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Chapter I

Chapter I Introduction

There are some advantages for molten salts as follows.
(1) The temperature range is wide and vapor pressure is low.
(2) The thermal capacity, solubility and chemical stability is high.
(3) The electrochemical window is wider than the aqueous solution.
Good electric conduction is one of the characteristics of many, though not all, molten
salts. The good electric conduction has been or is to be utilized industrially in
electrolytic production of metals, electrorefining, batteries, fuel cells, etc. Owing to
these characteristics, molten salts are used as the solvents for electrowinning of Al and
Na. Nowadays, many metals including alkali, alkaline-earth, rare carth, as well as U
are deposited by an electrorefining method. In addition, molten salts technology has
also been applied to nuclear technology by its high stability against radiation. At the
heart of the Integral Fast Reactor (IFR) fuel processing program at Argonne National
Laboratory (ANL) is the recovery of U and Pu from spent IFR fuel via the pyrochemical
process unknown as electrorefining. The development of this program at ANL has
benefited greatly from the wealth of work done here in pyrochemistry during the 1960s
and 1970s. To contribute further to this program the literature on electrorefining of U
and Pu has been comprehensively and critically reviewed.  The last literature review of
this subject was published in 1973 by Martinot and Caligara®. Since that time,
however, progress has continued in this area in the US and abroad, including the recent
efforts in electrorefining spent IFR fuel.

On the other hand, from a fundamental viewpoint, molten salts are regarded as
strong coulombic liquid systems and therefore the electric conduction in electrolytes
such as molten salts based on statistical mechanics, i.e., the linear response 'theory(z’ 3,
In recently, the development of computer science calculating speed and storage volume -
becomes much faster and larger, respectively. The technique of molecular dynamics
simulation (MD) can yield some experimentally information. Professor Okada et al.
have proposed that the strong correlation between the internal mobilify and the self-

exchange velocity (SEV) in molten alkali nitrates and chlorides.
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§ I-1i Electrodeposition of U and Pu by liquid metallic cathodes

The first use of a liquid metal cathode in the electrodeposition of U or Pu was
reported by Brodsky and Carleson in 1962%.  They added U** as CsUCI, to a LiCI-KCl
melt at 973K and electrodeposited U metal at a liquid Pb cathode contained in a MgO
crucible.  Analysis of the deposit, however, revealed that a large portion of it was UO,,
not metallic U as had been expected. They believed that the oxide had formed by a
reaction between the U-Pb alloy and the MgO crucible. An extensive search of the
literature has revealed that, other than Brodsky and Carleson and the work related to the
IFR program at ANL, only one other laboratory has investigated electrodeposition of
actinides from molten salt solutions at liquid metal electrodes. However, this one
laboratory, at the S. M. Kirov Urals Polytechnic Institute in Sverdlovsk, USSR, has been
very active in this area for the last twenty years. Their publications in this area
generally fall into two groups. The first group of publications describe the
investigation of the thermodynamics of molten salt electrodeposition at liquid metal
electrodes and are authored by V. A. Lebedev and coworkers. The second group of
publications, authored by S. L. Gol’dshtein and coworkers, focused on optimizing the
electrodeposition process by various means, most notably pulsed current
electrodeposition. The more basic thermodynamic studies of Lebedev and coworkers
will be discussed first. In 1974 Lebedev et al. began to examine the initial stage of
solid phase formation in the deposition of rare elements from molten salts on molten
metal cathodes. Using an approach developed by Gutsov®, they measured the
nucleation overpotential, the time required to reach.that overpotential, the work required
to form the nucleus and the number of atoms in a nucleus, all as a function of
temperature and current density. The system they studied were La-Zn®, U-Zn®, U-
Al®, U-In®, U-Bi"9, U-Ga™, and U-Sb™. The full texts of these papers are Russian
and have been obtained from VINITI, a Soviet document depository. Fortunately,
brief English summaries of these papers are also available. Before Go]’déhtein and
coworkers became interested in liquid metal electrodes, they did some initial studies of
clectrodeposition at solid cathodes. In this work, they developed a model for

determining initial currents for potentiostatic electrolysis of a molten salt system at a
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solid cathode®™. The model predicts the initial electrolysis current, taking into
consideration the response performance of the potentiostat in addition to the diffusion
coefficients of the species in the molten salt phase.  Shortly thereafter, the focus shifted
to electrodeposition at liquid cathodes with an examination of Zr electrodeposition on
liquid Zn from a NaCl-KCl melt containing 25wt% K,ZrF"?. In comparing the
results from constant current and pulsed current electrodeposition, Gol’dshtein et al.
found that the pulsed current approach improved the current efficiency from 63 to 39%.
Furthermore, they found that pulsing the current resulted in a product that was more
homogeneous and had a higher Zr is not explicitly stated in the paper, the paper implies
that it was indeed metallic Zr being deposited. Several other papers were published on
the electrodeposition of Zr***> and U®"* at liquid Zn cathodes. ~Similar studies have
been made of La®?®, U®%27) and Ce™ electrodeposition at liquid Al cathodes as well
as electrodeposition of U® and Zr™ at liquid Bi cathodes. These reports demonstrate
that in the case of liquid metal electrodes, pulsed current electrodeposition is clearly
superior to constant current electrodeposition with respect to efficiency and maximum
yield. In most of these papers, Gol’dshtein et al. attribute the observed increase in
efficiency and homogeneity to two observed increase in efficiency and homogeneity to
two distinct effects arising from the pulsating current. The primary effect is a decrease
in the thickness of the diffusion layer. After each pulse, the diffusion layers in the
liquid metal and in the electrolyte are given the opportunity to relax and approach bulk
conditions. Because near-bulk concentrations are present at the interface when the
next pulse is applied, higher deposition current densities can be used without a loss of
efficiency. In the early Zn cathode studies, Gol’dshtein et al.'” observed that the
pulsed current caused a regular and periodic movement of the surface of the liquid metal.
They regarded this effect as beneficial because it facilitates the removal of the oxide
film from the Zn/melt boundary of separation, prevents the formation of a solid crust of

intermetallic compound, and favors its uniform distribution in the volume of the melt.
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8 I-ii Pyrometallurgical Process Development
8§ I-ii-i Pyrochemical reprocessing process proposed by JAERI
The combination of nitride fuels and pyrochemical reprocessing is being studied in

Japan Atomic Energy Research Institute (JAERI) as a viable option for the minor-

actinide recycling for a dedicated actinide burner system. One of the advantages of

applying pyrochemical process to nitride is the ease of N recovery. The current status
of JAERI thermochemical data file for prediction of pyrochemical processes is also
presented. In JAERI, the concepts of dedicated systems for burning minor actinides

(MA: Np, Am and Cm) are being studied. A combination of the nitride fuels and

pyrochemical reprocessing has being chosen for the fuel cycle of the dedicated MA

burner systems for the following reasons:

1) Exéellent thermal properties: actinide nitrides are characterized by refractoriness and
high thermal conductivities.

(2) Mutual solubility: the isotope vector of the actinides strongly depends on the
commercial spent-fuel history as well as the recycle mode in a burner system. The
fuel should accommodate a wide range of the combination and composition of
actinides. The mutual solubility among the actinide mononitrides is expected to be
high, which is in contrast with that among the respective metal elements.

(3) MA handling: MA is characterized by a significantly large « -decay heat and fast-
neutron emission. A compact fuel cycle facility should be realized to economically
cope with this problem.  Pyrochemical reprocessing based on molten-salts
technology may be adaptable to this purpose. Process concepts have been
proposed®®*? as shown in Fig. 1-1-1.

(4) N recycling: a highly “N-enriched nitrogen would have to be used for nitride fuels
in order to prevent the formation of 'C, which itself is a long-term radiological

concern. By applying pyrochemical process, N could be readily recovered.
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Fig. 1-1-1 Concepts of nitride/pyroprocess for MA burning.
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8§ I-ii-ii Pyrometallurgical partitioning technology proposed by CRIEPI

Central Research Institute of Electric Power Industry (CRIEPI) has been
developing the pyro-reprocessing technology as the way to realize the advanced fuel
cycle concept.  The pyrometallurgical processing was originally developed by Argonne
National Laboratory for recycling the metal fuel with keeping compactness, economy
and diversion resistance®*?.  CRIEPI has started studying pyrometallurgical
processing since 1986°°*).  The study was first dedicated on the assessment of
physico-chemical properties such as standard potentials, equilibrium distribution data,
diffusion coefficients etc. for evaluating the feasibility of pyrometallurgical processing,
resulting in experimental measurements of the lacking data.

The pyrometallurgical partitioning technology to recover actinides from HLW
(high level radioactive wastes) generated in PUREX reprocessing facility is being
developed at CRIEPI®**?.  The process consists of four main steps as shown in Fig. 1-
1-2:

(1) denitration of HLW to oxides by heating,

(2) chlorination to convert oxides to chlorides,

(3) reductive extraction to reduce actinides in a molten salt by lithium metal and to
extract them into liquid cadmium,

(4) electrorefining in LiCl-KCl eutectic salt to separate actinides from liquid cadmium
anode.

Elements contained in HLW are classified into three groups based on Gibbs free

energies of formation of chlorides as shown in Table 1-1-1;

(1) active metals such as alkali metal, alkaline earth, samarium and europium

(2) actinides and most of REs (rare earth clements)

(3) noble metals such as ruthenium, technetiuvm and molybdenum

Active metals remain in the salt during the reductive extraction step and noble metals

remain in the cadmium anode during the electrorefining.
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Fig. 1-1-2 Flow diagram of pyrometallurgical partitioning process.
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Table 1-1-1 Standard free energy of formation of chlorides at 773K.

Chlorides AG?} (kJ/mol-Cl) Comment
BaCl, -367.56
CsCl -366.65
KCl -363.76 Molten Salt
RbCl -361.76 -Alkali Metals
SrCl, -353.75 -Alkaline Earths
SmCl, -345.91 -Rare Earths
LiCl -345.27
YbCl, -343.71
NaCl -339.58
CaCl, -337.82
LaCl, -293.62
PrCl, -288.89
CeCl, -287.37
NdCl, -281.45
SmCl, -278.10
GdCl, -273.02
YCl, -272.50
HoCl, -269.09
ErCl, -269.02
AmCl, -266.38
DyCl, -265.92
CmCl, -264.99
TmCl, 263.15
PuCl, -261.41 Cathode
MgCl, -258.33 -Actinides
YbCl, -257.77
ScCl, -247.65
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EuCl, -245.39

NpCl, -242.91

UCl, -232.35

UCl, -198.75

ZrCl, -195.28

ZrCl, -194.18

BeCl, -190.18

NpCl, -189.76

MnCl, -189.36

val, -168.08

UCl -159.21

ZnCl, -150.93

CrCl, -148.58

Cdcl, -136.30

VCl, -135.37

FeCl, -124.36

HCl(g) _ -99.26

NiCl, -94.25

AgCI(1) -86.43

WCl, -81.89 Anode
MoCl, -67.96 -Transition Metals
ZrCl, -67.22 -Noble Metals

TeCl, -46.02
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8 I-ii-iii Aqua-Pyro partitioning process proposed by Toshiba Corporation

A new TRU recovery process named “Aqua-Pyro partitioning process” is shown in
Fig. 1-1-3**). In the first step, TRUs and REs are precipitated from HLLW (High-
Level Liquid Waste) is an aqueous solution.  Simple separation of TRUs from REs in
the aqueous solution is difficult to be achieved. A pyrochemical process is more
effective for separating TRUs from REs than an aqueous one. TRUs are separated

from REs by electrorefining in molten salt in the final step.

HLLW (High-level radioactive liquid waste)

Oxalate precipitation process

I 1
Filtrate Precipitate
Alkali metal elements Alkaline earth metal elements
Noble metals REs, TRUs

Conversion process from oxalate to chloride

Electrorefining process

I |
Alkaline earth metal elements, REs TRUs

Fig. 1-1-3 Process tlow of the “Aqua-Pyro” partitioning process.

10
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8 I-iii Self-Consistent Nuclear Energy System
8 I-iii-i Background
The PUREX method was originally planned for separation of U and Pu. Many
investigators have proposed several nuclear fuel cycle concepts by bmodifying the
PUREX method, in most of which radioactive materials are to be vitrified to inorganic
matrix and stored in the underground. The Integral Fast Reactor (IFR) concept
proposed by Argonne National Laboratory®? contains a sophisticated idea of
pytochemical treatment in the nuclear fuel cycle. . After electrowinning U as well as
transuranium elements (TRU), a small amount of the fuel elements and a large amount
of fission products are left in the melt bath. In the IFR concept, after removal of the
fuel materials, the salt bath containing fission products will be occluded into the zeolites
and stocked as the deposits. However, from a standpoint of the harmonization of
nuclear systems with global environment,
(a) we should remove the residue of U and TRU completely for minimization of nuclear
waste and utilization of rare fuel elements,
(b) we should also make an effort to separate the fission products each other for
incineration or utilization of medical tracers, rare materials and so on.

* Thus, Shimizu and Fujii-e have proposed Self-Consistent Nuclear Energy System
(SCNES)®, which aims at zero release of radioactive materials out of the fuel cycle®,
as shown in Fig. 1-2-1. In the SCNES we need to separate fuel elements and fission
products into the following groups;

(1) U and TRU should be recycled as fuel elements
(2) A series of fission products whose half-lives are more than 1 year should be returned
back to the reactor core for their incineration, and the other should be cooled down

and released from the fuel cycle.

11
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8 I-iii-ii The purpose of this study
As one of the most feasible candidates for the SCNES is a metallic fuel fast

breeder reactor (FBR), we have adopted pyrochemical treatment of metallic fuel as a

chemical separation process. One of concepts using molten chlorides as solvent is

shown in Fig. 1-2-2.  After the electroretining and drawdown process, all alkali halides,
alkaline-earth halides and some amounts of rare earth halides from fission products still
remain in the salt bath. Thus, in order to use the salt bath repeatedly, we have applied

a countercurrent electromigration method and an electowinning method.

The electromigration method has an advantage for the pyrochemical treatment due
to its simple construction for being able to use the same container with the conductive
melt bath. Iwasaki and Takagi have already demonstrated enrichment of La in the
NaCl-KCl equimolar mixture bath®.  Moreover, Matsuura et al. have also
demonstrated enrichment of Cs, Sr and Gd as examples of fission products in the LiCl-
KClI eutectic system™. In this present work, we have carried out the experiments for
the following purposes;

(a) Scientific aspects; evaluation of mobilities for molten alkali chlorides by comparison

with MD simulation

(b) Technolegical aspects; possibility of application of the continuous countercurrent

electromigration method for nuclear waste treatment process

Additionally, it is difficult to recover some fission products like alkali and alkaline-
carth elements from the salt phase, because of their more negative reduction
potentials® than the solvent components as shown in Table 1-1-2. However, if we
can find adequate liquid metal which forms stable alloy with the electrochemically
negative elements (Cs*, Eu™, Sr*" and Ba™) making less interaction with the solvent,
because it is found that the liquid Cd metal forms stable alloy with Pu.

(a) Scientific aspects; electrochemical behavior of the electrochemically negative
elements on several solid and liquid metallic electrodes in the fluoride and chloride
baths.

(b) Technological aspects; possibility of recovery of the electrochemically negative

elements on several liquid metallic cathodes in the fluoride and chloride baths.

12
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Table 1-1-2 Standard electromotive forces for molten chlorides and fluorides®®.

Metal Ion Chlorides (at 1073K) [V] Fluorides (at 1073K) [V]
Ev* | e 5.602
Sm™ 3.661 5.385
Ba® 3.568 5.310
Sr* 3.469 5.364
Li* 3.457 5.256

K* 3.441 4.674
Cs' 3.362 4.367
Ca™ 3.323 5.350
Na* 3.240 4.818
La* 2.997 5.174
Ce™ 2.945 5.097
Pr 2.911 5.109
Sm™ 2.861 4.992
Ng* 2.856 5.004
}3u3+ 2.828 4.790
Be* | e 4.247
Y/ o 4.255
U™ 2280 | e
/i 4.045
u* _ 1.974 4.015
Zn* 1.476 3.068
Fe® 1.118 2.905
Cd* 1.193 2.826
Ni* 0.875 2.697

13
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ChapterII Principle
8II-i-i Principle of countercurrent electromigration

For explaining the principle, a schematic diagram for the electromigration is shown
in Fig. 2-1-1. When the ¢lectrical field is applied between anode and cathode, cations
migrate toward the cathode. The migration mobilities of each cation, u, and u, depend
on catjonic radii, valences, polarizabilities, molar volumes, and so on. During
migration, there occurs a back flow for cations, which is caused by osmotic force
keeping the liquid level constant. This flow is called a countercurrent flow, u., which
is equal to all kinds of species. Due to this countercurrent flow, a cation with lower

mobility is enriched toward the anode.

8 II- i -ii Derivation of mass balance equation
Let us assume a mixture consisting of cations 1, 2 and a common anion 3. Ina
separation tube the flow J; per cross sectional area in the direction from the anode to

cathode is expressed by,

J, = (v -v.)e -DVe @1
T, = (v -v)¢, - D,Ve, 2.1.2)
‘ T, =(-v-v,)e, - DV, 2.1.3)

where J; is the net flow of each component i, v;: the scalar component of the external
velocity, v.: the velocity of countercurrent flow with reference to the wall, D;: the
effective diffusion coefficient, ¢;: equivalent concentration.

In the right-hand of Eq. (2.1.1), v,c, v,c, and DVc, represent the migration, the
countercurrent and the diffusion flow, respectively. The convection flow can be
neglected in the migration tube.

In a plane B where the concentration does not change during electromigration, the

diffusion flow is neglected.

I =(v-v)q (2.1.4)
I, =(v,-v)e, 2.1.5)
To= (v -v)e, Q19

From the electrical neutrality
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c+c,—c,=0 (2.1.7)
The electrical current density I, at the plane B is
I,=1/S=F(1,+7,-17,) (2.1.8)
where § is the cross sectional area at the plane B, F Faraday constant and the constant
current I is assumed for simplicity.

& 1is defined as

3 (v1 - vz)(c1 + c2)
et (e v)e) 19

From Egs. (2.1.4), (2.1.5), (2.1.6), (2.1.7) and (2.1.8)

LJF =T, +7,-J, =vie,+vie, +vie, = (i +v)e + (v, +v)e,  (2.1.10)

From Egs. (2.1.9) and (2.1.10)

(o)), (e 2.1.11
V1+V3—(C3F) +(c3)8 (2.1.11)

(el (a 2.1.12
V2+V3—(C3F) —(C3)8 (2.1. )

Dividing both sides of Egs. (2.1.11) and (2.1.12) by voltage per unit length E at the

plane B gives u, and u,, internal mobilities of 1 and 2, respectively;

1,

Lﬁ =(CSEF){1+)C28} (2.1.13)
Ia'

U, = (CsEF){l—xls} (2.1.14)

where x; and x, are equivalent fractions of 1 and 2, respectively, at the plane B, that is
before electromigration; x+x,=1.
Since electrical conductivity of the mixture at the plane B, x =I,/E and equivalent

volume of the mixture at the plane B, V, =1/c,

= (%) {1+x,5} (2.1.15)

u, = (";'"){1 - xe) (2.1.16)

In countercurrent electromigration of molten salts, there is generally no volume flow
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along the separation tube, in other words, such a condition can be fulfilled and therefore
across the plane B
JVia+J,V, =0 (2.1.17)

where V,, and V,, are equivalent volumes of pure melts 13 and 23, respectively. The
additivity of the molar volume is assumed, which is found to be generally the case.

v.(8) = (veVis + v26.Vs) [(eVis + 3Vis) (2.1.18)
v(?) could be a function of ¢, but actually independent of ¢, as far as v,(f) and v,() are
independent of ¢.

If the volume between A and B is V, the equivalent quantity of 13 there, N,(7) is
N(5)=cV —j‘Jl(t)Sdt =V - (v =v,)ae, Vi St/(cViy + V) (2.1.19)
0
Similarly, the equivalent quantity of 23, N, () is
N,(t)=cV —j]z(t)Sdt — &V (v, = v)ee,ViSt/(cVis + 6,Vy)  (2.1.20)
0

From Egs. (2.1.19) and (2.1.20),

G G

V=V, = —(l) {N‘—(I) - NZ—(t)} (2.1.21)

It follows from Egs. (2.1.10) and (2.1.21) that

("1 “"2) E) {M__Nz_(t)

{(v1 + vs)x1 + (v2 + v3)x2} B _( It)| x X,

} (2.1.22)

Therefore,

(”1 - "z) _ _(ﬁ) {Nl_(t) _ Nz_(’)} (2.1.23)

= (xlu1 + xzuz) o/ x X,
Equation (2.1.23) was derived by Klemm® and Ljubimov and Lunden®®.
Even if JV,+J,V,, =a=0 in Eq. (2.1.17), Eq. (2.1.23) is same, because the term
corresponding to « vanishes when the equation corresponding to Eq. (2.1.19) is

subtracted by that of Eq. (2.1.20).
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The standard deviation of € is represented as follows,

2 2 2 2
' 7 d d 0
o, = || 2+ =) o2+ 3] o2, + 3] o2
(2)(1 ' &XZ ’ i=1 aNli v i=1 ()NZi #

FZZNuzz F2;=12i22 F2122 le 2
-g) | F | 7+ (5) [ B 2+ 35 o) 3(5) (5]

2

2

F ENli , F 2 zNZi , 1 2 ) 1 )
= (—) =lo—lo? + (—) ol ol 4| = EO’NI_ +|— EO’N .
o X g X; X AR AT

i=1

Therefore, standard deviations of internal mobilities o, and g, , respectively.

V V
- K "') e’o? +(—K "’) xlo?
F ! F
vV
=(K ’") g’a’ +xlo?
F 1
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8 II-ii Derivation of General Mass Transfer Equation

In this section we discuss the general partial differential equations that govern mass
transfer; these will be used frequently in subsequent chapters for the deviation of
cquations appropriate to the different electrochemical techniques. Mass transfer in
solution occurs because of a gradient in electrochemical potential ; (i.e., by diffusion
and migration) and by convection. Consider a section of solution where, for a certain
species j at two points in the solution, r and s (an infinitesimal distance from one
another). This difference of ;7 over a distance (or gradient of electrochemical
potential) can arise because of differences of concentration (or activity) of species j at r
and s (a concentration gradient) or because of differences of ¢ atr and s (an electric
field or potential gradient). In general, a flux of species j will occur to alleviate this
difference of .U_, The flux, J; (mol sec™ em™), is proportional to the gradient , grad
or V,of ;:

J, o grady, or Vu, (2:2.1)
where grad or V is a vector operator. For linear (one-dimensional) mass transfer
V=i(8 / ax) (where i is the unit vector along the axis and x is distance), and for
rectangular mass transfer

voil jd ikl 2.2.2)
dx 0dy 0z

When the constant of proportionality is added to (2.2.1), we obtain

. C,D;\_—
J;,=- I Vu, (2.2.3)
or for linear mass transter,
C.D.\ou,
J . (x)=-] L ! 2.2.4
i ( RT ) dx ( )

The minus sign in (2.2.3) arises because the direction of the flux opposes the direction

of increasing u;. If, in addition to this u gradient, the solution is moving so that an

element of solution [with j at a concentration C(s)] moves from s with a velocity, v, an

additional term is added to the flux equation, yielding
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Cij _
="\ Rt Vu; +Cv (2.2.5)
or for linear mass transfer
J(x)=- CDN M) | ¢ v(x) (2.2.6)
N\ RT )\ ox i -

For a; = C;, we obtain the Nernst-Planck equations, which can be written as

J (%)= _( C;T)j) [%( RTInC, + %(zjz«*qs)) ] +Cy(x) (22.7)

adC.(x) z,F Ip(x)
J;(x)=-D; 3x - IéT D.C, P + Cv(x) (2.2.8)
or in general

sz

Ji = _DJ'VCJ' - RT

D,CV$+C,v (2.2.9)

In this chapter we are considered with systems in which convection is absent.
Under these conditions, that is, in an unstirred or stagnant solution with no density
gradients, the solution velocity v is zero, and the general flux equation for species j,
(2.2.9), becomes
zZ,F
RT

J,=-DNC,--L-D.CV¢ (2.2.10)

For linear mass transfer (2.2.10) is given by

- {5 oo %)

- (22.11)

where the terms on the right-hand side of (2.2.11) represent the contributions of
diffusion and migration, respectively, to the total mass transfer. If species j is charged,
then the flux J; is equivalent to a current density. Let us consider a linear mass-flow
system with a cross-sectional area A normal to the axis of mass flow. Then J; (mol sec

' cm?) is equal to —i,/z,FA, where i is current component at any value of x arising

from a flow of species j. Equation (2.2.11) can then be written:

S A B
B e (212
T2 FA T z,FA " z,FA (22.12)
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with
id,j (JCj
=D, 2.2.13
szA ook ( )
i . z.FD. .
= _ Lt % (2.2.14)

zFAT RT 'ox

where i,; and i,,; are diffusion and migration currents of species j, respectively. The

factor |z;|FD; /RT is the mobility u;, so that

i J
) =U-C-_¢‘

AR (2.2.15)

At any location in solution during electrolysis, the total current i is made up of

contributions from all species; that is,

i=Yi (2.2.16)

J
and the current for each species is made up of a diffusional component arising from a

concentration gradient and a migrational component arising from a potential gradient.
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8 II-iii Controlled Potential Techniques-Potential Sweep Methods
§ I[-iii- i Solution of the Boundary Value Problem for Nernstian (Reversible)
Systems

We consider the reaction O + ne” < R, assuming semi-infinite linear diffusion and
a solution initially containing only species O, with the electrode held initially at a
potential E, where no electrode reaction occurs. The potential is swept linearly at v
V/sec so that the potential at any time is

E(=E-vt (2.3.1)

With the assumption that the rate of electfon transfer is so rapid at the electrode surface
that species O and R immediately adjust to the ratio dictated by the Nernst equation,

which can be written more clearly as

C,(0,0) o
o0 - f()= xp (E —vt-E®) (2.3.2)

to show that this ratio is now a function of time. The difference is significant, since
the Laplace transformation of (2.3.2) cannot be obtained. This inability to use the
Laplace transform procedure greatly complicates the mathematics in this case. The
problem was first considered by Randles®™ and Sevcik®; the treatment and notation here
follow the latter work of Nicholson and Shain®. The boundary condition (2.3.2) can
be written

C,(0,1)

0" e = 0S(t) (2.3.3)

nF o nF '
where S(t)=e°", 0 =exp|| — |(E,-E")|, and o={——|v. Application of the
) pl(RT)( ; )} (RT) pp
Laplace transform to the diffusion equations and the boundary conditions leads to
. 12 .
- Co s
Co(x,8)=—+A(s)exp|—|—| x (2.3.4)
s D,
We note that the transform of the current is given by
- . C
i(s) = nFAD, [ao—(“)] (2359)
x=0

dx
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Combining this with (2.3.4) and investigating, by making use of the convolution

theorem, we obtain

Co(0,6) = C,, - [nFAGD, )llzrji(r)(t —1) 24y (2.3.6)
By letting
f@)= i% 2.3.7)
(2.3.6) can be written
Col0,)= Cy (Do) [ F(o)(e -) dx (2.3.8)

An expression for Cy(0, ) can be obtained (assuming R is initially absent):
t
Cr(0,1) = (nD, )‘l’sz(r)(t ~-7)"%dx (2.3.9)
0

The derivation of (2.3.8) and (2.3.9) employed only the linear diffusion equations,
initial conditions, semi-infinite conditions, and the flux balance. No assumption
related to electrode kinetics or technique has been made, so that (2.3.8) and (2.3.9) are

completely general.  From these equations and the boundary condition for LSV, (2.3.3),

we obtain
j'f(r)(t -7y dr = ¢ Co (2.3.10)
0 BS@EDR)™ + (D)™
t /212~
fi(r)(t ~-7)"*dr = nFAx Do Co (2.3.11)
4 bs@E +1]
D 1/2
where, as before, £ = (—D—O) . The solution of this integral equation would be of the
R

form i(r)=(constant)g(r) [where g(f) is some function of time], and would thus yicld the
desired current-time curve or, since potential is linearly related to time, the current-
potential equation. A closed-form solution of (2.3.11) cannot be obtained, and a
numerical method must be employed. Before solving (2.3.11) numerically, it is
convenient (a) to change from i(f) to i(E), since that is the way in which the data are

usually considered, and (b) to put the equation in a dimensionless form so that a single
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numerical solution will give results that will be useful under any experimental

conditions. This is accompanied by using the following substitution:

nF nkl
ot=—rvt=|—|\E,-E 2.3.12
= ( RT)( -E) (23.12)
Let f(r)=g(or). With z=ot, so that T=z/0, dt =dz/o, z=0 at T =0, and

z=o0t at T =t, we obtain

~-1/2

ff(r)(t —1)*d7 = fg(z)(t - i) dz (2.3.13)
A ’ o o
so that (2.3.11) can be written
ot * 1/2
fg(z)(ot ~2) o™z _Co(o) (2.3.14)
A 1+£6S(o1)
. . e qs . 1/2 .
or finally, dividing by C, (JIDO) , we obtain
“ x(@dz 1 (2.3.15)
{(m,‘—z)”2 1+£68(ot) o
where
e P ) E—— L)) (2.3.16)

C, (D,0)>  nFAC,(nD,0)"’
Note that (2.3.15) is the desired equation in terms of the dimensionless variables x(2),
E, O, S(ot) and or. The current can be obtained from (2.3.16)

i = nFAC, (nD,0)"? x(ot) (2.3.17)
Thus at any value of S(ot), which is a function of E, X(ot) can be obtained by
solution of (2.3.15) and, from it, by (2.3.17), the current is available. Note that x(ot)
at any given point is a pure number, so that (2.3.17) gives the functional relationship
between the current at any point on the LSV curve and the variables. Specially, i is
proportional to C, and v'?. The solution of (2.3.15) has been carried out
numerically by computer [Nicholson and Shain®], by a series solution [Sevcik®,
Reinmuth®] and analytically, in terms of an integral that must be evaluated numerically
[Matsuda and Ayabe”, Gokhshtein®®].  The general result of solving (2.3.15) is a table

of values of x(or) as a function of of or n(E - Em) (see Table 2-3-1 and Figure 2-
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3-1).

8 II-iii-ii Peak Current and Potential

1/2

The function 7'?x(ot), and hence the current, reaches a maximum at 0.4463.

From (2.3.17) the peak current i, is

1/2
i =0.4463nFAC,( 2L\ y2py (2.3.18)
RT
or, for A in cm? D, in cm?/sec, C: in mol/cm?®, and v in V/sec, I, in amperes is
i, = (2.69x10°)n* 2 ADY*V'*C; (2.3.19)
o (RT RT
E, -E,,=E, -E +(E)In§=—1.109(5) (2.3.20)

Because the peak is somewhat broad, so that the peak potential may be difficult to
determine, it is sometimes more convenient to report the potential at 1/2i, called the
half-peak potential, E ,, which is

RT

E B =E, 6 6 +1.09— (2.3.21)
nkF :

pl2

Note that the polarographic E,, value is located just about midway between E, and £,

and that a convenient diagnostic for a nernstian wave is

_228L (2.3.22)

’E” £ nF

p/Z‘

Thus for a reversible wave, E, is independent of scan rate, and i, (as well as the current
at any point on the wave) is proportional to v'2. [The latter property indicates
diffusion control and is analogous to the variation of iy with A*? in polarography. A
convenient constant in LSV is (sometimes called the current function), which depends
on n”? and Di/z. This constant can be used to estimate n for an electrode reaction, if a
value of D, can be estimated, for example, from the LSV of a compound of similar size

or structure, which undergoes an electrode reaction with known n value.

For a totally irreversible reaction (O + ne” —> R) the nernstian boundary conditioﬁ,
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(2.3.2), is replaced by

ﬁ =D [%ﬂ] - k, (£)Co(0,1) (2.3.23)
where
k(1) =k explam, f]E ) - ] (2.3.24)
Introducing E(7) from (2.3.1) into (2.3.24) yields
k, (£)Co (0,8) =k ;,Co (0,1)e" (2.3.25)
where
k, = k° expl-am, f (E, ~E*)] (2.3.26)
F
b=an, fv - (2.3.27)

The solution follows in an analogous manner to that described in SectionII-iii- i &M
and again requires a numerical solution of an integral equation. The current is given
by
i = nFAC, (7D b)"* x(bt) (2.3.28)
on F 1/2
i =nFAC, DYV | —=—| a'*x(br) (2.3.29)
RT
where y(bt) is a tabulated function [different from x(ot), Table 2-3-2] Again i at

any point on the wave varies with v*?and C,.

8 II-ijii-iv Peak current and potential
The function x(bt) goes through a maximum at 7" x(bt) = 04958 .

Introduction of this value into (2.3.29) yields the following for the peak current (in

amperes):
i, =(2.99x10%)n(on,)""* AC,Dy*v''? (2.3.30)
where the units are the same as for (2.3.19).  This value occurs when
, D b 1/2
on,(E, —E°)+(%§)ln {—(—720—)——] =-5.34mV (2.3.31)

or (in millivolts)
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1/2 1/2
E,=E% -0 10780+ In 2o ) 1 o[ LV (2.332)
on, F k RT
1.857RT
E,-E,,|= R (2.3.33)

Thus, for a totally irreversible wave, i, is also proportional to C, and v'2, but E, is a
function of scan rate, shifting (for a reduction) in a negative direction by an amount
115RT/an F for each tenfold increase in v. Note that in this case E, occurs beyond
E” by an activation overpotential related to kX°.  An alternate expression for i, in terms
of E, can be obtained by combining (2.3.32) with (2.3.29), so that the result contains the
value of y(bt) at the peak. After rearrangement and evaluation of the constants, the

following equation is obtained®®:

i, = 0.227nFAC,k° exp[— ( O”’R}F )(Ep —EO')] (2.3.34)

A plot of In(i,) vs. E,-E” (assuming E* could be obtained) determined at different scan

rates should have a slope of ~om_ f and an intercept proportional to &°.
For spherical electrodes, a procedure analogous to that employed at planar

clectrodes has been proposed. The spherical correction factor, ¢(bt), when can be

employed in the equation

nFAD,C_¢(bt)

Fo

i =i(plane)+ (2.3.35)

is tabulated in Table 2-3-2.
8 II-iii- v Quasi-reversible systems

The treatment of these systems was first described by Matsuda and Ayabe™, who
coined the term gquasi-reversible for reactions that show electron transfer kinetic

limitations where the reverse reaction has to be considered. The boundary condition

for this case is

D, (a_c%) - K exp(-onf [E()) - E” DC, (0,0) - Co Q) exp(rf [E 1) - E°))

(2.3.36)

32



Chapter 11

The shape of the peak and the various peak parameters were shown to be functions of

a and the parameter /A, defined as

kO
A= 3 (2.3.37)
-
[Dé DR (E)le
ot, for Do=Dy=D,
kO
A= D (2.3.38)
D1/2(_) 2 -
RT
The current is given by
i = nFAC D2 nkF m\p 1/2
i=n oDo”| 27 (EYy (2.3.39)

Note that when A =10, the behavior approaches tﬁat of a reversible system. The i,
E, and E,, values depend on A and «. The appropriate expression for the peak
current is

i,=i,(rev)K(A,a) (2.3.40)
where i (rev) is the value for the reversible i, value (equation 2.3.18).  Note that for a

uasi-reversible reaction, i_ is not proportional to v, The peak potential is
q p propo p p

~ RT
E,-E,, = -:.(A,a)(ﬁ;) (2.3.41)

For the half-peak potential, we have

— 2.3.42
F (2.3.42)

E,,-E,= A(A,a)(RT)
These parameters attain limiting values characteristic of reversible or totally irreversible
processes as A varies.  For example, consider A (A, a). | For A =10,
A(n,a) =22, yielding the E , — E,, value characteristic of a reversible wave (2.3.22).
For A=10? and a =05, A(A,a)=~37, yielding the totally irreversible characteristic
(2.3.33). Thus a system may show nernstian, quasi-reversible, or totally irreversible
behavior, depending on A, or experimentally, on the scan rate employed. The

appearance of kinetic effects depends on the time window of the experiment, which is
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cssentially the time needed to traverse the LSV wave. At small v (or long times),
systems may yield reversible waves, while at large v (or short times), irreversible
behavior is observed. Matsuda and Ayabe suggest the fo]lowing zone boundaries:
Reversible (nernstian) A 215;k° = 0.3v"%cm/sec
Quasi-reversible 152 A 21070302 2 k° > 2x107%v"2cm/ sec

~ Totally irreversible A <107°M;k° < 2x10~°v"%cm/sec

i/[nFADY’C" (nFIRD)"%'9)

Fig. 2-3-1 Linear potential sweep voltammogram in terms of

dimensionless current function. (a) reversible (b) irreversible
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Table 2-3-1 Current functions /x x(ot) for reversible charge transfer

(E - E1/2)n/mv’ \/;X(OT) ¢(or) (E —EIIZ)n/mV* ‘/;X(Ot) $(o1)

120 0.009 0.008 -5 0.400 0.548
100 0.020 0.019 -10 0.418 0.596
80 0.042 = 0.041 -15 0.432 0.641
60 0.084 0.087 -20 0.441 0.685
50 0.117 0.124 -25 0.445 0.725
45 0.138 0.146 -28.50 0.4463 0.7516
40 0.160 0.173 -30 0.446 0.763
35 0.185 0.208 -35 0.443 0.796
30 0.211 0.236 -40 0.438 0.826
25 0.240 0.273 -50 0.421 0.875
20 0.269 0.314 -60 0.399 0.912
15 0.298 0.357 -80 0.353 0.957
10 0.328 0.403 -100 0.312 0.980
5 0.355 0.451 -120 0.280 0.991
0 0.380 0.499 -150 0.245 0.997

1/2

"E,, = E +(RT/nF)n(D,/D,)
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Table 2-3-2 Current functions /7 x(ot) for irreversible charge transfer

Potential/mV Jr x(ot) ¢(ot) Potential/mV N X(ot) ¢(or)

160 0.003 - 15 0.437 0.323
140 0.008  ------ 10 0.462 0.396
120 0.016  ------ 5 0.480 0.482
110 0.024 - v 0 0.492 0.600
100 0.035  ------ -5 0.496 0.685
90 0.050  ------ -5.34 0.4958 0.694
80 0.073 0.004 -10 0.493 0.755
70 0.104 0.010 -15 0.485 0.823
60 0.145 0.021 -20 0.472 0.895
50 0.199 0.042 -25 0.457 0.952
40 0.264 0.083 -30 0.441 0.992
35 0.300 0.115 -35 0.423 1.00
30 0.337 0.154 -40 0406 -
25 0.372 0.199 -50 0374 -
20 0.406 0.253 -70 0323 -
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8 II-iv Convolutive or semi-integral techniques
8 II-iv- i Principles and Delinitions

By proper treatment of the linear potential sweep data, the voltammetric i-E (or i-f)
curves can be transformed into forms, closely resembling the steady-state voltammetric
curves, which are frequently more convenient for further data processing. This
transformation makes use of the convolution principle and has been facilitated by the
availability of digital computers for the processing and acquisition of data. The
solution of the diffusion equation for semi-infinite linear diffusion conditions, and for
species O initially present at a concentration C,, yields for any electrochemical

technique, the expression (see equations (2.3.4) to (2.3.6))

1
nFAD}*

C,(0,0)=C, ~

1% i)
nm-([(t—u)”z du} (24.1)

If the term in brackets, which represents a particular (convolutive) transformation of the

experimental i(f) data, is defined as I(f), then equation (2.4.1) becomes®

. I(t)
C,0,)=C, ——— 24.2
O( ) o nFAD(l)/Z ( )
where
1 5 i
)= di 4.
I() nl/Z-g‘(t_u)IIZ u (243)
Following the generalized definition of Riemann-Liouville operators, this integral
can be considered as semi-integral of i(t), generated by the operator d™ 2/ dr'?, so
that'o(h
-1/2
Wi(t) =m(t)=1(t) (24.4)

Both m(f) and I(f), which represent the integral in equation (2.4.3), have been used in
discussing this transformation technique; closely the convolutive® and semi-integral
(0D approaches are equivalent. Thus the transformed current data can be used
directly, by (2.4.2), to obtain Cy(0,f). Under conditions where Cy(0, £)=0 (i.e., under
purely diffusion-controlled conditions), I(f) reaches its limiting or maximum value, I, [or,

in semi-integral notation, m(f),,,] where
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I, =nFAD}J’C; (2.4.5)
or
[, - 1(®)]
Co(0,) = n]ITAD})’Z (2.4.6)

Note the similarity between this expression for the transformed current and that for the
steady-state concentration in terms of the actual current. Similarly for species R,

assumed absent initially, the expression that results is (see equation (2.3.9))

Co(0,1) = ;1% | (2.4.7)

Let us stress that these equations hold for any form of signal excitation in any
electrochemical technique applied under the above conditions (semi-infinite diffusion,
absence of migration, convection etc.), and no assumptions have been made concerning
the reversibility of the charge transfer reaction or even the form of the dependence of
Co(0, 1) and Cy(0, 1) on E. Thus, with the application of any excitation signal that
eventually drives Cy(0, 7) to zero, the transforfned current I(f) will attain a limiting value,
I,, that can be used to determine C, by equation (2.4.5)™. If the electron transfer

reaction is nernstian, the application of equations (2.4.6) and (2.4.7) immediately yields

RT I, -I(t
E=E +— n—ﬁ (2.4.8)
nF I(r)
where E,,, =E° +£];lnD—R. Note that this expression is identical in form to those
vz 2nF D,

for the steady-state or sampled-current i-E curves. Transformation of a linear potential
sweep i-E response thus converts the peaked i-E curve to an S-shaped one resembling a

polarogram (Figure 2-4-1).

8 II-iv-ii Transformation of the Current-Evaluation of I(Y)

Although analog circuits that approximate I(¢) have been proposed?, the function
is usually evaluated by a numerical integration technique on a computer. Several
different algorithms have been proposed for the evaluation®™ ™, The -t data are

usually divided into N equally spaced time intervals between ¢=0 and t=t, indexed by j;
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then I(f) becomes I(kAt) (where k varies between 0 and N, representing t=0 and t=t; A
t=1/N) (Figure 2-4-2). One convenient algorithm, which follows directly from the
definition of I(¢), is shown in reference™?

o i(jAE- %At)At
I(t) =1(kAt) = —7 2 -
=t \/kAt— jAt+§At

(2.4.9)

which is obtained by using t=kA¢ and u=jAt, and measuring i at the midpoint of each

interval. This can be simplified to |
. 1

1 & z(]Al‘—EAI)At”2

/2 1

=1 .
k—-j+—=
J 2

I(kAL) =

(2.4.10)

Another algorithm, which is especially convenient for digital computer processing, is

|
1 ikr(k‘]+5) o
e e TR U 2.4.11)

J=1

1(kAt) =

where I'(x) is the Gamma function of x, where I'(12)=7c"?, I'(3/2)=127"%, T
(5/2)=3/2 + 1/27c*%, etc. Other algorithms based on standard methods of numerical

evaluation of definite integrals also have been used ¢,

8 II-iv-iii Irreversible and Quasi-Reversible Reactions
The convolutive form for a totally irreversible reaction follows directly from the i-

E expression, with no back reaction:

i = nFAK°C, (0,t)exp[-anf (E - E*)] (2.4.12)
and the expression for C(0, 1), equation (2.4.6).  Thus ©
i(t) = kD31, ~ I (t))exp[-onf (E - E)] (2.4.13)
or
. D1/2 .
papt - RL Do RT 1O (2.4.14)

anF k°  anF I, -I(1)
For a quasi-reversible reaction, along with equations (2.4.6) and (2.4.7), to yield

i) = k4D (1, - I(t)]exp[-onF (E - E”Y]~ D" I(tyexp[(L-anf (E ~ E*)]}
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(2.4.15)
i(t) = k°D;""* exp[~omF (E ~ E")|{I, - I(t)[1+ E exp[nf (E - E*)]]}
| (2.4.16)
pogv, RO K RT AL -+ Eexp[(nF /RT)E -E)]]}
ocnF  DY*  onF i(t)

2.4.17)
where £ = (DO /DR)M.

In deriving (2.4.14) and (2.4.17), we assumed that the Butler-Volmer expression
for the rate constant for electron transfer applied. Indeed this assumption (or the
adoption of some other model) is necessary a priori before equations can be derived for
a particular electrochemical method. However, with the convolutive approach, this
assumption is not needed and the rate law can be written in the general form ¢9:

i(t) = nFAk(E){C,(0,t) - Cp (0,t)exp[(nF /| RTE —E°'>]} (2.4.18)
where k(E) is the potential-dependent rate constant of the forward reaction. Thus,
with (2.4.6) and (2.4.7),

I, - I(O)[1+Eexp[(nF /RT)(E —E®)]
i)

Analysis of experimental linear potential sweep experiments according to (2.4.19) or the

Ink,(E)=InD;” —ln{ } (2.4.19)

equivalent expression for a totally irreversible reduction

{Eexp|(nF/RT) x (E - )] <<1}, Ink,(E)~1nD}>- ln&%@l (2.4.20)
14

yields Ink(E) as a function of E at different v. If pure Butler-Volmer kinetic apply,
then a plot of Ink(E) vs. E should be linear with a slope anF/RT. In an analysis of
experimental data for the electroreduction of tertnitrobutane in aprotic solvents, Saveant
and Tessier"” noted significant deviations from linearity (after necessary corrections for
double-layer effects were carried out), demonstrating that the o value was potential

dependent, as is indeed predicted by other theories of electron transfer reactions.
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ChapterI1

i)
7

Fig. 2-4-2 Division of experimental i(r) vs. ¢ [or vs. E(f)] curve

for digital evaluation of I(7).
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8 II- v Semi-differential techniques
8§ II-v-i Theory™

The preliminary findings on a new voltammetric technique, semi-differential
electroanalysis, were recently announced’®. In the present article, the theory is
extended to encompass irreversible electrode reactions. The complicating effects of
electrode sphericity are also analyzed.
We adopted the symbolism of Goto and Ishii™®. In particular, we use the symbol e to

denote the semi-derivative™ of the current with respect to time

12 t s
e=d i dm 1 d .i(r)dv 25.1)

At dt mdtd Ji-+

Note, however, that there is some ambiguity in reference™ in that the symbol e is also

used to denote the semi-derivative of current with respect to potential. Consider the
application of the potential ramp
E=E,-vt (2.5.2)

td a working eclectrode immersed in a solution containing, in addition to excess
supporting electrolyte, a concentration ¢ of the electroreducible species Ox. This
species undergoes the n-electron reduction

Ox + ne —> Red (2.5.3)
to the initially-absent species Red. The initial potential E is sufficiently positive that
reaction (2.5.3) does not occur at time t=0.  Subsequently, however, a faradaic current i
does flow as the electrode potential becomes progressively more negative. A plot of i
versus —E (or versus {) arising in this way is termed, among other names, a “stationary
electrode polarogram”®; a plot of the semi-integral m versus —-E is known as a
“neopolarogram”®”; and an appropriate name for a plot of the semi-derivative e versus
—F is a “derivative neopolarogram”.
It will be assumed throughout this article 1hat‘the transport of Ox to, and (in the
reversible case) of Red from, the electrode is solely by semi-infinite diffusion. First,
we shall derive the shape of the e versus E curve for an electrode to which diffusion

occurs linearly. In this case the equations
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m
(Cbulk - Co )V Do = ;AF = CR\/DR (2'5'4)

have been shown to relate the current semi-integral m uniquely to the surface
concentrations of Ox and Red"?. Later, we shall turn to the more complex, but more
practically useful, case in which semi-differential electroanalysis js carried out with a

spherical diffusion field.

8 II-v-ii Reversible reaction; linear diffusion

If reaction (2.5.3) is reversible, the Nernst equation

RT C C 1/
E=E; +—1n@=EU2 (2.5.5)
nF  f.C.. nF C 2N Dx

relates the potential to the surface concentrations. Using this relationships, with Eqns.

(2.5.4) and (2.5.2), and the definition (2.5.1) of e, one may derive

ﬁrAwgﬂ/
e= R — LRTW Emﬂ (2.5.6)

as was demonstrated by Goto and Ishii"®.
Equation (2.5.6) represents a symmetric peak. The peak height is

nﬁﬂAW@mﬂ%
e, =- (2.5.7)
ART

and the potential cdrresponding to the peak is simply
E,=E, (2.5.8)
the polarographic half-wave potential. ~ Moreover, since arcsech2™= % 0.882, it

follows that

whenE =E, =E, , + M

2% nZ7MRT (2>:9)
and. whenE =E =FE,, -—’T
n

Here E, and E, are the two potentials (one before the peak, the other after) at which e
acquires a value equal to one-half of the peak semiderivative e,. The peak width (the

width of the peak at an ordinate value equal to one-half of the peak height) is therefore
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353RT
nF

W -E,-E, = (2.5.10)

Notice that the peak shape is very dependent upon n, the number of transferred

electrons: as n increases, the peak becomes narrower and much higher.

8 II- v-iii Irreversible reaction: linear diffusion

If reaction (2.5.3) is totally irreversible and is taken to obey the Volmer equation
L kCyexp onl —(E - Ey) (2.5.11)
nAF RT

then a solution to Eqns. (2.5.1), (2.5.2) and (2.5.4) was shown by Goto and Oldham®”

to be

- —-nFACND j 2.5.12
m=-n E( ) exp (25.12)

] )1/2

where z is defined by

omF RTk? anF
z=——(Es-E)+ E1n( aanD) =7 (E.-E) (2.5.13)

Here E. is a characteristic potential; expression (2.5.13) contains its definition, and its
relation to features in some electroanalytical techniques is summarized in Table 2-5-1.

In compiling this Table the relationship®

E1/2 = Es +

135k, 72
RT ln( sT ) (2.5.14)

OU’IF D1/2

for the half-wave potential in classical (dropping electrode) polarography was used, as -

well as data relating to linear potential sweep techniques®??.  Differentiation of eqn.

d
(2.5.12) is aided by the chain rule in the form e = il (@)( dz ) ( dE) and yields
dt dz J\dE )\ d

an® ACF*vD"*\ & jz
e = ( o )E( ) j X (2.5.15)

as the expression for the shape of a totally irreversible derivative neopolarogram.
Values of the summation term in eqn. (2.5.15) are listed in Table 2-5-2 for an

assortment of z values. The asymmetry, however, is mild enough to escape casual
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notice. From Table 2-5-2 the maximum value of the summation term is 0.2970,

whence it follows that

2F2AvC,, D
e = -2 bk 70 (2.5.16)
’ 3367RT

From the fact that the maximum value of the summation occurs when z equals —0.055, it

follows that

- 1642RT
E,=FE +——
00S5RT | * )

E,=E.+= v (25.17)

B, -E, -T2

onkF
Likewise the tabular data permit the peak width to be predicted; whence
| 294RT
W =E -E = 2.5.

P b a anF ( 18)

8 II- v-iv Digital Techniques®
Several algorithms for numerical semi-differentiation have been described®?.
‘The simplest, so called G1 algorithm, uses N equally spaced current data to cbmp]ete e

by the concentration scheme

R = R R

Which is very easily implemented by a multiplication-addition-multiplication- ++-

multiplication-addition procedure. In this algorithm, i, i,, i, *** iy, and iy denote the
instantaneous currents at times #/N, 2¢/N, 3t¢/N, -+ (N-1)t/N, and ¢. As with all
algorithms, there is a discretization error implicit in this G1 formula; its magnitude

diminishes as N increases.
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Table 2-5-1 The relationship to the characteristic potential E. of features in some

electroanalytical techniques applied to totally irreversible electroreductions.

Technique Feature

Relation

Semi-integral Half-wave potential

electroanalysis  of neopolarogram

. Stationary electrode Peak of linear scan

polarography voltammogram

Semi-differential  Peak of derivative

electroanalysis neopolarogram

Classical DME  Half-wave potential

polarography of neopolarogram

E,, = E. + 0206(RT/onF)

E, =E.-0.780(RT/onF)

E, = E. +0055(RT /onF)

E,, = E. + 0300(RT/onF)
+(RT/20nF )in(onFvt/RT)
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Table 2-5-2 Values of the function that describes the shape of a totally irreversible

derivative neopolarogram.

o

z - S (=Y jexp(jz)/(j1)? 0.2970 - 0.105(z + 0.055)*
“
-2.000 0.1122
-1.750 0.1368
-1.642 0.1485(b)
-1.500 0.1645
-1.250 0.1945
-1.000 0.2251
-0.750 0.2539 0.2463
-0.500 0.2778 0.2762
-0.250 0.2930 | 0.2930
-0.055 0.2970(p) 0.2970
0.000 0.2966 0.2970
0.250 0.2868 0.2872
0.500 0.2641 0.2647
0.750 0.2316 0.2290
1.000 0.1938
1.250 0.1557
1.299 0.1485(a)
1.500 0.1209

48



Chapter 11

8 II-vi General Theory of Controlled Current Methods
8 II-vi- i Mathematics of Semi-Infinite Linear Diffusion

We again consider the simple clectron transfer reaction, O + ne” = R. A planar
working electrode and an unstirred solution are assumed, with only species O initially
present at a concentration C.. The diffusion equations and general boundary

conditions apply:

aC, (x,1) [0%C, (x,1)]
D 2.6.1
ot © ax’ ( )
IC(5,1) - [37°Ca(x,0)]
D 2.6.2
ot lax? >62
t=0 ~all .
(fOI a x) Co (x’ t) - CO CR (x7 t) =0 (263)
x — oo (for allt)
D, 0Coxn)] D, WG| _y (2.6.4)
ax 0 ax x=0

Since the applied current i(f) is presumed unknown, the flux at the electrode surface is

also known at any time, by the equation:

aC, (x,t)] _i@® ‘ (2.6.5)

Do[
0x nFA
Note that this boundary condition involving the concentration gradient allows the
diffusion problem to be solved without reference to the rate of the electron transfer
reaction, in contrast with the concentration-potential boundary conditions required for
controlled potential methods. Although in many controlled current experiments the
applied current is constant, the more general case for any arbitrary applied current i(?),
can be solved readily and includes the constant current case, as well as reversal

experiments and several others of interest.

As before, application of the Laplace transform method to (2.6.1) and (2.6.3) yields

. 12 '
Co(x,s) = €Q+B(s)epr—(Bs—) x} (2.6.6)
N

o

The transform of (2.6.5) is
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D, [GC(;E:C, S)L - ;Sf)‘ (2.6.7)
The combination of (2.6.6) and (2.6.7) with elimination of the integration constant B(s)
finally yields
Eo(x s)=§— —L} exp[—(—s—)mx} (2.6.8)
’ s |nFAD}*s'? D,

By substitution of the known function, i(s), and employing the inverse transform, C(x,

t) can be obtained.  Similarly, the following expression for Cy(x, ) can be derived:

Cr(x,5) = [ﬂlp%} exp[— (Dij x} (2.6.9)

Note that direct inversion of (2.6.8) and (2.6.9) using the convolution property leads to
(2.3.6) and (2.3.9). These integral forms are also convenient for solving controlled

current problems.

§ II-vi-ii Constant Current Electrolysis-The Sand Equation
If i(£)=i (constant), then i(s)=i/s and (2.6.8) becomes

* 1/2
= C i s
lu o

o

The inverse transform of this equation yields the expression for Co(x, £):

. 12 2
C,(xi)=Co—— Lo Pot) el - X\ yerte| || (2611
[0} o p 1/2
nFAD, |\ =« 4Dt 2D, 1)

Note that [&Ca(x,t)/ OxLO is constant at all times after the onset of electrolysis and

Co(0, 1) decreases continually.  An expression for Cy(0, £) can be obtained by setting
x=0 in (2.6.11), or directly by inverse transform of (2.6.8) with x=0:
G

o=
o

(2.6.12)

60



Chapter I

to yield

2it1/2

Co1)=Co = FADTT"

(2.6.13)

At a certain characteristic time 7T, called the transition time, Cq(0, ) drops to zero.

At this point (2.6.13) becomes

. 1/2 1/2 __1/2 1/2
it nFAD. “m mAsec
= o = 85.5nDé’ ’A —

C, 2 cm”mM

(2.6.14)

This equation, known as the Sand equation, was first derived by H. J. S. Sand®. The
flux of O to the electrode surface beyond the transition time is not large enough to
satisfy the applied current, and the potential jumps to a value where another electrode
process can occur (Figure 2-6-1).  The actual shape of the E-¢ curve is discussed in the
next sections. The measured value of T at known i (or better, the values of it"?
obtained at various currents) can be used to determine C, or D A lack of constancy
of the transition time constant, it"*/C,, with i or C, indicates complications to the
electrode reaction from coupled homogeneous chemical reactions, adsorption, or

measurement artifacts. Note that (2.6.11) can be written in a convenient form with

dimensionless groupings C.(x,1)/C.,t/t,and A, = x/Z(Dol‘)U2 for(O=st=t):

1/2

ey (1) e )rrne] 619
o T

Co0) _, ()"

< -1 (T) (2.6.16)

In a similar way, the following equations hold for Cy(x, ) when (0<t=<1):

172

S\ o) wnen)] s

where

X D
A’R = 5———1/72“1(:1& = =2
(Drt) D,

2it''? t .
CR(O,t)=W=§ - Co ’ (2618)
R
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§ II-vi-ii Programmed Current Chronopotentiometry
It is possible to use currents that are programmed to vary with time in a special
way, rather than remaining constant®®.  For example, a constant that increases linearly
with time could be used:
i(t)=pt (2.6.19)
The treatment follows that for a constant current electrolysis. In this case the

transform is

i5)=1 (2.6.20)
s
so that (2.6.9) becomes, at x=0,

— C /5

CO(O, S)=—Sg—m (2621)
. 2ﬁt3/2

C,0,nH=C, - 2.6.22
0(0:0)=Co nFADY’T'(5/2) ( )

where I'(5/2) is the Gamma function ,equal with this argument to 1.33. This same
treatment can be employed with any power function of time.

A particular interesting applied current is one varying with the square root of time:

i(t) = pt'? (2.6.23)
i(s) = %’;—; (2.6.24)
Co(0,5) = %0— - ﬁ? (2.6.25)
C,(0,0)=C, _% (2.6.26)

Again, defining the transition time T as that time when Co(0, £)=0, an expression
cquivalent to the constant current Sand equation, but with T (rather than T '?)
proportional to C, and 0, results:

T
% =2nFA= "> D}? (2.6.27)
o

Because this current excitation function is fairly difficult to generate, the technique has
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not been used very much. Nevertheless, it would be especially advantageous for

stepwise electron transfer reactions and multi-component systems.

8 I[-vi-iv Reversible (Nernstian) Waves
For rapid electron transfer, the Nernst equation applies. Substitution of the

expressions for Co(0, 7) and Cy(0, 1) (equations 2.6.16 and 2.6.18) into it yields®”

RT 1/,1/2 _ t/2
E =ET/4 +Eln——t'?‘2—— (2628)
where E, the quarter-wave potential, is
E,, =E°'—£ n& (2.6.29)
2nF D,

so that F is chronopotentiometric equivalent of the voltammetric £, value (Figure 2-6-

1).  The test for reversibility of an E-t curve is linearity of an E vs.

log[(tm _ 11/2)/11/2] plot with a slope of 0.059/n V, or a value of |E,, - E,,,|=479/n

mV (at 298K).

8 II-vi- v Totally Irreversible Waves
For a totally irreversible cathodic reaction, i is related to E by either of the

following equations®:

i -on FE
—— =k%C_(0,t)exp| —=— 2.6.30
FA T 0(0,7) Xp{ RT ] ( )
i 0 -on F(E-E°)
——=k"C,(0,t)ex 4 2.6.31
FA 0(0:9) p{ RT ( )

When the expression for Cy(0,f), (2.6.16), is substituted into these equations, the

following expressions result:

nFAC, k° %
E- RTFln “o% |y RTFln 1—(1) } (2.6.32a)
an i on, T
, nFAC_k® 12
E-E"+ Ry, o ) RE (L . (2.6.32b)
on I [ aon I T
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Equivalent expressions can be obtained by using the Sand equation and substituting for
T 172,
0
2k,

RT
E-= 1
(maF) " (‘ﬂ‘vDO)l/2

, 2k9
E=E"+) 2L )i L
on I (nDO)

Thus, for a totally irreversible reduction wave, the whole E-t wave shifts toward more

RT
+ Inlz? — (V2 2.6.33a
(ana F) (7 ) (2633)

on F

a

+( RT )m(rl” -2)  (2.6.33b)

negative potentials with increasing current, with a tenfold increase in current causing a

shift of 23RT/om,F. Note that uncompensated resistance between the reference and

working electrode will also cause the E-f curve to shift with increasing i. For a totally

—338/am, mV at 298K.

irreversible wave, \E_, — E, ),

8 II-vi-vi Quasi-Reversible Waves

The general equation for the E-f curve results from combining the general current-
potential-concentration characteristic, with the equations for Cy(0, ), (2.6.13), and Cy(0,
1), (2.6.18), (including, so that a starting equilibrium potential can be defined, an initial

concentration of R of Cp) @), The result, in terms of 7, is

2 1/2
1__ l _ 4 e—anﬂ] _ 1
nFAC, \ nD,,

Alternate forms can be written, for example,

1/2

e=(2.6.34)

N 2i t
nFAC;a Dy,

[
Ly

12 1/2
« t . !
=k, |nFC,-2j -k, \nFC, +2j| — 2.6.35a
J =Ky 0 ](”Do ) J b R ](IL'DR ) J ( )
or, when Cy=0,
. * 2jt1/2 kf k
J =anfCO - oz D;/Z + DI{/Z (2.6.35b)

where k; and k, are defined as follows, and j is the current density.
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k, = k° cxpl - anf (E - EV)] (2.6.35¢)

k, = k° expl(1- a)nf(E - E°)| (2.6.35d)

where f = F/RT, and kK’ and « are adjustable parameters called the standard rate
constant and transfer coefficient, respectively. |

Usually the study of the kinetics of quasi-reversible electrode reactions by constant
current techniques (generally called the galvanostatic or current step method) involves
the use of such small current perturbations that the potential change is small. When
both O and R are initially present, the linearized current-potential-concentration
characteristic, can then be employed; and combination of that with (2.6.13) and (2.6.18)
yields

—RTi
nF

2t1/2 1 1 1
FAz"2| C DY? + C D2 +- (2.6.36)
ntAm oo rYr L

thuS a plot of 7 vs. 2, for small values of 77, will be linear, and i, can be obtained

from the intercept. This method is the constant current analog of the potentiostatic or

potential step method.

E-Ezp

vt

Fig. 2-6-1 Theoretical chronopotentiogram for a nernstian electrode process
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8 I1-vii Molecular Dynamics Simulation

One of the main features of the liquid state is the mobility of the constituent
particles.  The study of their motions may be done by the molecular dynamics
technique®.  Such treatments have already been used to describe the properties of
liquid rare gases®**%, of simple molecular liquids® and of the classical one-component
plasma®,

Consider a set of N particles (N/2 anions and N/2 cations) in an elementary cubic
box of side L. According to the periodic boundary conditions the infinite system is set
up by replicas of this parent cube translated by a positive or negative multiple of L
along its edges.

The equations of classical mechanics describing the motion of the ions are
numerically integrated to yield a time record of their position and velocity
coordinates®*9,

The interaction potential (Dz,-(") between two particles i and j is assumed to be

independent of the position of neighboring particles. For sufficiently small time

intervals At the successive positions r; are computed according to Verlet’s algorithm

(233 .
N
(0 AY) = —x (1 — A +26,(0) + (At)z( aSo,0) /dr,.)m,.-l 27.1)
i
m; represents the mass of the particles i; at the time ¢ velocities and temperatures are
given by
vi(0) = (r,(t + A) — v, (¢ - A)) 2t (2.7.2)

T.(t) = (3Nsk)_1§ mv2(t) (2.7.3)

The temperatures are evaluated for the two species s: anion and cation (for a
sufficiently long time interval the average values of the anion and cation temperatures
should be equal).

This calculation was performed with a pair potential of the Born-Mayer-Huggins

form©? :
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®, = &5+ bexp(Bo, - 1)) + Cre + Dy 2.7.4)

y

The values of the parameters b, B, C;

» Dy are calculated from the solid-state

properties of alkali halides®”  The initial positions for the integration process are those
of a face-centered cubic lattice, and the initial velocities are chosen at random according
to a Maxwell-Boltzmann distribution ; then the system evolves until equilibrium is
reached. This is the case when two conditions are fulfilled :
(1) the temperature does not systematically drift;
(2) the configuration corresponds to a liquid phase, ie., the melting factor
N
O, = 2 cos(k : rl.) fluctuates around zero®.
i=1
With the exception of the r* term, all quantities of the pair potential (equation (2.7.4))
converge rapidly as soon as the distance r; is greater than a few atomic radii. As for
the coulombic term, the studies of Brush et al.®®, and, more recently, of Woodcock and
Sangster® and of Hansen® have shown that Ewald’s expansion® leads to rapidly
convergent sums. In this treatment two mutually canceling normalized gaussian
charge distributions are added to the ion point charge distribution (half-width)*. In

this case the expression of the Coulomb energy takes the form®?.

D° = D% + D, (2.7.5)

E& 2521 erf( "")—% (2.7.6)

n

exp( 2|n| /azLZ)

cos(2m 1, /L) 2.7.7)

L)

Where n is a vector with integer components n,, n,, n, and ry,=r-r+ln. In ®7, i=jis
omitted when n=(0,0,0) and in @7, , n=(0,0,0) is omitted.

To avoid time-consuming calculations it is important to know the relative
contribution of the terms in @ and &5 . For this reason we have calculated the
values of the first terms of these series by evaluating the &7 terms up to ry;,=3L/2 and

the Fourier series @7, up to In* =12.
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Since they are based on Newton’s equation, molecular dynamics calculations
directly depend on the forces Fl =dd, / dr and the cut-off values have to be carefully
selected. No particular problem arises in the differentiation of the short-range forces.
These forces are negligible for r; greater than L/2, ie., three ionic diameters for
N=1000.

The Coulomb force F; acting on a particle i is calculated by differentiation of
Ewald’s potential, and thus may be divided into two parts : F’ =F; +F,,. The

components of these two forces are

2a 1 2 2 erfC( ljll) ‘xijn
xlz =5 g E § E T exp( o rx]n) r‘jln K (278)
exp(— nzlnlz/asz)
Fe = —g 2 2 o n, sin(2mm; /L) 2.7.9)
The components on the other two axes O, and O, are obtained by substituting x,,

and n, respectively by y;,, n, and z, 1, (X;,, Vin, Z;s are the components of r,,). The

in

total force on i, F, = 2 i o is the resultant of two main contributions : the Coulomb

forces F7 = Fj; +F;, and the repulsion F**. A precision of a few parts in 10° is
required to obtain a good conservation of the internal energy of the system. This
condition may be fulfilled by expanding the F series up to the term , which corresponds
to 80 vectors. In this case the computing time required per integration step is about 4s.
The average value of the resultant of the first neglected vectors represents 0.15 per cent
of the average total force. However, the increasing disorder introduces a significant
decrease in the relative value of the neglected vectors. Let us remark that the

particular values chosen (7, =L and |n|* < 6) are dictated by practical computation

in

considerations; the required precision might be obtained using r,, < L/2, In* <27 and

o =5.6/L.
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Chapterlll Molten Ternary System (Na, K, Cs)Cl
8 IlI-i Background

The ionic mobilities in mixtures of molten salts have been interpreted in terms of
anion polarization® and complex formation®. The Chemla effect® refers to the
phenomenon that in a charge symmetrical mixture with a common anion the mobility
isotherms of the two cations cross at some concentration. In the molten alkali chloride
mixtures (Li, Na)CI®, (Li, K)CI***9, (Li, Rb)CI?, (Li, Cs)CI*®, (Na, K)CI®, (Na,
Cs)CI® and (Li, Na, K)CI®'? the internal cation mobilities have been measured. As
far as we know, the electric conductivity and the internal mobility have not been
measured in molten (Na, K, Cs)Cl system.  For (Na, K)CI, the internal mobilities were
measured by the EMF method®, which involves large errors in some cases""'?.
Therefore, in the present study the internal mobilities of the ternary alkali chloride
systems have been measured by the Klemm method, which yields the most accurate and
precise data among the available methods.

On the other hand, we have proposed to apply the electromigration method to
enrich the solute, because the electromigration method has an advantage for the
pyrochemical treatment due to its simple construction for being able to use the same
container with the conductive melt bath. In addition, it was recently pointed out a
possibility of high enrichment of Cs, Sr and Gd"? in the LiCI-KCl eutectic mixture. In
the case of the enrichment of Cs by countercurrent electromigration method, it is
necessary to know that the limitation of enrichment degree for Cs, i.e., the Chemla
crossing point. In recently, it was also investigated the relative differences in the
internal mobilities for Cs, Sr and Ba"? in the NaCl-KCl equimolar mixtures.
Therefore, it is also important for the technological fields to investigate the internal
mobilities in molten alkali chlorides.  Furthermore, from MD simulation, we
calculated the electric conductivity used by Kubo formula and self-eXchange velocity
for molten alkali ternary system, because it has reported that the strong correlation

between internal mobilities and SEV’s for some alkali binary chlorides and nitrates.
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8 Ill-ii Experimental
8I[-ii-i Electromigration and Electrical Conductivity

The chemicals NaCl, KCI and CsCl were of reagent grade. The finely crushed
NaCl and KC] were mixed in the desired portion (NaCl:50mol%, KCI:50mol%) and
were introduced in a quartz tube. The mixture was kept at 973K under vacuum for
about 7h and melted above 1073K. The solute CsCl was introduced in a quartz cell
and kept at about 673K under vacuum for about 24h. The electromigration cell was
similar to that shown in reference®. The anode was made of a super fine graphite rod
(5mm @, Tokai Carbon Co., Ltd.). The cathode consists of the glassy carbon (3.0mm
@, Nilaco Co.) was connected to the graphite rod with the ceramic binder for protection
from corrosion because the glassy carbon does not make the intermetallic compounds
with a¥kali metals. Chlorine gas which was dried by passing through conc. sulfuric
acid was bubbled into the melt around the cathode in order to convert electrodeposited
metal into the chloride. The migration tubes were made of the quartz glass. The
upper part of the migration tube had an outlet for Cl, gas. The lower part of the
migration tube was packed with alumina powder (100 £4m @, Nishio Chemical Ind.) in
order to prevent convection of the melt in the migration tube. The temperature was
kept at 1023K with a temperature controller and measured by a Chromel-Alumel
thermocouple during electromigration. A constant DC current supplier (Kikusui
Electronics. Corp. PAD 500-0.6A) fed électric currents less than 0.2A. The
transported charge was measured by a Cu coulometer or the Desital Coulometer (HIOKI
3187, AC/DC Power HITESTER). After several thousand Coulombs of charge was
transported, the migration tube was taken out from the bath and the salt was quenched
quickly. The tube was cleaned outside and cut into several pieces of about 10mm
length. The salt in each fraction was dissolved to distilled water. The amount of Cs
in each fraction was determined by absorption spectrometry (Hitachi Corp. Z-6100).
The amount of Na and K was analyzed by ICP emission spectrometry (Seiko Denshi
Kogyo SPS-7000).

The electric conductivity of the mixture was measured by the direct current method

by Duke and Bissel"” as shown in Fig. 3-1. The cell was made of quartz and four
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platinum wires were used as electrodes. The standard resistance used in the circuit
was 10Q. The cell constant was measured at 295K to be 22.03cm™, using KCl
standard aqueous solutions prepared according to the specifications by Jones and
Bradshaw!®. The accuracy of this cell was checked by measuring the electric

conductivity of molten NaNO, and KNO,.

8 lll-ii - ii Molecular Dynamics Simulation

* For MD simulation of the ternary alkali chloride system (Na, K, Cs)Cl, 1000 or
800 particles were disposed in a periodic cube whose edge length L was determined
from the molar volume calculated from those of the pure melts on the assumption of
additivity. This assumption is justified since the excess molar volumes on mixing two
alkali chlorides are very small”. |

The pair potentials of the Born-Mayer-Huggins type were used:

zz.e* c. d.
P, =—~—+Abexpllo, +0, -F Y 3-1
if 4.7'[60" if p[( i ] )/p] ',6 r& ( )
Z, %j
Aij. ={1+—++—= (3-2)
ni I’lj

where z is the positive or negative charge number, e the elementary charge, &€, the
permittivity of vacuum and A the Pauling factor. For pure alkali halide crystals of the
NaCl-type, values of b, 0" and © have been given by Tosi and Fumi®?, and values of
c and d by Mayer™, while the third and fourth terms represent the dipole-dipole and
dipole-quadrupole dispersion energies with parameters. The corresponding parameters
for the mixture were determined by the combination rule presented by Larsen et al.®”.
The parameters shown in Tables 3-1-1 and 3-1-2 are employed for alkali ternary
chloride system (Na, K, Cs)Cl and binary systems (Li, Cs)C], (Rb, Cs)C], fespectively.

The Ewald method® was used for the calculation of the Coulomb forces; the cutoff

distance in real space was L/2, and the reciprocal lattice vectors lnz‘ were counted up to

27. The convergence parameter & was 5.6/L and time step 2fs. At the beginning,

MD runs were performed with the constant temperature method proposed by
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Woodcock®.  After constant temperature runs of several thousand steps, these were
switched to constant energy runs. From the runs during more than 5000 time steps
using Verlet’s algorithm after attainment of equilibrium, the structure and the other

properties were obtained.

8 Ill-iii Results and Discussion
8 lll-iii- i Electric Conductivity and Internal Cation Mobilities
. Data on the electric conductivity are shown in Fig. 3-2. From a least square

method, the conductivity £ (Scm™) are expressed in the range 933K <T=1023K by

K =0.354+1.059 X 10°T+5.758 X 107T>  (x¢=0.2020.006) (3-3a)
K =-0.833+3.048 X 10°T-4.735 X 107> (x¢,=0.397%0.002) (3-3b)
K =-0.446+2.001 X 10°T-0.076 X 10"T°  (x¢,=0.59240.003) (3-3c)
K =-1.370+3.707 X 10°T-9.318 X 107T*  (x,=0.782%0.013) (3-3d)

where T is an absolute temperature and x., is the mole fraction of Cs. It is shown that
the relationship between the mole fraction of caesium and the conductivity at 1023K in

Fig. 3-3. This relationship is also expressed by

K =2.481-2.447x.+1.888x:>-0.513x,,> ' (3-4)
The relative differences of the mobilities for the 3 cation pai.rs are defined as
&, =, -b,)/b (3-5a)
e, = (b, —b,)/b (3-5b)
£, = (b, -b,)/b (3-5¢)
where the subscripts 1, 2 and 3 denote Na, K and Cs, respectively, and
b =Xy, by, + Xyby + X b, =KV/F (3-6)

where V is molar volume and F is Faraday’s constant.
The € |, can be determined from chemical analysis and the transported charge quite

similarly to the case of binary mixtures:
- F N
€p = __(ﬂ__z_) (3-7)

where N, and N, are the total amounts of species 1 and 2 in the pieces of the separation

tube, respectively, after passage of the charge O, in which the mole fractions are
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different from the original ones x, and x,, respectively. The & values can be obtained
from an equation based on the material balance and the charge balance®™. Thee,, &€
s and & ,, values thus obtained and the main experimental conditions are tabulated in
Table 3-2. The internal mobilities of the each cations are calculated from the

following equations using & and 4 values thus obtained.

by, = (KV/F)(l"' Xg€nax T szgNaCs) (3-8a)
by = (KV/F)(l ~Xna€nak T szgKCs) (3-8b)
be, = (KV/FX]‘_xNagNaCs - xKEKCs) (3-8¢)

The molar volumes V were calculated from those of pure melts on the assumption of
additivity. Internal mobiliteis calculated from (8a-8c) and isotherms of by,, by and b,
in this system at 1023K are shown in Table 3-2 and Fig. 3-4, respectively. The orders

of the internal mobilities are expressed by

bei<by,<by (x¢=0.09910.001) (3-9a)
by, <be<by (x¢=0.137+0.007) (3-9b)
by, <by<bc, (xe>0.60710.011) (3-9¢)

These behaviors mean that the Chemla effect occurs in this system.

8 lll-iii- ii Self-Exchange Velocity(SEV) Calculated by MD
The separating motion of neighboring cation and anion can be expressed in terms
of the self-exchange velocity (SEV)*» which can be calculated by molecular dynamics

simulation. The SEV is defined by

y, =i (3-10)

where R, is the distance where the cation-anion correlation function crosses unity for the
second time and <R(0)> is the average distance between cation and anion within R, at a
given time origin. The SEV’s calculated in the present study are shown in Fig. 3-§

and Table 3-3. The orders of the v’s are as follows.

Ve SVna<Vk (X¢,=0.10) , (3-11a)
Vaa<Ves <V (Xc=0.14) (3-11b)
Vaa<Vx<Ves (Xc>0.60) (3-11¢)
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These orders are relatively in good agreement with those for the internal mobilities
obtained experimentally. It is reported that the strong correlation between internal
mobilities and SEV’s for some alkali chlorides?. It is shown that the relationship
between internal mobilities and SEV’s in this experiment in Fig. 3-6. It seems that
there is an approximately linear relation between two entities. Thus, the assumption
seems to be verified and the Chemla effect of this system is reproduced by the SEV’s

obtained from the simulation.

On the other hand, we can estimate the order of mobility from calculating the
transport number using the software (Mathematica Ver2.2). The definition of the
mobilities for the ternary system can not be defined accurately because the total
transported  charge is used for separation of two cations in the ternary system.

Therefore, we revised the equation as follows.

il__t_2=_—_§_ N_N, (3-12a)
xl xz (tl + tZ)Q xl xz
h & __-F (N N, (3-12b)
X X (t1 + ts)Q X X
L L __-F (N, N, (3-12c)
Xy X (tz + ts)Q Xy Xy

bttty =1 (3-12d)

where t,, , and £, are transport numbers for each cation.  (#,+1,)Q means the transported
charge for separation between cation 1 and 2. The transported numbers, which are
calculated by (12a)-(12d) equations, divided by the mole fraction of Cs are shown in
Fig. 3-7. It is speculated the order of the mobilities for each cation as follows.
be<by,<by (x£<0.2) (3-13a)
bny<by<bg, (xc>0.6) (3-13b)
It is reported the mobilities in the CsCl-NaCl system from estimating the EMF

methods® and this tendency is consistent with our results.
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The pair correlation function g;(r) of j about i is defined as follows.
(r r+ Ar) 314
2 P (3-14)

,11

The running coordination number n,(r) of j about i is defined by

n,(r) = 4ﬂ%jr?gij(r')dr' (3-15)
0

where N, is the number of atoms j in V which is the volume of the simulation cell.
Here, the first coordination shell of ion j about jon i can be defined by the distance at
which g;(r) becomes unity for the second time, or by the distance r where g,(r) reached
its first minimum. The pair correlation function and running coordination numbers of
the pure CsCl salt and of the binary and ternary mixtures for various compositions are
shown in Fig. 3-8 and Table 3-4. The positioﬁ of the first peaks of the pair correlation
functions gy, c» &xc and ge..q are much the same in the binary mixture and the pure
salts. As for the peak heights, gy, and geq are more sharply peaked in the ternary
mixture than in the binary mixtures. ge.q is less sharply peaked in the ternary
mixtures than in the pure CsCl salt.  The increasing rate of the peak heights for Na and
K is larger than for Cs. The position of the second peak of g, is more distant for NaCl,
KCl and less distant for CsCl in the ternary mixture than in the respective binary and
pure salts, with increasing the ratio of Cs, as shown in Fig. 3-8. The position of the
second peaks is strongly affected by the number density, as pointed out for pure salts in
reference®. To explain this point, Dixon and Sangster® *> have presumed that with
decreasing density the second-neighbor jons move out, having more space available to
them, and consequently unlike ions can cluster round a reference ion with less
interference from the second neighbors.  Another characteristic of g,. of the mixture as
compared to that of the pure salts is the more rapid disappearance of the pair correlation
in the long distance. This is due to the presence of cations with quite different sizes in

the mixture.
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The self-diffusion coefficients were calculated from the mean square displacements,

which is shown in Fig. 3-9-1, according to the Einstein formula

D= %%«n(t +7) - I‘i(l‘)}2> (3-16)

where T is the period during which the mean square displacement lies on a straight
line and brackets denote an ensemble average of time origins. The results obtained
with the simulation as shown in Fig. 3-9-2 predict that in this ternary mixture the order
of the self-diffusion coefficient for each cation would be the following order.

D¢<Dy, <D (xc=0.1) (3-17a)

Dy,<D <Dy (x,=0.6) (3-17b)
This is consistent with observations on our experimental results, where the Chemla
effect is observed for pair of Na-Cs.

It can be understood by the potential for the cations located between two CI ions
as shown in Figs. 3-10-1 and 3-10-2. These potentials are obtained by combining the
pair potentials for Li*-CI, Na*™-Cl, K*-CI' and Cs*-Cl. We can consider the one-
dimensional motion of the cations leaving the reference CI ion. As the concentration
of Cs* increases, the molar volume and the average CI'-CI distance increase d, to d,.
Figure 3-10-1 shows that the barrier 4, to h, becomes higher with increasing the molar
volume and its rate of increase is very rapid for the Na* ion. When d is small, the Cs*
ion can move away from the reference CI ion, as the two CI ions separate. At large d,
the Na* ion has to wait for a longer time than the Cs* ion and /& becomes so low that the
cation can move away from the reference CI" ion. In other words, Na*-Cs’ pair is more
associated, Thus, the SEV will decrease with increasing d, but the decreasing rate is
larger for Na than for Cs. Thus, the SEV’s of Na and Cs will have a crossing point and

isotherms of two internal mobilities have a Chemla crossing point.
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8 Ill-iii -iv Electric Conductivity Calculated by MD

In general, in the case of the calculation of electric conductivity for molten salt
system, Nernst-Einstein equation cannot be applied. Therefore the electric
conductivity is calculated from the integral of the current auto-correlation function

according to the following relation.

o= —I<J(0) .](t)>’ -](t) = 2 Zievi(t) (3-18)

0 7
One of the current auto-correlation function, j(t) and the electric conductivity profiles in
molten ternary system at x=0.1 as shown in Figs. 3-11-1 and 3-11-2, respectively.
Time step is 5fs and MD step is up to 5X10° steps.  Fig. 3-12 shows that the electric
conductivity calculated from MD compared with the experimental results. The values
calculated from MD simulation are smaller than the experimental results. This might
be due to not supplementing by taking into account the polarization effects of CsCl.
Recently, Wilson and Madden proposed a polarizable ion model (PIM)®.  According
to this model, jons are not simply charged hard spheres; their properties change
profoundly with their environment and they may undergo polarization and dispersion
interactions. The details are described elsewhere® ¢, However, both tendencies are
reproduced by MD simulation, i.e., the electric conductivity is decreasing with
increasing the Cs concentration.

On the other hand, the electric conductivity for (Li, Cs)Cl calculated by MD is
compared with (Rb, Cs)Cl, which is selected as the candidate has extremely difference
in ionic radii. One of the auto-correlation function and the electric conductivity
profiles for molten binary system (Li, Cs)Cl and (Rb, Cs)Cl show in Figs. 3-13-1 and 3-
13-2, respectively. The calculation results are similar tendency for experimental
results as shown in Fig. 3-13-3. The difference of the electric cond