

1

2(i); = y; for i > Y |zw — il

k=1
. R Yi — X;
2(0); = x5+ (0= e — )T ——
= lys —

7j—1 J
for Z |z, — ye| < i< Z [Tk — Ykl
k=1 k=1
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namely v(z,y) denotes the nearest neighbor path that goes from z to v,
moving successively as far as it has to in each of the coordinate directions,
following the natural order for the different coordinate directions.

Lemma 3.1 For any z,y € A, let v(z,y) be a canonical path from x to y.
Then we have

Elese(ns)&y (7Y f(n))?]
< Clz -y 3 Elc,e(n,)Eu(m*7% f())?

zwey(z,y),|z—w|=1
+{cex(n2) + cex(my) }(1 — fw)(w(z’w)f(n))Q]-

In particular

Elee(n)y (7Y F ()" 1 {1<no <28 /0)]

<c®u Y Bl ()

V' zwer(zy)lz—wl=1
z,w 2
Heex(n:)(1 = &) (T f (1)),
Proof. Let us define the configurations T%¥n and S*¥n by

n@v) if ¢, =1,¢, =0,

T%Yn = n*Y ifn, >2,§ =1,
n otherwise,

SI’yT] — U(I’y) if é-m = 15 gy = 05
n otherwise.

Let 2(2) := 2;4(7) (0 < i < |z — y|) be defined by (69), namely z(7) is the
i-th point from z on the canonical path vy(z,y). If n, > 2, we can rewrite

Y = G0 o GH22) o .. o GHleylD(le—yl=2) o Pa(le—yl-1)2(lz—y)
oTHz=ul-D2(z=v1-2) o ... o T=Ox(1),

Let us define T;n by Ton :=n,
Tin =T D201, 9,
for 1 <i <[z —yl, and

T'zn — Sz(2|miy‘7i)’z(2|m7y|7i71),1-’i,177,
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for |z —y|+1 < i < 2|z —y| — 1. Using reversibility (67), we can check that
Cze(Me) &y P({N}) = e (Tim) ) (Ti)y P({Ti})
for 0 << |z —y|, and

Cze(Me)&y P ({1}) = ae(Tin)y)(Ti8) 2212~y P ({Tin})

for |x —y| +1 < i < 2|z —y| — 1. Using these notations and equalities, we
have

Ecse(n:)&y (7Y £ (n))’]

< E[czemz)ﬁy(“g_l(fmn) — F(Tiem)))’]
<20z —y| mii_y:l'_lE[cze(nm)fy(f(Tin) — f(Zieam))?]
< 2fz — y|{ |Z| 3 PHTn)) lewe (Tin) o) GO (L) = F (L))
+ Z| 3 PUT D leae (Tiny) (1)t (Tir) = F(Tm))}-

From the condition imposed on the jump rates, the last term is at most

|z—y|

2|'T - y|{ Z E[cze(nz(i))fz(i+1)(f(nZ(i)_)Z(i—i—l)) - f(n))Q]
=1

lz—y! N

+ Z [Cex (M) (1 — Exiny) (f(nEE=EFD) — £ ()]
Z\z y[—1 o

Y Bloe(m) (1 = &) (Fn O — 1))}
i=|z—y|+1

From the definition of the z(7), we conclude the proof. 0

Proof of Lemma 2.2. From our setting that Y, & =y and Y, n, = E,
we have

2 = Z <. <2B/yy < Y-
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For any w € A,, we have

Elc,e(n)&, (7Y £ (n))’]
< 2E[C4e(10)w (T F (0))?] + 2E e (na)€u (7% F (1)),

by reversibility (67). Using these results, we have

E[ Z Cze(nz)é‘y(ﬂ-m_)yf(n)f]

T,y€A,

<N (Blewln)Lpsn oy (7 F )]

Y z,Y,wEA,

+E e ()1 (1< <2y (77 F ()]

By symmetry, we only consider the first term. On using Lemma 3.1, the first
term is not greater than

C\An‘g%n Y Y Elelm)e@ i (n)’

T, WEAR uwey(z,w),|lu—v|=1

+Cex (M) (1 = &) (T £(1))?).

By simple computation, we have

Z Z f(u’ ’U) < 2n|An| Z f(u,v)

T, WEA, uweY(z,w),|lu—v|=1 u,v€EA, |lu—v|=1

for any positive function f(u,v). Hence we conclude the proof. O

4 Proof of Lemma 2.1

Let us consider a meanfield type zerorange process on N5 with jump rate
Cze Where S, :={1,2,...,n}. The generator of the meanfield type zerorange
process is defined by

L, :=

SIS

D> Cae(ne)m™ Y f(n).
T,Y€Sn
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The grand canonical measure is a product measure whose marginal distribu-
tion is given by

1
ifl=1,
P,(n. =1):= Zate) -1
1 (a(p)) 1> 9

Zo(p) C2e(2)Cse(3) - - - Cue(l)

where Z is the normalizing constant and a(p) is determined by the relation

E, (1] = p.
The canonical measures are defined by
Pogl - =P - | X n.= El.
T€ES,

The Dirichlet form is defined by

Lemma 2.1 clearly follows from the following proposition.

Proposition 4.1 Given the conditions (65) and (66), there exists a constant
C such that

Epn5[(f — Enplf])’] < CD, 5(f).

To prove Proposition 4.1, we quote results of [1].

Lemma 4.2 (Lemma 2.1 of [1]) There ezists a constant C such that for any
x € S, for any function depending only on n,, we have

for all m > 2.

The following two lemmas are immediately deduced from Lemma 3.2 and
Proposition 3.1 of [1], respectively.

Lemma 4.3 Assume that there exists a constant W,,_, such that

Eo 1 5[(f — Ban1,6[f])"] < WaiiDno1,5(f)

for all E. Then there exists a constant C which does not depend on n such
that

Dn,E(En,E[f|'r]z]) S CWn—an,E(f)
foralln>2, E€N, andz € 5,.
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Lemma 4.4 For every e > 0, there exists ng and a constant C(e), such that

C(e)

n

Do p(Enslfin)) € == Dup(f) + —Bupl(f = Enslf))?

for alln >ng, E € N, and x € S,,.

Proof of Proposition 4.1. Our strategy of proof may be as follows. For any
n, assume that there exists a constant W,,_; such that

En1,5[(f — Eno1,8[f])?] < Wa1Dn1 5(f) (70)

for all E. We shall deduce from (70) that there exists a constant W,, depend-
ing only on n and W,,_; such that

Enp|(f — Enplf])’] < WaDnp(f)

for all F. From the relation between W,, ; and W,,, we can take a sequence
{W,} inductively which satisfies

En,E[(f - En,E[f])z] S WnDn,E(f)

for all n, £/, and W,, < C, for some constant Cy uniformly in n.
By Lemma 4.2, there exists a constant C; such that

Es g[(f — E2,5[f])?] < C1Ds p(f) (71)

for all £ € N. By simple computation, we have

B, sl(f — Buslf)’ (72)
< 0 5 (Buslls = FuslfeD)"+ B {(Foel ] = Bl

By (70), the first term on the right hand side of (72) is not greater than

n— 2 _

Wn—an,E(f)'

n—1

On using Lemmas 4.2 and 4.3, there exists Cy which does not depend on n, E
such that the second term on the right hand side of (72) is not greater than

CZanan,E(f)
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for all, n > 2. Then we have

E,5[(f — Enplf])?] < (14 Cy) Wye1Dn (f) (73)

for all n > 2. On the other hands, we take ¢ = 1/10 in Lemma 4.4 then there
exists a constant C3 and ng such that the second term on the right hand side
of (72) is not greater than

Ca _ 1
ZDap(F) + 15 Enl(f = Euelf])’

for all n > ny. Then we have

Buslls = Buslf)] < {(1- Wit 2houet)

b
2(n—1)
for all n > ng. From (71)(73)(74), if we take

Cl 1fn=2,
(1 + 02)Wn—1 if 3 S n S ng — 1,

W, =

n 1 C

(1— )Wn_1+—3 it n > o,
2n —1 n

(75)

inductively, then we have

En,E[(f - En,E[f])z] S WnDn,E(f)

forall n > 2, E € N. To complete the proof of Proposition 4.1, we only have
to show that W, defined by (75) satisfies that there exists a constant Cy such
that W, < Cy for all n > 2. From the definition

W, = C1(1+Cy)" > < C(1+ Cy)te?

for2<n<ng—1.If n>ng, C >2C5and W,_; < C, then W, < C. If we
take
CO = maX{ZC'g, Cl(l + 02)n0—1}

then we have W,, < C, for all n > 2. O
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1 Introduction

Given a Gibbs measure on the one dimensional lattice Z with translation-
invariant potential of finite range, we construct an exchange rate for one-
dimensional lattice gas which satisfy both the detailed balance condition rel-
ative to the Gibbs measure and the gradient condition. For the construction,
we use an infinite system of linear equations indexed by finite sets which is
given in [3|. Since this system of equations has plenty of freedom, it has many
solutions, most of which do not possess properties necessary for constructing
the desired exchange rate. Our strategy is to find a suitable condition such
that the system with it added becomes uniquely solvable and the unique
solution satisfies the required properties.

Based on an exchange rate which satisfies both the detailed balance con-
dition and the gradient condition, we can prove the hydrodynamic limit for
every one-dimensional lattice gas reversible under the Gibbs measure that is
not necessarily of gradient type, in a way parallel to [1] and [4] with the help
of the result of [2] on the spectral gap.

Let n = (ny;x € Z), 7, = 0 or 1, denotes an element of {0,1}% the state
space of one-dimensional lattice gas. The site = is interpreted as vacant if
N = 0 and occupied if n, = 1. The potential {J4}acz is supposed to have a
finite range : there exists a constant p such that

J4 = 0 whenever diamA > p, (76)
and to be translation-invariant :
Ja=Jsiqforall ACZ and a € Z. (77)

We define a Hamiltonian Hy(n) = HJ(n) by

HA(’U) = Z JAUA 3 77A = H Ne,

ACZ,ANAZD €A

and a shift operator 7, by

(7o) = Moz for all z, 2 € Z,
A=A+ xforall ACZ and z € Z.

Our main result is stated as follows.
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Theorem 1.1 There exists an exchange rate c(x, x+1,n) which satisfies the
following conditions:

1. Locality: c(z,z+1,n) depends only on {n,; |z—z| < r} for somer > 0.
2. Translation invariance: ¢(z,x + 1,n) = ¢(0,1,7,m) , for all x € Z.

3. Positivity and exclusion : c(z,x + 1,1m) > 0 if Ny # Npy1, and c(z,z +
1577) =01 n = N1+

4. Detailed balance condition:

c(z,z 4+ 1,m) exp[—Hyo,13(n)]

= C(.’E, z + 1, nm’m_H) exp[_H{O:l} (nm’m+1)]a (78)
where
ny if z=ux,
(nw’y)z = e if 2=y,

1, otherwise

5. Gradient condition: there exists a local function h(n) such that
c(@, 2+ 1,m) (e = Met1) = h(7an) = h(Tagan). (79)

Remark 1.2 The function c(x,z+1,7n) that we shall construct depends only
on{n;ze{zx—p,x—p+1,...,x+p,x+p+1}}; Hence the function h(n)
of (79) depends only on {n,;z € {—-p,—p+1,...,p—1,p}}.

2 A system of linear equations for {a(A)}

In this section we describe a system of linear algebraic equations given in
[3]. By the condition 2 we have only to consider the case x = 0. We define
AH (n) by

AH(n) =Y *(Javgoy = Javgy)n (80)

A

Here )" * 4 stands for summation over all finite subsets A C Z which contain
neither 0 nor 1. Note that AH(n) does not depend on (n,7;). By the
conditions 3 and 4 of Theorem 1.1 ¢(0,1,7) must be given in the form,

c(0,1,m) = no(1 = m)g(n) + (1 = mo)nug(n)e 27 (81)
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where ¢ is a positive local function which dose not depend on 79,7;. Let us
write A CC Z if A is a finite subset of Z and if we expand the function A
appearing in the gradient condition in the form

h(n) = AZZ a(A)n™. (82)
Then
h(rim) — h(n) = AZZ{G(T—lA) — a(A)}n?. (83)

We rewrite (81) as

c(0,1,m)(m — m0) = —mog(n) + mg(me 2" + ngmg(n)(1 — e27).

Equating the right side of this with that of (83) and comparing the coefficient
of 1,m9,m and ngn; we deduce the following system of equations

0 = Z; “{a(r-14) = a(A)}n" (84)
—g(n) = Z; fa(r1(AU{0})) —a(Au{0})}n*  (85)
g(me 210 = % fa(ri(AU{1}) —a(Au{1}n"  (86)
g(n)(1 —e 2HM) = X; {a(r-1(AU{0,1})) — a(AU{0,1})}n". (87)
The equation (84) holds if and only if
a(t_1A) = a(A), for all A cC Z\ {0,1}. (88)

Since the sum on the left sides of the equations (85),(86),(87) vanishes, they
imply that

ao(r1(AU{0})) — a(AU{0}) +a(r 1 (AU{1})) —a(AU{1})
+a(r_1(AU{0,1})) —a(AU{0,1})} =0, (89)
forall Acc Z\ {0,1}.

Since e2#™ dose not depend on 7, 7, we can expand it in the form

eAHM) = > d(B)n”. (90)
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From the equations (85),(86) and (90) it then follows that

a(t-1(AU{0})) —a(AU{0})
+ > A{a(r(Cu{1})) —a(Cu{1})}d(B) =0, (91)

BUC=A
forall Acc Z\{0,1}.

Conversely, if a collection {a(A)}sccz solves (88),(89) and (91), and we
define g(n) by (85), then we have the equations (84) through (87), so that
the exchange rate given by (81) satisfies both the gradient condition and the
detailed balance condition, provided that the function h(n) given by (82) is
local and the function g(n) given by (85) satisfies g(n) > 0.

3 Notations and some results
For AC Z\ {0,1} we define AH(A) by

AH(A) = > (Jpuoy — Jeugiy)-

BccA

It immediately follows that
AH(n) = AH(S(n) \ {0,1}),

where S(n) is the support of 7, i.e., S(n) ={zx € Z: n, = 1}.
We consider the sets

A={-p,—p+1,...} and T ={-p,—p+1,...,p,p+ 1}.
In view of (76) it holds that
AH(A) = AH(ANT) (92)
AH(®) = 0 (93)
Remark 3.1 In the sequel we shall make use of some elementary formulas
on the summation over subsets of a finite set, which are recalled here.
(i) By the binomial ezpansion of (1 — 1)#4 we have ¥ g 4(—1)#A\B) = 0 if
A # 0.

(ii) Let Q be a finite set. If f and g are functions of subsets of Q, then by
using (1) it is easy to check that the following two conditions are equivalent.
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1. f(A) = Speag(B) for all AC Q.
2. g(A) = X pca(=1)#FAB) £(B) for all A C Q.
Lemma 3.2 The coefficients d(B) defined by (90) satisfies that
d(B) =0 for all B C Z\ {0,1} such that BNT* # 0.

Proof. Decompose B into C = BNT and D = B\ T. Then by Remark 3.1
and (92)

d(B) = Z(—l)#(B\E)eAH(E)

ECB
= Z (_1)#(D\G) Z (_1)#(C\F)6AH(F)
GCD Fcc

but the first factor of the last line equals zero according to Remark 3.1 (i).
O

Lemma 3.3 If a collection {a(A)} accz satisfies the following two conditions
i) a(A) =0 for all A such that ANA°# 0, and

i1) {a(A)} acca solves the equations (88),(89),(91) for all A CcC A\ {0,1},
then the collection {a(A)}accz solves the equations (88),(89),(91) for all
AccZ\{o,1}.

Proof. We have only to check (91) for A such that AN A¢ # 0. The left side
of (91) is written as

(71 (AU{0})) —a(A U {0})
+ > {a(r1(BU{1})) —a(E U {1})}d(D)

DCA,DNAc#0,DUE=A

+ > Aalr(Bu{1}) - a(E U {1})}d(D),

DC(ANA),DUE=A

of which the second term vanishes, since if D C A and D N A¢ # (), then
d(D) = 0 by Lemma 3.2. By condition i), a(AU{0}) = a(r_1(AU{0})) =0,
and if £ C A and ENA° # 0 then a(F U {1}) = a(7—1(F U {1})) = 0, so

that the other two terms also vanish. O
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Put
a(A) = a(A) — a(r_1A). (94)

Then it is easy to check that the conditions i) and ii) of Lemma 3.3 hold if
and only if the following system of equations holds

a(A) = 0 whenever AN A° # 0, (95)
a(A)=0forall A Ccc A\ {0,1}, (96)
DZA{a(D u{0}) +a(Du{l})+a(DuU{0,1})} =0 (97)

for all Acc A\ {0,1},

ST abuf{oh)+ > aDu{1})er W =0 (98)

DcA DCA
for all Acc A\ {0,1}.

Recall the remark given at the end of section 2 , where we state the conditions
for h(n) and g(n), that is, h(n) is local and g(n) > 0. These are written as

Y a(Du{0})>0forall Acc A\{0,1} (99)

DCA

and

a(A) = 0 whenever AN C*® # 0 (100)

where C' is some finite set.
Given a set function {b(A)} acca\jo,1}, We introduce an additional system

of equations

b(A) = > a(Du{o}), (101)

DCA

so that we will get a unique solution of (94)-(98) and (101). If b(A) > 0 for
all A cC A\{0, 1}, then the unique solution satisfies (99). Thus our problem
of constructing h is solved if we can find b(A) > 0 so that the corresponding
solution a(A) also satisfies (100). Our proof of Theorem 1.1 in the next
section consists of proving (100) for a suitably chosen {b(A)}.
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4 Constructing an exchange rate

Definition 4.1 We define a mapping 7 from all finite subsets of Z \ {0, 1}

into themselves by

(T A —-1¢ A,
(mA\{1Hu{2} -2¢ A,—-1€ A,
TA=XS :
(mA\{1}H)u{k} —-k¢ A {-1,-2,...,—(k—1)} C A,

\ -

and then 7",n > 2, inductively by 7" A = 7(7"1A). We define 7! in the
same way but with the position —k replaced by k + 1 and at the same time
the shift 7, by T7_i, and define ™ for n < —1 by iteration. Clearly 7! is the

wnverse of T.

For A cC Z \ {0,1} we define b(A) by

b(A) — H e—AH('T‘”A).
n=1
From (92) and (93) it follows that
| min A|+p i
b(A) = J[ e 2" forall Acc Z)\{0,1}.
n=1

Lemma 4.2 {b(A)} has the following properties

1. Locality:
b(A) =b(ANT) forall ACC Z)\ {0,1}.

2. Relation between b(A) and b(TA):

b(A) = b(7A)e 2HEY for all A cc Z\ {0,1}.

3. Positivity:
b(A) >0 for all ACC Z\{0,1}.

The property 1 will follow from the next lemma.
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Lemma 4.3 It holds that

i AH(7*A) =0 for all Acc Z )\ {0,1}. (106)

k=—o00

Proof. Let A CC Z\ {0,1} and k be the number of connected components
of A. We may suppose min A = 2 since there can always be found n such
that min 7" A = 2. We write

Al=A=AUAU...UA,
where A; are connected components arranged in order from the left to the

write; A; =~{ai,a,~+1,...,b,~},2=a1 <b <ay—1<by<...<ap—1<b.
We define 4; (1 <1< 2k) by

Ay =F1OA;, Ay =704,

where
0 i =1,
i) = —S(aj—bj1—1) 2<i<k
j=2

Notice that the mapping 7 conserves the number of connected components
as well as the number of elements. The function f is chosen so that the
left end of the ~i—th component of A,;_; is 2 and the right end of the i-th
component of Ay; is —1. Now, if 7¥A = 77714 (i.e., —1 ¢ 7*71A), then

2 Dcika ']DU{l} = Y Dcit-14 JDU{O}- So

- AH(%ZA):Z > Joopy— D, Jougoy | - (107)

l=—00 =1 DCA~2i_1 DCAgi

We must show that the right side of (107) vanishes. To this end we construct
the one-to-one mapping from UJ_;P(Az_1) into Uj_;P(Ay), where P(A)
denotes a power set of A. To define the mapping, first we decompose A; into
connected components A; ; for 1 < 7 < k:

fL‘ == Ai,l U Ai,2 u...J Ai,k-

Now consider a subset D C A%,l. Put D; = DN Ay, if j # 4, and
D; = (D N Agi_13) U {1}, and define kp, by

min{k : k > 0,7,D; N A3, | ; # 0y -1 D; #0,
ij: ’ D_@
00 ;= 0.
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Because kp, < oo, there exists 1 < p < k and positive integers ji, ja,...Jp
which satisfy kp, = kp,, = ... = kp, < kp,, for m # j, (¢=1,2,...,p).
We order the number 1,2,...,k by ¢,2+1,...,k,1,2,...,2—1 and let j, be
the first member of {ji,...,j,} in this ordering. Then we can find E C Aqu
such that

T (FUu{0}) =Du{1}

where [ = b;, — ijq. We can determine the inverse mapping in the same
manner but with the position k replaced with —k + 1 and the ordering is
reversed. It would be clear that by means of this one-to-one correspondence
the sum on the right side of (107) vanishes by cancellation. O

Proof of Lemma 4.2. If A = BUC where B=AN(A\I')and C = A\ B
then
_AH(7A) = —AH(7C),

because (7A) N T does not depend on the part B of A. Hence
b(A) = b(C).

On the other hand, by Lemma 4.3,

b(A) — lo_O[ 6AH(7~——kA)7

k=0

which shows b(C') = b(C' NT) by the same reasoning as above. Thus b(A4) =
b(CNT)=b(ANT). The property 1 has been verified. The properties 2 and
3 are trivial by definition. O

Lemma 4.4 Let b(A) be given by (102). Then the unique solution of (94)-
(98) and (101) satisfies the condition (100).

Proof. Clearly it suffices to prove

(i) if 0 ¢ A then a(A) =0,

and

(ii) if diamA > diamI" then a(A) = 0.

The proof of (i) is carried out by double induction on #A and max A. Given
a set A such that 0 ¢ A, we will assume that a(B) = 0 if either #B <
#A,0¢ Bor #B =#A max B <maxA,0 ¢ B. The equation (96) and the
assumption imply that

a(A) = a(A) + a(r 1A) =0 for all A such that 0,1 ¢ A. (108)
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The equations (96) and (101) imply that

Y a(Du{o}) = > aDuf{o})+ > aDuU{-1})

DCA DCA DCt_1A
= bANA)+ D aD)- > a(D),(109)
DCr_1Au{-1} Dcr_1A

for all A such that 0,1¢ A

The equations (96)-(98) and (101) imply that

S aDu{l}) = —b(AnA)e AHAMY
S a(DuU{0,1}) = b(ANA)(e AHAM) 1)

for all A such that 0,1 ¢ A

Hence for all A such that 0 ¢ A and 1 € A we have

3 a(D)
= DC%{H{@(D U{1}) +a(D)}
- DCAZ\{I}{EL(D U{1}) +a(D)} + DCTE\{O}[a(D U{0}) + a(D)]
= HANAN{1})e dEUNED L S (DU {0}) + a(D)[110)
y DCr (0}
> a(Du{0})
DC: DC%{I}{CL(D u{0,1}) + a(D U {0})}
- DC;{I}{EL(D u{0,1}) +a(Du{0})}
+ DCT%\{O} [a(DU{-1,0}) + a(D U {-1})]
= BANA\{1})e 2D S [a(D U {0}) + a(D)]
+ Y ladufoy +Dcf<191>?\{0} (111)

DCr_1 AU{—1}\{0}
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The two equations (110) and (111) imply that

> [a(D) +a(DU{0})] = > [a(DU{0}) +a(D)]  (112)

DcCA DCr_1Au{-1}\{0}

for all A such that 0 ¢ A, 1 € A. By (96) and (108), we have only to
consider A CC A such that 0 ¢ A and 1 € A. By the assumption of
induction a(A) = X pcaa(D) for 0 ¢ A. We may suppose that A CC A is
a union of {1,2,...,k}(k > 1) and A for which An{1,2,...,k,k+1} = 0.
Then we have by (110)

a(A) = > ] a(D)
Dc{1,2,...k}UA
= —b(({2,3,..., k} U A) N A)e2H({23,.kuAnA
+ > [a(D U {0}) + a(D)]

Dc{1,2,..k—1}Ur_1 A

By (112) the last sum equals

> [a(D U {0}) + a(D)],

DC{1,2,...k—2}u{-1}UT_» A

and repeating the same procedure we arrive at

= > [a(DU{0}) +a(D)]
DC{—1,-2,...—(k—1)}Ur_, A
= > a(D U {0})

DC{—1,-2,..,—(k—1)}Ur_r A

Therefore by (109)

a(A) = —b(({2,3,...,k} U A) N A)e AH 23 RLANY
+b(({=1,-2,...,—(k=1)}UA_,NA)),
which vanishes in view of (103) and (104) since 7({—1,-2,...,—(k — 1)} U

7_1A) ={1,2,...,k} U A. Claim (i) has been verified.
For the proof of (ii) it suffices, by virtue of the first claim (i), to prove

a(A) = 0 whenever diam(A) > diamTI. (113)
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If 0,1 ¢ A then (113) is trivial. Suppose 0,1 ¢ B and consider the cases
A=Bu{0},BU{l} or BU{0,1}.

We decompose B into C = BNI" and D = B\ I and apply Remark 3.1 (ii),
the defining relation (101), (103) and Remark 3.1 (i) in turn to see

a(BU{0}) = 3 (-)FAIN(F)

- (g (geore)
= 0

(notice that D # 0 since diamA > diamI'). We can show a(B U {1}) =
a(BuU{0,1}) =0 in the same way. O

For the proof of Remark 1.2 we prove that the exchange rate constructed
by the solution of (94)-(98) , (101) and (102) depends only on {n,;z €
{-p,—p+1,...,p,p+ 1}}, and the function A(n) in (79) depends only on
{n.;z € {-p,—p+1,...,p—1,p}}. To this end we first notice that the
exchange rate ¢(0,1,7) is rewritten as

c(0,1,m) = mo(1—m)g(n) + (1 — no)nig(n)e 2™

+(1 — 1)mb(S(n) \ {0, 1})e”AHE@MMOLD,

where S(n) is the support of 7, ie. S(n) = {x € Z : n, = 1}. Since
b(A) = b(ANT) and e 2H(4) = ¢=AH(AND) "¢(0 1, 7) depends only on {n,;z €
'} ={n;z¢€ {-p,—p+1,....,p,p+ 1}}; hence so does 11h(n) — h(n) =
c(0,1,7)(m — no). It would be obvious that the function h(n) depends only
on {n;z€e{-p,—p+1,...,p—1,p}}

5 Biased exchange rate

In this section, we consider the driven lattice gas on a discrete torus Ty =
Z/NZ. Assume c(z,z + 1,n) satisfies the condition 1-4 of the Theorem 1.1.
Let LY be the generator defined by

LNfm) = > clz,z+1Ln)(f(n™"*") = f(n)),

z€T N
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and X" be the Markov process whose generator is L". Let c,(z,z+1,7) be
biased exchange rate if

cp(ma x + 1)77) = Pﬁxc(f’?,m + 1a 77) + (1 - p)nz+lc(xa x4+ 1a77)

for 0 <p <1, and L;,V be the generator defined by

L) = 3 ez, +1,0)(f(™"*) — f(n),

(EETN
and Xzﬁv be the Markov process whose generator is L;JV .

Proposition 5.1 For each sufficiently large N, the class of invariant mea-
sures for X;V coincides with that of XV if and only if c(z,z + 1,n) satisfies
the condition 5 of Theorem 1.1

Proof. Assume gy is an invariant measure of X, which is a Gibbs measure
on Ty with Hamiltonian. By a simple computation,

/Li,vf(n)uzv(dn) =/ Y (1=2p) (e —wyr)c(z, x+1,m) f(n)un(dn) (114)

z€T N

The sufficiency follows from the condition 5 of Theorem 1.1, because the
right side of (114) is equal to

> (1= 2p)(roh(n) = Tasrh(n)) f () (dn) = 0.

z€T N
The proof of necessity is immediate from (114) and the following lemma.

Lemma 5.2 Let F(n) =Y acr,, f(A)n? be a local function and satisfies

> mF(n)=0 (115)

IETN

for all n. Then there exists a local function g(n) such that

F(n)=g(n)—1g(n)

Proof. First, we show that the coefficient f(A) satisfies that

> f(rzA) =0 (116)

IETN
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for all A C Ty by induction on the cardinality of A. Let A = @, considering
n:m, = 0 for all z € Ty, then we have

0= Z f(Tzc(Z))

z€T N

Assume that if B C A but B # A, then ., f(7.B) = 0. Considering
n:n,=1forall z € Aandn, =0 for all z ¢ A, then we have

0=1>3 flrA)+ > > f(nB

ze€T N BCA,B#AxzeTy

We partition the power set P(Ty) into the equivalence classes of congruence.
Denote by 7 the set of representations, i.e., 7 is a family of sets which
satisfies that

(i) If A€ T, then 7, A¢ 7T forz #0

(i) {7eA}sery aer = P(Tn) \ 0.

By means of 7, the function F' may be written as

=> > f(nA

A€T ze€T

Because F'(7) is a local function, for each A € T f(7,A) vanishes except for
a finite number of . We can choose n and {z;}? ; such that z; < z;;; and
f(r,A) =0 if z # z; for all i. Now we decompose

Z f(TmA)nTmA = i Tzz
f (72,
+(f

zeT
A = )

(Tml )+f(7—zzA)) Ter 4 +Zf Tzz TmlA
=3

repeating the same procedure we arrive at

n

z(zfm )“”—WMﬂ+ZﬂmMW“ (117)

=1 = k=1

The second sum is equal to zero according to the equality (116). It is easy
to see that the first sum is of the form g4(n) — T194(n). O
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