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Abstract

A 3-dimensional supersymmetric gauge theory has attracted great interests and
has been explored extensively since M-theory was proposed. The M-theory is the
non-perturbative realization of the string theory, and it is believed to be the most
fundamental theory. The M-theory consists of two kinds of fundamental objects,
called an M2-brane and an M5-brane. The M2-branes are described by the gauge
theory in the low energy limit. There also exist another expression to describe the
M2-branes in the low energy limit, which is a supergravity. These different theories
are believed to be equivalent to each other. In general, a correspondence between
outwardly different but physically equivalent theories is called a duality. The duality
between the two theories that illustrate the M2-branes is called a gauge/gravity cor-
respondence, or an AdS/CFT. The benefit of the duality is that the strong coupling
region of one of the theories corresponds to the weak coupling region of the other
theory. Although perturbative methods are not applicable to explore the strong cou-
pling region the duality enables us to study such a region through the dual theory.
Therefore, the duality is an important tool.

Since the duality is so non-trivial it is difficult to show it. One way to check
the duality is to compare partition functions calculated from the theories. The
coincidence of the partition functions is an evidence of the duality. The problem
is that we have to treat the non-perturbative effects on the one side of the duality.
Though it is usually difficult to include the non-perturbative effects into a partition
function a localization method enables us to exactly calculate a partition function for
a supersymmetric gauge theory. We assume a classical gravity with a weak coupling
for the gravity side, and calculate the partition function for the gauge theory, exactly.
It is shown that the partition functions of the dual pair indeed coincide.

In this thesis we basically consider general 3-dimensional N = 2 supersymmetric
gauge theories rather than the specific model of M2-branes, and discuss a formula
to derive their exact partition functions so that we can apply the formula to check
dualities among the gauge theories and AdS/CFT.

When we calculate a partition function we have to choose the background space
on which the theory is defined. If we select a curved space for the background space
the geometric parameters are translated into parameters of the partition function.
The more parameters sophisticate the partition function as an index for checking
dualities. Our goal is to calculate the “correct” partition function on the orbifold
S3/Zn. The “correct” means that the partition functions calculated for a dual pair
coincide. A gauge theory on the orbifold has degenerate vacua due to the Aharonov-
Bohm effect. These vacua are specified by so called holonomies and the partition
function is expressed by the sum of each contribution. The known formula of the
partition function on the orbifold gives different values for a pair of dual theories,
which means that the formula is incorrect. Numerical results indicate that extra
phase factors in the holonomy sum are needed to match the partition functions.
Using the fact that there is no ambiguity in the partition function of a non-gauge
theory we can determine the phase factors for a gauge theory that is dual to a
non-gauge theory. We propose a formula of the extra phase factors.
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Summary of symbols

R : the set of all real numbers.

Z : the set of all integers.

Zn : the set whose elements are {0, 1, 2, · · · , n− 1}.
M : a manifold (naively say, a smooth curved space).

Sn : n-dimensional sphere :
∑n

i=0(xi)
2 = R2.

T n : n-dimensional torus : T n = ⊗n
i=1S

1.
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Chapter 1

Introduction

The goal of this thesis is to derive the correct formula of a partition function on an
orbifold (we call this by an orbifolded partition function) of 3-dimensional N = 2
supersymmetric gauge theories. Especially, we point out that the known formula for
the orbifolded partition function does not work for checking dualities, and some mod-
ifications are needed. In this introduction we explain why we consider 3-dimensional
supersymmetric gauge theories and why the partition function is important to study.

1.1 String theory and M-theory

The standard model and general relativity have been extensively tested in experi-
ments, and are thought as the most plausible and established theories that describe
our world. Nonetheless, there are still lots of problems and unsatisfactory points.

One big problem is that a quantum theory of the gravity is not included in them.
General relativity is a powerful tool to describe dynamics of objects, especially for
large scale, like stars, galaxies, and even our universe itself. However, as it is a
classical theory it cannot explain what happens inside black holes, nor what happens
at the extremely early time of the universe, where the quantum effects of the gravity
become important. We need the quantum theory of the gravity.

Although we believe our world is described by a simple and unified theory, the
standard model is so complicated. It consists of a number of varieties of particles
and forces with lots of parameters. Therefore, we somehow want to unify them into
a simple theory. We dare to say that one of such attempts is to use supersymmetry.
Supersymmetry is symmetry that connects bosonic and fermionic fields (particles)
and ties them up. Namely, it associates gauge fields and fermions, and/or fermions
and scalar fields. We call one of paired fermion and boson a superpartner against
the other. A parameter of the transformation of the supersymmetry is a spinor ϵ
due to the difference of spin statistics of fermions and bosons:

δΦ = ϵΨ (1.1)

where δ is the transformation, and Φ and Ψ are a field and its superpartner, re-
spectively. Furthermore, one can define the number of supersymmetries N . It is
the number of parameters of the transformation. The collection of the fermions
and the bosons that are connected by the transformation is called a multiplet. The
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examples of N = 2 multiplets are shown in Fig. 1.1), which are extensively used in
this thesis. We, unfortunately, cannot say that it really unifies particles and gauge

Figure 1.1: N = 2 multiplets. The left one consists of two pairs of real scalars
ϕ1,2 and Majorana fermions ψ1,2, and it is called a chiral multiplet. The right one
consists of a gauge field Am and Majorana fermions λ1, λ2 and a real scalar σ, and
it is called a gauge multiplet. The blue circles designate N = 1 multiplets.

fields in our world and makes the standard model simple since the particles in our
world are not connected to each other by the supersymmetry. Nonetheless, it is a
natural unification of matters and gauge fields.

Superstring theory is one of theories that includes quantum gravity. Moreover,
it is extremely simple; it has only two parameters. It is defined in 10 dimensions
and it consists of spatially one-dimensional extended objects, called fundamental
superstrings or simply strings (sometimes denoted by F1). Quantization of the
string gives the discrete spectrum of a variety of multi-spin fields including scalars,
fermions, gauge fields, and spin-2 objects, one of which is nothing but the graviton.
Therefore, the string theory is a quantum theory of the gravity. Furthermore, there
are solitonic objects called D-branes on which the string can end [1]. There are
various dimensional D-branes from point-like ones in the spacetime up to ones filling
the 10-dimensional space. It is customary to denote them by Dp-branes, where p
specify the spacial dimension of D-branes; e.g. D2-branes are 3-dimensional objects
and D(-1)-branes are 0-dimensional, point-like objects in the spacetime. One of
important features of the branes is to give us gauge theories in the low energy limit
(IR limit). The number of D-branes N corresponds to the rank of the unitary gauge
group U(N). The scalar fields parameterize the position of the branes. Therefore,
various supersymmetric gauge theories can be engineered from the branes in the IR
limit.

Though the superstring theory is a fascinating theory there is a crucial gap
between the superstring theory and the real world; the real world is 4-dimensional,
on the other hand the superstring is defined in 10 dimensions. One way to resolve
this gap is to compactify the spacetime. Let us image a paper (2-dimensional object)
and role it up to a cylinder. If the radius R is small enough it is regarded as a 1-
dimensional object, effectively (see Fig. 1.2). The same manipulation can be done
for the spacetime, and it is called S1 compactification, where Sn is an n-dimensional
sphere (e.g. S1 is a circle, S2 is a sphere etc.). One can repeat the compactification
until the dimension reduces to 4, and the standard model maybe realized in the IR

10



Figure 1.2: Compactification

limit of the string theory.
Perturbative analysis on the superstring theory shows that the superstring theory

consists of 5 varieties. These are called type I, type IIA, type IIB, hetero SO(32), and
hetero E8×E8 superstring theory. Although we had tried to unify all the theories we
arrived at the fact that there are actually five theories. In 1995 E. Witten proposed
that these varieties can be unified by M-theory. Inversely, those varieties are realized
as a certain limit of this M-theory [2].

Figure 1.3: M-theory and 5 varieties of superstring theories as a limit

Since then, the M-theory has been being extensively investigated. However, no
one knows even its definition that provides the way of quantization and calculating
S-matrix. We only know that

• it is defined in 11 dimensions,

• it consists of two fundamental objects, called M2-branes and M5-branes,

• it reduces to 11-dimensional supergravity (SUGRA) in the IR limit,

• and it reduces to type IIA superstring theory when it compactified on a circle
S1.

Note that 11 is the highest dimension in which the supersymmetry is realized, and
the number of parameters in the M-theory is only one, which is the tension of
M2-branes. These are the reasons why we believe that the M-theory is the most
fundamental and simple theory.

1.2 M2-branes

The first step of looking into the M-theory is probably to study the fundamental
objects. As M2-branes are simpler and easier to investigate than M5-branes we focus
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on M2-branes. An M2-brane is a spatially 2-dimensional (spacetimely 3d) object.
So far what we know about M2-branes is that :

• An M2-brane becomes a D2-brane or a fundamental string when the space is
compactified on S1. When an M2-brane wraps the compactified direction S1

it becomes a fundamental string (see Table 1.1 and Figure 1.4). On the other
hand, when an M2-brane does not wrap the S1 it becomes a D2-brane (see
Table 1.1 and Figure 1.5).

Table 1.1: The directions that are filled with M2-branes. 0 is the time direction
and 1 to 9 are the space directions of the string theory. The 11th direction that
newly appears in M-theory is customary written as 11, which is compactified so as
to derive the string theory. The M2 becomes a fundamental string and the M2’
becomes a D2-brane.

0 1 2 3 4 5 6 7 8 9 11
M2 ◦ ◦ ◦
M2’ ◦ ◦ ◦

Figure 1.4: An M2-brane wrapping around S1 reduces to the fundamental string.

Figure 1.5: An M2-brane that does not wrap S1 becomes a D2-brane.

• M2-branes are effectively described by the solution of the 11-dimensional
SUGRA in the IR limit.

• Three years ago, the effective field theory of M2-branes was found in [3]. It
is a 3-dimensional N = 6 supersymmetric gauge theory, which describe the
dynamical degrees of freedom of N coincident M2-branes in the IR limit. This
effective theory is called an ABJM model.

As a N = 6 multiplet can be decomposed into N = 2 multiples, a N = 6 super-
symmetric theory is a subgroup of a N = 2 supersymmetric theory. In this thesis
we study 3-dimensional N = 2 supersymmetric theories. As the ABJM model can
be described by N = 2 multiplets the ABJM model is, of course, in our range.
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1.3 Duality

We stated that the M-theory leads to superstring theories in a certain limit. In-
versely say, the M-theory is a generalization of superstring theories, and actually,
it is a non-perturbative realization of superstring theories. Hence, we need some
non-perturbative tool to explore the M-theory. Duality is a significant and powerful
tool to analyze the non-perturbative aspects of a theory. A duality connects out-
wardly different but physically equivalent theories. Physically equivalent means that
observables like a spectrum in the dual theories are the same. As global symmetries
are a kind of observables those of dual theories should coincide. On the other hand,
gauge symmetries are not the observables and do not have to be the same for dual
theories. In order to check dualities quantitatively, following observables are useful.
As the information of a spectrum is translated into a partition function it can be
used to check dualities. A correlation function is related to the physical degrees of
freedom of the operators, and hence, we can use it to measure the equivalence of
theories. Let us look into a few examples of a duality.

Mirror symmetry

Mirror symmetry connects gauge theories of different gauge groups with different
matter contents. As we will use the simplest example of the mirror symmetry let us
see it here briefly.

• The first theory is N = 2 supersymmetric quantum electrodynamics (SQED)
with a fundamental and an anti-fundamental chiral multiplet q, q̃.

• The other theory is a XYZ model, which consists of three chiral multiplets
with a potential. Though the three multiples are equivalent we put different
names Q, Q̃, S on them.

These theories have common global symmetries summarized in Table 1.2 From Ta-

Table 1.2: Global symmetries of theN = 2 SQED and the XYZ model, named U(1)V
and U(1)A. The numbers are the charges of each operator under the symmetries.
m and m̃ are the monopole operators appear in SQED.

q q̃ m m̃ Q Q̃ S
U(1)V 0 0 1 −1 1 −1 0
U(1)A 1 1 0 0 −1 −1 2

ble 1.2 one can notice that qq̃ and S have the same charges. Actually, they are
the corresponding operators to each other under the duality. If we calculate the
correlation functions of those operators (and other corresponding operators) they
coincide, and we can convince ourselves that those theories are dual. One can also
compare the partition functions of the theories to check the duality.
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AdS/CFT correspondence

AdS/CFT is a duality between a gravity theory on Anti-de Sitter (AdS) space and
a conformal field theory (CFT) [4]. As we often consider a gauge theory for the
CFT it is also called a gauge/gravity correspondence. They are completely different
formalism but their physical degrees of freedom and the global symmetries are the
same. In order to see the benefit of this duality we firstly summarize the parameters
of the gauge theory and the gravity theory. The parameters of our interest in a
gauge theory are the rank of the gauge group N and the coupling constant gYM.
On the other hand, those of a gravity theory are the length of the string ls and
the Newton constant GN in terms of the string coupling and the string length.
The gravity theory with the small Newton constant and small string length reduces
to the general relativity. The outstanding feature of the AdS/CFT is that the
strong coupling region of the gauge theory where the perturbative method cannot
be applicable corresponds to a gravity theory with small string length. Inversely,
the weak coupling region of the gauge theory corresponds to the general relativity
with some stringy effects (ls ̸= 0). The quantum effect of the gravity corresponds
to the inverse of the rank of the gauge symmetry. Hence, the large number of N
corresponds to the classical gravity. We assume that the gravity side is described
by the general relativity and we consider the large N limit and the strong coupling
region on the gauge theory side.

The effective theories of the M2-branes are the examples of the AdS/CFT.
Namely, the ABJM model and the classical solution to 11d SUGRA are related
by the AdS/CFT. The classical solution for the M2-branes is AdS4 with a certain
7-dimensional manifold M7 (A manifold is a smooth and generally curved space).
When the manifold M7 is 7-dimensional sphere S7 it corresponds to the ABJM
model. This relation gives the information about the gauge theory from gravity

Figure 1.6: A pair of low energy effective theory of M2-brane: one is the gauge field
and the other is classical background geometry distorted by the M2-brane.

side. For example, the isometry of the M7 corresponds to the global symmetry of
the dual field theory. The correspondence of the global symmetry of the mirror dual
is quite obvious. However, in the ABJM model the manifest global symmetry (sym-
metry of the Lagrangian) is SO(6) though the isometry of S7 is SO(8). The SO(8)
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symmetry on the gauge theory side is realized non-perturbatively. Another example
is the free energy of the M2-branes, which can be calculated from the gravity side
and it tells us that the free energy is proportional to N3/2 [5]. This strange exponent
is the clue to seek the effective world volume theory of the N coincident M2-branes.
Even though this calculation was performed in 1996 the calculation from the gauge
theory side was done recently in [6]. We will explicitly see this calculation in Chapter
3.

1.4 Partition function

A partition function Z is usually defined by the state sum :

Z = tr
(
e−βH

)
=
∑
n

⟨n|e−βH |n⟩ =
∑
n

e−βEn , (1.2)

where H is the Hamiltonian of a theory, |n⟩ is the energy eigenstate vector, β = 1
kBT

is the inverse temperature. The Boltzmann factor e−βH is reminiscent of the time
evolution operator e−itH . If one identifies the imaginary time it with the inverse
temperature β the Boltzmann factor and the time evolution operator are equivalent.
In this sense ⟨n|e−βH |n⟩ is interpreted as the transition amplitude of a periodic
evolution with the period −iβ. Indeed, the inverse temperature is defined as the
length of the compactified and Wick rotated time direction in a field theory.

Let us see another expression for the partition function, which is called a path
integral. We firstly consider quantum mechanics and extend the result to a field
theory case. We start with the state sum in terms of the eigenstates of the position
|q⟩ :

Z =

∫
dq⟨q|e−βH |q⟩. (1.3)

We can insert the complete sets and the partition function becomes

Z =

∫
dqdq1 · · · dqN−1⟨q|e−∆βH |qN−1⟩⟨qN−1| · · · |q1⟩⟨q1|e−∆βH |q⟩, (1.4)

where ∆β = β/N . If we take the limit N → ∞ it becomes

Z =

∫
Dqe−

∫
dβH =

∫
Dqe−S[q], (1.5)

where Dq =
∏∞

k=1 dqk, S[q] is the action (functional of the path [q]). Since the
Hamiltonian is equivalent to the Wick rotated (Euclideanized) action:

∫
dβH =

SE[q], we rewrote it by the action and omitted the subscript E above. So far we
have considered quantum mechanics. In a field theory q is replaced by a field Φ and
the integration in the action is performed over the manifold M on which a theory
is defined;

Z =

∫
M

DΦe−S[Φ], (1.6)
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where note that customarily M is written as above though it is not the range of the
field Φ but the space of the integration inside the action S.

The manifold M is, for example in quantum mechanics, the circle S1 with radius
R = β/2π. In the case of photon system one usually considers the periodic boundary
conditions on the walls facing each other of the box in which the photons exist. This
box is called 3-dimensional torus T 3 = S1×S1×S1. In addition, we have to consider
the time direction S1, and finally the manifoldM is 4-dimensional torus T 4 = (S1)

4
.

As we only consider 3-dimensional theories, M is a Euclidean 3-dimensional
manifold in the remaining part of this thesis. Moreover, in order to avoid the IR
divergence associated with infinite volume the manifold is limited to be a compact
one.

Note that the partition function of the Minkowski space is positive definite be-
cause of the unitarity of the Hamiltonian. However, that of the Euclidean space
is generally complex. We are only interested in the absolute value of the partition
function, which describe the effective physical degrees of freedom of a theory, and
hence, we usually ignore the phase factor. Nonetheless, the phase factor becomes
very important when we consider an orbifold, which will be discussed in Section 1.8.

We also use a free energy, whose definition is a bit different from a usual one.
The definition of our free energy is as follows.

F = − log |Z| (1.7)

1.5 Localization

Since the dualities are so non-trivial the check of the dualities themselves is im-
portant. One way to check the dualities is, as discussed, to calculate the partition
functions for a pair of dual theories and see if they match or not. In case of the
AdS/CFT correspondence we assume that the gravity side is described by the gen-
eral relativity and we treat the non-perturbative effects on the gauge theory side.
In this case we need an exact formula to derive the partition function for the gauge
theory.

Localization method enables us to calculate the partition function exactly. If a
theory has a fermionic symmetry (e.g. supersymmetry) one can deform the theory
without changing the partition function as

Z =

∫
DΦe−S0[Φ]−tδV [Φ] (1.8)

where Φ symbolically denotes all the fields in the theory, δ is the fermionic trans-
formation and it is assumed to be nilpotent: δ2 = 0, the action is invariant under
the transformation: δS0 = 0, and V is a certain functional of the fields. It is easily
shown that the partition function does not depend on t;

∂Z

∂t
= −

∫
DΦ (δV ) e−S0−tδV = −

∫
DΦδ

(
V e−S0−tδV

)
= 0. (1.9)

We can now take the limit t→ ∞ without any change, and the action is dominated
by the deformation term tδV rather than the original action S0. Therefore, the
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path integral is dominated by the saddle points of δV rather than those of S0.
Furthermore, we consider fluctuations around these saddle points:

Φ = Φ0 +
1√
t
Φ′, (1.10)

where Φ0 is a saddle point and Φ′ is the fluctuation. Only the quadratic terms of Φ′

in tδV [Φ] survive and higher terms will vanish after taking the limit t→ ∞. As we
will see we can perform the path integral of Φ′ explicitly and the partition function
becomes

Z =
∑
Φ0

e−S0(Φ0)Z1−loop(Φ0) (1.11)

where Z1−loop is the result of the path integral of the fluctuations, and S0(Φ0) =
S0[Φ]|Φ=Φ0 is called a classical contribution and will be denoted by Scl. Note that
the saddle points may not be isolated but they may have flat directions. In such
a case we have to integrate them along the flat directions. Finally, we stress again
that this partition function is exact and can be used to check the dualities.

1.6 Background geometries

The more parameters sophisticate the partition function as an index for checking
dualities. Hence, we want to introduce more parameters into the partition function
as many as possible. One such a way is to deform the background geometry. We
have several simple choices for 3-dimensional manifold M;

• M = S3 −→ Z : a number
This is the simplest 3-dimensional compact space. One may wander that the
radius of the S3 would be the parameter of the partition function. As we will
see this in Chapter 3 the radius is absorbed by the redefinition of the field as
well as the mass parameters.

• M = S2 × S1 −→ Z : a function of β = R1/R2

where R1 and R2 are the radii of S1 and S2, respectively. This maybe more
familiar one than S3 case because the S1 direction can be identified with the
time direction. In this sense this background manifold gives a usual partition
function. Furthermore, if we introduce an appropriate chemical potentials the
partition function with this manifold has special name superconformal index.
The superconformal index can be written by using trace like in (1.2) because
there is S1, and the state |n⟩ can be expressed by a spherical harmonics. In
the same as S3 case one of the two radii can be absorbed and only the ratio
becomes the parameter.

• M = S3
b −→ Z : a function of b

S3
b is a one-parameter deformation of the three-sphere S3, which is called

squashed three-sphere. b is the deformation (squashing) parameter. The geo-
metrical parameter b is translated into that of the partition function.
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• M = S3/Zn −→ Z : a function of n and h
This quotient geometry is called an orbifold. n is the order of the orbifolding
(number of dividing) and h is a holonomy, which will be explained later. The
partition function on the orbifold is the main topic of this thesis.

For each background, the partition function is exactly calculated using the lo-
calization method. Historically, the partition function on S4 is firstly calculated
by Pestun in [7]. Kapustin et al. applied the method to N ≥ 3 supersymmetric
theory and calculate the partition function on S3 [8]. It is generalized to N = 2
case [9, 10]. The partition function has been used to study non-perturbative aspects
of three-dimensional field theories, such as dualities among three-dimensional field
theories [11, 12, 13, 14, 15, 16, 17] and relation to M-theory via the AdS/CFT cor-
respondence [6, 18, 19, 20, 21, 22, 23, 24]. The superconformal index is computed
exactly in [25, 26], and specialized to the large N case [27, 28, 29, 30]. The super-
conformal index is also used to point out the relation between different dimensions.
The squashed partition function can be derived from 4-dimensional superconformal
index [31, 32, 33].

1.7 Squashed S3

Although we express the squashed three-sphere simply by S3
b there are actually

two kinds of squashed three-spheres. One is called a biaxially squashed sphere
in [34] and the other is called an ellipsoid. Though they are both one-parameter
deformation of S3 their isometries are different. The isometry of the S3 is SO(4) ∼
SU(2)L×SU(2)R. That of the biaxially squashed three-sphere is SU(2)L×U(1)r; the
deformation breaks one of two SU(2)’s of S3. On the other hand, the ellipsoid has
only U(1) × U(1) isometry. Since the supersymmetry is connected to the isometry
and since the supersymmetry is used for the localization method, the difference of the
isometry affects the partition function on them. The non-trivial partition function
on the ellipsoid was derived in [35], which is written in terms of a special function
called a double sine function. The authors of [35] also calculated the partition
function on the biaxially squashed three-sphere, and found that the result is trivial;
the partition function is the same as that on the round three-sphere S3. On the other
hand, the partition function on the biaxially squashed three-sphere derived from the
reduction of the 4d superconformal index is actually the same as that on ellipsoid
[31, 32, 33]. This contradiction was solved in [36]. The origin of the contradiction was
the confusion about the supersymmetry that is used for the localization. Though
the SU(2)L singlet supersymmetry leads to the trivial result the SU(2)L doublet
supersymmetry gives the non-trivial result. In this thesis we only look into the
biaxially squashed three-sphere and simply call it a squashed sphere.

1.8 Orbifold

An orbifolded manifold or simply an orbifold is realized by an identification of two or
more different points in the original manifold. For example, S2/Z2 is an orbifolded
S2 that the facing two points are identified (see Fig. 1.7), where Z2 = Z/2Z = {0, 1}
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and Z is a set of all integers. Zn denotes the n-point identification. The non-trivial

Figure 1.7: S2/Z2 geometry. Every pair of points faced each other on the original
manifold S2 are identified. For example, if we choose the North hemisphere as the
fundamental region the South hemisphere is a copy of the North hemisphere and
vice versa.

feature of the orbifolding is to create a cycle on the orbifolded manifold. In the
S2/Z2 case, for example, a curve on the S2/Z2 that joints two identified points is a
cycle. Note that the circle along the cycle cannot shrink continuously into a point.
However, the union of two such curves are equivalent to a great circle, which can
shrink (see Fig. 1.8). A cycle on a manifold is characterized by the fundamental

Figure 1.8: Oriented curves on the S2/Z2 geometry. Since the crosses are identified
one of curves in the left picture is a non-trivial cycle of S2/Z2 and cannot shrink
into a point. However, the union of the two curves are equivalent to a great circle
as in the right picture and it can now shrink into a point.

group π1(M). The circles on S1 never be able to shrink and such a cycle is denoted
as π1(S

1) = Z; the integer illustrate the number of the wrapping along the cycle.
In S2/Z2 case the circle wrapping twice the cycle can shrink, and it is denoted as
π1 (S

2/Z2) = Z2; Z2 = {0, 1} means the number of the wrapping. The fundamental
group of S3/Zn is π1 (S

3/Zn) = Zn. The existence of these non-trivial cycle affects
the structure of the vacua of a theory through the Aharonov-Bohm (AB) effect.

AB effect and Holonomy

The AB effect tells us that even if the field strength is zero the gauge potential
(the gauge field Aµ) affects charged fields. We assume U(1) gauge group here. The
typical example is a charged particle traveling around a solenoid. The solenoid
creates magnetic flux Φ that is confined to its inside. Namely, the field strength
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is trivial outside the solenoid. Nevertheless, the wave function of the particle is
affected by the non-trivial gauge potential:∮

C

Aθdθ =

∫
M

B · ds = Φ, (1.12)

∴ Aθ =
Φ

2πr
, (1.13)

where C is the path of the particle, which is a circle around the solenoid, θ parametrizes
the circle and the period is 2πr, r is the radius of the circle, and M is a disk whose
boundary is the circle C. The AB effect is characterized by a holonomy defined as
follows.

h =

∮
C

Aµdx
µ mod 2π. (1.14)

The effect on the phase of the wave function is expressed by eih, which is called
Wilson line. In the example above the holonomy is nothing but the flux h = Φ.

Next, let us consider a cylinder S1 × R parametrized by (θ, z). Note that there
is no space inside the cylinder. We assume the field strength is trivial everywhere.
However, a constant gauge potential Aθ can exist. Since the space is periodic θ ∼
θ + 2π a wave function ψ of a particle living on it should satisfy the boundary
condition:

ψ(θ + 2π) = ψ(θ). (1.15)

The AB effect due to the constant gauge potential is given by

ei
∮
C Aθdθ = e2πiAθ . (1.16)

Now let us consider a gauge transformation:

Aµ → A′
µ = Aµ + ∂µα(x),

ψ → ψ′ = eiα(x)ψ. (1.17)

Using the gauge transformation we can choose a gauge so that the gauge potential
vanish:

A′
µ = Aθ + ∂θα = 0,

∴ α(θ) = −θAθ. (1.18)

In this gauge the AB effect is expressed by the boundary condition as follows.

ψ(θ + 2π) = ei(α(θ)−α(θ+2π))ψ(θ) = e2πiAθ+2πikψ(θ) (k ∈ Z)

= e2πiAθψ(θ) = eihψ(θ), (1.19)

where note that Aθ and h are ones before the gauge transformation, and k appears
because the gauge transformation parameter α(θ) is not single-valued:

α(θ) ∼ α(θ) + 2πk (k ∈ Z). (1.20)
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Although this multivalent does not affect in this case it does affect in the next
example.

Finally, we consider the AB effect on the orbifold. In this case due to the non-
trivial fundamental group π1 (S

3/Zn) = Zn, the circle wrapping the cycle n times can
shrink into a point. The Stokes theorem tells us that the corresponding holonomy
should be trivial:

hn =

∮
nC

Aµdx
µ = n× 2πAθ = 0 mod 2π (1.21)

∴ Aθ =
k

n
(k ∈ Z), (1.22)

where the period of the cycle C is chosen to be 2π, and the subscript n of hn
means that the holonomy is of the path wrapping n times. This result gives discrete
holonomies:

h = 2π
k

n
(k ∈ Zn). (1.23)

If we rescale the definition of the holonomy as

h =
n

2π

∮
Aµdx

µ mod n, (1.24)

the holonomy for S3/Zn takes the value h = 0, 1, · · · , n − 1 ∈ Zn. These values
specify the vacua of the theory.

The partition function on the orbifold S3/Zn is, therefore, expressed by the sum
of each contribution:

Ztotal = Zh=0 + Zh=1 + · · ·+ Zh=n−1. (1.25)

Each contribution is calculated by the formula derived in [37, 38]. We call this a
(naive) orbifolded partition function.

1.9 Phase problem

We usually focus only on the absolute value of the partition function and the phase is
disregarded. This is, however, not allowed when we compute the partition functions
of different sectors which are summed up. Even when we are interested only in the
absolute value of the total partition function, we need to care about the relative
phase of each contribution. The important fact is that the formula (1.25) derived in
[37, 38] does not give the same values for a dual pair. This maybe the signal that
the duality is not really a duality. We rather assume that the duality is correct and
the formula needs some modifications. Let us see an concrete example: the simplest
mirror symmetry discussed in Section 1.3. In the n = 3 case where there are three
sectors specified by the holonomy h = 0, 1, 2. The numerical results for the naive
orbifolded partition function are summarized in Table 1.3. We can see that the total
numerical values are different from each other. However, notice that if one introduce
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Table 1.3: Numerical results for the naive orbifolded partition function of the N = 2
SQED and the XYZ model show that their total values do not coincide.

Holonomy h SQED XYZ model
0 +0.394
1 −0.298
2 −0.125
Total −0.031 0.817

Table 1.4: Numerical results for the modified orbifolded partition function of the
SQED and the XYZ model show that their total values coincide.

Holonomy h Phase factor SQED XYZ model
0 + +0.394
1 − −0.298
2 − −0.125
Total 0.817 0.817

minus signs to appropriate sectors the results coincide as in Table 1.4. In this case
and all the other cases we have checked the phase factors are actually plus or minus
signs for this duality. We calculated the partition function numerically up to n = 10
and we are succeeded in finding out the correct signs and their patterns, which are
discussed in detail in Chapter 5. Hereafter, the correct means that the partition
function coincides for a dual pair, and we call the correct partition function on the
orbifold a orbifolded partition function.

Our proposal is that the orbifolded partition function is not (1.25) but is ex-
pressed as follows.

Ztotal = eiθ0Zh=0 + eiθ1Zh=1 + · · ·+ eiθn−1Zh=n−1, (1.26)

where the eiθh is the appropriate phase.
We will consider the mirror symmetry and another duality proposed by Jafferis

and Yin [15] to derive the correct phases. The reason why we use these dualities is
because they are known to have dual field theories without vector multiplet. When
there is no gauge field there is no holonomy, and hence, no holonomy sum. The
orbifolded partition function is calculated without the phase problem on the non-
gauge theory side, and we can focus on the problem only on the other side.

Since the proposal for the phase factors is derived from a few specific dualities we
have to check whether our formula gives correct values for other dual pairs. In this
thesis we will explore the duality between the ABJM model and N = 4 supersym-
metric Yang-Mills theory (SYM) with a fundamental and an adjoint hypermultiplets.
Our proposal passes this test, fortunately.

Finally, we also study the large N behavior of the orbifolded partition function
for the ABJMmodel so as to check the AdS/CFT. Our result shows good coincidence
with that on the gravity side.
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The thesis is organized as follows. We firstly review the 3-dimensional N = 2
supersymmetric theories in Chapter 2. Their derivation is summarized in Appendix
B. We also review briefly the ABJM model. In chapter 3, we extend the SUSY
transformation to conformally flat space and calculate the S3 partition function
using the localization method. In Chapter 4 we extend the formula of the partition
function to the squashed three-sphere S3

b case. In Chapter 5 we firstly review the
formula of the orbifolded partition function derived in [37, 38]. Then, we derive the
formula to fix the phase factor so that the numerical values coincide for the dual
theories. Chapter 7 is devoted to the conclusions and discussions. Useful formulae
and the basic facts are summarized in Appendices.

Note that we adopt the natural units through this thesis. Namely, we set c = 1
and ℏ = 1, and the length has a mass dimension −1. We also set the electric charge
to unity: e = 1.

We use subscripts for coordinates like µ in different meanings for each chapter.
For example, µ, ν, · · · used as 4d indices in chapter 2, though they are used as global
coordinate of 3d in chapter 3. We always give the explanation when the conventions
are changed.
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Chapter 2

3d supersymmetric gauge theory

We review 3-dimensional (3d) supersymmetric gauge theories with great attention
to N = 2 supersymmetry (SUSY). Though we briefly explained what is the su-
persymmetry, what N means, and what are the multiples in Introduction, we will
restart from defining and explaining them. Our final goal of this chapter is to list
the N = 2 supersymmetric actions and the SUSY transformations of fields, and
finally, write down the action of the ABJM model. If one is familiar with the 4d
SUSY one may prefer to derive the 3D SUSY by dimensional reduction, which is
summarized in Section B.2. (See also Appendix B and nice reviews [39, 40].)

In this chapter we use m,n, p, · · · as vector indices and they run from 0 to 2,
and α, β, γ, · · · as spinor indices and they take the value 1 or 2.

2.1 Supersymmetry in 3d

Firstly, let us discuss the 3d spinor since the spinor in 3d is quite different from that
of 4d. In 3d the Lorentz group is SO(1, 2) and the spin group is SL(2,R) ∼ Sp(2,R).
Hence, a Majorana spinor can be defined in 3d, which is a real two-component spinor.
Our spinor conventions are summarized in Appendix A.

Before the supersymmetry was found there had been Coleman-Mandula theo-
rem, which tells us that only symmetries that the S-matrix can have are the direct
products of the Poincare group and a group of internal symmetries. In terms of the
algebra it is the direct sum of the Poincare algebra and that of internal symmetries.
Therefore, it is concluded that the symmetry like the supersymmetry that is related
to the symmetry of spacetime cannot be the symmetry of S-matrix.

However, Haag, Sohnius, and Lopuszanski extended the algebra to a graded
algebra and show that the supersymmetry algebra is the unique graded algebra of the
symmetry of the S-matrix. A graded algebra is an algebra with anti-commutators.
Let us start with admitting the simplest super-Poincare algebra:

[Mmn,Mpq] = ηmpMnq − ηnpMmq − ηmqMnq + ηMmp (2.1)

[Mmn, Pp] = ηmpPn − ηnpPm (2.2)

[Mmn, Qα] =
1

2
(γmnQ)α (2.3)

{Qα, Qβ} = 2 (γm)αβ Pm (2.4)
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where Pm are the momentum operators, Mmn are the Lorentz rotation generators,
and Qα are the generators of the supersymmetry (often called supercharges) and
they are the Majorana spinor. Note that we use anti-Hermite representation.

We can actually extend the supersymmetry by putting another index i to the
supercharge Q: Qi, where i runs from 1 to N . (2.4) is slightly modified as

{Qi
α, Q

j
β} = 2δij (γm)αβ Pm. (2.5)

There is a global symmetry that rotates the Qi. Since the Qi are Majorana, and
hence, real the symmetry is SO(N ):[

Rij, Rkl
]
= δikRjl − δjkRil − δilRjk + δjlRik, (2.6)[

Rij, Qk
]
= δikQj − δjkQi. (2.7)

This is called R-symmetry.
Now we focus on N = 2 case. We combine the N = 2 SUSY generators as

Qα =
1√
2

(
Q1
α + iQ2

α

)
, Qα =

1√
2

(
Q1
α − iQ2

α

)
. (2.8)

Then, the N = 2 super Poincare algebra is written as follows.

[Mmn,Mpq] = ηmpMnq − ηnpMmq − ηmqMnq + ηMmp

[Mmn, Pp] = ηmpPn − ηnpPm

[Mmn, Qα] =
1

2
(γmnQ)α (2.9)

[Mmn, Qα] =
1

2

(
γmnQ

)
α

{Qα, Qβ} = 2 (γm)αβ Pm

Now let us consider differential operators that satisfy (2.9). Such operators are given
as follows.

P̂m = ∂m,

Q̂α = ∂α +
(
γmθ

)
a
∂m,

Q̂α = ∂α + (γmθ)a ∂m, (2.10)

M̂mn = xm∂m − xn∂m +
1

2
θγmn∂ +

1

2
θγmn∂.

One can actually confirm that these operators satisfy the algebra with opposite
sign of those of (2.9). It is not a mistake but a consequence of using anti-Hermite
representation.

Let us define following differential operators.

Dα = ∂α −
(
γmθ

)
α
∂m

Dα = ∂α − (γmθ)α ∂m (2.11)
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These are called covariant derivatives and satisfy the anti-commutation relations:

{Dα, Dβ} = 2(γm)αβ∂m, {Dα, Dβ} = {Dα, Dβ} = 0. (2.12)

The supercharges Q,Q anti-commute with the covariant derivatives. If you are
familiar with 4d SUSY note that in 3d these operators can be contracted each
other;

DD = DαDα = D
α
Dα = DD. (2.13)

Q,Q and θ, θ are also contracted as well, where θ and θ are constant spinors and
they are used as fermionic coordinates. Following notation is understood,

θ2 = θθ = θαθα, D2 = DD = DαDα etc. (2.14)

The integral with regard to Grassmann number is defined as follows.∫
d2θ(θ2) = 1,

∫
d4θ(θ2θ

2
) = 1. (2.15)

Now we are ready to define a superfield, which is the function of the superspace
coordinates x, θ, θ.

2.2 N = 2 Multiplets

2.2.1 Chiral multiplets

Let us first explore the building blocks of N = 2 SUSY theory. We define a chiral
multiplet Φ as a superfield satisfying

DαΦ = 0. (2.16)

Under this condition the multiplet can be expanded as

Φ = ϕ+
√
2θψ + θ2F − (θγmθ)∂mϕ− 1√

2
θ2(θγm∂mψ) +

1

4
θ2θ

2
∂m∂mϕ. (2.17)

Note that since θ, θ are Grassmann two-component Majorana spinors products of
more than three of these spinors vanish automatically. The kinetic term of this
multiplet is given as follows.∫

d4θΦΦ = −∂mϕ∂mϕ+ ψ∂\ψ + FF (2.18)

where we omit the total derivatives. Note that FF term has no derivatives, which
means that the equation of motion gives a constraint condition. Such a field is called
auxiliary field.

We can consider not only single superfield but also many superfields Φi. Products
of superfields are also superfield and its highest components are SUSY invariant. In
component fields it is written by∫

d2θW (Φ) =
∂W (ϕ)

∂ϕi
F i − 1

2

∂2W (ϕ)

∂ϕi∂ϕj
ψiψj, (2.19)

where W (Φ) is a polynomial of the superfields, and it is called superpotential.
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2.2.2 Vector multiplets

We consider the “gauge transformation” of the chiral multiplets, namely,

Φ′ = eiΛΦ, Φ
′
= Φe−iΛ, (2.20)

where Λ is a supercoordinate dependent chiral superparameter. When we think
Yang-Mills theory the Λ is an element of Lie algebra, and the superfield Φ is a
representation of the gauge group G. In order to make the chiral multiple action
invariant under the gauge transformation we introduce the “gauge field” V .∫

d4θΦe2VΦ (2.21)

where V is of course not a field but a superfield, and we call V a vector multiplet.
Since the usual gauge field is real V should also satisfy a reality condition V = V ∗.
Under this condition the vector multiplet can be expand as

V = C + θχ+ θχ+
1

2
θ2 (M + iN) +

1

2
θ
2
(M − iN)

+ θθσ + i(θγmθ)Am − θ2θ

(
λ+

1

2
γm∂mχ

)
− θ

2
θ

(
λ+

1

2
γm∂mχ

)
− 1

2
θ2θ

2
(
D − 1

2
∂m∂mC

)
. (2.22)

In order to make the action (2.21) invariant under the gauge transformation 2.20 V
should transform as

e2V
′
= eiΛe2V e−iΛ = exp

[
2

(
V +

i

2
(Λ− Λ) +

i

2
[Λ, V ]− i

2
[V,Λ] + · · ·

)]
. (2.23)

Using this gauge freedom we can fix some fields in the vector multiplet. When the
group is Abelian all the commutators in (2.23) vanish and the gauge transformation
is simply expressed by

V → V ′ = V +
i

2

(
Λ− Λ

)
. (2.24)

We focus on the Abelian case for a while. We use linear terms of Λ and Λ, and
erase the first three terms of (2.22). The linear terms are

i

2
(Λ− Λ) =

i

2
(ϕ− ϕ) +

i√
2
θψ − i√

2
θψ +

i

2
θ
2
F − i

2
θ2F

+
i

2

(
θγmθ

)
∂m(ϕ+ ϕ)− i

2
√
2
θ
2
(θ∂\ψ) + i

2
√
2
θ2(θ∂\ψ)

+
i

8
θ2θ

2
∂m∂m(ϕ− ϕ), (2.25)

where although we used the same notation as the chiral multiplet, the components
are not fields but gauge transformation parameters. As a result each component of
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the vector multiplet transforms as

C → C +
i

2
(ϕ− ϕ)

χ→ χ− i√
2
ψ

M + iN →M + iN − iF

σ → σ

Am → Am +
1

2
∂m(ϕ+ ϕ)

λ→ λ

D → D. (2.26)

Therefore, we can set C = χ = M = N = 0, and (ϕ + ϕ)/2 becomes an usual
gauge transformation parameter. This gauge is called Wess-Zumino gauge, and V
is written as

VWZ = θθσ + i(θγmθ)Am − θ2θλ− θ
2
θλ− 1

2
θ2θ

2
D. (2.27)

From now on we use V in Wess-Zumino gauge and omit the index WZ. The nice
feature of this gauge is that the cubic term of V vanish, the exponential is just a
quadratic polynomial;

e2V
WZ
= 1 + 2V + 2V 2. (2.28)

In the non-Abelian case the commutators in (2.23) become non-trivial. Still, there
exist the linear terms and we can set some terms. Finally, V can be expanded as in
(2.27). The important difference compared to the Abelian case is that σ, λ and D
do transform under the gauge transformation due to the commutators.

We can now write down the components of the gauge invariant action of the
chiral multiplet;∫

d4θΦe2VΦ = −DmϕD
mϕ+ ψD\ψ + FF

+
√
2ϕ(λψ) +

√
2(λψ)ϕ− ϕDϕ− ϕσσϕ+ (ψσψ) (2.29)

where we omitted the total derivative terms, and the covariant derivatives are defined
as

Dmϕ = ∂mϕ− iAmϕ, Dmϕ = ∂mϕ+ iϕAm. (2.30)

In order to derive the kinetic term for the vector multiplet we define following
quantity;

Wα =
1

8
D
β
Dβe

−2VDαe
2V WZ

=
1

4
D
β
Dβ (DαV + [DαV, V ]) . (2.31)

This is gauge covariant and transforms as

W ′
α =

1

8
D
β
Dβ

(
eiΛe−2V e−iΛDα

(
eiΛe2V e−iΛ

))
= eiΛWαe

−iΛ, (2.32)
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where note that the gauge transformation of e−2V is

not e−2V → e−iΛe−2V eiΛ, but e−2V → eiΛe−2V e−iΛ. (2.33)

To get the correct transformation law one has to pay attention to the R.H.S of
(2.23). In the Wess-Zumino gauge Wα is written as

Wα = λα + θαD +
i

2
(γmnθ)αFmn − (γmθ)αDmσ + (D\λ)αθ2 − [σ, λα]θ

2 + · · · ,
(2.34)

where · · · represent terms including θ. The reason why the θ terms appear is because
we adopted V such that DαV ̸= 0 in (2.27). In order to erase those terms we need
to shift D appropriately. Here we just ignore such terms and using above expression
the kinetic term of the vector multiplet is

1

2

∫
d2θtrWαWα = tr

(
−1

4
FmnF

mn + (λD\λ)− 1

2
DmσD

mσ +
1

2
D2 − (λ[σ, λ])

)
.

(2.35)

When the gauge group is Abelian one can introduce Fayet-Iliopoulos (FI) term
into the action.

−2ζ

∫
d4θ V = ζD (2.36)

On the other hand, this term cannot show up in a non-Abelian sector, because the
component D is not gauge invariant as discussed before.

2.2.3 N = 2 SUSY transformation law

We are now able to extract the N = 2 SUSY transformation law of component fields
from the multiplets. Let us first look into the vector multiplet (the reason will be
clear soon).

δV = i(ϵγmθ)Am + (ϵθ)σ − θ
2
(ϵλ)− 2(ϵθ)(θλ)− (ϵθ)θ

2
D

+
i

2
θ
2
(ϵγmγnθ)∂mAn −

1

2
θ
2
(ϵγmθ)∂mσ +

1

2
θ2θ

2
(ϵ∂\λ)

+ terms including ϵ (2.37)

As you may notice the first three terms break the WZ gauge. Since we started from
the WZ gauge we have to restore the WZ gauge by the gauge transformation. The
required parameter Λ is given by the following replacement;

ϕ→ 0,
√
2ψ → −2i (σ + iγmAm) ϵ, F → 2i(ϵλ). (2.38)

Then, the Λ becomes

Λ = −2i(θϵ)σ + 2(θγmϵ)Am + 2iθ2(ϵλ) + iθ2(θγmϵ)∂mσ − θ2(θγmγnϵ)∂mAn.
(2.39)
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After the gauge transformation with the parameter derived above we have

δV
WZ
= −2(ϵθ)(θλ)− (ϵθ)θ

2
D

− i

2
θ
2
(θγmnϵ)Fmn + θ

2
(θγmϵ)Dmσ +

1

2
θ2θ

2 (
ϵD\λ− (ϵ[σ, λ])

)
+ terms including ϵ

= θθδσ + i(θγmθ)δAm − θ2θδλ− θ
2
θδλ− 1

2
θ2θ

2
δD, (2.40)

where Dmλ = ∂mλ − i[Am, λ]. We can now extract the transformation law for the
components.

δAm = iϵγmλ− iϵγmλ

δσ = ϵλ+ ϵλ

δλ =
i

2
γmnϵFmn − γmϵDmσ +Dϵ

δD = −ϵD\λ− ϵD\λ+ ϵ[σ, λ] + ϵ[σ, λ] (2.41)

Next, we derive the transformation law for the chiral multiplet.

δΦ =
√
2ϵψ + 2θϵF − 2(θγmϵ)∂mϕ−

√
2θ2(ϵ∂\ψ)

+ terms including θ. (2.42)

In the case of neutral chiral multiplet we can extract the transformation law from
this result. On the other hand, in the charged chiral multiplet case we have to
restore the WZ gauge of the vector multiplet, and hence, need to do the gauge
transformation with the parameter (2.39). The variation is

iΛΦ = 2(θϵ)σϕ−
√
2θ2(ϵσψ) + 2iθ2(ϵA\ψ)− 2θ2(ϵλ)ϕ

+ terms including θ. (2.43)

The transformation of the charged chiral multiplet is

δΦ
WZ
=

√
2(ϵψ) + 2(θϵ)F + 2(θϵ)σϕ− 2(θγmϵ)Dmϕ

−
√
2θ2(ϵD\ψ)−

√
2θ2(ϵσψ)− 2θ2(ϵλ)ϕ

+ terms including θ. (2.44)

Therefore, the transformation law for the component of the chiral multiplet is

δϕ =
√
2ϵψ

δψ =
√
2ϵF +

√
2ϵσϕ−

√
2γmϵDmϕ (2.45)

δF = −
√
2(ϵD\ψ)−

√
2(ϵσψ)− 2(ϵλ)ϕ.
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2.2.4 N = 2 supersymmetric Chern-Simons term

Here we discuss the N = 2 supersymmetric version of Chern-Simons term. There
are a couple of ways to derive it. One is to start with the pure Chern-Simons
term (B.26), and modify it so as to make it invariant under the transformation (see
Subsection B.2.1). The supersymmetric Chern-Simons term is given by

SCS =
k

2π

∫
d3x tr

[
ϵmnp

1

2

(
Am∂nAp −

2i

3
AmAnAp

)
+ λλ− σD

]
. (2.46)

One can check that this action is invariant under the SUSY transformation (2.41).

2.3 ABJM model

So far we discussed a general N = 2 supersymmetric gauge theory. In this section
we treat the specific model, which describe the low energy effective action of flat
M2-branes as in Fig. 2.1, and it is called the ABJM model [3].

Figure 2.1: Global symmetry of M2-brane

An M2-brane is, as the name express, a 3d spacetime object in 11-dimensional
spacetime. The position of the branes is expressed by 8 scalar fields; these scalars
express the directions normal to the M2-branes, and this is why 8 scalars are needed.
The M2-branes are invariant under rotations of 8 transverse directions. Therefore,
the theory should have a global SO(8) symmetry for the scalar fields. Since the
theory is supersymmetric the 8 superpartners are also required corresponding to the
scalars.

As we consider the IR limit the theory should be conformal. The conformal
symmetry mixes up with the supersymmetry and the SO(8) symmetry and becomes
the superconformal symmetry OSp(8|4).

Since there are many M2-branes and they are degenerate, we need another index
denoting the branes. If the analog to D2-brane in the string theory can be applied the
number of the branes corresponds to the rank of the gauge group U(N). However, in
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the 3d case the Yang-Mills term is dimensionful and it could not be conformal. So the
only choice is the Chern-Simons term. One may suppose we are almost reaching the
low energy effective theory of M2-branes but we still have a big problem. In order to
realize bigger supersymmetry the theory should have appropriate interaction terms.
AdS/CFT tells us that the free energy of M2-branes is proportional to N3/2; this
strange exponent is the effect of the interaction. Therefore, we ought to find the
appropriate interaction terms. This had not been achieved for a long time.

Three years ago, a low energy effective theory of M2-branes was found by Aharony,
Bergman, Jafferis, and Maldacena [3]. The key point was that they gave up the man-
ifest N = 8 SUSY but kept only the N = 6 SUSY manifestly (manifest means the
symmetry of the Lagrangian). It is known that the expected N = 8 SUSY is realized
for k = 1, 2 non-perturbatively [3]. We do not look into the details of the SUSY
enhancement but simply give the action and the SUSY transformation. The ABJM
model is U(N)k ×U(N)−k Chern-Simons matter theory whose matter contents and
the representations of the symmetries are summarized in Table 2.1. The Lagrangian

Table 2.1: Gauge symmetries and global symmetries of the ABJM model. SU(4) ∼
SO(6) is the R-symmetry.

A Â Y A ψA
U(N)k adj 1 N N
U(N)−k 1 adj N N
SU(4)R 1 1 4 4
U(1)B 0 0 1 1

of the ABJM model is as follows.

SCS =
k

4π

∫
d3x ϵmnp tr

[(
Am∂nAp −

2i

3
AmAnAp

)
−
(
Âm∂nÂp −

2i

3
ÂmÂnÂp

)]
(2.47)

Skin =
1

2π

∫
d3x tr

[
−DmY ADmY A + ψ

A
γmDmψA

]
(2.48)

Spot =
1

6πk2

∫
d3x tr

[
Y AY AY

BY BY
CY C + Y AY

AY BY
BY CY

C

+4Y AY BY
CY AY

BY C − 6Y AY BY
BY AY

CY C

]
(2.49)

SYukawa = − 1

2πk

∫
d3x tr

[
Y AY

Aψ
B
ψB − Y AY AψBψ

B
+ 2Y AY BψAψ

B − 2Y AY
Bψ

A
ψB

+ϵABCDY AψBY CψD − ϵABCDY Aψ
B
Y Cψ

D
]

(2.50)

where Y A are complex scalar fields; A runs from 1 to 4, ψA are Dirac fermions. We
already used the equations of motion for the auxiliary fields and erased them. Note
that the covariant derivative is

DµY
A = ∂µY

A − iAµY
A + iY AÂµ. (2.51)
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Note that Y A belongs to a fundamental representation of the first gauge group
U(N)k and an anti-fundamental representation of the second gauge group U(N)−k,
and this representation is called a bi-fundamental. From the Lagrangian we can see
that it has SU(4) global symmetry. The matter fields belong to the 6 representation
of SU(4), and hence, the theory has N = 6 SUSY. The N = 6 SUSY transformation
is given as follows.

δY A =
√
2ξABψB

δψA = −
√
2γmξABDmY

B +
2
√
2π

k
ξAB

(
Y CY CY

B − Y BY CY
C
)
− 4

√
2π

k
ξbc
(
Y BY AY

C
)

δAm = −2i
√
2π

k

[
ξABγm

(
Y Aψ

B
)
+ ξABγm

(
ψAY B

)]
δÃm =

2i
√
2π

k

[
ξABγm

(
Y AψB

)
+ ξABγm

(
ψ
A
Y B
)]

(2.52)

Where ξAB is the SUSY parameter and it belongs to 6 representation of SU(4) as
we mentioned, and satisfying following relations:

ξAB = −ξBA, (ξAB)
∗ = −1

2
ϵABCDξCD. (2.53)

So far we write down the Lagrangian in terms of component fields. We can write
down the same Lagrangian by the N = 2 multiplet.

SCS =
∑
I=1,2

kI
4π

∫
d3x ϵmnp tr

(
DVIDVI + · · ·

)
=
∑
I=1,2

kI
4π

∫
d3x ϵmnp tr

[
−σIDI +

(
AIm∂nA

I
p −

2i

3
AImA

I
nA

I
p

)
+ (λλ)

]
(2.54)

Smatter =
1

2π

∫
d3xd4θ tr

[
A†
ie

2V1Aie−2V2 +Bie−2V1B†
i e

2V2
]

(2.55)

Spot =
1

2πk

∫
d3xd2θ ϵijϵkltr

[
AiBkAjBl

]
+ c.c. (2.56)

where AI=1
m = Am, A

I=2
m = Âm, kI=1 = k, and kI=2 = −k. At the first line we

expressed the Chern-Simons terms in terms of vector multiplets. · · · express the
higher terms and they give only a tertiary term of Am (see Subsection B.2.1 for the
details). We can see that the Lagrangian has some global symmetries listed in Table
2.2. These symmetries play an important role in the latter chapters. If we integrate
out all the auxiliary field in the multiplets we obtain the Lagrangian in terms of the
component fields (2.52).
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Table 2.2: Global symmetries of ABJM model

A1 A2 B1 B2

U(1)A +1 −1 0 0
U(1)B 0 0 +1 −1
U(1)T +1 +1 −1 −1
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Chapter 3

Partition function on S3

In the previous chapter we discussed N = 2 supersymmetric gauge theories: their
construction and their transformation laws in 3d Minkowski space. In this chapter
we calculate the partition function of those theories using the localization on 3d
Euclidean space, rather than on the Minkowski space. The partition function is
defined by

Z =

∫
M

DΦe−S[Φ]. (3.1)

where M is a manifold on which the theory is defined. The reason why we use Eu-
clidean space is purely because of the technical reason; if the space is not compact the
volume integration diverges. For simplicity, we consider the most symmetric com-
pact space in 3d as the first example, which is three-sphere S3. The Euclideanization
makes no change on the Lagrangians nor the SUSY transformation laws as we have
not used any explicit representation for the metric nor the γ-matrices. When the
explicit expression for the γ-matrices are needed we use γm̂ = σm, where σm are the
Pauli’s matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.2)

Note that in a 3d Euclidean space a vector index runs from 1 to 3 rather than 0 to 2
for making sure that we treat Euclidean space. These Euclidean notations are used
through the remaining part of this thesis.

3.1 SUSY on conformally flat space

We extend the SUSY transformation law we derived in the previous chapter to the
one on a conformally flat space. Conformally flat means that the geometry is de-
formed from the flat space by Weyl transformation, which is defined below. Since S3

is conformally flat (see Section C.5) we can use the extended SUSY transformation
law for our purpose.

Firstly, we remind ourselves of the N = 2 SUSY transformation law of vector
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multiplet.

δ0Aµ = iϵγµλ− iϵγµλ

δ0σ = ϵλ+ ϵλ

δ0λ =
i

2
γµνϵFµν − γµϵDµσ +Dϵ

δ0λ = − i

2
γµνϵFµν − γµϵDµσ +Dϵ

δ0D = −ϵγµDµλ− ϵγµDµλ+ ϵ[σ, λ] + ϵ[σ, λ]. (3.3)

where the subscripts 0 mean the transformation is applied for the flat space. Note
that the indices µ, ν, · · · are not for 4d indices but 3d world space indices and run
from 1 to 3.

Weyl transformation is defined as a local scaling of the vielbein (or metric):

emµ → e
′m
µ = e−α(x)emµ ,

gµν → g′µν = e−2α(x)gµν . (3.4)

Under this transformation a field Φ with Weyl weight n transforms as follows.

Φ′ = enαΦ. (3.5)

Weyl weights of the components of a vector multiplet and the SUSY transformation
parameters are given in Table 3.1. Note that the weight of Aµ is zero, on the other

Table 3.1: Weyl weights of fields of vector multiplet

Fields ϵ ϵ Aµ σ λ λ D γµ

Weyl weights −1
2

−1
2

0 1 3
2

3
2

2 −1

hand, the weight of Am = eµmAµ is one. Furthermore, the position of the index is
important; e.g.

γµ → γ
′µ = g

′µνγ′ν = e2αgµνe−αγν = eαgµνγν . (3.6)

The assignment of the weights in the table shows that the weights of both side of the
transformations (3.3) are the same. Hence, the transformation is invariant under
the Weyl transformation if the parameter α(x) is independent of the coordinate x.

Let us consider the case that the parameter depends on the coordinates. We
denote fields and the vielbein on the flat space M without prime e.g. Φ, emµ , and
those on conformally flat space M′ with prime e.g. Φ′, e′mµ . We define the SUSY
transformation of the fields Φ′ with conformal weight n on M′ as

δΦ′ = enαδ0Φ, (3.7)

where Φ = e−nαΦ′ is the pull-back of the fields to the flat space M. In the case that
the SUSY transformation of the field Φ includes no derivative terms the α depen-
dence of the RHS of (3.7) does not remain. However, if the transformation includes
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derivative terms, extra terms containing ∂α come up. In order to keep the transfor-
mation covariant one usually introduces a covariant derivative with corresponding
gauge field. Here, we show that the; derivative of the SUSY parameter Dµϵ can be
used as the gauge field.

Using the behavior of the spin connection (C.12) under the Weyl transformation:

ωµmn(e
′) = ωµmn(e)−

(
eµme

λ
n − eµne

λ
m

)
∂λα, (3.8)

we can see that the Weyl transformation of the Dµϵ becomes

D′
µϵ

′ = e−α/2
(
Dµϵ−

1

2
γµγ

λϵ∂λα

)
. (3.9)

This transformation looks similar to that of gauge transformation of a gauge field
in the sense that it is shifted by ∂α. Using this fact we can construct the SUSY
transformation that transforms covariantly under the Weyl transformation. For
instance, we replace the terms with the derivatives as following.

(Dµσ)γ
µϵ→ (Dµσ)γ

µϵ+
2

3
σγµDµϵ,

(ϵγµDµλ) → (ϵγµDµλ) +
1

3
(Dµϵγ

µλ) . (3.10)

One can check that these terms covariantly transform;

(Dµσ
′)γ′µϵ′ +

2

3
σ′γ′µD′

µϵ
′ = e

3
2
α

[
(Dµσ)γ

µϵ+
2

3
σγµDµϵ

]
,

(
ϵ′γ′µD′

µλ
′)+ 1

3

(
D′
µϵ

′γ′µλ′
)
= e2α

[
(ϵγµDµλ) +

1

3
(Dµϵγ

µλ)

]
. (3.11)

Note that newly added terms vanish when the space is flat, and hence, do not cause
any problem. The SUSY transformation law with this replacement is

δAµ = iϵγµλ− iϵγµλ

δσ = ϵλ+ ϵλ

δλ =
i

2
γµνϵFµν − γµϵDµσ +Dϵ− 2

3
σγµDµϵ

δλ = − i

2
γµνϵFµν − γµϵDµσ +Dϵ− 2

3
σγµDµϵ

δD = −ϵγµDµλ− ϵγµDµλ+ ϵ[σ, λ] + ϵ[σ, λ] +
1

3
λγµDµϵ+

1

3
λγµDµϵ, (3.12)

where we omit the primes. This transformation is applicable for any conformally
flat space. Note that ϵ is now not a constant. Rather, it should satisfy the following
equation:

Dµϵ = γµκ, (3.13)

where κ is an arbitrary spinor. This condition is called a Killing spinor equation, and
it has the same form after the Weyl transformation with an appropriate redefinition
of κ:

D′
µϵ

′ = γ′µκ
′. (3.14)
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Similarly, we can construct the SUSY transformation on conformally flat space
of a chiral multiplet. Let us consider a chiral multiplet with conformal weight ∆.
Namely, its components have weights as in Table 3.2. The transformation for the

Table 3.2: Weyl weights of the fields of chiral multiplet

Fields ϕ ψ F

Weyl weights ∆ ∆ + 1
2

∆+ 1

flat space is

δ0ϕ =
√
2ϵψ

δ0ψ = −
√
2γmϵDmϕ+

√
2ϵσϕ+

√
2ϵF

δ0F = −
√
2ϵγmDmψ +

√
2ϵσψ − 2ϵλϕ. (3.15)

The terms including derivatives should be replaced as

(Dµϕ) γ
µϵ→ (Dµϕ) γ

µϵ+
2

3
∆ϕγµDµϵ,

(ϵγµDµψ) → (ϵγµDµψ) +
2

3

(
∆− 1

2

)
(Dµϵγ

µψ) . (3.16)

Then, the transformation for a conformally flat space is derived as follows.

δϕ =
√
2ϵψ

δψ = −
√
2γmϵDmϕ+

√
2ϵσϕ+

√
2ϵF − 2

√
2

3
∆ϕγµDµϵ

δF = −
√
2ϵγmDmψ +

√
2ϵσψ − 2ϵλϕ− 2

√
2

3

(
∆− 1

2

)
(Dµϵγ

µψ) . (3.17)

3.2 Calculation of S3 partition function

3.2.1 Vector multiplet

In order to use the localization technique we need supersymmetry on S3. On S3

with radius r we use a Killing spinor satisfying

Dµϵ =
i

2r
γµϵ. (3.18)

There are two linearly independent solutions to this equation, and we denote them
as ϵ1 and ϵ2. The corresponding SUSY transformations are δ1 and δ2. In this section
we derive the deformation term δV used in the localization (??) and calculate the
partition function exactly.
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The transformation laws of vector multiplet on S3 are given as follows.

δAµ = iϵγµλ

δσ = ϵλ

δλ =
i

2
γµνϵFµν − γµϵDµσ +Dϵ− i

r
σϵ

δλ = 0

δD = −ϵγµDµλ+ ϵ[σ, λ] +
i

2r
λϵ (3.19)

Using these we consider δ2V = δ2δ1T with T = −1
2
λλ. After some calculation we

have

δ2δ1T /ϵ2ϵ1 =
1

2
FµνF

µν +DµσD
µσ − iγµνρFµνDρσ +

(
iD +

1

r
σ

)2

− 2λD\λ+ 2[σ, λ]λ− i

r
λλ. (3.20)

Hence, the deformation term is

tδV = t

∫
d3x

√
g

(
1

2
FµνF

µν +DµσD
µσ − iγµνρFµνDρσ +

(
iD +

1

r
σ

)2

−2λD\λ+ 2[σ, λ]λ− i

r
λλ

)
. (3.21)

Since the auxiliary field D is pure imaginary the boson part is positive definite.
Localization method tells us that the only following saddle points contribute to the
partition function;

Fµν = 0, Dµσ = 0, iD +
1

r
σ = 0. (3.22)

The general solution to these conditions is

Aµ = 0, σ = σ0, D =
i

r
σ0, (3.23)

where we took the Lorentz gauge ∂µA
µ = 0. The path integral split into the integra-

tion of σ0 that parametrizes the saddle points and that of fluctuations around them.
Though σ0 takes value in the Lie algebra of the gauge group, we can diagonalize it
by the gauge transformation: σ̃0 = U−1σ0U . Then, the integration can be written
by that of the Cartan part.∫

dσ0 =

∫
dσ̃0

(∏
α∈G

α (r̃σ0)

)
, (3.24)

where Vandermonde determinant appear as Jacobian, and α is a root of the gauge
group and it is defined as follows.

[σ,Aµ] = α(σ)Aµ (3.25)
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The product is over all the roots of the gauge group G. For example, for U(N),

∏
α∈G

α (σ0) =
dimG∏

i,j=1,i ̸=j

(σ0i − σ0j) . (3.26)

where and from now on we omit the tilde on σ̃0, and σ0 takes value in the Cartan
part. In order to integrate the fluctuations out we expand all the fields as

Φ = Φ0 +
1√
t
Φ′, (3.27)

where the classical part Φ0 is nonzero only for σ0 (and D). Taking the weak coupling
limit t → ∞ all the higher order terms vanish and only the quadratic terms of Φ′

survive.. Finally, the action becomes

S =

∫
d3x

√
g

{
(−A′

νDµD
µA′ν) +

2

r2
A′
µA

′µ + A′
µ[σ0, [σ0, A

′µ]]− σ′DµD
µσ′

−2
(
λ
′
γµDµλ

′
)
− 2

(
λ
′
[σ0, λ

′]
)
− i

r

(
λ
′
λ
)}

. (3.28)

Note that the gauge field in the covariant derivative is replaced by its classical value
Aµ = 0. What we only need to do is to expand each field by harmonic functions on
S3 and perform the path integral. The harmonic functions on S3 are summarized
in chapter E.

The differential operator acting on the scalar field σ′ is the Laplacian, and its
eigenvalues are given by

−r2DµD
µ = l (l + 2) l = 0, 1, 2, · · · , degeneracy (l + 1)2. (3.29)

Nonetheless, the integration only gives the constant, and hence, we can ignore it.
A divergenceless vector field is expanded by harmonics in (l, l + 1) and (l + 1, l)

representations of the isometry SO(4) ∼ SU(2)× SU(2) of S3.
The eigenvalues of the Laplacian of each representation are

−r2DµD
µ = (l + 2)2 − 2, l = 0, 1, 2, · · · , degeneracy (l + 1)(l + 3). (3.30)

Hence, the eigenvalue of the differential operator

Dvec = −DµD
µ +

2

r2
+ α(rσ0)

2 (3.31)

is given as follows.

r2Dvec = (l + 2)2 + α(rσ0)
2 = (l + 2 + iα(rσ0)) (l + 2− iα(rσ0)) , l = 0, 1, 2, · · · .

(3.32)

Using the eigenvalues of the Dirac operator

rγµDµ = ±i
(
l +

3

2

)
, l = 0, 1, 2, · · · , degeneracy (l + 1)(l + 2), (3.33)

42



the differential operator for the fermion

r

2
Dfermi = −rγµDµ − α(rσ0)−

i

2
, (3.34)

gives the eigenvalues

i (l + 1 + iα(rσ0)) and − i (l + 2− iα(rσ0)) , l = 0, 1, 2, · · · . (3.35)

Summarizing the results we obtained the 1-loop partition function as follows.

Z =

∏∞
l=0 (l + 1 + iα(rσ0))

(l+1)(l+2)∏∞
l=0 (l + 2− iα(rσ0))

(l+1)(l+2)∏∞
l=0 (l + 2 + iα(rσ0))

(l+1)(l+3)∏∞
l=0 (l + 2− iα(rσ0))

(l+1)(l+3)

=

∏∞
l=0 (l + 1 + iα(rσ0))

(l+2)∏∞
l=0 (l + 2− iα(rσ0))

(l+1)
. (3.36)

Furthermore, using the fact that we always take the product of all the roots (positive
and negative α appear as a pair) we can write the partition function as

Z =
∞∏
l=1

(l + iα(rσ0))
∞∏
l=1

(l − iα(rσ0)) (3.37)

Ignoring the divergent constant factor we have

Z =
∞∏
l=1

(
1 +

α(rσ0)
2

l2

)
=

sinh(πα(rσ0))

πα(rσ0)
. (3.38)

Note that the term in the denominator cancel with the Vandermonde determinant
(3.24).

So far we have not taken the contribution of original action into account. Indeed,
almost all terms vanish at the saddle points. However, if the original action has
Chern-Simons term or Fayet Iliopoulos term, they have classical contributions. From
(B.40) we can derive the Euclideanized Chern-Simons term :

SESCS = − k

4π

∫
d3x tr

[
ϵmnp

1

2

(
Am∂nAp −

2i

3
AmAnAp

)
+ λλ− σD

]
. (3.39)

Substituting (3.27) and taking t→ ∞ limit the action becomes

SESCS =
k

4π

∫
d3x tr

[
i

r
σ2
0

]
= iπk tr (rσ0)

2 . (3.40)

where we used the S3 volume 2π2r3.
Similarly, for the Fayet Iliopoulos term we have

SEFI = ζ

∫
d3x D = ζ

∫
d3x

i

r
σ
U(1)
0 = 4iπ2r2ζσ

U(1)
0 . (3.41)

To sum up we obtained the partition function as

Z =

∫
dσ0e

−iπktr(rσ0)2−2πiζrσ0U(1)

∏
α∈G

sinh (πα(rσ0)) , (3.42)

where we rescaled ζ → ξ/(2πr) so that the expression becomes simple.
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3.2.2 Chiral multiplet

What we do here is almost parallel with that of vector multiplet. The SUSY trans-
formation laws with ϵ parameter are

δϕ =
√
2ϵψ,

δψ =
√
2ϵF,

δF = 0,

δϕ = 0,

δψ = −
√
2γmϵDmϕ+

√
2ϵϕσ − i

√
2

r
∆ϕϵ,

δF = −
√
2ϵγmDmψ +

√
2ϵψσ − 2ϕϵλ+

i
√
2

r

(
∆− 1

2

)(
ϵψ
)
. (3.43)

Using these we can derive the following action

T = −1

2
Fϕ,

S = t

∫
d3x

√
gδ2δ1T /ϵ2ϵ1

= t

∫
d3x

√
g

[
−DµD

µϕϕ+ (Dµψγ
µψ)− FF +

i(2∆− 1)

2r
ψψ − ∆(∆− 2)

r2
ϕϕ

−
√
2(ψλ)−

√
2ϕ(λψ)− ψσψ − i(2∆− 1)

r
ϕσϕ+ ϕσσϕ+ ϕDϕ

]
. (3.44)

The boson part is again positive definite and all the fields localize at zero in this
case. Then, we rescale all the fields as Φ → Φ/

√
t and take the t→ ∞ limit:

S =

∫
d3x

√
g

[
ϕ

(
−DµD

µ − ∆(∆− 2)

r2
− 2i(∆− 1)

r
σ0 + σ2

0

)
ϕ

+ψ

(
−γµDµ +

i(2∆− 1)

2r
− σ0

)
ψ − FF

]
. (3.45)

As we did for vector multiplet we can perform the path integral by harmonic
function expansion. It is useful to denote the eigenvalue of σ0 corresponding to the
representation of the chiral multiplet by ρ(σ0). Namely,

σ0Φ = ρ(σ0)Φ for a fundamental field Φ ,

[σ0,Φ] = ρ(σ0)Φ for an adjoint field Φ . (3.46)

The integration for the auxiliary field F becomes a constant and we can ignore it.
The differential operator for the scalar field ϕ can be written as

r2Dbos = −r2DµD
µ + 1− (∆− 1 + iρ(rσ0))

2 . (3.47)

The eigenvalues of the operator are derived using (3.29):

r2Dbos = (l + 1)2 − (∆− 1 + iρ(rσ0))
2 = (l +∆+ iρ(rσ0)) (l + 2−∆− iρ(rσ0)) .

(3.48)
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The operator for the fermion ψ is

rDfermi = −rγµDµ +
i(2∆− 1)

2
− ρ(rσ0). (3.49)

The eigenvalues for the Dirac operator (3.33) belongs to two series:

rDfermi = i (l + 1 +∆+ iρ(rσ0))

rDfermi = −i (l + 2−∆− iρ(rσ0)) . (3.50)

Finally, the 1-loop partition function for chiral multiplet becomes following form.

Z1−loop =
∏
ρ∈R

∏∞
l=0 (l + 1 +∆+ iρ(rσ0))

(l+1)(l+2)∏∞
l=0 (l + 2−∆− iρ(rσ0))

(l+1)(l+2)∏∞
l=0 (l +∆+ iρ(rσ0))

(l+1)2∏∞
l=0 (l + 2−∆− iρ(rσ0))

(l+1)2

=
∏
ρ∈R

∞∏
l=1

(
l + 1−∆− iρ(rσ0)

l − 1 + ∆+ iρ(rσ0)

)l
. (3.51)

In order to make the expression simple we set

z = i(1−∆) + ρ(rσ0) (3.52)

and define following function

l(z) = log
∞∏
k=1

(
k − iz

k + iz

)k
. (3.53)

A similar function is used in [9], though the definition is bit different. We call this
function l-function. The derivative of this function is expressed by an elementary
function;

dl(z)

dz
= iπz coth(πz), (3.54)

where we used the zeta function regularization (see F.1).
The final formula for the partition function is given as follows.

Z =

∫
dσe−iπktr(σ

2)−2πiζσU(1)

∏
α∈G

sinh (πα(σ))
∏
ρ∈R

el(i(1−∆)+ρ(σ)), (3.55)

where we renamed as rσ0 → σ. The constant factor is again ignored.

3.3 Partition function of ABJM model

Having derived the formula of the S3 partition function let us use it for the ABJM
model. The required information to use the formula is

• the gauge group G

• the representations and the Weyl weights
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• the levels of the Chern-Simons terms and the coefficients ζ of Fayet-Iliopoulos
terms

Note that we especially do not need the explicit form of the interaction terms. As
we saw in the derivation of the formula interaction terms do not contribute to the
partition function. Nonetheless, in some case the interaction terms fix the Weyl
weight of chiral multiplets.

In the ABJM model we have

• Two vector multiplets with U(N) gauge group with Chern-Simons level k and
−k. Their saddle points are parametrized by the Cartan part

σ1 =

λ1 . . .

λN

 , σ2 =

λ̃1 . . .

λ̃N

 . (3.56)

The trace in the Chern-Simons term is

ktr(σ2
1)− ktr(σ2

2) = k

N∑
i=1

(
λ2i − λ̃2i

)
. (3.57)

The roots of U(N) are given by

αij(σ1) = λi − λj, αij(σ1) = λ̃i − λ̃j, (3.58)

and the product
∏

α∈G becomes
∏N

i,j=1, i ̸=j

• Four chiral multiples with the Weyl weight 1
2
belonging to a bi-fundamental

representation. The weight vector for the bi-fundamental is expressed as

ρij(σ) = λi − λ̃j. (3.59)

Substituting these to the formula (3.55) We have

Z =
1

(N !)2

∫
dNλdN λ̃ e−iπk

∑N
i=1(λ

2
i−λ̃2i )

∏
1≤i<j≤N

[
sinh2 π(λi − λj) sinh

2 π(λ̃i − λ̃j)
]

∏N
i,j=1 cosh

2 π(λi − λ̃j)
.

(3.60)

There are several ways to calculate this integral. Analytic continuation of Lens
space matrix model is used in [41]. In the large N limit the integral is exactly
evaluated in [6], Fermi gas approach is applied in [20, 21], and numerical method
is first explored in [42]. Here we use the method explored in [18], which is easy to
apply and applicable not only to the ABJM model but also many other theories.

According to [18] we do not need to evaluate the integral in (3.60) to obtain
the leading order of a large N expansion. The integral is actually evaluated by the
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stationary point of σ for the leading order. Let us see the free energy F = − logZ :

F (λ, λ̃) = iπk
∑
i

(λ2i − λ̃2i )

− 2
∑
i<j

log sinh π(λi − λj)− 2
∑
i<j

log sinh π(λ̃i − λ̃j)

+ 2
∑
i,j

log cosh π(λi − λ̃j). (3.61)

What we want is the stationary point of the free energy. It is given by the following
simultaneous equations.

− 1

2π

∂F

∂λi
= −ikλi +

∑
j ̸=i

coth π(λi − λj)−
∑
j

tanhπ(λi − λ̃j) = 0,

− 1

2π

∂F

∂λ̃i
= ikλ̃i +

∑
j ̸=i

cothπ(λ̃i − λ̃j) +
∑
j

tanh π(λj − λ̃i) = 0. (3.62)

These are numerically solved for finite N ; the eigenvalue distribution is as in Fig.
3.1 and Fig. 3.2. What we can learn from the distribution is
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Figure 3.1: The eigenvalue distribution of the ABJM model. The blue and red
circles are λi and λ̃i, respectively. N is set to be 30.

• λi and λ̃i are complex

• λ̃i = λ∗i .

• In N → ∞ limit the imaginary part is

−1

4
< Imλi <

1

4
. (3.63)

On the other hand, the real part is

Reλmax ∼ O(Nα), (3.64)

where Reλmax is the maximum of Reλi, and α is a certain constant 0 < α < 1.
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Figure 3.2: The eigenvalue distribution of the ABJM model with N = 100.

Therefore, we assume following form for λ and λ̃.

λj = Nαxj + iyj, λ̃j = Nαxj − iyj. (3.65)

We also introduce the eigenvalue density ρ(x):

ρ(x) =
1

N

N∑
i=1

δ (x− λi) . (3.66)

By definition it is normalized as follows.∫
ρ(x)dx =

1

N

N∑
i=1

1 = 1 (3.67)

In what follows, we replace the sum by the integration with the density:∑
i

→ N

∫
dxρ(x). (3.68)

Using these we rewrite the free energy. Firstly, the Chern-Simons term becomes

iπk
∑
i

(
λ2i − λ̃2i

)
= iπkN

∫
dx ρ(x)

(
(Nαx+ iy)2 − (Nαx− iy)2

)
= −4πkN1+α

∫
dxρ (x) xy. (3.69)

The other terms in (3.61) are expressed with the following function:

f(z) = log cosh(πz) (3.70)

as follows.

−2
∑
i<j

f

(
λi − λj +

i

2

)
− 2

∑
i<j

f

(
λ̃i − λ̃j +

i

2

)
+ 2

∑
i,j

f
(
λi − λ̃j

)
. (3.71)
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The real part of z is proportional to Nα and the function f(z) rapidly approaches
to the form

f0(z) = sign (Re z) (πz − log 2) . (3.72)

Let us consider terms in (3.71) with f(z) are replaced by f0(z):

− 2
∑
xi>xj

f0

(
λi − λj +

i

2

)
− 2

∑
xi>xj

f0

(
λ̃i − λ̃j +

i

2

)
+ 2

∑
xi>xj

f0

(
λi − λ̃j

)
+ 2

∑
xi≤xj

f0

(
λi − λ̃j

)
= 2π

∑
xi>xj

[
−
(
λi − λj +

i

2

)
−
(
λ̃i − λ̃j +

i

2

)
+
(
λi − λ̃j

)
+
(
λ̃i − λj

)]
. (3.73)

The terms including λi or λ̃i cancel out and the constant terms will be ignored
because they are negligible in the large N limit; hence, we do not have to consider
f0. Still, we have the remaining part f(z) − f0(z), which has non-zero value near
the Re z = 0. Especially, in the large N limit the remaining part proportional to
delta function;

f(z)− f0(z) = g(y)δ(x̂), (3.74)

where x̂ = Nαx. In order to derive the expression for the g(y) we integrate (3.74)
over −∞ < x̂ <∞.

g(y) =

∫
dx̂f(z)− f0(z) =

∫ ∞

−∞
dx̂ log

(
1 + e2πz sign(x̂)

)
=

∫ 0

−∞
dx̂ log

(
1 + e2πz

)
+

∫ ∞

0

dx̂ log
(
1− e−2πz

)
= − 1

2π

∞∑
n=1

(−1)n
e2πiny + e−2πiny

n2
(3.75)

The infinite sum can be done, and the expression for −1/2 ≤ y ≤ 1/2 is

g(y) =
π

12
− πy2. (3.76)

Note that g(y) has a period 1.
Using these results let us derive the free energy. As we discussed f0 can be

ignored. This means that we can replace f(z) by g(y)δ(x̂) = N−αg(y)δ(x). This
replacement leads to

−
∑
i ̸=j

log sinh π (λi − λj) = −N2

∫
dxdx′ρ(x)ρ(x′)f

(
λ− λ′ +

i

2

)
= −N2−α

∫
dxρ(x)2g

(
1

2

)
(3.77)
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for the term including λi − λj in (3.61), and the similar term as (3.77) for the term

including λ̃i − λ̃j. For the terms including λi − λ̃j become∑
i,j

log cosh π
(
λi − λ̃j

)
= 2N2

∫
dxdx′ρ(x)ρ(x′)f

(
λ− λ̃

)
= 2N2−α

∫
dxρ(x)2g (2y) . (3.78)

From those results the free energy becomes

F =

∫
dx

(
−4πN1+αkρ(x)xy + 2N2−α

(
g(2y)− g

(
1

2

))
ρ(x)2

)
(3.79)

The dependence on N in the free energy is N1+α and N2−α. In order for the free
energy to have a stationary point these two terms should balance in large N limit.
Therefore, α = 1

2
, and hence, F ∝ N3/2.

We assume the numerical result |y| < 1/4 is correct and use the explicit form for
g(y) to rewrite the free energy:

F = πN3/2

∫
dx

(
−4kρ(x)xy +

(
1

2
− 8y2

)
ρ(x)2

)
. (3.80)

What we need to do now is to fix the ρ(x) and y(x) so that the free energy has
the minimum. As ρ(x) satisfies the normalization condition (3.67) we introduce the
Lagrange multiplier µ;

F = πN3/2

∫
dx

(
−4kρ(x)xy +

(
1

2
− 8y2

)
ρ2 − µρ

)
+ µ. (3.81)

Stationary condition for ρ(x) is

−4kxy + (1− 16y2)ρ− µ = 0. (3.82)

That for y(x) is

−4kρ(x)x− 16yρ(x)2 = 0. (3.83)

These equations give

y(x) = −kx
4µ
, ρ(x) = µ. (3.84)

Note that the eigenvalue density does not depend on x. This means that the range
of the integration is limited, and from the normalization condition the range should
be

|x| ≤ 1

2µ
. (3.85)

Substituting all these results back to the free energy (3.80) we have

F = πN3/2

∫ 1/(2µ)

−1/(2µ)

(
µ2

2
+
k2x2

2

)
dx = πN3/2

(
µ

2
+

k2

24µ3

)
. (3.86)
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This should be the minimum of a function of µ, and this condition gives

µ2 =
k

2
. (3.87)

Lastly, we reach the final form of the free energy:

F =
π
√
2k

3
N3/2. (3.88)

This is exactly the same as the free energy of M2-branes calculated from the gravity
side [6]. Therefore, this is a non-trivial evidence of the AdS/CFT correspondence. In
the following chapters, we repeat similar calculations for the squashed three-sphere
and the orbifold. Although there are technical difficulties and new problems in each
case the strategy to check the AdS/CFT using the partition functions is the same.
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Chapter 4

Squashed partition function

The goal of this chapter is to derive the formula for the partition function similar
to (3.55) but on the squashed three-sphere.

The squashing parameter was first introduced in [35]. They consider two kinds
of squashed S3. The first one is the squashed sphere with the metric

ds2 = r2
[
(µ1)2 + (µ2)2 +

1

v2
(µ3)2

]
. (4.1)

µa (a = 1, 2, 3) are the left-invariant differentials summarized in Section C.2. We
define symmetries SU(2)L and SU(2)R as left and right SU(2) actions, respectively.

g → gLggR, gL ∈ SU(2)L, gR ∈ SU(2)R, (4.2)

where g is an element of SU(2). The parameter v in the metric (4.1) is the squashing
parameter. For later convenience we also define u by

v2 = 1 + u2. (4.3)

The round sphere corresponds to v = 1 and u = 0. The differentials µa are invariant
under SU(2)L, while they are transformed as a triplet under SU(2)R. Therefore,
when v ̸= 1, the metric (4.1) breaks SU(2)R to its U(1) subgroup, which is denoted
by U(1)r.

N = 2 superconformal theories on round S3 have eight supersymmetries, and
the squashing breaks some of them. [35] shows that it is possible to recover 1/4 of
them (two supersymmetries) by turning on a Wilson line for the R-symmetry. It is
important that the recovered supersymmetries are SU(2)L singlets. They computed
the S3 partition function for such theories with the expectation that they may obtain
a result depending on the squashing parameter in a non-trivial way. The result was
rather disappointing. It was turned out that the partition function is identical to
that on the round sphere up to some variable changes.

Having obtained this result, the authors of [35] moved on to study another model
in which both SU(2)L and SU(2)R are broken. This squashed sphere is often called
“ellipsoid.” They again turn on an R-symmetry Wilson line to recover 1/4 super-
symmetry, and compute the partition function. This time they obtained the 1-loop
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partition function

Z1−loop =

∏
α∈∆ sb

(
α(λ)−i
v

)
∏

I sb

(
ρI(λ)−i(1−∆I)

v

) . (4.4)

with the parameter b depending on the squashing parameter of the ellipsoid in a
certain way. The numerator is the contribution of vector multiplets, and α runs
over all roots of the gauge algebra. The denominator contains the contribution of
chiral multiplets. I labels chiral multiplets, and ρI and ∆I are the weight vectors of
the representation and the Weyl weight, respectively, of a chiral multiplet I. sb(z)
is the double sine function defined by

sb(z) =
∞∏

p,q=0

b
(
q + 1

2

)
+ b−1

(
p+ 1

2

)
− iz

b
(
p+ 1

2

)
+ b−1

(
q + 1

2

)
+ iz

. (4.5)

The features of the double sine function sb(z) is summarized in chapter F.
To understand the independence of the partition function on the squashing pa-

rameter of the SU(2)L × U(1)r symmetric squashing in [35], let us consider which
modes of fields contribute to the partition function. Let us focus on a chiral multi-
plet. Its contribution to the 1-loop partition function is given by

Z1−loop =
DetDF

DetDB

, (4.6)

where DB and DF are certain differential operators appearing in the scalar and
fermion actions. Their determinants are the products of eigenvalues of the differ-
ential operators. A complex scalar field on S3 can be expanded by scalar spherical
harmonics, which belong to the SU(2)L × SU(2)R representation(

∞⊕
j=0

(j, j)B

)
⊕

(
∞⊕
j=0

(j, j)B

)
. (4.7)

We use subscripts ‘B’ and ‘F ’ to indicate the statistics of modes. Roughly speaking,
the two summations correspond to particles and anti-particles. Similarly, a spinor
field is expanded as(

∞⊕
j=0

(j + 1/2, j)F

)
⊕

(
∞⊕
j=0

(j, j + 1/2)F

)
. (4.8)

Because of supersymmetry, the majority of these modes are paired between bosons
and fermions, and their contribution to the partition function (4.6) cancel each
other. If there exists an SU(2)L singlet supercharge, which is actually the case in
the SU(2)L × U(1)r symmetric squashing in [35], the cancellation occurs between
modes with the same SU(2)L quantum numbers:

(j, j)B ↔ (j, j − 1/2)F , or (j, j)B ↔ (j, j + 1/2)F . (4.9)

In the first pair in (4.9) the number of bosonic modes in (j, j) is larger than that of the
fermionic modes in (j, j− 1/2). After the cancellation, only the bosonic modes with
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the highest or lowest SU(2)R weight survive and contribute to the 1-loop partition
function (4.6). Similarly, in the second pair in (4.9), only the fermionic modes with
the highest or lowest SU(2)R weight contribute to the partition function (4.6). Thus,
even if the SU(2)R symmetry is broken and the degeneracy in each SU(2)R multiplet
is lost, it does not affect the structure of the partition function. This is also the case
for vector multiplets.

From the arguments above, we notice that if we can realize squashing without
SU(2)L singlet supercharges we may obtain the partition function depending on
the squashing parameter in a non-trivial way even if the S3 is SU(2)L × U(1)r-
symmetric. To study such theories is a main purpose of this chapter. One way
to construct such theories is to compactify 4d theories by S1. Let us consider a
4d N = 1 superconformal theory on S3 × R. The isometry of this background is
SU(2)L × SU(2)R × R. The theory has eight supersymmetries, and it is possible
to compactify R to S1 with preserving four supersymmetries belonging to SU(2)L
doublets[33]. Through this compactification, we can relate the S3 partition function
to the 4d superconformal index[31, 32, 33]. It is pointed out in [32] that if we turn on
the SU(2)R Wilson line, we can reproduce 1-loop partition function (4.4) with b ̸= 1
from 4d superconformal index. The 3d theory obtained by such a compactification
is a theory in squashed S3 with SU(2)L × U(1)r isometry, and is different from
the theories studied in [35]. We give the supersymmetry transformation laws and
Lagrangians on the squashed sphere, and compute the partition function.

This chapter is organized as follows. In Section 4.1, we give the supersymme-
try transformation laws and supersymmetric Lagrangians without derivations. In
Section 4.2 we compute the 1-loop partition function and obtain (4.4) with the
parameter

b =
1 + iu

v
. (4.10)

In Section 4.3, we explain how we can derive the transformation laws and La-
grangians given in Section 4.1 by the dimensional reduction from 4d theory. In
Section 4.4 we study the free energy of large N quiver gauge theories which are
expected to have M-theory duals.

Before ending the introduction, we summarize our conventions and notations.
We use the SU(2)L-invariant local frame on the squashed sphere with the vielbein

e1̂ = rµ1, e2̂ = rµ2, e3̂ =
r

v
µ3. (4.11)

We use Roman characters k, l,m, n, . . . ,= 1, 2, 3 for 3d tangent indices, and hatted
characters k̂, l̂, m̂, n̂, . . . ,= 1̂, 2̂, 3̂ for local indices.

4.1 N = 2 supersymmetry on the squashed sphere

4.1.1 Transformation laws

N = 2 superconformal theories on round S3 have eight supercharges. If we turn
on real mass parameters, half of the supersymmetries are broken, and we call the
unbroken part N = 2 supersymmetry. It is possible to squash the S3 in such a way
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that the N = 2 supersymmetry is preserved. Killing spinors ϵ and ϵ for the four
supersymmetries satisfy the Killing equations

Dmϵ = − i

2vr
γmϵ+

u

vr
fnγmnϵ,

Dmϵ = − i

2vr
γmϵ−

u

vr
fnγmnϵ, (4.12)

where we define the vector field

fm = em
3̂
. (4.13)

This vector field generates U(1)r isometry. Each of the differential equations in
(4.12) has two linearly independent solutions which form an SU(2)L doublet. An
explicit form of the solutions are

ϵ = e−θT3g−1ϵ0, ϵ = eθT3g−1ϵ0, (4.14)

where ϵ0 and ϵ0 are arbitrary constant spinors, ,θ is the angle defined by eiθ =
(1 + iu)/v and g is the element of SU(2) (see Section C.3).

Supersymmetry transformation laws for component fields of vector multiplets
are

δAm = i(ϵγmλ)− i(ϵγmλ) + ufm(ϵλ) + ufm(ϵλ),

δσ = v(ϵλ) + v(ϵλ),

δλ = −F (+)
m̂ γm̂ϵ+Dϵ,

δλ = F (−)
m̂ γm̂ϵ+Dϵ,

δD = −(ϵγmDmλ) +
i

2vr
(ϵλ) +

1

v
(ϵ(1− iuf\)[σ, λ])

− (ϵγmDmλ) +
i

2vr
(ϵλ)− 1

v
(ϵ(1 + iuf\)[σ, λ]), (4.15)

where f\ = fmγm and F (±)
m̂ are defined by

F (±)
m̂ =

1

2
ϵm̂p̂q̂Fp̂q̂ +

u

v
f p̂ϵm̂p̂n̂Dn̂σ ± 1

v
Dm̂σ. (4.16)

Transformation laws for component fields in a chiral multiplet with Weyl weight ∆
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are

δϕ =
√
2(ϵψ),

δϕ† =
√
2(ϵψ),

δψ = −
√
2γmϵDmϕ+

√
2

v
(1− iuf\)ϵσϕ+

√
2ϵF +

√
2∆i

vr
(1− iuf\)ϵϕ,

δψ = −
√
2γmϵDmϕ

† +

√
2

v
(1 + iuf\)ϵϕ†σ +

√
2ϵF † +

√
2∆i

vr
(1 + iuf\)ϵϕ†,

δF = −
√
2Dm(ϵγ

mψ)−
√
2(∆− 2)i

vr
(ϵ(1 + iuf\)ψ)

−
√
2

v
(ϵ(1 + iuf\)σψ)− 2(ϵλ)ϕ,

δF † = −
√
2Dm(ϵγ

mψ)−
√
2(∆− 2)i

vr
(ϵ(1− iuf\)ψ)

−
√
2

v
(ϵ(1− iuf\)ψ)σ − 2ϕ†(ϵλ). (4.17)

The commutation relation of the two transformations δ(ϵ, ϵ) and δ(ϵ′, ϵ′) is

[δ(ϵ, ϵ), δ(ϵ′, ϵ′)] = 2Ll′ + 2α

(
−iσ +

R

r

)
. (4.18)

R is the R charge, and σ should be understood as the gauge transformation with
parameter σ. l′ and α are bilinear of the transformation parameters

l′m = (ϵγmϵ′) + (ϵγmϵ′), α =
i

v
ϵ(1 + iuf\)ϵ′ − i

v
ϵ(1− iuf\)ϵ′, (4.19)

and Lv is the Lie derivative associated with a vector field v. It is easily shown
by the Killing equations (4.12) that l′m is a Killing vector and α is a constant on
the squashed sphere. l′m can be divided into a SU(2)L part lm and U(1)r part
proportional to fm:

l′m = lm − u

v
αfm. (4.20)

The right hand side in (4.18) contains generators of SU(2)L, U(1)r, and U(1)R.
U(1)r does not rotate the supercharges, and thus is the center of the algebra. There-
fore, the supersymmetry algebra on the squashed sphere is SU(2|1)⋉U(1)r, a central
extension of SU(2|1). If we regard the 3d theory as an S1 compactification of a 4d
theory, α can be regarded as the parameter of a shift along the 4-th direction. If we
substitute (4.20) into (4.18), we have U(1)r transformation with α in the coefficient.
This implies the existence of non-vanishing graviphoton background field. From the
4d perspective, a graviphoton field is, roughly speaking, identified with the non-
diagonal components gm4 of the metric. When the background graviphoton field is
non-vanishing, the compactified direction x4 is tilted, and shift along x4 generates a
shift in 3d proportional to the graviphoton potential field when it is projected onto
3d. (4.20) implies that the graviphoton field in our background is given by

V m =
u

v
fm. (4.21)

We will see in Section 4.3 that the graviphoton field (4.21) is indeed arises in the
compactification.
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4.1.2 Actions

The supersymmetric kinetic Lagrangian for vector multiplet is

LYM = LA + Lλ −
1

2
trD2, (4.22)

where LA and Lλ are bosonic and fermionic terms given by

LA =
1

2
tr(F (−)

m̂ F (−)
m̂ ),

Lλ = tr

[
−λγmDmλ+

i

2vr
λλ− 1

v
λ(1 + iuf\)[σ, λ]

]
. (4.23)

tr is a positive definite gauge invariant inner product of the gauge algebra.
The supersymmetric kinetic Lagrangian for chiral multiplet with Weyl weight ∆

is

Lchiral = Lϕ + Lψ − F †F, (4.24)

where Lϕ and Lψ are given by

Lϕ = −ϕ†DmD
mϕ+ ϕ†σσϕ+ ϕ†Dϕ− ∆2 − 2∆

r2
ϕ†ϕ+

2i(∆− 1)

r
ϕ†σϕ

+
u

v
fm
[
−iϕ†σDmϕ− iϕ†Dm(σϕ) +

2(∆− 1)

r
ϕ†Dmϕ

]
,

Lψ = −(ψγmDmψ) +
i

2vr
(ψψ)−

(
ψ
i(∆− irσ)

vr
(1 + iuf\)ψ

)
−
√
2ϕ†(λψ)−

√
2(ψλ)ϕ. (4.25)

Let ϵ1 and ϵ2 be two independent solutions of the second equation in (4.12). The
kinetic Lagrangians (4.22) and (4.24) can be obtained from

(ϵ1ϵ2)LYM = −1

4
δ(ϵ1)δ(ϵ2)tr(λλ), (ϵ1ϵ2)Lchiral = −1

2
δ(ϵ1)δ(ϵ2)(ϕ

†F ). (4.26)

Because δ(ϵ1) and δ(ϵ2) commute with each other the right hand side of these equa-
tions contains the parameters ϵ1 and ϵ2 only through the scalar product (ϵ1ϵ2), and
these equations consistently define the Lagrangians LYM and Lchiral. These La-
grangians do not depend on the choice of two independent Killing spinors ϵ1 and ϵ2,
and they are exact with respect to δ(ϵ) for any ϵ satisfying (4.12).

The supersymmetric completion of the Chern-Simons term and the FI term are

LCS = trCS

[
i

2
ϵmnp

(
Am∂nAp −

2i

3
AmAnAp

)
+ (λλ)− 1

v
Dσ +

i

vr
σ2 − iu

2v
σϵmnpfmFnp

]
,

LFI = −trFI

[
D − 2i

r
σ +

2ui

vr
fmAm

]
, (4.27)

where trCS is a gauge invariant inner product of Lie algebra, which does not have to
be positive definite, and trFI is a gauge invariant linear map from the gauge algebra
to R.
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4.2 Partition function

In this section we compute the partition function of a theory on the squashed S3.
Because of the δ(ϵ)-exactness of the kinetic Lagrangians LYM and Lchiral, we can
send the coefficients of these Lagrangians to infinity without changing the partition
function. The theory becomes free in this limit, and we can perform the path integral
to obtain the expression (1.11) of the partition function.

4.2.1 Mode expansion on squashed S3

Let Φ(g) be a spin s field on the squashed sphere. We expand it by the spin basis
|s, sz⟩ (sz = −s,−s+ 1, . . . , s)

Φ(g) =
s∑

sz=−s

Φsz(g)|s, sz⟩. (4.28)

Because we are using the SU(2)L-invariant frame, |s, sz⟩ are transformed as the
(0, s) representation of SU(2)L × SU(2)R. Φsz(g) for each sz is a scalar function on
S3, and can be expanded by the scalar spherical harmonics Y j

m′,m(g) as

Φsz(g) =
∑
j,m′,m

Φj
sz ,m′,mY

j
m′,m(g). (4.29)

The harmonics Y j
m′,m belong to the (j, j) representation of SU(2)L × SU(2)R. j is

the common azimuthal quantum number for both SU(2)L and SU(2)R, and m
′ and

m are magnetic quantum numbers for SU(2)L and SU(2)R, respectively. They take
values

j = 0,
1

2
, 1, . . . ,

m = −j,−j + 1, . . . , j − 1, j,

m′ = −j,−j + 1, . . . , j − 1, j. (4.30)

In the following, we use the ket notation for the harmonics Y j
m′,m(g)

|j,m′,m⟩ = Y j
m′,m(g). (4.31)

The expansion of the field Φ(g) is expressed as

Φ(g) =
∑

j,m′,m,sz

Φj
sz ,m′,m|j,m

′,m⟩ ⊗ |s, sz⟩. (4.32)

The covariant derivative on round S3 with the left-invariant frame acts on the
field Φ(g) as

D(0) = µa(2La + Sa), (4.33)

where La and Sa are SU(2) generators. La are the SU(2)R orbital angular momenta
acting on the SU(2)R index m of |j,m′,m⟩, and Sa are the spin operators acting
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on |s, sz⟩. These operators are normalized so as to satisfy the commutation relation
(C.25).

The covariant derivative on the squashed sphere is obtained from D(0) by re-
placing the spin connection on the round sphere, ωm̂n̂(0) = ϵm̂n̂p̂µ

p, by ωm̂n̂, the spin

connection on the squashed sphere. ωm̂n̂ and ωm̂n̂(0) are related by

ω1̂2̂ =

(
2− 1

v2

)
µ3 = ω1̂2̂

(0) +

(
1− 1

v2

)
µ3,

ω2̂3̂ =
1

v
µ1 = ω2̂3̂

(0) +

(
1

v
− 1

)
µ1,

ω3̂1̂ =
1

v
µ2 = ω3̂1̂

(0) +

(
1

v
− 1

)
µ2. (4.34)

Combining (4.33) and (4.34), we obtain the following algebraic expression for the
covariant derivative on the squashed sphere.

D = µ1

(
2L1 +

1

v
S1

)
+ µ2

(
2L2 +

1

v
S2

)
+ µ3

[
2L3 +

(
2− 1

v2

)
S3

]
. (4.35)

The non-vanishing components of the spin j representation matrices for genera-
tors La are

⟨j,m′,m|L3|j,m′,m⟩ = im,

⟨j,m′,m+
1

2
|L1+i2|j,m′,m− 1

2
⟩ = i

√
(j +

1

2
)2 −m2,

⟨j,m′,m− 1

2
|L1−i2|j,m′,m+

1

2
⟩ = i

√
(j +

1

2
)2 −m2, (4.36)

where L1±i2 ≡ L1±iL2. We also introduce SU(2)L generators L′
a. The non-vanishing

components of L′
3 are

⟨j,m′,m|L′
3|j,m′,m⟩ = im′. (4.37)

In the following subsections we compute the determinant of certain differential
operators appearing in the Lagrangians. Because the squashed background preserves
SU(2)L and U(1)r, the differential operators commute with operators L′

aL
′
a, L

′
3, and

L3 + S3. Therefore, we can compute the determinant in each eigenspace defined by

L′
aL

′
a = −j(j + 1), L′

3 = im′, L3 + S3 = im. (4.38)

Because La and L′
a act on scalar spherical harmonics, L′

aL
′
a = LaLa holds. This

restriction generically defines 2s+ 1 dimensional vector space spanned by

{|j,m′,m− sz⟩ ⊗ |s, sz⟩}ssz=−s, (4.39)

and the differential operator reduces to a (2s+1)× (2s+1) matrix on this subspace.
If m is close to ±j and some m− sz are out of the allowed range in (4.30), special
treatment is needed.
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4.2.2 Bosons in vector multiplets

Because of the δ(ϵ)-exactness of LYM, we can add LYM to the Lagrangian of the
theory with an arbitrary coefficient without changing the partition function. In the
limit in which the coefficient goes to infinity, the path integral for vector multiplet
reduces to the Gaussian integral around the saddle points. Let us start with the
bosonic part. Saddle points are given by Fm̂ = D = 0. This is the case iff

Am = D = 0, σ = σ0, (4.40)

up to gauge transformations. σ0 is a constant expectation value of σ, and we assume
that it is diagonalized by gauge transformations. At saddle points, the classical
values of the Chern-Simons term and FI term in (4.27) are

Scl
CS(σ0) =

∫
d3x

√
gLcl

CS(σ0) =
2π2ir2

v2
trCS(σ

2
0),

Scl
FI(σ0) =

∫
d3x

√
gLcl

FI(σ0) =
4π2ir2

v
trFI(σ0). (4.41)

We define the fluctuation part of the scalar field

φ = σ − σ0. (4.42)

The path integral of the auxiliary field D gives constant, and we ignore its contri-
bution.

All component fields in the vector multiplet belong to the adjoint representation
of the gauge group G, and have dimG components. In the following, we focus
on one component in each field that satisfies [σ0,Φ] = α(σ0)Φ. To obtain the
final expression, we need to take the product over all weights α in the adjoint
representation.

To fix the gauge we introduce the gauge fixing function

f = Dm̂Am̂, (4.43)

and add the gauge fixing term

LGF =
1

2
trf 2, (4.44)

to the Lagrangian. We still have residual gauge symmetry with constant transfor-
mation parameters. This residual symmetry is fixed by requiring the constant mode
of the scalar field σ0 to be diagonal. The Jacobian factor associated with this gauge
fixing is the Vandermonde determinant∏

α∈∆

α(σ0). (4.45)

We should include this factor to the result of the path integral below.
Let us define four-component field A = (A1̂, A2̂, A3̂, φ)

T . In the following we
ignore higher order terms with respect to the fluctuation fields. The quadratic part
of LA + LGF with respect to A is

LA + LGF =
1

2r2
(DAA)T (DAA), (4.46)
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where the differential operator DA is defined by

DA


A3̂

A1̂+i2̂

A1̂−i2̂
φ

 = r


F (−)

3̂

F (−)

1̂+i2̂

F (−)

1̂−i2̂
f

 . (4.47)

By using (4.35) with spin 1 representation matrix (Sa)b̂ĉ = ϵabc, we can rewrite the

definition of F (−)
m̂ in (4.16) in the algebraic form

rF (−)

3̂
=

2− irα(σ0)

v
A3̂ − iL1−i2A1̂+i2̂ + iL1+i2A1̂−i2̂ −

1

v
2vL3φ,

rF (−)

1̂+i2̂
= −2iL1+i2A3̂ +

[
2v(1 + iL3)−

1− iu

v
irα(σ0)

]
A1̂+i2̂ −

1− iu

v
2L1+i2φ,

rF (−)

1̂−i2̂ = 2iL1−i2A3̂ +

[
2v(1− iL3)−

1 + iu

v
irα(σ0)

]
A1̂−i2̂ −

1 + iu

v
2L1−i2φ.

(4.48)

We also rewrite the gauge fixing function (4.43) as

rf = 2vL3A3̂ + L1−i2A1̂+i2̂ + L1+i2A1̂−i2̂. (4.49)

The algebraic form of DA is

DA =


2−irα(σ0)

v
−iL1−i2 iL1+i2 −2L3

−2iL1+i2 2v(1 + iL3)− 1−iu
v
irα(σ0) 0 −1−iu

v
2L1+i2

2iL1−i2 0 2v(1− iL3)− 1+iu
v
irα(σ0) −1+iu

v
2L1−i2

2vL3 L1−i2 L1+i2 0

 .

(4.50)
By restriction to the subspace defined by (4.38), the operator (4.50) becomes 4× 4
matrix with each component being a complex number. Its determinant is

detDA =
4[j(j + 1) + u2m2]

v
(2j+2imu+ irα(σ0))(2j+2−2imu− irα(σ0)). (4.51)

(We use “det” for the determinant of the matrix defined in the subspace (4.38), and
“Det” for the functional determinant of differential operators.) We need to divide
this by the Jacobian factor associated with the gauge fixing. The algebraic form of
the gauge transformation of A is

δA =

(
δAâ = Dâλ
δφ = i[λ, σ0]

)
=

1

r


2vL3

2L1−i2
2L1+i2

−irα(σ0)

λ. (4.52)

Substituting this into (4.49), we obtain the Jacobian

r
δf

δλ
= −4[j(j + 1) + u2m2]. (4.53)
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Therefore, the path integral of physical modes in the restricted vector space with
the quantum numbers in (4.38) gives1

′
detDA =

detDA

rδf/δλ
= (2j + 2imu+ irα(σ0))(2j + 2− 2imu− irα(σ0)) (4.54)

The two factors in (4.54) correspond to the first two irreducible representation in
the decomposition

(j, j)⊗ (0, 1) = (j, j − 1)⊕ (j, j + 1)⊕ (j, j). (4.55)

The last representation corresponds to the gauge degrees of freedom. By taking the
product over quantum numbers j, m, and m′, we obtain

Det′ DA =
∏
j

∏
|m|≤j−1

(2j+2imu+ irα(σ0))
2j+1

∏
|m|≤j+1

(2j+2− 2imu− irα(σ0))
2j+1.

(4.56)
Because the four supersymmetries are SU(2)R singlets, the cancellation between
bosons and fermions occurs among the modes with the same SU(2)R quantum
numbers. For this reason, we shift the quantum number j so that the SU(2)R
spins become j. Namely, in the first factor in (4.56) we replace j by j + 1, and in
the second factor by j − 1. Correspondingly, the first two representations in (4.55)
become

(j + 1, j)⊕ (j − 1, j) (4.57)

After this shift we obtain

Det′ DA =
∏
j

∏
|m|≤j

(2j + 2+ 2imu+ irα(σ0))
2j+3(2j − 2imu− irα(σ0))

2j−1. (4.58)

Up to now, we have not specified the region of the spin j. The product with
respect to j should be taken over the region for which the spins in (4.57) are non-
negative. This means that for the first factor in (4.58) we take j = 0, 1/2, . . . and
for the second factor j = 1, 3/2, . . .. By taking account of this, we obtain

Det′ DA = (−irα(σ0))
∞∏
j=0

∏
|m|≤j

(2j+2+2imu+irα(σ0))
2j+3(2j−2imu−irα(σ0))2j−1.

(4.59)
The factor −irα(σ0) is inserted to remove the unwanted contribution of the second
factor with j = 0.

4.2.3 Fermions in vector multiplets

The action for the fermion field λ at the saddle point (4.40) is

Lλ =
1

r
λDλλ, (4.60)

1We ignore constant factor (−1/v).

63



where the differential operator Dλ is given by

Dλ = −rγmDm +
i

2v
− 1

v
(1 + iuγ3̂)rα(σ0)

= −2γ1̂L1 − 2γ2̂L2 − 2vγ3̂L3 − iv − 1

v
(1 + iuγ3̂)rα(σ0)

=

(
−2vL3 − iv − 1+iu

v
rα(σ0) −2L1−i2

−2L1+i2 2vL3 − iv − 1−iu
v
rα(σ0)

)
. (4.61)

In the subspace with the quantum numbers (4.38), this becomes 2× 2 matrix with
the determinant

detDλ = (2j + 1 + irα(σ0) + 2imu)(2j + 1− irα(σ0)− 2imu). (4.62)

The first and the second factor correspond to the two irreducible representations in

(j, j)⊗ (0,
1

2
) = (j, j − 1

2
)⊕ (j, j +

1

2
). (4.63)

By taking the product over all possible quantum numbers and ignoring a constant
factor, we obtain

DetDλ =
∏
j

∏
|m|≤j−1/2

(2j+1+irα(σ0)+2imu)2j+1
∏

|m|≤j+1/2

(2j+1−irα(σ0)−2imu)2j+1.

(4.64)
Let us shift j by ±1/2 so that the SU(2)R spin of the two representations become
the same

(j +
1

2
, j)⊕ (j − 1

2
, j). (4.65)

After the shift, the determinant becomes

DetDλ =
∞∏
j=0

∏
|m|≤j

(2j + 2 + irα(σ0) + 2imu)2j+2(2j − irα(σ0)− 2imu)2j. (4.66)

Combining (4.59), (4.66), and the Vandermonde determinant (4.45), we obtain

Z1−loop
vector (σ0) =

∏
α∈∆

DetDλ

Det′ DA

∏
α∈∆

α(σ0)

=
∏
α∈∆

∏
j

∏
|m|≤j

2j − irα(σ0)− 2imu

2j + 2 + irα(σ0) + 2imu
. (4.67)

If we set

j =
p+ q

2
, m =

p− q

2
, (4.68)

we obtain

Z1−loop
vector (σ0) =

∏
α∈∆

∞∏
p,q=0

(1− iu)p+ (1 + iu)q + 1− i(rα(σ0)− i)

(1 + iu)p+ (1− iu)q + 1 + i(rα(σ0)− i)

=
∏
α∈∆

sb

(
rα(σ0)− i

v

)
. (4.69)

This is the same as the numerator in (4.4) with b in (4.10).
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4.2.4 Bosons in chiral multiplets

We can reduce the path integral with respect to chiral multiplets to Gaussian inte-
grals by sending the coefficient of Lchiral to infinity.

Let us compute the contribution of bosonic fields in a chiral multiplet with Weyl
weight ∆ belonging to a gauge representation R. The path integral of the auxiliary
field F gives constant, and we can neglect it.

Let us assume that ϕ is eigenmode of σ0 and σ0ϕ = ρ(σ0)ϕ, where ρ is a weight
in the representation R. At the saddle point (4.40), the scalar Lagrangian is

Lϕ =
1

r2
ϕ†Dϕϕ, (4.70)

where the differential operator Dϕ is given by

Dϕ = −r2DmD
m−(irρ(σ0)−∆+2)(irρ(σ0)−∆)− 2u

v
(irρ(σ0)−∆+1)rD3̂. (4.71)

We expand the scalar field with S3 spherical harmonics |j,m′,m⟩. These harmonics
are eigenfunctions of the Laplacian DmD

m and D3̂.

r2DmD
m|j,m′,m⟩ = (−4j(j + 1)− 4u2m2)|j,m′,m⟩,

rD3̂|j,m
′,m⟩ = 2ivm|j,m′,m⟩. (4.72)

The eigenvalue of the differential operator Dϕ in the subspace defined by (4.38) is

Dϕ = (2j + irρ(σ0)−∆+ 2 + 2ium)(2j − irρ(σ0) + ∆− 2ium). (4.73)

By taking the product over all possible quantum numbers, we obtain the determinant
of the differential operator

DetDϕ =
∞∏
j=0

∏
|m|≤j

(2j + irρ(σ0)−∆+ 2 + 2ium)2j+1(2j − irρ(σ0) + ∆− 2ium)2j+1.

(4.74)

4.2.5 Fermions in chiral multiplets

The linearized action of fermion fields ψ and ψ at the saddle point (4.40) is

Lψ =
1

r
(ψDψψ), (4.75)

where the differential operator Dψ is given by

Dψ = −rγmDm +
i

2v
− i(∆− irρ(σ0))

v
(1 + iuγ 3̂). (4.76)

By using (4.35), we can rewrite this operator in the algebraic form

Dψ = −γ1̂+i2̂L1−i2 − γ1̂−i2̂L1+i2 − 2vγ3̂L3 − iv − i(∆− irσ0)

v
(1 + iuγ3̂)

=

(
−2vL3 − iv − i(∆−irρ(σ0))

v
(1 + iu) −2L1−i2

−2L1+i2 2vL3 − iv − i(∆−irρ(σ0))
v

(1− iu)

)
.

(4.77)
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In the vector space with quantum numbers (4.38), this becomes 2 × 2 matrix with
the determinant

detDψ = (2j + 1 +∆− irρ(σ0)− 2imu)(2j + 1−∆+ irρ(σ0) + 2imu). (4.78)

The two factors correspond to the two representations in the irreducible decompo-
sition

(j, j)⊗ (0,
1

2
) = (j, j +

1

2
)⊕ (j, j − 1

2
). (4.79)

The first and the second factor in (4.78) correspond to the first and the second irre-
ducible representations in (4.79). By taking the product over all possible quantum
numbers, we obtain

DetDψ =
∞∏
j=0

∏
|m|≤j

(2j+∆−irρ(σ0)−2ium)2j(2j−∆+irρ(σ0)+2+2ium)2j+2, (4.80)

where we shifted the quantum number j so that SU(2)R spins become j.
Combining (4.74) and (4.80) we obtain

Z1−loop
chiral =

∏
ρ∈R

DetDψ

DetDϕ

=
∏
ρ∈R

∏
j=0,1/2,...

∏
|m|≤j

2j −∆+ 2 + irρ(σ0) + 2ium

2j +∆− irρ(σ0)− 2ium
. (4.81)

After the variable change (4.68) we obtain

Z1−loop
chiral =

∏
ρ∈R

∞∏
p,q=0

(1 + iu)p+ (1− iu)q + 1 + i(rρ(σ0) + i∆− i)

(1− iu)p+ (1 + iu)q + 1− i(rρ(σ0) + i∆− i)

= 1
/∏

ρ∈R

sb

(
rρ(σ0)− i(1−∆)

v

)
. (4.82)

This is the contribution of one chiral multiplet belonging to R with Weyl weight ∆.
By multiplying the contributions of all chiral multiplets we obtain the denominator
in (4.4) with b in (4.10).

4.3 4d to 3d

4.3.1 4d theory

As we mentioned in Introduction, the 3d theory we investigated can be derived from
a 4d theory by dimensional reduction. In this section, we summarize the derivation
of the action and the transformation laws.

We first summarize the 4d conventions and notation. We use Greek characters
κ, λ, µ, ν, . . . ,= 1, 2, 3, 4 for 4d tangent indices, and hatted ones κ̂, λ̂, µ̂, ν̂, . . . ,=
1̂, 2̂, 3̂, 4̂ for 4d local indices. We use the Dirac matrices

γm̂ =

(
0 σm
σm 0

)
, γ4̂ =

(
0 −i
i 0

)
. (4.83)
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We call upper half of a Dirac spinor left components and lower half right components.
We use unbarred and barred spinors for left-handed and right-handed spinors.

We start from a 4d theory defined in the background S3×R, where S3 is a round
sphere with radius r. We use g(0) ∈ SU(2) and x4 ∈ R to parametrize S3 and R,
respectively. The metric is

ds2 = r2
[
(µ1

(0))
2 + (µ2

(0))
2 + (µ3

(0))
2
]
+ (dx4)2, (4.84)

where µa(0) is the left-invariant 1-form defined by

2µa(0)Ta = g−1
(0)dg(0). (4.85)

For later convenience, we define vector fields h and ta (a = 1, 2, 3) by

h =

(
∂

∂x4

)
g(0)

, tag(0) = 2g(0)Ta. (4.86)

h is the translation along R, and ta are the dual basis to µ
a. By definition (ta, µ

b) =
δba.

This manifold admits four left-handed Killing spinors ϵi and four right-handed
Killing spinors ϵi (i = 1, 2, 3, 4). They have the quantum numbers shown in Table
4.1, and satisfy the Killing equations

Table 4.1: Quantum numbers of eight Killing spinors in S3 ×R

ϵ1 ϵ2 ϵ3 ϵ4 ϵ1 ϵ2 ϵ3 ϵ4
R 1 1 1 1 −1 −1 −1 −1
TL3 − i

2
i
2

0 0 i
2

− i
2

0 0
TR3 0 0 − i

2
i
2

0 0 i
2

− i
2

D = −r∂4 1
2

1
2

−1
2

−1
2

−1
2

−1
2

1
2

1
2

Dµϵ1/2 = − 1

2r
γµh\ϵ1/2, Dµϵ3/4 = +

1

2r
γµh\ϵ3/4,

Dµϵ1/2 = +
1

2r
γµh\ϵ1/2, Dµϵ3/4 = − 1

2r
γµh\ϵ3/4. (4.87)

where h\ = hµγµ.
Because the background (4.84) is conformally flat, we can easily obtain the su-

persymmetry transformation laws from those in the flat spacetime by Weyl trans-
formation. The transformation laws for vector multiplets are

δAµ = i(ϵγµλ)− i(ϵγµλ),

δλ =
i

2
γµνϵFµν +Dϵ,

δλ = − i

2
γµνϵFµν +Dϵ,

δD = −(ϵγµDµλ)− (ϵγµDµλ). (4.88)
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Transformation laws for chiral multiplets are

δϕ =
√
2(ϵψ),

δϕ† =
√
2(ϵψ),

δψ = −
√
2γµϵDµϕ+

√
2ϵF − ∆√

2
γµDµϵϕ,

δψ = −
√
2γµϵDµϕ

† +
√
2ϵF † − ∆√

2
γµDµϵϕ

†,

δF = −
√
2(ϵγµDµψ)− 2(ϵλ)ϕ− ∆− 1√

2
Dµϵγ

µψ,

δF † = −
√
2(ϵγµDµψ)− 2ϕ†(ϵλ)− ∆− 1√

2
Dµϵγ

µψ. (4.89)

The kinetic Lagrangians for vector and chiral multiplets can be obtained in the
same way as in 3d

(ϵ1ϵ2)L(4d)
YM = −1

4
δ(ϵ1)δ(ϵ2)tr(λλ), (ϵ1ϵ2)L(4d)

chiral = −1

2
δ(ϵ1)δ(ϵ2)(ϕ

†F ). (4.90)

The explicit form of these kinetic Lagrangians is

L(4d)
YM = L(4d)

A + L(4d)
λ − 1

2
trD2, L(4d)

chiral = L(4d)
ϕ + L(4d)

ψ − F †F, (4.91)

where

L(4d)
A = tr

1

2
F (−)
m̂ F (−)

m̂ ,

L(4d)
λ = −tr(λγµDµλ),

L(4d)
ϕ = −ϕ†DµD

µϕ+ ϕ†Dϕ− ∆2 − 2∆

r2
ϕ†ϕ− 2(∆− 1)

r
hµϕ†Dµϕ,

L(4d)
ψ = −(ψγµDµψ)−

∆− 1

r
hµ(ψγµψ)−

√
2ϕ†(λψ)−

√
2(ψλ)ϕ. (4.92)

F (±)
m̂ are defined by

F (±)
m̂ =

1

2
ϵm̂p̂q̂Fp̂q̂ ± Fm̂4̂. (4.93)

4.3.2 Killing spinors and twisted compactification

To obtain 3d theory, we need to compactify the R direction. This is realized by
imposing the condition

OΦ = Φ, (4.94)

on all fields Φ in the theory, where O is an operator containing shift along x4 and
additional twists. To keep some of supersymmetries unbroken, we should choose O
which keep the corresponding Killing spinors invariant. Our choice is

O = qD− 1
2
R0−2uTR

3 , q = e−β, (4.95)
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where D = −r∂4 is the x4-translation, and β is the period of the S1 compactification
divided by the S3 radius r. R0 is an R-symmetry. This is not the R-symmetry
in the superconformal algebra, but one that does not rotate the dynamical scalar
components of chiral multiplets.

R0(ϕ) = R0(ϕ
†) = 0, R0(ϵ) = R0(ψ) = −1, R0(λ) = +1. (4.96)

This twist preserves four supersymmetries out of eight corresponding to ϵ1, ϵ2, ϵ1,
and ϵ2. Note that when u ̸= 0 this compactification breaks SU(2)R to U(1)r.

The constraint (4.94) with the operator O in (4.95) implies the following identi-
fication of the points

(g(0)e
2u
r
βTR

3 , x4 + β) ∼ (g(0), x
4). (4.97)

(Figure 4.1.) We take the small radius limit β → 0, and get rid of all Kaluza-Klein

Figure 4.1: Twisted compactification of S3 × R is shown. Points A and B are
identified.

modes except the lowest one for each field to obtain 3d theory. This reduction is
realized by imposing the constraint(

D − 2uTR3 − 1

2
R0

)
Φ = 0 (4.98)

on all fields. By using the vector fields in (4.86), we can rewrite this as the differential
equation (

−Lrh+ut3 −
1

2
R0

)
Φ = 0. (4.99)

The constraint (4.99) determines the x4 dependence of fields from their values on
the x4 = 0 slice.

It is convenient to perform the coordinate transformation

(g, x4) = (g(0)e
−φ(x4)TR

3 , x4), φ(x4) =
2u

r
x4. (4.100)

In the new coordinate system, the identification (4.97) is simplified as

(g, x4 + β) ∼ (g, x4). (4.101)

The metric in the new coordinate system is

ds2 = r2
[
(µ1)2 + (µ2)2 +

1

v2
(µ3)2

]
+ v2(dx4 + V )2, (4.102)
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where µa are defined in (C.28), and the 1-form V is

V =
ru

v2
µ3. (4.103)

After dimensional reduction, we obtain squashed sphere (4.1) with the background
graviphoton field V . Note that this V is the same as (4.21).

We use the 4d vielbein

E 1̂ = rµ1, E 2̂ = rµ2, E 3̂ =
r

v
µ3, E 4̂ = v(dx4 + V ). (4.104)

In general, the components of the 4d spin connection Ω of the 4d manifold with the
metric

ds2 = Eµ̂Eµ̂ = em̂em̂ + v2(dx4 + V )2, (4.105)

are

Ωm̂−n̂p̂ = ωm̂−n̂p̂, Ω4̂−m̂n̂ = −v
2
(dV )m̂n̂, Ωm̂−4̂n̂ = −v

2
(dV )m̂n̂, Ω4̂−4̂m̂ = 0,

(4.106)
where ω is the spin connection of the 3d manifold with the metric ds2 = em̂em̂. By
using the explicit form of the graviphoton field V , we obtain

Ω4̂−1̂2̂ = Ω1̂−4̂2̂ = −Ω2̂−4̂1̂ = − u

vr
. (4.107)

The components of the vielbein are(
Em

n̂ Em
4̂

E4
n̂ E4

4̂

)
=

(
em

n̂ ue3̂m
0 v

)
,

(
Em̂

n Em̂
4

E4̂
n E4̂

4

)
=

(
em̂

n −u
v
δ3̂m̂

0 1
v

)
.

(4.108)
In the new coordinate system, the vector field appearing in the constraint (4.99)

is

rh+ ut3 = r
∂

∂x4
. (4.109)

By using this and the spin connection in (4.107), the constraint (4.99) is simplified
as (

−r ∂

∂x4
− R0

2

)
Φ = 0. (4.110)

4.3.3 Dimensional reduction

We define 3d fields as the restriction of the corresponding 4d fields on the slice
x4 = 0. For a 4d left-handed (right-handed) spinor field, we take two components
of the left-handed (right-handed) part of the 4d field as the 3d field. For example,
for the left-handed spinor field λ(4d) we define the corresponding 3d field by

λ(4d)|x4=0 =

(
λ(3d)

0

)
. (4.111)
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A 4d gauge field A(4d) = A
(4d)
µ dxµ is decomposed into 3d gauge field A(3d) = A

(3d)
m dxm

and 3d adjoint scalar field σ by

A(4d)
µ |x4=0dx

µ = A(3d) + σdx4. (4.112)

To obtain 3d Lagrangians and transformation laws, we need to rewrite the 4d
covariant derivatives in terms of 3d ones. By using the explicit form of the vielbein
and spin connection, we obtain

1

2
Eµ
m̂Ωµ−κ̂λ̂Sκλ =

1

2
enm̂ωn−k̂l̂Skl −

u

vr
ϵm̂n̂3̂S4n,

1

2
Eµ

4̂
Ωµ−κ̂λ̂Sκλ = − u

vr
S12, (4.113)

where Sµν are 4d spin operators. With these relations and the constraint (4.110),
we can easily obtain

D
(4d)
m̂ = D

(3d)
m̂ − u

vr
ϵm̂3̂n̂Sn4 +

u

vr
δm̂3̂

(
R0

2
+ irσ

)
,

D
(4d)

4̂
= − 1

vr

(
R0

2
+ irσ

)
− u

vr
S12. (4.114)

By using these relations, it is straightforward to obtain 3d supersymmetry transfor-
mation laws and 3d Lagrangians from 4d ones. (The Chern-Simons term cannot be
obtained from 4d Lagrangian, and we need to construct it by, for example, Noether
procedure.) We will not explain them in detail. We only demonstrate the deriva-
tion of the 3d Killing equations (4.12). Our compactification preserves the Killing
spinors ϵ1, ϵ2, ϵ1, and ϵ2. They satisfy the 4d Killing equations

Dµ̂ϵ = − 1

2r
γµ̂h\ϵ, Dµ̂ϵ =

1

2r
γµ̂h\ϵ. (4.115)

For µ̂ = m̂, the left hand side of these equations are rewritten by (4.114) as

D
(4d)
m̂ ϵ = D

(3d)
m̂ ϵ− u

2vr
ϵm̂3̂n̂γn̂4̂ϵ+

u

2vr
δm̂3̂ϵ = D

(3d)
m̂ ϵ+

u

2vr
γ3̂γm̂ϵ,

D
(4d)
m̂ ϵ = D

(3d)
m̂ ϵ− u

2vr
ϵm̂3̂n̂γn̂4̂ϵ−

u

2vr
δm̂3̂ϵ = D

(3d)
m̂ ϵ− u

2vr
γ3̂γm̂ϵ. (4.116)

The right hand side of the equations in (4.115) are rewritten as

− 1

2r
γm̂h\ϵ = − 1

2vr
γm̂(γ4̂ − uγ3̂)ϵ = − i

2vr
γm̂ϵ+

u

2vr
γm̂γ3̂ϵ,

1

2r
γm̂h\ϵ =

1

2vr
γm̂(γ4̂ − uγ3̂)ϵ = − i

2vr
γm̂ϵ−

u

2vr
γm̂γ3̂ϵ. (4.117)

where we used the fact that the vector field h has the components

hµ̂ =

(
0, 0,−u

v
,
1

v

)
. (4.118)

Combining (4.116) and (4.117), we obtain the 3d Killing equations (4.12).
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4.4 Large N limit

In this section we investigate the free energy F = − logZ of large N gauge theories
which are expected to have M-theory dual. We consider a quiver gauge theory with
gauge group

G =

nG∏
a=1

U(N)a. (4.119)

In this case the traces in (4.27) are expressed as linear combinations of the traces
for U(N)a gauge groups,

trCS =

nG∑
a=1

ka
2π

tra, trFI =

nG∑
a=1

ζa
vr

tra, (4.120)

where tra is the trace over the U(N)a fundamental representation. The coefficients
ka and ζa are Chern-Simons levels and FI parameters, respectively. The Chern-
Simons parameters ka must be integers. The normalization of the FI parameters ζa
is chosen for later convenience.

It is pointed out in [18] that in order to obtain the leading term of the free energy
in the 1/N expansion, we do not have to perform the integral over σ0 in (1.11). We
only need to determine the minimum value of the integrand of (1.11). Namely, we
obtain the free energy by minimizing

F (σ0) = Scl(σ0)− logZ1−loop(σ0). (4.121)

It is convenient to decompose this into three parts: the classical action F1 = Scl,
the 1-loop contribution of vector and bi-fundamental chiral multiplets F2, and the
1-loop contribution of fundamental and anti-fundamental chiral multiplets F3.

From (4.41), the classical action F1 is

F1 = Scl
CS + Scl

FI =

nG∑
a=1

N∑
i=1

(
πi

v2
kaλ

2
a,i +

4π2i

v2
ζaλa,i

)
, (4.122)

where λa,i are diagonal components of the expectation value of the U(N)a adjoint
scalar field rescaled by r

r(σ0)a = diag{λa,j}. (4.123)

F2 is the 1-loop contribution of vector multiplets and bi-fundamental chiral mul-
tiplets. It is given by

F2 =−
nG∑
a=1

∑
j ̸=k

fb

(
1

v
(λa,j − λa,k − i)

)
+

∑
I∈bi−fund

∑
j,k

fb

(
1

v

(
λh(I),j − λt(I),k − i (1−∆I)

))
, (4.124)

where fb(z) = log sb(z) and b is the parameter related to the squashing param-
eter by (4.10). The first line and the second line are contribution of vector and
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bi-fundamental chiral multiplets, respectively. I runs over all bi-fundamental chi-
ral multiplets. We use h(I) and t(I) to represent the U(N) factors at the head
and the tail of the arrow corresponding to the chiral multiplet I in the quiver di-
agram. Namely, a chiral multiplet I belongs to the bi-fundamental representation
(Nh(I), N t(I)). Adjoint chiral multiplets are treated as bi-fundamental chiral multi-
plets with h(I) = t(I), and their contribution is also included in F2.

The contribution of fundamental and anti-fundamental chiral multiplets is de-
noted by F3, and given by

F3 =
∑
I∈fund

∑
j

fb

(
1

v

(
λh(I),j − i (1−∆I)

))
+

∑
I∈anti−fund

∑
j

fb

(
1

v

(
−λh(I),j − i (1−∆I)

))
, (4.125)

where I ∈fund and I ∈anti-fund mean that the index I runs over fundamental and
anti-fundamental chiral multiplets, respectively.

In [18] the minimum points are determined numerically in some models, and the
eigenvalue distribution is found to behave in the large N limit as

λa,j = Nαxj + iya,j, (4.126)

where xj and ya,j are real numbers, and α is a certain constant in the region 0 < α <
1. Note that xj are common for all U(N)a factors. In [43], the analysis is extended
to a large class of quiver gauge theories, and it is shown that we can consistently
determine the free energy proportional to N3/2 based on the ansatz (4.126) if the
theory satisfies the following conditions.

(A) The theory is non-chiral. This means that the number of bi-fundamental chiral
multiplets transforming in (N,N) of the gauge group U(N)a × U(N)b is the
same as that in (N,N).

(B) The Weyl weights of chiral multiplets satisfy∑
I∈a

(1−∆I)− 2 = 0, ∀a, (4.127)

where ∆I is the Weyl weight of the bi-fundamental field I. The sum is taken
over all bi-fundamental fields coupled by U(N)a. A U(N)a adjoint chiral
multiplet should be included twice. Fundamental and anti-fundamental fields
should not be included.

(C) The total number of fundamental fields and anti-fundamental fields should be
the same. Note that this condition is not imposed for each U(N)a factor. The
numbers of fundamental and anti-fundamental fields for each U(N)a factor
may be different. Only the total numbers matter.

(D) Chern-Simons levels sum up to zero:

nG∑
a=1

ka = 0. (4.128)
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In [43], it is shown that the free energy of theories satisfying these condition
defined on round S3 is proportional to N3/2. We generalize it to theories in the
squashed S3. We follow the prescription proposed in [43].

The first step to determine the free energy in the large N limit is to rewrite
the summations in (4.122), (4.124), and (4.125) by integrals. We define the density
function ρ(x) by

ρ(x) =
1

N

N∑
j=1

δ(x− xj). (4.129)

By definition, ρ satisfies the normalization condition∫ xmax

xmin

ρ(x)dx = 1. (4.130)

In the large N limit, we can treat ρ as a continuous function of x. Similarly, we
replace ya,i by functions ya(x). The classical action contribution F1 is rewritten in
the continuous form as

F1 = N

nG∑
a=1

∫ xmax

xmin

dxρ

(
πi

v2
kaλ

2
a +

4π2i

v2
ζaλa

)
. (4.131)

We substitute the continuous form of (4.126)

λa(x) = Nαx+ iya(x) (4.132)

into (4.131). Thanks to the condition (D), N1+2α terms cancel, and the leading
terms are proportional to N1+α. If we ignore sub-leading terms, we obtain

F1 =
πN1+α

v2

nG∑
a=1

∫ xmax

xmin

dxρx(−2kaya + 4πiζa). (4.133)

F2 in (4.124) is rewritten as

F2 =−N2

∫ xmax

xmin

dx

∫ xmax

xmin

dx′ρρ′
∑
a

fb

(
1

v
(λa − λ′a − i)

)
+N2

∫ xmax

xmin

dx

∫ xmax

xmin

dx′ρρ′
∑
I∈adj

fb

(
1

v
(λh(I) − λ′t(I) − i(1−∆I)

)
, (4.134)

where ρ′ ≡ ρ(x′) and λ′a ≡ λa(x
′). The key idea to rewrite these double integrals

to tractable form is that if x ̸= x′ we can replace the function fb by its asymptotic
form

f asym
b (z) = iπ

(
z2

2
+
b2 + b−2

24

)
sign(x), (4.135)

because the real part of eigenvalues λ scales as Nα in the large N limit. We call this
“long range potential.” The contribution from x = x′ should be taken separately
as a “short range potential” proportional to δ(x− x′). In the large N limit, we can
replace the function fb(z) by the sum of long range and short range potentials

fb(x+ iy) → f asym
b (x+ iy) + δ(x)gb(y), (4.136)
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where the function gb(y) is given by

gb(y) =
π

3
y3 − π

12
(b2 + b−2)y. (4.137)

See Appendix F.3 for a derivation of (4.135) and (4.137).
Let us consider the contribution of the long-range potential in (4.134). f asym

b (z) is
a quadratic function of z, and after substitution of (4.132), (4.134) contains terms of
order N2+2α, N2+α, and N2. To obtain the free energy of order N3/2, all these terms
should cancel. This is indeed the case. We can easily show that the contribution
of long range potential in F2 cancel due to the conditions (A) and (B). As a result,
only the short range potential contributes to F2. Because the short range potential
contains δ-function, we can perform one of integrals. After the x′ integral, F2 is
given by

F2 = vN2−α
∫ xmax

xmin

dxρ2

[ ∑
I∈bi−fund

gb

(
1

v
(yI − (1−∆I))

)
−

nG∑
a=1

gb

(
−1

v

)]
,

(4.138)

where we defined
yI = yh(I) − yt(I). (4.139)

By using (4.127), we can rewrite the second term in the brackets in (4.138) as the
summation over bi-fundamental chiral multiplets

F2 = vN2−α
∫ xmax

xmin

dxρ2
∑

I∈bi−fund

[
gb

(
1

v
(yI − (1−∆I))

)
− (1−∆I)gb

(
−1

v

)]
=
πN2−α

v2

∫ xmax

xmin

dxρ2
∑

I∈bi−fund

1

3
(yI +∆I)(yI − 1 + ∆I)(yI − 2 + ∆I). (4.140)

To obtain the second line we used
∑

I yI = 0 following from the condition (A).
The continuous form of the contribution of fundamental and anti-fundamental

fields, (4.125), is

F3 =N

∫ xmax

xmin

dxρ
∑
I∈fund

fb

(
λh(I) − i(1−∆I)

v

)
+N

∫ xmax

xmin

dxρ
∑

I∈anti−fund

fb

(
−λt(I) − i(1−∆I)

v

)
. (4.141)

Order N1+2α terms in the long range potential contribution cancel by the condition
(C), and the leading non-vanishing terms in F3 are of order N

1+α. The contribution
of the short range potential is of order N1−α, and we can neglect them. The leading
terms in F3 are

F3 =
πN1+α

v2

∫ xmax

xmin

dxρ
∑
I∈fund

|x|(1−∆I − yh(I))

+
πN1+α

v2

∫ xmax

xmin

dxρ
∑

I∈anti−fund

|x|(1−∆I + yt(I)). (4.142)

75



Now we have succeeded in writing all the contributions to the free energy as one-
dimensional integral. F1 and F3 are proportional to N

1+α, and F2 is proportional to
N2−α. To obtain minimum point, these should balance, and this require α = 1/2.
In this case, the free energy is proportional to N3/2, as is expected from the analysis
on the gravity side of AdS/CFT.

Let us focus on the dependence on the squashing parameter v. We find that in
all terms of order N3/2 the v dependence is factored out as the factor 1/v2. (For
the contribution of FI terms, this is the case when we adopt the normalization of
FI parameters in (4.120).) Therefore, the free energy obtained by minimizing the
x-integral is always 1/v2 times as that for round S3:

Fsquashed =
1

v2
Fround. (4.143)

This fact guarantees that the R charge at the IR fixed point obtained by extremizing
Z does not depend on the squashing parameter.

We investigatedN = 2 supersymmetric theories on squashed sphere with SU(2)L×
U(1)r isometry. The theories have four supercharges,which are transformed by
SU(2)L isometry as a pair of doublets. We constructed supersymmetry transfor-
mation laws and Lagrangians by using S1 compactification of 4d theory. Although
the metric of the squashed sphere is the same as that of the SU(2)L × U(1)r sym-
metric squashing in [35], the supersymmetry group is different. We computed the
partition function by using localization, and showed that it depends on the squashing
parameter in a non-trivial way.

We also computed the free energy of large N quiver gauge theories on the
squashed S3. We considered a class of quiver gauge theories studied in [43], whose
partition function on round S3 scales as N3/2. We confirmed that the free energy on
squashed S3 is proportional to N3/2 as well, and the v dependence is factored out
as the additional factor 1/v2 regardless of the detailed structure of the theory. It
would be interesting problem to look for holographic dual of the gauge theories on
the squashed sphere, and confirm that the same result is reproduced by the analysis
on the gravity side.

Summary

We derive the squashed partition function in this chapter; we summarize the results
here:

Z =

∫
[dσ]e−S

cl(σ)Z1−loop(σ),

Z1−loop(σ) =

∏
α∈∆ sb

(
α(λ)− i

v

)∏
I sb

(
ρI(λ)− i(1−∆I)

v

) ,
Scl(σ) = iπktr(σ2) + 2πiζtr(σ),

[dσ] =
1

|W |

rankG∏
a=1

dσa (4.144)
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where we omitted the subscript 0 and rescaled the fields so that the expression
becomes simple. So far we never mind the normalization constant, however, it
is really important to check the duality numerically. We determined the measure
(4.144) so that the squashed partition functions calculated for a pair of dual theories
coincide numerically.
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Chapter 5

Orbifolded partition function

In this chapter, we investigate the partition function of three-dimensional N = 2
supersymmetric field theories on the orbifold S3/Zn. First of all, as an orbifolding
usually breaks the supersymmetry we have to care about which direction is orb-
ifolded. We choose the S1 fiber direction of the squashed S3 for the orbifolding,
whose direction corresponds to U(1)r of SU(2)L ×U(1)r. Since the supersymmetry
we constructed in the previous chapter is doublet of the SU(2)L and U(1)r singlet
the supersymmetry is not affected by this orbifolding.

Due to the non-trivial homotopy of the orbifold, π1(S
3/Zn) = Zn (see Section

C.4), a gauge theory defined in it has degenerate vacua specified by the holonomy h
associated with the gauge symmetry. Their contributions are summed up to obtain
the total partition function:

Ztotal = Zh=0 + Zh=1 + · · ·+ Zh=n−1. (5.1)

In general, the partition function of a Euclidean theory is complex. We usually
focus only on its absolute value and the phase is disregarded. This is, however,
not allowed when we compute the partition functions of different sectors which are
summed up. Even when we are interested only in the absolute value of the total
partition function, we need to care about the relative phase of each contribution.

The purpose of this chapter is to determine appropriate phase factors e−θh in the
holonomy sum in some gauge theories and look for a general rule for these phases.

Ztotal = eiθ0Zh=0 + eiθ1Zh=1 + · · ·+ eiθn−1Zh=n−1 (5.2)

We consider two gauge theories which are known to have dual field theories without
vector multiplet. On one side of the dualities, in the non-gauge theories, we can
compute the absolute value of the partition function up to overall constant factor
independent of parameters. By comparing the partition functions of gauge and non-
gauge theories in each dual pair, we infer the relative phases in the holonomy sum
in the gauge theories.

5.1 The S3/Zn partition function

The basic parts of the S3/Zn partition function is easily derived from the squashed
partition function by dropping off the modes that do not satisfy the boundary con-
dition specified by the holonomy. We start from the explanation of the holonomy
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and give the results. Note that the results in the following section are already known
in the literatures [37, 38].

5.1.1 Zn orbifolding

We consider the left-invariant orbifold S3/Zn with Zn ⊂ U(1)r ⊂ SU(2)R. The
partition function on the orbifold is obtained in [37] for theories without matter
fields in a general Lens space L(p, q) without squashing. It is extended to theories
with chiral multiplets in background with nontrivial squashing parameter in [38].
Our orbifold corresponds to L(n,−1).

Because supercharges are U(1)r neutral, the orbifolding by Zn ⊂ U(1)r does not
break any supersymmetry, and we can define N = 2 supersymmetric theories on
the orbifold. A gauge theory in this orbifold has degenerate vacua specified by the
holonomy

h =
n

2π

∮
C

A, (5.3)

where C is a non-trivial cycle corresponding to the fundamental group π1(S
3/Zn) =

Zn in the orbifold (see C.4). The consistency to nC = 0 requires e2πih = 1. (Note
that we define h with the factor n in (5.3).) The holonomy can be turned on for
both global and gauge symmetries. The holonomy for gauge symmetries should be
summed up in the path integral because it consists of a dynamical gauge field. The
partition function is given by

Z(hglobal) =
∑
hlocal

∫
[dλ]e−S0(λ,h)Z1−loop(λ, h), (5.4)

where S0(λ, h) and Z
1−loop(λ, h) are the classical action and the one-loop determi-

nant. The summation is taken over the holonomy associated with gauge symmetry,
which is denoted by hlocal in (5.4). The holonomy for global symmetry hglobal is not
summed, and the partition function Z depends on hglobal.

The integration measure [dλ] is defined by

[dλ] =
1

|W |

rankG∏
a=1

dλa
n
. (5.5)

We introduce the factor 1/n for each integration variable for later convenience.
One may think that the classical action for S3/Zn is obtained by dividing that

for S3 by n. This naive expectation is not correct. The classical action S0(λ, h)
consists of two parts;

S
S3/Zn

0 (λ, h) =
1

n
SS3

0 (λ)− iΦ(h). (5.6)

One is 1/n of the classical action for S3, and has the same origin as the S3 case.
The other part comes from the Chern-Simons term. Due to the non-trivial topology
of S3/Zn, the Chern-Simons term gives non-vanishing contribution even for a flat
gauge connection [37, 44, 45] (see Section D.2);

Φ =
πk

n
trfund(h

2). (5.7)
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This phase plays an important role in dualities in S3/Zn. The factor eiΦ may
be ill-defined depending on the coefficient. If nk is odd, the holonomies h =
diag(· · · , hi, · · · ) and h = diag(· · · , hi + n, · · · ), which are identified in Zn, give
different phases. We will meet such an ambiguity in the example in §5.2.2, and
there we will give an additional rule to fix the ambiguity.

The one-loop partition function for the orbifold can be obtained by projecting
out the factors in (4.5) which originate from Zn-variant modes. Let φ be a field with
a weight vector ρ. On S3 it is Fourier expanded as

φ(ψ) =
∑

m∈Z/2

φme
imψ, (5.8)

where 0 ≤ ψ < 4π is the coordinate along the Hopf fiber of S3, and m is the
SU(2)R magnetic quantum number. After Zn orbifolding, the field must satisfy the
boundary condition

φ

(
ψ +

4π

n

)
= e2πi

ρ(h)
n φ(ψ), (5.9)

and only modes φm with the index m satisfying

2m = p− q = ρ · h mod n (5.10)

survive after the orbifold projection. We define sb,h(z) as the function obtained
from (4.5) by restricting the product over (p, q) by (5.10). This restricted product
is realized by substituting

p = np′ + [k + h]n, q = nq′ + k, (5.11)

to (4.5), and perform the product with respect to non-negative integers p′ and q′,
and k = 0, 1, . . . , n− 1. [h]n represents the remainder when h is divided by n. It is
convenient to introduce notation ⟨· · · ⟩n defined by

⟨h⟩n =
1

n

(
[h]n +

1

2

)
− 1

2
. (5.12)

This satisfies the relations

⟨h+ an⟩n = ⟨h⟩n (a ∈ Z), ⟨−1− h⟩n = −⟨h⟩n. (5.13)

We rewrite the numerator in (4.5) as

b

(
p+

1

2

)
+ b−1

(
q +

1

2

)
− iz

= n

[
b

(
p′ + ⟨k + h⟩n +

1

2

)
+ b−1

(
q′ + ⟨k⟩n +

1

2

)
− i

z

n

]
. (5.14)

The denominator in (4.5) is also rewritten in a similar way, and we obtain

sb,h(z) =
n−1∏
k=0

∞∏
p′,q′=0

b(q′ + 1
2
) + b−1(p′ + 1

2
) + b⟨k⟩n + b−1⟨k + h⟩n − i z

n

b(p′ + 1
2
) + b−1(q′ + 1

2
) + b⟨k + h⟩n + b−1⟨k⟩n + i z

n

=
n−1∏
k=0

∞∏
p′,q′=0

b(q′ + 1
2
) + b−1(p′ + 1

2
) + b⟨k⟩n + b−1⟨k + h⟩n − i z

n

b(p′ + 1
2
) + b−1(q′ + 1

2
)− b⟨k⟩n − b−1⟨k + h⟩n + i z

n

. (5.15)
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In the second line we replaced k in the denominator by −1 − k − h and used the
second relation in (5.13). In the final expression the product with respect to p′ and
q′ has the same form as that in the definition (4.5) of the double sine function sb(z),
and we obtain

sb,h(z) =
n−1∏
k=0

sb

( z
n
+ ib⟨k⟩n + ib−1⟨k + h⟩n

)
. (5.16)

By definition, the product of sb,h(z) over all h reproduces the original double sine
function;

sb(z) =
n−1∏
h=0

sb,h(z). (5.17)

The function sb,h(z) satisfies the following formulae, which are analogs of (F.17) and
(F.18).

• Self-duality and reflection property

sb,h(z) = sb−1,−h(z) =
1

sb,−h(−z)
=

1

sb−1,h(−z)
. (5.18)

• Functional equations

sb,h+1(z +
ib
2
)

sb,h(z − ib
2
)

=
1

2 cosh
(
πbz
n

+ πi⟨h⟩
) ,

sb,h−1(z +
ib−1

2
)

sb,h(z − ib−1

2
)

=
1

2 cosh
(
πb−1z
n

+ πi⟨−h⟩
) ,

sb,h(z +
i
v
)

sb,h(z − i
v
)
=

1

[2 sinh
(
πbz+πih

n

)
][2 sinh

(
πb−1z−πih

n

)
]
. (5.19)

The one-loop determinant for S3/Zn is obtained simply by replacing sb(z) in (4.4)
by sb,h(z).

Z1−loop(λ, h) =

∏
α∈∆ sb,α(h)

(
α(λ)− i

v

)∏
I sb,ρI(h)

(
ρI(λ)− i(1−∆I)

v

) . (5.20)

The 1-loop determinant of vector multiplets can be rewritten in terms of elementary
functions.

Z1−loop
vector (λ, h) =

∏
α∈∆

sb,α(h)

(
α(λ)− i

v

)
=
∏
α∈∆+

[
2 sinh

π

n
(bα(λ) + iα(h))

] [
2 sinh

π

n

(
b−1α(λ)− iα(h)

)]
. (5.21)

When b = 1, this agree with the partition function in the lens space L(n,−1) given
in [37].
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5.2 Dualities in S3/Zn
A gauge theory in S3/Zn has degenerate vacua labeled by holonomies associated
with the gauge symmetry. The contributions of these vacua should be summed up
to obtain the total partition function. In this section we consider two dual pairs
and confirm that the partition functions of theories dual to each other agree if
appropriate phase factors are inserted in the holonomy sum.

5.2.1 N = 2 SQED and XYZ model

We first consider the mirror symmetry between an N = 2 SQED and the XYZ
model [46]. On one side of the duality, we consider N = 2 SQED with two chiral
multiplets q and q̃ with U(1) charge +1 and −1, respectively. We assume that q
and q̃ have the Weyl weight ∆. The mirror theory, the XYZ model, consists of three
chiral multiplets Q, Q̃ and S interacting through the superpotential

W = Q̃SQ. (5.22)

Note that these three fields are symmetric, though we describe the S looks special.
By the operator relation S = q̃q and the marginality of the superpotential (5.22),
we can determine the Weyl weights of the fields in this theory as

∆S = 2∆, ∆Q = ∆Q̃ = 1−∆. (5.23)

Although the correct value of ∆ at the infra-red fixed point is ∆ = 1/3, the equality
of partition functions holds regardless of ∆ [14], and we leave ∆ unfixed.

The global symmetry which is the same for these two theories is U(1)V ×U(1)A.
The charge assignments are shown in Table 5.1. We introduce real mass parameters

Table 5.1: The charge assignment of the global symmetry U(1)V × U(1)A of SQED
and XYZ model which are mirror to each other. m and m̃ are the monopole and
anti-monopole operators.

q q̃ m m̃ Q Q̃ S
U(1)V 0 0 1 −1 1 −1 0
U(1)A 1 1 0 0 −1 −1 2

ζ and µ for U(1)V and U(1)A, respectively. U(1)A symmetry in SQED is the topo-
logical U(1) symmetry acting on monopole operators, and the corresponding mass
parameter ζ is the Fayet-Iliopoulos parameter. The S3 partition functions of these
theories are

ZSQED =

∫
e−2πiζλ

sb(λ+ µ− i(1−∆)
v

)sb(−λ+ µ− i(1−∆)
v

)
dλ,

ZXYZ =
1

sb(ζ − µ− i∆
v
)sb(−ζ − µ− i∆

v
)sb(2µ− i(1−2∆)

v
)
. (5.24)
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Because two theories are mirror to each other, the partition functions should
agree. This agreement is confirmed by using the pentagon relation of the double
sine function [47]1:∫

sb(x+ r)

sb(x+ s)
e−2πitxdx = eπit(r+s)

sb(t− r
2
+ s

2
+ i

v
)

sb(t+
r
2
− s

2
− i

v
)
sb(r − s− i

v
). (5.25)

By substituting

x = λ, r = −µ+
i(1−∆)

v
, s = µ− i(1−∆)

v
, t = ζ, (5.26)

to the pentagon relation (5.25), we obtain ZXYZ = ZSQED. Note that for the agree-
ment of the two partition functions, the integration measure should be chosen as in
(4.144).

Let us generalize this to the theories on the orbifold S3/Zn. On the SQED side,
we need to sum up the contribution of n saddle points specified by the holonomy
h of the U(1) gauge symmetry. We can also introduce holonomies hV and hA for
U(1)V and U(1)A global symmetries as non-dynamical background gauge potentials.
Because U(1)V current in SQED is the field strength of the dynamical gauge field
A, the U(1)V holonomy is realized by the Chern-Simons term

S =
i

2π

∫
V dA, (5.27)

where V is the non-dynamical U(1)V background gauge field. In the orbifold S3/Zn,
this term gives rise to the non-trivial phase factor

Φ = 2π
hV h

n
. (5.28)

Taking account of this phase factor, the partition function for each holonomy is

ZSQED(h, hV , hA)

=

∫ ∞

−∞

e−2πiζλ/ne2πihV h/n

sb,hA+h(µ+ λ− i(1−∆)
v

)sb,hA−h(µ− λ− i(1−∆)
v

)

dλ

n
. (5.29)

On the other hand, the partition function of the XYZ model is

ZXYZ(hV , hA)

=
1

sb,−hA+hV (−µ+ ζ − i∆
v
)sb,−hA−hV (−µ− ζ − i∆

v
)sb,2hA(2µ− i(1−2∆)

v
)
.(5.30)

Naive expectation is that these are related by

ZXYZ(hV , hA) =
n−1∑
h=0

ZSQED(h, hV , hA). (5.31)

1The pentagon relation usually refers to the operator equation φb(P̂ )φb(X̂) = φb(X̂)φb(X̂ +
P̂ )φb(P̂ ), where X̂ and P̂ are operators satisfying [P̂ , X̂] = 1/2πi. φb(z) is the quantum dilogarithm

related to the double sine function by sb(z) = exp[−πi( z
2

2 + b2+b−2

24 )]φb(z). This operator equation
is equivalent to (5.25) [48, 49], which we refer to as the pentagon relation.
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This is actually the case only when hA = 0. We confirmed this relation numerically
up to n = 10. Again, the choice of the integration measure (5.5) is essential for the
equality in (5.31).

The relation (5.31), however, does not hold if we turn on the holonomy hA for
U(1)A symmetry. Instead, we found that the relation

ZXYZ(hV , hA) =
∑
h

σ(h, hV , hA)Z
SQED(h, hV , hA) (5.32)

hold if we choose an appropriate sign function σ(h, hV , hA) = ±1. The analysis for
hA = 0 implies

σ(h, hV , 0) = 1. (5.33)

We can determine σ(h, hV , hA) for general hA by the numerical analysis. For n =
2, 3, 4, we obtained

σ
(2)
1 =

(
−1 1
1 −1

)
, σ

(3)
1 = σ

(3)
2 =

 −1 1 1
1 −1 −1
1 −1 −1

 ,

σ
(4)
1 = σ

(4)
3 =


−1 1 1 1
1 −1 −1 −1
1 −1 −1 −1
1 −1 −1 −1

 , σ
(4)
2 =


1 −1 1 −1

−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

 , (5.34)

where we express the function in the matrix form

(σ
(n)
hA

)h,hV = σ(h, hV , hA). (5.35)

We determined the signs up to n = 10, and found the general form

σ(h, hV , hA) = (−1)f(hA)+g(hA,h)+g(hA,hV ), (5.36)

where
f(h) = min(|h+ nZ|), g(h, h′) = min(f(h), f(h′)). (5.37)

5.2.2 SU(2) gauge theory and a chiral multiplet

As the second example, we consider the duality proposed by Jafferis and Yin in [15].
The theory on one side is SU(2) Chern-Simons theory with level k = 1 coupling to
one adjoint chiral multiplet Φ. It is dual to the theory consisting of a single chiral
multiplet X. These theories have global symmetry U(1)A rotating Φ and X with
charges 1 and 2, respectively.

Let us first compute the S3 partition function of the SU(2) theory. We param-
eterize the SU(2) Cartan algebra by

λ = xT3, T3 =

(
1
2

0
0 −1

2

)
, (5.38)

and we adopt the integration measure

[dλ] =
dx

2
√
2
, (5.39)
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where the factor 1/2 comes from the order of the Weyl group of SU(2), and 1/
√
2

from the normalization of the SU(2) generators trTaTb = (1/2)δab. The classical
value of the Chern-Simons term with level k = 1 is

S0 = πitr(λ2) =
πi

2
x2. (5.40)

The partition function of the SU(2) theory is

ZSU(2) =

∫
e−

π
2
ix2sb(x− i

v
)sb(−x− i

v
)

sb(x− i(1−∆)
v

)sb(− i(1−∆)
v

)sb(−x− i(1−∆)
v

)

dx

2
√
2
, (5.41)

where we denote the Weyl weight of the adjoint chiral multiplet by ∆. If we turn
on the real mass parameter µ for U(1)A the weight ∆ is replaced by ∆− ivµ.

The dual theory contains a single chiral multiplet X. This corresponds to the
gauge invariant operator trΦ2 in the SU(2) gauge theory, and has Weyl weight 2∆.
The S3 partition function is

ZX =
1

sb(− i(1−2∆)
v

)
. (5.42)

We can easily check numerically that these two partition functions coincide up to a
phase factor.

ZSU(2) = eiϕZX , ϕ = −π
(
1

4
+

2∆ +∆2

2v2

)
. (5.43)

This relation is confirmed in [15] for the round sphere. The coincidence of the
absolute value is due to our choice of the integration measure. In [15] different
measure is used and extra numerical factor arises. We do not argue about this
point, and focus only on the phases. For the round sphere, the phase factor

eiϕ = exp

[
πi

(
1

4
− (1 + ∆)2

2

)]
=

∫
eπit

2−
√
2πi(1+∆)tdt, (5.44)

is interpreted in [15] as the contribution of a decoupled topological sector. For
squashed S3, there seems no such a simple explanation for this factor.

We would like to extend this relation to the orbifolds. In the introduction of
holonomy, we should note that the gauge group is, precisely speaking, not SU(2)
but SU(2)/Z2 = SO(3). The allowed holonomies are

exp

(
2πi

h

n
T3

)
, h = 0, . . . , n− 1. (5.45)

(If the gauge group were SU(2), 2π in the exponent in (5.45) should be replaced by
4π.) For the flat connection specified by the holonomy h, the classical Chern-Simons
action gives the phase factor

eiΦ = e
πi
2n
h2 . (5.46)

This is not well defined as a map from Zn to C. This gives different phases for h and
h + n, which are identical in Zn. We will fix this ambiguity later by an additional
rule.

The orbifold partition function of the SU(2) theory is obtained from the S3

partition function (5.41) by
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• replacing each sb(z) by sb,h(z) with an appropriate holonomy,

• replacing the measure dx by dx/n,

• replacing the classical action S0 in (5.40) by S0/n,

• and introducing the phase factor eπih
2/2n.

We obtain

ZSU(2)(h, hA) =

∫
eπi

h2

2n e−
π
2n
ix2sb,h(x− i

v
)sb,−h(−x− i

v
)

sb,hA+h(x− i(1−∆)
v

)sb,hA(−
i(1−∆)

v
)sb,hA−h(−x− i(1−∆)

v
)

dx

2
√
2n
.

(5.47)
The partition function of the chiral multiplet X is

ZX(hA) =
1

sb,2hA(−
i(1−2∆)

v
)
. (5.48)

We consider two cases with even n and odd n separately. Let us first consider
the case with odd n. In this case, (5.46) defines double-valued map from Zn to C.
For h and h + n, which are identified in Zn, the phase factor takes different values
whose phases always differ by π/2. We denote these two phase factors by (e

πi
2n
h2)±.

The subscript ± is chosen so that the two phases satisfy (e
πi
2n
h2)+ = i(e

πi
2n
h2)−.

Corresponding to these two choices of the phase factor, we define two partition
functions Z

SU(2)
± (h, hA).

We take the ansatz

n−1∑
h=0

σ(h, hA)e
∓πi

4 Z
SU(2)
± (h, hA) = eiϕZX(hA), (5.49)

between the partition functions of the dual theories. σ(h, hA) is an unknown phase
function depending on the SU(2) holonomy h and U(1)A holonomy hA, and e

iϕ is a
phase factor independent of holonomies. The double signs on the left hand side are
in the same order. The factor e∓

πi
4 is inserted to cancel the difference of Z

SU(2)
+ and

Z
SU(2)
− . Although we can choose one of signs as a convention and absorb this factor

by σ(h, hA) or e
iϕ, we separate this factor for later convenience. We carried out the

numerical analysis up to n = 29, and we found

σ(h, hA) = (−1)g(hA,h) exp

[
iπ
f(hA)(f(hA) + n)

2n

]
,

ϕ(hA) = −π∆
2 + 2∆

2nv2
, (5.50)

make the equation (5.49) hold, where f and g are the functions defined in (5.37).
Let us turn to the case with even n. In this case we divide n possible holonomies

to the n/2 satisfying

h− n

2
∈ 2Zn, (5.51)
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and the others. The phase factor (5.46) is well-defined for holonomies satisfying
(5.51), while (5.46) has the sign ambiguity for the other holonomies. With the
numerical analysis up to n = 30, we found that ZX(hA) can be given as a linear
combination of only ZSU(2)(h, hA) with h satisfying (5.51),∑

h−n/2∈2Zn

σ(h, hA)
√
2ZSU(2)(h, hA) = eiϕZX(hA), (5.52)

where σ(h, hA) and ϕ(hA) are functions defined in (5.50). Comparing this to (5.49),

we notice that the phase factor e±
πi
4 is replaced by

√
2 = e

πi
4 + e−

πi
4 . Although

this factor depends on the choice of the integration measure and this may not have
physical significance, it may be interesting to discuss what this factor implies under
the assumption that our choice of the integration measure is an appropriate one.
One possible interpretation is as follows. In the theory of the chiral multiplet X,
the U(1)A holonomy appear only through 2hA. When n is even, there are two
holonomies which gives the same 2hA. Let hA be one of them, and h′A = hA + n/2
the other. It is natural to sum up the contribution of these two holonomies on the
SU(2) theory side. If we introduce different phase factors e+

πi
4 and e−

πi
4 for hA and

h′A in this summation, we obtain the following relation similar to (5.49).

eiϕZX(hA) = eiϕZX(h′A) =
∑

h−n/2∈2Zn

σ(h, hA)e
πi
4 ZSU(2)(h, hA)

+
∑

h−n/2∈2Zn

σ(h, h′A)e
−πi

4 ZSU(2)(h, h′A). (5.53)

5.2.3 S3/Z2k+1

In the previous subsections, we found that we need non-trivial phase factors to
match the partitions functions of dual theories in two examples. For odd n, in fact,
we can express these phase factors in a unified way. Let us define σh by

σh = (−1)[h]n([h]n−(−1)(n−1)/2)/2. (5.54)

When n is odd, this takes values ±1 depending on h ∈ Zn. We can represent (−1)f(h)

and (−1)g(h,h
′) with this function by

(−)f(h) = σ2h, (−)g(h,h
′) = σh+h′σh−h′ . (5.55)

Therefore, the sign function (5.36) in the first example can be given as the product
of five σh;

σ(h, hV , hA) = σh−hAσh+hAσhV +hAσhV −hAσ2hA . (5.56)

The indices of five σh coincide up to sign with the holonomy indices of the functions
sb,h(z) appearing in the mirror relation (5.32). Because σh = σ−h and the sign of
the index of σh does not matter, the phases can be absorbed into the definition of
the function sb,h(z). Namely, if we define ẐSQED and ẐXYZ from ZSQED and ZXYZ,
respectively, by replacing sb,h(z) in these partition functions by ŝb,h(z) defined by

ŝb,h(z) = σhsb,h(z), (5.57)
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the relation

ẐXYZ(hV , hA) =
n−1∑
h=0

ẐSQED(h, hV , hA) (5.58)

holds without the extra sign factors. This is actually the case in the second example.
Because the phase function can be written as

σ(h, hA) = σhA+hσhA−h exp

[
iπ
f(hA)(f(hA) + n)

2n

]
, (5.59)

ẐSU(2) and ẐX defined with ŝb,h(z) satisfy the relation

n−1∑
h=0

e∓
πi
4 Ẑ

SU(2)
± (h, hA) = ω(hA)e

iϕẐX(hA), (5.60)

where ω(hA) is a certain factor depending only on hA.
In the two examples, we found that if we replace sb,h(z) by ŝb,h(z) the duality

relations hold without introducing non-trivial relative phase factors in the holonomy
sums. This is simple enough for us to expect that this rule is universal. It would be
interesting to check whether this rule really holds for other examples of dual pairs.

Summary

We investigated relative phases in the holonomy sum, which is necessary to obtain
the partition functions of gauge theories in S3/Zn. We used a few dualities between
gauge theories and non-gauge theories to determine the phases.

We first considered mirror symmetry between N = 2 SQED with one flavor
and the XYZ model containing three chiral multiplets. We showed that with the
appropriate choice of the phases in the holonomy sum the partition functions of these
theories coincides. Furthermore, we found that when n is odd, the phase factor is
absorbed by the redefinition of the single function sb,h(z), the orbifold extension
of the double sine function. We also considered the duality between SU(2) gauge
theory and a chiral multiplet proposed by Jafferis and Yin. We could again find
phase factors which makes the duality relation hold. When n is odd the phases are
absorbed by redefining the function sb,h(z) in the same way as in the first example.

When n is odd, in all these examples, the phase factors can be absorbed by
the definition of the function sb,h(z). This fact strongly suggests that the modified
function ŝb,h in (5.57) always gives a “correct” partition function in some sense.

Lastly, we mention the remaining problems. So far we do not have a general
formula to derive the correct phases when n is even. In order to have the correct
partition functions for every theory the general formula is desired.

When nk is odd the Chern-Simons term is actually ill-defined:

e
iπk
n
h2 −→ e

iπk
n

(h+n)2 = e
iπk
n
h2+2πikh+iπnk. (5.61)

Though the shift h → h + n should not make any change, it actually does give a
different phase. As we saw in Section 5.2.2 if we choose h or h+ n appropriately it
works for checking the duality. We have not had any rule which sector h or h+n we
should choose. We will face this problem in next chapter again, and give a heuristic
rule to select them.
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Chapter 6

Orbifolded partition function for
the AdS/CFT

When we assume the gravity side is described by the general relativity we need
to evaluate the partition function in the large N limit as we did in the previous
chapters. In this chapter we firstly review the result of [50], where the orbifolded
partition function in the large N limit is evaluated, and the coincidence of the
partition functions for the ABJM model and the gravity dual is confirmed. In the
case of the orbifolded partition function the large N means the large number of
holonomies, which leads to diverging number of terms. Naively, we seem not to deal
with these terms. However, in the large N limit only limited terms contribute to the
leading order of the 1/N expansion of the partition function and we can evaluate it.

Having checked the coincidence of the partition functions in the large N limit
our next step maybe to explore next leading order of 1/N expansion. It should
contain the information of the quantum effect of the gravity. If we use the orb-
ifolded partition function to study the next leading order we have to treat all the
contributions, therefore, the phase factor plays a significant role there. The Monte
Carlo method, which is first applied to evaluate the ABJM partition function in [42]
enable us to calculate the orbifolded partition function up to some number N . For
the large number of N it takes an unrealistic time so the practical maximum value
is about N = 20 or so. Still, the numerical result gives us rich information about
the finite N effects.

In order to use the Monte Carlo method we have to prepare an equivalent ex-
pression for the partition function of the ABJM model. This is because a numerical
analysis is not compatible with the violently oscillating integration; the partition
function with the Chern-Simons term is the typical example. It is known that the
S3 partition function of the ABJM model can be rewritten as a certain integration
without the Chern-Simons term [11]. This replacement is equivalent to consider the
partition function of the mirror theory of the ABJM model with unit Chern-Simons
level k = 1. (the rewriting itself is valid for any k but the mirror symmetry is
only valid for k = 1). Since we have no formula to rewrite the orbifolded partition
function so far let us consider the orbifolded partition function of the mirror theory.
However, note that our formula to fix the phase factor is not confirmed for this mir-
ror symmetry, we firstly have to check whether the orbifolded partition functions
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coincide or not. We perform this consistency check numerically, and the result shows
that they coincide in high accuracy for some cases (see Subsection 6.3.2). This is
one of our non-trivial result that our proposal for the formula to fix the phase factor
is valid for the duality between the ABJM model and its mirror theory.

Finally, we show the free energy of the ABJM model with N up to 9. The result
shows a characteristic behavior of the free energy, which is not seen in the S3 case.
This is our second result of this chapter.

6.1 Phase factors for the ABJM model and its

mirror

Since the formula to fix the phase factors we have derived is only applicable for the
specific dualities for even n we need an extended version of the formula, which should
at least be applicable to the ABJM model and its mirror theory. The important
fact discussed in the previous chapter is that generally the sign factor cannot be
absorbed into a single double sine function for general n. Therefore, the extended
formula should be related to a pair of double sine functions. Our proposals to fix
the relative phases for arbitrary n is that when there is a pair of chiral multiplets
with the holonomy h+ h′ and h− h′ we introduce the factor (−1)g(h,h

′):

sb,h+h′

(
z + z′ − i

(1−∆)

v

)
sb,h−h′

(
z − z′ − i

(1−∆)

v

)
→ (−1)g(h,h

′). (6.1)

We also introduce the factor (−1)f(h) when there is a chiral multiplet with the
holonomy −2h:

sb,−2h

(
−2z − i

(1−∆)

v

)
→ (−1)f(h). (6.2)

Since these rules are just proposals they should be tested numerically, and we will
do the test for the ABJM model and its mirror theory, later.

6.2 Analytical approach to large N limit

Let us evaluate the orbifolded partition function of the ABJM model in the large N
limit. The gauge groups, Chern-Simons levels, the matter contents and the global
symmetry for the ABJM model are already discussed in Section (2.3). Using those
information the general formula (5.4) gives us the orbifolded partition function for
the ABJM model as follows.

ZABJM(hA, hB, hT ) =
∑
h,h̃

σ(h, h̃, hA, hB, hT )ZABJM(h, h̃, hA, hB, hT ). (6.3)

92



where h and h̃ are the holonomies for the gauge symmetry U(N)2 and each of them

has N components. ZABJM(h, h̃, hA, hB, hT ) is given as

ZABJM(h, h̃, hA, hB, hT ) =
1

(nNN !)2

∫
dNλdN λ̃e−

iπk
n

∑
i(λ2i−λ̃2i )+ iπk

n

∑
i(h2i−h̃2i )

∏
i<j

(
2 sinh π

n
(b (λi − λj) + i (hi − hj)) 2 sinh

π
n
(b−1 (λi − λj)− i (hi − hj))

×2 sinh π
n

(
b
(
λ̃i − λ̃j

)
+ i
(
h̃i − h̃j

))
2 sinh π

n

(
b−1
(
λ̃i − λ̃j

)
− i
(
h̃i − h̃j

)))

∏
i,j


sb,hA+hT+hi−h̃j(mA +mT + λi − λ̃j − i

2v
)

×sb,−hA+hT+hi−h̃j(−mA +mT + λi − λ̃j − i
2v
)

×sb,hB−hT−hi+h̃j(mB −mT − λi + λ̃j − i
2v
)

×sb,−hB−hT−hi+h̃j(−mB −mT − λi + λ̃j − i
2v
)


.

(6.4)

Using our proposal (6.1) and (6.2) the sign factor is given as follows.

σ(h, h̃, hA, hB, hT ) = (−1)
∑

i,j(g(hA,hT+hi−h̃j)+g(hB ,−hT−hi+h̃j)) (6.5)

In order to derive the leading order of the free energy F = − logZ in large N limit
we only need the information of the stationary point of the integrand; we do not
need the integration in the partition function. Furthermore, we assume the leading

contribution comes from the one with a certain holonomy h = h and h̃ = h̃. Even
if the leading contributions are degenerate for different h the effect of degeneracy is
only logarithmic;

F ∼ − log
(
kZ

h,h̃

)
= − log

(
Z
h,h̃

)
− log k (6.6)

where k is the degree of the degeneracy. Therefore, we can ignore the degeneracy;

the information we need is what is the value of h and h̃.
For simplicity, we set b = 1 and mA = mB = mT = 0 from now on. The

stationary point of the free energy satisfies following equations.

∂F

∂λi
= −2iπk

n
λi +

∑
j ̸=i

π

n

(
coth

π

n
(λi − λj + i(hi − hj)) + coth

π

n
(λi − λj − i(hi − hj))

)
−
∑
j

n−1∑
k=0

4∑
I=1

(−1)δI,3+δI,4 iπzij−I coth (πzij−I) (6.7)

where

zij−1 =
1

n

(
1

n

(
λi − λ̃j −

i

2

)
+ i⟨k⟩n + i⟨k + hA + hT + hi − h̃j⟩n

)
zij−2 =

1

n

(
1

n

(
λi − λ̃j −

i

2

)
+ i⟨k⟩n + i⟨k − hA + hT + hi − h̃j⟩n

)
zij−3 =

1

n

(
1

n

(
−λi + λ̃j −

i

2

)
+ i⟨k⟩n + i⟨k + hB − hT − hi + h̃j⟩n

)
zij−4 =

1

n

(
1

n

(
−λi + λ̃j −

i

2

)
+ i⟨k⟩n + i⟨k − hB − hT − hi + h̃j⟩n

)
. (6.8)
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We used following formula to derive the expression above.

∂λi log s1,h

(
λi − λ̃j −

i

2

)
= ∂λi log

n−1∏
k=0

s1

(
1

n

(
λi − λ̃j −

i

2

)
+ i⟨k⟩n + i⟨k + h⟩n

)

=
n−1∑
k=0

iπ

n

(
1

n

(
λi − λ̃j −

i

2

)
+ i⟨k⟩n + i⟨k + h⟩n

)
× cothπ

(
1

n

(
λi − λ̃j −

i

2

)
+ i⟨k⟩n + i⟨k + h⟩n

)
.

(6.9)

The derivation of this formula is given in F.1. ∂F

∂λ̃i
are similar:

∂F

∂λ̃i
=

2iπk

n
λ̃i +

∑
j ̸=i

π

n

(
coth

π

n

(
λ̃i − λ̃j + i(h̃i − h̃j)

)
+ coth

π

n

(
λ̃i − λ̃j − i(h̃i − h̃j)

))
+
∑
j

n−1∑
k=0

4∑
I=1

(−1)δI,3+δI,4 iπzji−I coth (πzji−I) . (6.10)

Numerical results tell us that h = h̃ = diag(c, c, · · · , c) for a certain integer
0 ≤ c ≤ n−1 give us the leading contribution. The stationary point of the integrand
of the leading contribution is given by the configurations of λi and λ̃i shown in Figure
6.1 and 6.2. Therefore, at least for (hA, hB, hT ) = (0, 0, 0) and (1, 1, 1) case the
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Figure 6.1: Numerical result for (hA, hB, hT ) = (0, 0, 0) and (1, 1, 1)

same ansatz (4.126) should work for the orbifolded partition function as well, though
the calculation is not so easy. We here just show the result of the v = 1 case [50]:

F =
π
√
2k

3n
N3/2. (6.11)

The difference compared to the round three-sphere case (3.88) is just 1/n factor.
This is again exactly the same result as that of gravity side.
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Figure 6.2: Numerical results for (hA, hB, hT ) = (0, 0, 1) and (1, 1, 0), (0, 1, 0) and
(1, 0, 1), and (1, 0, 0) and (0, 1, 1) from the left to right.

6.3 Numerical approach to finite N

In this section we use Monte Carlo method to approach the finite N effects, which
is explored in [42]. Basic idea of this method is to evaluate the integrals in the
partition function numerically. The way of the evaluation is to use a Hybrid Monte
Carlo simulation method polished in the lattice theory. The benefit of this method
is that one can evaluate the partition function for N up to 20 or so. This number 20
is big enough to study the finite N effects. By the way, recently analytical approach
to finite N effect is dramatically developed [6, 19, 20, 21, 22, 23, 24], though these
methods seem not to be applicable to our orbifold background case.

In order to use the Monte Carlo method we have to prepare the mirror theory as
discussed. On the round three-sphere we can analytically show the equivalence of
the partition function of those dual theories [11]. However, on the squashed or the
orbifolded three-sphere it is difficult to show the equivalence analytically for finite
N . Hence firstly, we need to check the duality in some cases.

6.3.1 Mirror theory of the ABJM model

The ABJM model with unit Chern-Simons level is known to be mirror to the N = 4
U(N) gauge theory with a fundamental hypermultiplet (q, q̃) and an adjoint hy-
permultiplet (Φ1,Φ2) [11, 51]. In terms of N = 2 language this theory has the
superpotential

W = trΦ3 (qq̃ + [Φ1,Φ2]) , (6.12)

where Φ3 is the chiral multiplet which form the N = 4 vector multiplet together
with the N = 2 vector multiplet. The Weyl weights of the chiral multiplets are

∆q = ∆q̃ = ∆Φ1 = ∆Φ2 =
1

2
, ∆Φ3 = 1. (6.13)

These theories are expected to have SO(8) global symmetry, which are not manifest
in the Lagrangians. We only focus on the Cartan subalgebra

U(1)A × U(1)B × U(1)T × U(1)R ⊂ SO(8), (6.14)

where U(1)R is the R-symmetry acting on the N = 2 supercharges. The charge
assignments in the two theories are listed in Table 2.2 and 6.1.

U(1)B in the mirror theory is a topological U(1) symmetry coupling to monopole
operators, and the corresponding mass parameter is the Fayet-Iliopoulos parameter.
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Table 6.1: Charge assignments in the mirror theory of the ABJM model. m and m̃
are monopole and anti-monopole fields.

Φ1 Φ2 Φ3 m m̃ q q̃
U(1)A +1 −1 0 0 0 0 0
U(1)B 0 0 0 +1 −1 0 0
U(1)T +1 +1 −2 0 0 +1 +1

The partition function of the mirror theory is

Zmirror(hA, hB, hT ) =
∑
h

σ(h, hA, hB, hT )Zmirror(h, hA, hB, hT ). (6.15)

Zmirror(h, hA, hB, hT ) =
1

nNN !

∫
dNλe−

2πimB
n

∑
i λi+

2πi
n

∑
i hihB∏

i<j 2 sinh
π
n
(b (λi − λj) + i (hi − hj)) 2 sinh

π
n
(b−1 (λi − λj)− i (hi − hj))∏

i,j

 sb,hA+hT+hi−hj(mA +mT + λi − λj − i
2v
)

sb,−hA+hT+hi−hj(−mA +mT + λi − λj − i
2v
)

sb,−2hT+hi−hj(−2mT + λi − λj − i
2v
)


∏

i sb,hT+hi(mT + λi − i
2v
)sb,hT−hi(mT − λi − i

2v
)

(6.16)

where we introduce mass parameters (mA,mB,mT ) and holonomies (hA, hB, hT )
corresponding to the flavor symmetry U(1)A × U(1)B × U(1)T . h stands for hi’s,
which are the holonomies for the gauge symmetry. The phase factor is derived using
(6.1) and (6.2) as follows,

σ(h, hA, hB, hT ) = (−1)
∑

i,j g(hA,hT+hi−hj)+Nf(hT )+
∑

i<j g(−2hT ,hi−hj)+
∑

i g(hT ,hi).
(6.17)

It is difficult to show the equivalence of the partition functions (6.15) and (6.4)
in general N . However, in Abelian case we can show the equivalence through other
dualities. As a preparation we consider another mirror dual theories: N = 4 SQED
and hypermultiplet.

It is known that the N = 4 SQED with one flavor is mirror to a hypermultiplet
[52]. This mirror pair is obtained from the N = 2 mirror pair in §5.2.1 by adding

a chiral multiplet S̃ on the both sides of the duality. On the SQED side, the new
chiral multiplet S̃ couples to the system through the superpotential W = q̃S̃q. This
corresponds to the mass term W = S̃S on the other side of the duality, and we can
integrate out S and S̃ to obtain the system with a hypermultiplet (Q, Q̃). The global
symmetry of the resulting mirror pair is U(1)V ×U(1)A with the charge assignment
summarized in Table 6.2. We again introduce the mass parameters ζ and µ for
U(1)V and U(1)A, respectively. We denote the Weyl weights of q and q̃ by ∆. Then
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Table 6.2: Global symmetries for N = 4 SQED and the hypermultiplets. m and m̃
are again (anti-)monopole operators.

q q̃ S̃ m m̃ Q Q̃
U(1)V 0 0 0 1 −1 1 −1
U(1)A 1 1 −2 0 0 −1 −1

the Weyl weight of S̃ is 1−2∆. The introduction of S̃ changes the partition functions
by the factor

1

sb,−2hA(−2µ+ i(1−2∆)
v

)
= sb,2hA(2µ− i(1−2∆)

v
). (6.18)

The partition function of two theories are given by

ZN=4(ζ, µ;h, hV , hA)

=

∫ ∞

−∞

e−2πiζλ/ne2πihV h/n

sb,hA+h(µ+ λ− i(1−∆)
v

)

×sb,hA−h(µ− λ− i(1−∆)
v

)

×sb,−2hA(−2µ− i(2∆−1)
v

)

dλ

n
, (6.19)

Zhyper(ζ, µ;hV , hA)

=
1

sb,−hA+hV (−µ+ ζ − i∆
v
)sb,−hA−hV (−µ− ζ − i∆

v
)
. (6.20)

Because the factor (6.18) does not depend on h, it is rather trivial that the partition
functions match if we use the same sign function (5.36) as in the N = 2 case.
Namely, the following relation holds.

Zhyper(ζ, µ;hV , hA) =
n−1∑
h=0

σ(h, hV , hA)Z
N=4(ζ, µ;h, hV , hA). (6.21)

Now we are ready to show the equivalence of the ABJM partition function and
that of the mirror theory in Abelian case. The partition function of the mirror
theory in Abelian gauge group becomes following relatively simple from.

Zmirror(hA, hB, hT ) =
∑
h

σ(h, hB, hT )Zmirror(h, hA, hB, hT ) (6.22)

with the contribution of each holonomy sector

Zmirror(h, hA, hB, hT )

=
1

sb,hA+hT

(
mA +mT − i

2v

)
sb,−hA+hT

(
−mA +mT − i

2v

)
sb,−2hT (−2mT )

×
∫
dx

n

e2πi
hhB
n e−2πi

mBx

n

sb,h+hT (x+mT − i
2v
)sb,−h+hT (−x+mT − i

2v
)

= Zhyper(mA,−mT ;hA,−hT )|∆= 1
2
ZN=4(mB,mT ;h, hB, hT )|∆= 1

2
. (6.23)
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With the relation (6.21), we can rewrite the partition function (6.22) as the product
of two Zhyper;

Zmirror(hA, hB, hT ) = Zhyper(mA,−mT ;hA,−hT )|∆= 1
2
Zhyper(mB,mT ;hB, hT )|∆= 1

2
.

(6.24)
On the ABJM side, we need to sum up n2 contributions parameterized by a pair

of holonomies (h1, h2) for the gauge group U(1)1 ×U(1)2. The partition function of
the sector specified by (h1, h2) is

ZABJM(h1, h2, hA, hB, hT )

= eiΦ(h1,h2)

∫
dλ

n

dλ̃

n

exp
[
−πi

n
(λ2 − λ̃2)

]
sb,hA+hT+h1−h2(mA +mT + λ− λ̃− i

2v
)

×sb,−hA+hT+h1−h2(−mA +mT + λ− λ̃− i
2v
)

×sb,hB−hT−h1+h2(mB −mT + λ̃− λ− i
2v
)

×sb,−hB−hT−h1+h2(−mB −mT + λ̃− λ− i
2v
)

. (6.25)

A question is if it is possible to choose an appropriate phases in the holonomy sum.
The answer is rather simple. We do not need any non-trivial phases in this sum.
Let us confirm this by summing up (6.25) over holonomies h1 and h2. If we define
h12 ≡ h1 − h2 and replace h1 by h12 + h2, h2 appears only in the phase factor

Φ =
π

n
(h21 − h22) =

π

n
(h212 + 2h2h12). (6.26)

The summation with respect to h2 gives non-vanishing result only when h12 = 0,
and we obtain

ZABJM(hA, hB, hT ) =
n−1∑

h1,h2=0

ZABJM(h1, h2, hA, hB, hT )

=
n−1∑
h=0

ZABJM(h, h, hA, hB, hT ) = nZABJM(0, 0, hA, hB, hT )

= n

∫
dλ

n

dλ̃

n

exp
[
−πi

n
(λ2 − λ̃2)

]
sb,hA+hT (mA +mT + λ− λ̃− i

2v
)

×sb,−hA+hT (−mA +mT + λ− λ̃− i
2v
)

×sb,hB−hT (mB −mT + λ̃− λ− i
2v
)

×sb,−hB−hT (−mB −mT + λ̃− λ− i
2v
)

. (6.27)

We can easily perform the integral and have

ZABJM(hA, hB, hT )

=
1

sb,hA+hT (mA +mT − i
2v
)sb,−hA+hT (−mA +mT − i

2v
)

×sb,hB−hT (mB −mT − i
2v
)sb,−hB−hT (−mB −mT − i

2v
)

= Zhyper(mA,−mT ;hA,−hT )|∆= 1
2
Zhyper(mB,mT ;hB, hT )|∆= 1

2
. (6.28)

This result precisely agrees with the partition function of the mirror theory (6.24).
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6.3.2 Numerical check of the mirror symmetry on S3/Zn

Let us move on the non-Abelian case. We set mass parameters to zero for simplicity
from now on. Though we have given the rules for the phase factors (6.1) and (6.2)
they are just proposals so we need to check the equivalence of the orbifolded partition
functions of the ABJM model and the mirror theory. Here, we check the equivalence
for N = 2, n = 2, 3 cases numerically.

For the ABJM model it is technically difficult to evaluate the integral of the
partition function because of the Chern-Simons factor, which oscillates violently.
Therefore, we rotate the phases of λ, λ̃ in Chern-Simons factor in (6.4) so that the
integration converge:

− iπk
n
λ2i → − iπk

n
(e−iπαλi)

2 iπk

n
λ̃2i →

iπk

n
(eiπαλ̃i)

2, (6.29)

and try to find the asymptotic value of the α dependent partition function Z(α) at
α = 0 by plotting it as a function of α. We adopt an extrapolated value of a quadratic
function fitted from the five points of Z(α) at α = 0.001, 0.002, 0.003, 0.004, 0.005.
On the other hand, the mirror side is easily calculated numerically by Mathematica
etc.

n = 2 case

Since the ABJM model and the Mirror dual have three global symmetries we can
introduce the holonomies for them. The holonomies take the integer h ∈ Zn, and
hence, we have n3 different combinations of the holonomies and the values for the
partition functions. As the integrations of the partition functions take long time we
firstly compare the integrand of the partition function. Fortunately, many of them
have the same function form. For example let us consider (hA, hB, hT ) = (1, 1, 1) in
n = 2 case. The integrand of the partition function (6.25) becomes

eiΦ(h1,h2)
exp

[
−πi

n
(λ2 − λ̃2)

]
sb,h1−h2(λ− λ̃− i

2v
)sb,h1−h2(λ− λ̃− i

2v
)

×sb,−h1+h2(λ̃− λ− i
2v
)sb,−h1+h2(λ̃− λ− i

2v
)

, (6.30)

and this is exactly the same as that of (hA, hB, hT ) = (0, 0, 0). Similarly the in-
tegrand of the partition function of (hA, hB, hT ) = (0, 0, 1) is equivalent to that
of (hA, hB, hT ) = (1, 1, 0), the one of (hA, hB, hT ) = (1, 0, 0). is the same as
(hA, hB, hT ) = (0, 1, 1). Therefore, the integrands of the partition functions of the
ABJM model are divided into 3. One can also those of the mirror theory are divided
into 4 (in the mirror case the equivalences are checked numerically). Therefore, we
only need to perform the integration for these 7 out 16. The final results are actually
categorized into three for n = 2 case. 2 out of 4 different integrand in the mirror
side give the same value after the integration. We distinguish the difference of the
integrands in the mirror theory side by putting different numbers of sector. The re-
sults for v = 1 are listed in Table 6.3. Quantitatively, some of them are identified in
reasonable accuracy but other coincidences are not so accuracy. These mismatches
mainly come from the technical difficulties in the ABJM model side. One may say
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Table 6.3: The results for n = 2, v = 1 case. They are categorized by the values of
results. The sector distinguish the difference of the integrand.

Category Sector (hA, hB, hT ) Mirror theory ABJM model

1
(0, 0, 0)
(1, 1, 1)

1.11906 1.13290

2
(0, 0, 1)
(1, 1, 0)

−0.10861 −0.10861

3
3-1

(0, 1, 0)
(1, 0, 1)

0.176777
0.176577

3-2
(1, 0, 0)
(0, 1, 1)

0.176777

that those coincidence between the ABJM model and its mirror might be accident,
but we believe that this is the consequence of the mirror symmetry. In order to
convince ourselves we show v = 1.2 case in Table 6.4. This also indicate that the

Table 6.4: The results for n = 2, v = 1.2.

Category Sector (hA, hB, hT ) Mirror theory ABJM model

1
(0, 0, 0)
(1, 1, 1)

3.28943 3.26610

2
(0, 0, 1)
(1, 1, 0)

−0.257084 −0.257269

3
3-1

(0, 1, 0)
(1, 0, 1)

0.439046
0.438456

3-2
(1, 0, 0)
(0, 1, 1)

0.439046

partition functions for the ABJM model and the mirror theory are the same.

n = 3 case

In this case and, generally say, in odd n case (k = 1) we need special treatment for
the holonomies from the Chern-Simons term because of their sign ambiguity for h
and h+ n;

e
iπ
n
h2 , e

iπ
n
(h+n)2 = −e

iπ
n
h2 . (6.31)

We thought the Chern-Simons terms for h and h + n would be identified in Zn.
Actually, they are not identified as in (6.31); they are the same only up to the sign.
Therefore, we need to choose “correct signs” somehow for each holonomy, and check
its validity by numerical analysis.

For the U(2) gauge group case we checked all the possibility of the sign ambiguity
for each holonomy and found that if we choose the plus for even h and the minus for
odd h the partition functions of the ABJM model and the mirror theory coincide
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in some accuracy (the other combination of the signs and even/odd also works).
Namely, the correct Chern-Simons term for the holonomy is

(−1)he
iπ
n
h2 . (6.32)

The other choices of the sign give a quite big gap for the most accurate Category
(Category 2 in the Table 6.5).

Let us see the numerical results for n = 3 and v = 1 case, which is summarized
in Table 6.5. The number of sectors increases compare to n = 2 case and the

Table 6.5: The results for n = 3, v = 1 case. The results falls into 4 categories and
11 sectors for the mirror theory.

Category Sector (hA, hB, hT ) Mirror theory ABJM model
1 (0, 0, 0) 7.48359 7.42241

2
2-1

(0, 0, 1)
(0, 0, 2)

−0.0596831
−0.0596810

2-2
(1, 1, 0) (1, 2, 0)
(2, 1, 0) (2, 2, 0)

−0.0596831

3

3-1
(0, 1, 0)
(0, 2, 0)

0.57735

0.576233
3-2

(1, 0, 0)
(2, 0, 0)

0.57735

3-3
(1, 1, 1) (1, 2, 2)
(2, 1, 1) (2, 2, 2)

0.57735

3-4
(1, 1, 2) (1, 2, 1)
(2, 1, 2) (2, 2, 1)

0.57735

4

4-1
(0, 1, 1)
(0, 2, 2)

0.00000

−0.00010
4-2

(0, 1, 1)
(0, 2, 2)

0.00000

4-3
(0, 1, 2)
(0, 2, 1)

0.00000

4-4
(1, 0, 1) (1, 0, 2)
(2, 0, 1) (2, 0, 2)

0.00000

coincidence of the partition functions in different Sectors and Categories improves
the reliability of the mirror symmetry on S3/Zn.

From these results we conclude that the ABJM partition functions on S3/Zn can
be calculated from that of the mirror theory.

We show the values of the free energy of the mirror theory up to N = 9 for n = 2
in Fig. 6.3. Even at this level we can see that the extrapolated values of the free
energy at 1/N = 0 give almost the same result of as (6.11), which is about 0.74.

The interesting features of this result are that :

• The large N values for each category are almost the same.

• The ways of approaches to the large N value are completely different, depend-
ing on the Category.
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Figure 6.3: Numerical results for the free energy of the ABJM model on S3/Zn.
The different categories correspond to the different values of hA, hB, hT (see Table

6.4). F
(2)
AFS is the free energy for the ABJM model with n = 2 in the large N limit.

We plot the difference from that on S3.

At the moment we are not sure what the difference of the way of the approaches
to the large N value means. The difference of the holonomies for global symmetry
should correspond to a difference of some parameters on the gravity side. Since
the holonomies are related to the global symmetries the corresponding parameters
should be related to the isometry of the background geometry S7 of AdS4/Zn×S7.
We have to calculate the orbifolded partition function for a different order of the
orbifold n as well as to look into the gravity side to point out what is the origin of
the gap of the way of the approach.
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Chapter 7

Conclusions and Discussions

We started from the basics of the 3d supersymmetries and calculated a partition
function of N = 2 supersymmetric gauge theories on various backgrounds using
the localization method. We also evaluate the large N value of free energies of the
theories. Finally, we calculated the free energies of the ABJM model in the large N
limit and checked the AdS/CFT correspondence between the low energy effective
theories of the M2-branes throught the coincidences of the free energies.

In chapter 2 N = 2 chiral and vector supermultiplets are defined and the trans-
formation laws are derived from the supermultiplets. We also reviewed Lagrangians
of the ABJM model in terms of N = 2 supermultiplets as well as the component
fields, which show the manifest N = 6 supersymmetry.

In chapter 3 we extended the SUSY transformation laws on the flat space to
those on conformally flat spaces, which include the three-sphere S3. Then, using
the localization method we calculated the exact partition function for N = 2 super-
symmetric gauge theories on the round three-sphere S3. We evaluated the partition
function for large N limit in order to compare the result with that of gravity dual;
they coincide each other.

In chapter 4 we investigated N = 2 supersymmetric theories on squashed sphere
with SU(2)L×U(1)r isometry. The theories have four supercharges, which are trans-
formed by SU(2)L isometry as a pair of doublets. We constructed supersymmetry
transformation laws and Lagrangians by using S1 compactification of 4d theory. Al-
though the metric of the squashed sphere is the same as that of the SU(2)L×U(1)r
symmetric squashing in [35], the supersymmetry group is different. We computed
the partition function by using localization, and showed that it depends on the
squashing parameter in a non-trivial way.

We also computed the free energy of large N quiver gauge theories on the
squashed three-sphere S3

b . We considered a class of quiver gauge theories stud-
ied in [43], whose partition function on round S3 scales as N3/2. We confirmed that
the free energy on squashed S3 is proportional to N3/2 as well, and the v dependence
is factored out as the additional factor 1/v2 regardless of the detailed structure of
the theory.

We investigated relative phases in the holonomy sum, which is necessary to
obtain the partition functions of gauge theories in S3/Zn in chapter 5. We used
dualities between gauge theories and non-gauge theories to determine the phases.
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We first considered mirror symmetry between N = 2 SQED with one flavor
and the XYZ model containing three chiral multiplets. We showed that with the
appropriate choice of the phases in the holonomy sum the partition functions of
these theories coincide. Furthermore, we found that when n is odd, the phase
factor is absorbed by the redefinition of the single function sb,h(z), the orbifold
extension of the double sine function. We also considered the duality between a
certain SU(2) gauge theory and a chiral multiplet proposed by Jafferis and Yin. We
could again find phase factors which makes the duality relation hold. When n is odd
the phases are absorbed by redefining the function sb,h(z) in the same way as in the
first example. This fact strongly suggests that the modified function ŝb,h in (5.57)
always gives a “correct” partition function in some sense. However, there still two
remaining problems.

• We need the formulae to fix the phase factor for even n case.

• Though we could fix the ambiguity of the holonomy for the Chern-Simons term
in some cases as in (6.32) we need to check whether the formula is applicable
to other dualties.

We need further exploration on those subjects as well as to seek the origin or the
reason of these sign ambiguities.

In chapter 6 we tried to evaluate the orbifolded partition function for the ABJM
model with finite N effects. Since we believe that the finite N effects include the
information of the quantum effects of the gravity research on this direction is im-
portant and exciting.

The large N limit of the partition function of the ABJM model on the orbifold
is considered in [50]. Though the partition function consists of the contributions of
different sectors specified by the holonomies, it is found that the partition function in
the large N limit is dominated by the specific contribution with a certain holonomy
configuration. However, when one consider the next leading order of 1/N the other
contributions become important, and hence, the phase factor plays a significant role
there.
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Appendix A

Spinor convention

We summarize the 3-dimensional spinor conventions. We use mostly + metric.

ηmn = diag(−1,+1,+1) (A.1)

We use m,n, p, q as 3-dimensional space indices and they run as m = 0, 1, 2. We
define the gamma matrices as follows.

{γm, γn} = 2ηmn, γmnp = 12ϵ
mnp (A.2)

where γmnp is the anti-symmetrized gamma matrix;

γmnp =
1

3!
[γmγnγp + γnγpγm + γpγmγn − γnγmγp − γpγnγm − γmγpγn] . (A.3)

Similarly,

γmn =
1

2!
[γmγn − γnγm] . (A.4)

Lorentz group in 3-dimension is SO(1, 2) and its spinor representation is 2-dimensional
representation and it can be chosen to be real;

SO(1, 2) ∼ SL(2,R) = Sp(2,R). (A.5)

For a while, we use following expressions for the γ-matrices.

γ0 = iσ2 =

(
0 1
−1 0

)
, γ1 = σ1 =

(
0 1
1 0

)
, γ2 = σ3 =

(
1 0
0 −1

)
. (A.6)

We choose a standard spinor index position for the gamma matrices and spinors as
follows.

(γm) β
α ψα, (A.7)

where α, β, (γ, δ will be appeared later) are used for spinor indices and run as
α = 1, 2. Note that in 3-dimension we do not have dotted spinor indices as in 4-
dimension since there is no chirality in 3d. Spinor indices are raised and lowered by
an anti-symmetric tensor ϵ as follows.

ψα = ϵαβψβ ψα = ψβϵβα (A.8)
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where ϵ is defined as

ϵαβ = ϵαβ, ϵαβ = −ϵβα, ϵ12 = 1. (A.9)

Hence,

ϵαβϵ
βγ = −δγα. (A.10)

We use North-West and South-East convention. Namely, we omit the spinor indices
when left-upper and right-lower indices are contracted. The order is important and
when it is reversed the minus sign is needed;

ψλ = ψαλα = −ψαλα = λαψα = λψ, (A.11)

where note that ψ and λ are Grassmann odd spinors and when they are exchanged
they give minus sign as like the third equal above.

From those definition we can derive following formulae for the γ-matrices.

ϵαγ(γm) β
γ = (γm)αβ = (γm)βα (A.12)

(γm1γm2 · · · γmk)αβ = (−1)k−1(γmk · · · γm2γm1)βα (A.13)

(ψγm1γm2 · · · γmkλ) = (−1)k(λγmk · · · γm2γm1ψ) (A.14)

When the γ-matrices are put between the same spinor θ we have following expres-
sions;

θγmθ = 0, θγmγnθ = θ2ηmn, θγmγnγpθ = θ2ϵmnp. (A.15)

We define the complex conjugate ∗ for Grassmann number A and B.

(AB)∗ = A∗B∗ (A.16)

This leads the complex conjugate for spinors as follows.

(ψλ)∗ = ψ∗λ∗ (A.17)

We denote a derivative of the Grassmann number as follows.

∂α =
∂

∂θα
(A.18)

In order to see the power of this conventions, let us compare it to a vector
(matrix) like one. We stop omitting the spinor indices for a while and when the
spinors appear without spinor index we think it as a vector. In this vector like
notation (A.11) is rewritten as

ψαλα = ϵαβψβλα = (ϵψ)Tλ = ψT ϵTλ. (A.19)

where

ψ =

(
ψ1

ψ2

)
, ϵ =

(
0 1
−1 0

)
. (A.20)
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In 3-dimension the Majorana spinor can be defined. We define a charge conjugate
spinor as follows.

ψC = Cψ
T

(A.21)

where ψ is the Dirac conjugate of ψ and written as ψ = ψ†γ0. C is a charge
conjugation matrix and it satisfies

CT = −C, (A.22)

C†C = 12, (A.23)

C†γmC = −(γm)T . (A.24)

We choose the charge conjugate matrix as

C = γ0. (A.25)

The Majorana condition show that

ψ = ψC = γ0(ψ†γ0)T = ψ∗. (A.26)

Therefore, the Majorana condition for this case is just a reality condition.
When the spinor is real the Dirac conjugate of ψ becomes

ψ = ψTγ0 = ψT ϵT = ψα. (A.27)

Therefore, we do not need Dirac conjugate of ψ in our notation. For example,
Lagrangian for a spinor can be written as

L = ψα
(
(γm) β

α ∂m −mδβα
)
ψβ (A.28)

= ψ (γm∂m −m)ψ, (A.29)

where we omit the spinor indices in the last line. We never use overlines as the Dirac
conjugate nor epsilons as the charge conjugate matrix in the body of this thesis.

A.1 Fierz transformation

Fierz transformation is to expand the product of two spinors by the complete set of
the γ-matrix. The results in 3d can be described as follows.

(Aψ)(χB) = −1

2
(χψ)(AB)− 1

2
(χγmψ)(AγmB), (A.30)

where ψ, χ are the spinors we expanded and A,B are arbitrary spinors. Typically
useful expression is

(Aθ)(θB) = −1

2
θ2(AB). (A.31)

This is because of the anti-symmetry of θγmθ = −θγmθ = 0.
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The rest of this section is devoted how to derive the formula. If you are not
interested in you can skip this section now.

In 3d the complete set of the γ-matrix is

12, γm. (A.32)

Note that in odd-dimension we cannot define Weyl spinors, and hence, we do not
have an analogy of γ5 in 4d. Also, γmn and γmnp are not independent in 3d;

γmn = ϵmnpγp, γmnp = 12ϵ
mnp. (A.33)

Thus we expand the product of two spinors ψ and χ by those γ-matrices;

ψαχ
β = a(12)

β
α + bm(γ

m) β
α , (A.34)

where a and bm are a certain scalar and vector, which we derive now. The trace of
(A.34) is

tr
(
ψαχ

β
)
= ψαχ

α = −χαψα = −χψ
= a tr (12) = 2a. (A.35)

After applying the γn from the right to (A.34) its trace is

tr
(
ψαχ

β(γn) δ
β

)
= ψαχ

β(γn) α
β = −χβ(γn) α

β ψα = −(χγnψ)

= bmtr (γ
mγn) = bmtr (γ

mn + 12η
mn) = 2bn. (A.36)

Hence,

a = −1

2
χψ, bm = −1

2
(χγmψ), (A.37)

and we have (A.30). Of course one can do the similar calculation in any dimension.
The general formula for the Fierz transformation depends on whether the dimension
is even or odd. In even case

(Aψ)(χB) = − 1

2D/2

D∑
k=0

(−1)k(k−1)/2

k!
(χγµ1···µkψ) (Aγµ1···µkB) . (A.38)

In odd case one just need to replace 2D/2 by 2[D/2] in front and the upper limit of
the sum D by [D/2], where [ ] means the integer part of the number inside.
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Appendix B

Construction of N = 2
supersymmetric theories

We construct 3-dimensional supersymmetric gauge theories through two different
approaches. We firstly construct N = 1 supersymmetric theories and derive the
SUSY transformation in a brute force way as an exercise. Then, we move onto the
N = 2 case. One way is to use the super Poincare algebra to drive the transformation
laws. One may notice that this approach is reminiscent of Wess and Bagger’s great
book [53]. Especially, 3d N = 2 case is almost the same as 4d N = 1 SUSY. So
one may suppose whether there are any relation between them. Indeed, we can
derive the 3d N = 2 SUSY Lagrangian and the transformation from that of 4d
using dimensional reduction, and this is our final approach.

B.1 Brute force approach to N = 1 supersymmet-

ric theories

In this section we construct the supersymmetric transformation laws for fields. This
section is based on the nice review of 3d SUSY [39]. SUSY connects bosons and
fermions, and naively say, the transformation changes the bosons to fermions, and
vice versa. The mass dimensions of fields are good indicators to determine the form
of the transformation. In 3d scalars have mass dimension 1/2 and fermions have
mass dimension 1. This means that the transformation is controlled by a certain
constant ϵ which has mass dimension 1/2. Now the transformation δ is naively
expressed as follows.

δb(x) ∼ ϵf(x), δf(x) ∼ ϵ∂b(x) (B.1)

where ∂ is a space-time derivative, which is introduced to fill the mass dimension gap.
Notice that from the statistics the ϵ have to be a fermionic constant, and it is find
that actually ϵ is a spinor. Let us consider the commutator of the transformation.

δ1(δ2b) ∼ δ1(ϵ2f) ∼ ϵ2(ϵ1∂b) ∼ ϵ2ϵ1∂b (B.2)

δ1(δ2f) ∼ δ1(ϵ2∂b) ∼ ϵ2∂(ϵ1f) ∼ ϵ2ϵ1∂f (B.3)
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The commutator (equations above are not really ones of commutator though) of
SUSY transformation leads to translation. When the commutator leads to symme-
tries of the theory we say that the transformation closes.

Although discussion above looks clear and good, the naive transformation law
discussed above generally does not close. We now have to seriously consider what is
the real meaning of SUSY. It means that degrees of freedom (D.O.F.) of bosons and
fermions in a supersymmetric theory are the same. However, the D.O.F. depends
on whether the fields are on shell or off shell. We listed the D.O.F. of fields in Table
B.1. From the Table B.1 when we consider scalars and its superpartners the D.O.F.

Table B.1: Degrees of freedom of fields counted in real degree

Fields On shell Off shell
Real scalar ϕ 1 1

Majorana fermion ψ 1 2

Real auxiliary field F 0 1

Gauge field Am 1 2

Gaugino λ 1 2

of those match in on shell but does not match in off shell. Therefore, in order to
close the SUSY transformation we need either equations of motion for the fermions
or auxiliary field F . F has one D.O.F. in off shell but when the E.O.M. is considered
F should vanish or give regularizations to other fields. Typically,

LF ∼ FF (B.4)

gives E.O.M. F = 0. Notice that F has mass dimension 3/2.
Note that D.O.F. of gauge fields and its superpartners in 3d match in both on

shell and off shell, and hence, auxiliary field is not needed. From now on we consider
off shell SUSY and let us derive the off shell SUSY transformation laws.

B.1.1 Wess-Zumino model

We begin with a real scalar field ϕ and its superpartner ψ, which is the Majorana
spinor, with auxiliary fields. This is called Wess-Zumino model, which is the simplest
supersymmetric theory. The action can be written as follows.

SWZ =

∫
dx3

[
−1

2
∂mϕ∂mϕ+

1

2
ψ∂\ψ +

a

2
FF

]
(B.5)

where a is an undetermined constant. Slash means a contraction with a γ-matrix
(e.g. ∂\ = γm∂m) through this thesis. From the analysis on the mass dimension we
are motivated to consider following transformation laws.

δϕ = ϵψ (B.6)

δψ = −b∂\ϕϵ+ cϵF (B.7)

δF = −ϵ∂\ψ (B.8)
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where we rescaled ϵ and F so that the coefficients become simple, b and c are to
be determined. After the SUSY transformation of the action (B.5) you will find
that a = c and b = 1 make the variation vanish δS = 0, meaning the theory is
supersymmetric.

Next, we discuss some interaction terms of those fields. Firstly, the mass term
in general set up is

Sm =

∫
d3x m

(
Fϕ− d

2
ψψ

)
(B.9)

where m is mass parameter that has mass dimension 1, and d is a certain constant.
This is supersymmetric when bd = 1 and cd = 1. Therefore, kinetic term + mass
term is supersymmetric provided that a = b = c = d = 1.

The cubic term can be

Sg =

∫
d3x g

(
Fϕ2 − eψψϕ

)
, (B.10)

where g is a coupling constant that has mass dimension 1/2, and e is again an unfixed
constant. This is supersymmetric when be = 1 and ce = 1. These conditions with
that of kinetic term give a = b = c = e = 1.

Finally, we check the commutators of the transformations. The commutator of
the transformation for the scalar is

[δ2, δ1]ϕ = 2b (ϵ2γ
mϵ1) ∂mϕ. (B.11)

This is exactly the translation as discussed, and the parameter is given by ξm =
2bϵ2γ

mϵ1.
For the fermion

[δ2, δ1]ψ = 2b (ϵ2γ
mϵ1) ∂mϕ. (B.12)

where we used the Fierz transformation A.1, and we set b = c otherwise the com-
mutator does not become translation.

For the auxiliary field

[δ2, δ1]F = 2c (ϵ2γ
mϵ1) ∂mϕ. (B.13)

When b = c all the commutators become translations with the same parameter.
Let us summarize the results. The consistent and beautiful choice of those con-

stants is a = b = c = d = e = 1. Then ,the SUSY transformations are

δϕ = ϵψ,

δψ = −∂\ϕϵ+ ϵF, (B.14)

δF = −ϵ∂\ψ,

and the commutator of those become the same translation. The general action is

S = SK + Sm + Sg + (other interaction terms). (B.15)

Other interaction terms can be derived in a similar way order by order. We call this
set of fields ϕ, ψ and F as a scalar multiplet. There is actually such a formalism
which tie up those fields in one superfield, though we will not discuss it here.

111



B.1.2 Supersymmetric Yang-Mills theory

Let us consider a non-Abelian gauge field Am = AamT
a. We use a as the Lie algebra

index and T a as generators of the Lie algebra. T a satisfies the commutation relation
[T a, T b] = ifabcT c. We use the normalization such that tr(T aT b) = 1

2
δab. The

corresponding superpartner is λ = λaT a, and no auxiliary field as discussed. The
action is

SYM =
1

g2

∫
d3x tr

[
−1

2
FmnF

mn + λD\λ
]

(B.16)

where Fmn = ∂mAn− ∂nAm− i[Am, An], the field strength and Dm = ∂m− i[Am, ∗],
the covariant derivative. The gauge transformations are

δgAm = DmΛ, (B.17)

δgλ = −i[λ,Λ], (B.18)

which leads to the invariance of the action (B.16). Note that the gauge coupling
g has the mass dimension 1/2, so we can construct the SUSY transformation laws
using it to fill the mass gap. The most general form of the transformation with
Lorentz covariance is

δAm = aϵγmλ, δλ = bFmnγ
mnϵ+ c∂mAmϵ+ dg2A\ϵ, (B.19)

where a, b, c, and d are some constants. From the invariance of the action (B.16)
under this transformation laws it is shown that c = d = 0 and a−2b = 0. Therefore,

δAm = aϵγmλ, δλ =
a

2
Fmnγ

mnϵ. (B.20)

Let us see the SUSY commutation of the gauge field.

[δ2, δ1]Am = −2a2Fmnϵ2γ
nϵ1 (B.21)

This expression is further deconstructed into the covariant derivative and the gauge
transformation.

[δ2, δ1]Am = 2a2ϵ2γ
nϵ1∂nAm − 2a2DmAnϵ2γ

nϵ1 (B.22)

The first term in the right-hand side is the translation with parameter, 2a2ϵ2γ
nϵ1,

and the second term is the gauge transformation with parameter, Λ = −2a2Anϵ2γ
nϵ1.

The SUSY commutation of gaugino gives covariant translation.

[δ2, δ1]λ = 2a2ϵ2γ
pϵ1Dpλ (B.23)

= 2a2ϵ2γ
pϵ1 (∂pλ− i[Ap, λ]) (B.24)

Again, these are the translation and the gauge transformation with the same pa-
rameter as the gauge field.

In order to have the same translation as those of Wess-Zumino model a2 should
be set to 1. Since the sign of a can be absorbed into the definition of the gaugino λ
we set a = 1. The final form of the gauge transformations is

δAm = ϵγmλ,

δλ =
1

2
Fmnγ

mnϵ. (B.25)
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B.1.3 Chern-Simons term

In three dimension we can consider a following action without any dimensionful
constant.

SCS =
κ

2

∫
d3x ϵmnptr

(
Am∂nAp −

2i

3
AmAnAp

)
(B.26)

where κ is a dimensionless constant. This action is called pure Chern-Simons action
and has trivial field equation;

Fmn = 0. (B.27)

Therefore, the Chern-Simons action does not have any physical D.O.F, and it is
called a topological action. The action is invariant under the infinitesimal gauge
transformation (B.17). However, the invariance of a finite gauge transformation (or
sometimes called large gauge transformation)

Am → A′
m = U−1AmU + iU−1∂mU, U = eiΛ, (B.28)

requires a restriction on κ:

κ =
k

2π
(k ∈ Z). (B.29)

See Section D.1 for the derivation of this constraint.
Let us consider the fermionic part of the Chern-Simons action. As we discussed

the Chern-Simons action has no D.O.F., hence, the corresponding fermionic action
should not have any D.O.F. In addition the dimensional analysis tells us that the
mass dimension should be 3. Summarizing all we conclude that the supersymmetric
Chern-Simons action is given as follows.

SCS =
k

4π

∫
d3x tr

[
ϵµνρ

(
Aµ∂νAρ −

2i

3
AµAνAρ

)
+ λλ

]
(B.30)

This is invariant under the same supersymmetric transformation as that of Super-
Yang-Mills (B.25).

B.2 Dimensional reduction method

It is well known that 3d N = 2 SUSY can be derived from 4d N = 1 SUSY by
dimensional reduction. We will see how to get the transformation law and the action
from 4d in this subsection. Here, we denote Greek letters µ, ν, · · · as 4d spacetime
indices (e.g. µ = 0, 1, 2, 3) and m,n, · · · as 3d spacetime indices (m = 0, 1, 2). We
distinguish 4d gamma-matrix and that of 3d by Γµ and γm, respectively, where the
4d Γ and 3d γ are related as follows.

Γm =

(
0 γm

γm 0

)
, Γ3 =

(
0 −i
i 0

)
. (B.31)
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Firstly, we list the action and the transformation law in 4d. The action is

S =

∫
d4x tr

[
−DµϕD

µϕ+ ψD\ψ + FF − 1

2
F µνFµν + λD\λ+D2

]
. (B.32)

And the transformation is

δϕ =
√
2ϵψ

δψ = −
√
2ΓµϵDµϕ+

√
2ϵF

δF = −
√
2ϵΓµDµψ − 2ϵλϕ

δϕ =
√
2ϵψ

δψ = −
√
2ΓµϵDµϕ+

√
2ϵF

δF = −
√
2ϵΓµDµψ − 2ϵλϕ

δAµ = iϵΓµλ− iϵΓµλ

δλ =
i

2
ΓµνϵFµν +Dϵ

δλ = − i

2
ΓµνϵFmn +Dϵ

δD = −ϵΓµDµλ− ϵΓµDµλ, (B.33)

where the 4d spinors are Majorana spinors.
The dimensional reduction, or often called compactification, is naively illustrated

in Fig. B.1. We roll up a flatspace to a cylinder and introduce a boundary condition

Figure B.1: Dimensional reduction

to fields on it. The fields are expanded as

Φ(4d)(xm, x3) =
∑
k

eikx
3/rΦk(x

m), (B.34)

where r is the radius of the cylinder, Φ(4d) is any field in a theory, and Φk is the
coefficients of the Fourier expansion. In case of the scalar field ϕ the field equation
becomes (

∂µ∂µ −m2
)
ϕ =

(
∂m∂m + ∂23 −m2

)
ϕ

=

(
∂m∂m −

(
k

r

)2

−m2

)
ϕ (k ∈ Z). (B.35)
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This is an infinite tower of the massive scalar field; its effective mass is m2
eff =

m2 + k2/r2 . When the radius is extremely small the fields k ̸= 0 becomes very
massive and decouple from the theory. In other word, it is possible to ignore the
dependence on the x3 direction, or equivalently we can set ∂3 = 0. Other than that,
we need to decompose the 4d Majorana spinor to 3d complex spinor due to the
difference of the representation;

λ(4d) →
(
λ
0

)
, λ

(4d) →
(
0

λ

)
. (B.36)

Also, we need to decompose the gauge field into two part;

Aµ → (Am, σ) . (B.37)

The fourth direction (x3 direction) is no longer the component of the vector, albeit
the adjoint scalar.

Along these strategy we can decompose the action as well as the transformation.

−DµϕD
µϕ→ −DmϕD

mϕ− ϕσσϕ

ψD\ψ → ψD\ψ + ψσψ

FF → FF

−1

2
F µνFµν → −1

2
FmnFmn −DmσD

mσ

λD\λ→ λD\λ+ λσλ

D2 → D2 (B.38)

The transformations become

δϕ =
√
2ϵψ

δψ = −
√
2γmϵDmϕ+

√
2ϵσϕ+

√
2ϵF

δF = −
√
2ϵγmDmψ +

√
2ϵσψ − 2ϵλϕ

δϕ =
√
2ϵψ

δψ = −
√
2γmϵDmϕ+

√
2ϵσϕ+

√
2ϵF

δF = −
√
2ϵγmDmψ +

√
2ϵσψ − 2ϵλϕ

δAm = iϵγmλ− iϵγmλ

δσ = ϵλ+ ϵλ

δλ =
i

2
γmnϵFmn − γmϵDmσ +Dϵ

δλ = − i

2
γmnϵFmn − γmϵDmσ +Dϵ

δD = −ϵγmDmλ− ϵγmDmλ+ ϵ[σ, λ] + ϵ[σ, λ]. (B.39)

These are exactly the same as ones we derived in different ways.
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B.2.1 N = 2 supersymmetric Chern-Simons term

Here we discuss the N = 2 supersymmetric version of Chern-Simons term. There
are a couple of ways to derive it. One is to start with the pure Chern-Simons term
(B.26), and modify it so as to make it invariant under the transformation. The
other way is to use the vector multiplet and covariant derivative to construct a
SUSY invariant Lagrangian. Point is that the Chern-Simons term does not exist
in 4d. Hence, we cannot use the dimensional reduction method. This fact gives a
clue to derive the superfield expression for the Chern-Simons term; the expression
should be the combination that cannot be constructed in 4d.

Firstly, we attack the first way, which is a brute-force approach. Here as we
cannot show our effort we just show the result. The supersymmetric Chern-Simons
term is given by

SSCS =
k

2π

∫
d3x tr

[
ϵmnp

1

2

(
Am∂nAp −

2i

3
AmAnAp

)
+ λλ− σD

]
. (B.40)

Next, we use the superfield and the covariant derivatives to construct (B.40).
This formalism was given in [54]. Notice that in 4d the covariant derivatives Dα

and Dα̇ cannot contract each other due to the chirality. However, in 3d there is no
chirality, and hence, we can contract them. Let us consider the Abelian case first.

SCS =
k

4π

∫
d3xd4θ

(
D
α
V
)
(DαV )

=
k

2π

∫
d3x

(
1

2
ϵmnpAm∂nAp + λλ− σD

)
(B.41)

The SUSY invariance is obvious because we used the superfields. The gauge invari-
ance is easily checked by using the partial integration and the fact that

DD = DD

DαΛ = DβΛ = 0. (B.42)

In the non-Abelian case, though the derivation is non-trivial, the action is given as
follows.

SCS = − k

2π

∫
d3xd4θ

∫ 1

0

dt tr
[
V D

α (
e−2tVDαe

2tV
)]

=
k

2π

∫
d3xd4θ

∫ 1

0

dt tr

[
DVDV − 2

3

(
V DV DV − V DV DV

)]
=

k

2π

∫
d3x tr

[
1

2
ϵmnp

(
Am∂nAp −

2i

3
AmAnAp

)
+ λλ− σD

]
(B.43)

Though in order to show the gauge invariance we need some calculation (see Section
D.3) one can show that this is gauge invariant.
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Appendix C

S3 geometry

C.1 Curved geometry

Since we treat curved geometry we have to prepare some tools. On the curved space
a spin is defined locally. Namely, the spin is define on the tangent space rather than
the curved space. We need to introduce so called vielbein emµ (typically, it is called
dreibein in 3d) as a map from curved space to the tangent space;

e µ
m (x)e ν

n (x)gµν(x) = ηmn (C.1)

where ηmn = diag(−,+,+). Here we use m,n, · · · as local Lorentz indices and
µ, ν, · · · as world indices. The vielbein satisfies

e m
µ e ν

m = δνµ, e µ
m e

n
µ = δnm. (C.2)

ϵ µm and ϵ mµ are an inverse matrix each other. Using the inverse matrix we can
express the metric by vielbein

gµν = e m
µ e n

ν ηmn. (C.3)

An index of a gauge field can be changed by the vielbein;

Am = e µ
mAµ, Aµ = e m

µ Am. (C.4)

e m
µ transform under the local Lorentz transformation as

δLe
m
µ = −λmne n

µ (C.5)

where λmn = −λnm is the parameter of the infinitesimal Lorentz transformation. In
order to make the covariant derivative we need a gauge field. We call the gauge field
to the local Lorentz by spin connection, and it is written as

ω m
µ n(x). (C.6)

The spin connection is anti-symmetric for the local Lorentz index

ω mn
µ = −ω nm

µ . (C.7)
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The spin connection transforms under the local Lorentz as

δLω
mn
µ = Dµλ

mn ≡ ∂µλ
mn + ω m

µ pλ
pn + ω n

µ pλ
mp. (C.8)

Using the spin connection the covariant derivative is defined e.g. for a vector V m as

DµV
m = ∂µV

m + ω m
µ nV

n, (C.9)

and for a spinor:

Dµ =

(
∂µ +

1

4
ω mn
µ γmn

)
ψ. (C.10)

The covariant derivative for a scalar is usual derivative Dµϕ = ∂µϕ.
The vielbein and the spin connection is not isolated each other. We can actually

write down the spin connection in terms of the vielbein using so called torsionless
condition:

Dµe
m
ν −Dνe

m
µ = ∂µe

m
ν + ω m

µ ne
n
ν − ∂νe

m
µ − ω m

ν ne
n
µ = 0. (C.11)

Then, we have

ωµmn =
1

2

(
e ν
mΩµνn − e ν

n Ωµνm − e ρ
me

σ
n e

p
µ Ωρσp

)
Ωµνm = ∂µeνm − ∂νeµm. (C.12)

From the spin connection we can construct the Riemann tensor as follows.

R m
µν n = ∂µω

m
ν n − ∂νω

m
µ n + ω m

µ pω
p
ν n − ω m

ν pω
p
µ n. (C.13)

C.2 Differential form

So far we have seen the explicit form of the vielbein, spin connection and Riemann
tensor. There is actually simpler way to express them; it is a differential form. In
general, for the rank n anti-symmetric tensor we define n-form as follows.

An =
1

n!
Aµ1···µndx

µ1 ∧ · · · ∧ dxµn , (C.14)

where dxµ is the basis and ∧ is a wedge product (exterior product). The wedge
product is anti-symmetric:

dxµ ∧ dxν = −dxν ∧ dxµ. (C.15)

Aµ1···µn is called the component of the form An. When it is obvious we omit the
subscript n and simply denote An as A. For example, for a gauge field Aµ we write
it in the differential form as

A = Aµdx
µ. (C.16)
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Similarly the field strength is expressed as

F =
1

2
Fµνdx

µ ∧ dxν

= d ∧ A = ∂µAνdx
µ ∧ dxν = 1

2
(∂µAν − ∂νAµ) dx

µ ∧ dxν , (C.17)

where d = ∂µdx
µ is an exterior derivative. We also abbreviate the wedge product

e.g. d ∧ A→ dA.
Using the differential form the vielbein is

em = e m
µ dxµ, (C.18)

and the torsionless condition becomes

Dem = Dµe
m
ν dxµdxν

= (δmn d+ ωmn) e
n =

(
δmn ∂µ + ω m

µ n

)
e n
ν dx

µdxν = 0 (C.19)

Moreover, when we think em as vector and ωmn as matrix, we can also omit the local
Lorentz indices as well;

De = (d+ ω) e. (C.20)

Hence, the torsionless condition can be written by

De = 0. (C.21)

In this manner the Riemann tensor can be written by

R = D2 = dω + ω2, (C.22)

where we used the fact that d2 = 0. Note that ω is a matrix, and hence, ω2 ̸= 0.

C.3 S3 geometry

S3 is usually described by Cartesian coordinate as

x2 + y2 + z2 + w2 = r2. (C.23)

Here we illustrate the S3 as a group manifold S3 ∼ SU(2) with Euler angles (θ, ϕ, ψ).
Their periods are (π, 2π, 4π). SU(2) element g can be expressed as follows.

g = eϕT3eθT2eψT3 (C.24)

where T a = iσa/2 is an anti-Hermite representation of SU(2) algebra

[Ta, Tb] = −ϵabcTc. (C.25)

The coordinate is expressed as (
z1
z2

)
= g

(
r
0

)
(C.26)

119



Figure C.1: Arrow with rotation angle on S2. Equivalently, U(1) fiber over S2,
which is called Hopf fibration.

with a complex coordinate z1, z2;

|z1|2 + |z2|2 =
(
z∗1 z∗2

)(z1
z2

)
=
(
r 0

)
g†g

(
r
0

)
= r2. (C.27)

Graphically this can be show as U(1) fiber over S2; see Fig. C.1.
Let us define so called left-invariant 1-form µa through the following equation.

2µaTa = g−1dg (C.28)

Using the Euler formula

eθTa = 1+ θTa +
1

2!
(θTa)

2 + · · ·

= 1 cos
θ

2
+ 2Ta sin

θ

2
(C.29)

the left-invariant 1-form is explicitly given as follows.

µ1 =
1

2
(− sinψdθ + cosψ sin θdϕ) (C.30)

µ2 =
1

2
(cosψdθ + sinψ sin θdϕ) (C.31)

µ3 =
1

2
(dψ + cos θdϕ) (C.32)

The metric of S3 is

ds2 = r2
(
(µ1)2 + (µ2)2 + (µ3)2

)
=
r2

4

[
dθ2 + sin2 θdϕ2 + (dψ + cos θdϕ)2

]
. (C.33)

This means that the vielbein is

ea = rµa. (C.34)
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The volume is also calculated using the 1-form.∫
r3 µ1 ∧ µ2 ∧ µ3 = −

∫
r2

8
sin θ dθ ∧ dϕ ∧ dψ = −2π2r3 (C.35)

Vol =

∫
r3
∣∣µ1 ∧ µ2 ∧ µ3

∣∣ = 2π2r3 (C.36)

Let us calculate the spin connection of S3. One can calculate the spin connection
from the torsionless condition (C.21). We take a derivative of (C.28):

d
(
g−1dg = 2µaTa

)
⇒ −g−1dgg−1dg = 2dµaTa ⇒ −4µa ∧ µb1

2
[Ta, Tb] = 2dµcTc

⇒ µa ∧ µbϵabcTc = dµcTc

∴ dµa = ϵabcµb ∧ µc ⇒ dµa + ϵabcµc ∧ µb = 0 (C.37)

This is nothing but the torsionless condition (C.21):

Dea = 0 ⇒ Dµa = 0

dµa + ωabµb = 0 (C.38)

Therefore, the spin connection is

ωab = ϵabcµc. (C.39)

C.4 Fundamental group of S3 and S3/Zn
The fundamental group of S3 is trivial: π1 (S

3) = 1. , the orbifold S3/Zn has non-
trivial fundamental group: π1 (S

3/Zn) = Zn. This is very significant feature of the
orbifold because this is the origin of the holonomy. Let us see this explicitly. Since
the Euler angle is not adequate for global coordinate of S3; it has singular points at
the north and south pole. We consider two patches of S3 as in Fig. C.2. However,

Figure C.2: Separated S3; the circle put on S2 parametrize the fiber direction.

ϕ and ψ themselves are already ill-defined for S2. We get rid of the singularity by
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tuning the third coordinate ψ patch by patch. Let us see the region around the
North pole θ ∼ ϵ (ϵ << 1).

T2(ϕ) = eiσ2ϵ/2 ≃ 1 + iϵσ2/2 =

(
1 ϵ/2
ϵ/2 1

)
(C.40)

T3(ϕ) = eiσ3ϕ/2 =

(
eiϕ/2 0
0 eiϕ/2

)
(C.41)

∴ T3(ϕ)T2(ϵ)T3(ψ) =

(
ei(ϕ+ψ)/2 ϵ

2
ei(ϕ−ψ)/2

− ϵ
2
ei(−ϕ+ψ)/2 e−i(ϕ+ψ)/2

)
(C.42)

Taking ϵ→ 0 and utilize (1 0)T from the right we have

z1 = ei(ϕ+ψ)/2 (C.43)

As there should not be ϕ dependence at the point we set ψN = ϕ+ψ. At the South
pole θ = π − ϵ we repeat the same thing and get ψS = −ϕ+ ψ. Therefore, we need
the junction condition when change the patch:

ψN = ψS + 2ϕ. (C.44)

Let us consider the circle around the North pole

θ = R << 1

ϕ = 2πt (0 ≤ t < 1)

ψ = const = 0, (C.45)

and move it to the South pole (see Fig C.3). Then, after the change of the patch

Figure C.3: Circle created from the point can lap the S1.

the circle wind the S1 once.

θ = π

ϕ = 2πt

ψS = ψN − 2ϕ = −4πt (C.46)

Of course one can repeat the same thing to wind the circle any times. Therefore,
inversely, a circle winding many times can shrink into a point, which is expressed as
π1(S

3) = 1.
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S3/Zn case is similar but gives a non-trivial result. The orbifolding affect the
U(1) fiber part and it reduces the period from 4π to 4π/n. Then, the junction
condition becomes

ψN = ψS + 2nϕ (C.47)

Thus, a circle winding S1 n times can shrink into a point. Inversely, a circle winding
less than n times can not shrink into a point, which is expressed as π1(S

3/Zn) = Zn.

C.5 Weyl transformation and S3

Let us firstly derive the S1 from R1. The S1 is parametrized by rθ with θ ∼ θ + 2π
from the north pole to clockwise direction. The R1 is parametrized by x; see Fig.
C.4. From the geometric calculation we have the following relation between two;

Figure C.4: Circle with radius r and its stereographic projection from the north
pole

tan
θ

2
=
r

x
. (C.48)

Note that θ = 0 corresponds to x = ∞; there we have to use another patch to
parametrize the point e.g. use the stereographic projection from the south pole.

From (C.48) we can also have the relation of the lengths.

rdθ = − 2r2

r2 + x2
dx. (C.49)

The square of those gives the metric

ds2 = r2dθ2 =
4r4

(r2 + x2)2
dx2 = g(x)dx2. (C.50)

This means that S1 is conformally flat. Similarly, we can create S3 from R3 by Weyl
transformation. In the case we only need to replace x2 by xmxm in g(x);

ηmn → gmn =
4r4

(r2 + x2)2
ηmn. (C.51)

123



Appendix D

Chern-Simons term

D.1 Chern-Simons level quantization

Let us see the quantization of Chern-Simons level explicitly. We use differential
form here; we summarized it in Section C.2. The finite gauge transformation of the
Chern-Simons action (B.26) with ignoring the surface term becomes

δgSCS =
κ

6

∫
d3x tr

(
U−1dU

)3
(D.1)

where we omitted the wedge products. Since non-Abelian gauge groups always
include SU(2) subgroup let us consider the SU(2) gauge group. Due to the non-
trivial fundamental group π3 (SU(2)) = Z (D.1) is not zero. As one may notice the
integrand of (D.1) is the left-invariant 1-form. We can explicitly write down the
left-invariant 1-form by the generators of SU(2). Then, the integration gives the
volume of S3:

δgSCS =
κ

6

∫
d3x tr

(
U−1dU

)3
=

4κ

3

∫
d3x tr

(
T aT bT c

)
µaµbµc

= −2κ

∫
µ1 ∧ µ2 ∧ µ3

= 4π2κ. (D.2)

Though we used anti-Hermite representation one can do the same thing in a Hermite
one and reach the same result. The result means that the action is not invariant
under the large gauge transformation (B.28). However, the partition function is
invariant;

Z ′ =

∫
DΦeiSCS+iδgSCS =

∫
DΦeiSCS+2πi(2πκ) (D.3)

if one impose the constraint

2πκ = k ∈ Z. (D.4)

We call this integer k Chern-Simons level. The final form of the action is then,

SCS =
k

4π

∫
d3x ϵµνρtr

(
Aµ∂νAρ −

2i

3
AµAνAρ

)
. (D.5)
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D.2 Holonomy for Chern-Simons term

We firstly reconsider the quantization of the Chern-Simons term in a different
method. Then, we discuss the holonomy for the Chern-Simons term. In this section
we extensively use the differential form, which is summarized in Section C.2.

We consider the two gauge fields A and B on S3 and their cross term in Chern-
Simons term:

S = κ

∫
AdB (D.6)

The gauge transformations of these gauge fields are given as follows.

δA = dλA (D.7)

δB = dλB (D.8)

We describe the S3 as in Appendix C The coordinate is the Euler angle (θ, ϕ, ψ).
As the coordinate is not well-defined we separate it into two patches and introduce
local coordinates for them; we distinguish them by putting subscripts N and S for
upper-half and lower-half.

The junction condition for the fields are given as follows.

AN + dα = AS

BN + dβ = BS (D.9)

These conditions should not depend on the gauge choice. We denote the fields after
the gauge transformation with prime (e.g. A′ = A+dλA), and the conditions become

A′
N + dα′ = A′

S (D.10)

→ AN + dλAN
+ dα′ = AS + dλAS

. (D.11)

In order to make these be the same as (D.9) we have to set

α′ = α− λAN
+ λAS

. (D.12)

We fix the coefficient κ of the Chern-Simons action so that the action is gauge
invariant. The gauge transformation of the action (D.6) is

δS = κ

(∫
N

dλAN
dBN +

∫
S

dλAS
dBS

)
. (D.13)

We use the Stokes theorem but note that λ has period 2π and multi-valued. However,
its derivative dλ is well-defined. Thus, the Stokes theorem should be used so that
those derivatives remain:

δS = −κ
(∫

N

d(dλAN
BN) +

∫
S

d(dλAS
BS)

)
= −κ

(∫
∂N

dλAN
BN +

∫
∂S

dλAS
BS

)
= −κ

(∫
∂N

dλAN
BN −

∫
∂N

dλAS
(BN + dβ)

)
= κ

(∫
∂N

(dλAS
− dλAN

)BN +

∫
∂N

dλAS
dβ

)
, (D.14)
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We used the fact the direction of the boundary ∂N and ∂S are opposite each other
between the first and second line. Generally, the remaining terms have non-zero
values, and hence, we introduce a term that erase them. The possible candidates
are A,B, α, β. We use the derivative of α, and its gauge transformation

δ(dα) = −dλAN
+ dλAS

. (D.15)

As this is the same as the first term of (D.14), We add the following term to the
action.

S1 = −κ
∫
∂N

dαBN (D.16)

The gauge transformation of the modified action is

δ(S + S1) = κ

∫
∂N

dλAS
dβ − κ

∫
∂N

dαdλBN
(D.17)

We explicitly integrate the action on the torus. The path of the integration is taken
as in Fig. D.1.

Figure D.1: Integration path along the boundary of torus T 2

∫
∂N

dλAS
dβ =

∮
λAS

(x, y)dβ

=

∫
λAS

(x, 0)∂xβdx+

∫
λAS

(1, y)∂yβdy −
∫
λAS

(x, 1)∂xβdx−
∫
λAS

(0, y)∂yβdy

=

∫
[λAS

(x, 0)− λAS
(x, 1)]∂xβdx+

∫
[λAS

(1, y)− λAS
(0, y)]∂yβdy

= −∆yλAS

∫
∂xβdx+∆xλAS

∫
∂yβdy

= −∆yλAS
∆xβ +∆xλAS

∆yβ

= (2π)2k (m ∈ Z) (D.18)

Therefore, if we set κ = k/2π (k ∈ Z) the action is well-defined.
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Now we are ready to consider the orbifold case. Due to the non-trivial funda-
mental group π1(S

3/Zn) = Zn the vacua is specified by holonomies hA, hB. The
holonomies are related to the gauge fields as follows.

2πhA
n

=

∮
A,

2πhB
n

=

∮
B (D.19)

We explicitly introduce the coordinates θ, ϕ, ψN,S. As discussed in Section C.4, the
junction condition is

ψS = ψN + 2nϕN (D.20)

From (D.19) the gauge fields are written in terms of the coordinate:

AN =
hA
2n
dψN , AS =

hA
2n
dψS, (D.21)

where note that the period of ψ’s are 4π. The junction for the fields (D.9) tells us
that

hA
2n

(dψS − dψN) = dα

→ hAdϕN = dα. (D.22)

The same for B. Substitute this to the action (D.16) with κ = k/2π we have

S = − k

2π

∫
∂N

dαBN = − k

2π

∫
hAdϕN

hB
2n
dψN = − k

4πn
hAhB(8π

2)

= −2πk

n
hAhB. (D.23)

This is the distinctive feature for the Chern-Simons term on the orbifold. Note that
we considered the cross term of A and B, hence, it is multiplied by 2. For the
Chern-Simons term with single gauge field leads to πkh2A/n.

D.3 Gauge invariance of the Chern-Simons term

in superspace

We introduce useful expression

g = e2tV , (D.24)

and rewrite the action;

SCS = − k

8π

∫
d3xd4θ

∫ 1

0

dt tr
[(
g−1∂tg

)
D
(
g−1Dg

)]︸ ︷︷ ︸
I

, (D.25)

where we denote I as the integrand. This is topological and is written by the total
derivative. In order to see this we introduce a symbol;

[d] = g−1dg. (D.26)
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From the definition the following formula is easily derived.

δ[d] = [δd]− [δ][d] (D.27)

The gauge transformation is then given as follows.

δI = δ tr
(
[∂t]D[D]

)
= tr

(
[δ∂t]D[D]

)
− tr

(
[δ][∂t]D[D]

)
+ tr

(
[∂t]D[δD]

)
− tr

(
[∂t]D[δ][D]

)
(D.28)

After the partial integration of x, θ, t these terms become zero. Note that the total
derivative of x and θ is set to zero as usual. However, we still have to pay attention
to the surface term of t. It is

δSCS = − k

8π

∫
d3xd4θ

∫ 1

0

dt ∂ttr
(
[δ]D[D]

)
= − k

8π

∫
d3xd4θ tr

(
[δ]D[D]

)∣∣
t=1

.

(D.29)

The explicit infinitesimal gauge transformation for [δ]:

[δ]|t=1 g
−1δg

∣∣
t=1

= e−2V eiΛe2V e−iΛ − 1 = ie−2VΛe2V − iΛ (D.30)

shows that (D.29) is zero, and therefore, the action is invariant under the gauge
transformation.
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Appendix E

Spherical harmonic function

Our goal in this chapter is to construct the formula to derive the eigenvalues of the
Laplacian on a symmetric space M. This chapter is base on [55].

E.1 Frame bundle

We describe the spin R field ψ on a d dimensional manifold M using the bra-ket
representation |ψ⟩:

|ψ⟩ =
∫
M
dx

dimR∑
i=1

|x, i⟩ψi(x) (E.1)

where x is a point on the manifoldM, i is the index of spin basis of SO(d), and ψi(x)
is the wave function. The basis |x, i⟩ is defined by the following tensor product.

|x⟩ ⊗ |i⟩ (E.2)

The basis for the spin is usually defined on each point x, hence it should be written
|i⟩x ∈ Vx. But they are not isolated and we can actually define the map from
non-trivial basis |i⟩0 to the basis on every points x as |i⟩x.

f(x) : |i⟩0 7−→ |i⟩x (E.3)

We can now construct the spin basis at any point from |i⟩0 and f(x). f(x) is the
section of SO(d) fiber bundle over M. This fiber bundle is called frame bundle
FM.

Benefit of the frame bundle is that we can set frame without a specific spin.
According to this change we rewrite the basis as follows.

|x, f(x)⟩ ⊗ |i⟩0 (E.4)

Using this the field ψ is rewritten as follows.

|ψ⟩ =
∫
M
dx

dimR∑
i=1

|x, f(x)⟩ ⊗ |i⟩0ψi(x) (E.5)
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the section f always acts on the element of spin space Vx, henceforth we identify
the action leads to the same result. Namely,

|x, f(x)h⟩ ⊗ |i⟩0 ∼ |x, f(x)⟩ ⊗ h|i⟩0, h ∈ H = SO(d). (E.6)

The tensor product with the identification above is written as ⊗H . Using this
product we can derive the relation between the wave functions with different section
f ′ = fh;

|ψ⟩ =
∫
M
dx

dimR∑
i=1

|x, f ′(x)⟩ ⊗H |i⟩0ψ′
i(x)

=

∫
M
dx

dimR∑
i=1

|x, f(x)h(x)⟩ ⊗H |i⟩0ψ′
i(x)

=

∫
M
dx

dimR∑
i=1

|x, f(x)⟩ ⊗H h(x)|i⟩0ψ′
i(x)

=

∫
M
dx

dimR∑
i,j=1

|x, f(x)⟩ ⊗H |j⟩0h(x)jiψ′
i(x) (E.7)

where we defined

h(x)ij = 0⟨i|h(x)|j⟩0 (E.8)

, which is the representation matrix of representation R of h(x). Comparison be-
tween (E.5) and (E.8) give us following relation:

ψi(x) =
dimR∑
j=1

h(x)ijψ
′
j(x). (E.9)

This is the local rotation of the spin R field.

In order to relate the field |ψ⟩ and its component (or wave function) ψi(x) the
section f(x) of frame bundle has to be chosen. As the section is locally chosen when
we consider the translation the section also changes. To keep the parallelism of the
spin we need to cancel the change of the section caused by the translation.

Let us consider the explicit translation that bring a particle located at a point
x′ = x+ϵ to x (see Fig. E.1). The translation determine the unitary transformation
Uϵ that change Vx′ to Vx;

Uϵ : Vx′ 7−→ Vx. (E.10)

We denote this translation P , and its action to the basis is

P |x′, f(x′)⟩ = |x, Uϵf(x′)⟩, (E.11)
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Figure E.1: Translation, the change of section and pullback of the basis

which changes the frame. Since the new section Uϵf(x
′) is different from the original

section f(x) we have to modify it to compare the two. The translated field P |ψ⟩ is

P |ψ⟩ = P

∫
M
dx′

dimR∑
i=1

|x′, f(x′)⟩ ⊗H |i⟩0ψi(x′)

=

∫
M
dx

dimR∑
i=1

|x, Uϵf(x′)⟩ ⊗H |i⟩0ψi(x′)

=

∫
M
dx

dimR∑
i=1

|x, f(x)Ωϵ⟩ ⊗H |i⟩0ψi(x′)

=

∫
M
dx

dimR∑
i=1

|x, f(x)⟩ ⊗H Ωϵ|i⟩0ψi(x′)

=

∫
M
dx

dimR∑
i,j=1

|x, f(x)⟩ ⊗H |i⟩0Ωϵ,ijψj(x
′) (E.12)

where we defined

Ωϵ = f−1(x)Uϵf(x
′) : V0 → Vx′ → Vx → V0, (E.13)

and its representation matrix Ωϵ,ij. As Ωϵ is isomorphic mapping on V0 it is the
element of SO(d). Hence, we can compare the two spinors healthily with the wave
functions ψi(x) and

ψPi (x) =
dimR∑
j=1

Ωϵ,ijψj(x
′). (E.14)

Using the infinitesimal translation parameter ϵµ we can denote Ωϵ = 1 + ϵµωµ with
the element of Lie algebra so(d), ωµ, Then, the covariant derivative is defined as

133



follows.

ϵµDµψi(x) = ψPi (x)− ψi(x)

= ϵµ

[
∂µψi(x) +

dimR∑
j=1

ωµ,ijψj(x)

]
, (E.15)

where ωµ is the spin connection.
This complexity comes from choosing the section. Hence, let us define the field

as a function on the frame bundle FM without the choice of the section. Namely,
we define the map f : V0 → Vx that is independent of the point x as an isolated
coordinate. In this notation the basis is

|x, f⟩. (E.16)

This pair gives a point of the frame bundle FM, and hence, it is the basis of the
function on the frame bundle. You can suppose that the pair (x, f) put the spin
space V0 with the direction specified by f on the manifold M. Using this basis we
can rewrite the general state as follows.

|ψ⟩ =
∫
f

dx
dimR∑
i=1

|x, f⟩ ⊗H |i⟩0Φi(x, f) (E.17)

The difference compared to (E.5) is that the wave function Ψi(x, f) is defined over
the whole frame bundle, and the integration is performed over the section f . In order
to make the integrand be independent of the choice of the section, the integrand
should not depend on the section. Especially, the state is unchanged under the
replacement f → fh (local rotation) the integrand should satisfy following relation:

dimR∑
i=1

|x, f⟩ ⊗H |i⟩0Φi(x, f) =
dimR∑
i=1

|x, fh⟩ ⊗H |i⟩0Φi(x, fh)

=
dimR∑
i=1

|x, f⟩ ⊗H h|i⟩0Φi(x, fh)

=
dimR∑
i,j=1

|x, f⟩ ⊗H |i⟩0hijΦj(x, fh) (E.18)

Namely, the wave function should satisfy the relation

Φi(x, f) =
dimR∑
j=1

hijΦj(x, fh). (E.19)

If the wave function satisfy this relation the state vector |ψ⟩ does not depend on the
choice of the section.

The translation of the state in this notation is written as follows.

Pϵ|ψ⟩ =
∫
f

dx

dimR∑
i=1

|x, Uϵf⟩ ⊗H |i⟩0Φi(x
′, f)

=

∫
f

dx

dimR∑
i=1

|x, f⟩ ⊗H |i⟩0Φi(x
′, U−1

ϵ f) (E.20)
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The translated wave function is simply illustrated by

ΨP
i (x, f) = Ψi(x

′, U−1
ϵ f). (E.21)

We do not have to consider the spin connection and so on. What we have to do is
that specify the wave function satisfying the condition (E.19), and the translation
Uϵ. This is easily done in the case of symmetric space as we will see coming sections.

E.2 Frame bundle of G/H

Let us consider a group G transitively act on a manifold M. This means that the
manifold M is a homogeneous space. We choose the origin O of the manifold. We
call a subgroup that do not move the origin by H:

H = {g ∈ G|gO = O} . (E.22)

We consider the element g inG moves the origin to a point x, namely, we set x = gO.
Then, gH also moves the origin to the point x. Hence, we have the manifold M by
the identification g ∼ gh :

M = G/H. (E.23)

This means that G is the H-bundle over M. We define a projection π that project
G to M.

We describe the Lie algebra of G and H by G andH, respectively. Also, we define
the orthogonal complement K. These satisfy the following commutation relations:

[H,H] ⊂ H, [H,K] ⊂ K, [K,K] ⊂ H. (E.24)

The first two relations are just the definition of subgroup. The last relation is quite
non-trivial. We regard K as the translation, H as local rotation, and as we will see
the last relation means the torsionless condition.

In previous section we saw that the field on the manifold M can be denoted
by that on the frame bundle FM. A point on the frame bundle FM gives both a
point of the manifold M and the local orthogonal set. In the case here M = G/H
this is realized by choosing the element of G. Namely, if we denote the basis on the
origin by |i⟩0 and the basis moved by g from the origin by |i⟩x, we can define the
homeomorphism of G and FM. As like this we can unify the coordinates x of the
manifold and f fixing the section into g ∈ G. We reexpress the configuration of the
spin R field on M (E.17) by

|Ψ⟩ =
∫
dg|g⟩ ⊗H |i⟩0Ψi(g), (E.25)

where the product ⊗H is defined by the identification:

|gh⟩ ⊗H |i⟩0 = |g⟩ ⊗H h|i⟩0. (E.26)
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The condition (E.19) becomes

Ψi(g) =
dimR∑
j=1

hijΨj(gh). (E.27)

In case of M = G/H we can have the complete set of the wave function. We

denote the representation R̃ of G including the branch point into the spin repre-
sentation R. We express the representation matrix for R̃ by ρR̃AB, and the space
that the matrix acts by VR̃. The basis indices of the space VR̃ are written by

A,B = 1, · · · , dim R̃. R̃ branching into R means that there exist the subspace
VR ∈ VR̃ that transform as the representation R. The basis indices of this subspace
are written by i, j = 1, · · · , dimR.

In our case this means that there exist the representation R ∈ R̃ that is invariant
under the H action. We define the function for every representation R̃ of G that
branches into R:

Y R̃
i,A(g) = ρR̃(g−1)iA. (E.28)

This function satisfy the condition (E.27), and it makes the complete system. Namely,
the function Ψi(g) satisfy the condition is expressed by the linear combination of
(E.28):

Ψi(g) =
∑
R̃

dim R̃∑
A=1

ρR̃(g−1)iAΨ
R̃
A, (E.29)

where ΨR̃
A are constant coefficient. If R̃ includes more than two branches the sum

over the R̃ is taken over each subgroup R. It is easily checked that (E.29) satisfy
(E.27).

E.3 Isometry and Lie derivative

From the relation G and FM we can define an isometry for M by the right action:

iso(g′)|g⟩ = |g′g⟩. (E.30)

The isometry action on (E.25) gives the transformation of the wave function:

iso|Ψ⟩ =
∫
dg
∑
i,R̃,A

|g′g⟩ ⊗H |i⟩0ρR̃(g−1)iAΨ
R̃
A

=

∫
dg
∑
i,R̃,A

|g⟩ ⊗H |i⟩0ρR̃(g−1g′)iAΨ
R̃
A

=

∫
dg

∑
i,R̃,A,B

|g′g⟩ ⊗H |i⟩0ρR̃(g−1)iAρ
R̃(g′)ABΨ

R̃
B. (E.31)
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The isometry is expressed as a rotation of the constant vector ΨR̃
A:

ΨR̃
A −→ Ψ

′R̃
A =

∑
B

ρR̃(g′)ABΨ
R̃
B. (E.32)

Lie derivative corresponding to the generator X of the isometry is defined by an
infinitesimal transformation of a field under the isometry:

LX = iso(1 +X)− 1. (E.33)

In terms of (E.31)

LXΨi(g) = Ψi

(
(1 +X)−1g

)
−Ψi(g) = Ψi(−Xg). (E.34)

Though action of the isometry on g is the left one, we rewrite it as the right action
as follows.

(1 +X)g = gg−1 (1 +X) g = g (1 + vmKm + ωaHa) (E.35)

In this notation vm is the Killing vector for X, and ωaHa is the rotation attached
to the isometry.

E.4 Covariant derivative

We fix the section f , and define a orthogonal coordinate ξm near an arbitrary point
x (m = 1, · · · , dimM). This is give by the projection from ξm to the neighbor of
the point x.

x(ξ) = π (g(1 + ξmKm)) (E.36)

We abbreviate the sum symbol from now on. The metric around the origin is given
by

ds2 = ξmξm. (E.37)

The normalization of the Km includes the information of the size of the manifold
M.

When we determine the orthogonal set the translation of from ξm to ξm − ϵm is
given as follows.

g −→ g (1− ϵmKm) e. (E.38)

We denote this translation as Pϵ:

Pϵ|g⟩ = |g (1− ϵmKm)⟩. (E.39)

Pϵ acting on (E.25) gives

Pϵ|Ψ⟩ =
∫
dg|g (1− ϵmKm)⟩ ⊗H |i⟩0Ψi(g)

=

∫
dg|g⟩ ⊗H |i⟩0Ψi(g (1 + ϵmKm)). (E.40)
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Using this Pϵ we can define the covariant derivative as follows.

ϵmDm|Ψ⟩ = Pϵ|Ψ⟩ − |Ψ⟩

=

∫
dg|g⟩ ⊗H |i⟩0 [Ψi(g (1 + ϵmKm))−Ψi(g)] . (E.41)

For the wave function ψi it is given as follows.

DmΨi = Ψi(gKm) (E.42)

The right hand side is defined by

ϵmΨi(gKm) = Ψi(g (1 + ϵmKm))−Ψi(g) (E.43)

Using the expansion of the wave function (E.29):

ΨR̃
i (g) = ρR̃(g−1)iAΨ

R̃
A. (E.44)

In this notation (E.43) is written as follows.

Ψi(g (1 + ϵmKm))−Ψi(g) =
[
ρR̃((1− ϵmKm) g

−1)iA − ρR̃(g−1)iA

]
ΨR̃
A

= ρR̃((−ϵmKm))iAρ
R̃(g−1)ABΨ

R̃
B

= ρR̃((−ϵmKm))iAΨ
R̃
A(g), (E.45)

where we defined the wave function extended to the R̃ by ΨR̃
A(g):

ΨR̃
A(g) = ρR̃(g−1)ABΨ

R̃
B. (E.46)

Using these the covariant derivative is expressed as follows.

DmΨ
R̃
i (g) = ΨR̃

i (gKm) = −ρR̃(Km)iAΨ
R̃
A(g). (E.47)

Note that the covariant derivative satisfy the condition (E.27):

DmΨ(gh) = Ψi(ghKm) = Ψ
(
g(hKmh

−1)h
)
= h−1

mnh
−1
ij Ψj(gKn) = h−1

mnh
−1
ij DnΨj(g),

(E.48)

where note that the index of the covariant derivative m also transform as the spin
index. The state vector for the covariant derivative can be defined as follows.

|DΨ⟩ =
∫
dg|g⟩ ⊗H (|m⟩0 ⊗ |i⟩0)DmΨi(g) (E.49)

The identifying product ⊗H is defined as follows.

|gh⟩ ⊗H (|m⟩0 ⊗ |i⟩0) ∼ |g⟩ ⊗H (h|m⟩0 ⊗ h|i⟩0) (E.50)

To take the derivative twice we just repeat the (E.47) twice:

DmDnΨ
R̃
i (g) = DmΨ

R̃
i (gKn) = ΨR̃

i (gKmKn). (E.51)

138



Then, the Laplacian is given as follows.

∆ΨR̃
i (g) = ΨR̃

i (gKmKm) =
[
C2(R̃)− C2(R)

]
Ψi(g), (E.52)

where C2(R̃) is the Casimir operator that created from KAKB contracted by the G
invariant metric gAB, and C2(R) is that of limited region inside the representation
R:

C2(R̃) = −gABTATB, C2(R) = −gijHiHj. (E.53)

Since we use anti-Hermite generators we defined the Casimir operators to be positive.
The eigenvalue of the Laplacian is completely determined algebraically.

The commutator of the covariant derivative

[Dm, Dn]Ψ
R̃
i (g) = ΨR̃

i (g[Km, Kn]) = ρR (−[Km, Kn])ij Ψ
R̃
j (g) (E.54)

gives the Riemann tensor:

Rmn = [Dm, Dn] = −[Km, Kn]. (E.55)

E.5 Spin connection and vielbein

We can extract the information of the spin connection and the vielbein by comparing
to the covariant derivative, which is given by

emDmΨi = dΨi + ωijΨj. (E.56)

We rewrite the derivative in RHS:

dΨi(g) = Ψi(dg), (E.57)

where we regard the RHS expanded as in (E.29) and d acts on the ρ R̃(g−1). The
spin connection is rewritten as ωΨ(g) = Ψ(−gω). Using these expressions and the
algebraic form of the covariant gives

emΨi(gKm) = Ψi(dg) + Ψi(−gω). (E.58)

This should be satisfied for any field, and hence,

µ = e+ ω, µ = g−1dg, (E.59)

where e = emKm. µ, by the definition, satisfy following equation.

dµ+ µ2 = 0 (E.60)

Substitute the expression for the µ and divide the result into H component and K
component, and we have

de+ ωe+ eω = 0

dω + ω2 + e2 = 0. (E.61)

The first equation illustrates the torsionless condition. The last one gives the Rie-
mann tensor.
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E.6 S3 case

Any dimensional sphere is given as a group manifold SO(n+1)/SO(n) We especially
look into the S3 case. Since SO(4) ∼ SU(2)L × SU(2)R we construct the S3 using
SU(2) group.

We use the anti-Hermite SU(2) generator

[Ta, Tb] = −ϵabcTc. (E.62)

Spinor and vector representation of the spin operator is given as follows.

T (1/2)
a =

i

2
σa,

(
T (1)
a

)
bc
= ϵabc. (E.63)

Rasing and lowering operators are defined by

T± = T1 ± iT2. (E.64)

The matrix element of the general spin representation is as follows.

⟨m|T3|m⟩ = im

⟨m+ 1|T+|m⟩ = i
√

(j −m)(j +m+ 1)

⟨m− 1|T−|m⟩ = i
√

(j +m)(j −m+ 1) (E.65)

Using the Dirac matrix generator for SO(N) against spinor representation is
chosen as

TMN =
1

2
γMN (E.66)

For vector representation we choose the generator so that the action to the basis
|M⟩ becomes

|1⟩ = T12|2⟩. (E.67)

When we define the S3 = SO(4)/SO(3) we use T12, T23, T31 for the subgroup H =
SO(3). These generator satisfy the same commutation relation as that of (T1, T2, T3).
Therefore,

T12 = TL3 + TR3 . (E.68)

The remaining generators like Tm4 is chosen so that

T34 =
1

2
γ34 =

1

2
γ5γ12 =

1

2

(
PLγ

12 − PRγ
12
)
. (E.69)

Hence,

T34 = TL3 − TR3 . (E.70)
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We denote the element of SO(4) by (gl, gr) as a pair of SU(2). H is its diagonal
subgroup. The general field is expressed as follows.

|Ψ⟩ = |gl, gr⟩|i⟩Ψi(gl, gr). (E.71)

Spin and local rotation act on the field as

spin(h)|Ψ⟩ = |gl, gr⟩h|i⟩Ψi(gl, gr).local(h)|Ψ⟩ = |glh, grh⟩|i⟩Ψi(gl, gr). (E.72)

Therefore, following relation holds.

|gl, gr⟩h|i⟩Ψi(gl, gr) = |glh, grh⟩|i⟩Ψi(gl, gr). (E.73)

Or, we can abbreviate the wave function and simply consider that there is following
gauge symmetry:

|gl, gr⟩h|i⟩ ∼ |glh.grh⟩|i⟩ (E.74)

The infinitesimal transformation is expressed as

|glTm, gr⟩|i⟩+ |gl, grTm⟩|i⟩ ∼ |gl, gr⟩Tm|i⟩ (E.75)

Scalar function on S3 has trivial spin basis |0⟩, and this leads to

|glh, grh⟩|0⟩ ∼ |gl, gr⟩|0⟩ (E.76)

The general form of the scalar field satisfying the relation above is

|ψ⟩ = |gl, gr⟩ρj(glg−1
r )ABΨAB, (E.77)

where ρj is representation matrix of spin j, and this function transform under the
isometry as (j, j)). Hence, we use the following basis instead of |gl, gr⟩ to treat the
scalar function.

||glg−1
r ⟩⟩ = {|gl, gr⟩} (E.78)

where the RHS is equivalence class define by the (E.76). Since the scalar field does
not need to introduce the frame, the equivalence class is enough.

|ψ⟩ = ||g⟩⟩ρj(g)ABΨAB, (E.79)

General spin field can be define by the basis ||g⟩⟩, we need to introduce the gauge
fixing condition so as to determine the frame. For example, the left-invariant frame
is given as follows.

||g⟩⟩LI = |g, e⟩. (E.80)

Lie derivative and the covariant derivative generally do not respect this gauge.
Hence, we need the gauge transformation regaining the gauge.
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For example, using the left-invariant frame the Lie derivative and the covariant
derivative is

L(Tm,0)||g⟩⟩LI |i⟩ = |Tmg, e⟩|i⟩ = ||Tmg⟩⟩LI |i⟩
L(0,Tm)||g⟩⟩LI |i⟩ = |gl, Tm⟩|i⟩ ∼ ||gTm⟩⟩LI |i⟩+ ||g⟩⟩LITm|i⟩
rDm||g⟩⟩LI |i⟩ = −|gTm, e⟩LI |i⟩+ |g, Tm⟩LI |i⟩ ∼ −2||gTm⟩⟩LI |i⟩+ ||g⟩⟩LITm|i⟩.

(E.81)

Generator K is define as

Km =
1

r

(
T lm − T rm

)
. (E.82)

||g⟩⟩LI is regarded as scalar function. Then, we regard this part as orbit part and
|i⟩ part as spin part, and isometry action on the ||g⟩⟩LI is identified with Llm and
Lrm, and action on |i⟩ is identified with spin operator Sm . Hence, the total orbital
angular momentum and covariant derivative is given as follows.

J lm
LI
= Llm

Jrm
LI
= Lrm + Sm

rDm
LI
= 2Lrm + Sm

(E.83)

For the right invariant frame we have

J lm
RI
= Llm + Sm

Jrm
RI
= Lrm

rDm
RI
= −2Lrm − Sm

(E.84)

Using these we can rewrite the Laplacian:

r2DmDm = (2Lrm + Sm)
2

= 2(Lrm)
2 + 2(Lrm + Sm)

2 − S2
m (E.85)

Furthermore, using (Lrm)
2 = (Llm)

2 we have

r2DmDm = 2(J lm)
2 + 2(Jrm)

2 − S2
m. (E.86)
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Appendix F

Double sine function

F.1 Jafferis’ l-function

We introduce how to derive the derivative of l-function using the zeta-function reg-
ularization. The definition of the l-function is

el(z) =
∞∏
n=1

(
n− iz

n+ iz

)n
(F.1)

This is from the 1-loop determinant of the chiral multiplet. Taking log and deriva-
tive:

∂zl(iz) =
∞∑
n=1

n∂z log

(
n+ z

n− z

)
=

∞∑
n=1

(
n

n+ z
+

n

n− z

)
=

∞∑
n=1

(
1− z

n+ z
+ 1 +

z

n− z

)
=

∞∑
n=1

(
2 +

2z2

n2 − z2

)
= 2ζ(0)−

∞∑
n=1

(
2z2

z2 − n2

)
= −1−

∞∑
n=1

(
2z2

z2 − n2

)
(F.2)

where we used the zeta-function regularization ζ(0) = −1/2 in the last equality.
Then, the partial fraction expansion of the trigonometric function

π cotπz =
∞∑

n=−∞

1

z + n
=

1

z
+

∞∑
n=1

2z

z2 − n2
(F.3)

tells us that (F.2) becomes

∂zl(iz) = −πz cotπz. (F.4)

Integration of this function (maybe by Mathematica) gives the explicit and regular-
ized function;

l(z) = −z log(1− e2πiz) +
i

2

(
πz2 +

1

π
(Li2(e

2πiz))

)
− iπ

12
(F.5)
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We show the relation between the l-function and the double sine function here.

s1(x) =
∞∏

p,q=0

p+ q + 1− ix

p+ q + 1 + ix
=

∞∏
n=1

(
n− ix

n+ ix

)n
(F.6)

∴ s1(x) = el(−ix) (F.7)

Actually, lr(z) = l(−iz) is more useful to be used for numerical calculation. In this
definition some formulae become simpler.

l(−z) = −l(z) (F.8)

el(z−
i
2
)−l(z+ i

2
)) = 2 cosh(πz) (F.9)

el(z−i)−l(z+i)) = 4 sinh2(πz) (F.10)

These formulae can be derived from the double sine function, or directly from the
infinite products (F.1).

For a numerical calculation the integral form of the polylog function is useful:

Li1+s(x) =
1

Γ(s+ 1)

∫ ∞

0

dk
ks

ek/z − 1
. (F.11)

F.2 Double sine function

Double sine function looks very complicated, though it is a simple building block
of the squashed partition function. It has several definition. The infinite product
form is directly connected to the partition function and actually it is a regularized
form. However, in order to explore asymptotic form the integration form is the
best, and when one calculate the squashed partition function the expression using
the q-Pochhammer symbol is a nice because Mathematica knows them.

sb(x) =
∞∏

p,q=0

bp+ b−1q + b+b−1

2
− ix

bp+ b−1q + b+b−1

2
+ ix

(F.12)

= exp

[
−iπ

(
x2

2
+

(b2 + b−2)

24

)
+

∫
R+i0

dt

4t

e−2itx

sinh bt sinh b−1t

]
(F.13)

= exp

[
−iπ

(
x2

2
+

2η2 − 1

12

)]
(−qe2πbx; q2)∞
(−q̃e2πb−1x; q̃2)∞

for Im b2 > 0 (F.14)

where

η =
b+ b−1

2
=

1

v
, q = eiπb

2

, q̃ = eiπb
−2

, (F.15)

(x; q)∞ =
∞∏
k=9

(1− qkx) called q-deformed Pochhammer function. (F.16)

In order to show the duality explicitly following relations are important.

• Self-duality and reflection property

sb(z) = sb−1(z) =
1

sb(−z)
. (F.17)
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• Functional equations

sb(z +
ib
2
)

sb(z − ib
2
)
=

1

2 cosh(πbz)
,

sb(z +
ib−1

2
)

sb(z − ib−1

2
)
=

1

2 cosh(πb−1z)
,

sb(z +
i
v
)

sb(z − i
v
)
=

1

[2 sinh(πbz)][2 sinh(πb−1z)]
. (F.18)

Relation to other functions like double gamma function is nicely summarized in
[56].

F.3 Separation of long-range and short-range po-

tentials

In this appendix we determine the explicit form of the long-range and the short-range
potentials.

Let x and y be the real and imaginary parts of z. Namely,

z = x+ iy. (F.19)

In the region |y| < 1/v, the function fb(z) is given by[57, 58]

fb(z) ≡ log sb(z) = iπ

(
z2

2
+
b2 + b−2

24

)
+

∫
C−

F (z, t)dt

= −iπ
(
z2

2
+
b2 + b−2

24

)
+

∫
C+

F (z, t)dt, (F.20)

where the function F (z, t) is

F (z, t) =
e−2itz

4t sinh bt sinh t
b

=
1

4t3
− iz

2t2
− 1

t

(
z2

2
+
b2 + b−2

24

)
+
i

3
z3 +

iz

12
(b2 + b−2) +O(t). (F.21)

The function F (z, t) has poles at t = nπib and t = nπib−1 (n ∈ Z). C± are the
contours shown in Fig F.1. The first and the second expressions in (F.20) are useful
for x > 0 and x < 0, respectively, because when x → +∞ the integral in (F.20)
along C− vanishes, and when x → +∞ the integral along C+ vanishes. From this
fact, we obtain the asymptotic form

f asym
b (z) = iπ

(
z2

2
+
b2 + b−2

24

)
sign(x). (F.22)

The difference of fb(z) from the asymptotic form is

fb(z)− f asym
b (z) =

∫
C

F (z, t)dt =

∫
C

F (iy, t)e−2itxdt, (F.23)
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Figure F.1: Integration contours C± and C0 on the t-plane are shown. The crosses
are poles of function F (z, t).

where C = C− for x > 0 and C = C+ for x < 0. Because this almost vanishes when
|x| is large, we can approximately express this difference by using δ(x) as

fb(z)− f asym
b (z) ∼ δ(x)gb(y) (F.24)

We can determine the function gb(y) by integrating the right hand side over x.

gb(y) =

∫ ∞

−∞
(fb(z)− f asym

b (z))dx

=

∫ ∞

0

(∫
C−

F (iy, t)e−2itxdt

)
dx+

∫ 0

−∞

(∫
C+

F (iy, t)e−2itxdt

)
dx. (F.25)

Thanks to small imaginary part of t along the contours C±, these x integrals con-
verge, and we obtain

gb(y) =
1

2i

∫
C−

F (iy, t)

t
dt− 1

2i

∫
C+

F (iy, t)

t
dt

=
1

2i

∮
C0

F (iy, t)

t
dt

=
π

3
y3 − π

12
(b2 + b−2)y. (F.26)
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