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Chapter 1

Introduction

Nonlinear functional analysis is an area of mathematics which has recently
made growth. It is no longer a subsidiary of linear functional analysis. Of
course, its applicable domain is far and away wider than that of the linear
case because most of natural and social phenomena are nonlinear.

In this thesis, we consider strong ergodic theorems for asymptotically non-
expansive mappings and semigroups and strong convergence theorems for
nonexpansive mappings through the hybrid method in the mathematical pro-
gramming. And we consider convergence theorems by a modified splitting
method.

In Chapter 2, 3, we study strong ergodic theorems for asymptotically non-
expansive mappings and semigroups. Let E be a real Banach space. Let
B = {z € E|||z| = 1}. Then, E is said to be uniformly convez if for any
e € (0,2], there exists § > 0 such that H%l” < 1 — ¢ for every z,y € B

with ||z — y|| > e E is said to be strictly convez if “—x;i” < 1forz,y € B
with z # y. It is known that a uniformly convex Banach space is strictly
convex. The norm of E is said to be uniformly Gateauzr differentiable if for
each y € B, the limit

e+t i)
t—0 t

(1.1)

is attained uniformly for + € B. The norm of E is said to be Fréchet
differentiable if for every x € B, the limit (1.1) is attained uniformly fory € B
and E is said to be uniformly smooth if the limit (1.1) is attained uniformly
for 7,y € B. Let C be a nonempty closed convex subset of E. We denote by
N and R7, the set of all positive integers and the set of all nonnegative real
numbers, respectively. A mapping T': ¢ — C is said to be asymptotically
nonezpansive [17] if there exists a sequence {k,} of nonnegative real numbers
with lim sup,_,., k, < 1such that [|[T"z—T"y[| < kn|lz—y|| for every z,y € C
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Chapter 1. Introduction 2

and n € N. T is said to be nonezpansive if k, = 1 for all n € N. We denote
by F(T) the set of the fixed points of T A family S={St)]0<t< oo}
is said to be an asymptotically nonexpansive semigroup on C with Lipschitz
constants {k(t) |0 < ¢ < oo} if

(i) for each t € [0,00), S(t) is a mapping of C into itself and ||S(t)z —
Syl < k(t)||z - yl| for each z,y € C;

(ii) S(t + s)x = S(t)S(s)x for each t,s € [0,00) and z € Cj
(iii) S(0)z = z for each z € C;
(iv) for each z € C, the mapping ¢ — 5 (t)x is continuous.

(v) t — k(t) is continuous mapping of the set of nonnegative real numbers
into itself;

(vi) limsup,_q k(t) < 1.

S is said to be a nonezpansive semigroup on C if k(t) =1 for all t € [0, 00).
We denote by F(S), the set of common fixed points of S.

Baillon [3] proved the first nonlinear ergodic theorem for nonexpansive
mappings with bounded domains : Let C' be a nonempty bounded closed
convex subset of a real Hilbert space and let 7" be a nonexpansive map-
ping of C into itself. Then, for every z € C, the Cesaro means %Z?;ol Tiz
converge weakly to some y € F(T'). Brézis and Browder [7] proved a non-
linear strong ergodic theorem for nonexpansive mappings of odd-type in a
real Hilbert space (see also Reich [32]). Bruck [10] extended Baillon’s result
[3] to a uniformly convex Banach space whose norm is Fréchet differentiable
(see also [20, 33]). Hirano and Takahashi [21] extended Baillon’s result [3]
to asymptotically nonexpansive mappings in a real Hilbert space. Oka [29]
and Tan and Xu [46] extended Bruck’s result [10] to asymptotically nonex-
pansive mappings. On the other hand, The first nonlinear ergodic theorem
for nonexpansive mappings with compact domains was proved by Edelstein
[15]. Atsushiba and Takahashi [1] generalized Edelstein’s result : Let D be a
nonempty closed convex subset of a strictly convex Banach space E and let
T be a nonexpansive mapping of D into itself such that T(D) C K for some
compact subset K of D. Let € D. Then, the Cesaro means I T
converge strongly to a fixed point of T uniformly in 2 € N U {0}. In this
case, if Qz = limp % Z?:'Ol Tz for every z € D, then @ is a nonexpansive
mapping of D onto F(T) such that QT* = T*Q = Q for all £ € N and
Qr ceo{T*z |k e NU{0}} forallz € D.

In Chapter 2, by using the methods employed in Atsushiba and Takahashi
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[1], Bruck [10, 11] and Shioji and Takahashi [40], we extend Atsushiba and
Takahashi’s theorem to asymptotically nonexpansive mappings.

Theorem 1.1 Let E be a strictly convex Banach space and let D be a
nonempty closed convex subset of E. Let T be an asymptotically nonexpan-
sive mapping of D into itself such that T(D) C K for some compact subset

K of D and let = € D. Then, the Cesaro means Lyl Tithy  converge

n
strongly to a fized point of T uniformly in h € NU {0}. In this case, if
Qzr = lim, .00 %Z?;ol Tiz for every x € D, then Q is a nonexpansive map-

ping of D onto F(T) such that QT* = T*Q = Q for all k € NU {0} and
Qz € w{T*z |k € NU{0}} forallz € D.

Next, Baillon and Brézis [5] proved the first nonlinear ergodic theorem
for nonexpansive semigroups in a real Hilbert space (see also Baillon [4] and
Reich [31]). Hirano and Takahashi [21] extended Baillon and Brézis’s the-
orem to asymptotically nonexpansive semigroups. Hirano and Takahashi’s
theorem was extended to a uniformly convex Banach space whose norm is
Fréchet differentiable by Tan and Xu [47]. On the other hand, Dafermos and
Slemrod [13] proved the first nonlinear ergodic theorem for nonexpansive
semigroups with compact domains. Atsushiba and Takahashi [2] generalized
Dafermos and Slemrod’s result : Let C be a nonempty compact convex sub-
set of a strictly convex Banach space E and let S = {S()|0 <t < oo} be a
nonexpansive semigroup on C. Let z € C. Then, % Jt S(7 + h)zdr converges
strongly as t — oo to some y € F (S) uniformly in h € R*. In this case, if
Qz = limyoo § JES(r)zdr for every z € C, then Q is a nonexpansive map-
ping of C onto F(S) such that QS(t) = S(¢)Q = Q for every t € [0, 00) and
Qz € w{S(t)z|0 < t < oo} for every z € C.

In Chapter 3, we extend Atsushiba and Takahashi’s theorem to asymptot-
ically nonexpansive semigroups by using the methods employed in Atsushiba
and Takahashi [1, 2], Bruck [10, 11] and Shioji and Takahashi [39].

Theorem 1.2 Let C be a nonempty compact convez subset of a strictly con-
ver Banach space E and let S = {S(t)|0 < t < oo} be an asymptotically
nonezpansive semigroup on C. Letx € C. Then, % fot S{T + h)zdr converges
strongly as t — oo to some Yy € F(S) uniformly in h € RY. In this case, if
Qz = im0 % JES(r)zdr for every x € C, then Q is a nonexrpansive map-
ping of C onto F(S) such that QS(t) = S(1)Q = Q for every t € [0, 00) and
Qz € eo{S(t)x |0 <t < oo} for everyz € C.

In Chapter 4, 5, we study strong convergence theorems for nonexpansive
mappings and semigroups by the hybrid method in the mathematical pro-
gramming and study the splitting method modified by the hybrid method
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and Mann’s type iteration in a real Hilbert space. Let H be a real Hilbert
space and let C' be a nonempty closed convex subset of H. We denote by
Pc(-), the metric projection onto C. Let T be a nonexpansive mapping of
O into itself. Tt is known that F(T) is closed and convex. Halpern [19]
introduced an iteration scheme as follows:

t0=2€C, ZTpn=anz+(1—an)T, (1.2)

for every n € N U {0}, where {an} C [0,1]. Reich [34, 35] proved that
{z,} generated by (1.2) converges strongly to some y € F(T) in the case of
a uniformly smooth Banach space when o, = n™® for some a € (0,1) and
F(T) is nonempty. Wittmann [49] extended Reich’s result in the case of a
real Hilbert space H. On the other hand, the hybrid method (the hybrid
projection-proximal point method) in the mathematical programming was
introduced by Solodov and Svaiter [42, 43, 44). They get strong convergence
by combining proximal point iterations with projection steps. So, in Chapter
4, motivated by the hybrid method, we consider the sequence {z,} generated
by

Tg =2 € C,
Un = nTn + (1 — o) T2y,
Cn={Z€C|||yn—z|| < ||:1:n—z||}, (1.3)

Qn={z € C|(zn— 2,20 — ) 2 0},

Zn+1 = Po.nga(To)
for each n € N U {0}, where {a,} C [0,a] for some a € [0,1). Then, we
obtain the following strong convergence theorem.

Theorem 1.3 If F(T) is nonempty, then the sequence {zn} generated by
(1.3) converges strongly to Pr(r)(Zo)-

And by using the lemma in Shimizu and Takahashi [38], we get the strong
convergence theorem for nonexpansive semigroups. Here, note that F(S) is
closed and convex.

Theorem 1.4 Let C be a nonempty closed conver subset of H and let S =
{S(t)|0 < t < oo} be a nonezpansive semigroup on C such that F(S) # 0.
The sequence {z,} is generated by
Tog =€ C,
1 [t
Yn = QnZn + (1 — an)i—/ S(T)zadr,
n JO
Cn={2€Clllyn— z|| < lzn — z|1},
Qn = {z € C|(zn — 2,30 — Tn) = 0},
| Zns1 = Po.nga(2o)
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for every n € N U {0}, where {an} is a sequence in [0,a] for some a €
[0,1) and {t,} is a positive real divergent sequence. Then, the sequence {zn}
converges strongly to Pr(s)(zo).

By this method, we also study the proximal point iteration. A multivalued
operator A : H — 2% is said to be monotone if (xy — T9,y1 — Y2) = 0
whenever y; € Az; and y2 € Azo. A monotone operator A is said to be
mazimal if the graph of A is not properly contained in the graph of any other
monotone operator. It is known that a monotone operator A is maximal iff
R(I+rA) = H for every r > 0, where RI+1A)=U{z+rAz|2z€ H,Az #
@}. It is also known that A0 ={z € H |0 € Az} is closed and convex for
any maximal monotone A. If A is monotone, then we can define, for each
r > 0, a nonexpansive mapping J; : R(I+1A) — D(A) by J, = (I+rA)71,
where D(A) = {z € H| Az # 0}. J, is called the resolvent of A. We know
that F(J,) = A~0 for each 7 > 0, where F(J;) = {z € D(A)| J.z = z}; see
[45] for more details. Let A: H — 2F be a maximal monotone operator.
The proximal point iteration generates, for any initial data 2o = z € H, a
sequence {z,} in H by the rule z,1 = J;,2n for each n € NU {0}, where J,
is the resolvent of A for r > 0 and {r,} is a sequence of positive real numbers.
The proximal point iteration was first introduced by Martinet [26, 27} and
generally studied by Rockafellar [37]. Further, Kamimura and Takahashi
[22] and several authors study the proximal point iteration. And we get the
following theorem.

Theorem 1.5 Let A : H — 2 be a mazimal monotone operator such that
A10 is nonempty. The sequence {z,} is generated by

Ip=12T€E H,
yn:Jrn(mn‘}‘fn):
Cn=1{2€ H|llyn— 2|l < llza + fn —2lI}, (1.4)

Qn={z€ H|(zn— 2,20 — Tn) > 0},
$n+1 = Pcann (‘/‘EO)

for every n € NU {0}, where
{r,} C (0, 00), h,ﬂio%f T, >0 and nlgl;io | fall =0
. Then, {z,} converges strongly to Pa-10(0)-

Next, we study the splitting method introduced by Passty [30] and Lions
and Mercier [23]. Let H be a real Hilbert space and let A : H — 2 and
B: H — 27 be maximal monotone operators such that D(B) C D(A) and
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(A+B)~'0 # 0, where D(A) is the domain of A. Let C be a nonempty closed
convex subset of H and let dic denote the subdifferential of the indicator
function of C. Then, the splitting method is one of the methods of finding
an element of (A + B)~10 and its iteration is the following:

{m1=33€D(A),

Tpyl = '],\'é, (xn - )\nwn)

for every n € N, where w, € Az,, {M} C (0, oo) and in is the resolvent
of B, ie. J& = (I+XB)™". If A=0, it is the proximal point iteration
[26, 27, 37]. If B = Oic, it is the projection method for variational inequalities
by Brézis and Sibony [8] (see also Sibony [41]). Further if A is the gradi-
ent of a continuously Fréchet differentiable convex functional on H, it is the
gradient projection method by Goldstein [18]. Later, the splitting method
was extensively analyzed by Gabay [16] and was further studied in Chen and
Rockafellar [12], Moudafi and Théra [28], Tseng [48] and references therein.
Let o > 0. A single valued operator A : H — H is said to be a-inverse-
strongly-monotone (see Browder and Petryshyn (9], Baillon and Haddad [6],
Dunn [14], Liu and Nashed [24)) if (z — y, Az — Ay} = al|Az — Ay||* for
all z,y € D(A). Let A: H — H be a single valued a-inverse-strongly-
monotone operator with D(A) = H and let B : H — 2H be a maximal
monotone operator such that (A + B)7'0 # 0. Then, we know that A and
A + B are maximal monotone operators and F(JE(I — AA)) = (A+ B)~'0
for every A € (0,00) (see e.g. [14, 36, 50]). Then, Gabay [16] proved the
following theorem : Let o > 0. Let A : H — H be a single valued a-
inverse-strongly-monotone operator with D(A) = H and let B : H — 2"
be a maximal monotone operator such that (A + B)7'0 # 0. Let {z,} be a
sequence generated by 1 = € H, Tny1 = JB(I — MA)z, for every n € N,
where 0 < A < 2a. Then, {z,} converges weakly to some z € (A+ B)~'0.

In Chapter 5, using an iteration of Mann’s type [25], we obtain the follow-
ing weak convergence theorem which generalizes the result of Gabay.

Theorem 1.6 Let « > 0. Let A: H — H be a single valued a-inverse-
strongly-monotone operator with D(A) = H and let B : H — 28 be a
magimal monotone operator such that (A+B)™10 # 0. Let {z,} be a sequence
generated by

=z € H,

Yp = Jﬁ(] — MA)T,,

Tyl = Qplp + (1 - an)yn
for every n € N, where {\,} C.[a,b] for some a,b € (0,20) with a < b

and {an} C [0,¢] for some c € (0, 1). Then, {z,} converges weakly to some
z€ (A+ B)70.
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And we show the following strong convergence theorem by combining the
splitting method and the hybrid method.

Theorem 1.7 Let a, A and B be as in Theorem 1.6. Let {z,} be a se-
quence generated by

zg=x€ H,

Yn = JE (I — MA)zn,

Crn={z€ H|llyn— 2| < llzn — 2},
Qn = {2z € H|(zn — 2,20 — zn) > 0},
Tnt1 = P.can,,(xo)

for every n € NU {0}, where {\} C [a,2a] for some a € (0,20). Then,
{z,} converges strongly to Pia+m)-10(Z0)-

Let A be a mapping of C into H. Then, an element z in C' is a solution
of the variational inequality if (y — z, Az) > 0 for all y € C. We apply this
result to the problem of the variational inequalities and get the following.

Corollary 1.8 Let C be a nonempty closed convez subset of H and let a > 0.
Let A : H — H be a single valued a-inverse-strongly-monotone operator
with D(A) = H and {z € C|(y — z,Az) > 0(Vy € C)} # 0. Let {z,} be a
sequence generated by

Top=2 c H,

Yn = Po(zn — MAZ,),

Crn={z€ Clllyn—2ll £ llzn — 2},
Qn={z € C|(zn— 2,20 — Ta) > 0},
Tnt1 = Peonga(To)

for every n € NU {0}, where {\} C [a,20] for some a € (0,2a). Then,
{z.} converges strongly to the element zo in the set {z € C| (y — z, Az) >
0 (Vy € C)} nearest to xo.
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Chapter 2

A Nonlinear Strong Ergodic
Theorem for Asymptotically
Nonexpansive Mappings with
Compact Domains

2.1 Introduction

Throughout this chapter, a Banach spacé is real and we denote by N and
R™, the set of all positive integers and the set of all nonnegative real numbers,
respectively. Let C be a nonempty closed convex subset of a Banach space.
A mapping T : C — C is said to be asymptotically nonexpansive [6] if there
exists a sequence {k,} of nonnegative real numbers with limsup,,_,., kn <1
such that | Tz —T"y|| < ky||z—y|| for every z,y € C and n € N. T is said to
be nonexpansive if k, = 1 for all n € N. The first nonlinear ergodic theorem
for nonexpansive mappings with bounded domains was proved by Baillon (2] :
Let C be a nonempty bounded closed convex subset of a Hilbert space and let
T be a nonexpansive mapping from C into itself. Then, for every z € C, the
Cesaro means 2 Y7 T'z converge weakly to some y € F(T'). Bruck [3] ex-
tended Baillon’s theorem to a uniformly convex Banach space whose norm is
Fréchet differentiable. Hirano and Takahashi 7] extended Baillon’s theorem
to an asymptotically nonexpansive mapping in Hilbert spaces. Oka [8] and
Tan and Xu [10] extended Bruck’s result to an asymptotically nonexpansive
mapping in Banach spaces. On the other hand, Atsushiba and Takahashi
[1] obtained the following nonlinear ergodic theorem for nonexpansive map-
pings with compact domains which generalizes Edelstein’s result [5] : Let D
be a nonempty closed convex subset of a strictly convex Banach space. Let

12
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T be a nonexpansive mapping from D into itself such that T(D) C K for
some compact subset K of D and let x € D. Then, %Z?:_Ol T*hy converges
strongly to a fixed point of T uniformly in & € N U {0}.

In this chapter, we extend Atsushiba and Takahashi’s theorem to an asymp-
totically nonexpansive mapping by using the methods employed in Atsushiba
and Takahashi [1], Bruck [3, 4] and Shioji and Takahashi [9].

2.2 Preliminaries and lemmas

We denote by A™ the set {A = (A, Ag,..., )| A =0, 30, A = 1} for
n € N. Let £ be a Banach space and let 7 > 0. We denote by D, (z) the open
ball in £ with center z and radius r. A Banach space F is said to be strictly
convex if "x%y” < 1forz,y € E with ||z|]| = |ly]| =1 and z # y. Let C be a
subset of E, let T be a mapping from C' into itself and let ¢ > 0. By F(T)
and F¢(T), we mean theset {z € C|Tz =z} and {z € C||z - Tz| < e},
respectively. Let K > 0. We denote by Lip(C, K) the set of all mappings
from C into itself satifying |7z — Ty|| < K ||z — y|| for each z,y € C. We
denote by I' the set of all strictly increasing, continuous convex functions ~y
:R* — R* with v(0) = 0. A nonempty subset C of a Banach space is said
to satisfy the convex approximation property if foy any € > 0, there exists
m € N such that coM C co, M + D.(0) for every subset M of C, where co M

is the convex hull of M and

comM = {3 Mizi |z € M, i 2 0(i=1,2,...,m), S\ = 1}.

i=1 i=1
The following lemma was obtained by Bruck [3]. For the proof of the
lemmas, see [1].

Lemma 2.1 Let I be a strictly convex Banach space and let C be a nonempty
compact conver subset of E. Then, there exists v € T' such that for each
K >0 and T € Lip(C, K), there holds

ITOa+ (1= 0)y) = Oz + (1= VT < Ky~ (e =yl - Tz~ Ty])
for every z,y € C and X € [0,1].

The following lemma was also obtained by Bruck [4].

Lemma 2.2 Let E be a strictly convex Banach space and let C be a nonempty
compact convez subset of E. Then, for each p € N, there exists v, € T’ such
that for each K > 0 and T € Lip(C, K), there holds

p p

< %" (st {1 =l - = T}
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for every T1,Za,...,T, € C and A= (A1, Aa, ..., Ap) € AP

Following an idea in Atsushiba and Takahashi [1], we can show the fol-
lowing lemma.

Lemma 2.3 Let C be a nonempty compact convex subset of a strictly convex
Banach space and let T be an asymptotically nonerpansive mapping from C
into itself. Let x € C and n € N. Then, for each € > 0, there exist
lo = lo(n, &) € N and mg = mo(n, &) € N such that

1 n—1

1 n—1 . .
- Tl+]f1n$ _ Tl il T7+m,’l? H < e
2 GET™)
for all 1> 1y and m = my.

Proof. Let {k,} be Lipschitz constants of 7. Without loss of generality,

we may assume that k; > 0 for all [ € N. By Lemma 2.2, there exists v, € r
such that

n—1

n—1
H Tl(l ;Tj+m$> _ %jz:%Tl+j+mx

n'__

(2.1)

< kl'y,jl( max {||T”'mx — Ty — EHT"“‘””:): - Tl+]+mx||})

0<i,j<n—1

for all € N and m € N U {0}. From 7, € I" and limsup k, < 1, for each

n—0o0
£ > 0, there exists § > 0 such that ky,'(6) < e for all 1€ N.
For 0<i4,j<n—1,wesetr,; = inf |[T™"z—T"z||. There exists
mENU{O}
. . 5
my = mi(4, j) € NU{0} such that r; ; < ||[T™ o —T™ x| < Tigt From
g

. T: 5 + £
limsup k, < 1, there exists n; € N such that k, < T .
n—o00 | Ty — Tmitig|| + §

for all n > n,. So, we have

||Tn+m1+i$ . Tn+m1+j$“ < k‘n“Tml-HI _ anl+ij < Tij -+ g—

for all n > n;. Put my = my(3,5) = my + ny. Then, there holds r;; <
|Tm+ig — T™Hg|| < ryj + % for all m > my. Similarly, there exists [, =

4 1
lo(i,7) € N such that rj; — - < —

5 S 1 |TH™ iy — TH™ || for every m € N
7

and [ > l;. So, we have

1

m+i m+ 7 o
0 < {IIT"™ e = T el -

HTl+m+il‘ _ Tl+m+j17“} S )
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for every m > my and [ > lp. Let lp = max{l5(4,7)|0 < i, < n—1} and
mo = max{ms(i,7) |0 <%, j <n —1}. Then, we get

) . 1 . .
0< max {HTmﬂ:E _ Tm+]x” _ _”Tl+m+1x _ Tl+m+3x”} <$
0<i,j<n—1 ky

for every | > ly and m > mg. So, it follows from (2.1) that

H Tl lnz:lT_7+m ) lnilTl-i-j-i-mx
nis

IA

e m+i,, _ mt] _  NtmAi . pldmt
ki, (O<m§%( {||T z— Tz leT z—T J:z:ll})
< kv t(d) <e

for every | > Iy and m > mg. This is the desired result. O

The following lemma was obtained by Atsushiba and Takahashi [1].

Lemma 2.4 Let C be a nonempty compact subset of a Banach space E .
Then, C satisfies the convex approxrimation property.

From Lemma 2.2 and Lemma 2.4, we obtain the following lemma.

Lemma 2.5 Let C be a nonempty compact convex subset of a strictly convex
Banach space. For each € > 0, there exists § > 0 such that ©oFs(T) C F(T)
holds for every T € Lip(C,1+3d), where €0 A is the closure of the convex hull
of A.

Proof. We use an idea in Bruck [3]. Set R = diamC. Let € > 0 and
go > 0 with (3 + ep)eo < €. From Lemma 2.4, there exists p € N such that
coM C cop,M + D¢, (0) for all subset M of C. There exists v, € I' which
satisfies the condition in Lemma 2.2. Since v, € T, there exists § > 0 such
that (14 68)v,'(26 + RS) 4+ 0 < €. Let T € Lip(C,1 + ). Then, it follows
that copF(;(T) C F.,(T). In fact, let z; € F5(T) for all ¢ = 1,2,...,p and
A= (A1, Ag,..., Ap) € AP. Then,

P p
H T(Z Ale) - Z)‘imi
i= 1=1
1 p p
< H T(Z /\iazi) ATz | +

i=1

IA

(1485 (max {llsi - xj||—h{—5|rTzi—ij||})+a

A

(1+8)7," (o max {H:ci = Tl + |l = Tagl| + 1T - Tx;|}) +6
< (1+90)y, (25+R5)+5<50
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Hence, copF5(T) C Fro(T). So, we obtain coFs(T') C F.,(T)+D¢,(0). Further
it follows that coF3(T) C Fy(T). In fact, for any 2z € coFs(T'), there exist
z € F. (T) and 2 € D,,(0) with z = 2; + 22. And there holds

|z = Tz|| = IT(21 + 22) — (21 + 22

IT(21 + 22) — Tz1|| + [|T21 — 21| + ||z
(1+8)|lzell + 1Tz — 21l + [|2]l
(1+8)e0+e0+e0=(3+0)e0 < (3+¢€0)e0 <.

INIA A

So, we have z € F.(T). Since F.(T) is closed, we can get coFs(T") C F(T).
O

Using the method employed in Bruck (3], we obtain the following lemma.

Lemma 2.6 Let C be a nonempty closed bounded convex subset of a Banach
space. Let y €T, L>1 and T € Lip(C, L) such that

ITOx + (1= Ny) ~ 0Tz + (1= VTl < Ly~ (le =yl - —||T:c —Ty|)
for allz,y € C and X € [0, 1]. Let {xn} and {yn} be sequences m C such that
- Z ||CL'1+1 - Txl“ < Qn and — n Z “yH—l - Tyz” < an for all n e N; where

{an} is a sequence in RT. Then for each A € [0,1] and n € N,

- Z H)\IL'H.l + (1 - )‘)yi-l-l - T()\.’E; -+ (1 - )\)yz)”

i=1

< Lv‘l(g +(L —1)R+20,) +an, where R=diamC.

Proof. Let A € [0,1] and n € N. We have

L 3™ s + (1= Nyier = TO:+ (1= A
< LS NTr 4 (1= Ty~ TOm o+ (1= Ny

1 n 1 n
+ )‘( S @i — TﬂCz‘”) +(1=2) <; > it — Tyi”)
i=1 =1

n:

3

1 n
< =Y Ao+ (1= Ny = TOz+ (1= Vw)ll + . (22)
i=1
From the assumption of 7', we get

A(ZIT O+ (1= X)) = 0T+ (1= NTw)))
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< o~ will = 21Tz~ T
< Az = will = llwags — Yir|
+ loies = Taell + i = Tyl + T, - T
< lzi = wll = 124 — il
+llzirs = Toill + llyier = Twsll + (L - DR, (2.3)

for every ¢ € {1,2,...,n}. Using (2.3) and covexity of -, we obtain
1 m
(= Y INT 2+ (1= NTy = T + (1= N
i=1

< %iv(é—nmi + (1= Ny — T + (1= Vo)l

1
< E(Hﬂ?l =%l = 1Tat1 = Ynt1l)
12 1
+- > ollzipr — Tzl + - D My — Tysl| + (L - 1)R
. =1 =1
R
< L4 (- DR+ 2, (2.4)
n

From (2.2) and (2.4), we obtain

n

%Z Az + (1 - A)yi+1 = T(Azi + (1 = Ny

Ci=1
< Lﬂ/‘l(ﬂ +(L-1)R+ 2an) +a,,
n

4

We can show the following lemma from Lemma 2.1, Lemma 2.5 and
Lemma 2.6.

Lemma 2.7 Let E be a strictly convex Banach space and let C be a nonempty
compact conver subset of E. Then, for any € > 0, there exist § > 0 and
Ny € N such that for every T € Lip(C,1 + 6) cmd {"cn} in C satisfying

|Tntr = Tx,|| < 6 for alln € NU{0}, there holds — Z z; € F.(T) for every

10
’I"IZNQ

Proof. We use an idea in Bruck [3]. Put R = diam C and let ¢ > 0 and
g9 > 0 with (3 + €9)ep < €. By Lemma 2.5, there exists 7 > 0 such that for
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each T € Lip(C,1+n), c0F)(T) C F,(T)and 0 < n < ﬁ hold. Choose
o

p € N such that R < - There exists v € I' which satisfies the condition

in Lemma 2.1. Define ¢ : R* — R* by q(t) = (1 + t)y" (Rt +2t) + ¢
R

and g, : R* — Rt by ¢,(t) = (1 + t)'y'l(; + Rt + 2t> +t for all n € N.

2
Choose § > 0 so small that ¢?~*(8) < % and 6 < n. Since nlgrolo g.(t) = q(t),
2
there exists No € N with Ny > p such that there hold ¢27'(8) < % and
R
Pt go for every n > Ny. Let T € Lip(C,1+6) and {z,} in C satisfying
n

121
|Zns1 — Tzy|| < 6 for all n € N U{0}. Set w; = ]—ijiH. It follows from
j=0
Lemma 2.6 and induction that

1 "= 2
— Z wisr — Twi]| < ¢?71(0) < %— for everyn > Ng.
n =

So, we have

23 lw=Tu

< 25— vl + S - Tl < T4 L @)
= n s 1 i1 77/1 —~ i+1 — ill = 9 2 n &
for every n > Ny. Forn € N, put A(n) ={i e N|0<i<n-—1land|w; —
Tw;|| > n} and B(n) = {0,1,2,...,n— 1} \ A(n). From (2.5), we get
A(n
LG (2.6)
n
for each n > Ny. From
171 1 171 1 1 p-1
—Ziﬁz— sz-i'—p‘zp ) (Tic1 — Tpgiz1)
n np =1
and .
15 . R{p-1)p _ Bp <o
— - i-1 = Tnti-1) || S — < —<—=
np;(p (i1 = Tos 1)' np 2 2n 2

for all n > N, we have

1711

EZ%@—ZW+D (2.7)
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for all n > Ny. Let f € F(T). Then, we have

1n1

—sz—<%-ﬁz4(n)f+% S ow)ts Y w-f).  (28)

i€ B(n) i€A(n)

It follows from (2.6) and the selection of n that

_Z(wi_f)H<M.R<R.n<@ (2.9)

i€ A(n) B n B 2

for every n > N,. If i € B(n), then ||w; — Tw;|| < . This implies that
' 1 1

w; € F(T) for each i € B(n). Hence, (E JAMn)f + ~ > w,-) is a convex

i€ B(n)
combination of elements of F;,(T"). Therefore, from (2.7), (2.8) and (2.9), we

have
1 n—1

= Z z; € by (T) + D (0) + De (0) C Foo(T) + De,(0)
i=0
1 n—1
for every n > Np. As in the proof of Lemma 2.5, we get - Z z; € F.(T) for
i=0
every n > Np. a

Using an idea in Shioji and Takahashi [9], we obtain the following lemma
from Lemma 2.5 and Lemma 2.7.

Lemma 2.8 Let C be a nonempty compact convez subset of a strictly convex
Banach space. Then, for each € > 0, there exist § > 0 and Ny € N such
that for every I € N and mapping T from C into itself satisfying T €
Lip(C,1+ ), there holds

mX: a:—Tl(

“ m—1
m =

7)<
forallm e N withm —-1> 1INy and x € C.

Proof. Let € > 0. From Lemma 2.5, there exists g > 0 such that for
each pair [ € N and mapping T from C into itself with T" € Lip(C, 1 + &),
eoF.,(T") C F.(T') holds. From Lemma 2.7, there exist 7 > 0 and N, € N
such that for each pair [ € N and mapping T from C into itself satisfying

n—1

1 )

T' € Lip(C,1 + ), there holds - S Tz € Fo(T') for all n > Ny and
" =0

z € C. Put § = min{eg,n}. Let | € N and mapping T from C into itself
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with T* € Lip(C,1+ 6). From the above, there hold zoFr, (T") C F.(T") and
n—1

1 Y Tz € F. (T") for alln > Ny and z € C. Let m — 1 > IN;. Choose

n =

=0
n€ Nand s € {0,1,2,...,] — 1} such that m — 1 =In +s. Then n > N,.
If se€{0,1,2,...,1 — 2}, we obtain

S

m—1 n -1 n—1

. n+1 1 il n 1 il
2T = ST v n DGR
1=0 j=0 i=0 j=s+1 1=0

€ wkF. (T c F.(T

1
m
for all m € N with m — 1> [Ny and 2 € C. We similarly get conclusion in
case of s =1 — 1. ]

The following corollary is a direct consequence of Lemma 2.8.

Corollary 2.9 Let C be a nonempty compact conver subset of a strictly
convex Banach space and let T be an asymptotically nonexpansive mapping
from C into itself. Then,

lim sup lim sup sup
l—o0 m—oo  zeC

2.3 Strong ergodic theorem

The following lemma is crucial to prove our nonlinear strong ergodic theo-
rem.

Lemma 2.10 Let C be a nonempty compact convex subset of a strictly con-
vex Banach space and let T be an asymptotically nonexpansive mapping from
C into itself. Let x € C. Then, there exists a sequence {i,} in N such that

n-—1

% > Titing —

520

exists.

for every z € F(T), Jim

Proof. We use the method employed in Atsushiba and Takahashi [1].
From Lemma 2.3, there exist sequences {l,} in N and {é,} in N such that

1n1 nl

ZT“J“ ( ZTJ“ ) H< 1 (2.10)

n
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for every n € N, 1 > I, and i > i,. Let z € F(T). For every m,n € N,
consider

1 m—1
I — “ Z Tj+lm+7'n —
1 "= o o
h “ % Z(n - j)(T~7+1’m+'ln——1x _ T]+7«7n+1'n+m—ll.)
j=1
l —
im %Z J+h+zm+zn —z |,
v =0 T =0
1 n-1 o )
I, = m— Z TJ+1m+zn—1 _T]+ln1+1n+m'—ll.) ,
]:
1 1= 4+ Pt i+ 1= j+i 1% h+i
— — _ ] ImTin,,. . JTim [ in
I = | =3 ~ z sz (nZT z)H
=0 " h—o =0 h=0
and
1 m-— 1n 1 N
_ +im +in
I; = - z Tt (nZT ¢ .’E)
j=0 h=0
Then, we have I < I) + I, + I3. Fix n € N and put R = diam C. We get
1 ! R
L<—) (n—j)R< g_m for every m € N. It follows from (2.10) that
mn “
7=1
11 i+ Rt i +i +i hti
] S _ T] tm lnx__TJ tm T in ”
TR S
1™l 1
< — - =—
mign on

for each m € N with 4,, > [,. By z € F(T), we obtain

1 m-—1 1 n—1
hos LS (L e
m =0 ™ h=o
1 m—1 17z 1
< =Y ki | T
m i=o ™ h=o

for every m € N, where {k,} is Lipschitz constants of T. Therefore, since
lim I} =0 and {k,} is Lipschitz constants of 7', we have

m-—00

lim sup
m—0o0

1 m-—1 o
_ Z T]+1771x — 2z
m j=0
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m—1
= limsup H — Z Titim¥ing _ 5
m—o0
= limsupl < hm sup([l + I + I3)
m—00 m—o0
1 11’1, 1 1 m—1
< ” S Thtmg — 2 || -lim sup — > kitinm
n 7’Lh 0 m—o00 ] -0
1 1 n—1 )
< —+ H — ZThJ”"m -z
n n =
for every n € N. So, we get
m— ) 1 n-1 hotd
lim su H — Titimg — 2 || < liminf ’ =N Thting — 2
m—+oop m ; T on— |In ,;)
1n 1
Hence, lim H Z TIting — 2 || exists. 0O
n—o0

Remark 2.11 In Lemma 2.10, take a sequence {i,} in N such that i, > i,
for each n € N. Then, we can obtain

1 n-1 ,
= Titmg — 2

n 3=0

1 "= 1
= lim “ ZTW"

n—oo

for every z e F(T).

Hm
n—oc

Theorem 2.12 Let E be a strictly convex Banach space and let D be a closed
convex subset of E. Let T be an asymptotically nonezpansive mapping from
D into itself such that T(D) C K for some compact subset K of D and let

1 n—1 )
x € D. Then, — Z T converges strongly to a fived point of T uniformly

1=0
n-1

1
in h € NU{0}. In this case, if Qz = lim — > T’z for every x € D, then

nmeen 1=0
Q is a nonezpansive mapping from D onto F(T) such that QT* = T*Q = Q
for allk € NU{0} and Qx € eo{T x|k € NU{0}} for allz € D.

Proof. We use the method employed in Atsushiba and Takahashi [1].
C = eo{{z} UT(D)} is a nonempty compact convex subset of E which is
invariant under T and contains eo{T%z |k € N U {0}}. From Lemma 2.10,
there exists a sequence {i,} in N such that for each z € F(T),

n—1

L S Titing — 2

n 5

(2.11)

lim

n—oo
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exists. From Corollary 2.9,

1n.—1 o 1 n—1 o
lim sup lim sup “ = Tty — Tm<— > T]“"a:) l= 0. (2.12)
m—00 n—0o0o n j=0 n 3=0
1 n—1 o
Let &, = — ZTJJ”"JC for every n € N. Then, we first prove that &,
T =
J=0

converges strongly to a fixed point of 7. From the compactness of C, there
exists a subsequence {®,,} of {®,} which converges strongly to a point
in C. Then, from (2.12), we have

= limsup lim sup ||®, — T™®,||

m—0o0 n—ooo

= limsuplimsup ||®p, — T ®,, || = limsup ||ye — T™yo|
m—00 k—oo m—oe

and hence
lyo = Tyoll < limsup [lyo — T™yo| + limsup |Tyo — Tyo|
< 04k -0=0,

where {k,} is Lipschitz constants of T". So, we get yo € F(T'). From (2.11),
Jim |Pr — woll = klin;o |®,, — vol| = 0. This implies that ®, — yo. Next
we prove that %ST”"“":C converges strongly to yo € F(T) uniformly in
h € N U{0}. Tali; Oa sequence {4, } in N such that i, > 4, for every n € N.
Then, from Remark 2.11, we have %TST”%m — yo € F(T). Since {i/}
is any sequence in N such that i), _>_i=zpn for every n € N, it follows that
%nz—:l TI+hting converges strongly to yo uniformly in h € NU{0}. Let ¢ > 0.
Th]e=1(1), there exists m € N such that

1 n—-1
H <€ for everyn > mandh € N U {0}.

Z T]+h'+z"$ —
=0

nj_

So, we have

1 n—1 ]
” = Z T1+hflf — Y
=0

117.—1 1 m-—1 m—1

N itithy m — §)(TH 1 — TiHhn=1g) —
n ; m JZ:% mn ;( )( T CL) Yo
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1) 1% ) 1 e n
< * 4 Titith,, ” — m — i) || TRl _ Tithan-1,
- n i=o m Z__: mn 2( ) H H
1'im—1 1 m— 17L—i1n—1 1 m—1 ) ) )
- il Z Titith, ” 4+ Z il T1+]+h+1n1$_y0
niZo Mmoo om0 1 =0
—1
N L 77122 (m B 2) H Ti-]—h,—lx _ Ti+h+n-—1x “
mn ;2
m N — i, m
< ™R+ e+ —R
n n 2n
for every n > 4, and h € N U {0}, where R = diamC. Since ¢ > 0
1 n—1 )
is arbitrary, it follows that - Z T**hy converges strongly to g uniformly
i=0

n—1

1
in h € NU{0}. If Qz = lim —ZT’&: for every x € D, then @ is a

nonexpansive mapping from D onto F (T). In fact, let {k,} be Lipschitz
constants of T'. Then, '

ZT’x——ZT’yH

1= ) ) 1 7= 1
m Z 1Tz = Tyl < llz -yl - Z ki
1=0

3

which implies ||Qz — Qyl| < ||z — yl| for every z,y € D.
Moreover QT* = T*Q = @ for every kK € NU {0} and Qz € co{T*z |k €
N U {0}} for every z € D hold. a
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Chapter 3

A Nonlinear Strong Ergodic
Theorem for Families of
Asymptotically Nonexpansive
Mappings with Compact
Domains

3.1 Introduction

The first nonlinear ergodic theorem for nonexpansive mappings with bounded
domains in a Hilbert space was proved by Baillon [3]. Baillon and Brezis [4]
also proved the following nonlinear ergodic theorem for nonexpansive semi-
groups in a Hilbert space : Let C be a nonempty closed convex subset of a
Hilbert space and let S = {S(t)|t > 0} be a nonexpansive semigroup on C
with F(S) # 0. Then, for every z € C, } [§ S(r)zdr converges weakly to
some y € F(S). Hirano and Takahashi [8] extended Baillon and Brezis’s the-
orem to an asymptotically nonexpansive semigroup. Hirano and Takahashi’s
theorem was extended to a uniformly convex Banach space whose norm is
Fréchet differentiable by Tan and Xu [11]. On the other hand, Atsushiba and
Takahashi [2] obtained a nonlinear ergodic theorem for nonexpansive semi-
groups with compact domains in a Banach space which generalizes Dafermos
and Slemrod’s result [7] : Let C' be a nonempty compact convex subset of a
strictly convex Banach space and let & = {S(¢)|t > 0} be a nonexpansive
semigroup on C. Then, for every z € C, % JES(1 4 h)zdr converges strongly
to some y € F(S) uniformly in A > 0.

In this chapter, we extend Atsushiba and Takahashi’s theorem to an asymp-

26
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totically nonexpansive semigroup by using the methods employed in At-
sushiba and Takahashi [1, 2], Bruck [5, 6] and Shioji and Takahashi [10].

3.2 Preliminaries and lemmas

Throughout this chapter, a Banach space is real and we denote by N
and R*, the set of all positive integers and the set of all nonnegative real
numbers, respectively. We denote by A™ the set {A = (A1, Ag,..., An) | A >
0, " A =1} for n € N. Let E be a Banach space and let 7 > 0. We
denote by D,(z) the open ball in E with center z and radius r. For a subset
C of E, we denote by co C the convex hull of C'. E is said to be strictly convex
if ”’”;L—y“ < 1for z,y € FE with ||z|| = ||y|]| = 1 and z # y. Let C be a subset of
E, let T be a mapping from C into itself and let € > 0. By F.(T), we mean
the set {z € C| ||z — Tz| < e}. Let K > 0. We denote by Lip(C, K), the
set of all mappings from C' into itself satisfying || Tz — Ty|| < K|z — y|| for
each z,y € C. We denote by I" the set of all strictly increasing, continuous
convex functions y:R*t —— R* with 4(0) = 0. Let C' be a nonempty subset
of E. C is said to satisfy the convex approximation property if for any € > 0,
there exists m € N such that coM C co,, M + D(0) for every subset M of
C, where cop, M = {7, \izi |z, € M, \; >0, X0, A\ =1}

A family S = {S(t) |t > 0} is said to be an asymptotically nonexpansive
semigroup on C with Lipschitz constants {k(t) |t > 0} if

(i) for each ¢ > 0, S(¢) is a mapping from C into itself and ||S(t)x —
S(t)yll < k(t)||lx — yl| for each z,y € C;
(ii) S(t+ s)xz = S(t)S(s)z for each t,s > 0 and z € C;
(iii) S(0)x = z for each z € C}
(iv) for each z € C, the mapping t — S(t)z is continuous.
)

(v) t — k(t) is continuous mapping from the set of nonnegative real num-
bers into itself;

(vi) limsup, o k(t) < 1.

S is said to be a nonexpansive semigroup on C if k(t) = 1 for all t > 0.
We denote by F(S), the set of common fixed points of S = {S(t) |t > 0},
ie., Niso{z € C|S(t)x = z}. The following lemmas was obtained by Bruck

[5, 6].
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Lemma 3.1 Let C be a nonempty compact convex subset of a strictly convex
Banach space. Then, there exists v € T such that for each K > 0 and
T € Lip(C, K),

_ 1
ITOz+ (1= X)y) — AT+ (1= NTy)| < Ky~ (= —yll - EHTﬂE—TyII)
holds for every z,y € C and A € [0,1].
Lemma 3.2 Let C be a nonempty compact convez subset of a strictly convex

Banach space. Then, for each p € N, there exists y, € I' such that for each
K>0and T € Lip(C,K),

” T(Xp: )\imi) - i)\iTCIZi
i=1 i=1

holds fo; every T1,%2,...,Tp in C and XA = (A1, Ag, ..., Ap) € AP,

< Ky ((max {llz - 2] - %HT%‘ —Tayl})

1<4,3

Following ideas in Atsushiba and Takahashi [1, 2], we can show the fol-
lowing lemma.

Lemma 3.3 Let C be a nonempty compact convex subset of a strictly convex
Banach space and let S = {S(t) |t > 0} be an asymptotically nonexpansive
semigroup on C. Let x € C and t > 0. Then, for each € > 0, there exist
lo=lo(t,e) > 0 and mo = mg(t, ) > 0 such that

N l+m+r)xd7’~S(l)(%/ot8(m+7)a:d7> H<s

for every l > lo and m > mg.

Proof. Let x € C,t > 0 and € > 0. Let {k(t)|t > 0} be Lipschitz
constants of S. Put sup{k(t) |t > 0} = My. Since {k(¢) |t > 0} is bounded,
My < oo holds. From the assumption of S, we have

1 t
H t/o S(l+m+7)xd7——;5’<l+m+—z)
1 t
= ?;/ﬂ;—lt
M, i >t
= 72/—

‘S(l+m+7)x—5(l+m+%i)x ” dr

IA

S(r)z — S(%)m H——-> 0,

= M- sup

o<r< L
- —n
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as n — oo, uniformly in [, m > 0. Similarly, we have

“ S(l)(%/()tS(nz,-l—T):ch)— ( ZS(m+—z )“——10

as n — oo, uniformly in [, m > 0. So, there exists N; € N such that

H 1/0 S(l+m+7)xd7’—%;5(l+m+~z) <§
and
“ S(z)e /Otg(m+r)§: dT) _ S(z)(%gs(m+ %z)x) ” <:
for every n > N; and [,m > 0. Hence we get
H %/OtS(l+m+T)xd7'—S(l)(%/otS(m—kT)xdT) ” (3.1)
< ”%/(:S(l*’*ﬂ’t-i—T):EdT—}-iS(l—}-m—{-Ei)x
+H%§S(l+m+—2i)m— ( Zsm+—z )“
+ H S(l)(%lz:;SGn—!—%z)x) —S(l)(%/otS(’l’n,-l‘T)(EdT) “
< §E+H%§S(l+m+%i>x— ( ZSm—i——z )H

for every n > N; and I,m > 0. Fix n € N with n > N;. Without loss of
generality, we assume that k() > 0 for all [ €R*. From Lemma 3.2, there
exists v, € I' such that

H lis(l—i-m—i—i—i)x—S(l)(%gS m—+——z ) ” (3.2)

ni=
S(m+ i)z —S(m+ i) |

< k(D)yt( max {

1<i,j<n
i | 5@ m+ Zi)z = s(+m+ ) )
for every [,m > 0. From =, € T, there exists § > 0 such that

()7, (8) < (3.3)

Wil m
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for every [ > 0. For 1 <14,5 <n, we set
. t. t
Tij = #lzfo ” S(m—i— Ez)x - S(m + Ej)x ” .
There exists m; > 0 such that

| 5(mi+ L)z = S(mu+ L)< riy + 2.

By limsup k(I) < 1, there exists {; > 0 such that

l—o0
< rij + 4
= 1S(mq + Li)z — S(my + Lj)x|| + ¢

k(1)
for every [ > [y. So, we have
| S(+mi+ =i = S(t+mi+ =5)a |

< KO | S+ Li)e — 8(my + i) <+ )
for every I > l5. Put mg = my(4,5) = 1 + m;. Then, there holds

|S(m+ i)e = 5(m+ Li)e ] <ry+ 2

for every m > my. Similarly, there exists Iy = l5(4,j) > 0 such that

) 1 t. t .
for every | > Iy and m > my. Let Iy = max{ls(¢,7)|1 < 4,5 < n} and
mo = max{ms(4,7) |1 < ¢,j <n}. Then, we have

0< lgzliuscn{ S(m + %z)x - S(m + %j)d) ” (3.4)
~ g | S(em e+ L)a - s(tem+ Lo [} <

for every | > Iy and m > myq. So, it follows from (3.1), (3.2), (3.3) and (3.4)
that
1t 1t
H ;/ S{l+m+7)xdr — SU)(Z/ S(m +7')5ch) ”
0 0

2
< Se kOO <

for every [ > [y and m > my. O

E+-=¢

| o
| ™

The following lemma was obtained by Atsushiba and Takahashi [1].
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Lemma 3.4 Let C be a nonempty compact subset of a Banach space. Then,
C satisfies the convex approximation property.

The following lemmas were obtained by Nakajo and Takahashi [9].

Lemma 3.5 Let C be d nonempty compact convex subset of a strictly convex
Banach space. For each € > 0, there exists 6 > 0 such that €6Fs(T) C F¢(T)
holds for every T € Lip(C,1+4), where o A is the closure of the convex hull
of A.

Lemma 3.6 Let C be a nonempty closed bounded convex subset of a Banach
space. Let v €T, L >1 and T € Lip(C, L) such that

- 1
ITOw+ (1= Ny) = ATz + (1= NTY)l| < Ly (Jle — yll - 7|17z~ Tyll)
for allz,y € C and X € [0,1]. Let {xn} and {yn} be sequences m C such that

— Z |zic1 — Txi]| < a, and — Z lvier — Tusl| < an for all n € N, where
i=1 i=1
{an} zs a sequence in R*. Then for eachn € N and X € [0,1],

/R
- Z IAgi1 + (1 = Ny = TOzi+ (1= Nyl < Ly (- + (L~ DR+
2an) —|— an, where R = diam C.

Lemma 3.7 Let C be a nonempty compact convez subset of a strictly convez
Banach space. Then, for any € > 0, there exist § > 0 and Ny € N such that

for every T € Lip(C,1+8) and {z,} in C satisfying ||Zns1 — Tzy|| < 8 for

1 n—1
allm € NU {0}, there holds ~ > z; € F.(T) for every n > No.
i=0

Lemma 3.8 Let C be a nonempty compact convez subset of a strictly convex
Banach space. Then, for each € > 0, there exist 6 > 0 and Ny € N such
that for every | € N and mapping T from C into itself satisfying T' €
Lip(C,1+6), there holds

1m—1 ) . 1m—1 )
|-G 5T <

for allm € N withm —12> 1INy and x € C.

As in the proof of [10], we have the following lemma. However, for the
sake of completeness, we give the proof.
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Corollary 3.9 Let C be a nonempty compact convexr subset of a strictly
convezr Banach space and let S = {S(t) |t > 0} be an asymptotically nonez-
pansive semigroup on C. Then,

1 gt 1 rt
lim sup lim sup sup H —/ S(t)zdr — S(l)(—/ S(r)z dT) H:
lsoo  t—oo zeC Il TJ0O t Jo

Proof. Let {k(t)|t > 0} be Lipschitz constants of S. Let ¢ > 0. There
exist § > 0 and Ny € N which satisfy the condition in Lemma 3.8. From
limsupk(l) < 1, there exists lp > 0 such that k(l) < 1+ 6 for every I > lo.

l—oo

1 [
Let | > l. Then, there exists t; > 0 such that A > - for all £ > ¢t;. Let
0

t > ;. For each n € N, let j, be the nonnegative mteger which satisfies
1
. Then, n > jnNy for every n € N and by | > Iy, there

exists ng € N such that ¢ - J—" > |y for all n > ngy. Hence, from Lemma 3.8
n

t-—=<[l<t-

we get

EESTRRTNAS So1

=0 0

for every n > mg and z € C. So, we have

“ %/OtS(T)xdT—S(l)<% /OtS(’T):EdT> H

oot
N nilgs %z)x—S(ijn)(ni_lgs(%z)x) H
+ s(%jn)(nilés(y)‘”) =5(an) (3 f soer) |
| S ([ strar) ~ s (2 [ serwar) |

< (2496) HE/;S(T)MT—;%;ZO (%Z)z

t
ver L) f i) st sons)|

for every n > ng and x € C. Tending n to infinity, we get

1w s} [ siea) <
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for every z € C. So,we have

1t 1t
lim sup lim sup sup H —/ S(r)zdr — S(l)(—/ S(t)x d’r) “ <e.
l—oo  t—oo zeC Il T J0 tJo
Since € > 0 is arbitrary, we obtain the conclusion. O

Remark 3.10 We can obtain F(S) # 0. In fact, let z € C and put z, =
1 gt
~— | S(r)xdr for every t > 0. Since C is compact, there exists a subnet

{x,.} of {z:} such that z,, converges strongly to some zo in C. So, we have

0 = lim suphm sup llze — S(0)ze|]
l—oc0
= limsup hm  sup |z, — Sz, || = limsup ||zo — S{{)zo]
l—o0

l—o0

and hence
lzo — S(s)zo|| < limsup ||z — S()zol| + limsup ||S(I)ze — S(s)ol|
l—o0 l—oo
< 0+k(s)-0=0

for every s > 0. Therefore o € F(S).

3.3 Strong ergodic theorem
The following is crucial to prove our theorem.

Lemma 3.11 Let C be a nonempty compact convex subset of a strictly con-
vex Banach space and let S = {S(t) |t > 0} be an asymptotically nonexpan-
sive semigr01cp on C. Let x € C. Then, there exists a net {i;}1>0 C R such

exists for every z € F(S).

that tlim “ S{t+ i)z dr — 2
Proof. We use the methods employed in Atsushiba and Takahashi [1, 2].
From Lemma 3.3, there exist nets {;};>0 in R and {l;}+>0 in R* such that

|4 fstssenmir-sult [suanma)|<] oa

for every t > 0,4 >4, and | > I;. Let z € F(S). For every s,t > 0, consider

1 s
I = —/ S(is+i +7)xdr — 2z
0

S
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%/{)s<l/(;t5('r+a+is+it)xda) dr

t
+§/o(t_7){ (T+is+i)z—S(s+7+is+
1 t
L = ;g/o(t—7>{5(fr+z's+z‘t)x—S(s+T+is+it>I}dT
1 51 1 . .
I, = g/()(z/()S(T+U+'ls+Zt)mda)dT
1 s o1t .
—;/0 S(T+Zs)(z/0 S(o+2t)xd0) dr
and
1 s Lot :
o= 2L sl soima)e

34

i )xc}dr —z

3

b

Then, we have I < I, + I + I3. Fix t > 0 and put R = diam C. We have

I < 1/t(t JRdr = R
—-— —T = —
= st Jo 4 2s

for every s > 0. It follows from (3.5) that

I, < 1/5 1/tS( + 0+ + i)z do — S( +')(1/t
- - T is —S(r+15)( <
2= sl It i tJo
<11t
sJo t i

for every s > 0 with i, > [;. By z € F(S), we obtain

1 s 1t
< - )| T )T do ) —
I; < s/o S(T+zs)<t/05(a+zt)mdcr> z
1 s AN :
< g/o k(T + 1) IZ/O S(o+i)xdo — =
1 s : 1t :
= ;[ reviary | [ st +uedo

S(o+1i)x da) H dr

H dr
dr

-z

for every s > 0, where {k(t)|t > 0} is Lipschitz constants of S. Therefore,

since lim I; = 0 and {k(t)|t > 0} is Lipschitz constants of

1 rs
lim sup H —/ S(T +1is)xdr —z
s Jo

S§—00

]_ s
= limsup 'I g/ S(T+1is+ i )xdr — =
0

§—00

= limsup/ < limsup(f; + o + I3)

§—00 8§—00

1 1 gt _ , 1 s
< 4| =/ Slo+i)ado —z | - limsup -
t t Jo s—oo 8§ J0
1 1t ,
< —+|=/ Slo+i)rdo—=z
t tJo

S, we have

k(T + 1) dr
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for every t > 0. So, we get

lim sup
§—00

1 ¢ )
[Z/o S(o+i)xdo — =

l/SS(TJriS)ach—z
s Jo

< lim inf
t—oc

exists. |

1 t
Hence, tlim “ z/ S(r +1i)zdr — z

Remark 3.12 In Lemma 3.11, take a net {i;}>0 in RY such that i > 4, for
every t > 0. Then, we can get

t ‘ 1 gt
lim H %/ S(r+4)zdr —z ||= lim H Z/ S{t+4)zdr — z
0 0

t—oco

for every z € F(S).

Theorem 3.13 Let C be a nonempty compact convexr subset of a strictly
convez Banach space and let S = {S(t) |t > 0} be an asymptotically non-

4
expansive semigroup on C. Let x € C. Then, — / S(r + h)z dr converges
strongly to a common fized point of S uniformly in h > 0. In this case, if
t
Qr = tlim Z/ S(r)zdr for every x € C, then @ is a nonexpansive map-
—00 0 .

ping from C onto F(S) such that QS(t) = S(t)Q = @ for everyt > 0 and
Qz € co{S(t)z |t > 0} for everyz € C.

Proof. From Lemma 3.11, there exists a net {#:},>0 in R* such that

. 1t :
lim H Z/o S(r+i4)zdr — 2 (3.6)

t—00

1 st
exists for every z € F(S). Set &, = z/ S(T + i)z dr. As in the Remark
0

3.10, there exists a subnet {®;, } of {®;} such that &, converges strongly to
a common fixed point 3 of S. So it follows from (3.6) that

Him [|®; — gol| = lim [Py, — ol = 0.

1 ft
This implies that &, — yp. Next we prove that z/ S(t + i + h)xzdr
0

converges strongly to yo € F(S) uniformly in & > 0. Take a net {7;}¢>0 in
R* such that i, > 4; for every ¢ > 0. Then, from Remark 3.12, we have

1 t
¥/0 S(t + i)z dr — yo € F(S). Since {i;};>0 is any net in R* such that
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1t
i} > 1, for every t > 0, it follows that n /
to yo uniformly in i > 0. Let € > 0. Then, there exists to > 0 such that

1t ,
H;/O S(T + i+ h)z dr — yo

for every t > to and h > 0. So, we have

1

t
Hto

IA

IA

<

/S(T+h)xd7—y0
H l/ot(l/:S(T—}—h—i—a)mda) dr

t
+%A?&wﬂﬂh+hﬂ—5@+7+hﬂhﬁ—%

o+ |

ih

8

t s
/{l/ S(T+h+0)xda—y0}d7
o lsJo
—1—/ (S——7')||S(T+h)$—S(t+T+h)IHdT
ts Jo
1

/is{—/osS('r+h+a)xda—yo}dT
/{ / T+h+0)xd0—y0}d7

t_/ (s = )|S(r + h)z — S(t+ 7+ h)z| dr

l/ T+h+0‘)fL’dO’—yoH dr

S
1/1 1
t

/ &qur+hm—sa+7+mﬂm7

S

t

—/0 S{t+is+h+o)xdo — yo H dr

36

S(T+14y+h)z dT converges strongly

for every s > to, t > i; and h > 0, where R = diam C. Since € > 0 is

1/t
arbitrary, it follows that n /

t
uniformly in h > 0. If Qz = tlim " /

0

S(T + h)x d7 converges strongly to yo € F(S)

S(r)zdr for every z € C, then Q

is a nonexpansive mapping from C onto F(S). In fact, let {k(t) |t > 0} be
Lipschitz constants of S. Then, we get

1

t 1 gt
H;/O S(T).’L‘dT—-t*/O S(t)ydr

1 t
<le-yl-5 [ k@)ar
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which implies ||Qz — Q|| < ||z — y|| for every =,y € C.
Moreover, we have QS(t) = S(t)Q = Q for every t > 0 and Qz €
co{S(t)z |t > 0} for every z € C. O
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Chapter 4

Strong Convergence Theorems
for Nonexpansive Mappings
and Nonexpansive Semigroups

4.1 Introduction

Let C be a nonempty closed convex subset of a real Hilbert space and let T’
be a nonexpansive mapping from C' into itself, that is, || Tz — Ty|| < ||z —y||
holds for every z,y € C. We denote by N the set of all positive integers.
Halpern [3] introduced an iteration procedure as follows:

9 =1z € C, Tnt1 = anz + (1 — )T,

for each n € N U {0}, where {a,} C [0,1]. Wittmann [12] proved that {z,}

converges strongly to Prr)(zo) when {a,} satisfies lim ap =0, > a, =00
n=0
oo
and Y |an41 — | < 00, where F(T) = {z € C|Tz = z} and Ppr)(-) is the
n=0
metric projection onto F'(T).
The purpose of this chapter is to make another method of strong conver-
gence. Motivated by Solodov and Svaiter [10], we consider the sequence {z,, }

generated by

o=2x€C,
Yn = QnTy + (1 - Ctn)TIEn,
Crn={2€Clllyn— =2l <llzn — 2lI}, (41)

Qn=1{z€C|(xn— 220 —1s) >0},
Tn+1 = Ponno. (o)

40
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for each n € N U {0}, where {a,} C [0,a] for some a € [0,1). Then,
we show that {z,} converges strongly to Pr(r)(2o) by the hybrid method in
the mathematical programming. By this method, we also study the proximal
point algorithm [4, 5, 7,.12]. Finally, we obtain a strong convergence theorem
for a family of nonexpansive mappings in a Hilbert space.

4.2 Preliminaries and lemma

Throughout this chapter, let. H be a real Hilbert space with inner prod-
uct (-, ) and norm || - ||. We write z, — z to indicate that the sequence
{z,} converges weakly to z. Similarly, z, — z will symbolize strong con-
vergence. We know that H satisfies Opial’s condition [6], that is, for any
sequence {z,} C H with z, — z, the inequality liminf, . ||z, — z|| <
lim inf, . ||Zn — y]| holds for every y € H with y # x. We also know that for
any sequence {z,} C H with z, — z, ||z|| < liminf, . ||z,|| holds. Further,
let {z,} be a sequence of H with z, — z and ||z,|| — ||z||. Then, there holds
z, — x. Let C be a nonempty closed convex subset of H. We denote by
Pc(+) the metric projection onto C. It is known that for z € C, z = Pg(z)
is equivalent to (z — y,z — z) > 0 for every y € C. Let T be a nonexpansive
mapping from C into itself. It is known that F(T) is closed and convex. A
family S = {T(s)|0 < s < oo} of mappings from C into itself is called a
nonexpansive semigroup on C' if it satisfies the following conditions:

)

(i) T(s+1t) =T(s)T(t) for all s,t > 0;
Y T(s)z = T(s)y|| < ||z —yl| for all z,y € C and s > 0;
)

for all z € C, s — T'(s)z is continuous.

We denote by F(S) the set of all common fixed points of S, that is, FI(S) =
No<s<ooF(T(s)). It is known that F(S) is closed and convex. An operator
A C H x H is said to be monotone if (z1 —x9,y1 —y2) > 0 whenever y; € Az;
and y, € Axe. A monotone operator A is said to be maximal if the graph of
A is not properly contained in the graph of any other monotone operator. Let
A be a monotone operator. It is known that A is maximal iff R(/+74) = H
for every v > 0, where R(I + 17A) = U{z +rAz|z € H,Az # 0}. Tt is
also known that A is maximal iff for (u,v) € H x H, (z —u,y —v) > 0
_ for every (z,y) € A implies v € Au. For a maximal monotone operator
A, we know that A™10 = {z € H|0 € Az} is closed and convex. If A
is monotone, then we can define, for each r > 0, a nonexpansive mapping
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J.: R(I4+1A) — D(A) by J, = ([4+7rA)"!, where D(A) = {z € H| Az # 0}.
J, is called the resolvent of A. We also define the Yosida approximation A,
by A, = (I — J,)/r. We know that A,z € AJ,x for all z € R(I +rA). We
also have F'(J,) = A0 for each r > 0, where F(J,) = {z € D(A)| J,z = z};
see [11] for more details.

The following lemma was proved by Shimizu and Takahashi [8]; see also
1,2, 9.

Lemma 4.1 Let C be a nonempty bounded closed convex subset of H and
let S = {T(s)]|0 < s < oo} be a nonezpansive semigroup on C. Then, for
any h > 0,

1 st 1 st
lim sup ” —/ T(s)xds—T(h) ( -/ T(s)xds )“ =0.
tJo t Jo

=00 geC

4.3 Strong convergence theorems for nonex-
pansive mappings

Let C be a nonempty closed convex subset of H and let 7' be a nonexpan-
sive mapping from C into itself such that F'(T') is nonempty. We consider
the sequence {z,} generated by (4.1).

Lemma 4.2 {z,} is well defined and F(T) C C,NQ, for everyn € NU{0}.

Proof. 1t is obvious that C, is closed and @), is closed and convex for
every n € NU{0}. It follows that C, is convex for every n € NU{0} because
lyn — 2|| < |lzn — 2]| is equivalent to

“yn - zn”Q + 2(yn — Tpy Tn — 2) < 0.

So, C,NQy, is closed and convex for every n € NU{0}. Let u € F(T'). Then
from

lanz, + (1 — )Tz, — ul|
o ||Tn — u” + (1 = o) || Tzn — u|

e = ull,

1y — ul

<
<

we have v € C, for each n € N U {0}. So, we have F(T) C C, for all
n € NU{0}.
Next, we show by mathematical induction that {z,} is well defined and
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F(T) c C,NQ, for each n € NU{0}. For n = 0, we have 1y = z € C
and Qy = C, and hence F(T) C Cy N Qo. Suppose that z; is given and
F(T) c C,NQy for some £k € N U {0}. There exists a unique element
Tpy1 € Cp N Qy such that zp1 = Pryng,(®o). From x4 = Peoono, (o),
there holds

(Th41 — 2,20 — Tg1) 2> 0

for each z € CyNQy. Since F(T') C CyNQy, we get F(T') C Qpy1. Therefore
we have F(T) C Cgy1 N Qk+1. This completes the proof. )

Lemma 4.3 {z,} is bounded.

Proof. Since F(T) is a nonempty closed convex subset of C, there ex-
ists a unique element zo € F(T) such that 2o = Pp(r)(z0). From z,4; =
Pc,no, (z0), we have

[Zn+1 — Zol| < ||z — zol|

for every z € C, N Q. As 29 € F(T) C C,, N Qn, we get
|1Znt1 — ol < |20 — ol (4.2)

for each n € N U{0}. This implies that {z,} is bounded. m

Lemma 4.4 ||z,41 —z,|| — 0.
Proof. As 41 € Cp, N Qn C @Qp and x, = Py, (7o), we have
|Zn41 = Zoll 2 ||zn — zol|

for every n € N U {0}. Therefore, by Lemma 4.3 a sequence {||z, — zo]|} is
bounded and nondecreasing. So there exists the limit of ||z, — zo||. On the
other hand, from z,,; € @y, we have (z, — Znt1,Z0 — Z,) > 0 and hence

lzn — xn+1”2 = |[(zn — 20) — (g1 — 1'0)“2
|zn — xOHQ = 2(zy — To, Tng1 — 1"‘0) + ”55714-1 - 330”2
|t — $0||2 ~ ||zg ~ C50”2 — 2(xn = Tpy1, o — Ty)

< lzner — zoll? = l|zn — zol|?

for every n € N U {0}. This implies that ||z,41 — 2Zn| — 0. ‘ 0

Theorem 4.5 ©, — 2, where zy = Pr(y(20).



Chapter 4. Strong Convergence Theorems for Nonexpansive Mappings 44

Proof. Since {z,} is bounded, we assume that a subsequence {zn,} of
{z,} converges weakly to wy. It follows from z,; € C, that

1
Tz — zall = 1—_5;”.% — z, |
1
< 1 — an(Hyn - xn+1|| + ||$n+1 — an)
< 2 fans — 2l
L TP
- l-a, n+l n

for every n € N U {0}. By Lemma 4.4, we get
Tz, — z,|| — 0. (4.3)
Suppose that wy # Twy. From Opial’s condition and (4.3), we have

liminf ||z,, — wo]| < liminf ||z, — Twol|
1—0C 71— 00

IA

lim inf (s, — Tn,| + 12, — wol])
= liminf ||z, — wol .
11— 00
This is a contradiction. Hence, we get
wy € F(T). (4.4)

If 2o = Pr(r)(20), it follows from (4.2), (4.4) and the lower semicontinuity of
norm that

o — 20l < llzo — woll < lim inf |1z — |

< thl sup “xO - xﬂz” < HIO - 20” :
i—o00

Thus, we obtain lim ||z, — Zo|| = ||zo — wol|| = ||zo — 20||. This implies
1— 00
Tp, — Wo = Zp.

Therefore, we have x, — 2. 0

We apply this method to the proximal point algorithm [4, 5, 7, 12] and
get the following theorem.

Theorem 4.6 Let A C H x H be a mazximal monotone operator such that
A7'0 # 0 and let J, be a resolvent of A, where r > 0. Define a sequence
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{z,} generated by

To=2x € H,
Yn = Jrn<xn+fn)a
Co={z€ H|l|lyn— 2|l < llza + fu — =i}, (4.5)

Qn:{z€H|(xn—27x0—$n) 20}7
Tnt1 = Po,n@. (o)
for everyn € NU{0}, where {r,} C (0, 00), liminf r, > 0 and lim Il fzll = 0.
Then, xn, — 29 = Pa-19(x0).
Proof. As in the proof of Lemma 4.2, {z,} is well defined and A7'0 C
C, N Q, for every n € N U {0} because J,, is nonexpansive and A~'0 =
{2 € H|J,,z = z} for every n € N U {0}. Results in Lemmas 4.3 and

4.4 hold because A~10 is nonempty, closed and convex. We also have from
nli_)rglo | fzll = 0 that {y.} is bounded. Next, we suppose that a subsequence

{zn,} of {z,} converges weakly to wo. It follows from z,4; € C, that
lyn — Zall < Ny — Tngall + [[Tng1 — znll
S “xn + fn - xn+1“ + ”:L‘n+l - CCn”
< 2l Zpg1 — Tl + I fll
for every n € N U {0}. From lim [Znt1 — zn|l = lim | /2]l = 0, we obtain
|y — || — 0. This implies that
yni — Wop - (46)

On the other hand, since A is monotone, we have, for every ¢ € N and
(u,v) € A,

, 1
(yni —u, _(xm + fm _yni> - ’U) Z 0

Tn i

and hence

1
(Wn, = 4 =0) 2 =——lyn, = ull - 9 = (@0 + Fa)ll-

nq

1
By the boundedness of { ;—||yn — ul| }, 1Yn, — (@, + fu;)|l = 0 and (4.6),
-

we have (wo — u, —v) > 0 for every (u,v) € A. Therefore, we get wp € A0
as A is maximal. If zg = P4-19(x0), as in the proof of Theorem 4.5, we have
lz0 = @oll < [lwo = zol| < lim inf [lzn, — ol

< Timsup|jza, — zofl < Il - 2ol
1— 00

We obtain Zh_glo Tn, = Wo = Z. Therefore, we get nh—l}olo Tn = Zo. a
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4.4 Strong convergence theorem for nonex-
pansive semigroups

Let C be a nonempty closed convex subset of H and S = {T(s) |0 < s <
oo} be a nonexpansive semigroup on C such that F(S) # (). Note that F(S)
is closed and convex. Consider a sequence {z,} generated by

=1z €C,

1 fin
Yn = QnTy + (1 — an)z—/o T(s)z,ds,

Cp={2€C|llyn— 2l < llzn — 2|},
Qn=1{2€C|(zp— 2,20 — x,) > 0},
| Tn41 = Po.ng.(To)

(4.7)

for every n € N U {0}, where {a,} is a sequence in [0, a] for some a € [0,1)
and {t,} is a positive real divergent sequence. Using Lemma 4.1, we get the
following theorem.

Theorem 4.7 z, — 2o = Pp(s)(zo).

Proof. Since we have, for every u € F(S) and n € N U {0},

lvn —ull < anllze —ull + (1 — o)

1 [tn
E/O T(s)zpds —u “
1

tn
< aplze —ul + (1 — an)t—/o IT(8)2n — ul| ds

n

1
< anllen = ull + (1= an)i= [ llan — ullds
n

= oz —ull + (1 = an)llzn — ull

= ”.’L’n - 'U,” )

it follows that F(S) C C, for every n € N U {0}. As in the proof of Lemma
4.2, we get that {z,} is well defined and F(S) C C,NQ, for each n € NU{0}.
Since F(S) is nonempty and 2o = Pr(s)(Zo), as in the proofs of Lemmas 4.3
and 4.4, we get that ||z,+1 — 2ol < |20 — zo|| for each'n € N U {0}, {z.}
is bounded and ||zp4+1 — Zx|| — 0. We assume that a subsequence {z,,} of
{z,} converges weakly to wp. We have

17(s)0 = anll < | T(6)en =T [ Tls)ends) |

| 16 [ Tads) - & [T Tmnds
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(4.8)

1 [t
+ —/ T(s)znds — Zn
ty Jo
1 gt
< 2 —/ T(s)znds — Tn
ty Jo
]. in ]_ tn

+ T(s)(a/o T(s)aznds) —%;/0 T(8)z,ds

for every 0 < s < oo andn € NU {0}. On the other hand, from Z,41 € Cy,
we have that

| L [ Temas = | = 7ol =
— s)zpds — x = W — T
- Jo 2 n 1— a, Y n
1
< 1— an(Hyn = zppall + |2a41 — zall)
2
< 1—a, ”zn+1 - xn” (49)

for every n € NU{0}. Let X = {2 € C| ||z — 20| < 2|20 — zol|}. Then, X is
a nonempty bounded closed convex subset of C which is T(s)-invariant for
each s € [0, 00) and contains {z,}. By Lemma 4.1, we get

lim ” —t};/:n T(s)z,ds — T(h)(tl /Otn T(s)zn ds)

n—0
n

| 0 (410)

for every h € [0,00). By (4.8), (4.9), (4.10) and | Zns1 — Zall — 0, we obtain
IT(s)zn — znll — 0
for each 0 < s < oo. This implies that
wp € F(S)

by Opial’s condition. As in the proof of Theorem 4.5, we have z,, — wo = Zp-
Therefore, we get x, — 2o0. a
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Chapter 5

Strong and Weak Convergence

Theorems by an Improved
Splitting Method

5.1 Introduction

Let H be a real Hilbert space and let A : H — 28 B : H — 2H
and A+ B : H — 2" be maximal monotone operators such that D(B) C
D(A) and (A + B)~10 # @, where D(A) is the domain of A. Let C be a
nonempty closed convex subset of H and let 0ic denote the subdifferential of
the indicator function of C. We denote by N the set of all positive integers.
As one of the methods of finding an element of (4 + B)~!0, there is the
following splitting method (5.1) that was introduced by Passty [14] and by
Lions and Mercier [8]:

{ zy =1z € D(A), (5.1)

Tnt1 = L (Tn — Apwn)

for every n € N, where w, € Az, {\,} C (0,00) and J& = (I + A, B)~L.
If B = 0ic, it is the projection method for variational inequalities by Brézis
and Sibony [2] (see also Sibony [16]). Further, if A is the gradient of a
continuously Fréchet differentiable convex functional on H, it is the gradient
projection method by Goldstein [7]. Later, the splitting method was widely
studied by Gabay [6] and several authors [4, 11, 19]. Let a > 0. A single
valued operator A : H — H is said to be a-inverse-strongly-monotone (see
[1,3,5,9,21) if (z—y, Az — Ay) > a||Az— Ay|)® for all 2,y € D(A). Gabay
[6] proved that the sequence {z,} generated by (5.1) converges weakly to
some z € (A + B)7'0 when A is a-inverse-strongly-monotone and X, = A

50
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(constant) with 0 < A < 2a.

In this chapter, we prove a strong convergence theorem by combining the
splitting method with the hybrid method in the mathematical programming
(see [12, 17]). Further, using an iteration of Mann’s type [10]:

{a:1=:veD(A),

Tnp1 = Qny + (1 — an)Jﬁ(I - Az, (5.2)

for every n € N, where {a,,} C [0,1] and {\,} C (0, c0), we obtain a weak
convergence theorem which generalizes the result of Gabay [6].

5.2 Preliminaries and lemma

Throughout this chapter, let H be a real Hilbert space with inner prod-
uct (-, -) and norm || - ||. We write z,, — z to indicate that the sequence
{zn} converges weakly to z. Similarly, z,, — z will symbolize strong con-
vergence. It is known that H satisfies Opial’s condition [13], that is, for
any sequence {z,} C H with z, — z, the inequality liminf, . ||z, — z|| <
liminf, . ||z —y|| holds for every y € H with y # z. We also know that for
any sequence {z,} C H with z, — z, ||z|| < liminf, . ||z,|| holds. Further,
let {z,} be a sequence of H with z, — z and ||z, || — ||z||. Then, there holds
T, — . Let C be a nonempty closed convex subset of H. We denote by
Pc(-) the metric projection onto C. We know that for z € C, z = Pg(z) is
equivalent to (z —y,z — z) > 0 for every y € C. Let A be a mapping of C
into H. Then, an element z in C is a solution of the variational inequality
if (y—xz,Az) > 0 for all y € C. An operator A : H — 27 is said to be
monotone if (z; — z2,y1 — ¥2) > 0 whenever y; € Az, and y, € Azy. A
monotone operator A is said to be maximal if the graph of A is not prop-
erly contained in the graph of any other monotone operator. It is known
that a monotone operator A is maximal iff R(I + rA) = H for every r > 0,
where R(I +rA) = U{z + rAz|z € H,Az # D}. It is also known that a
monotone operator A is maximal iff for (u,v) € H x H, (z —u,y —v) > 0
for every (z,y) € A implies v € Au. For a maximal monotone operator
A, we know that A™'0 = {z € H|0 € Az} is closed and convex. If A4 is
monotone, then we can define, for each A > 0, a nonexpansive mapping J§* :
R(I +)XA) — D(A) by J = (I + MA)~?, where D(A) = {2 € H| Az # 0}.
J{ is called the resolvent of A. We also define the Yosida approximation
Ay by Ay = (I — J{)/X. Tt is known that the resolvent J{ of A is a firm
contraction, ie. it satisfies ||z — J{y||? < (J{z — J{y,z — y) for every
z,y € R(I + AA). We also have F(J{!) = A710 for each A\ > 0, where
F(J{) = {z € D(4)|Jfz = z}. And we know that Ayz € AJ{z for all
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z € R(I + MA); see [18] for more details.

We have the following lemma for inverse-strongly-monotone operators.

Lemma 5.1 Let o > 0. Let A: H — H be a single valued a-inverse-
strongly-monotone operator with D(A) = H amd let B : H — 27 be o
mazimal monotone operator such that (A+ B)~'0 # 0. Then the following
hold:

(i) A is mazimal monotone;
(i) A+ B is mazimal monotone and (A + B)~10 is closed and convez;
(111) for every A € [0,2¢], I — MA: H — H is nonezpansive;

(iv) for every A € (0,00), Ty = JZ(I—AA) is well defined and (A+B)™10 =
F(T)), where F(T)) is the set of the fized points of Ty;

(u) for every X\ € (0,2a], T is nonezpansive.
Proof. (i) Since A is a-inverse-strongly-monotone, we have
aflAz — Ay|* < (z -y, Az — Ay) < |lz — g - | Az — Ay]|

for every z,y € H. So, A is monotone and Lipschitz continuous. Therefore,
it follows that A is maximal monotone (see e.g. [20]).

(ii) Since A is maximal monotone with D(A) = H and B is maximal mono-
tone, A+ B is maximal monotone (see e.g. [15]). Hence, (A+ B)~'0 is closed
and convex.

(iii) Since A is a-inverse-strongly-monotone and A is in [0, 2¢], we have

I(I = AA)z — (I — AA)yll?

(= —y) — MAz — Ay)|*

lz = ylI* = 2M\(z — y, Az — Ay) + X*|| Az — Ay|®
lz = yll* + (A" = 2a)) || Az — Ay|]®

lz = yli?

IAIA

for every x,y € H (see [5]). So, I — AA is nonexpansive.
(iv) Since B is maximal monotone, it follows that R(/ + AB) = H for every
A € (0,00) and hence T : H — H is well defined. Let A > 0. Then, we

have

uw€ F(T)) <= Tu=u<=JP(u—Iu)=u
<= u—Mu€u+I\Bu<= —Au € Bu
< 0€(A+Blu<=uec(A+B)'0.
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Therefore, we get F(Ty) = (A + B)70 for every A € (0, 00).
(v) Since the resolvent JF and I — XA are nonexpansive, T is nonexpansive.
a

5.3 Strong convergence

Motivated by Gabay’s theorem [6], we show the following strong conver-
gence theorem by combining the splitting method and the hybrid method in
the mathematical programming [12, 17].

Theorem 5.2 Let « > 0. Let A: H — H be a single valued a-inverse-
strongly-monotone operator with D(A) = H and let B : H — 27 be a
mazimal monotone operator such that (A+B)~'0 # 0. Let {z,} be a sequence
generated by

o =2 € H,

Yn = JE (I — MA)zn,

Crn={2z€ H||yn— 2l < llzn — 2|},
Qn=1{2€ H|(zn— 2,20 — z) > 0},
Tnt1 = Ponng.(To)

for every n € N U {0}, where {A\,} C [a,2a] for some a € (0,2a). Then,
{x,} converges strongly to P ayp)-10(Z0).

Proof. We give the proof with four steps (a)-(d).
(a) It is obvious that C,, is closed and @, is closed and convex for every
n € NU{0}. We also have that C,, is convex for every n € N U {0} because

[gn = 2| < ||lzn — 2]} <= [lyn — Znl|* + 2(Yn — Zn, Tn — 2) < 0.

So, C, N Q,, is closed and convex for every n € NU{0}. Let u € (A+ B)~10.
By Lemma 5.1 (iv), we have J2 (I — AyA)u = u for every n € N U {0}. So
we get

o — wll = VB = A A)zn = JE.(I = MAlul| < l|za —ul

by Lemma 5.1 (v) and hence u € Cy,. Therefore, we have (A + B)~'0 C C,
for every n € N U {0}. Next, we show by mathematical induction that {z,}
is well defined and (A4 + B)7!0 C C, N Q, for every n € N U {0}. For
n = 0, we have 2o = = € H. And yo is well defined by Lemma 5.1 (iv)
and Qo = H. Hence (A + B)™'0 C Cp N Qo. Suppose that z; is given and
(A+ B)™'0 C C,NQy for k € NU{0}. It follows from Lemma 5.1 (iv)
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that vy is well defined. As (A + B)7'0 is nonempty, Cj Ny is a nonempty
closed convex subset of H. So, there exists a unique element zx41 € Cp N Qg
such that 2,41 = Po,no, (To). And there holds (zx41 — 2,70 — Try1) > 0 for
every z € C, NQy. Since (4 + B)~!10 C C, NQx, we get (A+ B)710 C Qp1.
Therefore, we have (A + B)™10 C Cr+1 N Qp1-

(b) By Lemma 5.1 (ii), (A+B)~'0is closed and convex and hence P4+ 5)-10(Zo)
is well defined. Let zp = Patp)-10(z0). From zp41 = Pe.no. (zo) and
20 € (A+ B)~'0 C C,, N Qn, We have

IZni1 = Zoll < ll20 — ol (5.3)

for every n € NU{0}. Therefore, {z,,} is bounded. By z = JE (I — \nA)20
and Lemma 5.1 (v), we have

lyn — 20l| = 198, (I = AnA)zn = J3 (I = AnA)z0]| < l|zn = 20|

for every n € NU{0}. So, {yn} is bounded.
(¢) As Tpy1 € Cr N Qn C @y and z, = P, (7o), we have

lzn = Zol| < l|Zn41 — 2o

for every n € N U {0}. Therefore, a sequence {||z, — zo||} is bounded and
nondecreasing. So there exists the limit of ||z, — zol|. On the other hand,
from Zpy1 € @Qn, We have (zp, — Zpt+1, To — Tn) > 0 and hence

| Tns1 — Inllz = ||Tn1 — 330”2 + |20 — 550”2 + 2(Tny1 — To, To — Tn)
| Znt1 — Zoll* = |Zn — Zoll* = 2(zn — Tni1, To — Tn)

< |@ns1 = 2oll* = lzn — oll?

for every n € N U {0}. This implies that
[Zn+1 = Znll = 0. (5.4)

(d) Since {z,} is bounded, we may assume that a subsequence {zn,} of {z,}
converges weakly to wg. It follows from z,4, € C, that

In = zall < llyn — Tl + 2nt1 = Zall < 20[Tns1 — 2all
for every n € N U{0}. From (5.4), we get
yn — zall = 0. (5.5)
By (5.5), we have

y"‘i - wO . (5.6)
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In = Yn
An
get, for every 1 € N and (u,v) € A+ B,

On the other hand, we have

— Az, € By,. Since B is monotone, we

(yni—u,a:""—/\_—y—"’@—Amni—(v—Au)) > 0.

1

So, we have

(yni — U _U) 2 (ym —u, Yns — P + (Axni - AU)>

An,

1
= )\—_(yni - U, (I —.AniA)yni - (I - AniA):Eni) + (yni - U, Ayni - Au)

ng
> '}\}“(yni — U, (I - AniA)yni - (I - )"ﬂzA)xnz)

1

> _r”yni - 'LL” ) ”(I - /\niA)yni - (] - )\nzA)xnz“
> g, — ull - Iy, — 7
= )\ni Ypn, — U Yn, — Ty

because A is monotone and I — A, A is nonexpansive by Lemma 5.1 (iii). By

1
the boundedness of {)\—Ilyn, - u[|}, (5.5) and (5.6), we get

(wO - U, —'U) 2> 0
for every (u,v) € A + B. Therefore, we have
wy € (A+ B)™10 (5.7)

because A + B is maximal monotone.
From (5.3), (5.7) and 2o = Plat+p)-10(z0), we have

llz0 = @0l < [lwo = ol < liminf [[zn, — Zo| < limsup ||z, —zo|| < [|20 — 2o -
11— 00

Thus, we obtain
Jim [z, — zall = llzo — woll = [l — ]l
This implies z,, — wo = 2. Therefore, we have z, — z. O

We apply this result to the problem of the variational inequality and we
get the following.
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Corollary 5.3 Let C be a nonempty closed convex subset of H and let o > 0.
Let A: H — H be a single valued a-inverse-strongly-monotone operator
such that D(A) = H and {z € C|(y — z,Az) > 0(Vy € C)} # 0. Let {z,}
be a sequence generated by

Ig =€ H,

Yn = PC(mn - )‘nAzn) )

Cn={2 € Clllyn —zll < llzn — 2[},

Qn=1{2€C|(zn— 2,20 — zn) > 0},

Tn+1 = Po,n@.(To)
for every n € N U {0}, where {\} C [a,2a] for some a € (0,2a). Then,
{x,} converges strongly to the element zo in the set {z € C'|(y — z, Az) >
0 (Vy € C)} nearest to z.

Proof. Putting B = di¢ in Theorem 5.2, we have (A+ B)™10 = {z €
C|(y —z,Az) > 0(Vy € C)} and J£ = Pc for every n € N U {0}, where
dic is the subdifferential of the indicator function i¢ of C. O

5.4 Weak convergence

Using an iteration of Mann’s type [10], we obtain the following weak con-
vergence theorem which generalizes the result of Gabay [6].

Theorem 5.4 Let o, A and B be as in Theorem 5.2. Let {x,} be a sequence
generated by

nn=x€ H,
Yo = JE (I — AA)Tn,
Tpt1 = Oy + (1 - an)yn
for every n € N, where {A\,} C [a,b] for some a,b € (0,2a) with a < b

and {a,} C [0,c] for some c € (0,1). Then, {zn} converges weakly to some
z€ (A+ B)™0.

Proof. Let u € (A+B)~'0. By Lemma 5.1 (iv), we have J& (I -\, A)u =
u for every n € N. So, there holds
181 = A A)zn = T2 (T = MnA)ul®
I(I = AaA)zn = (I = X A)ul|?
Zn — u||? + An(An — 20) || Az, — Aulf?
|z — u)® + a(b ~ 2a)|| Az, — Aul)?

|z — ull®

tym — ull?

IAN NN IA
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for every n € N because A, (A, — 2a) < a(b— 2a) < 0 holds. It follows that

|zner — ul> < anllzn — ull® + (1= an)llyn — ul?
< lzn —ul® + (1 — an)a(b - 2a)|| Az, — Aul|?
< lon = ull* + (1 = c)a(b — 2a)||Aza — Aul?
<z —ulf®.

Therefore, there exists the limit of ||z, — u|| and hence
|Az, — Aul| — 0 (5.8)

because 0 < (c — 1)a(b — 2a)|| Az, — Aull® < |lz, — wl® = |Zns1 — ul|? holds.
And {z,} and {y»} are bounded. For u € (A + B)~10, we have

lym —ull? = B = AA)zn — JE (I = AnA)ul?
(n — u, (I = AnA)zn — (I = AnA)u)

Sy~ + 17 = DnA)en = (= MuAYul’
||y — u) = {(I = AnA)zn — (I - AnA)u}|?}
%{”yn — ul® + ||zn - ul]> = |(gn — Tn) + An(Azn — Au)|1?}

IN

I

because J fﬂ is a firm contraction. So, we have

lyn —ull> < Nz —ull® = [(Ygn = Tn) + An(AZn — Au)|?
< lon - u||2 — | — SEn“Q
_2)\n(yn — Tn, Amn - Au) - >\n2HACEn — AUN2

which implies
|Zn+1 — u||2 < ol - u||2 + (1= an)llyn — UH2
< lzn - u||2 — (1 — an)llyn — anZ
—2(1 = an) A (Un — Tn, ATy — Au) — (1 — an)/\n2||Axn — Aul?
for every n € N. Therefore, there holds
0 < (1-0llyn— -7711,”2 < (1= an)llyn — anQ
< lzn - UH2 = |lzns1 — U“2

—2(1 = an) M (Yn — Tn, ATy — Au) — (1 — an)/\n2||Aazn — Aul]?.

Since lim 2, — ul®* = lim |Zps1 — ul|* and nlglgo(yn — T, Az — Au) = 0

from (5.8), we get
[yn — 2all = 0. (5.9)
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As {z,} is bounded, we may assume that a subsequence {z,,} of {z,} con-
verges weakly to wg. As in the proof of Theorem 5.2, we obtain

wy € (A+ B)710. (5.10)

So, let {zn,} and {n, } be two subsequences of {z,} such that z,, = w; and
Tn, = wa. By (5.10), we have

wy,wq € (A4 B)710.

Assume w; # wq. From Opial’s condition, we get

lim [, —wil] < lim o, = wall = Jim, N - woll = Jim |, — e
< Jim o, = wll = Jimg g =l = im e, — w]

This is a contradiction. Thus, we get w; = w,. This implies
z, — z € (A+ B)™!0. m]

Putting o, = 0 and {\,} = A (constant) for all n € N in Theorem 5.4,
we obtain Gabay’s Theorem [6].
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