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Abstract

'The Kondo effect is a quenching phenomenon of localized magnetic moment caused
by Fermi statistics and many-body effects. The details of the quenching depend on
the atomic structure of impurities and the interaction with the host. For plural 5f-
electrons, the spin-orbit and Hund couplings are large and more important compared
with d-electrons. We show that in this case the Kondo effect due to even-number f-
electrons is different from the case of odd-number f-electrons. In connection with the
theory of multi-channel Kondo problem, we focus our discussion on the Kondo effect
due to U-type impurities having plural 5 f-electrons, (5f)% and (5f) in particular.
Through this study, we first derive from the large Coulomb limit an effective exchange
Hémiltonian for a realistic model and then apply the numerical renormalization group
(NRG) method. Our main concern lies in the stability of the Fermi liquid and non-
Fermi liquid.

First, we derive from a realistic Anderson model, via the Schrieffer-Wolff trans-
fdrmation, an effective exchange interaction in the absence of the crystal field. It
is expressed in terms of irreducible tensor operators and is given by the same form
for any number of localized f—electrons whose states are determined through the j-j
coupling scheme. We assume that the spin-orbit coupling is larger than the Hund
coupling. In the presence of crystal field, the tensoriai expression becomes useful to
derive an effective exchange interaction straightforwardly.

Secondly, considering a cubic crystal field, we examine differences between the
Kondo effect due to a non-Kramers doublet for f2 and that due to a Kramers doublet
for f3. Allintermediate states are ’takén into account in deriving an effective exchange
Hamiltonian. For f2, additional exchange terms appear in addition to the two-

channel Kondo model with a 1/2 spin. It is also shown that this result holds for a

ii



tetragonal or hexagonal crystal field. The NRG result shows that those additional
terms are not relevant and the fixed point is of the same non-Fermi liquid type as
given by Cox’s model. For f2, on the other hand, the Hund coupling reduces the
number of relevant channel to one and the Fermi liquid is realized at the fixed point.

Finally, we asses the importance of excited states lying above the non-Kramers
~ doublet ground state for f2. For simplicity, the singlet excited state is assumed to
represent those excited states. Whether the Fermi liquid or the non-Fermi liquid
is stabilized depénds mainly on three parameters: the exchange coupling within the
lowest doublet, the exchange connecting with both doublet and singlet and the crystal
field splitting. The case where the ground state for f2 changes from the doublet to
the singlet has been studied also. The quenching of the local moment at the Fermi
liquid fixed point is influenced by both types of local singlet: One is the local f?
singlet which is independent of conduction electrons; the other is the local singlet
formed with the local moment and conduction electrons which are coupled strongly
with each other due to the Kondo effect. " '
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Chapter 1

Introduction

1.1 Heavy Fermion Systems

There are a class of materials which we call heavy fermion systems. They are Ce
or U based compounds which have the property of Fermi liquid with a large mass
enhancement eLt low temperatures [1-5]. At high temperatures, on the other hand,
most of them show a logarithmic increase in the resistivity as the temperature de-
creases. It is reasonable to think it is due to Kondo effect, which is believed to be
present in dilute alloys. Usually interatomic interactions (RKKY interaction) lead
to magnetic order of some kind in these materials when the density of magnetic ions
is high. Therefore it is surprising that each magnetic ion plays the role of local spin
independently iﬁ heavy fermion systems. This picture is well supported by the ex-
periment of the temperature dependence of magnetic resistivity in Ce,La;_,Cug [6].
The resistivity in the dilute limit shows a logarithmic increase as the temperature
decreases before it finally reaches a constant value, which is so called unitarity limit.
For the lattice case (z — 1), it decreases proportionally to the square of temperature
(T?) like the Fermi liquid, although it increases in the same way for all values of z

(except ¢ = 0) in the high temperature region.

At present we do not have clear explanation about the formation of the heavy

Fermi liquid state as mentioned above. We believe that the Kondo effect voccurs on
| each Ce site independently and makes the conduction electrons coupled with the
local f-electrons with the decrease of temperature. It is due to the mixing between .

both electrons. As a result, the f-electrons lose the property of local spin and every
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Figure 1.1: Température dependence of magnetic resistivity of Ce,La;_,Cug [6].

Ce site is occupied by a singlet cloud which consists of conduction electrons and an
f-electron. The nearest neighbor singlet clouds have small overlap with each other
since they are not completely localized on Ce sites. The overlap of the singlet clouds
finally forms a narrow coherent band of heavy fermions. The Fermi liquid behavior
shows up in the magnetic susceptibility x and the specific heat coefficient v which

become constant values at low temperatures.

The same scenario as in Ce systems would be applicable to U systems if the same
type of Kondo effect occurred in both kinds of materials. However there are some
experimental reports showing evidence that the Kondo effect may cause unusual
behavior in the dilute limit of U. In U, Th;_,RusSi, [7, 8], the magnetic sﬁsceptibility
of impurity site still increases with the decrease of temperature below ~0.1K and
the 5f specific heat C/T seems to diverge at T — 0. The electrical resistivity P
decreases logarithmically as temperature decreases. The similar result is obtained in

the specific heat of Y;_,U,Pds [9].

Although it is not well understood whether the unusual behavior different from
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(z £0.07) [8]: (a) Magnetic susceptibility along the c-axis per U-mol, x™P vs log T,
of U,Thy_,Ru,Si, single crystals z = 0,0.01,0.03,0.05 and 0.07. The inset shows
a comparison between the x™P data for z = 0.01, scaled by using p = 1.7up and
Tx = 11.1K, and the numerical calculations based on the S = 1/2 two-channel
Kondo model [22] (solid line); (b) Temperature dependence of the 5f-electronic spe-
cific heat Csz/T vs logT for Ug g7 Thge3RusSi;. The inset shows a comparison be-
tween the Cs¢/T data, scaled by using Tx = 11.1K, and the numerical calculations
based on the S = 1/2 two-channel Kondo model [22] (solid line). (c) Temperature
dependence of the low temperature electrical resistivity along the a-axis, p vs log T,
for U,Th;_,Ru,Si, (=0, 0.01, 0.03, 0.05, 0.07). The solid lines indicate an empirical
formula pg + AlogT, where py and A are determined by the best ﬁttmg of the data
for each concentration below 7 K.



‘the Fermi liquid is caused by a single magnetic ion, it is possible that it is closely
connected with the difference between Ce and U: The latter has plural local electrons
on 5f orbit and the Hund coupling as well as the spin-orbit coupling is very large.
In addition to this, it is interesting to examine the Kondo effect due to the orbital
moment of 4f and 5f impurities which is different from 3d impurities. For 3d case,
the orbital magnetic effect is not important because of the relatively large mixing
between the conduction band and the impurity orbital. On the other hand, it is
important for U impurities; various types of Kondo effect are expected to appear,

depending sensitively on the atomic structure.

1.2 Theoretical Background

The Kondo problem has become as one of basic problems in condensed matter physics
since Kondo’s seminal work in 1964 [10]. The antiferromagnetic s-d exchange model
on which Kondo’s theory is based can be derived from the Anderson model [11] in
the limit of small mixing. Following Kondo’s work, many researchers tried hard
to understand the physics for the whole temperature region. In 1975 this difficult
problem was solved by Wilson’s numerical renormalization group (NRG) method.
This epoch-making theory uses numerical calculations in an ingenious way [12]. The
theoretical effort ended at the beginning of 1980’s with the exact Bethe Ansatz
solution for the Anderson model [13] and the s-d exchange model [14-16]. In these
studies the atomic structure of the impurity is simplified in that the models have no
orbital degeneracy and no local correlation other than direct Coulomb interaction.

Together with these efforts, some researchers extended to more complex situations.
The orbital degeneracy was taken into account for Ce dilute alloys by Cogblin and
Schrieffer [17]. For d-electrons, Okada and Yosida derived an effective spin and
orbit exchange interaction, introducing the intraatomic exchange interaction (Hund
coupling) to the extended Anderson model and discussing the Kondo effect due to
orbitally degenerate impurities with plural d-electrons [18]. In 1980 a more thorough
study on the realistic Kondo effect was first made by Noziéres and Blandin [19].
Their work has led to the multi-channel Kondo problem as an important issue of
theoretical studies [20-22].



Now let us show the historical review of the theory of Kondo effect as mentioned
above, beginning from Kondo’s work as the first breakthrough of the Kondo problem
4, 24].

1.2.1 s-d Exchange Model and Anderson Model

It was known since 1930’s that the resistivity shows a minimum at low temperatures
- in dilute alloys such as Cu containing 3d impurity atoms with magnetic moment like
Mn and Fe. In pure metals it decreases monotonically as the temperature decreases
as a result of scattering of conduction electrons by phonons and finally reaches a
constant value, which is a residual resistivity. However, Cu-Mn dilute alloys show a
minimum at about 10K, and the resistivity increases with the decrease of tempera-
ture. This effect due to the local magnetic moment is called the Kondo effect, which

can be explained by using the antiferromagnetic s-d model:

H =Hk+Hsd7 | (11)
Hy = Z%@Laks, _ (1.2)
ks
Hu= -2 alyam(s)es - S. (1.3)
’ 2N kk'ss! we ’ ’ . ‘

Here Hy and H,, tepresent the kinetic energy of conduction electrons and the ex-
change interaction, reSpectively. a,]:s and ag, are, respectively, the creation and an-
nihilation operators of a conduction electron with momentum % and spin s. s is the
spin operator of conduction electrons defined by the Pauli matrix o as s = o /2. S
is the spin operator of the local magnetic moment. The transition matrix (T matrix)
up to the second-order perturbation of the s-d Hamiltonian contains a logT (T": tem-
perature) term. It comes from the terms containing the Fermi distribution function,
which remain as a result of the noncommutability of the spin operator. This means
that the scattering of conduction electrons is influenced by many other conduction
electrons. Therefore the phenomenon of resistance minimum is understood as a
- many-particle effect. For a negative coupling constant J (i.e. antiferromagnetic) the
resistivity increases logarithmically with the decrease of temperature. The existence

of the minimum can be explained by adding the resistivity due to phonons.
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The antiferromagnetic s-d model can be derived from the Anderson model in the
limit of small mixing via Schrieffer-Wolff transformation [25] (see Appendix A). The

Anderson model is given as

H = Hy + Hy + Hpiy, ’ (1.4)
H, = Zeka};ak“ (1.5)
ks
Hy=¢ Z aggaos + UTLQTTLOl, (1.6)
Huie = Vo Y(al, a0, + hoc.), (1.7)
ks

where H) represents the energy of conduction electrons. The first and second terms
in Hy represent the energy of localized orbital of the impurity and the direct Coulomb
interaction between localized electrons, respectively, where a,(];s is the creation oper-
ator of a localized electron; ng, is the number operator ng, = aLaOS. For simplicity,
only spin degeneracy is taken into account here, although the localized orbital is
five-fold degenera,te in the case of 3d electrons. Finally Hy;, represents the mixing
between the conduction band and the impurity orbital.

The impurity orbital is filled by one electron, if Ieol and U are much larger than
A = 7p|Vo|? (p is the density of states at the Fermi energy for conduction €lectrons).
It means a formation of a local moment. On the other hand, if |¢o| and U are similar
to A in magnitude, the charge fluctuation is too large to keep the state of local
moment stable. Thus the s-d model belongs to the strong coupling Anderson model;
the latter model is more fundamental and general. Although it is more direct and
general to examine the Anderson model, the exchange model like the s-d model gives
us a picture of quenching the local moment in the strong coupling region. Namely,
conduction electrons couple with a local spin strongly to form a local singlet state. It
is due to the increase of the antiferromagnetic exchange coupling with the decrease
of temperature. It leads to a complete compensation of local spin, so that the system
shows Fermi liquid behavior; for example, the magnetic susceptibility at impurity site
shows Pauli paramagnetic behavior at low temperatures below Kondo temperature
Tk, while it follows Curie-Weiss law at high temperatures. The specific heat is linear
in temperature at low temperatures. The NRG method first gave a consistent picture

valid for the whole temperature region [12, 26].
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1.2.2 KXKondo Effect in Real Metals

In the simple Anderson model the orbital is restricted to one; the intraatomic inter-
action other than the direct Coulomb interaction is neglected. For 4f ions like Ce,
the orbital degeneracy has to be included in the Anderson model (1.4). Ce** ion
is well described by f! configuration, in which the spin-orbit coupling leads to the
total angular momentum j = 5/2 in the ground state. Taking into account this fact,
Cogblin and Schrieffer derived the orbital exchange interaction from the Anderson
model to explain the Kondo effect in Ce dilute alloys [17]. It is given by the following

exchange Hamiltonian:

‘ J ‘ ;
Hes = ToN Z aIIMIakaLfM’, (18)
kk! M M!
where aIM and f),; are the creation operators for conduction and local electrons
with orbital channel M which represents j, = 5/2,3/2,---,—5/2, respectively. k
represents the wave number. J turns out to be negative. With use of this exchange

Hamiltonian, the Kondo temperature is given by

L]
(27 +1)J]pd

Here Dy and p represent the half width of conduction band and the density of state

T ~ Do exp|— (1.9)

at Fermi energy, respectively. The factor 2j + 1 is the number of orbital channels.
This result shows clearly that orbital degeneracy enhances the Kondo temperature.

In a simple way, Okada and Yosida discussed the one-d electron case in the ab-
sence of the spin-orbit interaction [18]. They obtained the spin and orbit exchange

interaction as

__J ] 1
HO_Y— 2N %; a/klmlsla:kmadmsdmlsl. (110)

mm’ss’

Here m represents the z component of the angular momentum [ = 2, i.e. m =

2,1, _2. 5 is the spin (s =1,]). J is also negative. The Kondo temperature is
given by '
Tx ~ Dpexp [——J-Y——-—] (1.11)
, 2L+ 1)|J|p

where the factor (2] + 1) is the number of orbital channel. On the other hand, the

Hund coupling is important for plural localized electrons. For a special case of a
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half-filled shell and a strong Hund coupling as in Mn, Okada and Yosida showed that

the Kondo temperature is given by

(20 + 1)N] (112)

|J]p

The strong Hund coupling restricts the electron transfer among the impurity orbital

TK ~ DO €xXp [-—

channels, thereby reducing the Kondo temperature.

Looking at the problem from a more geneial view point, Noziéres and Blandin
first pointéd out the Kondo effect depends sensitively on the number of scattering
channels of conduction electrons (N ) and the magnitude of the impurity spin (5)
[19]. Their discussion is restricted to the orbital singlet case where the orbital means
the scattering channel. Ng depehds on the crystal field and S is determined by
the first Hund’s rule. In the absence of crystal field, d-orbitals (I = 2) are 2 + 1
(= 5)-fold degenerate. For a cubic crystal field, the degenerate orbital splits into
two-fold degenerate E channels and three-fold degenerate 7' channels. We define
the couplings related to the scattering channels as I'g for the former and I'r for the
latter. Far 'y > I'g, the F channels are irrelevant; in practice we have Ne, = 3.
If the anisotropy is absent (I'r = I'g), we obtain Ny = 5. On the other hand,
S is given by the half value of the d-electron number (less than five) in the stable
configuration. ‘

Generalizing the above discussion, let us consider the Kondo problem With ar-
bitrary values for Ng, and S. Noziéres and Blandin discussed the isotropic multi-

channel Kondo model, for which the exchange Hamiltonian is written as

Hupaw =T ) a}:,m,s,akm(s)m . S. (1.13)
k! _
The complete compensation of the impurity moment is achieved only for Ny = 25.
This corresponds to the case of Mn impurities in' Cu in the absenée of crystal field.
The scaling approach shows us how the exchange interaction is reﬁormalized at low
temperatures. For the Ny, = 25 case, the strong coupling fixed point is stable. The
ground state is obtained by forming a singlet combination of one impurity electron
and one conduction electron in each orbital channel. It means that the local spin is

completély quenched. For 25 > N, however, the trapped electrons cannot quench

8
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Figure 1.3: The strong coupling arrangement of spins for the impurity and n trapped
electrons (a) when Ny, < 25, (b) when Ny > 2S.

the spin S completely. In this case an effective interaction is present between the
dressed spin with the magnitude S’ = S~ Ng,/2 and the conduction electrons around
it. The interaction is ferromagnetic, since conduction electrons with its spin parallel
to the impurity spin have lower energy. It is concluded that the strong coupling fixed
point is stable. This situation is illustrated in Figs. 1.3 (a) and 1.4 (a). For 25 < Ng,,
the z component of the dressed spin S, is opposite to that of the pure spin S,. As
mentioned above, the electrons with spin parallel to thé impurity spin couple with
the local spin, but the effective coupling I is now antiferromagnetic. It is concluded
that the strong coupling fixed point is unstable this time.. There must necessarily
exist at least one fixed point at a finite I'. This situation is illustrated in Figs. 1.3 (b)
and 1.4 (b). This consideration demonstrates that the scaling trajectories depend on

the parameters Ny, and S drastically;

- Here we briefly touch on the effect of crystal field splitting. In the above discus-

sion, the localized moment is restricted to a simple structure described by the spin

9
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Figure 1.4: The scaling trajectories along the T’ aﬁs, (a) when Ny, < 28, (b) when -
Ng, > 25: an extra fixed point A with finite I' must exist somewhere.

operator. This treatment can be justified if the impurity ground state is well sepa-
‘rated from the excited states due to a strong crystal field. For a weak crystal field,
however, the contribution from the excited states cannot be ignored. This problem
was studied by Yamada et al [27, 28], who applied the scaling approach to a model
appropriate to Ce and Yb with f! configuration. The scaling theory shows that Tk
depends on the splitting as '

. Do N1/No y Do\ N2 /Ny D \ Nm/No
n=(3) &) (F) _‘
where T is the Kondo temperature for the case without the excited levels. A;

T2, (1.14)

and N; are the level splitting between ¢ and 0 levels and the degeneracy of ¢ level,
respectively. ¢ = 0 corresponds to the ground level. For example, Ce system forms
the lowest state of spin-orbit splittings, j = 5/2 for Ce®*. Tt splits into I'y doublet
and I's quartet under a cubic crystal field. If we assume that I'; doublet is lower
than I's quartet, Tk is given as a function of A. In the region Tx <« A < Dy, the

result in (1.14) leads to

Ty = (%)zpoe-wﬂl” = (%‘1)27;2; | (1.15)

In this way, the contribution of crystal field splitting cannot be neglected as far as
A < Dy.

1.2.3 Cox’s Model

In the above discussion the orbital plays the role of only scattering channel. In reality

localized electrons form multiplets due to spin-orbit and Hund couplings. For a rare

10



earth or an actinide impurity, localized states are first expressed by the total angular
momentum J before the crystal field splitting is taken into account. Then we must
consider the angular momentum of orbital channel explicitly to derive the effective
exchange interaction due to the magnetic moment J. In the presence of crystal ﬁeld,
the localized states specified by J split into several states, which are classified by
the point group. Especially there are two types of doublets: Kramers doublet and
non-Kramers doublet for odd and even number of localized electrons, respectively.
Cox presented a realistic two-channel model for non-Kramers doublet, having in
" mind the Kondo effect due to a single uranium impurity with f? configuration [23].
Cox discussed the quadrupolar Kondo effect, starting from the Anderson model under

the following realistic conditions:

(1) For f? configuration, non-Kramers I'; doublet is a ground state of the cubic

crystal field-split J = 4 multiplet. The 'I‘3 energy level is taken as ¢;.

(2) The 5f' configuration lies above the I's level by an amount |eg|; all other

configurations are neglected.

(3) The conduction electrons contributing to the mixing with the impurity orbital
is restricted to j = 5/2 partial waves since the energy is lower for the mixing

with j = 5/2 than for that with j = 7/2 due to the spin-orbit interaction.

(4) The crystal field is assumed to be so strong that only ground state is left for
each configuration: non-Kramers I'; doublet for f2 and Kramers I'; doublet
for f*. The point group symmetry selects I's partial waves in the exchange

interaction due to the I'; doublet.

The effective exchange Hamiltonian can be obtained by applying Schrieffer-Wolff
transformation to the original model Hamiltonian. The exchange Hamiltonian can be
written with the bases of cubic symmetry. It can be mapped to so called two-channel
exchange Hamiltonian if the partial waves of conduction electrons are claséiﬁed with
pseudo-spin (T, |) and channel index (+,—): T's doublet is expressed with spin 1/2
operator corresponding to a quadrupolar moment, while I's partial waves with sym-
metries T'g(+2), Tg(+1), I's(—2) and Ig(—1) (see Table 1.1) correspond to (T, +),

11
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electron transfer

E(f?

Figure 1.5: Energy level scheme for Ut ion. Energy runs vertically. Only two
configurations are kept, which is the restriction of the model.

(1, +),‘ (1,—) and (], —), respectively. The two channels have the time reversal re-
lationship with each other. As mentioned previously, the two-channel Kondo model
leads to the non-Fermi liquid at low temperatures since Ny > 2S5. The details will
be discussed further in Chapter 4. In this connection the screening effect on the

stability of the non-Fermi liquid has been examined by several authors [29-32].

State (L) (8J27 - J(J + 1))
ot = X204+ —a) - Loy o o
Da) = /5(02) +1 - 2) 0 -8
Trt) = @ F5/2) - \/§| £3/2) 420
Ty +2) = \/% :t5/2)+\/_—g| $3/2) o . 48
Ty 1) = |£1/2) :I:% 8

Table 1.1: Cubic crystal field states. .
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1.2.4 Theoretical Approaches to Heavy Fermion Systems

Before examining an impurity model in realistic cases, we briefly touch on the the-.
oretical approaches to lattice cases. The periodic Anderson Hamiltonian is believed
to be the simplest model to describe the essence of heavy fermion systems. The
periodic Anderson model has been examined by many researchers [33-36]. If the

orbital degeneracy of f-electrons is neglected for simplicity, it is given by

Hoaw = —~t 3 Yabaj + S ema

<ij> s s
+V Z(ai,fz-g + fita'is) +U Y nanyy. (1.16)

Here a:[, and fi]: represent the creation operators of the conduction electron and the
localized f-electron with spin s on the i-th site, respectively. n; = fl fis 18 the
number operator for the f-electron. e; represents the energy measured from the
center of the conduction band. The four terms of the above Hamiltonian (1.16) are
the energy of conduction electrons, the energy of localized f-electrons, the mixing
between conduction band and f-orbital, and the Coulomb interaction between the
f electrons, respectively. The assumption U > A = wpV? (p is the density of states
at the Fermi energy) is reasonable since the localized f-orbital is good picture for
our problem. If we put the case that the f-electron energy level is above the Fermi
energy er and the condition €7 — ep > A is satisfied, the Coulomb interaction is not
so important since the number of f-electrons on a lattice site becomes much smaller
than one. This situation corresponds to La based compounds. If the f-energy level is
lowered and ¢ — ep reaches the order of A, we have the valence fluctuation between
f° and f1 conﬁgurations. In this situation, a new conduction band is formed by
quasi-particles which arises as a result of mixing between conduction electrons and
f-electrons. It makes the effective mass enhanced. When the f-level is lowered
further, ep — €5 and €5 + U — ep become larger than A; the valence fluctuations
are suppressed and the spin degree of freedom is more dominant. If it is allowed to
represent the degree of freedom of the f-shell in terms of a local spin, this situation
can be described by the Kondo lattice model:

Hyrpm = —t E Zalajg + JZZ S, (0‘)3'.90119/04'37 ‘ (1-17)

<t,j> 8 i 88
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1 1
J =2V? .
(EF—Ef+Ef+U—€F) (1.18)

Here the second term of the Hamiltonian expresses the exchange interaction due to
the local spin on the i-th site. It can be derived from the periodic Anderson model
(1.16) via Schrieffer-Wolff transformation by suppressing valence fluctuations.

In this model the exchange interaction between the conduction electrons and lo-
cal f-electrons is responsible both for the Kondo effect and the magnetic ordering
through RKKY interactions. The phase diagram of the ground state was studied
with various theoretical approaches [37-40]. There are three basic parameters: (1)
the total width of the conduction band 2D, (2) the exchange parameter J and (3) the
density of conduction electrons n.. In one-dimensional case, which is rather special,
it has been almost completely understood for all region of the parameters: If J is
large or n. is small, a ferromagnetic metallic state is stabilized. It is believed that
otherwise the most stable state becomes paramagnetic metallic state [41].

The low temperature Fermi liquid in heavy fernﬁon systems is most conveniently
studied by the perturbation theory for the Coulomb interaction. It leads to a large
enhancement of the T-linear specific heat [36]. Recently the infinite dimensional case
has been actively pursued by many researchers. In this case, the self energy can be
exactly evaluated since it has no wave vector dependence, so that the model can be
studied even for the strong coupling region by means of the quantum Monte Carlo
[42] or the NRG method [43].

1.3 Outline of Thesis

In this thesis we study various effects related to the atomic structure in 5 f impurities.

We wish to answer the following general questions:
(1) How different is the Kondo effect due to 5f impurities from 3d impurities?

(2) Is the Kondo effect due to even-number f-electrons different from the case of

odd-number f-electrons?

With these questions in mind, we wish to reconsider the multi-channel problem

for a realistic situation. We examine the Kondo effect due to U-type impurities
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having plural 5 f-electrons, (5f)% and (5f)% in particular. In the case of plural 5f-
electrons the spin-orbit and Hund couplings are large. In addition, the crysfal field
is important. Our main purpose is to study how the Fermi liquid or the non-Fermi
liquid is stabilized or destabilized in these real systems. In contrast to Cox’s work, we
take into account crystal-field excited states above the ground state. We generalize
Cox’s analysis on two points. First, we examine the importance of excited states in
f! configuration, which appear in the intermediate states of the exchange process.
In this connection we compare (5f)% and (5f)3 to see the difference between even-
number and odd-number f-electrons. Second, we assess the importance of excited
states lying above the non-Kramers doublet ground state for f2 configuration. For
both cases, to describe this complicated situation from the large Coulomb limit, we
derive an effective exchange Hamiltonian, starting from the Anderson Hamiltonian
suitable for plural 5 féelectrons. Then we study the Kondo effect by applying the
NRG method [12].

In Chapter 2, we first discuss the atomic structure in f" configuration. The
largest intraatomic interaction is the direct Coulomb interaction between localized
f-electrons. The formation of multiplet is due to the exchange couplings among
them, which is generally related to both spin and orbital moments. To describe the
multiplet in terms of quantum numbers such as the angular momentum, there are
two approaches: Russell-Saunders coupling and j-j coupling schemes. Both schemes
finally characterize the eigenstate with the total angular momentum J. Next the
crystal field is introduced as a perturbation to the f-electron states with J. The cys-
tal field Hamiltonia,n’ can be expressed with tensor operators formed with the total
angular momentum operator J. The eigenstates in the crystal field are classified by
the point-group symmetry. This is explicitly applied to the J = 4 state for cubic,
tetragonal and hexagonal crystal fields. |

Second, we review the NRG method invented by Wilson. This is the most reliable
method to treat a many-body effect all over temperature region. The principal
idea of calculation is logarithmic descretization of a conduction band. The original
Hamiltonian of the exchange model is transformed into a recursion relation of a
hopping-type of Hamiltonian which is useful for numerical calculations. The energy

levels are determined by diagonalizing the Hamiltonian. How they change as the
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NRG step is increased will be demonstrated with the well-known one-channel Kondo
model. |

In Chapter 3, we derive, from an extended Anderson model with orbital degener-
acy, an effective exchange interaction. The crystal field is not introduced at the first
stage. The j-j coupling scheme is chosen to determine the local f-electron states.
For simplicity, éoﬁduction electrons are restricted to partial waves with total angu-
lar momentum j = 5/2 which have the largest mixing with the local orbital. The
effective exchange Hamiltonian is finally expressed in terms of tensor operators of
j =5/2 and J. The derivation was already presented in §2 in ref. 44; however it is /
described here in more detail. | |

In Chapter 4, an effective exchange Hamiltonian is derived for a Kramers doublet
or non-Kramers doublet in the presence of crystal field. Kramers and non-Kramers
doublets are obtained for odd and even number of f-electrons, respectively. For
f? configuration, we obtain some additional terms, if we compare it with the two-
channel exchange Hamiltonian in Cox’s model. Whether these additional terms are
relevant or not will be examined by the NRG method. Similarly, for f2 configuration,
we examine the effect of additional exchange terms which are related to the Hund
coupling. The NRG results for both cases have been presented already in §4 in
ref. 44, where a cubic crystal field has been chosen. Here tetragonal and hexagonal
cases will be also examined.

In Chapter 5, the effect of local excited states is examined when the ground state
for f2 is a non-Kramers doublet. For simplicity the excited states are restricted
to only one singlet. The effective exchange Hamiltonian contains exchange terms
connecting the doublet with the singlet as well as only within doublet state. As
a result, it brings about competition between the Fermi liquid and the non-Fermi
liquid; it is also examined by the NRG method. This problem has been discussed in
§3 in ref. 44. However the ground states at the fixed points is examined further in
this chapter. Finally a generalized treatment is added to make sure the reliability
of the conclusion based on the effective exchange Hamiltonian which is simplified by
assuming a strong crystal field.

This thesis closes with conclusions in the last Chapter.
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Chaptér 2

Theoretical Preparation

2.1 Atomic Structure

We first review how to obtain the atomic structure by means of the Clebsch-Gordan
method [45, 46] and the crystal field theory [47, 48]. They are useful to determine a

localized electron state.

2.1.1 Multiplet of Localized State

Let us consider the following Hamiltonian in atomic units

Huom= =2 VI= 22 4+ 524 6l s:) (2.1)

i i T g T

Here the first and the second terms are kinetic energy and potential energy due to
the nucleus. Z is the atomic number. The eigenstates of the first and second terms
are characterized by the combination of four quantum numbers, namely, principal
n, azimuthal [, magnetic m and spin s. The third term represents the Coulomb
interaction; its direct part depends only on the number of local electrons and the
exchange part leads to spin multiplicity. As shown in more detailed discussion by
Nozieres and Blandin [19], there should be (+1) independent parameters to describe
the Coulomb interaction for the [-shell. However orbital terms are expected to be
much smaller compared with both direct and spin terms. The fourth term represents
the spin-orbit interaction. It increases faster with the atomic number than the other
effects, so that for heavy atoms it outweighs the othér effects. For simplicity, the two

limiting cases are usually conSidered; one is Russell-Saunders coupling, the other
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j-7 coupling. In the former the spin-orbit interaction is small compared with the
electrostatic splitting of the levels. In this approximation, J2, J,, L? and S? are

diagonalized at the same time, where
J=L+S, L=>1, 5=) s, (2.2)

Then the spin-orbit interaction can be expressed as AL - S. On the other hand, in
the latter case, the electrostatic terms should be taken into account after the spin-
orbit interaction is considered. At any rate, the derivation of the effective exchange
interaction is more complicated in these cases, since orbital multiplicity must be
considered as well as spin. For f-electrons, the crystal field is smaller in magnitude
than the spin-orbit and Hund couplings. In this case, first, the Clebsch-Gordan
method is applied to determine the multiplet which has the total angular momentum
J as the quantum number, and secondly, a crystal field is introduced as a perturbation
to the eigenstate of J. |

Now let us discuss the f? configuration in the absence of crystal field by means
of ‘Russell—Sa,unders and j-j coupling schemes. In the Russell-Saunders coupling
scheme, the degenerate states consisting of independent electrons split into the spin
and orbital multiplets due to the intraatomic exchange interactions. They are ex-
pressed with —S’fc and —Lfc, respectively, where Sy and Ly represent, respectively,
the total spin and angular momenta. As a result, the eigenstates are classified into
" the multiplets which are characterized by the quantum numbers S and L at the
same time. The ground state has the maximum magnitude of both quantum num-
bers, namely, § = 1 and L = 5 for f2. Secondly, the,spin—orbit interaction expressed
with ALy - Sy splits the states further according to the total angular momentum
J=L+SL+S5—-1,---L—8, since

2Ly Sy = (Ls+ Sy — L% - S5 - (2.3)

The splitting is of the order of spin-orbit coupling A. For f2, the ground state
corresponds to J = 4, since A is positive.

On the other hand, for the j-j coupling scheme, we first form the eigenfunctions of
the total angular momentum j for each eleétron, which has s = 1/2 and [ = 3 for the

f-electron. The spin-orbit coupling splits the eigenstates into two: j =1+ s = 7/2

18



U>Ja> 4 U>)>JH

~— .
f2 JiorJ =7/2 P discarded

<
]
)
~
i
-

S=1 4 heh=s5p S J=2

J=L+S8S J=li+ ]

@ (b

Figure 2.1: Energy level schemes:(a) Russell-Saunders and (b) j-j coupling.

and j = [ — s = 5/2. Since the coupling constant is positive, first, the latter state
is obtained as the ground state. Secondly, we form the multiplets according to the
Hund coupling; they turns out to be the eigenstates of the total angular momentum
J due to the effective intraatomic exchange interaction —ch. For f2, the ground

staté corresponds to J = 25 — 1 = 4. The excited states are separated from the
ground state by the order of the Hund coupling. Notice that the ground state has

the same magnetic moment J in both coupling schemes.

2.1.2 Crystal Field Theory

Next we take into account the crystal field, which splits further the multiplets. There
are two sources in the crystal field effect: the electrostatic potential frorh the sur-
rounding ions and the mixing with them. Let us take the first effect and consider the
potential energy due to point charges which are arranged with the cubic symmetry.

Six point charges of —Ze are located at the point +a located on the z, y and z axes.
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X —adg
Figure 2.2: The system surrounded by six point-charges with cubic symmetry.

Then the Hamiltonian for the electron at = is given by

6 Z€2
chb — Z IR — ’T‘| | (24)

\

where R; (i = 1,.--,6) represents the position of the i-th point charge. By following

ref. 47, it is easy to rewrite the Hamiltonian (2.4) with spherical harmonics as

T2 45 ) 5 (1) (4)
Hon = 2or{C57(0,0) + 1/ 77108706, 0) + CY(6,0)]}

3Z¢e?

+ {00, 9) - \/g[cf)(e, 0)+CU0 @)} +- (25)

where
47

214+1

CR(0, ) = . Y™ (9,). (2.6)

Here the common energy shift is ignored. The point charge model is not reliable
quantitatively, but the symmetry of the crystal field is properly included.

To calculate the matrix elements of H_ 1, equivalent operators based on angular
momentum operators are the most convenient. This method derives from the re-
lationship between any vector operator T' and the angular momentum operator J

as

(aJM|Ty\|&/IM"y & (TM|J\|IM') (X = 2,9, 2), ; (2.7)
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where |aJ M) is an eigenstate of J and its 2z component M (= J,J —1,---,—J). a
represents a quantum number other than the angular momentum. This relation is

also applicable to tensors; For example, we have

1
(@I M| Y igilal TM') o< (TM5(Judy + Jy 1) T M), (2.8)

The tensor operators defined as '

(2p—1)(2p—3)---3-1
—1)\? p _ 7(p)
(-1) J 2pop—2). 2 Jy =J; (2.9)
and

[, JP) = /(o +a)(p — g+ 1)IE; (a<p). (2.10)

By using J{), Heu, can be expressed with Stevens operators [49, 50] as

Hew, = B4Oy + Bs0, (2.11)
where
Oy =0 +5-0;, Og=0§~—21-03, (2.12)
and ’/
09 = 35J% — [30J(J +1) — 25]J% — 6J(J + 1) + 3J3(J + 1)?, (2.13)
Of = %(Ji +J4), ' , (2.14)
Of = 23178 — 105[3J(J + 1) — 7)J5 + [105J%(5 + 1)* — 525J(J 4 1) + 294]J2
—5J3(J + 1)} +40J%(J +1)* - 60J(J + 1), (2.15)
0§ = i[ujf ~J(J+1) = 38)(JL + T4 + %(Ji + J[11J2 — J(J 4 1) — 38],
(2.16)

where H.,, is expanded up to the sixth order, and B, énd Bg represent crystal field
parameters. For f2, the J = 4 multiplet is split into the eigenstat’es according to the
point group representations for Oy: a I'y singlet, a I's doublet, a I'y triplet and a I's
triplet. The order of energy levels depends on the crystal field parameters.

The energy levels have been discussed in detail in ref. 51. Here we discuss f! and
f? states in connection with Cox’s model. For our purpose it is convenient to rewrite

the crystal field parameters as
By =Wa/F(4), Bs=W(1—|s])/F(6). 1)
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State Energy (in W unit)

r = Y0+ -4+ X 280801 -
o) = Y2410y + - ) - )
| 4o + 64(1 — |z|)
rm) = 041 -2)
Tk = \/gl +3)+ \/g; L 1)
14z + 4(1 — |z])

o= yim-1-4)
rety = 1128 - 20
o=y -1-2) |

Table 2.1: Eigenstates and eigenvalues for J = 4 under a cubic crystal field.

—262 — 20(1 — |z|)

Then
Hep = W[m(ﬁ%) +(1- |m[)(%)] (-l<z<1), (2.18)
and it is better to choose
F(4) =60, F(6)= 1260, | (2.19)

for J = 4. The eigenstates and the energy levels are listed in Table 2.1. The
x dependence of the energy levels are shown in Fig. 2.3. On the other hand, for
f1, we obtain a I'; doublet and a I's quartet which are given in Table 2.2. The
localized electron system in Cox’s model is realistic when W is negative and large;
then —3/8 < z < 0 holds. The I'; doublet can become the ground state over
~3/4 < z < 10/19. For the z > 0 region, the energy level of I's quartet lies lower
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State Energy (in W unit)

Dyt = \[| 5/2) — \/—|i3/2 Az
ITg +2) = \/\|:i:5/2 \[|¢3/2

|F8:{:1)—|:tl/2

Table 2.2: Eigenstates and eigenvalues for J = 5/2 under a cubic crystal field.

-1 -08-06-04-02 0 02 04 06 08 1
X

Figure 2.3: The z dependence of energy levels given in Table 2.1. The unit of energy
is —-W (W <0).
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- than that of I'; doublet. Both energy levels has been exchénged in Cox’s model. We
| note that the 'y quartet as well as I'; doublet has to be taken into account in order
to make realistic the exchange interaction due to the I'; doublet all over z. Such a
general treatment will be carried out in Section 4.1.

Similarly, we obtain a non-Kramers doublet for tetragonal and hexagonal crystal
fields. The crystal field Hamiltonian can be written in terms of Stevens operators as

for the cubic case. For the tetragonal case, it is given by
Hw=£®+m@+ﬁq+%%+%% (2.20)

where O) appears dge to the uniaxial anisotropy:
<£=3ﬂ—Ju+i) - (2.21)

In this case, we have two I'; singlets, I'y, I's and T'y singlets and two I';s doublets as a
result of the splitting of J = 4 multiplet. The wave functions and the energy levels
are summarized in Table 2.3. For J = 5 /2 states, we have I'g, I'; and g doublets.

For the hexagonal case, the crystal field Hamiltonian is given by
Hiyex = BYOS + B20S + BOY + BEBS, (2.22)
Whefe 0§ is due;to the six-fold symmetry:
08 = %(Ji +75). (2.23)

In this case; we have I';, I's and I'y singlets, a I's doublet and two I'g doublets from
J = 4 multiplet. They are summarized in Table 2.4. For J = 5/2, we obtain I'7, I'g
and I'g doublets.

Here we wish to make some general comments on the crystal field splitting. It
depends on whether J is integer or a half odd integer. The former and the latter
correspond to the case of even and odd number of electrons, respectively. For integer
case, the multiplet splits finally into singlet, if the symmetry of the crystal field is
low. It is possible to obtain doublet states for a high symmetric crystal field. Those
doublets become identical after 27 rotation around the z axis. They are called non-

Kramers doublets. For a half odd integer, on the other hand, it is impossible to lift
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State ' Energy

T = e(14) + 1 = 4)) +7[0) 4By + 16By — 2¢/(12B, — By)? + 35B

T = %(]4) +]—4)) — V2e[0) 4By + 168, + 2¢/(12B, — By)? + 35B2

T2) = \/;(l4> —-|-4) 28B, + 148,

Tig) = [(I% +1-2)) . —8B, — 11B4 + 15B,

ITea) = \/g(p) —-2) ~8B, — 11B, — 15B,

ITP+) = a| F3)+ 8] 1) ~5By — 6B4 — 1/9(4B; — 534)2 + 175B
TP4) =8| F3)—a| £ 1) ~5By — 6By + 1/9(4B; — 5By)? + 1758

Table 2.3: Eigenstates and eigenvalues for J = 4 under a tetragonal crystal field.
Here the crystal field parameters are rewritten: B, = BY, By = 60BY and B, = 12B%.
For simplicity, BY and B are taken as zero. a®+4? =1 and ¥2+2¢62 = 1 are satisfied.
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State Energy

IFh1> = |0> —2032 + 36B4 - 2OB6

1
ITh3) = \/;(|3> +|-3)) 7By —42B4—17Bs+ 7B

1
Tna) = \/;(l3> —|-3))  7B;—42Bs—17B~ 7B}
Tust) = | £1) _17B, + 18B, + Bg
ID{9+) = of £ 4) +' 6] F2) 108, + 3By + 138 — C(By)

IT@+) = 8| £ 4) — a| T2) 10B, + 3By + 13B4 + C(B})

C(By) = 1/(18B, + 25B, — 9B;)? + 28 B2

Table 2.4: Eigenstates and eigenvalues for J = 4 under a hexagonal crystal field.
The crystal field parameters are rewritten: By = BY, By = 30B%, Bs = 1260BJ and
Bj = 360B%. o* + % =1 is satisfied.
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the degeneracy of Kramers doublets without breaking time reversal symmetry. The
Kramers doublet acquires the phase 7 by the 27 rotation. In the character table,
the irreducible representations are classified into two parts, depending on the time
reversal symmetry. Identity and 27 rotation operations are denoted by £ and R,
respectively. The number in the E column corresponds to the degeneracy of the
eigenstate. The sign of the character in the R column is positive in the upper part
and negative in the lower part. It means that the Kramers doublet belongs to the
lower part which is called a double point group. It is characterized by the reversal
of sign of the wave function under R. The non-Kramers doublet, on the other hand,
belongs to the upper part. |

The effect of the crystal field is not negligible for heavy fermion materials. The
typical U-based compounds include representatives of them are UBe;3 with a cubic

crystal, URuySi, with a tetragonal crystal and UPt3 with a hexagonal c¢rystal.

2.2 Numerical Renormalization Group Method

2.2.1 Model Hamiltonian

The Hamiltonian, to which we will apply the numerical renormalization group (NRG)
method [12], consists of two parts; the kinetic energy of conduction electrons with

spin and scattering channel and the effective exchange interaction. It is given by

H=Y eka,zmakm + H, (2.24)

km

where H is, for example, a multi-channel exchange Hamiltonian with a local spin
S as ,
Hew = —J 3 0y, 0k0n(0) s - . (2.25)

o
ss'u ~ -
where s (=T1,]) and p (= 1,2, - -) represent spin and channel, respectively.

Next we discuss how to transform the Hamiltonian to a form appropriate to the
NRG calculation. In the NRG method, we first discretize the conduction band loga-
rithmically. Each energy region is approximated by one state. In this procedure we
first define the local orbital for the conduction electrons, which is coupled with the

local moment through H... Next we construct new conduction orbitals connected
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Figure 2.4: The logarithmic discretization of density of states for conduction elec-
trons. The Fermi energy level is taken as the origin. The half width of band with D
is logarithmically discretized with A.

with the old ones in order. These orbitals form a new basis of the conduction elec-
trons. The logarithmic discretization is applied, for example, to the conduction band
in Fig. 2.4. In the other words, we simplify the k dependence of the kinetic energy

of conduction electrons as
h?k2 N Rk
2m* m*

e = k, ~ (2.26)

and apply the logarithmic discretization to the k space. Here &, kg and m”* represent
the Planck constant over 2w, the wave number at the Fermi sea and the effeétive
mass of the conduction electron, respectively. The discretization parameter is usually
chosen as A = 2 ~ 3. BEach discretized region is denoted by j (j = 0,1,---). We
denote the creation operator of the conduction electron for' e, > 0 region as a}Lm and
that in &, < 0 region as b;[m. All states of conduction electrons belonging to each
discretized region are represented by just one state with the average energy E; of the
j-th region. According to this approximation, the Hamiltonian for the conduction

electrons is written as

Hy = ZEj(a;[majm = blrmbim) o (2.27)
jm : »

where

1 . \
E;= 5(1 +A™HAT, (2.28)
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The unit of the energies is the half width of band.
Next we define an operator f,, which can be obtained through the unitary trans-

formation from a;, and b;y, as

fnm = Z(unjajm -+ ’Unjbjm), (229)

J

where f,., is a fermion operator satisfying

Fom i + Flfom = 1. (2.30)
"First we choose fy,, which coﬁples with the local moment operator. Then we can
obtain .
1—A"tq12 .
Ug; = Vo5 = [ ) ] / A_]/2. (2.31)

Secondly, we determine the fermion operator in the outside orbital, fy,,, which.is
coupled with fy,, from the commutation relation between fy,, and Hy. Similarly,
we can obtain f,, for arbitrary number n through this procedure. Finally Hy is

rewritten as

S ealflmfurim + le,mfn;n) (2.32)

where
£q = %(1 +ATHATA(L = AT (1 = ATEL TR - A2 (2.33)
If n is large enough, we can approximate ¢, as
| €n = %(1 + A‘l)A‘“/z | (2.34)

It is allowed for our problem to apply this relation of e, to all n. As a result of the

above procedure, we have the hopping type of Hamiltonian:

-1 [ o0 )
IS A (S + Hfan) $ B (235)

H
2 n=0 m .

For example, Hy for the multi-channel exchange Hamiltonian (2.25) is reduced to

HO = —jz fot'ﬂfo.su(o-)s’s * S) (236)

ss'pn

29



and
2J

J= 1A (2.37)
In practice, we keep the coeflicient of the term
: Z(fimfni—l,m + f7;i-+1,mfnm) (238)

as unity. Then one can truncate higher energy levels, since the energy scale for the

lowest states is of the order of unity at every renormalization step. Let us define

Hy = A-DP2 [Ii\::: A fhfustn + Simfon) + ). (259)
Then H is expressed with Hy as
H= lim %(1 + ATHAE-D2E, (2.40)
We can also obtain the recursion relation as
Hyr = A2 Hy + S Flfvsan + Flsgnfun) (2.41)

Finally we briefly touch on the relation between the renormalization step and the
temperature. The temperature is practically defined by calculating the impurity
susceptibility and specific heat. If the total spin is a good quantum number, the
impurity susceptibility is given by

o Ty expl=fH) | TH(U2y) exp(=pyES)
N—oo | . Trexp(—fyHy) Trexp(—AnHY) ’

TXimp = (2.42)

where J, v is the z component of the total spin. For HY and JB’N, the impurity part

is excluded from H ~ and J, n, respectively. [y is defined as

By = %(1 4+ A)A~WV=D/2 e (2.43)

where kg is Boltzmann constant. If By is nearly equal to unity, only excited states
of Hy with the order of unity are important in the trace. Corresponding to this, a

temperture Ty is defined by
1
kpTy = —(1+ M)A~ gy, (2.44)

Then the lowest energy excitations of Hy are of the order of kg7, since the lowest

energy scale for Hy is the order of unity.
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2.2.2 Numerical Diagonalization

The NRG calculation starts from the bases obtained by the diagonalizing Hy. In
general Hy does not explicitly preserve the magnitude and the 2z component of the
total spin. In this case the number of total electrons is the only conserved quantity
that can be used to index representing the eigenstates. |

Next, in order to obtain the matrix elements of H;, we use the states given by the
direct product of the eigenstates of Hy and the states of conduction electrons filled in
the first orbital. The latter states are also classified with the number of conduction
electrons filled in the orbital. The eigenvalues and eigenstates of H; are determined
by diagonalization. Then we calculate the matrix elements of Hy with the recursion
relation (2.41) by using the bases formed from the eigenstates of H; and the states
of conduction electrons filled in the secdnd orbital. Repeating this procedure, we
determine the eigenvalues and eigenstates of Hy.

Here we briefly show how to construct the matrix elements of Hy,; by using the
solution of Hy. The states of conduction electrons filled in the (N + 1)-th orbital
are expressed by a combination of f}:r +1,m For example, if m has the four degree
of freedom (four scattering channels including sbin), they are expressed with sixteen

binary numbers with four figures as
0000, 0001, 0010, ..., 1110, 1111. a (2.45)

The numbers 0 and 1 correspond, respectively, absence and presence of an electron
in each orbital. Moreover these binary numbers are represented by ayy1 =0 ~ 15
in order and the state of fermions filled in the (N + 1) orbital is expressed as |ay1).
If we represent the eigenstates of Hy by |ky) and have N, states at the N-th NRG
step, the number of the bases |ay11) ® |ky) for Hy ., amounts to 16Ny, The matrix

elements of Hy,; are given by a direct calculation of

(s kﬁ\r,fl]\LfmfNH,m + f]1\;+1,mme|05N+17 ky), (2.46)

where |ay41, ky) and |a’N+i, ki) are the bases of Hy,;. For the total number of
electrons Qy, the state |ky) has been already obtained as a linear combination of

the bases of Hy_1 in the following way:
lkgy) = Z C(ka an-1,ky-1)lay—1)|ky-1), (2.47)
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Figure 2.5: A graphical representation of Hy. The full circle represents a local spin,
while the open ones represent orbitals of conduction electrons whose number is N.
The distance between the empty circles corresponds to the magnitude of integral of
electron transfer between them. The distance at the right side is always taken to be
unity, independent of N. The chain expands towards the left as N increases.

where C(kg,; @n-1,kn—1) is the expansion coefficient. The matrix elements of Hy;;
are given by a sum of the products of C(kq,; @n—-1,kn—1) from |kg, ) and that from |
L7302

As mentioned above, the eigenvalues and eigenstates of Hy can be obtained by
using the recursion relation (2.41). However, we are inevitab‘ly confronted with the
difficulty that the matrix dimension of Hy becomes so large as N increases that it
expands beyond the computational capacity of computer. In the NRG method, we
leave only low energy eigenstates of Hy at each NRG step. For the next Hy,, this |
" cut-off restricts the maximum dimension of the matrices for diagonalization. It does
not affect the low energy part so seriously because of the logarithmic discretization.
- In practice we obtain the eigenvalues for each @y, arrange all the eigenvalues of Hy
in the order of energy and leave the eigenstates smaller than Ng,;. We note that Neut
should be chosen to take care of the degeneracy of the eigenstates. The eigenvalues
in the high energy region is not reliable since the higher excited states have been
discarded, while those in the low energy region are not reliable either if N is fixed to
a finite value. The larger N, is, the better accuracy is expected for the eigenstates
in the wide energy region at each NRG step.

Finally we summarize technical points in the NRG method.

o One has to check carefully the eigenvalues with the almost same value. If they
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cut—off

D ——

I 1;gure iGCut-off of eigenvalues of Hy. Energy is measured vertically.
are within the numerical accuracy, it is likely that they belongsto a degenerate
level. If so, one should put the same eigenvalue to them; otherwise numerical

eITor may arise.

In some cases Ny cannot be taken so large because of the computational
capacity of computer. In taking the cut-off, one had better take care of a
difference of energy between the lowest discarded stateé and the highest kept
state; otherwise the cut-off may give rise to error. The difference of energy is

set larger than 0.01 ~ 0.05 for our problem.

To achieve efficiency, the vectorized calculation should be performed with a
supercompﬁter. Much of CPU time are consumed for the diagonalization of the
matrix. The maximum dimension of the matrix to be diagonalized depends on
Ncut and the number of scattering channel of conduction electrons m including
spin. It amounts to ~ 1800 x 1800 for Ny ~ 500 and 4 channels; ~ 4000 x 4000
for Nyt ~ 300 and 6 channels.
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2.2.3 Analysis of Energy Eigenvalues

Here we discuss the change of the energy eigenvalues of Hy with the increase of N.
The energy levels are measured from the lowest energy at each NRG step. They
finally become constant as N becomes large enough and keep the same values in the
region of larger N. This means that Hy is approaching a fixed point.

First we consider the case of free conduction electrons (only hopping terms in
(2.39)). This case turns out to be one-particle problem. Hy can be expressed with
N x N matrix per scattering channel m, which is exactly diagonalized and written

as

N/2 4

HY = 50 S8 000k + i) (N +1: even) (2.48)
HY, = 5. [nhod g0+ S ni(0lgim + hlbin)| (W12 0dd) |

Here gjm and g;n, are the creation and annihilation operators for the quasi-particles
with the ¢-th positive energy eigenvalue 7; and the channel m. hjm is the creation
operator for holes defined as '

W= g (2.49)

This relationship is guaranteed by the particle-hole symmetry. When N is large
enough, low energy levels are independent of N. As a result of the numerical diago-
nalization, they can be obtained as the following series of energies which depend on
- whether N is even or odd for A = 2:

m = 0.6555, 1y = 1.976, ..., 7 =21 }

=0, 1, =1207, n,=2827, -, g =2 (2.50)

For large 4, the energies are generally given by as 7; = A" and 7} = A"/,

Next we take Hy in (2.39) into account together and here treat the well-known
one-channel case where m is restricted to only spin degree of freedom in (2.36).
The parameters are taken as J = —0.3, A = 2 and N.,; = 1000. The behavior of
energy eigenvalues depends on whether N is even or odd The low-lying enéergy levels
are shown in Fig. 2.7 for even-number and odd-number renormalization éteps. The
cigenstates are characterized by the total number of electrons (Qy), the magnitude
and the z component of total spih (Sy and S, n respectively). TLhe total number is

measured from the number of electrons at half filling. The ground state has Qy = 0
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for both even-number and odd-number renormalization steps. As far as the weak
exchange coupling is considered, the emergy levels in the small N region can be
explained by weakly coupling the electrons with the local spin. For small |J|, the
first excitation energy is nearly zero. This region is called the free-spin fixed point.
The sufficiently large N region, on the other hand, corresponds to the strong coupling
fixed point, where |J| can be regarded as infinity. It means that a local singlet is
formed on the 0-th site where one conduction electron and the local spin are combined
strongly. Therefore the low-lying energy levels are equivalent to filling electrons in
one-particle energy levels shown in Fig. 2.8. We actually find that the one-particle
energy levels at even-number renormalization step are equal to 7; for odd N in (2.48),
while those at odd-number renormalization step agree with 7; for even N in (2.48).
The ground state is given by filling electrons up to the Fermi energy level. In Fig. 2.7
(a), the ground state has Qy = 0, Sy = 0 and S..n = 0. my is the first excited state,
which corresponds to @ = 1 and @y = —1. This state has four-fold degeneracy,
including the degree of freedom of spin. The second excited energy level equals to
21, which corresponds to @y = 2, @y = —2 and both one-particle and one-hole
excitation (Qy = 0). The excited state has six-fold degeneracy since the last state
has four possibilities due to spin degeneracy. In Fig. 2.7 (b), a one-particle energy
level lies just Fermi energy level, so that the ground state is four-fold degenerate: It
" consists of two-fold @y = 0 state, a @y = 1 one and a Qy = —1 one. The excited
states can be obtained similarly to Fig. 2.7 (a). According to this analysis, for one- |
channel exchange model, the free-spin fixed point moves to the strong coupling fixed
point as the renormalization proceeds. For this we conclude that the local spin is
quenched and Fermi liquid realizes at low temperatures. However this is not the case
for the two-channel or multi-channel exchange model which satisfies Ny > 2S5 as

discussed in Section 4.1. The NRG analysis on this problem will be described later.
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Figure 2.7: The low-lying NRG levels for the one-channel Kondo model for the
antiferromagnetic coupling J = —0.3. A = 2 is taken and ~ 1000 states are kept: (a)
even-number and (b) odd-number renormalization steps. The numbers at the right

side represent the degrees of degeneracy.
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Figure 2.8: The one-particle energy levels at the fixed point where J = —oo for (a)

even-number and (b) odd-number renormalization steps.
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Chapter 3

Effective Exchange Interaction
Due to Orbitally Degenerate
Impurities

3.1 Extended Anderson Model

As mentioned in Chapter 1, we wish to examine the Kondo effect due to orbitally
degenerate impurities in which various interactions among plural local f-electrons
play an important role. Such a situation nﬁght be realized in U-based compounds.
Although many intraatomic interactions must be taken into account in order to have
a realistic atomic structure, we start first from the extended Anderson model in the

absence of crystal field, which is written as

H = Hk-l-Hf+Hmix, : (3.1)

Hy =Y exal,ane, (3.2)
ks
U J n%
Hf :afnf+—2-(nfc —’)’Lf) - TH(ZS'?:-F Ef —27’Lf)+Hso, (3.3)
Hupix =Y (vka,zsfm's + h.c.). | | (3.4)
kms ’

Here Hy and Hy represent the emergy of conduction electrons and that of local
f-electrons, respectively; Hyix is the mixing Hamiltonian between conduction and
local f-electrons. a,]:s and fju are the creation operators for conduction and local
electrons, respectively. &k, m and s denote the wave vector, orbital channel and

spin (=T, |), respectively. ny and Sy are the local f-electron number and the local
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spin, respectively, which are defined with the creation and annihilation operators of

f-electrons as

nfg = ZfizsfmSa _ (3'5)
Z ffls( ) 3,fm3’7 (36)

mass'

Sy

where o is the Pauli matrix. H,, is the spin-orbit coupling in the 5f-orbital

Hﬂo = A Z f":r"“" (L)mm’ ) (%)ss’fmlsl’ (37)

mm’ss’
where L is the orbital angular momentum operator with L = 3 and m represents L,.
The second and third terms in Hy are the direct and exchange Coulomb interactions
between local electrons on the impurity atom, respectively. They are equivalent to
18] |
2 fatlaatmsstmn + 2 S fhaflsfmisstnn (38)

mijma myma
8189 8182

It is difficult to describe exactly the eigenstates of local f-electrons in which A and
Jy are comparable in magnitude as in heavy atoms like U. For simplicity, we choose
the j-j coupling scheme, assuming U > A > Ju. This gives the same ground state as
the Russell-Saunders coupling scheme for U > Jy > A. Since A is positive and large,
the subspace with J = L — 5 =3 —1/2 = 5/2 is chosen for one electron states and
J =L+ 85 ="7/2is discarded. The multiplets are formed from the electrons within
J = 5/2. The eigenstates are distinguished by the total angular momentum J; the
energy levels are separated from each other by Jy. According to this scheme, the
ground state of local f-electrons corresponds to the quantum number of J = 5/2,
J=4and J = 9/2 for f1, f? and f3 configurations, respectively. For conduction
electrons, it is reasonable to restrict ekclusively to partial waves with the total angular
momentum j = 5/2, since the mixing is expected to be particularly strong between
the conduction band and the impurity orbital with the same symmetry. Then it
is useful to introduce the creation operator of conduction electrons in the spherical

wave representation as

T = (=i ,kR

Okims = /koY; Qk)a’l—s’ v (39)
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where Y™ is the spherical harmonic and we choose [ = 3 for f-symmetry. R rep-
resents the radius of the spherical crystal. To take into account the spin-orbit in-

teraction, a,t’&;n’s is transformed to j =1+ s ="7/2 and j = — s = 5/2 operators

M
a‘k /2, = V a’k3M —i2p T V - _ak3M+1/2u (3.10)
a’k 5/2.M = V k3M 12,1 V a’k3M+1/2 1 (3.11)

where M is the z component for j = 7/2 or j = 5/2. After these transformations

as

the Hamiltonian (3.1) is rewritten as

= Y ko) aim, (3.12)
km .
. U 2 JH 2 n?c ' \ .
| Hy = Egng + —(nf —ny) - _2'(2[Sf]J:5/2 t5 - 2ns), (3.13)
Hmix = Z (vka,]:mfm + hC) (3.14)
km
Here m (= 5/2,3/2,---,—5/2) is the z component of j (j = 5/2) for conduction

electrons or that of J (J = 5/2) for the local f-electrons. E; means E; = g5 — 2.
[Sfc] 7=5/2 T€DTesents a projection of Sfc onto the multiplet which consists of only local
electrons with J; = 5/2 (¢ is the index of the local electron). Namely, the total angular
momentum of the multiplet with n electrons is determined by J = J1+Jo+---+J,
where every J; has the magnitude of 5/2. Although the multiplet is no longer pure

eigenstate of S%, one can write it within the restriction as

' 3 1 35
[S?‘]J=5/2 = an + E(Jz - an) (3.15)

This relation is derived in Appendix B.

3.2 Derivation of Effective Exchange Hamilto-
nian

Now we derive an effective exchange Hamiltonian from the simplified Anderson
Hamiltonian (3.12), (3.13) and (3.14) via the Schrieffer-Wolff transformation, as-

‘suming |Ey| and U are much larger than v,. The configuration of the most stable
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unperturbed state is assumed to be f™. The stability condition is then given by
(Ef+ (n—1DU|(Ef+nU) <0, (3.16)

if Jy <« U. Here the Fermi energy is taken as the origin of energy.

We will treat the effective exchange interaction only within the ground state of
this configuration, which can be justified if the Hund coupling Jy is so large that one
can neglect the contribution from the excited states. On the other hand, we consider
all the intermediate states for f*~! and f™*! configurations, which are connected by .
the electron transfer between conduction and local electrons.

The eigenstates for f* configuration given by H; have the following energy:

B, ) = Bymt (U - -']22)(71,2 —n) - %{Ji(Ji +1) - Py, (3.17)
where n is the electron number and J; represents the total angular momentum of the
i-th eigenstate. The ground state is given by the maximum J among J;’s: J = 5/2
forn =1, J =4forn =2 and J = 9/2 for n = 3. If the Schrieffer-Wolff
transformation is applied to second order of vy, we can obtain an effective exchange
interaction between conduction electrons and the local ground states |n, J, M) where
M represents Jz =J,J —1,---,—J. Formally the Hamiltonian takes the following
form:

Ho=)" az,m,akm [Z I(n—1,J;) Tum(n — 1, J;)

kE!
mm/

=2 I(n+ 1, ;) Trwm(n + 1,5)]. (3.18)

J
where I(n —1,J;) and I(n 4+ 1, J;) are the couplings of the exchange interaction via

the intermediate states with f™~! and f™*!, respectively. They are given by

Ika|2
I(n—1,7) = , .
(n=1,7) E(n—l,Ji)—E(n,J)>0 - (319)

I ]. J' -_ y .
(n + 1, ]) : (n I j) (n, ) > 0, (3 20)

where conduction electrons corresponding to € ~ e, = 0 are considered.
Towm represents the transition matrix with respect to M. The matrix elements

T are given as

(Tm"m(n - 17 Jﬁ)) = (TL, J) Ml'ffl,'” - 17 JHM%)(”’ - 1: Ji7M‘i|fm’]n’ J7 M>a

MM
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(Tm,m(n +1, Jj))MrM = <'n,, J, M/|fm"n +1, Jjan)(""’ 1,

where M, =M —m' =M —mand M; = M+m =M +m'. |

In + 1, J;, M;) are the eigenstates for f*~! and f™*', respectively.

(3.21)

Ji, Mj|f1|m, J, M),

(3.22)

n—1,J; M;) and

Next we introduce a unitary transformation t0 Tpm(n — 1, J;) and Trym(n+ 1, J;)

in order to describe them in terms of irreducible tensor operators Jé”) in rotation

group, which have been defined by (2.9) and (2.10). The relationship between Ty,

and Jq(p) can be written down as follows:

T 5252 = —CsJ,

% _E T—5/2,3/2 O Jis) ’
VIO 2 Y10 T (3)
3 6 —1/2,5/2
200 Ll (4)
ﬁ v D —3/2,3/2 3
5 2 (5
S T_5/2,1/2 )
VB 3 3 5
27 27 2V7 '2\/’_7_ T1/2 5/2 02']2(2)
A 1 _ 1 _ b T C J(3)
2v3  2V3 2v3  2v3 ~1/2,3/2 — 3J2
3 6 _ V6 3 T 32,172 o J® |
T 2T /T 2T 42
1 _v6 5 L T 5/2,-1/2 Cs I
2v/3 2v/3  2V3 2v3
1 23 3 22 L : 1
VI VB VB VBT Tsj2,5/2 13"
V5 L 0 1 _AB T . J?
via VT VT \{171 1/2,3/2 241
a0 L 2 1 L T - | c.J®
V3 V30 V15 V30 V3 —1/2,1/2 31
VT V70 V70 N ’ , 4J1
L. a5 Y10 M5 L T 5/2,-3/2 . J®
V42 V2l Vel V2l Ja2 , 51
1 A A A 1 1
R R N C I TG T I e T
WA WA VA YA ym WA Tyjo/2
A Iy A A AV T_y/2,-1/2
SO O TR TG TN | e
NN Y NV —3/2,-3/
A 5 5 __5, 5  __1 T_5/2,_5/2
67 6v7  3V7 VT 8VT 6v7

B
(&}

I

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)



001

CrJY
CyJP?
C3JPY
CyJ
CsJY

(3.28)

Here 1 denotes the unit matrix. Cy, Cy,---,Cs are constants which are given in
Tables 3.1-3.3. In fact, the matrix elements of the above unitary matrices correspond
to those of j,(_pq) for conduction electrons with j = 5/2. It leads to the following
tensorial expression:

S AL(-1)15®) g (3.29)

pa
for both of Towm(n — 1, ;) and Tiym(n + 1, J;). The difference among the transition
matrices appears only in the coefficient Aj. ‘
Finally we combine Tpm(n — 1,J;) and Thum(n + 1, J;) to obtain the effective
exchange Hamiltonian. For the f" configuration, the coupling for each p (p > 0) can

be expressed with Jy,(n) as

Jop(1) = ap(1)1(0,0) + Bp(1)1(2,0) + 1(1)1(2,2) + 6,(1)1(2,4),  (3.30)

Toa(2) = ap(2)I(1, 2) + Bo(2)1(3, 5) + (2)I(3, 5) + ,2)1(3, 3), (3.31)

Top(3) = 0p(3)1(2,2) + B(3)1(2, 4) + 1,(3)1(4,2) + 6,(3)(4,4).  (3.32)

Here the coefficients ap(n), —Bp(n), —7p(n) and —b,(n) are related to C, and are
the values in the first, second, third and fourth columns, respectively, in Tables 3.1
(for n = 1) and 3.2 (for n = 2). For n = 3, a,(3), Bp(3), —1(3) and —6,(3) are the

values in Table 3.3. For example, we have

5 25 15 1 3
a1(3) = —1—4’ 052(3) = ﬁ’ 03(3) = -2—8, a4(3) = m, 045(3) = -2—§ (3.33)
The coefficients B,(n), 1p(n) and 6,(n) for n = 1 and 2, and all coefficients for n = 3
are related to the Hund coupling. For n = 1 and 2, B,(n) + v,(n) + 6,(n) = 1 is
satisfied for each p. Therefore Jy, takes the same positive coupling constant

vk PU

= T T = VOB, w00’

(3.34)

44



if the Hund coupling Ju vanishes. Here the ej-dependence of J, is neglected and kg
represents the wave number at the Fermi sea. Similarly, for n = 3, a,(3) + 5,(3) =
7p(3) + 6,(3) = 1 is satisfied for each odd p. Then J; can be also given by Jy, for
each odd p if Jg = 0.

After the calculations as mentioned above, the Hamiltonian for f, f% and f3

ground states is given to second order of v by the following form:

H = Hy+ Hy + Hey, (3.35)
Hy=Jo)Y, az,m,akam/m, | (3.36)
. kE! ’
where
2 1\~ (7) (»)
Toim = 52 (32 D2 (1) A {8 mm P + A
p=1g=—p
with m' — m = —gq. The coefficients A, are related to Clebsch-Gordan coefficients.

The Hund coupling is contained not in Jo but in 4,. j%) and J@ represent the tensor
operators for conduction and local f-electrons, respectively. Namely, the former is
formed with j = 5/2 and the latter with the local angular moment J. When Jg

vanishes, A,’s take the following values:

3 7 1 2

Ay=1, A= 2 A=ty A= o, As =, (3.37)
for f! configuration (J = 5/2),
Ay=1, Ay = % Ay = —-é%, A, = —&%, As = -—2—8155, (3.38)
for f2 configuration (J = 4),
Ay =1, Ay =0, Ag= -, Ag=0, A5 = —o\ (3.39)
162 8505

for f3 configuration (J = 9/2). Since the Hund coupling is actually finite, the value
of A, shifts from the above value by aJu/U (< A,) for a small Jy/U, where a is
also related to Clebsch-Gordan coeflicients. '

Our Hamiltonian written with tensor operators is convenient to study the effect

of the crystal field in a systematic way.

45



Trim(0,0) Tom(0,4) Trum(2,4) Torm(4, 4)

NG 1 1/3 5/3 3
(+/70/2)C4 1 —1/3 —23/21 3/7
24/21C, 1 1/3 1/6 —3/2
9v/5C; 1 ~1/3 29/42 ~19/14
- 15V/7Cy 1 1/3 —5/6 -1/2
(45+/7/2)Cs 1 ~1/3 —25/42  —1/14

Table 3.1: C,’s in (3.23)—(3.28) for f* configuration.

Tovm(1,5/2) Tormn(3,3/2) Tonin(3,5/2) T (3,9/2)
(+v/6/2)Co 1 4/21 1/2 55/42
(+/70/2)Cy 1 ~5/21 —1/2 ~11/42
7v/21C, 1 10/21 1/2 ~83/42
—1264/5C3 1 20/21 ~1/2 —61/42
—105/7C4 1 —4/21 1/2 ~55/42
~315/7C5 1 2/21 ~1/2 —25/42

Table 3.2: C’s in (3.23)—(3.28) for f2 configuration.

Tm/m(2, 2) Tmlm(Q, 4) Tm/m(4, 2) ' Tm’m(4, 4)

(v6/3)Coy  3/14 11/14 3/14 11/14
(v/70/2)C;  5/14 9/14 —5/14 —9/14
(54/21/12)C,  25/672  —25/672  25/672  —25/672

63v5C;  15/28  —43/28  —15/28  43/28
(v7/6)Cs 1/3528  —1/3528  1/3528  —1/3528
(945/7/2)Cs  3/28 25/28 —-3/28  —25/28

Table 3.3: C,’s in (3.23)—(3.28) for f? configuration. All C,’s vanish for Tpym(2,0)
and Tim(4, 0). '
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Chapter 4

Kondo Effect Due to Doublet
State

In this chapter we wish to discuss differences of the Kondo effect between Kramers
and non-Kramers doublets. In particular we focus our attention on the number of
scattering channels and the stability of Fermi liquid and non-Fermi liquid at low
temperatures. '

It is well known that, whether one has Kramers doublets or not depends on the
number of local electrons: we have the former case for odd number and the latter
for even. This shows up typically in connection with f2 and f® configurations in
the presence of cubic crystal field. f2 and f2 also correspond to U*t and U3*,
respectively. We discuss the f? case first and then turn to the f3 case. The case of

tetragonal and hexagonal crystal fields are also studied for f2.

4.1 Kondo Effect Due to f2 Non-Kramers Dou-
blet

For f? configuration, the degenerate ground states without the crystal field are char-
acterized by the total angular momentum: J = 4 and J, = 4,3, -+, —4. The per-
turbation due to cubic crystal field lifts the degeneracy. If the lowest state becomes

non-Kramers doublet, it is given by |P3£) which are written as

Tt = Y2 - YD) By, (1)

Ts—) = ﬁl2> + El —2).
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- Both of them can be distingﬁished in terms of. quadrupolar moment (irreducible

tensor operator of rank 2)
3J2 — J(J+1) =275, » (4.3)
and have the following properties:

(Ps £ |J,|Tst) = 0, o (44)
(T3 £ |JETsF) =0 (n:odd). (4.5)

We express the non-Kramers doublet |I'33) with a pseudo-spin operator with 1/2 as

S4|Ts=) = Ts+),  S_|Ts+) = [T5=), - (46)
S0ty = 5I0s4), SiI05-) = —{Ty-). (4.7)

The effective exchange Hamiltonian is obtained by calculating (I's & |J{)|T'34) and
(T's = {Jéf’)|I‘3:{:) in (3.36); the scattering of conduction electrons is expressed with
jép) in the following way:
By " :
Hex = Jo Z ak'm'a'km[(TJ-)m mo— + (T_J_)m’mS+ + (Tz)m’msz + (TO)m’m]a (4'8)

mm’

where T, T, and Ty are linear combinations of { jq(P)}, which are defined as

V2 \/E(J(g) i) 4+/30

_ :(2) | (2) (4) |, (4

To= =07 + 72 5) = 530 Y) — 2205( +353),  (4.9)
_ 4 8 @ 4 AVT0 © 4@
_ 1 @ _ V70, @) )

for Jg = 0. These are written down explicitly with 6 x 6 matrices as

54/30
. —3\/6:
1 | 3430 ~5/6
, 36
54/30
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2 V5
4 -2
T, = o 9 , (4.13)
V5 2
NG , 0
1 V5
-3 \/5'
1 2
Ty = -3 0 , (4.14)
V5 -3
V5 1

where the blanks in these matrices should be filled in with 0’s. For conduction
electrons, the spherical symmetric basis of the operator has been transformed to the

cubic symmetric one in the following way:

1 5 |
a;[ TF — \/:az +5/2 \/jalt,qts/z,
k Tex2 = \/ilk +572 T \/'a’k F3/2)

a‘k Tetl = a‘k :l:1/2 (4.15)

Then, within the non-Kramers doublet, the effective exchange Hamiltonian in the

~absence of crystal field (3.36) is reduced as follows:

Hex(FB) - Hiso + Ha.niso + Hpot, (416)
Higo = JO E{ a’k’ Ts+20kTg+1 T al]:f JTg—20k,Tg— 1)S-
kk'!

a’k’ r8+1ak Tg+2 T Qs 1g—10k,Ts— 2)S+

=
T )
ak, I‘s+2a'k Feg+2 — a‘k’,[‘3+la'qu8+1
+

a’k’ Ts—20k,Ts— aI, Ts—10k,Ts~ 1)]5 }, (4.17)
)
Haniso = Jo Z{ 42 [(a’l'c’ rg+2%k,Tg+1 — a;[, JTs+10k, Ts+2)
kk!
+(a} Ta—2®k,Tg—1 — az',fg—la’k,l"s—2)] (84— 5-)
_2v5

91 [( Qp I‘7—ak Tg+1 + U'Z' F5+lak T7— )
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+ (azf,r7+ak,1“e—1 + al]:',rg—lak,l‘ﬁ)} (S+ +8S-)

_ 4

21 [(a’;wi:’,FT—a’kyPB‘l‘z + aII,F8+2ak,P7~)

+ (all’r7+ak’[‘8._2 + az:’re_za/k,r‘7+)] Sz} (4.18)

1

Hyor = EJO > [ - (az]:',r8+2ak,1“s+2 + aZ',Ps—zak,Nz)
Kk

- (all,rg-l-lak,l“wl + al’,rg-lak,Fs—l)

+ 2(aZ,,r7+ak,r7+ + alr,m-ak,m—)] (4.19)

Here the last part Hyo is the potential scattering, which is ignored in the following
discussion. Through the above calculation, the Hund coupling Jy has been taken
to be zero. It actually appears in the coupling constants since f3 configuration caﬁ
be taken into account together with f!. Even if Jy remains finite, however, it does
not change the form of this Hamiltonian and only modiﬁes the coupling constants
in the Hamiltonian. We have also neglected the splitting of f! states due to the
crystal field, whose effect only gives rise to difference between the coupling constant
 Jo in Hi, and that in Hypeo. This can be justified for a weak crystal field. The first
part of the Hamiltonian H;,, is the isotropic two-channel exchange interaction, which
is the same as what Cox derived byk assuming that the lowest T'; doublet for f1 is
left as the:'only intermediate state of the exchange interaction under a strong crystal
field [23]. The coupling is antiferromagnetic since Jy > 0 holds. The second part
Hniso 18 the anisotropic exchange interaction for the partial waves with three kinds
of symmetries: I'y—, I's + 2 and I's + 1 belong to one channel, while I'7+, I's — 2 and
I's — 1 make the other channel. This interaction arises since I's quartet as well as I';
doublet is taken into account for f!. Both channels do not mix with each other. The
first term in Hapiso has the form of 0,5, and the second one corresponds to ¢, S;.
The last term cannot be compared to the usual exchange interaction.

Next we examine the low temperature physics of the exchange model, using the
NRG method. As we have done in the Section 2.2, we treat the hopping-type Hamil-

tonian (which can be derived by following Wilson) with a recursion relation as
Hypi=APHy +3 [(fzJ\rr+1,o,Lwa + tar+1,u9Nu) + h-C-]; (4.20)
. op
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and |
Hy = HO,iso + HO,aniso, ) (421)

HO,iso = Ja Z [ - f(;prfOLpS—— - f(LpfOTuS-{»
©

+ (o = 1,05, (422)

Hoaniso = ), [Jﬂ(f(:rmfow - lepfOT/L)(S+ —-5)

n
+ J'y(g(-)tpfow + leng;L)(S+ +5-)
 To(0b, o + Fihu00)S:): (4.23)

Here o (=1, ) represents a pseudo-spin with 1/2 corresponding to the quadrupolar
moment. u (=1,2) is the channel index and one of the two channels is the time-

] t

reversal partner of the other. ij, f:rl and g; correspond to alts 2 alts 41 and ap, _,
respectively, while f;fT, f;fl and g;r correspond to aia_z, aie_l and ar, %, respectively.
" The conventional two-channel model can be obtained if only Hy s is left, which leads
to the result that the fixed point belongs to a non-Fermi liquid type. J, reaches a
finite value J, whether J, is weak or not, as shown by Fig. 4.1. In this case it is
allowed to omit gz in (4.20), since the exchange interaction is not connected with
gz . A is taken to be 3 and ~ 300 low-lying states are kept at each renormalization
step. The reason why it is called non-Fermi liquid is that the ground state has the
degeneracy derived from the local moment. The NRG energy levels at the fixed
point is understood by considering that the local moment still remains. Although
this interaction is isotropic, anisotropy becomes irrelevant and the same fixed point
can be obtained as a result of renormalization [52, 53].

Let us turn to the stability problem of the fixed point against the perturbation
of Hyaniso- A is also taken to be 3 and ~ 500 low-lying states are kept at each
renormalization step in this case. In Fig. 4.2 the low-lying energy levels are shown
for even NRG steps. One notices immediately that the dégeneracy of the enérgy levels
given by HO,iso is lifted by the perturbation at the initial step, but it is recovered
gradually as the NRG step proceeds.' The low-lying energy levels at the fixed point

of our model are identified with those given by the conventional two-channel model.
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Figure 4.1: The low-lying NRG energy le\}ei;fdr Higo; Jo = 1.0 (solid line) and
J = 0.4 (broken line) at (a) even-number renormalization steps and (b) odd-number
renormalization steps. The numbers at the right side represent the degrees of degen-

eracy.
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Figure 4.2: The low-lying NRG energy levels for the case J, = 0.4, Jg = —(5/16)7,
J, = —(v/5/4)jo and J5 = —(v/5/2)jo at even-number renormalization steps. The
numbers at the right side represent the degrees of degeneracy.

" At even NRG stéps the degeneracy of every energy level is four times that of the
corresponding energy level in Fig. 4.1 (a). It is evident that the conduction electron
denoted by g:[ has no direct coupling with the local moment. It means that Jg, J,
and Js — 0 as J, — J;. We conclude from this that the perturbation is irrelevant
and the non-Fermi liquid fixed point is stable. This conclusion is still valid if the
Hund coupling Jy is finite, since its effect simply gives rise to a slight modification

of the bare values of the couplings J,, Jg, J, and Js.

This argument holds also for the case of the f2 ground state for tetragonal or
hexagonal crystal field [54]. For the tetragonal case, the doublet state isvgiven by
|T5+) in Table 2.3. To describe the doublet we can introduce spin 1/2 operator in
the same way as in the cubic case. After calculating the matrix elements related to

J®) in H, (3.36), we obtain the effective exchange interaction due to the doublet in
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the same form as (4.8). In this case T'; and T, for T} are obtained as

V42 (2 2\/—— o, 5V6 oo 2\/— 4)
VA (1) - 235 ey ﬂ(() 49,

TL="gg 204 (4.24)
12 97 ) 7 (3) 11 5 2 (1) 1.3 1.
T, = —5-0 (40 tggdo )+ Tezde )+ ﬁ( + 750 = 630)
210 (5)
+315 op (5 +3%1). (4.25)

For the conduction electrons, the creation operators are transformed to the new ones

with 1/2 pseudo-spin ¢ (=T, |) and channel index p (=1,2) defined as

_ ‘/gﬂ“ltﬁ/z + \/70‘“1,—3/2 [
Opp1 = 702 1 50 v Orir = Qg y/0
Jdo \/gﬁ“;[,_-s/z + \/70&&}:,3/2

k12 = G120, OQkj2 7o T 50 :

(4.26)

and
T \/—aak 52 ‘/_ﬂ Ak, —3/2
V702 + 562 ’

bT _ ﬁo‘a;[,—s/z - \/gﬂai,3/2
k2 V72 + 532 '

Finally we obtain the effective exchange Hamiltonian in terms of these operators

(4.27)

. and 1/2 spin operator as

B/2(70% + 562)

7 (0kr1, 0815~ + aZ,luakTﬂS+)

Hex:JOZ[

kk'p

1
+ 5(0b i, = abiy0n1)S)
70? + 302
-+ JO Z <— 14 IB ) [Z(az:ulazkgl — allazakgz)'
' kk! o

Here the potential scattering is also ignored. The NRG analysis was carried out by
adding the last term related to S, to the anisotropic two-channel exchange model.
The result shows that the extra term is marginal irrelevant and the non-Fermi liquid
fixed point discussed above is still stable. Thus, within this model, the isotropic

two-channel exchange model holds at low temperatures.
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For the hexagonal case, there are two kinds of doublets, |T'ys) and |T'ne) as shown
in Table 2.4. For the former, the effective exchange Hamiltonian is given by taking
a = 1 and § = 0 in the exchange Hamiltonian (4.28). For the latter, it is more
complicated than the above and is given for |I‘£16)) as

(-l

Hye=Jo Y, 71 [(a,'c,5/2ak1/2 + az,_l/gakus/z)s—

kE!

+ (aifl/zak5/2 + ai,_5/2ak_1/2)5’+]

+ 3v14ap
14

+ (al]:f—3/2ak1/2 + aif_l/zaks/z)&]

3v/50° i
- T[(az,_3/2ak5/2 + a,‘c,_5/2ak3/2)3—

+ (a;[,_3/2ak5/2 + “1'-5/2ak3/2)5+]

[(al]:fl/zak—?»ﬂ + CLIJL?,/zak—l/2)'51—

9
[(Ozz - ﬁﬁQ) (al]:'5/2ak5/2 - aI’—S/Zak‘5/2)

-+

i
+ (a2 — ﬁﬁz)(a}:’a/zak?»/z - a}:’~3/2a’°_3/2)

2 .
+ ?ﬁz(al‘/l/zakl/z - a;!:/_l/2a:k_]_/2)] Sz} (4.29)

If the intermediate state for f! is restricted to the lowest state, for example, |+ 3/2),
only the first exchange term remains and the diagonal terms related to .S, is modified.
In this case we have the same form of the effective exchange Hamiltonian as (4.28).
Adding the second and third terms to the exchange Hamiltonian as a p’erturba,tion,
we carried out the NRG study. The results show that the perturbation is not relevant
and the non-Fermi liquid is still stable.

In this chapter, all the f! states have been taken into account for a weak crystal
field. The NRG study has shown that the additional terms coming from higher

intermediate states are not relevant.

4.2 Kondo Effect Due to f? Kramers Doublet

We now turn to the f3 case obeying the Hund’s rule. The cubic crystal field lifts
the degeneracy of J = 9/2 ground state, leading to the Kramers doublet |T'¢+) as a
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candidate of the lowest state; it has the following form:

V14 1
| +9/2) + +1/2) 4+ —F%=|F7/2). 4.30
Te) = fl /2) + ﬁl />2¢5I¥/> (4.30)
The two state can be dlstmgulshed by the average of J,:
11

To take into account the Hund couphng Ju, we introduce two couphngs which are
defined with I(n £ 1, J;) given in (3.19) and (3.20) as

Jo = %[I(z, 2)+ I(2,4) + I(4,2) + I(4,4)] > 0, (4.33)

hi= 2 l1(2,2) ~ 1,4+ 1(,2) - 1(4,4)] >0 (~ ), (430

where Jy can be also given by Jp, in (3.32) for each odd p if Jy = 0.
As we have done in Section 4.1, the Kramers doublet [T¢) can be expressed with

S=1 / 2 spin operator. Finally we obtain an effective exchange Hamiltonian as
Hex(FG) = Hex,.]g + Hex,Jla (435)
k!

Hori= 5 3 ailm,akmumm S+ (T mrm S

mm/!

+ (Tz,i)m’mSz + (TO,i)m'm], (4:36)
where -
Ty = (22,0 V3.0 V0.q) (V5. VB.m) Ve
= 105 71 T 4057l T Be7t 20573 T 983573 | T 3157
| (4.37)
22 1) 4 .3, 38 ~(5)> V0, .5 ) |
T, = 00 ®), 4
= <105 ~ 20590 tgade ) Tggp e+ (4.38)
le - _ 22\/— (1) 29\/_ (3 + 11\/—— (5) 29 \/g ](3) 11\/_— (5)
735 1 T 5e707 7938 7 567073~ 396907
114/7 (5)
44 (1) 58 .(3) 209 (5)) 11\/_ .(5)
227 (735] " 583570 TTgsas0 ) T 13230( '+ 550, (4.40)
1 @ V70 RO
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and Typ; = 0. If we use 6 x 6 matrices, the following expressions are obtained:

V5 3
0
1 v 4
T, = el o 0 : (4.42)
-1 \/3
0
3 V5
1 V5
1 ,
Tl,l - A 4 __4 ) (4.43)
NG -1
_\/5 -3
9+/5 33
~10v/2
1 26
" ~19 95
—24/10
3 114/5
) 9 —114/5
1 46
Tz,2 '8-4‘ —46 y (445)
115 -9
—114/5 -3
1 V5
-3 \/3
1 2
Ty = i 5 , (4.46)
NG -3
V5 1

where the blanks in these matrices should be filled in with 0’s similarly to (4.12),
(4.13) and (4.14). Then, within the Kramers doublet, the effective Hamiltonian can
be expressed with the cubic symmetric basis of the operators for the conduction
electrons as:
’ 1
Hex,3o = Jo Z{ - g[a”t’ﬁ—akfﬁ’s— + al’,P7+ak1F7—S+
kk!

+ (a']-!;’f',l-‘7—a'k’r7_ - a’Z’,P—,+ak,F7+)Sz]
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2r % : ot
+ [ak',r8+2ak,rs—25— + Qg pg—2Qk,Tg+25+

3
T ‘ _ T S
+(a’k’,I‘3+2ak,Fs+2 a’k',I‘g—Za'k,Ps—2) z
2 o
-+ g[az',rﬁlak,l‘s—ls— + all,rs—lak,l‘s+15+
+ (ail,rg+1ak,l“s+1 — az',rs~1ak,1‘s—l)5z] }, (4.47)
19
Hexqy = J1 Z{ 5 [al',r7—a'k,1‘7+s— + ai]:',r7+ak,r7—5+
k! \

+ (a‘;cl-’,r7—a’kyr7_ - a’;[',I‘7+ak,F7+)SZ]
59
[1_2_6(0'1'7F8+2ak’118_25_ -+ al]:'rs—zak,l‘s+25+)
29
Tz‘é(az/,rs-yzak,l“eﬂ-z - al]:',rs—2ak,l‘s—2)5—]

13
Ct [E(az’,rg+la’k,rg~ls— + al’,Psflak,Fs+lS+

+

23
+ E(QZ',mlak,ml - az',rg—lak,l‘s—l)sz]}

2v/5
+J1 Z{ ——6—3—— [(G’I’,I";—a'k,rg -2+ aZI’I‘8+2ak7]_“7+)S_
kk!

+ (a'l.!;',l"g—Za’kaF'T— + G’Z',F7+a’k,r8+2)s+]

24/15
63

+ (a;r/,m_ak,rs—l + az',r8+1ak,r7+)5+]

5v31,

T [(ak',yrg—zak,l‘sﬂ + ak’,I‘g—la’k,Fs+2)S—

+ [(az',rs_lak,n— + alr,r7+ak,rs+1)5~

+ (al',r‘8+1ak,Fs—2 + ail,rﬁzak,l‘rl)s%]

__4_\/_5[(T

63 Ot p,— Ok, Tg+2 — aif,r7+ak,rs—2)
+ (alt',rﬁzak,ﬁ— - al]:',rs—zak,l“7+)]5z}, ~ (4.48)

where potential scattering terms have been ignored. Here we have taken account of
the Hund coupling Juz whose contribution is contained in Hy s, where J; becomes
smaller with the decrease of Jg/U. On the other hand, we have neglected the splitting
of f2 and f* states due to the crystal field since it is considered to be much small

compared with that due to the Hund coupling in real systems. When Jy vanishes,
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there remains only Hex,JO, which is-a three-channel exchange model, but the coupling
related to I'7= is ferromagnetic and the other two couplings related to I's & 2 and
I's £ 1 are antiferromagnetic and identical. Therefore it turns out to be the same as
the two-channel model in Section 4.1, since the ferromagnetic exchange is irrelevant
as can be proved by the NRG analysis. The first part and the second part of Hey s,
represent, respectively, the anisotropic exchange in time-reversal pairs only and the
mixing of channels for conduction electrons.

We now apply the NRG method to (4.47) and (4.48). Explicitly, we study the

following Hamiltonian:
HN-l-l = Al/zHN + Z(fl-i\.f-f—l,anN,a'V + hC) (449)

and
HO = HO,sp + HO,ch7 (450)

HO,sp = Z [JLV(fJTufOlVS— + f(;rlufOTVS+)

v

o Jzu(f(;i.TufOTv - leufOlu) St (4.51)
Hom = K1 [(fonfou + f(jmfou)s— + (folszTl + fJ11f0T2)5+]
+ Ka( 013f0T1 + f011f0T3)5— -(f(;fnfma + fJT3f011)5+]
+ K[ (i fore + foisfom)s— + (fngfou + fhafo)Se]

+ K4[(foT1f0T2 - foufou) + (foTszTl - f(szOll)] (4.52)

Here Hyg, and Hy, represent, respectively, the exchange only in spin and the ex-
change in channel for conduction electrons. ¢ is the 1/2 pseudo-spin corresponding
to the magnetic inoment. v (=1,2,3) is the channel index and a time-reversal pair of
electrons belong to each channel. fTTl, f:fl, fTTz, f:rz, fTT3 and fﬂ; correspond to alt7_,
aiﬁ, alts 125 aiB_Q, alts +1 and ap, 4, respectively.

We have examined the exchange model for some typical cases. A has been taken
to be 3. The lowest 200 ~ 300 states are kept at each step. Technically one has to be
careful in the truncation of states, since it depends on the degree of degeneracy of the
highest fevv states. This problem becomes important near the fixed point because of

the presence of a large number of degenerate states.
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Figure 4.3: The low-lying NRG energy levels for the case J,; = J,; = —0.5,
Jio = Jig = Jp = J,3 =10, K1 = Ky = 04 and K3 = K4 = —0.4 at even-
number renormalization steps. The numbers at the right side represent the degrees
of degeneracy.

\First we treat only Hyg, (which corresponds to Jy = 0) and change the couplings
in various ways, keeping the constraint that J,; = J,; < 0 and J,2, J,2, Ji13,J.3 > 0.
For the case J1 o = Ji3and J,2 = J.3, the NRG result shows that the low temperature
behavior at a stable fixed point is identified with a non-Fermi liquid, since we have
two equivalent relevant couplings in the present case. The situation is the same as in
the conventional two-channel exchange model. On the other hand, if the anisotropy .
is added to the couplings, namely, J o # J,3 and J,» # J,3, the system becomes

Fermi liquid which is also given by the standard one-channel model.

Next we examine the stability of the fixed point against the perturbation of Hy c.
In Fig. 4.3 the low-lying energy levels are shown for even renormalization steps.
It shows that the fixed point becomes Fermi liquid type, even if J,o = J,3 and
Jz2 = J,3 This means that the non-Fermi liquid fixed point is unstable. From the

above argument we conclude that the Hund coupling gives the channel anisotropy,
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which causes the channel reduction at low temperatures, and the system becomes

Fermi liquid.
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Chapter 5

Influence of Local Excited States
on Kondo Effect

In the previous chapter, we have examined the Kondo effect due to doublet state
only and have clarified the difference between Kramers and non-Kramers doublets.
It has been shown that the Fermi liquid is not realized at low temperatures for f2
configuration. In this chapter, whether the non-Fermi liquid for f? is stable or not
is studied in moré realistic cases where the excited states are taken into account as
well as the ground doublet state. It is shown that the effect of the excited states
cannot be ignored in general since it tends to stabilize the Fermi liquid depending
on the coupling constants of the effective exchange interaction and the crystal field

" splitting of the localized states.

5.1 Model for Strong Crystal Field

In this section we wish to discuss a model for f? configuration in the presence of
a tetragonal or hexagonal crystal field. The local f-electron levels studied here are
shown schematically in Fig. 5.1. For simplicity we keep within the f? configuration
only the non-Kramers doublet ground state and the first singlet excited state; it
is assumed that the former is magnetically coupled with the latter. It is evident
~ that there are more crystal-field excited states in general. The singlet excited state
represents those éxcited states, although there is just one in our model.

We first examine how such a situation is realized in a real atom. To study the

effect of the crystal field on the Kondo effect with minimum elements, we restrict
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Figure 5.1: The local f-electron states which are considered in our model for a strong
crystal field. The f? configuration consists of the ground doublet and the first excited
singlet with splitting A. The intermediate states of f! configuration are restricted
to the lowest doublet state.

the local f-electron states to the doublet ground state (whose energy is taken as the
origin) and the first excited state which is a singlet and higher than the ground state
by A: ‘

|Ey) = $3)+8£1), |B)= (5.1)

1 1
—|2) + —=| — 2).
| LR 1
~For the tetragonal field |E.) and |B) correspond to IT{V+) and IT)) respectively
in Table 2.3. For the hexagonal field we take

|Ex) = ol £4) +6|F2), |B) (6.2)

_ %m) +\71—.2_| _3).
|E+) and |B) correspond to |F£16)ﬂ:) and |T{Y) respectively in Table 2.4). Here |m)
represents the eigenstate of J, (= 4,3, --,—4). The coefficients @ and 8 depend on
the crystal field parameters and satisfy a2 + % = 1.

The effective exchange Hamiltonian (3.36) gives transitions among the doublet
ground state and the singlet excited state. It is convenient to describe the matrix
elements of Heyx, (Ei|Hex|Ex), (Ex|Hex|Es) and (Ei|He|B), with the following
operators [55]:

8= SUBNE ~ [B)E]), Sy =|B)(E], S =|E)E
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my = |Bs)(Bl+ |BYE-|, m_=|B)(E:|+|E-)(B], (5.3)
iy = |By)(B| - |BYE-|, - =|B)(E,] - |E_)B,

where S represents a pseudo-spin with 1/2 describing the doublet ground state; both
my and 7y are operators which couple the doublet with the singlet excited state.
As will be shown later, the exchange coupling in our model is changed by « and S,
and it leads to competition among various exchange interactions and A.
Calculating (E+|J{P|Ey), (Ex|J®)|Ez) and (E|J®|B), we obtain an effective
exchange Hamiltonian within the doublet ground state and the singlet excited state

for the tetragonal case as

H=H+H+Hy (5.4)

H = Zaka}:‘makm, . (5.5)
km .

= A[B)(B], (5.6)

4 Hex = ']0 Z alemlakm [(T_Ll)m’mS— + (Til)m’m‘s’+ + (Tz)m’mSz .

kk!
mm!

+(TJ_2)m"m,m— + (TIQ)m’mm+ ;
HTsmmt + (T )] (57)

Here T'; and T, have been given by (4.24) and (4.25), respectively. T'o and T3,

which are related to the excited singlet state, are defined as

[\/_1742(],(1) vE \/_(5) Lo

Tia = 0|75 U= = 10871 T 50 7-1) ~ 10570 |
3v2 1) V6 (3) V15 (5) V5 3 2/7 .(5)
+ﬁ[ 35 (*7 * 16271 T 1627 ) + 378 378 (73 5 U3 )} (5.8)
5v/42 @ 2\/—_ (4) 96 ) | 44/30 (4 \/—— (4)
Tis=—a 7776 (7 )+ﬁ[1176( 45 i) - 1470 J
(5.9)

The potential scattering terms have been ignored in (5.7). It is convenient to trans-

i

form the basis of the creation operator a;,, as follows:
e (V3oL + VTaal 1s), (5.10)
1 .
702 + 5[ (ﬁa‘az,ﬂ)/z - \/gﬂak,qze,/z); (5.11)
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a,t, 11/2 18 kept not transformed. The exchange Hamiltonian (5.7) can be reduced to
a simpler form by using the new basis.

In the present model every orbital channel participates in the exchange interaction,
“so that the exchange terms related to m+ and 7+ are complicated. To make the
model simpler, we restrict the intermediate states of the exchange process to the
lowest Kramers doublet in f* configuration. This is the same restriction as in Cox’s
model [23], which can be justified for a strong crystal field (see Fig. 1.5). Moreover,

for simplicity, we consider the case where the eigenstates for f! are given by

| B = (V58] £ 5/2) + VTa| F 3/2)), (5.12)

\/THTEZ
|B{E) = W(ﬁali5/2>—\/§ﬁl¥3/2>), (5.13)
|E1jpt) = | £1/2), . (5.14)

for the tetragonal crystal field. This can be realized if the crystal field parameters’

satisfy
| Bi 0 B 3 (5.15)
BT ¢ B 10 ‘

The ratio of the energies for |E§})2:I:) lEg)Z:t) and |Ey/,) is obtained as

E(B§)) : E(ES)) : B(Byp) = 2(Ta® + 45%) : =7 —(To? + §2). (5.16)
Then, if the conditions
B3>0 Bs <1 | (5.17)
2 ) Bz 8 : Lo

are also satisfied, IE3 /2:!:> is selected as the lowest state within f* and it is also
reasonable to choose |E+) and |B) for f2. The derivation of the conditions are given
in Appendix C. The above discussion for the tetragonal case is also applicable to the
hexagonal one with minor modifications. The only difference is that the eigenstates
for f! are independent of tThose for f2, namely, of @ and @ in |E+), so that the basis

of the creation operator a;,, need not be transformed. The energy levels are given

by the crystal field parameters as
E(Es/2) = 10B3 + 6083, |
E(E3)) = —2B3 — 180BY, (5.18) -
E(Eqy) = —8BJ + 120B).
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() (b) (¢

- \/gﬂa'k,5/2 + ﬁaak,—3/2 Gha Gy
! Ta2 450 32 32

k|1 ak,1/2 Ak,—1/2  Ok5/2

ax12 Qk,—1/2 Okr,1/2  Ok,—5/2

V5Bak, 52+ VTaar s
Qg2 T2 1 50 a,—3/2 Okz3/2

Table 5.1: The répresentation of arsy (0 =1,1, u = 1,2) (a) for the tetragonal
crystal field, (b) for the case |B}|/| B3| < 3/10 and (c) for the case |BJ|/| B3| > 3/10
for the hexagonal crystal field. :

When BJ < 0 and B} < 0 are satisfied, it is possible to regard |E+) and |B) as the
ground state and the first excited state for f2, respectively. For f!, the ground state
becomes |Esjo) for |B?|/|BY| < 3/10 and |E4,) for |BY|/|BY| > 3/10.

For the strong crystal field, one can conclude from the above argument that con-
duction electrons affected by the exchange interaction are only two kinds of pairs
of partial waves. We finally obtain an effective Hamiltonian for both the tetragonal

and hexagonal crystal fields in the same form:

H = Hy+ H + Hx

Hy = ngaltouakw’ ‘ (5.19)
kou |
H, = A|B){B]|, (5.20)

Hex = Hop + Hep + Hye,y (5.21)
where

HSP = Z [JL,O(GZ’TILa’klpS— + a']!:/l#a,le_LS_'_)

kk'p
+Jz,o(a;[,waw — afl )], (5.22)
kHCh = Z {Kz’o(az’alakffl - a’Z’azaka'Z)Sz
kk'o
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ILg 1(3V7a +56) SVIB —VIB

Table 5.2: The coupling constants in He, (5.21) in units of Jy (> 0). (a), (b) and (c)
correspond to the three cases in Table 5.1: o = (1 +z)/2 and 8% = (1 — z)/2.

i |
+Y_Kig [(al,nam — Q1 apy2) R + (aLTzale - alflzaku)m],
kk' . .

(5.23)

Ho= Y I o(afppanm_ + al 110K12M4)- (5.24)
kk!

Here Hj, represents the exchange process in spin of conduction electrons and within
the doublet ground state. Except for the K,  term, Hy corresponds to the ex-
change in channel of conduction electrons and in ground and excited states of local
f-electrons. H,, represents the exchange in both spin and channel of conduction
electrons and in the two levels of the f-electrons. o (=T7,]) and p (= 1,2) represent
1/2 pseudo-spin and channel index, respectively. Explicit representations of agsy
are shown in Table 5.1. The coupling constants in H., are expressed by a and (3,
which are also given in Table 5.2 and shown in Fig. 5.2 where o® = (1 + z)/2 and
% = (1 —x)/2 (|z| < 1). If we suppress the terms containing my or finy, Cox’s
model for the tetragonal or hexagonal crystal field is recovered [54].

Having obtained the exchange Hamiltonian, let us examine the low temperature
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Figure 5.2: Various couplings of Hey in (5.21) as a function of z. The explicit forms
are presented in the columns (a), (b) and (c) of Table 5.2. The solid, dashed, half-
dashed, dotted and dot-dashed lines represent |J o, |z 0ls [ K20, |K 10| and |1 g,
respectively.
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physics of the model by using the NRG method. In the NRG method, the Hamilto-

nian is transformed to a hopping-type one with a recursion relation as

HN+1 = Al/zHN + Z(fl-\rl'+l,aquU# + h.C.), (5'25)
. op .
and

HO = HO,I + HO,sp + HO,ch + HO,sc, (526)
Hoy = A|B)(B], |  (5.27)
Hosp = Z[JL(f(:[TufOlﬂs— + leMfOTMS-I—)

»

+Jz(f(;i-T#fOTu - f(;l-lnylp)Sz]a (5.28)

Ho = S [Kulflafors = flafons)S

g

+K.L(f(-)]-¢71f00'2m— + f(;i.u2f00'lm+)]

+K1 [(fc:rnfmz = fJufow)ﬁl— + (fJTzfon = f(:rlzfou)ﬁu], (5.29)
Hoge = Il(fJTszllm— + f(:r11f012m+), (5.30)

where f,,, is a new operator which is obtained from axs,, via Wilson’s logarithmic
discretization of the conduction band. Energies are measured in units of half of the
total conduction bandwidth. A is the logarithmic discretization factor and we take
* A = 3. In most calculations, the lowest ~ 500 states are kept at each renormalization
step. If the exchange Hamiltonian is restricted to the first part Hy,, this model is
equivalent to the two-channel exchange model discussed in Section 4.1. It leads to a
fixed point which is of non-Fermi liquid type and isotropic; it means that J, and J,
reach the same finite value after a sufficient number of renormalization steps [52, 53].

Next we wish to discuss the role of Hy, which is a new type of exchange interac-
tion. We obtain the conventional two-channel model with Ny = 25 (N, = 2,5 = 1)
if A =0 and either K| = 0 or K; = 0 is satisfied. It results in the Fermi-liquid
fixed point where the impurity moment is compensated completely. In our model, if
A is small, the Fermi liquid is also realized though the relation K, = K has to be
satisfied due to the crystal symmetry. Figures 5.3 and 5.4 give the low-lying NRG
energy levels in this case. This is different from the Kj = 0 case because of the sym-

metry breaking of pseudo-spin. At the fixed point for K; = 0, quasi-particle energy
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levels have four-fold degeneracy related to pseudo-spin and channel. In the present
case (K, = Kj # 0), the degenerate energy levels for K 1 = 0 are split into two
due to the symmetry breaking as shown in Fig. 5.5. The splitting AE depends on
the coupling constants and A: AE becomes small as K, (= K1) increases, while as
K decreases, AFE becomes so large that the first excited energy level for even NRG
steps approaches zero, whiéh is the origin of energy. It also takes the same value for
both even and odd steps of the renormalization. Every level changes continuously
with K. On the other hand, in the large-A region, the effect of the coupling K|
becomes less important and only the K, term is left. Then the system behaves like
the ordinary Kondo model with an Ising-like exchange coupling.

Let us consider next both Hygp, and Hy g together. In this case, the particle-hole
symmetry is broken. For simplicity, we treat the case where J, = J, (= J), K. = K3
(= K) and K, = I, =0 are satisfied. Then the system depends on the parameters
J, K and A. We obtain either the Fermi liquid region or the non-Fermi liquid region,
depending on which of K and J is larger. The grdund state is a singlet in the former
and a doublet in the latter. The phase diagram is shown in Fig. 5.6, where A is fixed
at 0.3. The critical point K., below which the excited singlet is negligible, depends
on A. In Figs. 5.7 and 5.8 we show NRG energy levels near the ground state for the
case where J and K are comparable in magnitude. Clearly, how to reach the final
energy levels at the fixed point is different between these two cases, although both
of them have almost the same energy levels at the initial NRG steps. For finite J
and K, the particle-hole symmetry breaking lifts the degeneracy of the NRG energy
levels for either K = 0 or J = 0. They are split into parts with the center of gravity
kept constant. The splitting depends on both J and K. In Fig. 5.7, the local moment
is considered to be still present.- The NRG energy levels are the same as given by
the two-channel model with a local spin 1/2, except for the splitting of energy levels
due to the particle-hole symmetry breaking. However, in Fig. 5.8, the energy levels
at the fixed point can be reproduced by assuming that the compensation of the
local moment is achieved completely. Therefore the system becomes Fermi liquid
whose states are described by filling electrons 111 one-particle energy levels such as
shown in Fig. 5.5. In this case, the energy levels become asymmetric with respect

to the Fermi level due to the particle-hole symmetry breaking. They actually shift
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Figure 5.3: The low-lying NRG energy levels for only Hocn, where K = K7, K, =0
and A = 0 are satisfied. (a) K, = 4.0 and (b) K. = 0.1 are given at even-
number renormalization steps. The numbers at the right side represent the degrees

of degeneracy.
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Figure 5.4: The low-lying NRG energy levels for only Hocn, where K, = K;, K, =
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- Figure 5.6: The phas'e diagram of the stability ‘region of the Fermi and non-Fermi
liquids. Here A is fixed at A = 0.3 and K. (=~ 0.28) represents the critical point.
The magnitude of K, increases with the increase of A.

74



1'2 —I 1 o 1 l I |
REANG— 6
!
@ 0.8 g
2
& 04 r
- >
| O 1 ] ‘l I 1 ! 2
2 6 10 14 18 22 26 30
N |
(a)
12 i ‘t\*//l//i T T T
3 0.8 r ¢
P
%D 0.4
a .
' 2
O ] 1 t | I | | ] 2
1 5 9 13 17 21 25 29
| N
(b)
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downwards from the ones in the symmetric case. The presence of Hy g4, which we
have neglected in the above discussion, does not change the phase diagram of Fermi
liquid vs. non-Fermi liquid qualitatively.

In real systems, the coupling constants in Hy depend on the crystal field param-
eters as shown in Table 5.2 and Fig. 5.2. We conclude that the non-Fermi liquid is
dominant over the Fermi liquid all over z for the tetragonal field (Fig. 5.2 (a)) as
well as for the hexagonal field satisfying |B?|/| B3| > 3/10 (Fig. 5.2 (c)), since K is
smaller than J, or I;. However, the Fermi liquid is dominant in thé range z > 0.6
in case |BY|/|BY| < 3/10 is satisfied for the hexagonal crystal field (Fig. 5.2 (b)).

5.2 [Extension to Singlet Ground State

The above discussion can be extended to negative A [55, 56]. In this case the ground
state is the singlet state |B) and the excited state is the doublet state |E) for f2
configuration. The Fermi liquid region spreads more widely as A becomes smaller.
When A = 0, K, goes to zero. For a negative A, the K = 0 line is separated into
two regions as shown in Fig. 5.9: The local singlet | B) and free conduction electrons
are realized independently in the region where J is smaller than J.; for larger J, on
the other hand, the fixed point is non-Fermi liquid type discussed above. The Fermi
liquid region is connected with the former region continuously. This is understood
from Fig. 5.10, where J is taken to be zero. The first and second excited energy levels
for K # 0 are very close to those for the free-electron case (K = 0) as K approaches
to zero, especially in the case where A is negative.

Let us understand Fig. 5.10, where the one-particle energy levels are in the same

way as (2.48). For K = 0 and A = 3, the one-particle energy levels are

. — e — i-1
ny = 0.8000, 1y =2.997, -, 7;=3 } (5.31)

=0, nj=1696, 7=5196, ---, n|=3i71/2

This means that the localized state is in the singlet state denoted by |B) aﬁd the
conduction electrons have no coupling with the local electron. In fact the oné-particle
energy levels at the'Fermi-liquid fixed point depend mainly on the initial coupling
K and the crystal field splitting A. As K increases, they gradually changes until

they reach the energy levels in (5.31) in which even-number renormalization step and
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Figure 5.9: The phase diagram of the stability region of the Fermi and non-Fermi
liquids. Here A is fixed at A = —0.5 and J. (~~ 0.58) represents the critical point.
The magnitude of J, increases with the decrease of A.

odd-number one are completely exchanged when K — o0o. The coupling J causes the
particle-hole symmetry breaking. It is different from the strong coupling fixed point
for the one-channel Kondo model which does not depend on the initial coupling:
In the latter case, the magnitude of coupling becomes infinitely large as a result of
renormalization. |

To discuss the behavior in Fig. 5.10 more quantitatively, we study the effective
Hamiltonian descﬁbing the one~pafticle energy levels at the fixed point for J = 0. It

takes the following form:

Hy = Hy y + Hoyy + Heo s (5.32)
N-1
Hlt,N = A(N—l)/2 Zl A—-'IL/Z Z(f:ipf':—}-l,au + f:+1,0';1,f:0p) ’ (533)
n= o
Hgl,N = t;lA(N—I)m Z( gjﬂf;,ay + ff,;‘;pfgtru)f (534)
op .
H* . =gt A(NH)/ZZ(U) , (f*T f* _ f*Jf f* )
Ao, N 00 z)pp\Joru Jorp ol Jolu
! :
AR (fol fo o+ b ),  (5.35)
u

where N is taken to be large enough. f;;, represents the new creation operator
defined at the fixed point, which is related to f-Jr in (5.25). This effective Hamilto-

n
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nian describes free conduction electrons, which are influenced by the potential on the
zeroth site. The magnitude of potential energy is varied by the three coupling param-
eters ¢4y, thy and €f,, which are not independent of each other. If A* = 4/e}2 + t§ is
defined, the energy levels depend only on A*. On the other hand, if ¢j; are varied as
th, = atdy, rescaling with A* = o?A* leads to the same energy levels as with ¢%; and
A*. This relatioh holds well for low-lying energy levels. Then it is reasonable to take
i = 1, thy = 0 and €5, = A*. With this simplification, the effective Hamiltonian

describing the one-particle energy levels is obtained as

N-1 :
Hy = A |5 A S+ Folsonfim)
n= op

+€30A(N+1)/2 Z (02)0’0(01)#'ﬂfgj’p’fga'u7 (536)

oo up!

where the energy levels depend only on one parameter €%, when A is fixed. The
- dependence of energy levels on €j, is shown in Fig. 5.11. Clearly, ¢j, corresponds
to the coupling K in Fig. 5.10 although the rescaling of €}, is necessary to fit the
energy levels with ones at the fixed point for each K completely. Practically e}, can
be determined by fitting the first excited state given by Hy with that given by the
NRG calculation. By using the same value for €j,, the second and higher energy
levels also show a good agreement within less than 1 % error. It is clear that e}, = 0
corresponds to the case K = 0, while ¢, — oo corresponds to the case K — oo.
\The effect of the coupling J changes €f, and brings about another 'para,meter which
is added to the second term in (5.36):

SSOA(N+1)/2 Z (GZ)U'U(UZ)N'ﬂij’y’ fgaua + 6530A(N+1)/2 E fgjpfgop’ (537)
oo pp! , op

where the second term breaks the particle-hole symmetry. As discussed above, the
‘conclusion is that the quenching of the local moment is influenced by both the local
singlet state denoted by |B) which is independent of conduction electrons and the
Kondo singlet state which is formed by the local moment coupled with the conduction

electrons.
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5.3 Crossover Temperature

Let us closely look at the vicinity of the boundary between the Fermi and non-Fermi
liquid regions in the phase diagram (Figs. 5.6 and 5.9). The point we wish to examine
is the renormalization step (denoted by N,) at which the lowest energy level changes
from the singlet to the doublet (in the non-Fermi liquid region) or from the doublet
to the singlet (in the Fermi liquid region). The change of the lowest state is found
at an even-number step when the coupling constants J and K belong to the non-
Fermi liquid region. In the Fermi liquid region, on the other hand, it occurs at an
odd-number step. We find N, to be N, = 14 in Fig. 5.7 and N, = 15 in Fig. 5.8.

The renormalization step is related to temperature as
T=AN2 (5.38)

We call the temperature corresponding to N, a crossover temperature T, here. To
examine the behavior in the vicinity of the boundary, we change J close to the
boundary, keeping K and A fixed. As shown in the Fig. 5.12, N increases with a
power ldw as |J — Jp| decreases. Here J; is the value at the boundary. Therefore we
conclude that the boundary is characterized by 7., = 0. The crossover temperature

behaves as

Ty o |J — o2, (5.39)

where the power is estimated approximately as o ~ 9 in Fig. 5.12 (a) and o ~ 8 in
Fig. 5.12 (b) The implication of these values are not yet well understood. Further
examination is needed.

The power-law behavior was previously found in the NRG study for the two-
channel exchange model [53]. The channel anisotropy is a relevant perturbation
breaking the non-Fermi liquid, so that it gives rise to the Fermi liquid. In this cése a
crossover temperature is defined as a renormalization step at which the NRG energy
levels cross over to those at a Fermi liquid fixed point. Similarly to our model,
the crossover temperature decreases with a power law as the anisotropy becomes
smaller. In the latter case the origin of the power is well explained by the conformal
field theory [57).
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5.4 A More Generalized Treatment

In the previous sections, the intermediate state has been restricted only to the lowest
state of f! configuration. This assumption has been introduced to make the exchange
process simple. Let us relax this restriction here and discuss a more general case by
checking the effective exchange interaction for the tetragonal crystal field. For the
tetragonal case, we have obtained in (5.7) the exchange interaction in a tensorial
expression. Then the ﬂcrea,tion operators for the conduction electrons a,]:m have been
transformed to those defined in Table 5.1 by using pseudo-spin and channel. The
higher excited states in f! give additional exchange terms to the effective Hamiltonian

(5.21). They are the exchange between azw and b,]:a. The latter is defined by

o = \ﬁaai’_wz ~ \/gﬁalz,a/z (5.40)
bT _ ﬁaal]:,s/z - \/gﬁaz,—s/z (5.41)
Rl Ta® + 50 ' AT
The Hamiltonian generalized for this case is then given by
H = Hy + H) + He,
Hk = Z Ek(z azayakﬂp + bigbka)a (542)
ko 13 .
H, = A|B)(B], | (5.43)
Hex = ng + Hex,add7 ) (544)

where HY is equal t0 Hex in (5.21) and Heyaqa is an additional term:

5

Hex pdd = K;,O(blt;Tka - bl]:'lbkl)

+ KoY [(b}:ll@mz + a}:'ubm)m— + (ai'szkl + bthaku)m+
kk'

+ (bj;lla‘sz - az;llbm)ﬁl_ + (GZIszkl - bilTakll)m+]

+ K190 [(b,JLTale + &z'lzbki)m— + (aanbm + bz'laklZ)m+
kk' ‘

+ (bleakT]_ - azllzbkl)m_. + (alllekT - bl-/la:klz)m+].(5.45)

Here the potential scattering has been ignored. The second and third exchange

interactions come from via the intermediate states lEé%i) in (5.12) and |Ey o) in
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(5.14), respectively, of f! configuration. If the Hund coupling is ignored and all the
intermediate states are made up to one degenerate energy level for zero crystal field,

the three coupling constants are related with each other as

Lg=at+ ﬂ2 | (5.46)

K- x/_ﬂ(ﬁa — 30)
0™ 908 /TaZ + 552

| f(\/?a -38), (5.48)

12,0 — 28

(5.47)

where o and 3 are defined in (5.1). If the Hund coupling is nonvanishing and a small
crystal field splitting is present, we expect a slight modification of the Hamiltonian.
We now apply the NRG calculation to the generalized model. For simplicity,

only relevant terms are written down in the model Hamiltonian to discuss the NRG

analysis:

HN+1 = Al/2-HN + Z l:(fj-‘\.l-{-l,aquO'u + Q}Lv+1,p9Nu) +h.c. 3 (549)
op

and
Hy = Hoy+ Ho,g + Ho,g+5, (5.50)
Hyy = A|B)(B, | (5.51)
Hoyp=J)>, f(;i.g-'p,f()a'p.(a')a"v - S, (5.52)

oo'p .

Hypip = KJ.[Z(fJolanzm—— + fJazfoal)m

+ fouforz — foTufol)m + (fJTszTl — lezfou)m+]

+ Ky golfOTZ + foTugm)m + (fJngol + g:)rTfou)mJ,

(
(
+ (901f0T2 - fOllg()T)m -+ (fJngol - gngOll)m.{_:l
+ K} 2[ Qonon + f(ngOl)m + (f(;fngm + gglfolz)

(

+ (g fors — Fliag0)yme + (Fagor —g;flfolz)er] (5.53)
t

xou- Jz 18 taken to be equal to J; they

where gig corresponds to b]L as fq]:w to a
are represented by J as in the previous sections. In the NRG calculation, the lowest

200 ~ 300 states are kept at each renomalization step although this number is too

85



small to achieve a sufficient quantitive accuracy. However the present truncation at
200 ~ 300 does not affect qualitative results. The result of renormalization shows
that whether a fixed point is of Fermi liquid type or not depends on two kinds of
coupling constants. One (J1 ) is connected with only |E+); the other (K, 0, K5
or K'5p) is connected with both |E+) and |B). The magnitude of these relevant
coupling constants is controlled by the crystal field, namely, @ and §:. Ji o and
K o are given in Table 5.2 and the other couplings are given in (5.47) and (5.48).
The dependence of the couplings on « and 3 is shown in Fig. 5.13, where both
parameters are replaced by z, as in Fig. 5.2. & has been defined as o® = (1 + z)/2
and 2 = (1 — z)/2. We find that K, is larger than J, o for z > 0.3. The NRG
result shows that the Fermi liquid is dominant over the non-Fermi liquid within
thisrra,nge. Notice that it was not possible for the tetragonal case in the previous
discussion which is based on the model for a strong crystal field. The difference
comes from higher intermediate states, which favor the Fermi liquid. If a stronger
crystal field is introduced in this case, K | 2,0 is reduced and the Fermi liquid state is
suppressed. However the Fermi liquid region still remains, since K 12’0 is larger than
J1 o as far as z is nearly equal to one and the crystal field is finite.

Let us discuss a more general case by changing the couplings arbitrarily. Fig-
ure 5.14 shows one-particle energy levels at the Fermi liquid fixed point. They
depend on K, K'; and K',. Here J is fixed to zero. If only one of the three cou-
plings is finite, we obtain energy levels in Fig. 5.14 (a). Every energy level is two-fold
degenerate. The particle-hole symmetry is kept in this case. The same energy levels
are also given by the NRG model in (5.25) and (5.26). Thus K’; and K’ ,, which
are elated to the excited states of f*, plays the same role as K. In Figs. 5.14 (b),
(c) and (d), K, is fixed to zero and K’ ; and K, are taken to be finite. One of them
affects the energy levels in (a) which has been determined by the other. Compared
with (a), the energy levels are shifted and the particle-hole symmetry is broken. In
(d), some energy levels have four-fold degeneracy since a pair of energy levels in (c)
merge with each other. This situation is present only when K, =0 and K/, = K/,
are satisfied. If K, is finite, the degeneracy is lifted as shown in Fig. 5.14 (e). Thus
one-particle energy levels change continuously with the three couplings. If only one

of the three couplings is larger than J in magnitude, the Fermi liquid wins over the
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Figure 5.13: The magnitude of various relevant couplings of Hey in (5.44) as a func-
tion of . The explicit forms are presented for J, o and K, o in the column (a) of
Table 5.2 and for |K' ;o and |K' 40| in (5.47) and (5.48), respectively. The solid,
dashed, half-dashed and dotted lines represent |Ji |, |Ki0|, |Kl10| and |K' 4y,
respectively. ' ‘
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N : even

_______

——————————————
D e —————— T P B 0 R B 0 e O Y e O M 5 D B 00 66 e e T N e O N N e e e R e e e

------

O N O N O B O B O B O]

K, 0.6 0 0 0 0 0.2
K\ (or K'y) 0 0.6 0.6 0.6 0.6 0.6
KoorK) 0 0 0.4 0.5 0.6 0.6

Figure 5.14: One-particle energy levels at the Fermi liquid fixed point. This diagram
shows the dependence on the couplings K|, K ; and K, at even-number renormal-
ization steps. J = 0 and A = 0.3 are chosen. Energy is measured vertically. For (a),
the first and second excited states are ~ 0.5 and ~ 1.2, respectlvely If J is finite, it
shifts every energy level by a constant amount.

non-Fermi liquid. Qualitatively speaking, the role of J is to break the particle-hole
symmetry at the Fermi liquid fixed point. The competition between the Fermi and
non-Fermi liquids can be discussed in the same way asﬂin Section 5.1.

In concluSibn, due to the local excited states of f!, the Fermi liquid can be domi-
nant over the non-Fermi liquid. We note that the effect of the excited states in f! is
not relevant unless the singlet is taken into account as well as the doublet fof f? con-
figuration. The excited state of f2 plays the most important role to destabilize the
non-Fermi liquid. Therefore it is reasonable to discuss the stability of the non-Fermi

liquid by using the minimum model in (5.25) and (5.26).
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Chapter 6

Conclusions

We have studied the Kondo effect due to orbitally degenerate 5f impurities in the

presence of crystal field. This study has clarified the following issues:

(1) The difference between the Kondo effect due to a Kramers doublet and that

due to a non-Kramers doublet.

(2) The stability of the non-Fermi liquid against realistic perturbations such as an

effect of local excited states.

Let us summarize the main results in each Chapter.

In Chapter 3, an effective exchange interaction between the local moment and the
conduction electrons has been derived in the absence of crystal field. Because of the
orbital moment, the local moment is characterized not by spin .S but by total angular
momentum J. The conduction electrons have been restricted to the partial waves
with j = 5/2 . It is based on the extended Anderson model with strong spin-orbit
and Hund couplings. The effective exchange Hamiltonian is expressed in terms of
the scalar product of tensor operators.

In Chapter 4, the crystal field was introduced and the effective exchange Hamil-
tonian was derived for the lowest f-electron state. For a cubic crystal field, we
have discussed the difference of the Kondo effect between non-Kramers doublet in
f? and Kramers doublet in f3. We note that all the intermediate states are taken
into account to derive the effective exchange Hamiltonian. New terms arise in addi-
tion to the terms in the conventional two-channel model. Whether they are relévant

or not has been examined by using the NRG method. It has turned out that the
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low temperature behavior can be described by the one-channel model for f3. The
" NRG study has also shown that the Hund coupling is not important for the case of
even-number f-electrons, while it causes the channel reduction for f3. For f2, the
additional exchange terms are not relevant and the fixed point is the same as that in
Cox’s model. We have also checked that it holds for tetragonal and hexagonal cases.

In Chapter 5, the Kondo effect due to the non-Kramers doublet in f? has been
further examined. A model for f? configuration has been studied for a tetragonal
or hexagonal crystal field. The internal structure was simplified as the non-Kramers
ground doublet and the first excited singlet. In this model for a strong crystal
field, the channel-exchange terms appear in addition to the conventional two-channel
model; the latter describes the exchange only in pseudo—spin (corresponding to the
doublet ground state). On the other hand, the channel-exchange terms arise due to
a coupling between the ground state doublet and the singlet excited state. The NRG
study has shown that the new terms are so importa,nt that the system can become
the Fermi liquid. It is due to competition between two kinds of exchange couplings,
Ji and K, (= Ki). Actually the relative magnitude of J, and K, (= K;) depends

on the crystal field parameters. The Permi liquid can be realized in some region of
| the parameter space for the hexagonal crystal field, while for the tetragonal field case
~ the non-Fermi liquid dominates over all the region. »

We have also extended the model to the case of negative crystal field splitting A.
In this case the singlet becomes the ground state; the Fermi liquid region becomes
dominant. The nature of the Fermi liquid fixed point can be understood by consid-
ering a competition between the crystal-field singlet of f2 and the local singlet state
due to the Kondo effect. We have examined the boundary between the Fermi liquid
and non-Fermi liquid regions. At the boundary, the crossover temperature T, at
which the lowest NRG state changes from a doublet to a singlet or vice versa, van-
ishes. Finally higher intermediate states in f! configuration are taken into account
for the tetfagonal crystal field. The Fermi liquid becomes possiblé in this case due
to an additional coﬂpling connected with one of the higher f! states. Whether the \.
Fermi liquid is stable or not depends on the crystal field parametefs.

We have found in this study that not only the crystal-field ground state but also

the excited states are important to realize the non-Fermi liquid state. Whether the
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Fermi liquid is realized or not in realistic cases is not determined by a simple criterion
‘based on the point group symmetry. The present study has shown that there is a
difference of Kondo effect between even and odd number of f-electron systems. For
even cases, we have found competition between the Fermi and non-Fermi liquids.
There are several problems left for future studies. First, it would be interesting
to calculate physical quantities such as the magnetic susceptibility and the specific
heat. They are expected to depend sensitively on the atomic structure of f-electron
systems.  Secondly, it is necessary to extend our study to the Anderson model, since
the present work is limited to the strong coupling limit, which starts from large
Coulomb interactions and small inixing. It is not evident that the strong coupling

limit is smoothly connected with the weak coupling region.
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Appendix A

Schrieffer-Wolff Transformation

The s-d exchange Hamiltonian (1.3) can be derived from the Anderson Hamiltonian
(1.4) by assuming |eo| and U < |V;|. This can be carried out most conveniently by a
canonical transformation. This procedure can be done by choosing a matrix S which

satisfies the following relations:

. o
H=eSHe™S = Hy + Hy + 515 Hi] + o(|Vo}?),
[Hk+H0,S] = Hmix- (Al)

In this case the most stable configuration is obtained by filling only one d-electron
in the orbital: ng, = 1. The matrix elements of S, which are determined by the
equation (A-1) are as follows:

Yo

NG (ks;mg = n|a;£3a08|0;n0 =n+1), (A-2)

(ks;no = n|S|0;m0 =n+1) =

v
(0;m9 =n + 1|S|ks;ng =n) = —K()E—(O;no =n+ lla;rsakslks; ng = n),(A-3)
AE = (ks;ng = n|Hy + Holks;ng = n)

—(0; ng = n + 1|Hy + Hy|0; o :n+1), (A-4)

“where the bracket denotes the following wave function:

ks, K's'; no = 0) = al. )., |F), (as)
1 alm) 1)

|k3;n — 1> — { aks' ’ (A6)
° ol [F)] 1),

0;m0 =2) = [F)| 11). - (A7)
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Here |F) represents the Fermi sea. | 1), | ) and | 1]) represent the states for the
localized electrons. The s-d exchange Hamiltonian is obtained up to the the second

order of V| as

<k/’3/;’n,0 = 1|H3dlk3;n0 — 1>
1
=2 {—i(kl‘sl; no = 1|S]0) (@] Hmix|ks; no = 1)
)

. |
= §<k'5';n0 = 1|Huix|p)(p|S|ks;n0 = 1), (A-8)

where ’s are possible intermediate states with n = 0 or 2. Then the s-d exchange
Hamiltonian is also expressed as (1.3) by using operators giving all the matrix ele-
ments in (A-8). |

For plural localized electron systems, this transformation is also applicable straight-
forwardly although it is much complicated due to multiplets, which are formed by

the Hund coupling.
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Appendix B

'Relation between the Exchange
Interactions (3.15)

The equation (3.15) can be derived by directly applying the operator Sfc to wave

functions. Here we restrict ourselves to the f2 case; however it can be easily extended

‘to arbitrary f-electrons.
First we rewrite the eigenstates for total angular momentum J = 4 with one-

particle states.of J = 5/2. The eigenstate of J and J, is represented by |J, ;) here.

Then we obtain

108) = 72 (5/25) ©1 = 5/251) + 8 13/255) @1 = 3/212)

+2[1/2512) ® |~ 1/2572)) (B-1)

for J =4 and J, = 0. The one-particle states for J = 5/2 and J = 7/2 are obtained
by making a linear combination with the states L = 3 and S = 1/2 (which we write

as |J,,0) (0 =1,|) here). They are given by

M f

1 M 1 M
| Mg ) = — 5——7"|M‘“1/2,T>+ §+7|M+1/2,l>, (B-3)

where M is the z component for J = 7/2 and J = 5/2. After using this transforma-

tion, the wave functions on the right side of (B-1) are expressed as

P52 @1 - 5/20m) = L @] -3,1) + s Do - 2,1
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~§|2,T>®|—2,l>—9|3,¢>®|—3,T>, (B-4)

/280 © | = 826 = LU D @ | - 2,1 + X2,y o -1,
C-imnel-Lh-Fbel-2n,  (B9)

[1/252) © = 1/2812) = 2*/_|o Hel- >‘2f|1 e, L)
“Yoneny-dnbel-1n. (B9

The total spin operator is given by Sy = Ss1+ Sso+ -+ Sy, for f», where Sy,

is the spin operator for the i-th f-electron. Then S:} can be expressed as
s 3
S4 = an—l—ZSf,i~Sf,j. : (B?)
i#] ‘
If we apply the second term on the right-hand side of (B-7) to a two-particle state,

we obtain

Sti- Sglm, o) @ m/, ")

1 ‘
Z|m7 0> ® |ml’ OJ> (0 = U,)a

1 1
S1m,0') ® m',0) — 2lm,0) ® |, ') (o # ).

After this operation is applied to (B-4), (B-5) and (B-6), the one-particle states with
L =3and § = 1/2 are transformed back to those with J = 7/2 and J = 5/2. The
state Sy - Sy2[04) is given by much lengthy combination of the two-particle states,
which consist of J = 7/2 and J = 5/2 states. Assuming the J = 5/2 states are much
lower in energy than J = 7/2 because of a strong spin-orbit interaction, we restrict

one-particle states to J = 5/2. Then we obtain

(St Sf,z]J 5/2|5/25/2) ® 1—5/25/2>
= 19615/25/2)®|—5/25/2)+ 196|3/25/2> | —=3/252), = (B:9)
[Sf,l Sf, J7= 5/2|3/25/2> ®|—3/25/2)

196|5/25/2> ®|- 5/25/2> 196|3/25/2>l - 3/25/2>
196|1/25/2> | = 1/252),  (B-10)
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[Sf,l Sf,zlJ 5/211/252) ® | — 1/25/2) |
19613/25/2) ® | —3/252) — 196|1/25/2> ® | = 1/252). (B-11)
From this we have
[SF]7=5/204) =

The same procedure can be applied to the states of J =2 and J =0 for f? configu-
ration. The result is as follows:

196l04> | (B-12)

[S1=5/2102) = 1%w» | (B-13)
[S%17=5/2100) = 196|00> | (B-14)

On the other hand, the exchange part is obtained as

(5
5 (J_4)a
35
R R -2 (7=2) (B-15)
ikj
35
("7 V=0

Then it leads to the relation in (3.15).
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Appendix C
Conditions (5.15) and (5.17)

The eigenstates in f* (5.12), (5.13) and (5.14) are obtained by diagonalizing the
crystal field Hamiltonian. It can be expressed with the basis of J, of J = 5/2 states

(15/2), [3/2), -+, | = 5/2)) in the following way:
Hsjo5/2 Hs/o,_3/2
H3j2,3/2 H3jo, 572
Hij2,/0
Hig = :
fet ’ H_1/2-1)2
H_3/25/2 H_32,-3/2
H_ 52372 H_5/2, 572
(C-1)
where the blanks should be filled in with 0’s and
H5/2,5/2 = H_5/2’_5/2 = ].OBg + 6032, (C2)
H3pap2 = H_3j2_3/2 = —2B5 — 18032; (C-3)
Hijpa2 = H_1j2-1/2 = —8B3 + 120B], (C-4)
Hsjo,~372 = Haja,—52 = H_3j25/2 = H_5p23/2 = 12v/5B:.  (C-5)

Here B and Bj are not found since the operators Of and O¢ do nothing. On the

other hand, it can be rewritten with the coefficients o and 8 in |E) as

Hsjo52 = H 57252 = (7042 — 86%)B, - (C6)
Hspoze = H_z2,-3/2 = (—14a* + 76°)B, (C-7)
Hyjgujo = H_12,-12 = (76° + %) B, (C-8)

Hso 32 = Hyjo 52 = H_ 3052 = H_5/53/2 = —3V35aB. (C-9)
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where B is a constant representing the magnitude of crystal field. From (C-2)—(C-5)
and (C-6)-(C-9), a, B and B can be expressed in terms of B and B as

o’B = -%(932 ~ 170BY), (C-10)
G°B = —%(333 —10BY), (C-11)
B = - (B} - 8B), (c12)
and
(Bf)? = %(933 — 170B2)(3B9 — 10BY) > 0. (C-13)

Thus (5.15) is the necessary condition for the states (5.12), (5.13) and (5.14) to be
‘eigenstates. If the first condition in (5.15) is satisfied, B < 0 holds because of a2 > 0.
On the other hand, the second condition leads to B > 0 because of % > 0. The
energies in (5.16) are actually expressed in units of B. Therefore the condition (5.17)

gives B < 0, in which case |E§%:§:) becomes the lowest state in f1.
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Appendix D

List of Tensor Operators

Here we express tensor operators in terms of matrices. The resulting expression is
used to derive effecting exchange Hamiltonians. The tensor operators we study are
formed with the total angular momentum J. They can be obtained from (2.9) and
(2.10). The dimension of the matrix is 6 x 6 for J = 5/2, 9x 9 for J = 4 and 10 x 10
for J = 9/2. The blanks in the following matrices should be filled in with 0’s.

e Tensor operators based on J = 5/2

0v5 0 - . 0 o B 0 e oeee o ’ 0‘
P 2v/2 : 0 3 : ’
-1 : .3 : n L1} : 1 -
J{1)=_~/ Jé)=—
V2 g0 2] -1
V5 : . =30
0 0 0 v cer e 0 -5
0 0 V0o 0 0 0v5 0 - 0
: 82 : ) :
J(2)_\/€ 3\/5 0 (2) \/—- .0
2 —“2— . Ji7=~v6
: V10 -2 0
: 0 —/5
0 - 0 0 v eeeeen -0
B 0 eer eee ene 0
0 -1 . :
o
o4 :
.o-10
O cov eee wen 0 5
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0 .- 0 /10 0 0 0 0 V10 o 0
: .40 : ooV2
@ _ =35 V10 i) 3v30 | teo=v2 0
T2 0 40 —V10
: 0
0 0 0 - 0
025 0 - 0 5 0 0
SRR, S 0 -7
@ _ =3V3 et I = 3 : ~4
2 -V 0 21 4
2v/5 : 70
0 0 0 - 0 -5
0 0 V5 0 v 0 -~ 0.Y10 0 0
V5 00
J(4) — 3‘/76 0 (4) -—3\/% . _\/Iﬁ
4 - 2 k J3 = 2
: 0
0 0 0 0
0 0 3/10 0 0
: L =BY2
Jw VIO =52 0
2 4. | . 310
: 0
0 - 0
0 2\/3 0 0 , 1T 00 e eee e 0
Do =By2 e : 0 -3
-3v5 | 0 e : 13 R
=25 . CR=F LT o
2 : Y520 : P
: ~2+/5 ' : . —-3 0
0 --- 0 0 -+ v vev 0 1
0 0 1 0 0 VB 0
0 ; B
{5) _ ~451/7 : g 9v70 | : 0
9 2 4 ___4_ .
0 o 0 0 - 0
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0 -
0 -
0 V5
0
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e Tensor operators based on J = 4

g =

g =

=

i}
V2

00

)

2 0

0 7
1l
9 H
0 ..
—-3v5|
0

2\/7 0 0
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J(()H —

SiL
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J(:n_3\/§6
2 “_—2-—

I =33

370

T =

3v/10

I =

-3

S

I

J{4)

”l

105

2T e
. VT
. 0 .’
YT -
: -2/7 0
Y.
0
0 0
072 0 0
VT .
o e
Y
TSR 2V S
=22 e
VST I |
P $V)
0 - 0
0 - 0 V70 0 - 0
: 57
L1
' 5.‘/7 0 J(«:):—Sm
. VT 2
0
0 0
0 0 30v/7 0 0
: PR (1Y, S :
—11v/10
. =60 .
~114/10 :
10v/7 0
L30VT
: 0
0 85v2 0 e g
P =514
—30v/2
Y
) 9v/5 .
ooBvE :
5/14 0
—-35v2
0

14 0 oo e e e e 0
0 -7 :
o138

H . =8 .
=3l g

: 9

: 13

: .7 0

(1 S P —14
0 - 0 BV 0 ... .. 0
: R V£ T ;
: ooV
! eo-BVE
: to-EB 0
: e —5v14
: 0
0 - 0




14
0
w _ 151 ]
I = :
0
—45+/7
(5)
JE 5
o _ ~3V35
3 2

5 _ 3v210
5

@ _ —21/30
R

—21
-1
9
.18
o9
- | :
—21 0
14
0 2V/14 0 0
o 3Y/14 e :
3/ 0
R 2V4T
0
0 2/14 o0 0
.. 235 .
2852 e
' ' -35v2 -,
) 235 0
. 20V/14
0
0
0 0 10v7 0 0
: BT .
S
- 0 .
R (ST IS :
8T 0
—10v/7
0
0
10v2 0 o
. _5m ) .
' —5v/2 .
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Lo6YE e
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R VS VI |
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e Tensor operators based on J = 9/2

w1

S

S

a2

I =_6

7o = =3v8

0 ... 0 2V

4/14.
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00 42 0
: 10v/21
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-

0 84 0
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31
.35 .
14

0 v~ ... 0 3/H 0
LBV
o 5VRL
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0
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