
論文 / 著書情報
Article / Book Information

題目(和文) エキゾチック・オプションとアメリカン・オプションの価格評価 : 漸
近展開法とシンボリック・コンピューティング

Title(English) Pricing exotic options and American options : an asymptotic expansion
approach and symbolic computing

著者(和文) 西場正浩

Author(English) Masahiro Nishiba

出典(和文) 学位:博士(工学),
 学位授与機関:東京工業大学,
 報告番号:甲第9205号,
 授与年月日:2013年3月26日,
 学位の種別:課程博士,
 審査員:二宮 祥一

Citation(English) Degree:Doctor (Engineering),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第9205号,
 Conferred date:2013/3/26,
 Degree Type:Course doctor,
 Examiner:

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/

Pricing exotic options and American options : an

asymptotic expansion approach and symbolic

computing

Masahiro Nishiba

Tokyo Institute of Technology

2-12-1 Ookayama Meguro-ku

Tokyo 152-8552 Japan

E-mail: nishiba.m@gmail.com

February 6, 2013

Abstract

This thesis introduces approximation formulas and a method of calculation
for the prices of financial derivatives. To approximate these values, the au-
thor applies an asymptotic expansion method to multidimensional diffusion
processes and develops a package for a symbolic computing software. With
the application of the asymptotic expansion method, the prices of some finan-
cial derivatives can be approximated explicitly. The package automatically
derives the approximation of the law of multidimensional diffusion processes.

The author applies the asymptotic expansion method to the problems
of pricing European swaptions in the SABR/LIBOR market model, credit
valuation adjustments of interest rate swaps in the SABR swap rate model,
call options on the maximum of two assets in the constant elasticity of vari-
ance (CEV) model, average strike options in the Black-Scholes model and
American options in the Heston model. The asymptotic expansion method
is versatile and can be applied to other models.

To calculate the prices of American options, the author introduces a
method that is based on the combination of the asymptotic expansion method
and backward induction.

Numerical examples show practical effectiveness of the proposed method.
Keywords American option; Asymptotic expansion; Average strike option;
Black-Scholes model; CEV model; Call option on the maximum of two as-
sets; CVA; Heston model; Monte Carlo; quasi-Monte Carlo; SABR model;
simulation;

Contents

1 Introduction 4

2 The asymptotic expansion method 7

2.1 The asymptotic expansion of Xǫ 8

2.2 Calculation of the characteristic function of the normalized
process of Xǫ . 9

2.3 Calculation of conditional expectations 10

2.4 Derivation of the law of Xǫ 13

2.5 Approximation of E [F (X (T))] 15

2.6 Practical remark . 15

3 The asymptotic expansion method with Maxima 16

3.1 Introduction . 16

3.2 The functional design of SymAE 17

3.3 The implementation of functions 18

3.3.1 Group A . 18

3.3.2 Group B . 20

3.3.3 Group C . 21

3.4 Procedure of programming . 23

3.5 Conclusion . 25

4 Applications of the asymptotic expansion method 26

4.1 Pricing interest rate swaptions in the SABR/LIBOR market
model . 26

4.1.1 The SABR/LIBOR market model 26

4.1.2 Numerical results . 28

4.2 Application to exotic option pricing problems 29

4.2.1 Call option on the maximum of two assets in the CEV
model . 29

2

4.2.2 Average strike option in the BS model 32
4.3 American option pricing . 34

4.3.1 The mesh method . 36
4.3.2 The mesh method with simulation 43
4.3.3 Multidimensional asymptotic expansion mesh method 45
4.3.4 Practical remark . 46
4.3.5 Numerical examples 47

4.4 Evaluating the CVA of interest rate swaps in the SABR model 51
4.4.1 The problem . 51
4.4.2 Numerical results . 54

5 Conclusion 57

3

Chapter 1

Introduction

The price of a financial derivative is equal to the expectation of discounted
value of its payoff under the risk neutral measure. This means that the price
is given by the calculation of E [F (XT)]. Here XT is the value at time T of
the D-dimensional diffusion process Xt that describes its underlying asset
prices, and F is the payoff function which determines the financial derivative.
Furthermore, in the case that the payoff depends not only on the asset prices
at time T but also on the asset prices at times T1,. . . , TN−1 and TN , the
calculation of the price that is given by E [F (XT1 , . . . ,XTN

)] becomes more
difficult. Therefore, it is highly important to find fast and reliable meth-
ods for the numerical evaluation of E [F (XT)] and E [F (XT1 , . . . ,XTN

)]. A
number of studies on this subject has been conducted (see [4]).

In the case that the law of XT is known explicitly, E [F (XT)] can be
calculated, e.g., by using Gaussian quadrature [17]. This condition is not
necessarily satisfied in many practical problems. There are three approaches
to these problems: the partial differential equation approach, simulation, and
the asymptotic expansion method. The partial differential equation approach
works only when the dimension is relatively small. One of the major methods
of simulation is Monte Carlo simulation. A distinct advantage of Monte Carlo
simulation is that its convergence rate does not depend on the number of
state variables. The last approach is the asymptotic expansion method. This
method is based on Watanabe theory [29] and has been applied to problems
in mathematical finance [7, 8, 11, 12, 21, 22, 23, 26, 27]. An advantage
of this method is that it is possible to obtain the analytic approximation
formulas for the prices of financial derivatives. This advantage enables rapid
computation of the prices. In this research, we focus on this method.

We derive higher order approximations and the approximations of the

4

laws of complicated diffusion models by using the asymptotic expansion
method. However these calculations can be difficult, because the asymp-
totic expansion method requires a huge amount of symbolic manipulation.
To conquer this difficulty, we develop a package for a symbolic computing
software, Maxima [20]. This package enables us to automatically derive the
approximations of the laws of diffusion processes by the asymptotic expan-
sion method.

To show the usefulness of the asymptotic expansion method, we consider
three practical problems in finance. The first problem is one to which we
can naively apply the asymptotic expansion method. That means that the
calculation of E [F1 (F2 (XT))] where XT is D-dimensional diffusion process,
F1 : R → R has polynomial growth, and F2 : RD → R is a smooth function
whose all derivatives have polynomial growth. As numerical examples, we
consider interest rate swaptions in the SABR/LIBOR market model and the
credit valuation adjustment of interest rate swaps in the SABR swap rate
model.

The second one is the calculation of E [F (XT)], where F has polynomial
growth. We extend the asymptotic expansion method [24] and call this ex-
tended method the multidimensional asymptotic expansion method (MAE).
As numerical examples, we consider “the call option on the maximum of two
assets” [5] in the constant elasticity of variance (CEV) model and the aver-
age strike option in the Black-Scholes model. These numerical results show
that MAE is practically accurate enough. The computation time is less than
10−1 seconds.

The third problem is the calculation of E [F (XT1 , . . . ,XTN
)]. In this re-

search, we focus on the calculation of the prices of the American options.
There are many methods for the calculation of the prices of the American
options, for example, the lattice method, the partial differential equation ap-
proach and simulation(see [3, 4]). We consider the calculation of the prices
of the American options with simulation. Rogers [19] introduces the dual
representation approach and calculates the upper bounds on several Amer-
ican options by using Monte Carlo simulation. Longstaff and Schwartz [10]
introduce the least squares Monte Carlo simulation to evaluate the prices
of American options. They approximate the conditional continuation values
of the option by using the least squares method. Broadie and Glasserman
[1] introduce the stochastic mesh method. They assume that the law of
X is known explicitly, which is not necessarily satisfied in many practical
problems.

In this research, we introduce a new method to calculate the prices of
the American options by using the combination of MAE and backwards

5

induction. We call this new method the multidimensional asymptotic ex-
pansion mesh method (MAEM). We also introduce MAEM with simulation
(MAEMS). We apply MAEM and MAEMS to the American put options in
the Heston model. This numerical experiment shows that the method is rel-
atively accurate compared with least squares Monte Carlo simulations and
other methods [2, 6, 16, 28, 30].

The chapter 2 describes the asymptotic expansion method and introduces
MAE. The chapter 3 describes the package for a symbolic computing soft-
ware. The chapter 4 discusses the applications of the asymptotic expansion
method. The chapter 5 discusses the results of this research and concludes
with issues in the future.

6

Chapter 2

The asymptotic expansion

method

In this chapter, we briefly describe the asymptotic expansion method pro-
posed in [24]. We then extend the asymptotic expansion method and intro-
duce the multidimensional asymptotic expansion method.

We consider the approximation of the value of E [F (X (T))] where F :
RD → R and D is an integer greater than one. X is a D-dimensional diffusion
process that satisfies some conditions we describe in the section 2.1.

In [24] it is supposed that there exist a function F1 : R → R that has
polynomial growth and a smooth function F2 : RD → R whose all derivatives
have polynomial growth such that E [F (X (T))] = E [F1 (F2 (X (T)))].

In this thesis, we suppose that F : RD → R has polynomial growth. Our
setting includes the setting in [24].

There are following five steps to approximate E [F (X (T))] by using the
method proposed in [24].

1. We calculate the asymptotic expansion of Xǫ that is the perturbed
process of X by ǫ ∈ (0, 1].

2. We calculate the characteristic function of the normalized process of
Xǫ by using the Taylor expansion around ǫ = 0.

3. We calculate the conditional expectations in the Taylor expansion of
the characteristic function.

4. We calculate the law of Xǫ.

5. We approximate E [F (X (T))] by using the law of X (T).

7

In the third step, we need to calculate the conditional expectations given
the values of Ito integrals. To calculate these conditional expectations we
need to generalize Proposition 1 in [24] to higher dimensions. The generalized
statement, Theorem 2.1, is given in the section 2.3.

A scheme to calculate the conditional expectations is proposed in [25].
The difference between Theorem 2.1 and the scheme in [25] is discussed in
the section 2.3.

2.1 The asymptotic expansion of X
ǫ

First, we calculate the asymptotic expansion of a perturbed process Xǫ fol-
lowing the method proposed in [24]. We begin with an introduction of basic

notions. Let
(
Ω,F , P, {Ft}0≤t≤T

)
be a complete probability space that sat-

isfies the usual hypotheses, that is to say, F is P -complete, F0 contains all
P -null sets, {Ft}0≤t≤T is right-continuous where T ∈ (0,∞) denotes some
fixed horizon of economy. Moreover, let W (t) = (W1 (t) , . . . ,Wd (t)) be
a d-dimensional standard Brownian motion. We consider a D-dimensional
diffusion process X (t) = (X1 (t) , . . . ,XD (t)) that is the solution to the
following stochastic differential equation:

dX (t) = α (X (t)) dt + σ (X (t)) dW (t) ,

X (0) = x0
(2.1)

where x0 ∈ RD, α : RD → RD and σ : RD → RD × Rd. We suppose that

α ∈ C∞
b

(
RD; RD

)
,

σ ∈ C∞
b

(
RD; RD × Rd

) (2.2)

where for Y ∈
{
RD, RD × Rd

}
, C∞

b

(
RD;Y

)
denotes the set of Y -valued

infinitely differentiable functions defined on RD whose derivatives are all
bounded.

We consider the perturbed process Xǫ of the process X by putting a
small number ǫ ∈ (0, 1] following [24], that is to say, we define Xǫ by the
following stochastic differential equation:

dXǫ (t) = α (Xǫ (t)) dt + ǫσ (Xǫ (t)) dW (t) ,

Xǫ (0) = x0

Then, when ǫ ց 0, Xǫ (T) has its asymptotic expansion as follows:

Xǫ (T) =

∞∑

i=0

ǫiX(i) (T)
/
i! (2.3)

8

in Lp (Ω) for any p ≥ 1 where X(i) (T) =
(
X(i),1 (T) , . . . ,X(i),D (T)

)
is a

D-dimensional diffusion process that is given by

X(i) (T) =
diXǫ (T)

dǫi

∣∣∣∣∣
ǫ=0

(2.4)

for i ∈ N. Here i! means the factorial of i for i ∈ N. Coefficients X(i) (T)
are obtained by the Taylor expansion and represented based on multiple
Wiener-Ito integrals. See [24] for the details of this expansion method.

2.2 Calculation of the characteristic function of the
normalized process of X

ǫ

We calculate the characteristic function of Xǫ (T) in the equation (2.3). We
denote by Gǫ the normalized process of Xǫ (T) that is given by

Gǫ =
(
Xǫ (T) − X(0) (T)

)/
ǫ.

The following is a useful fact that can be easily shown. X(0) is a determin-
istic function that is defined by the following ordinary differential equation:

X(0) (t) = α
(
X(0) (t)

)
dt,

X(0) (0) = x0.

Next, X(1) is defined by the following stochastic differential equation:

X(1) (t) = αx

(
X(0) (t)

)
X(1) (t) dt + σ

(
X(0) (t)

)
dW (t) ,

X(1) (0) = 0,

where αx =
(

∂α
∂x1

, . . . , ∂α
∂xD

)
. Let Σ be a matrix with size D × D. For i,

j ∈ {1, . . . ,D}, the element at ith row and jth column is defined by

Σi,j = E
[
X(1),i (T) X(1),j (T)

]
.

We assume that det (Σ) > 0. Here det (Σ) means the determinant of Σ. This
assumption means that the distribution of X(1) (T) does not degenerate and
X(1) (T) is a normal random variable with the D-dimensional mean vector 0
and the covariance matrix Σ.

Let ϕGǫ be the characteristic function of Gǫ. For ξ ∈ RD, ϕGǫ : RD → R

is defined by
ϕGǫ (ξ) = E

[
exp

(√
−1 〈ξ,Gǫ〉

)]

9

where 〈ξ,Gǫ〉 means the inner product of ξ and Gǫ. Applying the Taylor
expansion around ǫ = 0 to ϕGǫ (ξ), we have

ϕGǫ (ξ) =
∞∑

i=0

diϕGǫ (ξ)

dǫi

∣∣∣∣
ǫ=0

ǫi

i!

= E
[
exp

(√
−1

〈
ξ,X(1)

〉)]

+
ǫ

2
E
[〈√

−1 ξ,X(2)

〉
exp

(√
−1

〈
ξ,X(1)

〉)]

+
ǫ2

8
E
[〈√

−1 ξ,X(2)

〉2
exp

(√
−1

〈
ξ,X(1)

〉)]

+
ǫ2

6
E
[〈√

−1 ξ,X(3)

〉
exp

(√
−1

〈
ξ,X(1)

〉)]

+ · · ·
= E

[
exp

(√
−1

〈
ξ,X(1)

〉)]

+
ǫ

2
E
[
E
[〈√

−1 ξ,X(2)

〉∣∣X(1)

]
exp

(√
−1

〈
ξ,X(1)

〉)]

+
ǫ2

8
E

[
E

[〈√
−1 ξ,X(2)

〉2∣∣∣X(1)

]
exp

(√
−1

〈
ξ,X(1)

〉)]

+
ǫ2

6
E
[
E
[〈√

−1 ξ,X(3)

〉∣∣X(1)

]
exp

(√
−1

〈
ξ,X(1)

〉)]

+ · · · .

(2.5)

Here, X(i) (T) is abbreviated as X(i) for i = 1, 2, 3. To obtain the Taylor
expansion of ϕGǫ (ξ) explicitly, we need to calculate conditional expectations,

e.g., E
[〈√

−1 ξ,X(2)

〉∣∣X(1)

]
, E
[〈√

−1 ξ,X(2)

〉∣∣X(1)

]
, E

[〈√
−1 ξ,X(2)

〉2∣∣∣X(1)

]

and E
[〈√

−1 ξ,X(3)

〉∣∣X(1)

]
in the equation (2.5). Theorem 2.1 in the next

section is useful for the calculations of these conditional expectations.

2.3 Calculation of conditional expectations

We calculate the conditional expectations in the equation (2.5). The follow-
ing theorem, which plays an essential role in the calculations, enables us to
obtain the law of X (T) in multidimensional cases. Because we can explicitly
obtain the Taylor expansion of ϕGǫ (ξ), we can calculate the law of Xǫ by
using Lemma 2.1 in the section 2.4.

Theorem 2.1. Let T = [0, T], f ∈ L2 (Tn) for n ≥ 1, qj ∈ L (T) for
1 ≤ j ≤ m and (t) denote (t1, t2, . . . , tn). Suppose that {Wi}i=1,...,n is an

10

n-dimensional Brownian motion and {Zi}i=1,...,m is an m-dimensional Brow-

nian motion with d 〈Wi,Wj〉 = ρW
i,j dt, d 〈Zi, Zj〉 = ρZ

i,j dt and d 〈Wi, Zj〉 =
ρi,j dt. Define a matrix Σ22 with size m × m as follows:

Σ22 =

{∫ T

0
qi (t) qj (t) dt

}

i,j=1,...,m

and suppose that det (Σ22) > 0. Then the following equality:

E

[∫ T

0

∫ t1

0
· · ·
∫ tn−1

0
f (t) dWn (tn) · · · dW2 (t2) dW1 (t1)

∣∣∣∣∣
(∫ T

0
q1 (t) dZ1 (t) , . . .

∫ T

0
qm (t) dZm (t)

)
= (x1, . . . , xm)

]

=

∫ T

0

∫ t1

0
· · ·
∫ tn−1

0
f (t)Hn (t) dtn · · · dt2 dt1

holds, where
Σ12 (t) = {ρi,j qj (ti)} i=1,...,n

j=1,...,m
,

Σ21 (t) = tΣ12 (t) ,

ξ = (ξ1, . . . , ξn) ,

Hn (t) =
dn exp

(
xΣ−1

22 Σ21 (t) tξ − 1
2 ξ Σ12 (t) Σ−1

22 Σ21 (t) tξ
)

d ξ1 · · · d ξn

∣∣∣∣∣
ξ=0

.

Here tA means the transpose of matrix A.

Proof. Let G be a sub σ-algebra of F defined by

G =

{(∫ T

0
q1 (t) dZ1 (t) , . . . ,

∫ T

0
qm (t) dZm (t)

)
= (x1, . . . , xm)

}
.

Here G depends on (x1, . . . , xm).
For t ∈ T

n, we define an R-valued function fn by

fn (t) = 1{tn<···<t1} (t) f (t) .

By the definition of fn, we have

E

[∫ T

0

∫ T

0
· · ·
∫ T

0
fn (t) dWn (tn) · · · dW2 (t1) dW1 (t1)

∣∣∣G
]

= E

[∫ T

0

∫ t1

0
· · ·
∫ tn−1

0
f (t) dWn (tn) · · · dW2 (t1) dW1 (t1)

∣∣∣G
]

.

(2.6)

11

As fn ∈ L2 (Tn), there exists a sequence
{

f
(l)
n

}
l∈N

such that f
(l)
n ր fn

and f
(l)
n is represented in the following form:

f (l)
n =

k∑

I1,...,In=1

cI1···In1AI1
×···×AIn

(t)

where k ∈ N, A1, . . . , Ak ⊂ T are pairwise-disjoint sets and the coefficients
cI1···In ∈ R are zero if any two of the indices I1, . . . , In are equal.

By the monotone convergence theorem, we have

E

[∫ T

0
· · ·
∫ T

0
f (l)

n (t) dWn (tn) · · · dW1 (t1)
∣∣∣G
]

→ E

[∫ T

0
· · ·
∫ T

0
fn (t) dWn (tn) · · · dW1 (t1)

∣∣∣G
]

(a.s.).

We also have

E

[∫ T

0
· · ·
∫ T

0
f (l)

n (t) dWn (tn) · · · dW1 (t1)
∣∣∣G
]

=
k∑

I1,...,In=1

cI1···InE

[∫ T

0
1AIn

(t) dWn (t) · · ·
∫ T

0
1AI1

(t) dW1 (t)
∣∣∣G
]

=

k∑

I1,...,In=1

cI1···InH̃n

(2.7)

where

H̃n =
dn exp

(
xΣ−1

22
tΣ̃12

tξ − 1
2 ξ Σ̃12 Σ−1

22
tΣ̃12

tξ
)

d ξ1 · · · d ξn

∣∣∣∣∣∣
ξ=0

and

Σ̃12 =

{
ρi,j

∫ T

0
1AIi

(t) qj (t) dt

}

i=1,...,n
j=1,...,m

.

The second equality in the equation (2.7) is ensured by Corollary A.1 in
Appendix. Since we can rewrite H̃n as follows:

H̃n =

∫ T

0
· · ·
∫ T

0
1AI1

×···×AIn
(t)Hn (t) dtn · · · dt1,

12

we have

E

[∫ T

0
· · ·
∫ T

0
f (l)

n (t) dWn (tn) · · · dW1 (t1)
∣∣∣G
]

=

∫ T

0
· · ·
∫ T

0

k∑

I1,...,In=1

cI1···In1AI1
×···×AIn

(t)Hn (t) dtn · · · dt1

=

∫ T

0
· · ·
∫ T

0
f (l)

n (t)Hn (t) dtn · · · dt1.

(2.8)

By the equations (2.6), (2.7) and (2.8), we have

E

[∫ T

0

∫ t1

0
· · ·
∫ tn−1

0
f (t) dWn (tn) · · · dW2 (t2) dW1 (t1)

∣∣∣G
]

= lim
l→∞

∫ T

0
· · ·
∫ T

0
f (l)

n (t)Hn (t) dtn · · · dt1

=

∫ T

0
· · ·
∫ T

0
fn (t)Hn (t) dtn · · · dt1

=

∫ T

0

∫ t1

0
· · ·
∫ tn−1

0
f (t)Hn (t) dtn · · · dt2 dt1.

Thus the statement is proved.

As mentioned in the beginning of this chapter, a scheme to calculate the
conditional expectations given the value of a random variable with Gaussian
distribution is proposed in [25]. In the scheme, the conditional expectations
are represented by the expressions that include not conditional expectations
but unconditional expectations. These unconditional expectations are cal-
culated by solving some ordinary differential equations. We think that the
scheme is more complex than Theorem 2.1, and that Theorem 2.1 is easy to
implement.

2.4 Derivation of the law of X
ǫ

We calculate the law of Xǫ that we obtain in the previous section. We
denote by fGǫ the probability density function of Gǫ. By a property of the
characteristic function, fGǫ is given by

fGǫ (g) =

(
1

2π

)D ∫

RD

exp
(√

−1 〈ξ, g〉
)
ϕGǫ (ξ) dξ

13

for g ∈ RD. By using Theorem 2.1 in the previous section, we calcu-
late the conditional expectations in the equation (2.5) in the section 2.2.
Those conditional expectations are represented as polynomial functions of
x = (x1, . . . , xD) and ξ = (ξ1, . . . , ξD). Thus we can obtain the closed form
of ϕGǫ . Now we can calculate fGǫ explicitly by using the following lemma.

Lemma 2.1. Let a D-dimensional random variable X = (X1, . . . ,XD) have
normal density function f (x; 0,Σ) with a mean vector 0 and a covariance
matrix Σ. Let h and z be polynomial functions from RD to R. Then

(
1

2π

)D ∫

RD

z
(
−
√
−1 ξ

)
exp

(
−
√
−1 〈ξ, x〉

)
E
[
h (X) exp

(√
−1 〈ξ,X〉

)]
dξ

= z

(
∂

∂x

)
(h (x) f (x; 0,Σ))

(2.9)

holds.

Proof. By the property of the characteristic function,

(
1

2π

)D ∫

RD

e(−
√
−1〈ξ,x〉)E

[
e(

√
−1〈ξ,X〉)

]
dξ = f (x; 0,Σ)

holds. By integration by parts, we have

(
1

2π

)D ∫

RD

e(−
√
−1〈ξ,x〉)E

[
Xie

(
√
−1〈ξ,X〉)

]
dξ

= −
√
−1

(
1

2π

)D ∫

RD−1

[
e(−

√
−1〈ξ,x〉)E

[
e(

√
−1〈ξ,X〉)

]]ξi=∞

ξi=−∞

D∏

j=i,i6=j

dξj

+

(
1

2π

)D ∫

RD

xie
(−

√
−1〈ξ,x〉)E

[
e(

√
−1〈ξ,X〉)

]
dξ

=xif (x; 0,Σ)

for i ∈ {1, . . . ,D}. Repeating this manipulation, we have

(
1

2π

)D ∫

RD

e(−
√
−1〈ξ,x〉)E

[
h (X) e(

√
−1〈ξ,X〉)

]
dξ = h (x) f (x; 0,Σ) .

Differentiating this equation, we obtain the equation (2.9).

14

2.5 Approximation of E [F (X (T))]

Finally, we approximate E [F (X (T))] by using an approximation of the law
of X (T). By the definitions of Xǫ and X, Xǫ = X almost surely when ǫ = 1.

So we denote the nth order approximation of X, ϕGǫ and fGǫ by X(n), ϕ
(n)
Gǫ

and f
(n)
Gǫ , respectively. For n ∈ N these are defined by

X(n) (T) =

n∑

i=0

1

i!
X(i) (T) ,

ϕ
(n)
Gǫ (ξ) =

n∑

i=0

1

i!

diϕGǫ (ξ)

dǫi

∣∣∣∣
ǫ=0

for ξ ∈ RD and

f
(n)
Gǫ (g) =

(
1

2π

)D ∫

RD

exp
(√

−1 〈ξ, g〉
)
ϕ

(n)
Gǫ (ξ) dξ (2.10)

for g ∈ RD. By the equations (2.5), (2.9) and the fact that X(1) is a normal
random variable, the right-hand side of the equation (2.10) is integrable. So

f
(n)
Gǫ can be defined by the equation (2.10).

Now the nth order approximation of the law of X (T) is given by

f (n) (x) = f
(n)
Gǫ

(
x − X(0) (T)

)

for x ∈ RD. The nth order approximation of E [F (X (T))] is given by

V (n) =

∫

RD

F (x) f (n) (x) dx.

Here we suppose that F has polynomial growth.
As described at the beginning of this chapter, we have extended the

asymptotic expansion method. Now we can approximate the value of E [F (X (T))].
We call this method the multidimensional asymptotic expansion method.

2.6 Practical remark

We suppose that σ and α satisfy the condition (2.2). This condition is
not necessarily satisfied in many models in finance. But when we apply this
method to models that do not satisfy this condition, we still can obtain good
approximations of the laws of them. Theoretical support of these results is
an issue in the future.

15

Chapter 3

The asymptotic expansion

method with Maxima

3.1 Introduction

The difficulty of asymptotic expansion method

As mentioned in the chapter 2, the asymptotic expansion method requires
a huge amount of symbolic manipulation that includes the application of
Ito’s lemma, Fubini’s theorem, and Theorem 2.1. As Theorem 2.1 shows,
we have to calculate multiple integrals to obtain the approximations explic-
itly. So to apply the method to complicated models and to derive higher
order approximations are difficult in practice without symbolic computing.
Moreover, to use the approximations derived with the method in practice,
we have to implement the approximations. The approximations usually have
long expressions, which causes difficulty to implement them.

A Maxima package

To conquer the difficulties in the application of the asymptotic expansion
method and in the implementation of the long expressions, we develop a
package written by LISP programming language for a symbolic computing
software, Maxima [20]. We call this package SymAE. SymAE enables us
to automatically calculate the approximation of the law of multidimensional
diffusion processes by using the asymptotic expansion method. That means
we can apply the asymptotic expansion method to complicated models and
derive higher order approximation. SymAE also enables us to automatically
generate C++ code of the long expressions of the approximations. So the

16

input of SymAE is the definition of diffusion processes, and its output is
C++ source files.

To obtain more accurate approximations, we have to apply the asymp-
totic expansion method to diffusion models with different ways. Sometimes
we obtain more accurate approximations by numeraire change or by apply-
ing the method to C (XT) instead of XT where C : RD → RD is an injective
function. However, we do not know what function C or what numeraire are
better before we actually derive the approximation. That is why we have
to apply the asymptotic expansion method to the models several times to
obtain good approximations. However, SymAE enables us to automattically
calculate the approximation by the asymptotic expansion method and make
it easy to find a good function C and numeraire.

The package does not require the knowledge of LISP for users, and its
interface is Maxima. The grammar of Maxima is easy to understand. This
package requires only ten and several lines to apply the asymptotic expansion
method and generate C++ file.

3.2 The functional design of SymAE

We describe the key features of SymAE. The functions in SymAE fall into
three groups A, B, and C. First, group A consists of functions that are related
to Ito calculus, for example, Ito’s formula and Fubini’s theorem. Second,
group B consists of functions that are related to conditional expectations.
Finally, group C consists of functions that are related to the asymptotic ex-
pansion method. These three groups are not independent. Group B depends
on group A. Group C depends on group A and B.

Group A: functions related to Ito calculus

Originally, Maxima does not support the Ito calculus. SymAE provides Ito
calculus, e.g., Ito’s integral, Ito formula and Fubini’s theorem. To provide
Ito’s formula by SymAE, we need a function to find products of Ito’s integrals
in expressions.

SymAE also provides Fubini’s theorem. More precisely, the package pro-
vides the exchange of Ito integral and Riemann-Stieltjes integral. For this
function, the package needs a function that finds multiple integrals that con-
sist of Ito integral and Riemann-Stieltjes integral.

SymAE has a function that solves stochastic differential equations. In
many cases the stochastic differential equations that occur when using the

17

asymptotic expansion method can be solved. So, the package supports some
formulas for solving stochastic differential equations.

Group B: functions related to conditional expectations

SymAE provides a function that calculate some conditional expectations by
using Theorem 2.1. For this function, the package needs a function that
calculate function Hn (t) in the equation 2.1 and the functions generated in
Group A.

Group C: functions related to the asymptotic expansion method

For the asymptotic expansion method, SymAE provides a function that de-
rives the ith term in the equation (2.3) and a function that derives the ith
term in the equation (2.5). In these functions, the functions generated in
Group A and B are required.

3.3 The implementation of functions

In this section, we describe the implementation of the main functions in
SymAE.

3.3.1 Group A

To use the asymptotic expansion method, we must handle Riemann-Stieltjes
integrals and Ito integrals. They are represented in SymAE as follows:

• int_(f(s),s,l,u)

=
∫ l
u f (s) ds where f is an integrand, s is an integrating variable, l is

a lower bound and u is an upper bound.

• ito_(f(s),s,W,u,l)

=
∫ u
l f (s) dW (s) where f is an integrand, s is an integrating variable,

W is a Brownian motion, l is a lower bound and u is an upper bound.

The functions int_ and ito_ do not evaluate the expressions. To evaluate
the expressions, we have to call the following function.

• cal_int_(expr)

replaces the int_ in the expression expr with integrate which is a
default function of Maxima.

18

Example:

(%i1) cal_int_(int_(f(x),x,l,u));

(%o1) integrate(f(x),x,l,u)

We briefly describe some main functions related to Ito calculus.

• apply_ito_formula_(expr)

applies the Ito’s lemma to the expression expr.
Example:

(%i1)ito_(f1(s),s,w[1],0,t)*ito_(f2(s),s,w[2],0,t)

(%o1)ito_(f1(t_0),t_0,w[1],0,t)*ito_(f2(t_0),t_0,w[2],0,t)

(%i2)apply_ito_formula_(expr)

(%o2)ito_(ito_(f1(t_0),t_0,w[1],0,t_1)*f2(t_1),t_1,w[2],0,t)

+ito_(ito_(f2(t_0),t_0,w[2],0,t_1)*f1(t_1),t_1,w[1],0,t)

+corr_(w[2],w[1])*int_(f1(t_0)*f2(t_0),t_0,0,t)

• apply_fubini_(expr)

applies the Fubini’s theorem to the expression expr.
Example:

(%i1)expr:int_(ito_(f0(s),s,w,0,u),u,0,t);

(%o1)int_(ito_(f0(t_0),t_0,w,0,t_1),t_1,0,t)

(%i2)apply_fubini_(expr);

(%o2)int_(1,t_0,0,t)*ito_(f0(t_0),t_0,w,0,t)

-ito_(int_(1,t_0,0,t_1)*f0(t_1),t_1,w,0,t)

• sexpand_(expr)

applies the Fubini’s theorem and the Ito’s lemma to the expression
expr as much as possible.

The function sexpand_ is time consuming. For example, when we apply this

function to
(∫ T

0 f1(t) dW1(t)
)3 (∫ T

0 f2(t) dW2(t)
)3

, the function apply_ito_formula_

is called 364 times and the function apply_fubini_ is called 400 times. In
this case, the function takes about 122 seconds and 2728 megabytes.

To derive the approximation of the law of a diffusion process, we have
to apply the function sexpand_ to the products of multidimensional Ito
integrals. For example, sexpand_ is called more than 1000 times to derive
the 5th order approximation of the law of the SABR model. To reduce the
computational cost of sexpand_, we implement the result of the application
of the function sexpand_ to some products of multidimensional Ito integrals
as the formulae in Maxima. For example, Table 3.1 shows the amount of

19

computation time required to apply sexpand_ to products of the following
expressions:

F2 (T) =

∫ T

0
f1(s)

(∫ s

0
f2(t) dW2(t)

)
dW1(s),

F3 (T) =

∫ T

0
f1(s)

(∫ s

0
f2(t)

(∫ t

0
f3(u) dW3(u)

)
dW2(t)

)
dW1(s),

F4 (T) =

∫ T

0
f1(s)

(∫ s

0
f2(t)

(∫ t

0
f3(u)

(∫ u

0
f4(v) dW4(v)

)
dW3(u)

)
dW2(t)

)
dW1(s),

and

H2 (T) =

∫ T

0
h1(s)

(∫ s

0
h2(t) dW2(t)

)
dW1(s).

Table 3.1 shows that the amount of computation time of sexpand_ is im-
proved if the result of the applications of sexpand_ are implemented as for-
mulae.

Table 3.1: The amount of computation time of sexpand_.

without formulae with formulae

F3(T)F4(T) 6.940 (s) 0.499 (s)
F2(T)2F3(T) 67.483 (s) 2.249 (s)

F2(T)2H2(T)3 15617.693 (s) 18.530 (s)

3.3.2 Group B

We briefly describe some main functions related to conditional expectations.
The expectations of expressions that include Ito integrals are calculated with
the function expect_(expr). The function expect_(expr) applies sexpand_
to an expression expr and substitutes 0 to the expectations of Ito integrals .

• expect_(expr)

calculates the expectation of the expression expr.
Example:

(%i1)expect_((ito_(f(s),s,w,0,t)));

(%o1) 0

(%i2)expect_((ito_(f(s),s,w,0,t))ˆ2);

(%o2)int_(f(t_[1])ˆ2,t_[1],0,t)

20

The conditional expectations that are given in the form of the equation 2.1
are calculated with the function multi_cexpect_.

• multi_cexpect_(expr,C,c)

calculates the conditional expectation of the expression expr given C=c.
Example:

(%i1)define(F0(t),ito_(f0(s),s,w,l,u))$

(%i2)define(F1(t),ito_(f1(s),s,w,l,u))$

(%i3)define(F2(t),ito_(f2(s),s,w,l,u))$

(%i4)multi_cexpect_(F0(t),[F1(t),F2(t)],[x1,x2]);

(%o4) -(int_(f0(t_0)*f1(t_0),t_0,l,u)

*int_(f1(t_0)*f2(t_0),t_0,0,u)*x2

-int_(f1(t_0)ˆ2,t_0,0,u)*int_(f0(t_0)*f2(t_0),t_0,l,u)*x2

-int_(f0(t_0)*f1(t_0),t_0,l,u)*int_(f2(t_0)ˆ2,t_0,0,u)*x1

+int_(f0(t_0)*f2(t_0),t_0,l,u)

*int_(f1(t_0)*f2(t_0),t_0,0,u)*x1)

/(int_(f1(t_0)ˆ2,t_0,0,u)*int_(f2(t_0)ˆ2,t_0,0,u)

-int_(f1(t_0)*f2(t_0),t_0,0,u)ˆ2)

The function multi_cexpect_ is applied to conditional expectations in
the step 3 that is described in the beginning of the chapter 2. This function
sometimes generates long equations. For example, Table 3.2 shows the num-
ber of terms in equations that are applied the function multi_cexpect_ to.
Here G1, G2, and G3 are given by

G1 (T) =

∫ T

0
g1(s) dW1(s),

G2 (T) =

∫ T

0
g2(s) dW2(s),

G3 (T) =

∫ T

0
g3(s) dW3(s).

Table 3.2 shows that conditional expectations have a huge number of
terms when they are applied the function multi_cexpect_ to. So, to apply
Theorem 2.1 to the conditional expectations can be difficult when we derive
the higher order approximations without symbolic computing.

3.3.3 Group C

We briefly describe two main functions related to the asymptotic expansion
method. The function nth_term_asym_ and nth_joint_pdf_ derive the nth
terms that are given in the form of the equation (2.4) and (2.10), respectively.

21

Table 3.2: The number of terms in equations that are applied
multi_cexpect_ to.

the number of terms

E [F2(T)|G1(t) = x1, G2(T) = x2] 20
E [F3(T)|G1(t) = x1, G2(T) = x2] 78

E [F2(T)|G1(t) = x1, G2(T) = x2, G3(T) = x3] 291
E [F3(T)|G1(t) = x1, G2(T) = x2, G3(T) = x3] 3597

• nth_term_asym_(expr(t),S,[x1,..., xl],epsilon,n,t,&rest S1,S2,...)

derives the nth term of the asymptotic expansion of the expression
expr(t) with respect to epsilon.
expr(t) is the definition of S and [x1,..., xl] is the argument of S,
and S1,S2,... are stochastic process which S depends on.
Examples:

(%i1)define(def_S(T), s0+int_(r*S(s),s,0,T)

+epsilon*ito_(sigma*S(s,epsilon),s,w[1],0,T));

(%o1)def_S(T):=ito_(S(t_[2],epsilon),t_[2],w[1],0,T)*epsilon*sigma

+s0+int_(S(t_[1]),t_[1],0,T)*r

(%i2)nth_term_asym_(def_S(t),S,[t],epsilon,0,t)

(%o2)S[0](t):=s0*eˆ(r*t)

(%i3)nth_term_asym_(def_S(t),S,[t],epsilon,1,t);

(%o3)S[1](t):=ito_(eˆ(t_[5]*r),t_[5],w[1],0,t)*s0*sigma

• nth_joint_pdf_(pdfn,[S1,S2,...],[x1,x2,...],[s1,s2,...],n,epsilon)

calculates the nth term of an approximation of the joint probabil-
ity density function pdfn of [S1,S2,...] with respect to epsilon.
[x1,x2,...] is the arguments of [S1,S2,...] and [s1,s2,...] is
the arguments of pdfn.

One of the major goals of SymAE is the implementation of the func-
tion nth_joint_pdf_. This function generates the equation (2.5) and apply
Lemma 2.1 to the equation (2.5). We can straightforwardly implement this
function. However, this function depends on functions generated in Group
A and B, especially on sexpand_ and multi_cexpect_. As described in the
subsection 3.3.1, the function sexpand_ is time consuming. So to reduce the
computational cost of sexpand_ is important for nth_joint_pdf_. Further-
more, this function can sometimes generate long expressions, because the

22

equation (2.5) includes conditional expectations. The computation of the
conditional expectations requires a huge amount of symbolic manipulation
as described in the subsection 3.3.2.

3.4 Procedure of programming

We provide an example of deriving the approximation of a stochastic differ-
ential equation by using SymAE. The following is the code for approximating
the law of the SABR model by using the asymptotic expansion method.

First, we load SymAE in Maxima.

load("AsymptoticExpansionMaxima/v2.0/index.lisp");

The SABR model is given by

x (t) = x0 +

∫ t

0
ǫy(s)x(s)β dw1(s),

y (t) = y0 +

∫ t

0
ǫαy(s) dw2(s),

and represented as follows:

define(def_x(T),

x0

+ ito_(epsilon*sigma*y(s,epsilon)*x(s,epsilon)^beta,

s,w[1],0,T));

define(def_y(T),

y0 + ito_(epsilon*alpha*y(s),s,w[2],0,T));

The correlation of the Brownian motion is given by

d 〈w1, w2〉t = ρdt

and represented as follows:

23

correlation:true;

set_correlation_(rho,[w[1],w[2]]);

The model parameters x0, y0, β and α are declared as follows:

set_model_param_(x0,y0,beta,alpha);

The 0th, 1st, 2nd, and 3rd terms in the equation (2.3) are calculated as
follows:

nth_term_asym_(def_y(t),y,[t],epsilon,0,t);

nth_term_asym_(def_y(t),y,[t],epsilon,1,t);

nth_term_asym_(def_y(t),y,[t],epsilon,2,t);

nth_term_asym_(def_y(t),y,[t],epsilon,3,t);

nth_term_asym_(def_x(t),x,[t],epsilon,0,t,y);

nth_term_asym_(def_x(t),x,[t],epsilon,1,t,y);

nth_term_asym_(def_x(t),x,[t],epsilon,2,t,y);

nth_term_asym_(def_x(t),x,[t],epsilon,3,t,y);

The 0th, 1st, and 2nd terms in the equation (2.5) are clculated as follows:

nth_joint_pdf_(npdf0, [x,y], [t], [a,b], 0, epsilon);

nth_joint_pdf_(npdf1, [x,y], [t], [a,b], 1, epsilon);

nth_joint_pdf_(npdf2, [x,y], [t], [a,b], 2, epsilon);

The functions npdf0, npdf1, and npdf2 include diff and int, and these
function are calculated as follows:

define(npdf0(a,b),cal_pdf_(npdf0(a,b)));

define(npdf1(a,b),cal_pdf_(npdf1(a,b)));

define(npdf2(a,b),cal_pdf_(npdf2(a,b)));

24

The C++ code of the functions npdf0, npdf1, and npdf2 are generated
as follows:

make_c_class_file2_(t,"class_name","file_path",

’npdf0(a,b),’npdf1(a,b),’npdf2(a,b));

3.5 Conclusion

As we mentioned in the section 3.1, the asymptotic expansion method has
difficulties in the application and implementation. By using SymAE, the
higher order approximation of the law of the diffusion model can be easily
derived. Moreover, SymAE automatically generate the C++ code of the
approximations. As the section 3.4 shows, the programming code on Maxima
to derive the C++ code of the asymptotic expansion method is easy to
implement for users of SymAE.

The numerical examples of the approximations that are generated by
SymAE are shown in the chapter 4.

25

Chapter 4

Applications of the asymptotic

expansion method

4.1 Pricing interest rate swaptions in the SABR/LIBOR
market model

4.1.1 The SABR/LIBOR market model

We consider the interest rate swaps in the SABR/LIBOR market model. In
the pricing problem of interest rate derivatives, the volatility smile of forward
rates is important. The SABR model can capture the volatility smile and
the LIBOR market model is a market standard model in practice. So the
SABR/LIBOR market model is an important model in pricing interest rate
derivative.

Let Fi(t) denote a forward rate with respect to term [Ti, Ti+1] at time
t ≤ Ti and σi(t) denote a volatility function of forward rate Fi(t). Hence
i = 0, . . . , n and 0 = T0 < Ti < · · · < Tn. For k ∈ {1, . . . , n}, let Fk be
numeraire and the SABR/LIBOR market model is given by

dFj (t) = σj (t)Fj (t)βj×





−∑k
i=j+1

ρi,jδiσi (t) Fi (t)
βi

1 + δiFi (t)
dt + dW k+1

j (t) if j < k

dW k+1
j (t) if j = k

∑j
i=k+1

ρi,jδiσi (t)Fi (t)βi

1 + δiFi (t)
dt + dW k+1

j (t) if j > k

26

and

dσj (t) = αj (t)σj (t)×





−∑k
i=j+1

ri,jδiσi (t)Fi (t)βi

1 + δiFi (t)
dt + dZk+1

j (t) if j < k

dZk+1
j (t) if j = k

∑j
i=k+1

ri,jδiσi (t)Fi (t)βi

1 + δiFi (t)
dt + dZk+1

j (t) if j > k

where
{

W k+1
i

}
and

{
Zk+1

j

}
are Brownian motions with

d
〈
W k+1

i ,W k+1
j

〉

t
= ρi,j dt,

d
〈
W k+1

i , Zk+1
j

〉
t
= ri,j dt

and
d
〈
Zk+1

i , Zk+1
j

〉
t
= ηi,j dt

for i, j = 1, . . . , n.
We consider interest rate swaptions. The price of the payer swaption

V (t) at time t is given as the following expectation.

V (t) = Dµ (t) ETµ






M∑

i=µ

δiB (Tµ, Ti+1) (Fi (Tµ) − K)




+ ∣∣∣∣∣Ft




= DM (t) ETM+1






M∑

i=µ

δi (Fi (Tµ) − K)
M∏

j=i+1

(1 + δjFj (Tµ))




+ ∣∣∣∣∣Ft




= DM (t) ETM+1

[
(S (Tµ))+

∣∣∣∣∣Ft

]
,

where

S (Tµ) =

M∑

i=µ

δi (Fi (Tµ) − K)Hi(Tµ),

Hi(Tµ) =

M∏

j=i+1

(1 + δjFj (Tµ)) .

Here ETM+1 [·] means the expectation with numeraire FM+1 and filtration
Ft.

27

We apply the asymptotic expansion method to the forward rate Fj where
j < k. The stochastic differential equation that is perturbed by parameter
ǫ ∈ (0, 1] is given by

dF ǫ
j (t) = σǫ

j (t)F ǫ
j (t)βj


−ǫ2

k∑

i=j+1

ρi,jδiσ
ǫ
i (t)F ǫ

i (t)βi

1 + δiF ǫ
i (t)

dt + ǫdW k+1
j (t)




and

dσǫ
j (t) = αj (t)σǫ

j (t)


−ǫ2

k∑

i=j+1

ri,jδiσ
ǫ
i (t) F ǫ

i (t)βi

1 + δiF ǫ
i (t)

dt + ǫdZk+1
j (t)


 .

By the asymptotic expansion method, we obtain the nth order approxi-

mation of the law of S (Tµ) that is denoted by f
(n)
S . Now we have the nth

order approximation of the value V (0) that is given by

V (n) (0) = DM (0)

∫ ∞

0
sf

(n)
S (s) ds.

4.1.2 Numerical results

In the test case, we compute f
(n)
S for n = {1, 2, 3}, and in these cases the

integrals included in f
(n)
S can be analytically calculated.

We use the following model parameters

µ = 1, M = 6, δi = 1.0, Ti = i, βi = 0.8, Fi(0) = 0.01, σi(0) = 0.2.

We use values that are calculated with quasi-Monte Carlo simulation with
Ninomiya-Victoir method and Romberg extrapolation([15]). In the simula-
tions the number of sample paths is 2,000,000 and the numbers of division
are 16 + 32. Table 4.1 shows the numerical results. In this table, AE2, AE3
and QMC indicate the 2nd asymptotic expansion, 3rd order asymptotic ex-
pansion and the quasi-Monte Carlo simulation, respectively. The numerical
results show the 3rd order expansion is more accurate than 2nd order ex-
pansion. This fact is important in practice because we do not know that a
higher order expansion is more accurate.

28

Table 4.1: Prices of swaptions
Fixed Rate AE2 AE3 QMC AE2-QMC AE3-QMC

0.004 0.034708 0.035028 0.035041 -0.000333 -0.000013
0.006 0.024781 0.024911 0.024922 -0.000141 -0.000011
0.008 0.016780 0.016875 0.016932 -0.000152 -0.000057
0.010 0.010988 0.011102 0.011203 -0.000215 -0.000101
0.012 0.007113 0.007207 0.007328 -0.000215 -0.000121
0.014 0.004550 0.004682 0.004790 -0.000240 -0.000108
0.016 0.002778 0.003111 0.003151 -0.000373 -0.000040
0.018 0.001544 0.002105 0.002093 -0.000549 0.000012
0.020 0.000749 0.001356 0.001405 -0.000656 -0.000049

4.2 Application to exotic option pricing problems

4.2.1 Call option on the maximum of two assets in the CEV
model

The problem

We consider options that are called “call options on the maximum of two
assets”[5] and suppose that two assets S1 and S2 satisfy the following stochas-
tic differential equations:

dS1 (t) = r S1 (t) dt + σ1 S1 (t)β1 dW1 (t) ,

S1 (0) = S0
1

and

dS2 (t) = r S2 (t) dt + σ2 S2 (t)β2 dW2 (t) ,

S2 (0) = S0
2

where r ∈ R, σi and S0
i ∈ R+ for i = 1, 2. R+ means {x ∈ R;x ≥ 0}.

Here, (W1,W2) is a 2-dimensional Brownian motion with the instantaneous
correlation ρ ∈ [−1, 1]. Then the price of this option is given by

V (r, σ1, σ2,K, T) = E
[
exp (−r T) (max (S1 (T) , S2 (T)) − K)+

]

where K ∈ R+ and (x)+ means max (x, 0) for any x ∈ R.
To simplify the approximation of the law of (S1 (T) , S2 (T)), we define

diffusion processes Y1 (t) and Y2 (t) by

Yi (t) = exp (−rt)Si (t)
/
Si (0)

29

for i = 1, 2. The diffusion processes Y1 (t) and Y2 (t) satisfy the following
stochastic differential equations:

dYi (t) = σi (Si (0))
−(1−βi) exp (− (1 − βi) rt)Yi (t)

βi dWi (t) ,

Yi (0) = 1

for i = 1, 2. We consider the following perturbed processes:

dY ǫ
i (t) = ǫσi (Si (0))

−(1−βi) exp (− (1 − βi) rt)Y ǫ
i (t)βi dWi (t) ,

Y ǫ
i (0) = 1

for i = 1, 2.
By MAE, we obtain the nth order approximation of the low of (Y1 (T) , Y2 (T))

that is denoted by f
(n)
Y . Now we have the nth order approximation of the

value V (r, σ1, σ2,K, T) that is given by

V (n) (r, σ1, σ2,K, T)

=

∫ ∞

−∞

∫ ∞

−∞

(
max

(
S0

1y1, S
0
2y2

)
− exp (−rT)K

)+
f

(n)
Y (y1, y2) dy2 dy1.

(4.1)

Numerical results

We show the accuracy and the computational cost of the approximation in

the equation (4.1). We compute f
(n)
Y for n = {1, 2, 3, 4, 5}, and in these

cases the integrals included in f
(n)
S can be analytically calculated. We use

the following parameters:

S0
i = 1, βi = 0.7, σi = 0.4, ρ = −0.3, r = 0

for i = 1, 2.
We consider the values calculated with quasi-Monte Carlo simulation

[9, 14] as the true values of the call options on the maximum of two assets.
To calculate these values faster than the Euler-Maruyama scheme, we use the
higher-order weak approximation scheme [13, 15]. We use Ninomiya-Victoir
scheme with Romberg extrapolation [15] as a discretization scheme. We use
8+16 time steps per year as the number of partitions and generate 109 paths
in each simulation. We consider the values calculated with these simulations
as their limit values in the following experiments.

Table 4.2 shows the values that are computed with quasi-Monte Carlo
simulation and the approximation V (n). In this table, QMC and MAEn for

30

n ∈ {1, 2, 3, 4, 5} indicate quasi-Monte Carlo simulation and the nth order
approximation, respectively. IV indicates the implied volatility and these
values are calculated with the Black-Scholes formula for the European call
option with underlying asset max (S1, S2), strike K and maturity T .

These numerical results show that the 3rd approximation is accurate
within 1 bp. Thus we can say that the 3rd approximation is accurate enough
in practice.

Table 4.2: Numerical results of call options on the maximum of two assets
in the CEV model.

QMC MAE1 MAE2 MAE3 MAE4 MAE5

K = 0.8

Price 0.46162 0.46407 0.46513 0.46165 0.46162 0.46159
IV 1.02996 1.03797 1.04146 1.03004 1.02994 1.02984

Error(bps) 80.2 115.0 0.8 -0.1 -1.1

K = 0.9

Price 0.37327 0.37260 0.37640 0.37327 0.37326 0.37324
IV 0.87427 0.87230 0.88346 0.87426 0.87425 0.87419

Error(bps) -19.6 91.9 -0.1 -0.2 -0.8

K = 1.0

Price 0.29407 0.28823 0.29673 0.29406 0.29407 0.29405
IV 0.75467 0.73897 0.76183 0.75463 0.75465 0.75460

Error(bps) -157.0 71.6 -0.4 -0.1 -0.6

K = 1.1

Price 0.22605 0.21379 0.22842 0.22605 0.22604 0.22603
IV 0.66458 0.63336 0.67064 0.66458 0.66456 0.66453

Error(bps) -312.1 60.6 0.1 -0.1 -0.5

K = 1.2

Price 0.16993 0.15148 0.17226 0.16994 0.16993 0.16992
IV 0.59757 0.55131 0.60341 0.59760 0.59756 0.59754

Error(bps) -462.7 58.4 0.3 -0.1 -0.3

The amount of computation time required to calculate the approximation
V (n) is summarized in Table 4.3. This table shows that the approximation
can be calculated in less than a millisecond. The CPU used in this experi-
ment is Intel Core i7 by Intel Corporation.

31

Table 4.3: CPU time required to calculate the approximations.
Method MAE1 MAE2 MAE3 MAE4 MAE5

CPU time (s) 5.1 × 10−6 1.9 × 10−5 7.1 × 10−5 2.1 × 10−4 5.3 × 10−4

Remark

We use the implied volatilities to compare the approximation formula with
the benchmarks. This is because the relative error of the prices of the fi-
nancial derivatives is not suitable to evaluate the error as we can reduce the
relative error by adding some cash flows to the payoff of the derivatives.

4.2.2 Average strike option in the BS model

The problem

We consider an average strike option that is a type of the Asian option.
The strike of this option is an average of the underlying asset rate over a
predetermined period of time.

We consider two diffusion processes S and A whose dynamics are given
by

dS (t) = rS (t) dt + σS (t) dW (t) ,

S (0) = S0,

and

dA (t) = S (t) dt,

A (t) = 0,

where r, σ and S0 are in R+. Then the price of the average strike option is
given by

V (S0, r, σ, T, η) = E

[
e−rT

(
ηS (T) − ηA (T)

T

)+
]

(4.2)

where η is 1 or −1.

To obtain a good approximation of V in the equation (4.2), we introduce
an equivalent measure Q∗ given by

dQ

dQ∗ = Z (T)

32

where

Z (t) = exp

(
− r2

2σ2
t +

r

σ
W ∗ (t)

)
,

for any t ∈ [0, T] and W ∗ is a Brownian motion under Q∗. So

S (t) = S0 exp

(
−σ2

2
t + σW ∗ (t)

)

and

A (t) =

∫ t

0
S (u) du

hold.
Now we have

V (S0, r, σ, T, η) = E∗
[
e−rT Z (T)

(
ηS (T) − ηA (T)

T

)+
]

(4.3)

where E∗ [·] is the expectation under Q∗.
We perturb S, A and Z by putting a small number ǫ ∈ (0, 1] and the

dynamics of the perturbed processes Sǫ, Aǫ and Zǫ are

dSǫ (t) = ǫσSǫ (t) dW ∗ (t) ,

Sǫ (0) = S0,

dAǫ (t) = Sǫ (t) dt,

Aǫ (0) = 0,

and

dZǫ (t) =
ǫr

σ
Zǫ (t) dW ∗ (t) ,

Zǫ (0) = 1.

By applying MAE to ǫW ∗ and Aǫ, we obtain the nth order approximation

of the law of W ∗ (T) and A (T) that is denoted by f
(n)
W ∗,A. We then have an

nth order approximation of V given by

V (n) (S0, r, σ, T, η)

=

∫

R

∫

R

e
−

“

r+ r2

2σ2

”

T+ r
σ

w
(

ηS0e
−σ2

2
T+σw − η

a

T

)+

f
(n)
W ∗,A (w, a) dw da

(4.4)

33

Numerical results

We show the accuracy and the computational cost of the approximation in
the equation (4.4). The implied volatilities are calculated by using the Black-

Scholes formula for the plain vanilla option with strike E

[∫ T
0 St dt

]/
T and

maturity T . We compute f
(n)
W ∗,A for n = {1, 2, 3, 4}, and in these cases the

integrals included in f
(n)
S can be analytically calculated.

We use the following parameters:

S0 = 1, r = 0.05, σ = 0.3.

We consider the values calculated with quasi-Monte Carlo simulation
as the true values of the average strike options. We use Ninomiya-Victoir
scheme with Romberg extrapolation [15] as a discretization scheme. We use
32+64 time steps per year as the number of partitions and generate 109 paths
in each simulation. We consider the values calculated with these simulations
as their limit values in the following experiments.

The results are in Table 4.4 and Table 4.5. In these tables, QMC and
MAEn for n ∈ {1, 2, 3, 4} indicate quasi-Monte Carlo simulation and the
nth order approximation. Error indicates the difference between implied
volatility of QMC and that of MAEn. The results show that the 3rd order
approximation is accurate within 1 bp in cases T = 0.25 and T = 0.5, and
within 5 bps in cases T = 1 and T = 2.

The amount of computation time required to calculate the approximation
V (n) is summarized in Table 4.6. This table shows that the approximation
can be calculated in less than 0.1 seconds. The CPU used in this experiment
is Intel Core i7 by Intel Corporation.

4.3 American option pricing

We introduce a new method for pricing American options on multidimen-
sional diffusion models when there is a finite but possibly large number of
exercise dates. This new method that is called the multidimensional asymp-
totic expansion mesh method (MAEM) is designed to solve general optimal
stopping problems. This method is similar to the stochastic mesh method
[1]. The stochastic mesh method assumes the law of the diffusion model
that describes the asset prices is given. The mesh of the state state space
is constructed by generating the sample paths of the diffusion model. Our
method approximates the law of the diffusion models and deterministically
constructs the mesh of the state space.

34

Table 4.4: Numerical results of average strike put options.

QMC MAE1 MAE2 MAE3 MAE4

T = 0.25

Price 0.03177 0.03194 0.03169 0.03177 0.03176
IV 0.20022 0.20111 0.19981 0.20022 0.20021

Error(bps) 8.9 -4.1 -0.1 -0.1

T = 0.5

Price 0.04355 0.04402 0.04332 0.04356 0.04355
IV 0.18256 0.18428 0.18177 0.18260 0.18258

Error(bps) 17.3 -7.9 0.4 0.2

T = 1

Price 0.05914 0.06046 0.05850 0.05922 0.05923
IV 0.17983 0.18322 0.17816 0.18002 0.18006

Error(bps) 33.9 -16.7 1.9 2.3

T = 2

Price 0.07958 0.08317 0.07761 0.07982 0.08042
IV 0.19194 0.19865 0.18826 0.19239 0.19351

Error(bps) 67.0 -36.8 4.5 15.6

Let the exercise dates be 0 = t0 < t1 < · · · < tN = T , the payoff function
be h : {t0, . . . , tN}×RD → R and X (t) be a diffusion process on RD with a
fixed initial state X (0) = x0. We suppose that X (t) satisfies the following
stochastic differential equation:

dX (t) = α (X (t)) dt + σ (X (t)) dW (t) ,

X (0) = x0

where x0 ∈ RD. We suppose that α and σ satisfy the condition (2.2).

The value of this option is given by

V = max
τ∈T

E [h (τ,X (τ))]

where T is a set of {Ft}0≤t≤T -stopping times that take values in the set
{t0, . . . , tN}. We can calculate V with backwards induction and the value at
time tn in state x ∈ RD is

V (tn, x) = max (h (tn, x) , E [V (tn+1,X (tn+1)) |X (tn) = x]) (4.5)

35

Table 4.5: Numerical results of average strike call options.

QMC MAE1 MAE2 MAE3 MAE4

T = 0.25

Price 0.03807 0.03827 0.03799 0.03807 0.03807
IV 0.20063 0.20166 0.20022 0.20062 0.20062
Error(bps) 10.3 -4.1 -0.1 -0.1

T = 0.5

Price 0.05626 0.05684 0.05604 0.05627 0.05626
IV 0.18369 0.18579 0.18290 0.18372 0.18371
Error(bps) 21.0 -7.9 0.4 0.2

T = 1

Price 0.08499 0.08673 0.08435 0.08507 0.08508
IV 0.18307 0.18755 0.18142 0.18326 0.18330
Error(bps) 44.7 -16.6 1.9 2.3

T = 2

Price 0.13305 0.13834 0.13112 0.13329 0.13388
IV 0.20146 0.21137 0.19785 0.20191 0.20302
Error(bps) 99.1 -36.1 4.5 15.7

Table 4.6: CPU time required to calculate the approximations.
Method MAE1 MAE2 MAE3 MAE4

CPU time (s) 4.9 × 10−3 6.2 × 10−3 8.4 × 10−3 2.4 × 10−2

for i = 0, . . . , N−1 and V (tN , x) = h (tN , x). We are interested in computing
V ≡ V (0, x0). However the numerical calculation of V is usually difficult
because the law of {X (t1) , . . . ,X (tN)} is not necessarily known in many
practical problems. As described in the chapter 1, a number of studies on
this problem have been conducted(see [4]).

4.3.1 The mesh method

We introduce the mesh method for pricing American options on multidimen-
sional diffusion process. We abbreviate X (tn), V (tn, ·) and h (tn, ·) as Xn,
Vn (·) and hn(·), respectively. The mesh method begins with the construction

36

of a mesh on {t0, . . . , tN} × KM where the set KM is defined by

KM =

D∏

k=1

[−akM, bkM] ⊂ RD

for M ∈ N, ak and bk are positive numbers.

Suppose that Xn+1 has density fn (x, ·) : RD → R when Xn = x ∈ RD.
To introduce the method, we provide some definitions. We define an adapted

process X(M) =
(
X

(M)
1 , . . . ,X

(M)
D

)
as follows:

X
(M)
k (t) = max (min (X (t) ,−akM) , bkM) (4.6)

for k ∈ {1, . . . ,D} and M ∈ N, and abbreviate X(M) (tn) as X
(M)
n . We

define a set of functions
{

f
(M)
n : KM × KM → R

}
n=1,...,N

by

f (M)
n (x, y) = fn (x, y)

for x and y ∈ KM .

We also define sets of functions
{

V
(M)
n : KM → R

}
n=0,...,N

and
{

V
(m,M)
n : KM → R

}
n=0,...,N

m∈N

by

V (M)
n (x) =





hn (x) if n = N

max

(
hn (x) ,

∫

KM

V
(M)
n+1 (y) f (M)

n (x, y) dy

)
if n < N

(4.7)

and

V (m,M)
n (x) =





hn (x) if n = N

max

(
hn (x) ,

∑

i∈Im

V
(m,M)
n+1 (yi) f (M)

n (x, yi)∆
m

)
if n < N

(4.8)

where for k ∈ {1, . . . ,D} and j ∈ {1, . . . , 2m}, ∆m
k = M(bk+ak)

2m , ∆m =∏D
k=1 ∆m

k , am
k,j = −akM+∆m

k (j − 1), bm
k,j = −akM+∆m

k j, Im = {1, . . . , 2m}D

and Cm
i =

∏D
k=1[a

m
k,ik

, bm
k,ik

) for i ∈ Im.

Theorem 4.1. Suppose that for any n ∈ {0, . . . , N}, hn (·) is continuous
and bounded on RD, and that for any n ∈ {0, . . . , N} and M ∈ N, fn (·, ·) is
continuous on RD × RD.

37

Then for any n ∈ {0, . . . , N} and x ∈ RD

lim
M→∞

lim
m→∞

∣∣∣V (m,M)
n (x) − Vn (x)

∣∣∣ = 0 (4.9)

holds.

To prove Theorem 4.1, we introduce the following lemma.

Lemma 4.1. Suppose that the conditions are the same as in Theorem 4.1.
Then for any n ∈ {0, . . . , N} and M ∈ N

lim
m→∞

sup
x∈KM

∣∣∣V (m,M)
n (x) − V (M)

n (x)
∣∣∣ = 0 (4.10)

holds.

Proof of Lemma 4.1. We define V
(m,M)
n : KM → R and V

(m,M)
n : KM → R

for m ∈ N and n ∈ {0, . . . , N} by

V
(m,M)
n (x) =





hn (x) if n = N

max

(
hn (x) ,

∑

i∈Im

sup
y∈Cm

i

V
(m,M)
n+1 (y) f (M)

n (x, y)∆m

)
if n < N

(4.11)
and

V (m,M)
n (x) =





hn (x) if n = N

max

(
hn (x) ,

∑

i∈Im

inf
y∈Cm

i

V
(m,M)
n+1 (y) f (M)

n (x, y)∆m

)
if n < N.

First we prove

V (m,M)
n (x) ≤ V

(m,M)
n (x) (4.12)

for any m ∈ N, n ∈ {0, . . . , N} and x ∈ KM by induction, proceeding
backwards from n = N to n = 0. When n = N , by the definition of

V
(m,M)
n given by the equation (4.11), we have the equation V

(m,M)
N (x) =

V
(m,M)
N (x). Then we have the inequality (4.12) for n = N . We assume that

38

the inequality (4.12) holds for n = n′ + 1. Then

V
(m,M)
n′ (x) = max

(
hn′ (x) ,

∑

i∈Im

V
(m,M)
n′+1 (yi) f

(M)
n′ (x, yi)∆

m

)

≤ max

(
hn′ (x) ,

∑

i∈Im

V
(m,M)
n′+1 (yi) f

(M)
n′ (x, yi)∆

m

)

≤ max

(
hn′ (x) ,

∑

i∈Im

sup
y∈Cm

i

V
(m,M)
n′+1 (y) f

(M)
n′ (x, y)∆m

)

= V
(m,M)
n′ (x) .

Thus V
(m,M)
n′ (x) ≤ V

(m,M)
n′ (x). This proves that the inequality (4.12) holds

for n = n′. Since the inductive step has been proved, it has now been proved
by induction that the inequality (4.12) holds for any n ∈ {0, . . . , N}.

Using a method similar to that employed in the proof of the inequal-
ity (4.12), we can show that

V (m,M)
n (x) ≤ V (m,M)

n (x)

for any n ∈ {0, . . . , N}. Now, we have

V (m,M)
n (x) ≤ V (m,M)

n (x) ≤ V
(m,M)
n (x) . (4.13)

Repeating the discussion we also have

V (m,M)
n (x) ≤ V (M)

n (x) ≤ V
(m,M)
n (x) . (4.14)

Before we prove the equation (4.10), we define statements S1 (n), S2 (n),
S3 (n) and S4 (n) for any n ∈ {0, . . . , N} by

S1 (n) : V
(M)
n is continuous on KM ,

S2 (n) : V
(m,M)
n is continuous on KM for any m ∈ N,

S3 (n) : V
(m,M)
n (x) ≥ V

(m+1,M)
n (x) for any x ∈ KM and m ∈ N,

S4 (n) : lim
m→∞

sup
x∈KM

∣∣∣V (m,M)
n (x) − V (M)

n (x)
∣∣∣ = 0.

39

We prove that S1 (n), S2 (n), S3 (n) and S4 (n) are true for any n ∈
{0, . . . , N} by induction, proceeding backwards form n = N to n = 0.

By the definitions of V
(M)
N and V

(m,M)
N , we have

V
(M)
N (x) = hN (x) = V

(m,M)
N (x)

for any x ∈ KM . Since hN is continuous on KM then S1 (N), S2 (N), S3 (N)
and S4 (N) are true.

We prove that if S1 (n′ + 1), S2 (n′ + 1), S3 (n′ + 1) and S4 (n′ + 1) are
true for some n′ ∈ {0, . . . , N − 1}, then S1 (n′), S2 (n′), S3 (n′) and S4 (n′)
are true.

hn and f
(M)
n are continuous on KM and KM ×KM , respectively. By the

assumptions that S1 (n′ + 1) and S2 (n′ + 1) are true, V
(M)
n′+1 and V

(m,M)
n′+1 are

continuous on KM . Then V
(M)
n′ and V

(m,M)
n′ are continuous on KM by the

definition of V
(M)
n′ and V

(m,M)
n′ . That means S1 (n′) and S2 (n′) are true.

By the definition of V
(m,M)
n′ (x), we have

V
(m,M)
n′ (x) = max

(
hn′ (x) ,

∑

i∈Im

sup
y∈Cm

i

V
(m,M)
n′+1 (y) f

(M)
n′ (x, y)∆m

)

≥ max

(
hn′ (x) ,

∑

i∈Im

sup
y∈Cm

i

V
(m+1,M)
n′+1 (y) f (M)

n (x, y)∆m

)

≥ max


hn′ (x) ,

∑

i∈Im+1

sup
y∈Cm+1

i

V
(m+1,M)
n′+1 (y) f

(M)
n′ (x, y)∆m+1




= V
(m+1,M)
n′ (x)

(4.15)

The first inequality in (4.15) is ensured by the statement S3 (n′ + 1) and the
second inequality in (4.15) is ensured by the fact that

{
Cm+1

i

}
i∈Im+1

is a

refinement of {Cm
i }i∈Im

. Now we have proved that S3 (n′) is true.
Finally we show that S4 (n′) is true. By the inequalities (4.14) and the

assumption that S4 (n′ + 1) is true, for any ǫ > 0, there exists m∗ ∈ N such
that for any m > m∗

0 ≤ sup
x∈KM

(
V

(m,M)
n′+1 (x) − V

(M)
n′+1 (x)

)
< ǫ

and then we have

sup
x∈KM

V
(m,M)
n′+1 (x) < sup

x∈KM

V
(M)
n′+1 (x) + ǫ. (4.16)

40

We also have

lim
m→∞

∑

i∈Im

sup
y∈Cm

i

V
(M)
n′+1 (y) f

(M)
n′ (x, y)∆m =

∫

KM

V
(M)
n+1 (y) f (M)

n (x, y) dy

(4.17)
and

lim
m→∞

∑

i∈Im

sup
y∈Cm

i

f
(M)
n′ (x, y)∆m =

∫

KM

f (M)
n (x, y) dy ≤ 1. (4.18)

Hence for any m > m∗ and x ∈ KM we have
∣∣∣V (m,M)

n′ (x) − V
(M)
n′ (x)

∣∣∣

≤
∑

i∈Im

sup
y∈Cm

i

V
(m,M)
n′+1 (y) f (M)

n (x, y)∆m −
∫

KM

V
(M)
n′+1 (y) f (M)

n (x, y) dy

≤
∑

i∈Im

sup
y∈Cm

i

(
V

(M)
n′+1 (y) + ǫ

)
f

(M)
n′ (x, y)∆m −

∫

KM

V
(M)
n′+1 (y) f (M)

n (x, y) dy.

(4.19)

The first inequality in (4.19) is ensured by the fact that |max (x1, x2) − max (x1, x3)| ≤
|x2 − x3| for any x1, x2 and x3 ∈ R and the inequalities (4.14). The second
inequality in (4.19) is ensured by the inequality (4.16). Hence by (4.17),
(4.18) and (4.19) we have

lim
n′→∞

∣∣∣V (m,M)
n′ (x) − V

(M)
n′ (x)

∣∣∣ ≤ ǫ

for any ǫ > 0 and x ∈ KM .

Now by Dini’s theorem,
{

V
(m,M)
n′ (x)

}
m∈N

converges uniformly to V
(M)
n′ (x).

Then S4 (n′) is true.
Since the inductive step has been proved, it has now been proved by in-

duction that S1 (n), S2 (n), S3 (n) and S4 (n) are true for any n ∈ {0, . . . , N}.
Using the method which proved that S4 (n) is true for any n ∈ {0, . . . , N},

we can show that the following statement:

S
′
4 (n) : lim

m→∞
sup

x∈KM

∣∣∣V (m,M)
n (x) − V (M)

n (x)
∣∣∣ = 0

holds for any n ∈ {0, . . . , N}.
Then we have

lim
m→∞

sup
x∈KM

∣∣∣V (m,M)
n (x) − V (M)

n (x)
∣∣∣ = 0

for any n ∈ {0, . . . , N}.

41

Now we prove Theorem 4.1.

Proof of Theorem 4.1. By the condition (2.2) and the definition (4.6)

lim
M→∞

X(M) (t) = X (t) (4.20)

holds for t ∈ [0, T].

We define functions Ṽ
(M)
n : RD → R and f̃

(M)
n : RD × RD → R by

Ṽ (M)
n (x) =

{
V

(M)
n (x) if x ∈ KM

0 if x 6∈ KM

for x ∈ RD, and

f̃ (M)
n (x, y) =

{
f

(M)
n (x, y) if (x, y) ∈ KM × KM

0 if (x, y) 6∈ KM × KM

for (x, y) ∈ RD × RD, respectively.
We also define statements S1 (n), S2 (n) and S3 (n) by

S1 (n) : Ṽ
(M)
n is bounded on RD,

S2 (n) : Vn is bounded on RD,

S3 (n) : lim
M→∞

∣∣∣Ṽ (M)
n (x) − Vn (x)

∣∣∣ = 0 for any x ∈ RD.

We prove S1 (n), S2 (n) and S3 (n) are true for n ∈ {0, . . . , N} by induc-
tion, proceeding backwards from n = N to n = 0. We note that for any
x ∈ RD, there exists M∗ ∈ N such that x ∈ KM∗

. By the definitions of

Ṽ
(M)
N and VN , and the equation (4.20), S1 (N), S2 (N) and S3 (N) are true.

Next we suppose that S1 (n′ + 1), S2 (n′ + 1) and S3 (n′ + 1) are true for
some n′ ∈ {0, . . . , N − 1}. By the assumptions that hn′ is bounded on RD

and the definitions of Ṽ
(M)
N and VN , S1 (n′) and S2 (n′) are true.

Finally, we prove that S3 (n′) is true. By the definitions of Ṽ
(M)
n′ and Vn′ ,

we have

lim
M→∞

∣∣∣Ṽ (M)
n′ (x) − Vn′ (x)

∣∣∣

≤ lim
M→∞

∣∣∣∣
∫

RD

Ṽ
(M)
n′+1 (y) f̃

(M)
n′ (x, y) dy − E [Vn′+1 (Xn′+1)|Xn′ = x]

∣∣∣∣

≤ lim
M→∞

∫

RD

∣∣∣Ṽ (M)
n′+1 (y) f̃

(M)
n′ (x, y) − Vn′+1 (y) fn (x, y)

∣∣∣ dy

=

∫

RD

lim
M→∞

∣∣∣Ṽ (M)
n′+1 (y) f̃

(M)
n′ (x, y) − Vn′+1 (y) fn (x, y)

∣∣∣ dy

(4.21)

42

The last equality in (4.21) is ensured by Lebesgue’s dominated convergence

theorem. By the definition of f̃
(M)
n′ , the assumption S3 (n′ + 1) are true, and

the equation (4.20), we have

lim
M→∞

∣∣∣Ṽ (M)
n′+1 (y) f̃

(M)
n′ (x, y) − Vn′+1 (y) fn (x, y)

∣∣∣

≤ lim
M→∞

∣∣∣Ṽ (M)
n′+1 (y) − Vn′+1 (y)

∣∣∣ f̃ (M)
n′ (x, y)

+ lim
M→∞

Vn′+1 (y)
∣∣∣f̃ (M)

n′ (x, y) − fn (x, y)
∣∣∣

=0

Thus S1 (n), S2 (n) and S3 (n) are true for n ∈ {0, . . . , N}.
Now we prove the equation (4.9). By Lemma 4.1 and the fact that S3 (n)

is true, we have

lim
M→∞

lim
m→∞

∣∣∣V (m,M)
n (x) − Vn (x)

∣∣∣

≤ lim
M→∞

lim
m→∞

(∣∣∣V (m,M)
n (x) − V (M)

n (x)
∣∣∣+
∣∣∣V (M)

n (x) − Ṽ (M)
n (x)

∣∣∣+
∣∣∣Ṽ (M)

n (x) − Vn (x)
∣∣∣
)

= 0.

By Theorem 4.1, V
(m,M)
n converges to Vn when m → ∞ and M → ∞.

So we calculate V
(m,M)
n instead of Vn in the evaluations of the American

options.

4.3.2 The mesh method with simulation

In the method in the previous chapter, the computational effort in the recur-
sive pricing of the equation (4.24) is proportional to m2D×N . Here m means
the number of nodes at each time and N means the number of divisions for
time. To reduce the computing costs, we introduce the combination of the
mesh method and Monte Carlo or quasi-Monte Carlo simulation.

As discussed in the subsection 4.3.1, we can construct a mesh struc-
ture that describes the optimal exercise boundary. Let τ (m,M) denote the
{Ft}0≤t≤T -stopping time that is defined by the mesh:

V̂ (m,M) (tn, x) =





0 if n = N∑

i∈Im

V (m,M) (tn+1, yi) fn(x, yi)∆
m if n = 0, . . . , N − 1

(4.22)

43

and

V̂ (tn, x) =

{
0 if n = N

E [V (tn,Xn+1) |Xn = x] if n = 0, . . . , N − 1.

Now τ (m,M) is given by

τ (m,M) = min
(
t : h (t,Xn) ≥ V̂ (m,M) (t,Xn) , t ∈ {t1, t2, . . . , tN}

)
.

We have

E
[
h
(
τ (m,M),X

(
τ (m,M)

))]
≤ max

τ∈T
E [h (τ,X (τ))]

for any m ∈ N.

The convergence of E
[
h
(
τ (m,M),X

(
τ (m,M)

))]
is given by the following

theorem.

Theorem 4.2. Suppose that the conditions are the same as in Theorem 4.1
and in addition

P
(
h (t,Xt) = V̂ (t,Xt)

)
= 0.

Then

lim
M→∞

lim
m→∞

E
[
h
(
τ (m,M),X

(
τ (m,M)

))]
= E [h (τ,X (τ))] .

Proof. First we will show that lim
M→∞

lim
m→∞

P
(
τ (m,M) 6= τ

)
= 0. There ex-

ists U ∈ R such that
∣∣∣V̂ (m,M) (tn, x) − V̂ (tn, x)

∣∣∣ < U for any x ∈ K, be-

cause V̂ (tn, ·) and V̂ (m,M) (tn, ·) are continuous on KM by Theorem 4.1. By
Lebesgue’s dominated convergence theorem,

lim
M→∞

lim
m→∞

E

[∣∣∣V̂ (m,M) (tn,Xn) − V̂ (tn,Xn)
∣∣∣
]

= 0.

The above expression implies that for any ǫ > 0

lim
M→∞

lim
m→∞

P
(∣∣∣V̂ (m,M) (tn,Xn) − V̂ (tn,Xn)

∣∣∣ > ǫ
)

= 0. (4.23)

Hence τ (m,M) 6= τ means that τ (m,M) stops before τ or τ (m,M) does not stop

44

at time τ . Thus

P
(
τ (m,M) 6= τ

)
≤

N−1∑

n=0

P
(
V̂ (m,M) (tn,Xn) ≤ h (n,Xn) < V̂ (tn,Xn)

)

+ P
(
h (τ,Xτ) < V̂ (m,M) (τ,Xτ)

)

≤
N−1∑

n=0

P
(
V̂ (m,M) (tn,Xn) ≤ h (tn,Xn) < V̂ (tn,Xn)

)

+
N−1∑

n=0

P
(
V̂ (tn,Xn) ≤ h (tn,Xn) < V̂ (m,M) (tn,Xn)

)

holds. Under the assumptions in this theorem, there exists ǫ > 0 such that

P
(
τ (m,M) 6= τ

)
≤ 2

N−1∑

n=0

P
(∣∣∣V̂ (m,M) (tn,Xn) − V̂ (tn,Xn)

∣∣∣ > ǫ
)

→ 0

when m → ∞ and M → ∞. The inequality is ensured by the equation (4.23).
Now we can prove the statement in Theorem 4.2 as follows:

0 ≤ E [h (τ,X (τ))] − E

[
h
(
τ (m,M),X

(
τ (m,M)

))]

= E

[
h (τ,X (τ)) − h

(
τ (m,M),X

(
τ (m,M)

))]

= E

[
h (τ,X (τ)) − h

(
τ (m,M),X

(
τ (m,M)

))
; τ (m,M) 6= τ

]

≤ E
[
1τ (m,M) 6=τh (τ,X (τ))

]

≤ E

[
1{τ (m,M) 6=τ}

] 1
2

E

[
h (τ,X (τ))2

] 1
2

≤ P
(
τ (m,M) 6= τ

) 1
2

E

[
h (τ,X (τ))2

] 1
2

→ 0

when m → ∞ and M → ∞. The third inequality is ensured by Hölder’s
inequality.

4.3.3 Multidimensional asymptotic expansion mesh method

When fn (x, ·) is known explicitly for any n ∈ {0, 1, . . . , N} and x ∈ RD,

we can calculate the value of V
(m,M)
n (x). This condition is not necessarily

45

satisfied in many practical problems. So we use MAE to obtain an approx-
imation of the law of Xn+1 given Xn = x. By using this approximation,

we can approximate V
(m,M)
n defined by the equation (4.8) in the previous

section. The lth order approximation of V
(m,M)
n is given by

V (m,M)(l)
n (x) =





hn (x) if n = N

max

(
hn (x) ,

∑

i∈Im

V
(m,M)(l)
n+1 (yi) f (M)(l)

n (x, yi)∆
m

)
if n < N

(4.24)

where f
(M)(l)
n is the lth order approximation of f

(M)
n . We call the method

that is the combination of MAE and the mesh method the multidimensional
asymptotic expansion mesh method (MAEM). We also call the combina-
tion of MAE and the mesh with simulation the multidimensional asymptotic
expansion mesh method with simulation (MAEMS).

In this thesis, the combination of the mesh method and MAE is proposed,
but the mesh method is available if the law of the diffusion process or its
approximation are given.

4.3.4 Practical remark

To reduce the computational cost of the method described in the subsec-
tions 4.3.1 and 4.3.2, we provide some approximations.

First we use a stopping time τ ′M instead of τM defined by (4.6). The
stopping time τ ′M is defined by

X
′(M)
k (tn) = max (min (X (t) ,−ak (n)M) , bk (n)M) (4.25)

for k ∈ {1, . . . ,D}, M ∈ N, and ak(n) and bk(n) ∈ R+ .

Second we construct the mesh with the number of time steps N ′ ∈ N

that satisfies N ′ ≤ N and approximate V̂ (m,M) defined by (4.22) by

V̂ ′(m,M)
(tn, x) =

V̂ (m,M) (tn′+1, x) − V̂ (m,M) (tn′ , x)

tn′+1 − tn′

(tn − tn′)+V̂ (m,M) (tn′ , x)

(4.26)
for all n ∈ {0, . . . , N − 1} and x ∈ RD where n′ ∈ {0, . . . , N ′ − 1} that
satisfies tn′ ≤ tn < tn′+1.

Third to reduce the error of numerical integrations involved in (4.24), we

46

use

V ′(m,M)(l)
n (x) =





hn (x) if n = N

max


hn (x) ,

∑

i∈Im

V
′(m,M)(l)
n+1 (yi)

f
(M)(l)
n (x, yi)∆

m

∑

i∈Im

f (M)(l)
n (x, yi)∆

m


 if n < N

(4.27)
instead.

Fourth we use the number of division m′(n) at time tn for n ∈ {1, . . . , N}
instead of m. m′(n) is given by

m′(n) =

⌊
mN − m1

tN − t1
(tn − t1) + m1

⌋
(4.28)

for m1 and mN ∈ N. Here ⌊x⌋ means the largest integer not greater than x
for x ∈ R.

4.3.5 Numerical examples

We calculate the prices of the American put options in the Heston model by
using MAEM and MAEMS, and test the practical feasibility of the methods.
We use quasi-Monte Carlo method in MAEMS in the following experiments.

The Heston model is given by

dS (t) = rS (t) dt +
√

VtS (t) dW 1 (t) ,

dV (t) = κ (θ − V (t)) dt + ω
√

V (t) dW 2 (t)

where d
〈
W 1,W 2

〉
t
= ρdt, S (0) = S0 and V (0) = V0. We then have

S (t) = S0 exp (rt) exp (Z (t))

where

Z (t) = −
∫ t

0

V (u)

2
du +

∫ t

0

√
V (u) dW 1 (u) .

We consider the following perturbed processes of V (t) and Z (t):

dV ǫ (t) = κ (θ − V ǫ (t)) dt + ǫω
√

V ǫ (t) dW 2 (t) ,

V ǫ
0 = V0

and

dZǫ (t) = −V ǫ (t)

2
dt + ǫ

√
V ǫ (t) dW 1 (t) ,

47

Zǫ
0 = 0

for ǫ ∈ (0, 1]. By applying the multidimensional asymptotic expansion
method to V ǫ and Zǫ, we can obtain an nth order approximation of the

law of V (t) and Z (t) that is denoted by f
(n)
V,Z . An nth order approximation

of the law of S (t) and V (t) can be obtained by

f
(n)
S,V (s, v) = f

(n)
V,Z (v, log (s/S0) − rt) /s.

We use the same parameters as in earlier papers that introduce the meth-
ods to evaluate the American put options in the Heston model [2, 6, 16, 28,
30]. The relevant parameter values taken in all those papers are:

κ = 5.0, θ = 0.16, ω = 0.9, ρ = 0.1, r = 0.1.

We set the strike K = 10, the initial volatility V0 = (0.25)2 and the time
to maturity T = 0.25 that means three months. In numerical results, the
different values of the initial stock price S0 are considered.

Table 4.7: European put option prices and implied volatilities that are cal-
culated with quasi-Monte Carlo simulation and the exact formula.

S0

8 9 10 11 12

QMC Price 1.83879 1.04822 0.50142 0.20820 0.08044
IV 0.50535 0.42359 0.38901 0.37606 0.37338

Exact Price 1.83886 1.04834 0.50146 0.20818 0.08042
IV 0.50545 0.42367 0.38903 0.37604 0.37335
Error(bps) -0.9 -0.9 -0.2 0.2 0.4

Table 4.7 gives the European option prices that are calculated with the
exact formula and quasi-Monte Carlo simulation with the number of paths
108 and the number of time steps 512. The table shows that the prices that
are calculated with the quasi-Monte Carlo simulation are accurate enough.
We use same paths for the least squares Monte Carlo simulation and MAS.

Table 4.8 gives benchmarks for the American options. In this table, CP,
IT, OO, VN, ZEV and LSM indicate [2], [6], [16], [28], [30] and [10], respec-
tively. In the least square Monte Carlo simulation, we use the polynomials of
S and V of degrees up to 2, 3, 4, 5 and 6 as base functions. We then use the
maximum of the values that are calculated with these base functions as the
prices of the American put options. IV indicates the implied volatility that
is calculated with the Black-Scholes formula for the European put option.

48

Table 4.8: Benchmarks.
S0

Method 8 9 10 11 12

Price VN 1.9968 1.1076 0.5202 0.2134 0.0815
ZFV 2.0000 1.1076 0.5202 0.2134 0.0821
IT 2.0000 1.1074 0.5190 0.2130 0.0818
OO 2.0000 1.1070 0.5170 0.2120 0.0815
CP 2.0000 1.1080 0.5316 0.2261 0.0907
LSM 1.9995 1.1070 0.5192 0.2133 0.0817

IV VN 0.74068 0.46760 0.40056 0.38004 0.37603
ZFV 0.74638 0.46760 0.40056 0.38004 0.37672
IT 0.74638 0.46745 0.39982 0.37973 0.37637
OO 0.74638 0.46715 0.39858 0.37897 0.37603
CP 0.74638 0.46790 0.40763 0.38970 0.38706
LSM 0.74553 0.46712 0.39997 0.37994 0.37623

In MAEM and MAS, we use the equations (4.25), (4.26) and (4.27),
and we set the parameters a1(n), a2(n), b1(n), b2(n), and M to satisfy the
following equations:

a1(n)M = b1(n)M = 5E

[
S (tn)2

]1/2

and

a2(n)M = b2(n)M = 5E

[
V (tn)2

]1/2

for any n ∈ {1, . . . , N ′} where X1 = S and X2 = V .
We use the values in Table 4.9 for N ′ and m that indicate the number of

time steps and the number of division for V and Z.

Table 4.9: Parameters for MAEM and MAEMS.
Case (i) (ii) (iii) (iv)

N ′ 64 64 96 96
m 96 144 96 144

Tables 4.10 and 4.11 give the American put option prices and implied
volatilities that are calculated with MAEM and MAEMS, respectively. In
these tables, Error indicates the difference between the implied volatilities
that are calculated with case (iv) and those with other methods. These

49

tables show that the values calculated with MAEMS are higher than the
values calculated with MAEM except two cases. Table 4.11 shows that the
values calculated with MAEMS are higher than the values calculated with
LSM except in the case of S0 = 8. So we can say that MAEMS is more
accurate than MAEM and LSM in this test case because we use the same
paths for MAEMS and LSM, and a good stopping time gives a higher price.
Compared with the other methods, MAEMS is accurate enough in this test
case.

Table 4.10: American put option prices and implied volatilities that are
calculated with “the multidimensional asymptotic expansion mesh method”
and their errors.

S0

Case 8 9 10 11 12

Price (i) 1.99670 1.10630 0.51894 0.21325 0.08175
(ii) 1.99670 1.10665 0.51899 0.21295 0.08161
(iii) 1.99771 1.10584 0.51933 0.21413 0.08220
(iv) 1.99772 1.10683 0.51932 0.21330 0.08177

IV (i) 0.74050 0.46662 0.39978 0.37992 0.37632
(ii) 0.74051 0.46688 0.39981 0.37969 0.37615
(iii) 0.74229 0.46627 0.40002 0.38059 0.37684
(iv) 0.74231 0.46702 0.40002 0.37996 0.37634

Error VN 16.3 -5.8 -5.4 -0.8 3.1
ZFV -40.7 -5.8 -5.4 -0.8 -3.8
IT -40.7 -4.3 2.0 2.3 -0.3
OO -40.7 -1.3 14.3 9.9 3.1
CP -40.7 -8.9 -76.1 -97.4 -107.1
LSM -32.3 -1.0 0.5 0.1 1.1

The amount of computation time required to construct the mesh is sum-
marized in Table 4.12. The CPU used in this experiment is Intel Core i7
by Intel Corporation. This table shows that this method has the limita-
tion in computation time. To conquer this limitation, we use m′(n) in the
equation (4.28).

In the second test, we use parameters in Table 4.13. Table 4.14 gives the
prices that are calculated with MAEMS and LSM, and their computation
time. We generate 217 paths to calculate the exercising boundary with 64
time steps in LSM. In this table Error means the difference between the

50

Table 4.11: American put option prices and implied volatilities that are
calculated with “the multidimensional asymptotic expansion mesh method
with simulation” and their errors.

S0

Case 8 9 10 11 12

Price (i) 1.99951 1.10737 0.51979 0.21362 0.08204
(ii) 1.99951 1.10739 0.51990 0.21374 0.08207
(iii) 1.99951 1.10745 0.51934 0.21340 0.08199
(iv) 1.99951 1.10750 0.51992 0.21369 0.08206

IV (i) 0.74550 0.46743 0.40031 0.38020 0.37665
(ii) 0.74550 0.46744 0.40037 0.38029 0.37669
(iii) 0.74550 0.46749 0.40003 0.38003 0.37659
(iv) 0.74550 0.46752 0.40038 0.38026 0.37668

Error VN 48.3 -0.8 -1.7 2.2 6.5
ZFV -8.7 -0.8 -1.7 2.2 -0.4
IT -8.7 0.7 5.7 5.3 3.1
OO -8.7 3.8 18.0 12.9 6.5
CP -8.7 -3.8 -72.4 -94.4 -103.8
LSM -0.3 4.1 4.1 3.2 4.5

Table 4.12: CPU time required to construct the mesh.
Case (i) (ii) (iii) (iv)

CPU time (s) 292 385 1460 1919

implied volatilities in these test cases and that of the case (iv) in Table 4.11.
This table shows that the method with m′(n) calculates the mesh much
faster than the method with m.

4.4 Evaluating the CVA of interest rate swaps in
the SABR model

4.4.1 The problem

We consider the CVA of interest rate swaps. Let 0 = T0 < T1 < · · · < TN for
N ∈ N where Tn+1 − Tn = δ for n ∈ N and δ ∈ R+. Let P (t, Ti) denote the
price of the discount bound with maturity Ti at time t for i ∈ {1, . . . , N}.

51

Table 4.13: Parameters for MAEMS.
Case (v) (vi) (vii) (viii) (ix) (x) (xi) (xii) (xiii)

N ′ 32 32 32 64 64 64 96 96 96
m1 32 32 32 32 32 32 32 32 32
mN 96 128 160 96 128 160 96 128 160

Table 4.14: American put option prices and implied volatilities that are
calculated with “the multidimensional asymptotic expansion mesh method
with simulation” , their errors and the computation time.

Case Price IV Error(bps) CPU time(s)

(v) 0.51980 0.40031 -0.7 43
(vi) 0.51976 0.40029 -1.0 117
(vii) 0.51978 0.40030 -0.9 263
(viii) 0.51983 0.40033 -0.5 68
(ix) 0.51993 0.40039 0.1 185
(x) 0.51992 0.40038 0.0 415
(xi) 0.51886 0.39973 -6.6 90
(xii) 0.51991 0.40038 0.0 242
(xiii) 0.51996 0.40041 0.3 546
LSM 0.51915 0.39991 -4.7 13

P (t, Ti) satisfies that P (Ti, Ti) = 1 and P (t < Ti) for t > Ti. The forward
LIBOR rate with respect to the term [Ti−1, Ti] is

F (t, Ti−1, Ti) =
1

δ

(
P (t, Ti−1)

P (t, Ti)
− 1

)

for t ∈ [0, Ti−1] and i = 1, . . . , N . The forward swap rate with respect to the
term [Ta, Tb] at time t ≤ Ta is

S(a,b) (t) =
P (t, Ta) − P (t, Tb)

δ
b∑

k=a+1

P (t, Tk)

.

Define the positive QTa-martingale

D(a,b) (t) =
b∑

k=a+1

P (t, Tk)

P (t, Ta)

for t ∈ [0, Ta]. Here QTa means Ta forward measure.

52

We consider the price of interest rate swaps with nominal 1, strike rate
K, first reset date Ta and last reset date Tb−1. The price at time t is give by

V(a,b) (t) = δP (0, Ta) ETa

[
D(a,b) (Ta)

(
S(a,b) (Ta) − K

) ∣∣∣Ft

]

= δP (t, Ta) D(a,b) (t) E(a,b)

[
S(a,b) (Ta) − K

∣∣∣Ft

]

= δP (t, Ta) D(a,b) (t)
(
S(a,b) (t) − K

)

where E(a,b) [·] means the expectation under the forward swap measure Q(a,b).
The price of a payer swaption with maturity T ≤ Ta and underlying V(a,b)

at time t is given by

V̂(a,b) (t, T) = δP (t, T) D(a,b) (t) E(a,b)

[(
S(a,b) (T) − K

)+ ∣∣∣Ft

]

The definition of CVA is given by the following.

Definition 4.1. The CVA of a derivative whose price at time t is V (t) and
maturity is T is defined as follows:

CVA = (1 − R)EQ

[∫ T

0
B(t)−1 max (V (t), 0) dDP(t)

]

where R ∈ [0, 1] and DP(t) denote the recovery rate and the default probability
of a counterparty, respectively. Here B (t) means the price of zero coupon
bond with maturity t.

We suppose that the default probability of a counterparty is given by

DP(t) = 1 − e−
R t

0
λ dt = 1 − e−λt

where λ ∈ R+ is a hazard rate. Then by Definition 4.1, the CVA of an
interest rate swap is given by

CVA =(1 − R)EQ

[∫ Tb

0
B(t)−1 max

(
V(a,b)(t), 0

)
dDP(t)

]

=(1 − R)

∫ Tb

0
EQ
[
B(t)−1 max

(
V(a,b)(t), 0

)]
λe−λt dt

=(1 − R)

{∫ Ta

0
EQ
[
B(t)−1 max

(
V(a,b)(t), 0

)]
λe−λt dt

+
b−1∑

i=a

∫ Ti+1

Ti

EQ
[
B(t)−1 max

(
V(i+1,b)(t), 0

)]
λe−λt dt

}

=(1 − R)

{∫ Ta

0
V̂(a,b) (0, t) λe−λt dt +

b−1∑

i=a

∫ Ti+1

Ti

V̂(i+1,b) (0, t) λe−λt dt

}

(4.29)

53

We suppose that a swap rate S(a,b) satisfies the following stochastic dif-
ferential equation:

dS(a,b) (t) =
(
S(a,b) (t)

)B
σ(a,b) (t) dW 1

(a,b) (t) ,

S(a,b) (0) = S0
(a,b)

and

dσ(a,b) (t) = vσ(a,b) (t) dW 2
(a,b) (t) ,

σ(a,b) (0) = σ0
(a,b)

where (W1,W2) is a 2-dimensional standard Brownian motion with the in-
stantaneous correlation ρ ∈ [−1, 1], Here v, S0

(a,b) and σ0
(a,b) ∈ R+, and

B ∈ [0, 1].

By the asymptotic expansion method, we obtain the nth order approxi-

mation of the law of S(a,b) (t) that is denoted by f
(n)
S(a,b)(t)

. Now we have the

nth order approximation of the value V̂(a,b) (0, t) that is given by

V̂
(n)
(a,b) (0, t) = δP (0, T) D(a,b) (0)

∫ ∞

K
(s − K) f

(n)
S(a,b)(t)

(s) ds. (4.30)

By the equations 4.29 and 4.30, the nth order approximation of the CVA
is given by

CVA(n) = (1−R)

{∫ Ta

0
V̂

(n)
(a,b)

(0, t) λe−λt dt +
b−1∑

i=a

∫ Ti+1

Ti

V̂
(n)
(i+1,b)

(0, t) λe−λt dt

}
.

(4.31)

4.4.2 Numerical results

We show the accuracy and the computational cost of the approximation in
the equation 4.31. We use the following parameters:

B = 0.5, δ = 0.5, a = 10, b = 20,K ∈ {3.5%, 4%, 4.5%} , R = 0.

The other parameters used in this test case are given in Table 4.15. These
parameters are calibrated from the market date in Table 4.16 using the
method that is proposed in [18].

54

Table 4.15: Parameters.

first reset date S(0) σ(0) v ρ

5 0.0477 0.012 0.158 0.000145
5.5 0.0481 0.011 0.149 0.000409
6 0.0486 0.011 0.142 0.000741

6.5 0.049 0.011 0.135 0.000472
7 0.0495 0.011 0.13 0.000113

7.5 0.0498 0.011 0.125 -0.000121
8 0.0502 0.01 0.12 -0.000472

8.5 0.0504 0.01 0.116 -0.000181
9 0.0509 0.01 0.112 0.000401

9.5 0.0509 0.01 0.109 0.000401

Table 4.16: European cap prices (in basis points) on 18 November 2008.

Y(year)-K(%) 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5

2.0 25.0 11.0 5.0 2.5 1.5 1.0 0.5 0.0 0.0
3.0 77.0 40.5 21.5 12.0 7.0 4.0 2.5 1.5 1.5
4.0 148.5 86.0 48.5 27.0 16.0 10.0 6.5 4.5 4.0
5.0 230.5 140.5 82.0 47.5 28.5 17.5 11.5 8.0 7.5
6.0 325.5 206.0 125.5 74.5 45.5 29.0 19.0 13.5 12.5
7.0 431.5 283.5 178.0 109.0 68.0 44.5 29.5 21.0 20.5
8.0 545.5 368.5 238.0 149.0 95.0 62.5 42.5 30.0 29.0
9.0 664.0 459.0 304.5 196.5 127.0 85.0 58.5 42.0 40.0
10.0 786.0 554.5 376.5 248.5 164.0 111.0 77.0 56.0 53.0

We consider the values calculated with Monte Carlo simulation as the
true values of the CVA. We use Euler-Maruyama scheme as a discretization
scheme. The number of partitions and the number of sample paths are 1000
time steps per year and 5 × 106 paths in each simulation. We consider the
values calculated with these simulations as their limit values in the following
experiments.

55

Table 4.17: Numerical results of the CVA of interest rate swaps.

fixed rate MC AE2 AE3 AE4 AE5

3.5% 0.018513 0.018500 0.018503 0.018503 0.018503
4.0% 0.011602 0.011557 0.011573 0.011572 0.011573
4.5% 0.005348 0.005317 0.005364 0.005363 0.005364

Table 4.18: Difference between MC and Asymptotic expansion

fixed rate AE2-MC AE3-MC AE4-MC AE5-MC

3.5% -1.34797E-05 -1.03684E-05 -1.06949E-05 -1.00477E-05
4.0% -4.41953E-05 -2.86798E-05 -2.98305E-05 -2.84797E-05
4.5% -3.01402E-05 1.60005E-05 1.51823E-05 1.59793E-05

Table 4.19: CPU time required to calculate the approximation in the case
of K = 3.5%

Method #Partition #Sample CPU time(sec)

AE2 - - 0.000221
AE3 - - 0.000417
AE4 - - 0.000587
AE5 - - 0.001039

The results in Table 4.17 and 4.18 show that the difference between
the values calculated with approximation and Monte Carlo simulation are
relatively small to nominal value 1. The amount of computational time
required to calculate the approximation is summarized in Table 4.19. This
table shows that the approximation can be calculated in about a millisecond.
The CPU used in this experiment is Intel Core i7 by Intel Corporation.

56

Chapter 5

Conclusion

We have introduced MAE to derive an approximation of the law of a D-
dimensional diffusion process X (t). MAE is a method to combine the asymp-
totic expansion method and Theorem 2.1 in the section 2.3. Here the process
X (t) satisfies the equation (2.1), and we suppose that the condition (2.2)
holds. We have also developed the package SymAE to automatically de-
rive the approximation by using MAE. The package enables us to easily use
MAE and to derive more higher order approximations and facilitates re-
searches related to the asymptotic expansion method. The implementation
of the scheme that is proposed in [25] to compute conditional expectations
is an issue in the future.

By using the approximation of the law, we can derive the approximation
of the value E [F (XT)] where F is an R-valued function that are defined on
RD and has polynomial growth.

As numerical examples, we have provided the numerical experiments:
interest rate swaptions in the SABR/LIBOR market model, “call option on
the maximum of two assets” in the CEV model, average strike options in the
Black-Scholes model and the CVA of interest rate swaps in the SABR model
These results show that MAE enables us to calculate the approximations
within a second, and these approximations are accurate enough in practice.

We have also introduced MAEM and MAEMS to calculate the prices of
the American options by using the combination of the MAE and backwards
induction. In the mesh method, the accuracy can be improved if the way to
determine the points of the mesh is appropriately modified. To find a better
way to determine the points in the equation (4.8) is important, and this
topic is reserved for future work. As a numerical example of these method,
we have considered the American put options in the Heston model. The

57

numerical results show that MAEMS is more accurate than the least square
Monte Carlo method. However, MAEM and MAEMS have the limitation
in computation time, and to apply these methods to higher dimensional
models is practically difficult. To reduce the computation time is an issue in
the future. As mentioned in the section 4.3, MAEM and MAEMS are based
on the idea of the stochastic mesh method. We consider the combination
of the stochastic mesh method and the asymptotic expansion method as an
issue in the future.

As mentioned in the chapter 1, the calculation of the expectation E [F (XT)]
is important in practice. This thesis shows that accurate approximations of
E [F (XT)] can be derived by using the asymptotic expansion method in
some practical problems, and the computation time of these approximations
is fast enough in practice.

58

Appendix: Multivariate normal

distribution

We describe some definitions and theorems that are related to the multivari-
ate normal distribution.

Definition A.1. The multivariate normal distribution of an n-dimensional
random vector X =

(
X(1), . . . ,X(n)

)
can be written in the following notation:

X =
(
X(1), . . . ,X(n)

)
∼ N (µ,Σ)

with n-dimensional mean vector µ and n × n covariance matrix Σ. If Σ is
non-degenerate then X has density

f (x|µ,Σ) =
1

(2π)n/2 |Σ|1/2
exp

(
−1

2
(x − µ) Σ−1 t (x − µ)

)
.

Theorem A.1. Let X =
(
X(1), . . . ,X(n)

)
∼ N (µ,Σ). If X, µ and Σ are

partitioned as follows:

X = (X1,X2)with size (1 × q, 1 × (n − q)) ,

µ = (µ1, µ2)with size (1 × q, 1 × (n − q)) ,

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
with size

(
(q × q) q × (n − q)

(n − q) × q (n − q) × (n − q)

)

for some counting number q < n, then the distributions of X1 and X2 are

X1 ∼ N (µ1,Σ11) ,

and

X2 ∼ N (µ2,Σ22) ,

59

respectively. Moreover, the conditional distribution of X1 given X2 is

X1|X2 = x2 ∼ N
(
µ̃, Σ̃

)

where

µ̃ = µ1 + (x2 − µ2) Σ−1
22 Σ21,

Σ̃ = Σ11 − Σ12 Σ−1
22 Σ21.

Proof. Let ξ be partitioned as ξ = (ξ1, ξ2) with size (1 × q, 1 × (n − q)).
Then we have the moment generating function of X as follows:

m (ξ|µ,Σ) = m (ξ1, ξ2|µ,Σ)

= exp

(
(µ1, µ2)

t (ξ1, ξ2) +
1

2
(ξ1, ξ2)

(
Σ11 Σ12

Σ21 Σ22

)
t (ξ1, ξ2)

)
.

If let ξ2 = 0, we have

m (ξ1, 0|µ,Σ) = exp

(
µ1

tξ1 +
1

2
ξ1 Σ11

tξ1

)
.

Hence X1 ∼ N (µ1,Σ11). In the manner now described, we can show X2 ∼
N (µ2,Σ22).

Next, let fx2 denote the conditional probability density function of X1

given the value x2 of X2 and we have

fx2 (x1) =
f (x1, x2|µ,Σ)

f (x2|µ2,Σ22)

= (2π)−n/2 |Σ|−1/2 |Σ22|1/2 exp

(
−Q − Q2

2

)

where

Q = (x − µ)Σ−1 t (x − µ) ,

Q2 = (x2 − µ2)Σ−1
22

t (x2 − µ2) .

We define C as

C =

(
I1 −Σ12 Σ−1

22

0 I2

)

where I1 and I2 are unit matrices of size q and n − q, respectively. Then Q
is

Q = (x − µ) tC
(
C Σ−1 tC

)
C t (x − µ)

= y1Σ̃
−1 ty1 + y2Σ

−1
22

ty2

= y1Σ̃
−1 ty1 + Q2

60

where

(y1, y2) = (x1 − µ1, x2 − µ2)
tC

=
(
x1 − µ1 − (x2 − µ2)Σ−1

22 Σ21, x2 − µ2

)

= (x1 − µ̃, x2 − µ2) .

And also we obtain

CΣ tC =

(
Σ̃ 0
0 Σ22

)

and
|Σ| =

∣∣CΣ tC
∣∣ =

∣∣∣Σ̃
∣∣∣ |Σ22| .

Thus

fx2 (x1) = (2π)−n/2
∣∣∣Σ̃
∣∣∣
−1/2

exp

(
−(x1 − µ1) Σ̃−1 t (x1 − µ1)

2

)
.

Corollary A.1.

E

[
q∏

i=1

X(i)

∣∣∣∣∣X2 = x

]
=

dq m
(
ξ
∣∣∣µ̃, Σ̃

)

d ξ1 · · · d ξq

∣∣∣∣∣∣
ξ=0

.

Moreover, if E
[
X(i) X(j)

]
= 0 for i 6= j, 1 ≤ i, j ≤ q

E

[
q∏

i=1

X(i)

∣∣∣∣∣X2 = x

]
=

dq m
(
ξ|µ̃,−Σ12 Σ−1

22 Σ21

)

d ξ1 · · · d ξq

∣∣∣∣∣
ξ=0

.

61

Bibliography

[1] M. Broadie and P. Glasserman. A stochastic mesh method for pricing
high-dimensional american options. Journal of Computational Finance,
7:35–72, 2004.

[2] N. Clarke and K. Parrott. Multigrid for american option pricing with
stochastic volatility. Applied Mathematical Finance, 6(3):177–195, 1999.

[3] D.J. Duffy. Finite Difference methods in financial engineering: a Partial
Differential Equation approach. Wiley, 2006.

[4] P. Glasserman. Monte Carlo methods in financial engineering, vol-
ume 53. Springer, 2003.

[5] J. Hull. Options, futures, and other derivatives. Pearson, 2006.

[6] S. Ikonen and J. Toivanen. Efficient numerical methods for pricing
american options under stochastic volatility. Numerical Methods for
Partial Differential Equations, 24(1):104–126, 2007.

[7] N. Kunitomo and A. Takahashi. The asymptotic expansion approach to
the valuation of interest rate contingent claims. Mathematical Finance,
11(1):117–151, 2001.

[8] N. Kunitomo and A. Takahashi. Applications of the asymptotic expan-
sion approach based on malliavin-watanabe calculus in financial prob-
lems. In Stochastic Processes and Applications to Mathematical Finance,
pages 195–232. the Ritsumeikan Intern, World Scientific, 2004.

[9] P. L’Ecuyer. Quasi-monte carlo methods with applications in finance.
Finance and Stochastics, 13(3):307–349, 2009.

[10] F.A. Longstaff and E.S. Schwartz. Valuing american options by simu-
lation: A simple least-squares approach. Review of Financial studies,
14(1):113–147, 2001.

62

[11] R. Matsuoka, A. Takahashi, and Y. Uchida. A new computational
scheme for computing greeks by the asymptotic expansion approach.
Asia-Pacific Financial Markets, 11(4):393–430, 2004.

[12] Y. Muroi. Pricing credit derivatives using an asymptotic expansion
approach. Journal of Computational Finance, 15(3):135, 2012.

[13] M. Ninomiya and S. Ninomiya. A new higher-order weak approxima-
tion scheme for stochastic differential equations and the runge–kutta
method. Finance and Stochastics, 13(3):415–443, 2009.

[14] S. Ninomiya and S. Tezuka. Toward real-time pricing of complex finan-
cial derivatives. Applied Mathematical Finance, 3(1):1–20, 1996.

[15] S. Ninomiya and N. Victoir. Weak approximation of stochastic differ-
ential equations and application to derivative pricing. Applied Mathe-
matical Finance, 15(2):107–121, 2008.

[16] C.W. Oosterlee. On multigrid for linear complementarity problems with
application to american-style options. Electronic Transactions on Nu-
merical Analysis, 15:165–185, 2003.

[17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Nu-
merical recipes 3rd edition: The art of scientific computing. Cambridge
University Press, 2007.

[18] R. Rebonato, K. McKay, and R. White. The SABR/LIBOR Market
Model: Pricing, calibration and hedging for complex interest-rate deriva-
tives. Wiley, 2011.

[19] L.C.G. Rogers. Monte carlo valuation of american options. Mathemat-
ical Finance, 12(3):271–286, 2002.

[20] WF. Schelter. Maxima manual. version 5.9.3, 2006. Available online at
http://maxima.sourceforge.net/docs/manual/en/maxima.html (Decem-
ber 26, 2012).

[21] A. Takahashi. An asymptotic expansion approach to pricing financial
contingent claims. Asia-Pacific Financial Markets, 6(2):115–151, 1999.

[22] A. Takahashi. An asymptotic expansion approach in finance. CIRJE
Discussion Papers, 2007.

63

[23] A. Takahashi and K. Takehara. An asymptotic expansion approach to
currency options with a market model of interest rates under stochas-
tic volatility processes of spot exchange rates. Asia-Pacific Financial
Markets, 14(1):69–121, 2007.

[24] A. Takahashi, K. Takehara, and M. Toda. Computation in an asymp-
totic expansion method. University of Tokyo working paper CIRJE-F-
621, 2009.

[25] A. Takahashi, K. Takehara, and M. Toda. A general computation
scheme for a high-order asymptotic expansion method. International
Journal of Theoretical and Applied Finance, 15(06), 2012.

[26] A. Takahashi and N. Yoshida. An asymptotic expansion scheme for opti-
mal investment problems. Statistical Inference for Stochastic Processes,
7(2):153–188, 2004.

[27] A. Takahashi and N. Yoshida. Monte carlo simulation with asymptotic
method. Journal of The Japan Statistical Society, 35:171–203, 2005.

[28] M. Vellekoop and H. Nieuwenhuis. A tree-based method to price amer-
ican options in the heston model. Journal of Computational Finance,
13(1):1, 2009.

[29] S. Watanabe. Analysis of wiener functionals (malliavin calculus) and
its applications to heat kernels. The annals of Probability, 15(1):1–39,
1987.

[30] R. Zvan, PA Forsyth, and KR Vetzal. Penalty methods for american
options with stochastic volatility. Journal of Computational and Applied
Mathematics, 91(2):199–218, 1998.

64

