TERE | ﬁi_ﬁ]ﬁ%ﬁﬁuﬁ-_} TR R U |

Tokyo Tech =

esearch Repository

Od/dodn
Article / Book Information

oo(@o)

Citation(English)

Type(English)

gobbobboogoouobobbbuooooooboooo

oo

A programming environment for reactive and concurrent systems using
petri nets and temporal logic

OoOoOoooOod
OoOoOoooOod

Degree:Doctor (Engineering),

Conferring organization: Tokyo Institute of Technology,
Report number:[J 0 312507,

Conferred date:1997/12/31,

Degree Type:Thesis doctor,

Examiner:

Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

A Programming Environment
for Reactive and Concurrent Systems
Using Petri Nets and Temporal Logic

AR Y xRy~ EEFEGREREZ V=
V7 7T 4 7TWATY AT LAOBRFRERE O3

Naoshi Uchihira
N B

Graduate School of Information Science and Engineering
Tokyo Institute of Technology

HUR TR 5B TIJeR 35T da

A thesis submitted to Tokyo Institute of Technology
in partial fulfillment of the requirement for
the degree of Doctor of Engineering

December, 1997

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems 1

ABSTRACT

There has been a rapid trend towards parallel, distributed, and interactive/reactive computing over
the past decade. Generally speaking, it is not so easy for ordinary programmers to produce correct
and efficient programs for these systems as compared with sequential programming. Therefore, some
kind of computer-aided concurrent programming environment is necessary to achieve high productivity
and high reliability. The purpose of this thesis is to present theories, methods and tools (programming
environments) for reactive and concurrent systems using Petri nets and temporal logic.

Both Petri nets and temporal logic have been investigated as formal specification languages for reactive
and concurrent systems. While temporal logic is appropriate for specifying the properties and constraints
of programs but inappropriate for specifying the behavioral structures of programs, Petri nets can specify
the behavioral structures but not the properties and constraints. In this thesis, the fusion of Petri nets and
temporal logic is proposed as a specification language for reactive and concurrent systems. Then, practical
and efficient verification and synthesis methods using Petri nets and temporal logic and Petri-net-based
design methodology are described. Finally, a programming environment embedding these methods is
introduced. This thesis attempts in illustrating a typical programming paradigm and its environment
using Petri nets and temporal logic.

The main outcomes of this thesis are as follows.

(1) Specification by fusion of Petri nets and temporal logic

The fusion of Petri nets and temporal logic is proposed as a specification language, and its
applications to verification and synthesis are considered. The remarkable point is that the pro-
posed methods are for unbounded Petri nets, while former verification and synthesis methods
were mainly for bounded (i.e., finite) ones.

(2) Compositional verification

An efficient and practical verification method using transition systems (bounded Petri nets)
and temporal logic is proposed. Generally, the computation costs for verification increase expo-
nentially as the scale of the programs increases. To overcome this problem, a reduction technique
of the target program has been investigated using bisimulation equivalence. However, bisimula-
tion equivalence cannot deal with “divergence” explicitly. Therefore, a new process equivalence
relation (w7w-bisimulation equivalence) is proposed. A Process Query Language (PQL) which is
an extended temporal logic and semantics of which is based on mrw-bisimulation equivalence is
defined. Then, a compositional verification method using PQL is proposed.

(3) Compositional program adjustment

A new synthesis method using transition systems (bounded Petri nets) and temporal logic is
proposed. Since conventional program generation from a temporal logic specification is impracti-
cal, this thesis proposes a new approach, “program adjustment”. In program adjustment, a target
program written by programmers which may be functionally correct but may be imperfect in its
timing is automatically adjusted (tuned up) to satisfy given temporal logic constraints.

(4) Petri-net-based software design methodology

A Petri-net-based software design method is proposed. In this method, a causality matrix is
introduced for an earlier design phase when the system structure is obscure and it is difficult to
write Petri nets directly. A designer can construct Petri nets systematically from an ambiguous
requirement using the causality matrices according to the design method.

(5) MENDELS ZONE

A programming environment, MENDELS ZONE, based on the above techniques has been
developed. MENDEL net which is a high-level Petri net for reactive and concurrent systems
is used as the programming language. The designer constructs a program (MENDEL net) and
verifies it using temporal logic. If there are any bugs, the program can be adjusted. Finally, the
constructed program is executed on a parallel computer.

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems 2

M=

FHEM Y 2T 2oL, SRk, AV X T 0T 47|V T 7T 4 TSR, W T e T I 70
FEIFETETREL ARV 9OH 5. LNLNRL, WT7rer T A0, BZR7T 0l 7 LD
NTRREBRIZHL V. X5 ﬂﬁ/x?hﬁgﬁ)77?47/X?A@iﬁfﬁ7§b&iﬁw@ﬁ
MERINDZ ENDZ. ’@;9&/7k717@méﬁﬁkiommﬁ$%%%¢ét X, V7
b7 = 7RO EETRIIR IR TH D, RO BN, <k U xy b LR ﬁ%mwt)7774
T WTV AT LD Y T MU 2 TRBX BRI THIETH S,

AR U Ry b ERFEHRINL E B Jtﬁ/?vA@ﬁ/ﬁﬁ’m&%uaufk L CHFgES N C& 7=, Lavl,
FRARER B HIFIRER I ITE L TV 208 ERERICIIAE CH Y, W2 U xy MIEETERIZITEL T
ANHKIEERICIIRE CH o=, T2 T, RKFFETIIFHEGZGEE RNV Xy NORABIC LAV T 7T 47 -
WATY AT AOMERERIEEZ AT 5. 51T, _XF U xy b EFpHiREz AW 72 ERAMNZRRGE - 5FE
RE OBEEHNEZBRRL, FNOEMAAALTET 0/ T AORRBREDORIER IO Y 7 v = 7RG FiE
FOPTREITR O, AUFEIC LY, b U xRy b ERHGREEE AW z—2oD B{kM)7e Y 7 b U = 7 B3 8
RREMESLT D LN TET.

ARFFRO T2 BARB R E LT, UTOHEERH 5.

(1) XK VR b ERFEGREOMAIC X A ERRRIEORE,

FRAHRREE L < N U Ry FO@EEEZRL, R YU xRy FS R fi%ﬁ»ﬁ?i’q‘”#fﬁ Z RFET %
TN Y X LaRm LT R, AR U Ry MO RIS X 2 BEHET M S Tz
0w, ENEARTRO—EONE YRy FOBRETHERL 72.

(2) B ERRBIEEO%

BB AT A (HRAR U R b)) & RGRELZ W KB 1 7 5 MZxbd 50517 Gk
EaEAR LT, 16k, FHEGREEOETT VREE CIIRGECET 5 2 2 h ORI ASH-EH D, =
N % AR D 7o DI 2 2 FIEPRE S, TO 1 DICHIERZROMEHITENH 5. L, 16k
DT, TNEGEBIC L DRV —7 | OWENCEIL CRIBEN & 72, ARFZETIE, £ ORI
T 5L L bIC, ENERIET 8L WEHEGRE PQL #1222, PQL % AW oA E MR
HEERLT-.

(3) 7' m 7 T LFEEIEDIIE

BB AT A (BRXN Y Ry) ERRGEIC X 2077 0l 7 208 L WERIEEZRLT-.
PERDOBFIZGEL B D7 v 7 T AL, %mﬁm®7u77A_%ﬁfé EEERELRRE) d5
FOFHEEDO S CTHBENTH 7. £ZC, 707 7 L2 EK0AEEK TR, AW#WWL

TEARGERIRT v T T b (BB AT L) Z Wi TRl S ik a i 7= 9~ & D IZE R B8
BIEL, BROT 7 7 2Bl 2 17 nr T LAiREIE) 21RELZ.

(4) v MEMY 7 U = 7TREHEORSE

NE U Ry MIEARBZEERFETHY, HWFEWNREENEXN U Ry NEERT A0 0H
AR T Ay FEEHE) BMETH D, ABFETIE, HOFEWZefdkzs < b U xy MZEK T 5 FEB
ELTHREBMRE~ N v 7 REEAN LTV T T 47 « TV AT LDV 7 b0 = TiRFHEEZIRRE
L7-.

(5) 7w/ 7 > /BB MENDELS ZONE 0 Bi%

FROBEHREHNERE L0 50 I U BESWHIEEK FICRELT-. 2T, fuﬁ
T MNEEKESN YRy N TH D MENDEL * v R Citab 9%, EEHEII R v MEMERFHEIZ
w25 A (MENDEL % v b)) #{EfL, 710275 MREECTT 0l 5 25 BFEL, b LF%HEM%
LDGRIIT 0T T AR IV n s T AEWET D, IDIC, Ao a s T Ah FERRICIE
Pl ETHEITTE D.

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems 3

Acknowledgments

This thesis was supervised by Prof. Motoshi Saeki. T am grateful for his kind and helpful guidance
and continuous encouragement, which lead me to accomplishing my thesis. Also, this thesis was advised
by Prof. Takuya Katayama, Prof. Naoki Yonezaki, Prof. Takehiro Tokuda, Prof. Tomohiro Yoneda, and
Prof. Takashi Imaizumi. I am very thankful for their advice.

The greater part of my research has been carried out as a part of MENDELS ZONE project at Toshiba
Corporation. My special thanks go to Dr. Shinichi Honiden who was a project leader. At the beginning
of the project, he provided me chance to study temporal logic and Petri nets from a software engineering
viewpoint. Throughout the project, he has properly supported, guided, and encouraged my research
activities.

Hideji Kawata is my research partner who made considerable contribution on the implementation and
improvement of our tools, MENDELS ZONE and SAVE/SFC. T wish to express my gratitude for his
generous collaboration.

I also have many thanks to the all other members of the MENDELS ZONE project and SAVE/SFC
project, especially to Akihiko Ohsuga, Kazunori Matsumoto, Mikako Arami, Toshiaki Kasuya, Toru
Uraoka, Akiko Uraoka, and Toshibumi Seki. When PQL was applied to a practical machine control
program, the discussion with Satoshi Sumida was very helpful. T would like to thank him.

When joining Toshiba in 1982, T was a novice in software engineering. A lot of senior researchers of
our laboratory educate, train, and promote me through the wide range of software engineering activities.
These valuable experiences lie at the foundation of this thesis. I would like to thank them, especially
Kazuo Matsumura, Hideo Nakamura, Yutaka Ofude, and Shoichi Kojima.

I am also grateful to successive directors and senior managers of the Systems & Software Engineering
Laboratory, Seiichi Nishijima, Sadakazu Watanabe, Mutsuhiro Arinobu, Masahiko Arai, Takeshi Kohno,
Shinsuke Tamura, Junichiro Tsuda, and Kazuo Mikame. Without their continuous support and encour-
agement, I could not continue the research about temporal logic and Petri nets during a long term (more
than 10 years).

This research has been affected by both Petri net and software engineering communities. Many people
gave me fruitful suggestions and critical comments in the related conferences. I would like to tender my
thanks to them, especially Prof. Mikio Aoyama and Prof. Kunihiko Hiraishi. The MENDELS ZONE
project has been supported by ICOT. I am also indebted to members of ICOT.

Finally, I reserve a special gratitude to my wife, Mari, for mental and physical support. I dedicate
this thesis to Mari and our baby girl, Akari.

Contents

1 Introduction

1
2

3

Motivation L e e e
Background
2.1 Formal Specification for Reactive and Concurrent Systems
2.2 Verification for Reactive and Concurrent Systems
2.3 Synthesis for Reactive and Concurrent Systems
24 Design Methodology for Reactive and Concurrent Systems
2.5 Programming Environments for Reactive and Concurrent Systems
SYNopsiso e

2 Preliminaries: Models and Logics for Reactive and Concurrent Systems

1

3

Models for Reactive and Concurrent Systems
1.1 SeqUENCEe e
1.2 Transition System L e e e
1.3 Biichi Sequential Automata L
14 Finite State Process e
1.5 Transition System with Concurrency
1.6 Petri Net o . o e
1.7 Models for Real-Time Systems v
1.8 Comparison of Models e
Logics for Reactive and Concurrent Systems oL
2.1 Propositional Logic oL
2.2 Linear Time Temporal Logic,
2.3 Branching Time Temporal Logic
2.4 Process Logic L
2.5 Propositional Modal p-calculus oo
2.6 Logics for Real-Time Systems L
2.7 Comparison of Logics
Other Related Approaches e

3 Software Development Process for Reactive and Concurrent Systems

1

Reactive and Concurrent Systems (RCS)
1.1 What is RCS?
1.2 Characteristics of RCS o
1.3 Software Architecture of RCS

1.3.1 Application Software and System Software

1.3.2 Concurrent Tasks

1.3.3 Synchronization Part and Functional Part
Software Development Process for RCS
2.1 Software Development Process for TFS
2.2 Software Development Process for RCS
2.3 Difficulties in Developing RCS oo
Programming Environment for RCS Using Petri Nets and Temporal Logic
SUMMATY . . v v v o e o e e e e e e e e e e e e e e e e

10
10
11
11
14
14
15
15
16

19
19
19
19
20
21
22
23
24
24
24
24
25
26
27
28
28
28
29

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems 5

4 Specification, Verification, and Synthesis Using Petri Nets and Temporal Logic 40
1 Petri Nets and Temporal Logic as Specification Language 40
1.1 How to Fuse Petri Nets and Temporal Logic. 41

1.2 Example of Specification 42

1.3 Theoretical Results 42

2 Concurrent Program Verification o oo o 44
3 Concurrent Program Synthesis L oL 46
3.1 Composition of Petri Nets 48

3.2 Petri Net Synthesis e 49

3.3 Concurrent Program Structureo 50

3.4 Temporal Logic Specification o 52

3.5 Controller Synthesis 52

3.6 Agent Synthesis L 52

4 Related Works e 54
5 SUMMATY . . v v v o e o e e e e e e e e e e e e e e e e e e 55
5 Compositional Verification Using Modal Logic 56
1 Background and Motivation L Lo 56
1.1 Background L 56

1.2 Motivation L 57

1.3 Overview of Main Results 58

14 Organization of the Chapter 59

2 Representation of Concurrent Programs oL 59
2.1 Equivalence of Transition Systems for Compositional Verification 59

2.2 Composition of Transition Systems oL 61

3 Process Query Language L e 62
3.1 SPQL (Strong Process Query Logic) 62

3.2 PQL (Process Query Language) 65

4 Compositional Verification e 67
4.1 Verification Scope L 67

4.2 Verification Procedureo 67

4.3 Reduction Function 69

44 Experiments e e e 69
4.4.1 The Jobshop e 69

4.4.2 The Manufacturing Machine Control Software 72

5 Toward Practical Verification o 75
5.1 Translation Target Program to Transition Systems 75

5.2 Chemical Plant Control Software 75

5.3 Verification Tool L 81

6 Related Works e 82
6.1 Compositional Verification Methods 82

6.2 Comparison with Partial Order Approach 83

7 SUMMATY . . v v v o e o e e e e e e e e e e e e e e e e 85
6 Compositional Program Adjustment 90
1 Motivation and Overview 90
1.1 Motivation e 90

1.2 Overview of Main Results 91

1.3 Organization of the Chapter 93

2 Finite State Processes 93
2.1 Equivalence of Finite State Processes. 93

2.2 Operators on Finite State Processes 94

3 Program Adjustment L e 96
3.1 Temporal Logic Constraints 96

3.2 Basic Adjustment oL 96

3.3 Compositional Adjustment 98

4 Example and Experimental Result 0oL 100

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems

5
6
7

4.1 Example: The Machine Control Program
4.2 Experimental Result e
Program Adjustment in Standard Programming Languages
Related Works o o o e
Summary e e e e

7 MENDEL Net: High-Level Petri Net for Reactive and Concurrent Systems

1
2

ut

Introduction e
Petri Nets as Programming Language
2.1 Programming Language for Reactive and Concurrent Systems
2.2 Extension of Petri Nets as Programming Language
2.3 Petri-Net-Based Programming Languages
2.4 High-Level Petri Net as Programming Language
MENDEL Net o
3.1 Place
3.2 Transition oL oL e e
3.3 I/OlInterface e
3.4 Process-Oriented Hierarchy

3.4.1 Overview

3.4.2 Graphical Representation 0 L.

3.4.3 Textual Representation,
3.5 Process Scheduling Mechanism

3.5.1 Base-Level MENDEL Net,

3.5.2 Meta-Level MENDEL Net
3.6 Timer L e
3.7 Macro Notations L
Simple Example e e e
Related Works: Petri Nets and Hierarchy
SUMMATY . . v v v o e o e e e e e e e e e e e e e e e e e

8 Petri-Net-Oriented Design Methodology

1

U W N

6
7

Petri-Net-Oriented Design Methodology
Software Architecture of Control Systems
Causality Matrix oo e
Design Method L
Example: Lift Control System e
5.1 Problem o
5.2 Observation of actual design processo
5.3 Qualitative Evaluation
Related Works
SUMMAry L e e e

9 MENDELS ZONE: Petri-Net-Based Programming Environment

1
2
3

ot

Introduction L
Requirements for Programming Environment 0oL
MENDELS ZONE e
3.1 Graphical MENDEL Net Editor
3.2 Causality Matrix Editor
3.3 Software Reuse Support Tool
34 Verification and Adjustment Tool Lo
3.5 Program Execution on Multi-PSI
Software Development Process in MENDELS ZONE
Example: Power Plant Control System e
Related Works L
6.1 Comparison with STATEMATE
6.2 Comparison with Other Petri Net Tools
SUMMATY . . o v v o e e et e

100
100
104
105
106

107
107
107
107
108
109
110
111
111
112
114
114
114
115
116
117
118
118
119
120
121
123
124

127
127
128
128
130
133
133
133
139
139
140

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems 7

10 Conclusion 155
1 Review of Developments e e e 155
2 Current Status L e e e e e e e e 155
3 Future Works e e e e e 155

List of Practical Examples of Reactive and Concurrent Systems

The following middle-scale examples are relatively practical and used to show that the techniques proposed
in this thesis can be applicable to actual systems.

1. Manufacturing machine control system
compositional verification (Chapter 5)

transition system + temporal logic (PQL)

2. Chemical plant control system
compositional verification (Chapter 5)
Petri net (SFC) + temporal logic (PQL)

3. Lift control system
Petri-net-oriented design methodology (Chapter 8)
Petri net (MENDEL net) + temporal logic (PLTL)

4. Power plant control system
MENDELS ZONE (Chapter 9)
Petri net (MENDEL net) + temporal logic (PLTL)

Glossary

Notation Meaning

) transition function (transition system)
1 disabled

P transition function (automaton)

T unobservable internal action

0 action/transition sequence (run)

n label sequence (word)

A deadlock

€ empty sequence

X a set of finite sequences over X
X a set of infinite sequences over X
X X =X*"UX"¥

X a complementary set of X

X1\ X X\ Xo = X1 nX,

T a set of transitions

A a set of actions

Act Act = AU{r}

S a set of states

by alphabet

71' state attribute assignment function

TS =(S,P,A, 7,6, s0)
N = (P,T,w,mg)

transition system
Petri net

my[0 > mo my is reachable from my by a transition sequence 6

A(B) differential vector

A labeling function

LN = (N, \) Labeled Petri net

P=(S,A L, s0,F) finite state process (FSP)

L/A sequences of L where all elements except A are deleted

L(LN) Petri net language

L,(LN) Petri net infinite language

Lao(LN) Petri net infinite language with deadlock

LI (LN) Petri net fair infinite language with deadlock

TS, | TS, process composition

st divergence

TS| ~Xpro TS mrw-bisimulation equivalence

f formula

af f is always true.

Of f will be eventually true.

Of f will be true at the next time.

LU fo f1 continues to be true until fy becomes true.

TSEf TS is a model of f

La>»" f f will be sometime true after a is occurred (minimum fixed point)
Lax>Tf f will be sometime true after a is occurred (maximum fixed point)
[[a]]” f f will be always true after a is occurred (minimum fixed point)
[[a]]* f f will be always true after a is occurred (maximum fixed point)

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems

apat f f is true at all time in all paths
apet f f is true at some time in all paths
epat f f is true at all time in some path

epet f f is true at some time in some path

Chapter 1

Introduction

1 Motivation

Computer systems have been moving rapidly toward parallel, distributed, and reactive computing during
the past decade. There is an increasing demand for programmers who can design concurrent programs
for these systems. However, generally speaking, compared with sequential programming it is not so easy
to produce correct and efficient concurrent programs. In particular, the cost of testing and debugging
becomes a heavy burden. Moreover, most reactive systems (e.g. embedded control systems, process con-
trol systems) require high reliability. Therefore, some kind of computer-aided concurrent programming
environments are necessary to enable ordinary programmers to develop concurrent programs while achiev-
ing high productivity and high reliability. The programming environment means tools for verification,
debugging, performance evaluation, and methods to synthesize correct and efficient programs.

To achieve both high productivity and high reliability, a formal method is the most promising approach
in the long run. In the formal method, specifications and programs (implementation) are described using
some formal language, the semantics of which is formally defined. Then, the formal method provides
verification and synthesis methods for these specifications and programs. Many formal methods have
been proposed for concurrent systems. For example, they include models of programs (e.g., transition
system, Petri net, automaton), logics of programs (e.g., Hoare logic, temporal logic, dynamic logic,
process logic), and algebras of programs (e.g., CCS, CSP, ACP). Temporal logic is a especially useful
formal framework for specification, verification, and synthesis for concurrent programs. Therefore, the
application of temporal logic to computer science has been actively investigated by many researchers all
over the world from the late 1970’s to the present.

This thesis concentrates on reactive and concurrent systems. The purpose of this thesis is to es-
tablish theories, methods and tools (programming environment) for these systems using temporal logic.
Especially, much consideration is given to practical techniques in order to apply temporal logic to actual
reactive and concurrent systems.

To apply temporal logic to the actual development of reactive and concurrent systems, the following
issues should be considered.

1. Actual systems cannot be fully described by temporal logic

Standard temporal logic is too inconvenient to describe actual reactive and concurrent systems.
Therefore, a syntactical extension of temporal logic for practical use or combination with other
complementary formal languages is required.

2. Cost of verification and synthesis is beyond practical computing power

Generally speaking, computing cost of verification and synthesis based on formal methods becomes
very huge due to “state explosion problem”. Consequently these methods are often applicable only
to “toy programs”. Techniques to avoid state explosion and reduce computing cost are required.

3. Formal methods do not support the whole development process

The formal method is not an all-around player. It can support a few parts of the whole development
process. Remaining parts of the process are done by traditional and informal methods. There is an
obvious gap between formal methods and traditional and informal methods. Therefore, a design

10

Chapter 1: Introduction 11

2

methodology (guidelines) is required to specify how to utilize formal methods and informal meth-
ods complementarily in the development of reactive and concurrent programs. Furthermore, the
programming environment is required to mechanically support the design methodology throughout
the entire development process.

This thesis proposes the following solutions for above problems.

1. Fusion of Petri nets and temporal logic

Temporal logic is appropriate for specifying the properties and constraints of programs, but inap-
propriate for explicitly specifying the behavioral structures of programs. In other words, temporal
logic is declarative and not operational. On the other hand, Petri nets can specify the behavioral
structures operationally. In this thesis, a fusion of Petri nets and temporal logic is proposed as a
specification language for reactive and concurrent systems.

. Compositional verification and adjustment

A temporal logic model-checking method is actually useful to verify reactive and concurrent systems.
However, as the scale of the programs increases, the computation costs for verification increase
exponentially. To reduce the computation costs, this thesis introduces a compositional approach
into model-checking, and proposes a new modal logic, PQL, and a compositional verification method
based on PQL.

Since it seems that the conventional program generation approach from temporal logic specification
is impractical, a new approach “program adjustment” is proposed, in which a target program made
by programmers is automatically adjusted (tuned up) to satisfy given temporal logic constraints.
Since this also causes the state explosion problem, compositional program adjustment is proposed
in this thesis.

. Petri-net-based design methodology and its programming environment

As a software design methodology for reactive and concurrent systems, several methods have been
proposed which include OOAD and RTSAD. However, few are based on Petri nets. Since Petri nets
are used as a specification language in our approach, a Petri-net-based design method is proposed
which gives guidelines for deriving detailed Petri nets from ambiguous requirements, and then
verifying and adjusting programs using Petri nets and temporal logic.

MENDELS ZONE is a programming environment for reactive and concurrent systems, which sup-
ports the software development process from first to last, including verification, adjustment, and
Petri-net-based design method.

Background

To providing the background for this thesis, this section presents a brief survey of software development
techniques for reactive and concurrent systems. Especially, focusing on formal techniques including
specification, verification, synthesis, and design methodology (Fig. 1).

2.1

Formal Specification for Reactive and Concurrent Systems

Specifying systems formally is an effective way to recognize and clarify ambiguous parts of the system
requirement /specification, and is necessary to verify the specification and synthesize programs from the
specifications. A lot of specification languages for reactive and concurrent systems have been proposed.
Roughly speaking, they can be classified into operational approaches and declarative approaches.

e Operational Approach

In an operational approach, reactive and concurrent systems are modeled with specification mod-
els/languages which are executable on the abstract machine. The operational (i.e., executable)
specification models for reactive and concurrent systems include transition systems, state machines,
automata, Statechart and Petri nets. These models will be described in detail in Chapter 2. How-
ever, these models are too primitive to describe practical systems. Therefore, several practical spec-
ification languages which are based on some primitive model and extended from a practical point of

Chapter 1: Introduction 12

Design
Methodology

RTSAD, OOAD
DARTS, NOD

Specification

Temporal Logic CCs
Dynamic Logic CSP
Process Logic ACP
w -Calculus

Synthesis
Transition System
Petri Net

Verification

Tableaux Construction))
Logical Reasoning

Model-checking

Figure 1. Software Development Techniques for Reactive and Concurrent Systems

view. These specification languages include PAIZLey [Zave 82, Zave 91], SDL, and Coloured Petri
Net [Jensen 92, Jensen 95].

e Declarative Approach

In a declarative approach, systems are modeled by logical formulas or algebraic terms, and then
axioms of the logics or algebras give the semantics of the systems. For concurrent systems, a lot of
declarative formalisms have been proposed, which include modal/program logic (Dynamic Logic,
Temporal Logic, Process Logic, Modal p-calculus, UNITY logic, etc.) and process algebra (CCS,
CSP, ACP, w-calculus, etc.).

In this thesis, we focus on Temporal Logic. Temporal logic is a kind of modal logic in which modal
operators represent, the topology of time. While the truth-values of propositions are constant in classical
logic, the truth-values of propositions can be changed with time in temporal logic. For example, a
statement “if a proposition p is true now, p will have to be false at the next time” can be represented
by a temporal logic formula,

p D O-p,

where () is a temporal operator representing the next time. This cannot be done directly by the classical
logic.

From a historical point of view (see [Rescher 71]), temporal logic was initially investigated by philoso-
phers and logicians since Prior constructed the first tense logic in the 1950s. Then, since the 1970s,
temporal logic has been applied to computer science, especially, artificial intelligence! and software
engineering? . Temporal logic is an especially useful formal framework for specification, verification, and
synthesis for reactive and concurrent systems. The application of temporal logic to these systems has
been actively investigated by many researchers all over the world from the late 1970’s to the present. The
historical background of temporal logic was well surveyed by Galton [Galton 81].

L For example, McDermott’s Temporal Logic, and Allen’s Theory of Time.
2 Pnueli initially systematized temporal logic [Pnueli 77] in software engineering.

Chapter 1: Introduction 13

In this thesis, we adopt temporal logic as a formal specification language for reactive and concurrent
systems for the following reasons.

e The modality of temporal logic is intuitive and easy for software designers to understand.

e A temporal logic formula can be translated into an equivalent w-automaton which is compatible
with a state transition system and can be easily manipulated in verification and synthesis.

e Most reactive and concurrent systems can be basically modeled by state transition systems.

Temporal logic has been applied to specification, verification, and synthesis for reactive and concurrent
systems. First, the research background on specification by temporal logic is briefly surveyed.

There are several variants of temporal logic. The variant initially presented by Pnueli is linear
time temporal logic , which has been investigated chiefly by Pnueli, Manna, and their group [Pnueli 77,
Pnueli 81, Manna 81a, Manna 81b, Pnueli 86, Manna 92] for specification and verification of concurrent
programs. A second common version of temporal logic is branching time temporal logic [Ben-Ari 83,
Emerson 85a]. Each logic assumes a different underlying nature of time, as follows [Emerson 90a].

e Linear time temporal logic: The course of time is linear; at each moment there is only one
possible future moment.

¢ Branching time temporal logic: Time has a branching, tree-like nature; at each moment, time
may split into alternate courses representing different possible futures.

Linear time temporal logic is suitable for specification for program synthesis, while branching time tempo-
ral logic is suited to describe queries for verification. Besides these two popular version, there are several
versions of temporal logic for concurrent programs (e.g., Partial Order Temporal Logic [Pinter 84], Inter-
val Temporal Logic (ITL) [Moszkowski 86]).

These logics are sufficient to consider the essential features of reactive and concurrent systems, but not
expressive enough to describe an entire system specification. There are two approaches to make temporal
logic suitable for practical specifications; extension of temporal logic and combination of temporal logic
with other formalisms (called dual-language approach in [Felder 94]).

With regard to the first approach, temporal logic can be extended by introducing the following features
for practical specifications.

e regular expression [Wolper 83b]

e more than operator [Yoshimura 93]

e unbounded message buffers [Sistla 84, Koymans 87]

e modularity, compositionality and abstractness [Barringer 84, Josko 87, Yonezaki 91]
e nonmonotonicity for avoiding frame problem [Saeki 87]

e real-time [Alur 89, Ostroff 90]

Furthermore, several executable specification languages based on temporal logic have been proposed,
influenced by logic programming (e.g. Tempula [Moszkowski 86]), in which operational semantics can
be given to extended temporal logic formulas. These executable specification languages are useful for
prototyping of reactive and concurrent systems [Hale 87]. However, in spite of these extensions, it is still
difficult to describe an entire practical system by temporal logic. Moreover, these extensions often make
automatic verification and synthesis difficult, and increase computing costs.

With regard to the second approach, temporal logic is combined with another formalism as a speci-
fication language. Since temporal logic is declarative, a combination of temporal logic and other formal
language having operational semantics, like transition system and Petri net is effective. A combination of
temporal logic and Petri net has been investigated recently by our group and others. These works will be
surveyed in Chapter 4. The second approach appears promising and realistic for practical specification.

Chapter 1: Introduction 14

2.2 Verification for Reactive and Concurrent Systems

The background on the research on verification by temporal logic is briefly surveyed. There are two
approaches in verification for reactive and concurrent systems; logical reasoning and model-checking.

e Logical Reasoning Approach:

Both specification and implementation (program) are specified by temporal logic formulas. If the
specification is represented by a formula f; and the implementation is represented by a formula f;,
then the implementation is correct iff f; O fs is valid. Manna and Pnueli [Manna 81b, Pnueli 81]
presented methods for proving f; D fs inductively using axioms and inference rules. Furthermore,
Manna and Wolper [Manna 84] presented an automatic verification method based on refutation,
where it is shown that —(f; D fs) is not satisfiable using tableaux construction.

e Model Checking Approach:

In a model-checking approach, the specification is represented by a temporal logic formula f, and
the implementation is represented as a model M of temporal logic. The implementation is correct
iff M is a model of f (i.e., M [f). Transition systems are usually used to represent models
(i.e, implementations). Clarke, Emerson, and Sistla [Clarke 86] initially proposed an automatic
verification method of finite-state concurrent systems based on model-checking. They dealt with a
branching time temporal logic called CTL (Computation Tree Logic).

Since the model-checking approach can provide a practical and widely applicable verification method
as compared with the logical reasoning approach, much work based on model-checking has been done
over the last decades. The early researches in this area are well surveyed in [Clarke 87]. The latest trends
can be caught by watching the Annual Conference on Computer-Aided Verification (CAV). These works
can be classified into two types;

e Extension of expressive ability of temporal logics and models (e.g., Fairness [Emerson 85b])
e Local model-checking for Petri nets [Bradfield 92]
e Proposal of efficient model-checking algorithms

Since model-checking can be regarded as a type of state space analysis method, the state explosion
problem is usually the limiting factor in applying these algorithms to realistic systems. Therefore, an effi-
cient model-checking algorithm is required. These efficient algorithms can be classified into the following
three approaches.

e Symbolic Model Checking [Burch 90, McMillan 93]
e Partial Order Approach [Valmari 90, Godefroid 91a, Godefroid 96]
e Compositional Approach [Clarke 89]

This thesis will focus on the compositional approach, and propose a new compositional verification
method.

2.3 Synthesis for Reactive and Concurrent Systems

The first attempts to synthesize reactive and concurrent systems from temporal logic specifications were
developed in [Manna 84] and [Emerson 82]. Propositional versions of linear time temporal logic and
branching time temporal logic are used as the specification language in [Manna 84] and [Emerson 82],
respectively. Both synthesis methods are based on tableaux construction representing models of the given
temporal logic formula. The target finite-state program is generated from this tableaux.

These pioneering synthesis method can be applied to the synthesis of closed reactive systems. The
closed reactive system means a system in which all actions are observable and controllable. In contrast,
open reactive systems has unobservable and uncontrollable actions. For example, a plant control system
consists of a controller and controlled objects in which some actions and states are unobservable and
uncontrollable from the controller. Pnueli and Rosner proposed a synthesis method for these open
reactive systems [Pnueli 89a, Pnueli 89b, Pnueli 90].

Chapter 1: Introduction 15

These works made worthy contributions from the theoretical view point. However, from the practical
point of view, they were suggestive but hard to apply to actual systems. The main reason is that it is
too difficult and too expensive to describe a whole specification by temporal logic and then synthesize a
whole program from it. Therefore, a more practical approach is proposed, “program adjustment”, which
modifies (adjusts) a given target program to satisfy a temporal logic specification instead of generating
a whole program from it.

2.4 Design Methodology for Reactive and Concurrent Systems

Software design methodology plays important part so that formal methods are utilized during the software
development process. As a software design methodology for reactive and concurrent systems, several
methods have been proposed; Real-Time Structured Analysis and Design (RTSAD), Object-Oriented
Analysis and Design (OOAD), and Design Approach for Real-Time Systems (DARTS).

¢ Real-Time Structured Analysis and Design (RTSAD)

Real-Time Structured Analysis and Design (RTSAD) is an extension of Structured Analysis and
Design for real-time systems. There are two popular variations which have been developed by
Ward [Ward 85, Ward 86] and Hatley [Hatley 87], respectively. In RTSAD, functional requirements
for the target system are hierarchically decomposed into several functions, which are described
by data/control flow diagrams. In addition to the data/control flow diagrams, behavioral
requirements are represented by state transition diagrams. Since the data flow diagram is
familiar to designers and easy to understand, RTSAD has been used on a wide variety of projects
and there is much experience in applying RTSAD. However, RTSAD is weak in its provision of task
structuring guidelines which address how to structure the system into concurrent tasks.

e DARTS

In the reactive and concurrent system design, task structuring is given considerable weight. DARTS
(Design Approach for Real-Time Systems), which was proposed by Gomaa [Gomaa 93], is a design
method based on RTSAD and emphasizes the decomposition of a real-time system into concurrent
tasks. DARTS provides a set of task structuring criteria for structuring a real-time system into
concurrent tasks, as well as guidelines for for defining the interfaces between tasks.

e Object-Oriented Analysis and Design (OOAD)

Object-Oriented Analysis and Design (OOAD) [Booch 94, Rumbaugh 91] is a design method based
on object-oriented paradigm. In OOAD, classes and objects are first identified by analyzing the
problem domain, then object diagrams and class diagrams are developed to describe the rela-
tionships between classes and objects. After defining the object structure, behavior for each object
is described by the state transition diagram. Finally, objects are classified into tasks (active
objects) and packages (passive objects) of the concurrent programming language.

Generally speaking, each design method consists of several charts which represent functional, behav-
ioral, and module structures of systems and guidelines (criteria) for deriving these charts. Data/control
flow diagrams, state transition diagrams, and class/object diagrams are used as the design charts in the
above methods.

Although a Petri net can be a promising design chart for reactive and concurrent systems, there are
few design methods which use Petri nets as the design chart and give guidelines for manipulating them.
Reisig [Reisig 92] proposed a design method based on Petri nets. It is very suggestive but not sufficiently
mature. This thesis considers a Petri-net-oriented design method, which is called Net-Oriented Design
method (NOD) [Honiden 92].

2.5 Programming Environments for Reactive and Concurrent Systems

A lot of tools have been proposed which support formal methods for reactive and concurrent systems.
Recently, these tools have become sophisticated and are of practical use® . The more well-known tools
include the following.

3 Some of them can be easily obtained by INTERNET.

Chapter 1: Introduction 16

e Tools based on state transition systems (state machine, automata):
STATEMATE" [Harel 90] and SPIN [Holzmann 91],

e Tools based on process algebra® :
Concurrency Workbench (CWB) [Cleaveland 93] and AUTO/AUTOGRAPH [Boudol 89],

e Tools based on Petri nets:
DESIGN/CPN [Jensen 92] and Cabernet [Ghezzi 93].

However, none of them is a comprehensive programming environment covering the overall development
process which includes verification, synthesis, and a design methodology based on Petri nets and temporal
logic.

3 Synopsis

The organization of this thesis is as follows (Fig. 2).

Chapter 2 starts by providing definitions, models, and logics for reactive and concurrent systems as
a preliminary section.

Chapter 3 considers a software development process for reactive and concurrent systems. In this
chapter, a definition and the characteristics of reactive and concurrent systems and a development process
for them are discussed. Finally, a software development process using Petri nets and temporal logic
is conceptually proposed. According to this conceptual development process, detailed techniques are
described in the following chapters.

In Chapter 4, a fusion of Petri nets and temporal logic is proposed as a specification language for
reactive and concurrent systems. Its expressive power and theoretical results are also considered. In
succession, verification and synthesis methods are shown as an application of specification by Petri nets
and temporal logic. Examples are provided to show the effectiveness of the verification and synthesis.
The remarkable point is that proposed methods are for unbounded Petri nets, while former verification
and synthesis methods were mainly for bounded (safe) Petri nets.

Chapter 5 considers an efficient and practical verification method, temporal logic model-checking, for
finite-state (i.e. bounded) systems. The model-checking method is actually useful to verify reactive and
concurrent systems. However, as the scale of the programs increases, the computation costs for verification
increase exponentially due to the state explosion. To ease the state explosion, a compositional approach to
model-checking seems promising and is adopted here. The point of compositional verification is to reduce
(localize, minimize) the target program, leaving only essential information for each verification query. The
reduction of the target program is formalized by process equivalence theory. This chapter introduces a
new process equivalence relation (w7w-bisimulation equivalence) for compositional verification. This new
relation is required because conventional bisimulation equivalence, which was used in other compositional
verification, cannot deal with “divergence” explicitly. An explanation of why conventional bisimulation
equivalence does not work well with divergence is given, and then wrw-bisimulation is defined. After
this, Process Query Language (PQL) is proposed. PQL is a modal logic which is union of temporal
logic and process logic, and the semantics of which is based on mrw-bisimulation equivalence. Then, this
chapter proposes the compositional verification method using PQL with consideration of the divergence.
Its effectiveness is demonstrated by means of some experimental results.

In Chapter 6, program synthesis using temporal logic is discussed. From the standpoint that the
conventional program generation approach from temporal logic specification, which was initially proposed
by Manna and Wolper [Manna 84], is impractical, this chapter proposes a new approach, “program
adjustment”. In program adjustment, a target program made by programmers, which may be functionally
correct but may be imperfect in its timing, is automatically adjusted (tuned up) to satisfy given temporal
logic constraints. To put it concretely, program adjustment is realized by adding an arbiter process which
is synchronized with and restricts the behavior of the target program. It is more feasible for ordinary
programmers to adopt the program adjustment approach compared to conventional program generation
approach for the following reasons.

4 STATEMATE is a trademark of i-Logix

5 These tools are also applicable for state transition systems which are equivalent to the process algebra.

Chapter 1: Introduction 17

e It is not very difficult for ordinary programmers to produce a target program, which satisfies at
least the functional requirements. A more difficult task is to design and debug the timing of such
programs.

e It is easy for ordinary programmers to specify timing constraints, such as deadlock-free and starvation-
free constraints, as compared with implementing them.

e Computation cost of program adjustment is generally smaller than program generation.

Furthermore, when a target program becomes large, the arbiter synthesis may cause a computing cost
explosion. Therefore, we propose compositional adjustment.

Chapter 7 considers Petri nets as a programming language instead of a specification language. First,
it is discussed what properties are required for a programming language for reactive and concurrent sys-
tems, and what extensions are required to use Petri nets as a programming language. Then, a MENDEL
net is introduced, which is a high-level Petri net for reactive and concurrent systems. A MENDEL net
can be used not only for specification but also for programming (detail prototyping) owing to several ex-
tensions, an I/0 interface with the environment, concurrent tasks, and a mechanism for their scheduling.

Chapter 8 proposes a software design methodology based on MENDEL nets and temporal logic,
which is called Net-Oriented Design method (NOD). In this method, a causality matriz is introduced at
an earlier design phase when the system structure is obscure and it is difficult to write MENDEL nets
directly. According to the design method utilizing causality matrices, a designer can construct MENDEL
nets systematically from an ambiguous requirement, then verify and adjust the MENDEL nets by methods
based on temporal logic mentioned in earlier chapters.

Chapter 9 shows an overview of a programming environment for reactive and concurrent systems,
called MENDELS ZONE. MENDELS ZONE provides analysis tools based on formal methods (e.g.,
verification and adjustment tools) and a design support tool based on the informal design method (e.g.,
causality matrix editor) in addition to the usual programming tools such as graphical MENDEL net editor,
simulator, and compiler. MENDELS ZONE has been implemented on the parallel machine, Multi-PSI.

Finally, Chapter 10 concludes this thesis, summarizing the research contributions, and presenting
intentions for further work.

Related our publications are summarized as follows.

Chapter 4: [Uchihira 90b]

Chapter 5: [Uchihira 92a]

Chapter 6: [Uchihira 92¢, Uchihira 95a]

Chapter 7: [Uchihira 96b]

Chapter 8: [Uchihira 92b]

Chapter 9: [Uchihira 87, Uchihira 88, Uchihira 90a, Uchihira 92b, Uchihira 95a]

Chapter 1: Introduction

Chap. 2 Chap. 3
Preliminaries Development Process

A A
(e
Chap. 4
Specification, Verification, and Synthesis
L (Petri Nets and Temporal Logic)
() \ 4 Chap 7
Chap. 5 Programming Language
Compositional Chap'_6 (MENDEL Net)
Verification Comlposmonal \
(Transition Systems A(j_Jgstment
and PQL) (Transition Systems Chap. 8
and Temporal Logic) Design Methodology
\ (Net-Orineted Design Method)
~~~~~ Chap. 9
------- Programming Environment
(MENDELS ZONE)
\

Figure 2. Organization of The Thesis



Chapter 2

Preliminaries: Models and Logics for
Reactive and Concurrent Systems

This chapter introduces several notations and definitions of models and logics for reactive and concurrent
systems.

1 Models for Reactive and Concurrent Systems

Many models have been proposed for reactive and concurrent systems. Most of them are based on state
transition systems which may be extended about concurrency and liveness. Among them, this section
shows Transition System, Biichi Sequential Automaton, Finite State Process, and Petri Net.

1.1 Sequence

To begin with, we introduce several notations about sequences. In the context of this thesis, a sequence
is used to represent the time series of actions which a reactive and concurrent system takes, and states
which it stays in.

Let X be a set. The set of all finite sequences over X, including the empty sequence ¢, is denoted
by X*. If there is no empty sequence ¢, the set is denoted by X*+. The set of all infinite sequences
over X is denoted by X“; w means “infinitely many”. X is defined by X*° = X* U X*“. X means a
complementary set of X. X1\ X2 = X7 N X,

For a sequence 6 € X, f[i] means the i-th element in #; 6(k) means the prefix subsequence
0[1]6[2]...0[k] of 8, and | 8 | the length of 6.

For A ¢ X and L C X, L/A is defined as L/A < {0 | 30 € LVi.(0'i] = 6[i] if 0]i] €
A, otherwise 0'[i] = €)}. “/” is a label restriction operator. Intuitively, L/A consists of sequences of
L in which all elements except A are deleted.

1.2 Transition System

Definition 1 (Transition System)

TS =(S,P,A, 7,6, s0)

S : A set of states

P : A set of state attributes

A : A set of actions

Act = AU{r}

T : an unobservable internal transition

7w :S — 2 A boolean function

§:8 x Act — 2° A nondeterministic transition function
So : An initial state

For TS = (S,P,A,7,d,s0) and s,s" € S and a € A, p € w(s) means that a state attribute p is true in
s, and s’ € §(s,a) means that the system which stays in s can move to the state s’ after an action a.

19



Chapter 2: Preliminaries 20

According to Milner’s notation [Milner 89], 6(s,a) > s’ is expressed as s = s/, s(=)* = (5)*s is
expressed as s = s'. Also, @ expresses a when a # 7, and G expresses ¢ when a = 7. Here, ¢ means an
empty string, that is, s = s’ = s = s’ = 5(=)*s’. We show a simple example of a transition system in

Figure 3.

Example 1 (Transition System) T = ({so, s1, S2, 83}, {p1, 02}, {a, b}, 7,6, so) where

b b
S0 = 81,80 — S2,51 — 83,52 = 53,83 S so,and 7(so) = {p1,p2},7(s1) = {p1}, 7(s2) = {p2},7(s3) = 0.

a—{_pLp2}— b
a(5) | ()=
= )

s3

Figure 3. Example of a transition system

Definition 2 (Finite Branching Condition)
A finite branching condition in TS = (S, P, A, m,d, s¢) Is:

0(s,a) is a finite set for Vs € S and Va € A.

This finite branching condition is necessary for the fully automatic verification and synthesis for
transition systems. When S, P, and A are finite, the finite branching condition is satisfied. We assume
S, P, and A in T'S are finite whenever we do not mention it explicitly.

1.3 Biichi Sequential Automata

A transition system can model all possible (safe) behaviors of systems, but cannot model desirable
behaviors. A finite automaton can express desirable (acceptable) behaviors explicitly using terminal
states.

Definition 3 (Finite Automaton) A finite automaton is a tuple A = (%, S, p, so, F'), where
e Y is an alphabet,

e S is a set of states,

p S x ¥ — 2% is a nondeterministic transition function,
e 5oy € S is an initial state, and

e F C S is a set of terminal states.

A run of a finite automaton A over a finite word 8 = tits...t,, € ¥* is a state sequence Sg, S1, ..., Sn,
where s; € p(s;_1,t;) for all i > 1. A run sg, sy, ..., S, is accepting if s, € F. A finite word 6 is accepted
by A if there is an accepting run of A over f. The set of all words, accepted by A, is denoted L(A).

A finite automaton treats only finite sequences (words). Since reactive and concurrent systems often
takes infinite ongoing computation, a finite automaton on infinite sequences is necessary to model them.

Definition 4 (Biichi Sequential Automaton ) Biichi sequential automaton is a tuple A = (%, S, p, so, F),
where



Chapter 2: Preliminaries 21

e Y is an alphabet,

S is a set of states,

e p:S x ¥ — 2° is a nondeterministic transition function,
e 3o € S is an initial state, and

e F C S is a set of designated states.

A run of a Biichi sequential automaton A over an infinite word 8 = tqt5... € X* is a sequence Sg, S1, ---,
where s; € p(si_1t;) for alli > 1. A run sg, $1, ... is accepting if for some s € F' there are infinitely many
1’s such that s; = s. An infinite word 6 is accepted by A if there is an accepting run of A over 6. The set
of all words, accepted by A, is denoted L(A).

1.4 Finite State Process

A finite state process [Kanellakis 90] is defined as a general model which includes both a transition
system and an automaton. Therefore a finite state process can specify a transition system with liveness
conditions as its acceptance condition.

Definition 5 (Finite State Process) A Finite State Process (FSP) is a seventuple P = (S, A, L, 6, \, so, F),
where:

e S is a finite set of states,
e A is a finite set of actions,
e [ is a finite set of synchronization labels,

e §:5xA— SU{L} is adeterministic transition function (6(s,t) = L means the action t € A is
disabled in the state s € S),

A: A — (LU{r}) is a labeling function, (T is an invisible internal action),
e 3o € S is an initial state, and

e F C S is a set of designated states.

Example 2 (Finite State Process) P = ({so, s1, 2, 3}, {t1,t2,t3},{a,b},0, A, so, {s3}) is a finite state
process where 6(so,t1) = s1,0(s0,t2) = s2,6(s1,t2) = $3,0(s2,t1) = 53,6(s3,t3) = 50, A(t1) = a,A(t2) =
b, \(t3) = 7. (Fig.4)

initial state

@ <~ action/label

designated state

Figure 4. Finite State Process

Let P = (S, A, L,6, A\, so, F) be an FSP. A transition function can be extended such that ¢ : S x A* —

SU{L}, ie., 6(s,0a) = 0(6(s,0),a). Note, d(s,e) = s. Since a transition function is deterministic,

a current state can be uniquely determined from an initial state and an action sequence. We call an



Chapter 2: Preliminaries 22

action sequence a behavior. Similarly, we can extend a labeling function such that A : A* — (LU {r})*,
ie, A(@) = A@O[1)AO[2])...A(0]| 0 |]). In addition, A\(F) is defined as the sequence gained by deleting all
occurrences of 7 from A(f). The set of reachable states from a state s in P is defined as Rp(s) def {s' €
S 130 € A*.s' = 5(s,0)} and Rp(s) 2 {s' € |30 € A*t.s' = 5(s,0)}. Also, the set of all possible
action sequences of P is defined as L(P) s {6 € A* | §(s0,0) # L}, and the set of all possible label

sequences is defined as Ly (P) def {\(0) € L* | # € L(P)}. Since interest is in the infinite behavior of an
FSP, we introduce a set of infinite action sequences L, (P) C A“ and La,(P) C (A¥ U A*{A}*) where
A means deadlock:

def

Lo(P) Y 16e A% |1 < VE.6(s0,0(k)) # L}

{6 € A¥ | 1 < Vk.6(s0,0(k)) # L}U
I et 1< Vi <k.6(s0,6(2)) # L and
Av = Y {0 e A{A} | Fk.({ Ya € A5(0(s0,0(k)),a) = L and )}
0[j] = A for Vj > k
La,(P) is an extension of L(P) into a set of infinite action sequences where if # € L(P) is a deadlock
sequence (i.e., an inevitably finite sequence), then 6 is represented as 6AY € La,(P).

LI (P) C Lay(P) is defined as L\*" (P) o {0 6 € La,(P) under the fairness condition} where
the fairness condition means whenever a behavior # infinitely often passes through some state s, every
action a enabled at s must appear infinitely often on 6 (i.e., if s = §(so,6(¢)) for infinitely many ¢ and
d(s,a) # L, then s = §(s0,6(j)) and 8[j + 1] = a for infinitely many j).

An FSP is a transition system with liveness conditions. In an FSP, liveness conditions are represented
by designated nodes that indicate satisfiable behavior of an FSP as follows.

Definition 6 (Satisfiable Behavior) Let P = (S, A,L,0,\,s0,F) be an FSP. § € A“ is a satisfiable
behavior, if 6(sg,0(k)) € F for infinitely many k > 1. Ly(P) C A¥ is defined as a set of all satisfiable
behaviors on P.

Note that a satisfiable behavior corresponds to an accepting run of Biichi automaton.

Definition 7 (Completeness of FSP)
Let P = (S, A,L,5,)\, 50, F) be an FSP. P is complete if Vs € Rp(s9).3s' € Rj(s) and s' € F. O

A state s € Rp(sp), having no path to designated nodes from s, is called an unsatisfiable state. If P is
complete, P has no unsatisfiable states. A behavior reaching an unsatisfiable state is called an inevitably
unsatisfiable behavior.

Lemma 1 If an FSP P is complete, then L1 (P) C Loq(P). O

This lemma means that if P is complete, then a random transition over P leads to a satisfiable
behavior. Consequently, if P is complete, P is deadlock-free.

1.5 Transition System with Concurrency

Transition systems (finite state processes, automata) have no ability to express concurrency explicitly
by themselves. Reactive and concurrent systems are constructed from some number of processes. Each
local process can be modeled as a transition system. When processes are modeled by transition systems
TS,,TSs,...,TS,, concurrency among processes can be expressed as process composition 'Sy | T'Ss | ... |
T'S,, using composition operators ‘. T'Sy | T'S2 means a concurrent system in which 7'S; and T'Ss run
concurrently and communicate with each other. It is called communicating transition systems.

Furthermore, transition systems are also used to define semantics of process composition. Global
behaviors of communicating transition systems can be expressed by one global transition system based
on interleaving semantics. In the interleaving semantics, concurrent structures of systems is expanded
into a set of nondeterministic global behaviors.

Process composition and interleaving semantics will be explained in detail in Chapter 5 for transition
systems and in Chapter 6 for finite state processes.



Chapter 2: Preliminaries 23

I/0 automata and Statechart can be classified into a kind of communicating transition systems. I/O
automata is communicating transition systems featuring reactive properties. In I/O automata [Lynch 86,
Lynch 88], each process is modeled by an automaton with input and output actions. Due to reactive
properties, input actions cannot be controlled by the automaton, while output actions can be. Statecharts
[Harel 87a] are extended transition systems in order to design large and complex reactive and concurrent
systems. Statecharts have several extended features including hierarchy, concurrency, and their visual
formalisms. For example, a system which consists of three processes T'S1,T'S2,T'S3 can be expressed in
Fig. 5. Since Statechart can express concurrency graphically, it is often used in design methodologies and
CASE tools.

TS1 PoTS2

a3l
(=1 (=
_ a32 )

Figure 5. Concurrency in Statechart

1.6 Petri Net

A Petri net is another approach to express concurrency explicitly in addition to state transition models.
Definition 8 (Petri Net) A Petri net is a 4-tuple N = (P,T,w, mg) where:

e P ={pi1,p2,...,pn} is a finite set of places,

T = {t1,ta, ...t} is a finite set of transitions,

w: (PxT)U(T x P)— {0,1,2,3,...} is a weight function, w(p,t) is the weight of the arc from p
tot and w(t,p) is the weight of the arc from t to p, especially w(p,t) = 0 (w(t,p) = 0) means there
exists no arc between p and t,

mo : P — {0,1,2,...} is the initial marking.
e PNT=0and PUT #£0

A marking in a Petri net is changed according to the following firing rules:

e A transition is said to be enabled, if each input place p of t is marked with at least w(p,t) tokens.
e Only one of the enabled transitions can fire at a time.

e Firing of an enabled transition t removes w(p,t) tokens from each input place p of t, and adds
w(t, p) tokens to each output place p of t.

Let t be a transition and P = {p1,pa,..,pn} be a set of places. An n-dimensional differential vector
is defined as A(t) = (w(t,p1) — w(p1,t), ..., w(t,pn) — w(pn,t)). Furthermore, A(tita...t,,) = A(ty) +
A(t2) + ... + A(t,,) for a transition sequence t1ts...t,.

When ¢ € T is enabled at a marking m, we denote m[t >. After firing ¢, if m' is a new marking, we
denote m[t > m'. In the case that mq[ty > mao, mafta > ms, ..., mg_1[tx—1 > my for a transition sequence
0 = t1...tx,—1, we denote m1[0 > my. A set of reachable markings R(N) of Petri net N is defined as
R(N) = {m |30 € T*.mo[6>m}.



Chapter 2: Preliminaries 24

Definition 9 (Labeled Petri net) A labeled Petri net is a 2-tuple, LN = (N, \), where N = (P,T,w, mq)
is a Petri net and X\ : T — X (alphabet) U {¢(empty sequence)} is a labeling function.

The labeling function A : T'— X U {e} is extended to A : T — £ by A(8)[i]] = A(0]7]) for all# € T
and 1 < i <| 6 |. A sequence of transitions (6 € T*) is called a legal firing sequence on the Petri net N
if the firing sequence 6 is allowed by the firing rules; an infinite sequence of the transitions (§ € T%) is

a legal firing sequence if every prefix is a legal firing sequence. The set of all finite (infinite) legal firing
sequences of N is denoted by F(N) (F,(N)).

Definition 10 (Petri net language) L(N,\) is a finite Petri net language generated from a labeled Petri
net (N, \) if L(N,X) = {\(0) € &* | # € F(N)}. Similarly, L,(N,\) = {\(#) € ¥ | § € F,(N)} is an
infinite Petri net language, and La,(N,\) = {\(0) € = |0 € F,(N)}U{\(#) e Z* |§ € F(N) and Vt €
T.6t ¢ F(N)} is a A-infinite Petri net language. Here, “A-infinite” means “infinite including A“”.

Remark: La,(N,)\) may include finite words such as sA¥(s € ¥*), while L, (LN) includes only
infinite words.

We introduce a label manipulation operator. When L C X, we define a label restriction operator “/”
for a labeling function as A\/L : T — L U {=} such that A\/L(t) = A(t) if A(t) € L and \/L(t) = ¢ if
A(t) ¢ L. This means h(t) € L is visible and h(t) € £\L is invisible. An identity function e : T' — T is

defined as e(t) =t for all t € T. We use an abbreviation 6/L = e/L(6).

1.7 Models for Real-Time Systems

Several models for real-time systems are proposed as extension of transition systems, automata, and
Petri nets, which include timed automata (timed graphs ) [Alur 90, Alur 91], timed transition systems
[Henzinger 91], generalized stochastic Petri nets [Marsan 86, Marsan 95], time Petri nets [Berthomieu 91],
and time basic nets [Bellettini 93]. In this thesis, we do not mention them in detail.

1.8 Comparison of Models

Table 1 shows comparison of models which we mentioned, with regard to concurrency and liveness.

Table 1. Comparison of Models

Models Concurrency | Liveness
Transition System
Transition System with composition operators O
Biichi Sequential Automaton

Finite State Process with composition operators
Statechart

Petri Net

O
O

OO0

2 Logics for Reactive and Concurrent Systems

This section introduces several temporal and modal logics: Linear Time Temporal Logic, Branching
Time Temporal Logic, Process Logic, and Propositional Modal p-calculus. These logics can provide
useful formalisms for specifying and verifying reactive and concurrent systems.

2.1 Propositional Logic

A logical language is given by an alphabet of symbols and the definition of a set of strings over language,
called formulas. The simplest kind of a logical language is called propositional logic which can be given
as follows.



Chapter 2: Preliminaries 25

Syntax
Propositional logic formulas are built from:

e A set of all atomic propositions: Prop = {p1,p2, D03, -, Pn},
e Boolean connectives: A and -,
e Parentheses: “(” and “)”.
The formation rules are:
e An atomic proposition p € Prop is a formula,
e If f; and f> are formulas, so are fi; A f3, 1 f1,

e If f is a formula, so are (f).

Abbreviation
Further logical operators and constants can be introduced to abbreviate particular formulas.

Abbreviated Formula = Original Formula

fVfa = a(=fi A= fa)
fiDf =-fiV~fe
true =fVv~f
false = =true

2.2 Linear Time Temporal Logic
Temporal logic is a special type of modal logic, where its modalities concern with time. There two possible
views regarding the underlying nature of time. One is that the course of time is linear. The other is that
time has branching, tree-like nature. First, we show Propositional Linear time Temporal Logic (PLTL)
based on the former view. Then, Propositional Branching time Temporal Logic based on the latter view
will be shown.
Syntax PLTL formulas are built from:

e A set of all atomic propositions: Prop = {p1,p2,p3, .., Pn}

e Boolean connectives: A, V

e Temporal operators: O (“next”), U(“until”)
The formation rules are:

e An atomic proposition p € Prop is a formula.

e If f; and f> are formulas, so are fi A fa, = f1, Of1, f1U fa.
Semantics The operators intuitively have the following meanings: Of (read next f): f is true for the
next state, f1U fa (read fi until f2): fi is true until fo becomes true and f> will eventually become true.
The precise semantics are given as the Kripke structure [Manna 84].

We use ¢ f (“eventually £”) as an abbreviation for (true U f) and Of (“always {”) as an abbreviation
for =F=f. Also, fi V fo and fi D fa represent —(=f1 A =f2) and —f; V fo, respectively.

Lemma 2 Given an PLTL formula f, one can build a Biichi sequential automaton Ay = (%, S, p, o, F'),
where & = 2P7°P such that L(Ay) is exactly the set of sequences satisfying formula f.



Chapter 2: Preliminaries 26

Proof Ref. [Wolper 83a].

Here, an accepted word @ = P, P, Ps...P;... (P; C P) means that all p € P; are true and all p € P; are
false at time i (0 < 7).

Definition 11 (Single Event Condition) A single event condition is defined as follows,
fsec = 0O(( \/ pi) A ( /\ pi A ;)
1<i<n 1<i<j<n

where p1, .., p, are all atomic propositions. O

This single event condition provides that only just one atomic proposition is true at any moment
[Manna 84]. When we build a Biichi sequential automaton A, = (¥, S, p, so, F') where {’ is f with the

single event condition, we can make ¥ = Prop in place of & = 2P7°P_because only one atomic proposition
is true at each time.

Example 3 (A}) The following Ay (Fig.6) is built from PLTL formula f with the single event condition
(i.e. f/ =fA fSEC)~
f=0(1 D Ot Utz)) AO(t2 D O(—tUty))

Afr = ({tl,tg},{80,81782,83},(5,80,{80783}) where § = {{81} = (5(80,t1),{82} = 6(80,t2),{83} =
(5(81,t2)), {83} = (5(82,t1), {81} = (5(83,751), {82} = 6(83,t2)}.

Figure 6. Biichi Automaton Ay built from PLTL formula f

Definition 12 L.(f) is an infinite language generated from an PLTL formula f under the single event
condition, iff Ls(f) = L(Ay) where f' = f A fsrc, and a set of atomic propositions Prop becomes an
alphabet of Ay

Lemma 3 Given an PLTL formula f, Ls(f) = Ls(—f), where Ls(f) = Prop“\Ls(f).

Proof. The paper [Wolper 83a] proved that L(Ay ) = L(Ay,), where fo = —f; and no single event
condition is assumed there. This lemma is a special case of that theorem.O

2.3 Branching Time Temporal Logic

We will consider a simple version of propositional branching time temporal logic: CTL (Computation Tree
Logic).



Chapter 2: Preliminaries 27

Syntax CTL formulas are built from:
e A set of all atomic propositions: Prop = {p1,p2,p3, .., Pn}
e Boolean connectives: A, V,
e Temporal operators: O, U,
e Path operators: V, 3,
The formation rules are:
State Formulas

e An atomic proposition p € Prop is a state formula.

e If f; and f5 are state formulas, so are fi A fo, = f1.

e If g is a path formula, then Vg and Jg are state formulas.
Path Formulas

e If g1 and g- are state formulas, then ()g;, and ¢g1Ug- are path formulas.
CTL Formulas

e If f is a state formula, then f is a CTL formula.
Semantics The operators intuitively have the following meanings: V(O f = “f becomes true at the
next time for all paths”, Vf,U fo = “f; becomes eventually true and f; is true subsequently until then for
all paths”, 30 f = “f becomes true at the next time for some path”, 3f,U fo = “f> becomes eventually
true and f; is true subsequently until then for some path”.

The precise semantics of CTL formulas are defined with a tree-like structure M and a state s. A
model of a CTL formula f is an infinite tree over M starting at s (we denote (M, s) |= f). It is known
that if a given CTL formula f is satisfiable (i.e., it has at least one model), there exist a finite transition
system T'S = (S, P, A, , 0, s0) such that A = () (i.e., without actions) and a model of f can be obtained
by unwinding T'S (Small Model Theorem). Therefore we can regard transition systems without actions
as models of CTL formulas.

In CTL, the formulas appearing in the scope of path quantifiers are restricted to be a single temporal
operators. Therefore some PLTL formulas cannot be expressed in CTL. CTL* is extension of CTL, in
which arbitrary PLTL formulas can appear in the scope of path quantifiers. An arbitrary PLTL formula
f is expressed by Vf in CTL*.

2.4 Process Logic

A process logic is a kind of modal logics in which its modalities concern with actions.

Syntax  Propositional process logic (PPL) formulas are built from:
e A set of actions: A
e Boolean connectives: A, V
e Modal operators: (a) for a € A
e A constant: true
The formation rules are:
e A constant true is a formula.
e If f; and f5 are formulas, so are f; A f5.

o If fis a formula and a is an action (a € A), the (a)f is a formula.



Chapter 2: Preliminaries 28

Semantics The operators intuitively have the following meanings: (a)f = “it is possible to execute an
action a and terminate in the state satisfying f”.

Formally, PPL formulas are also interpreted with a tree-like structure M and a state s. A model of
a PPL formula f is an infinite tree over M starting at s (we denote (M, s) = f). It is known that if a
given PPL formula f is satisfiable (i.e., it has at least one model), there exist a finite transition system
TS = (S,P,A,7,6,s0) such that P = (i.e., without state attributes) and a model of f can be obtained
by unwinding 7'S (Small Model Theorem). Therefore we can regard transition systems without state
attributes as models of PPL formulas.

2.5 Propositional Modal p-calculus

u-caleulus is a variation of process logic extended with a least fixed point operator u. Since the fixed
point operator is very powerful, u-calculus can express both temporal logic and process logic uniformly.
We show the definition of propositional modal u-calculus.

Syntax The propositional modal p-calculus has formulas built from:
e A set of actions: A
e A set of variables: Var
e Boolean connectives: A, V
e Modal operators: (a) for a € A
e A fixed-point operator: u
The formation rules are:
e A variable Z is a formula.
e If f; and f> are formulas, so are f; A fs.
e If f is a formula and « is an action (a € A), the {(a)f is a formula.
e If f is a formula and Z is a variable (Z € Var), the uZ.f is a formula.
uZ.f means “every Z appearing in f are replaced with f”. The semantics of p-calculus is defined in

the same way as PPL.

2.6 Logics for Real-Time Systems
There are two main approaches in introducing real-time into temporal logics.
e introduction of a global clock (Explicit Clock Temporal Logic)
ex. aNt=T D $(bAt <T +10), where ¢ is a global clock.
¢ introduction of time bounds (Metric Temporal Logic)
ex. D<5 f

RTTL [Ostroff 90] is an extended PLTL with a global clock variable. TCTL (Timed CTL) [Alur 90]
is an extension of CTL for specifying real-time systems. Models of TCTL formula correspond to timed
graphs (timed automata). In this thesis, we do not mention them in detail.

2.7 Comparison of Logics

Table 2 shows comparison of logics which we mentioned, with regard to relations between logics and
models.



Chapter 2: Preliminaries 29

Table 2. Comparison of Logics

Logics Models Equivalent Models

PLTL infinite sequences | accepted sequences of Biichi Sequential Automaton
CTL infinite trees Transition System without actions

PPL infinite trees Transition System without state attributes
u-calculus infinite trees Transition System with actions and state attributes

3 Other Related Approaches

There are a lot of other approaches for modeling and specifying reactive and concurrent systems, which
include

e process algebra (CCS, CSP, ACP, w-calculus, chemical abstract machine),
e data flow model (Kahn’s model),

e object-oriented model (Actor Model), and

e concurrent logic programming (Concurrent Prolog, PARLOG, GHC).

Since these models are out of scope of this thesis, we do not mention them in detail.



Chapter 3

Software Development Process for
Reactive and Concurrent Systems

This chapter proposes a conceptual software development process for reactive and concurrent systems
using Petri nets and temporal logic.

1 Reactive and Concurrent Systems (RCS)

1.1 What is RCS?

A reactive system was first defined by Pnueli [Pnueli 86] and Harel [Harel 87b]. They classified com-
puterized systems into two basically different types: Transformational Systems and Reactive Systems.
Transformational systems and reactive systems are defined in the book by Manna and Pnueli[Manna 92]
as follows.

e Transformational Systems (TFS): “A transformational program is the more conventional type
of program, whose role is to produce a final result at the end of a terminating computation. ”

e Reactive Systems: “A reactive program is a program whose role is to maintain an ongoing
interaction with its environment rather than to compute some final value on termination.”

We remark that reactive systems include real-time systems, that is to say, a real-time system is a
specific reactive system which has real-time constraints.
Examples of reactive systems are as follows:

e Embedded control systems
ex. Home electric appliances, car electric appliances, and communication equipment (telephone
and facsimile).
e Process control systems
ex. Control systems for chemical plants, electric power plants, steel mill plant, and sewage
plants.
e Computer and network operating systems

ex. Operating systems, switching systems, and computer network control software.

e User interface management systems
ex. Window systems for workstations and personal computers.
Most reactive systems necessarily have concurrency which is often represented as concurrent tasks
(multitasking) since the framework of the concurrent tasks is fit to model and implement reactive systems

having several kinds of interactions which should be handled concurrently. Therefore we focus on reactive
and concurrent systems (RCS) in this thesis, especially embedded and process control systems.

30



Chapter 3: Software Development Process 31

1.2 Characteristics of RCS

We summarize the characteristics of reactive and concurrent systems as follows.

¢ Reactivity :

RCS maintain an ongoing interaction with their environments. In the case of plant control systems,
the environment is controlled objects of the plant, and the controller interacts with the controlled
objects through input devices (sensors) and output devices (commands) as shown in Fig. 7.

LAN

\\

N_  Sensor
——p—————»| Controller

———-

p—————
\ o} L]

k4 \ | Control 1

H ) \ Program /!

] ,7 Command

) 3

/

,\ Sensor

// Controller

/ /7T ]
! | control 1 [

Command

Figure 7. Plant Control System

e Nondeterminism :

Behaviors of TFS are deterministic, that is, an output O can be defined as a functional relation
O = f(I) for a given input I in TFS. On the contrary, behaviors of RCS are nondeterministic
since the environment of RCS has uncontrollable and unobservable elements. For example, timing
and order of some sensory events (temperature and pressure changes) in chemical plants may
be nondeterministic. These timing and order of events have an influence on the result. The
nondeterministic behaviors of RCS make it difficult to test and debug the programs compared with
TFS.

¢ Real-time Properties :

Most practical RCS have real-time properties to a greater or less extent. Real-time properties
include the followings.

— Deadline adherence: The system should process tasks in accordance with their real-time
deadlines.

— Periodic processing: The tasks are activated periodically by timer events.
The real-time systems can be classified in terms of deadline adherence.

— Hard real-time systems: If the system cannot keep deadline, it may bring about a catas-
trophic result.

— Soft real-time systems: Even if the system cannot keep deadline, it is possible to recover
it by a backup method (e.g. an exception handler).

e Concurrent Tasks :

The concurrent tasks are fit to model and implement RCS having several kinds of interactions which
should be handled concurrently. In particular concurrent tasks are essential for real-time systems.
For example, arrival of the interrupt results in a currently executing task being suspended, its
contents (a program counter, stacks, etc.) being saved, and an interrupt handler to process the
interrupt being invoked. After the interrupt has been serviced, the interrupted task’s content is
restored so that it can resume execution. It may be possible to manage these interrupts without
concurrent tasks. However, a design without concurrent tasks is unnatural and makes the program



Chapter 3: Software Development Process 32

difficult to debug, maintain and reuse. Moreover RCS in distributed environments (e.g. RCS which
consist of several controllers connected by networks) inevitably require concurrent tasks.

In this thesis, a task and a process have the same meaning. However, we often use “task” in the
context of the software design methodology and “process” in the theoretical context.

These properties (reactivity, nondeterminism, real-time property, concurrent tasks) are called “timing
features of RCS” or “synchronization features of RCS”, and the other features, which are in common
with TFS, are called “functional features of RCS”.

1.3 Software Architecture of RCS

We will consider software architectures required to construct reactive and concurrent systems.

1.3.1 Application Software and System Software

Software of a reactive and concurrent system consists of application software and system software (i.e., an
operating system). The system software provides abstract manipulations of computer hardware including
system resources, I/O devices, network devices, and timers (Fig. 8), and also provides concurrent tasking
mechanisms including task generation, task scheduling, and task communication and synchronization.
Application software is constructed on the system software by using system calls and run-time library
provided by the system software.

Software

Application Software

v 1 v 1 v 1

System Software

|\ J
Resource|| 110 Network|| Timer
|\ J
Hardware

Figure 8. Application Software and System Software

In reactive and concurrent systems, real-time operating systems and network operating systems are
often used as system software.

1.3.2 Concurrent Tasks

Application software of reactive and concurrent systems usually consists of several concurrent tasks.
Gomaa classified them into the following tasks [Gomaa 93].

e I/0 Tasks

— Asynchronous Device /O Tasks
— Periodic I/O Tasks

— Resource Monitor Task
e Internal Tasks

— Periodic Task



Chapter 3: Software Development Process 33

— Asynchronous Task
— Control Task
— User Role Task

Concurrent tasks can be classified into I/O tasks , which correspond to I/O devices and hardware
resources and manage them, and internal tasks , which supervise these I/O tasks. From another viewpoint,
tasks can be classified into periodic tasks which are invoked periodically (e.g., every 100 milliseconds)
and aperiodic tasks .

1.3.3 Synchronization Part and Functional Part

In most application software of RCS, a process (task) can easily be separated into two parts: a synchro-
nization part and a functional part [Manna 84].

e Synchronization (Timing) Part: A part which enforces the necessary constraints on the relative
timing of the execution of the different processes.

e Functional Part: A part which manipulates the data and performs the computation required of
the program.

A functional part of RCS can be regarded as TFS. We focus on a design matter of synchronization
parts; how to design and verify synchronization parts and how to adjust synchronization parts, considering
functional parts.

A synchronization part design is classified into a centralized one and a decentralized one (Figure 9). A
centralized synchronization part is easier to design and verify, but more difficult to implement efficiently,
especially in a distributed environment. Conversely, a decentralized synchronization part is harder to
design and verify, but can achieve run-time efficiency.

Process Process Process
g N N N I
H H ISynchronization [Synchronization [Synchronization
Synchronization Part et o o
Functional Functional Functional Functional Functional Functional
Part Part Part Part Part Part
o ol U\ U\ J
Centralized Synchronization Decentralized Synchronization
Supervisor Supervisor

Figure 9. Synchronization Part

A hierarchical synchronization supervisor is a compromised structure between a centralized one and
a decentralized one (Figure 10). It can be constructed hierarchically where each level can be constructed
as a centralized one, that is, easy to design and verify. As a whole, it looks like a decentralized one.

For example, small embedded control systems such as home electric appliances adopt a structure
having the hierarchical synchronization supervisor (Figure 11).

In the next section we will consider a software development process for RCS which have these char-
acteristics and structures.

2 Software Development Process for RCS

This section takes a general view of the software development process for transformational systems (TFS)
and reactive and concurrent systems (RCS), and considers a distinctive feature of RCS as compared with
TFS.



Chapter 3: Software Developm

ent Process

Process
SP (=Synchronization Part) FP (=Functional Part)
[ [t [t
v v v
sp | | FP[|||sP [ JFP||||sP[ |FP
Process Process Process
Figure 10. Hierarchical Synchronization Supervisor
Controller
4 N
SP (Main Controller) FP
[ % [ ¢ [ %
v v v
SP FP sP FP SP FP
L Device Controller Device Controller Device ControIIeD
Device Device Device

eNEEEEEEEEEEEEY

Environment (Controlled Object)

YssssssssmmmEnt

4 NN EEEEEEEE NN EEEEEEEE NN NN NN EEEEEEEEEEENNNNEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEn?

Figure 11. Hierarchical Synchronization Supervisor for Control Systems

34



Chapter 3: Software Development Process 35

2.1 Software Development Process for TFS

According to the software life-cycle model, the software development process can be divided into several
phases. The most widely used software life-cycle model is often referred to as the “Waterfall” Model
[Boehm 76]. Although the Waterfall Model has several limitations and alternative models are proposed
to overcome them (Prototyping and Spiral Model), it is used here because it is sufficient to consider
distinctive features of the proposed software development process for RCS.

Figure 12 shows the software development process which consists of the following phases.

Validation

Design Testing
Review

Analysis/Design Design Implementation @
Document

Figure 12. Software Development Process

Informal
Specification

e Analysis/Design Phase: This phase includes requirement analysis and architectural design.
The goal of the requirement analysis is to provide a complete description of what the system’s
external behavior is. During the architectural design, the system’s architecture is defined by design
documents which describe how the system works internally. We intentionally do not divide this
phase into two phases (analysis and design) clearly because analysis and design are intertwined and
it is difficult to completely separate them in the actual software development.

e Implementation Phase: This phase includes detailed design where the algorithmic details of
each component are defined and coding in a programming language.

e Validation Phase: This phase includes design review for design documents and testing for pro-
grams. Testing consists of unit testing, integration testing, and system testing.

2.2 Software Development Process for RCS

The software development process for RCS requires consideration of RCS characteristics(which is men-
tioned in the section 1.2) in addition to those of TFS.

e Input/Output Consideration

Input/output considerations are important for RCS which interact with their environment through
I/O devices. In the analysis/design phase, an interface between a system and its environment
should be defined and designed. This includes a software design of I/O driver.

— Reactivity

e Concurrent Task Structuring

Concurrent task structuring is one of the most important issues in RCS design. Concurrent task
structuring includes the designer’s tradeoff between introducing tasks to simplify the design and
not introducing too many tasks which increase intertask communication overhead. Concurrent
task structuring criteria are needed to help the designer make the tradeoff and show him how to
decompose a software system into tasks systematically.

— Concurrent Tasks

e Task Communication and Synchronization



Chapter 3: Software Development Process 36

2.3

After task structuring, the task interface is defined. The task interface consists of communication
and synchronization between tasks. The most popular method of task communication design is
a data flow diagram (DFD) which shows communication relationships between tasks, including
input data, output data, and data stores. On the other hand, task synchronization design includes
deadlock prevention, mutual exclusion, and other timing issues. In the design phase, communication
and synchronization are designed using message communication, event synchronization, and data
stores, which are implemented later using run-time support services (mail boxes, semaphore, event
flag, etc.)

— Concurrent Tasks and Nondeterminism

Performance Design

Performance design is necessary for RCS to satisfy given real-time constraints. Performance design
includes performance analysis using simulation models and scheduling. A real-time operating system
provides several mechanisms such as timer (set_timer, get_timer), task management (start_task,
terminate_task, suspend_task), and priority control (change_priority). These mechanisms are used
for the scheduling design to satisfy given real-time constraints.

— Real-time Property and Nondeterminism

Difficulties in Developing RCS

Generally speaking the development (especially testing and debugging) of RCS is more difficult than that
of TFS. The safety and reliability of RCS are very important as they are used in crucial systems such as
power plants, chemical plants, and various computer embedded systems. As RCS become increasingly
complex and distributed over computer networks complete testing of the safety of these programs becomes
more difficult and the cost of testing and debugging becomes a heavy burden. The difficulty in testing
and debugging RCS can be summarized as follows.

This

Concurrent thinking: The concurrent model is fit to design static structures of systems. However,
it is difficult to trace their dynamic behaviors concurrently because human thinking is essentially
sequential. Concurrent thinking which is required for designing, testing and debugging RCS is very
difficult for designers to achieve.

Data and timing variations: In testing TFS, the designer has to consider only data variations.
However, timing variations in addition to data variations have to be considered in testing RCS.
Combination of data and timing variations makes testing very complicated.

Environment modeling: Since a program of the reactive system cannot function without its
environment, testing on the development machine requires an environment model and its simulator.
The designer can test RCS with environment simulators, which are very useful in reducing testing
costs. However, simulator construction requires additional programming costs, and it is ineffective
to construct a handmade environment simulator for each RCS.

Lack of bug reappearance: Unlike in TFS, bugs do not necessarily reappear in RCS. For example
bugs which appear in the usual execution often disappear when using the debugging tool (it is called
the probe effect). It makes debugging of RCS very difficult.

Task structuring: As compared with module structuring in TFS, task structuring is more dif-
ficult because physical constraints (real-time constraints and constraints due to devices) must be
considered in addition to logical module structuring.

Programming Environment for RCS Using Petri Nets and
Temporal Logic

section shows a basic concept and organization of the proposed software development process and

its programming environment in this thesis. Then it is shown how the above difficulty is eased by them.



Chapter 3: Software Development Process 37

Formal Specification for RCS

In the proposed software development process, the formal specification takes up a position as a
software design document (SDD) which is produced through the analysis and design phase. The formal
specification is used for the formal verification and adjustment later.

Many formal specification languages are proposed. Some are declarative, and some are operational.
However, specification of practical systems requires both a declarative one and an operational one. For
example, it is impossible to describe all of the practical systems by temporal logic (declarative one).
Conversely, it is impossible to describe liveness properties such as deadlock-free by Petri nets (operational
one). An operational specification language is suitable for describing static and dynamic structures of
the system. On the other hand, a declarative one is suitable for describing constraints of the system.

We adopt both Petri net and temporal logic as a formal specification language for RCS because they
can complement each other

Design Document Reuse

The development process promotes and supports reuse of software design documents written by Petri
nets and temporal logic. Reusable components are stored in the reusable component library. Since Petri
nets provide a graphical representation of reusable components in the library, the designer can easily grasp
these components. Temporal logic provides a formal framework to check whether reusable components
work just as the designer designed.

Verification and Adjustment for RCS

The software design document can be verified by the formal method, that is, it is possible to verify
whether the given Petri net satisfies the given temporal logic constraints.

Moreover, when the Petri net does not satisfy the temporal logic constraints, the Petri net can be
automatically adjusted to satisfy them.

In particular, software reuse involves risk of bugs because the designer may not have an accurate
understanding of reused components. So, verification and adjustment can complement software reuse.

Programming Language for RCS

The verified and adjusted software design documents are coded with the programming language in
the implementation phase. The proposed development process also adopts Petri net as a programming
language. In this case, implementation is expected to be smoother because both design document language
and programming language are based on the same framework. However, since pure Petri net is insufficient
as a practical programming language for RCS, it should be extended.

Design Methodology for RCS

Software design documents written by using Petri nets and temporal logic are very formal and strict.
Therefore, it is very difficult to describe these documents directly from ambiguous and informal require-
ments in analysis and design phase. There are many design methods such as RSA/RSD and OOA/OOD.
However, they do not use Petri nets as their design documents (charts). A Petri-net-oriented design
method for RCS is required in the development process.

Software Development Process (Basic Concept)

Based on the above consideration, the proposed software development process is summarized as follows
(Fig. 13).

1. Analyze and design a target system from informal specification according to the Petri-net-based
design methodology.

2. Construct a software design document written by using Petri nets and temporal logic. When refining
Petri nets, reusable components are available.



Chapter 3: Software Development Process 38

Reusable

Informal

Specification Components
-
( N s
Petri-net Basd Reuse Petri Adjustment Petri
Design Nets B Nets
(& % N
3
( N
Temporal Verification ]
Logic Inplementation

-~
Test Petri
Nets

Validation

Figure 13. Proposed Software Development Process for RCS

3. Verify and adjust the design document.
4. Implement the design document and code it by using a Petri-net-based programming language.

5. Test the generated program.

Programming Environment for RCS

The programming environment supports the proposed software development process continuously. It
includes

e Graphic editor for Petri nets

Support tool for design and software reuse

Verification and adjustment tool

Compiler /Interpreter of Petri-net-based programming language

Testing and debugging tools including program and environment simulators

How to Ease Difficulties in Developing RCS

The proposed software development process and its programming environment utilizing Petri nets
and temporal logic can ease some difficulties of software development of reactive and concurrent systems
as follows.

e Petri Nets: Petri nets provide a user-friendly graphical representation of reactive and concurrent
systems and also their environments. Petri nets are adopted from first to last (i.e., from design to
implementation) in the proposed software development process.

— ease difficulties due to concurrent thinking, and environment modeling.
e Temporal Logic: Temporal logic provides formal methods of specification, verification, and ad-
justment about timing constraints of reactive and concurrent systems.

— ease difficulties due to timing variations and lack of bug reappearance.



Chapter 3: Software Development Process 39

e Methodology: Design methodology featuring Petri nets and temporal logic provides support so
that the designer can easily use these formal methods and design continuously from ambiguous
requirement to program implementation.

— ease difficulties in task structuring.

4 Summary

This chapter has shown a conceptual overview of the software development process for reactive and
concurrent systems using Petri nets and temporal logic. In the following chapters, we explain the detail
techniques required to realize this software development process.



Chapter 4

Specification, Verification, and
Synthesis Using Petri Nets and
Temporal Logic

Both Petri nets and temporal logic have been widely used to specify concurrent programs [Shatz 93]. Petri
nets are appropriate to specify the behavioral structures of programs explicitly, while temporal logic is
appropriate to specify the properties and constraints of programs. Since one can complement the other,
using a combination of Petri nets and temporal logic is a highly promising approach to analyze, verify and
synthesize concurrent programs. This fusion of Petri nets and temporal logic as specification language
belongs to dual-language approach. For the purpose of automatic program verification and synthesis,
the emptiness problem (i.e. whether a legal firing transition sequence satisfying a given temporal logic
formula on a given Petri net exists) must be decidable. This chapter first reports a class to combine
Petri nets and temporal logic as an infinite language and whose emptiness problem is decidable. Then,
we apply these results to verification and synthesis of concurrent programs. Our verification method
allows verifying several properties which cannot be covered by the traditional Petri net analysis, such
as analysis of mutual exclusion and partial ordering of events. Our synthesis method can be used to
modify an original concurrent program that is represented by a Petri net, to satisfy a given temporal
specification.

1 Petri Nets and Temporal Logic as Specification Language

As mentioned at Chapter 1 (Section 2: Background), a specification of reactive and concurrent systems
can be classified into declarative approach and operational approach. Petri net and temporal logic are
typical specification languages based on operational approach and declarative approach, respectively.

The Petri net [Peterson 81, Murata 89] is widely accepted as a graphic and formal modeling tool, ap-
plicable to reactive and concurrent systems, and it is suited for modeling behavioral structures [Shatz 93].
However, Petri nets are deficient in their ability to describe declarative constraints of programs, which
is a strong point of logic. On the other hand, temporal logic is successfully applied as a tool for the
verification [Pnueli 77] and synthesis [Manna 84] of concurrent programs, and suited for specifying the
constraints (declarative properties) of reactive and concurrent systems. Manna and Pnueli [Manna 92]
classifies these properties into two disjoint classes.

e Safety Properties:
A safety property claims that “something bad” does not happen.

e Liveness Properties:
A liveness property claims that “something good” eventually happens.

Temporal logic can specify both safety property and liveness property. For example, prohibiting con-
straints, such as “once an error event occurs, a start event must not be activated” can be described
explicitly by temporal logic, but it can only be described implicitly by Petri nets.

40



Chapter 4: Specification, Verification, and Synthesis 41

Petri net and temporal logic can complement each other as shown in Table 3. Therefore, it is useful to
combine Petri nets and temporal logic as a specification language for analyzing, verifying and synthesizing
concurrent programs. One can design concurrent programs operationally by Petri nets, while one can
specify them declaratively by temporal logic. We consider fusion of temporal logic and Petri nets, which
is called dual-language approach in [Felder 94].

Table 3. Comparison of Petri Nets and Temporal Logic

Petri Net Temporal Logic
Operational(Executable) Declarative(Unexecutable)
Suitable for Structure Description | Suitable for Constraint Description

Visual and Textual Representation Textual Representation

Since a bounded Petri net has only finite states, expressive power of Petri nets combined with temporal
logic is equivalent to one of finite state transition systems combined with temporal logic. Verification and
adjustment using transition systems and temporal logic will be described in the subsequent chapters. We
focus on unbounded Petri nets in this chapter.

Several classes [Cherkasova 87, Howell 88, Suzuki 89] have already been proposed in which unbounded
Petri nets are combined with temporal logic. However, these classes are inadequate for automatic ver-
ification and synthesis because some are undecidable in regard to the emptiness problem (i.e. whether
or not there exists a legal firing transition sequence satisfying a given temporal logic formula on a given
Petri net), and some are decidable but their complexity is as enormous as the reachability problem. The
decidability of the emptiness problem is inevitable for automatic verification and synthesis. In this chap-
ter, we select a class combining Petri nets and propositional linear time temporal logic (PLTL), such that
its expressive power is less than classes mentioned above, but its emptiness problem is decidable, and its
complexity is the same as the coverability problem. In this class, a transition firing sequence corresponds
to a model of the temporal logic formula, and it is possible to combine Petri nets and temporal logic as an
infinite Petri net language. Infinite Petri net languages were well investigated by Valk [Valk 83, Valk 85].
The following results will be shown in this chapter using infinite Petri net language techniques:

1. Tt is decidable whether or not a Petri net satisfies a propositional temporal logic specification.

2. For a given Petri net N and propositional temporal logic specification f, the new Petri net N’ can
be constructed by modifying N, such that N’ satisfies f.

These results are applied to verification and synthesis for concurrent programs in Sections 2 and 3,
respectively.

1.1 How to Fuse Petri Nets and Temporal Logic

There are several ways to combine a Petri net with temporal logic. The key point in combining is
what the atomic proposition in temporal logic corresponds to in Petri nets. There are some possible
correspondences between atomic propositions in PLTL and Petri net properties as follows.

(a) an atomic proposition mk(p) is true iff place p has at least one token.

(b) an atomic proposition ge(p,c) is true iff place p has at least ¢ tokens. ©

(c) an atomic proposition en(t) is true iff a transition ¢ is enabled.

(d) an atomic proposition fi(t) is true iff a transition t just fires. ”

For these correspondences, several research results are presented as shown in Table 4. It can be seen
that the emptiness problem becomes undecidable in some Petri nets combined with temporal logic. Some
are decidable, but are limited to bounded Petri nets or restricted PLTL. Here, the emptiness problem is
roughly defined as to decide whether, for a given Petri net N and a given temporal logic specification

6 (a) is a special case of (b), i.e. mk(p) = ge(p, 1).
7 Note that fi(t) D en(t) always holds.



Chapter 4: Specification, Verification, and Synthesis 42

f, there exists a legal firing transition sequence on N satisfying f. Our purpose is to select an general
Petri net class combined with general PLTL in which the emptiness problem is decidable. The reason
is that decidability is necessary for automatic program verification and synthesis, and unboundedness of
the general Petri net is necessary for modeling asynchronous communication in concurrent programs.

Table 4. Several Combinations of Petri Nets and Temporal Logic

Paper Type Petri net Emptiness Problem
[Katai 82] a safe decidable
[Cherkasova 87] b,c,d general  undecidable
[Howell 88] a,c,d general undecidable
[Suzuki 89] b,c,d  general undecidable
decidable for restricted PLTL
[Uchihira 90a]  d bounded  decidable

Here, we adopt only d-type correspondence and combine the Petri net N and PLTL formula f as
a formal language. A labeling function h : T — Prop U {c} is used to map transitions t € T of N to
atomic propositions fi(t) € Prop (i.e., h(t) = fi(t)). In addition, all transitions of N do not necessarily
correspond to atomic propositions. Some transitions may be invisible to a user who describes temporal
logic specifications (i.e. h(t) = ¢ for a invisible transition t). We are now going to generally define a new
formal language from N, f, and h.

Definition 13 (L(N, f,h)) N = (P,T,w,mq) is a Petri net, and f is a PLTL formula which consists

of atomic propositions Prop, and h is a labeling function such that h : T — Prop U {e}. We define

L(N, f,h) ef L,(N,h) N Ls(f), where L,(N,h) is an infinite language generated from a labeled

Petri net (N, h), and L,(f) is an infinite language generated from f under the single event condition 8 .
L(N, L,h) # 0 means that there exists a legal firing transition sequence satisfying f on N.

1.2 Example of Specification

A typical example of reactive and concurrent systems, mutual exclusion, is considered. In this example,
a behavioral structure of the system is given by Petri net N shown in Fig. 14, and declarative constraints
are given by the following temporal logic formula.

e d-type
f=00Ffi(t1)ADS fi(t2)AD(fi(tin) D O(=filtar) U fi(t12)))AD(fi(t21) D O(=(fi(t1)) U fi(ta2)))

e a-type
f = 00mk(CSy) A OOmE(CSs) A O=(mk(CS1) Amk(CSs))

Here, C'S and NC'S mean “critical section” and “non-critical section”, respectively. Both formulas mean
that this Petri net is deadlock-free and the mutual exclusion of critical sections C'S; and C'S, is preserved.

1.3 Theoretical Results
Theorem 1 (Decidability of Emptiness Problem of L(N, f,h)) The emptiness problem of L(N, f, h) (i.e.

L(N, f, h) is empty or not) is decidable for given N, f, h.

Proof. Tt is sufficient to prove that the emptiness problem of L, (N,h) N Ls(f) is decidable. To begin
with, the following procedures are provided which constructs an extended coverability graph G from N,
h, and Ls(f).

8 Lo (N,h) and Ls(f) are defined in Chapter 2.



Chapter 4: Specification, Verification, and Synthesis 43

t11 | t21

NCs1 (:)

Cs1

(:) NCS2

t12 t22

Figure 14. Petri Net N Representing Mutual Exclusion

Main Procedure
1. A Biichi sequential automaton Ay = (Prop, S, p, So, F') accepting Ls(f) is constructed.

2. Then, construct an extended coverability graph G from N = (P,T,w,mgp), h and A;. G is a
labeled directed graph. Each node z of G is represented as a k+2-tuple x = (1, ..., k, s, f) where
|P| = k,z; € {0,1,..} U{w}(1 <i<k),seS, fe{0(normal node),1(designated node)}. Each
edge e = (z,2') is labeled with an element of T. A transition ¢ € T is called to be enabled in x if
t is enabled at a marking (z1,...,2x) and p(s, h(t)) # 0, and ¢ is called to be local enabled if t is
enabled in the marking and h(t) = e. G is constructed as follows:

(a) Start with a graph G containing only an initial node z;n;: = (zo1, ..., Tok, S0, f) where mg =
(®o1, ..., ok ), So is an initial state of Ay, and f = 1if so € F, otherwise f = 0. Let x;ni be
an unapplied node.

(b) Repeatedly apply the following Graph Addition Procedure to the new (unapplied) nodes of G
until all nodes of G have been applied.

Graph Addition Procedure

1. Let  be a given node with z = (21,.., 2%, s, f). Create new node candidates ' = (21, ...,2},5", f')
from z according to the following (a)-(d) for all enabled transitions ¢ at z and all s" € p(s, h(t)).
Also create new node candidates ' = (1,...,2},s,0) according to (a)-(c) for all local enabled
transitions ¢:

(a) i =wifz; =w (1 <i<k).

(b) If there is a node y = (y1, ..., Yk, s', fy) on some path from z;,;; to = (that is an ancestor of x)
such that y; < z; —w(p;,t) +w(t,p;) for all j (1 <j <k) and y; < x; — w(p;, t) + w(t,p;) for
some ¢, then z} = w.

(c) For the other ¢, 2} = x; — w(p;,t) + w(t, p;).

(d) f=1if s’ € F, otherwise f = 0.

2. If 2’ is new in G, that is, G doesn’t have the same node, then add a new node ' and a new edge
e = (z,2') labeled with ¢t. Otherwise add only a new edge e = (x, ") labeled with t.

The above procedure always terminates because G is finite in the same way of the normal coverability
graph of a Petri net. Next, we prove the following claim.

Claim: L, (N,h)NLs(f) # 0 iff there exists a cycle ¢ = ngn;y...npng on G such that ng is a designated
node (i.e. f=1) and A(f) > 0 where § = t;...t54+1 is a transition sequence over ¢ (i.e. t; is a label of
e(ni—1,n;)).



Chapter 4: Specification, Verification, and Synthesis 44

Note that 6 is not necessary to be legal. The above claim follows directly from the result (Theorem
3.11) of Valk and Jantzen [Valk 85]. Furthermore, it is decidable whether or not there exists such a cycle
as follows: For each designated node ng, a set of all transition sequences @ forming cycles on G passing
through ng, can be represented by a regular expression R (e.g. R = (t1t2)* + (t1(t3 +t4)*t5)*). We want
to decide if there are some 6 € R such that A(f) > 0. For this purpose, we can regard R as commutative.
Therefore, R can be expressed as a finite sum of terms of the shape 606;65...0% such that 6; € T*(0 <
i < n), using the decomposition rules (AB = BA, A*B* = (AB)*(A* + B*), (A + B)* = A*B*,
(A*B)* = ¢+ A*B*B), which are described in the Conway’s book [Conway 71]. For each 6,0;6;...0%,
we can effectively decide whether A(6pf7"'052...05") = A(fy) + a1 A(01) + a2 A(02) + ...anA(6,) > 0 for
some aq, a, ..., &y > 0, by using linear programming.

While Valk and Jantzen [Valk 85] showed that it is decidable whether there is a legal firing sequence
on a Petri net satisfying various fairness constraints, this theorem shows that it is decidable whether
there is a legal firing sequence on a Petri net satisfying temporal logic constraints. It is also possible to
prove this theorem by showing Petri net + temporal logic constraints to be equivalent to Petri net +
some fairness constraints.

When L(N, f, h) is nonempty, it is very important to find a concrete sequence accepted by L(N, f, h)
for the sake of program synthesis.

Theorem 2 (Construction of Legal Firing Sequence) If L(N, f, h) is nonempty, we can construct a
deterministic legal firing sequence 6,0% on N such that h(6o0%) € L(N, f,h).

Proof sketch. First, we redefine a weight function A as A(e) = A(transition of edge e) for edges of G.
If L(N, f,h) is nonempty, there exists a cycle ¢ = eges...e on G where ey = (20, 1), ..., e = (T—1,T0),
A(c) > 0, and z¢ is a designated node from Theorem 1. Remark that ¢ might not be legal. We will
show cycle ¢ can be constructed, and we can also construct a path p from the initial node z;,;; to the
designated node xg, whose transition sequence is legal and a marking in zo (let it m.,) is so large that ¢
becomes legal.

e Construction of cycle ¢
In the same way as the proof of Theorem 1, we can compute oy, s, ...,an > 0, such that A(c) =
Aley) + a1 A(e]) +azA(ey) +...anA(e],) > 0 where e} may not be adjacent to e, ;. Each a; means
how many times the edge e} appears in ¢. Therefore, the construction of ¢ can be reduced to the
construction of Euler cycle ¢ such that each edge e appears «; times in c.

e Construction of path p

We can form the path into p = poci'p1cy?...c2"p, where ¢; means a cycle in which some place’s
marking changes into w on G (we call it i-th w place). We would like to compute oy, @z, ...,ap, > 0
such that A(poc]' picy?...chmpn) > my,. Here, the problem is not so easy because p must be legal.
The following recurrent formulas must be solved:

(0) Mo =mg+ A(po), and a path py from marking mg must be legal,

(i) M;= M,;_1 + a;A(c;) + A(ps), and a path ¢j“p; from marking M,_; must be legal,

(n) M, > mg,.

We point out that these formulas can be solved backward from the n-th formula, that is, we can

compute «; backward independently from ay,as, ...,a;_1, because we can ignore j-th w place for
all j <.

After all, a deterministic legal transition sequence 6,0 such that h(606%) € L(N, f,h) is directly
produced from pc®.

2 Concurrent Program Verification
Consider concurrent program verification focusing on behavioral properties. After retracting the basic

behavioral structures represented by Petri nets from concurrent programs, it is possible to analyze the
behavioral properties of programs. This verification means to check whether or not a given Petri net



Chapter 4: Specification, Verification, and Synthesis 45

satisfies a given specification. Temporal logic is adopted as a specification language where atomic propo-
sitions correspond to transition firing as described in the previous chapter. Only the infinite Petri net
language L, (N, h) is considered there, which does not care for finite behaviors of N including deadlocks.
Therefore, Petri net N is extended to Petri net NV, which is made deadlock-free by adding a visible
dummy transition nop (no operation) in Fig. 15.

nop

Figure 15. nop (no operation)

It will be shown how to verify whether a given concurrent program (N, ) meets a given specification
(f). We assume that all transition are visible and atomic propositions of f are identified with transitions.
In this case, a labeling function to map transition to atomic propositions is an identity function e. To
verify that the program meets the specifications, it suffices to check L¢(f) D L., (N,,e), which means
each of all possible computations in Petri net N, is a model of PLTL formula f.

Definition 14 A deadlock-free Petri net N, satisfies the temporal logic specification f with the single
event condition iff Li(f) D L, (N,,e). Deciding whether N,, satisfies f is called a verification problem.

Theorem 3 The verification problem is decidable.
Proof. From Chapter 2 Lemma 2, the verification problem (L.(f) D L. (N.,e)) can be reduced to the

emptiness problem (L¢(=f) N L, (N,,e) = L(N,,~f,e) = 0). Therefore, it is decidable from Theorem.
It will now be made clear what the inputs and outputs of this verification are:

INPUT: Concurrent program structure (represented by Petri net N,,).
INPUT: Specification (represented by temporal logic f),
OUTPUT: Yes / No,

where ”yes” means that the program satisfies the specifications, and "no” means it does not.

It is significant to analyze what is possible and what is not in this verification method as follows:

What is possible to verify

e Mutual exclusion

ex. Intervals [t1,t2] and [t3,t4] between two transitions do not overlap each other:

D(tl D) O("(tg \/tl) U t2)) N D(tg D O(_'(tl \/tg) U t4))

Note: Though we cannot directly specify tokens of places, in the case of Fig. 16(a) an interval [t1, 2]
can specify that place p has a token in the interval.

e Partial ordering among transition firing

ex. Transitions t; and ¢, fire in turn:

O(t1 D O(=t1 U t2)) AD(t2 D O(=ta U t1))

e Firing prohibition

ex. Once t; fires, to will never fire.

O(t; > O0—ty)



Chapter 4: Specification, Verification, and Synthesis 46

e Deadlock inevitability
ex. Transition ¢ will eventually fall into deadlock.
SOt

e Boundedness and safeness property It can be verified by introducing dummy transitions. ex. {O-d
to verify whether place p is bounded in Petri net with a dummy transition d (Fig. 16(b))

\ p /
tl p 2
d
(a) Existence of a token (b) Verification of boundedness

Figure 16. What is Possible to Verify

What is impossible to verify

e Number of tokens

It is impossible to generally verify the number of tokens in places, which could be used to specify
reachability property.

e Possibility of deadlock (liveness property)

This arises from the introduction of nop.

Consideration for complexity gives a clear interpretation to these possibility and impossibility of
verification. When PLTL formula is small enough compared with Petri net (in fact all example formulas
mentioned above are small), complexity of our verification method has the almost same order as the
coverability problem. Therefore, our method cannot verify in itself the reachability problem and liveness
property, of which complexity is far larger than the coverability problem.

Verification Example As a simple example, verifying a concurrent program, let’s consider a mutual
exclusion problem containing unbounded buffers. A target Petri net N, is illustrated in Fig. 17, where
places ps and ps are unbounded buffers (this Petri net is deadlock free itself, therefore we ignore nop
for a simple explanation). Specification f is given such that intervals [t1,t2] and [¢ts, t4] satisfy a mutual
exclusion condition, as follows:
def
f = 031 DOtz U ty)) AO(ts D Oty U ty))

Biichi sequential automaton A_; = ({t1,t2,ts,ta}, {50, 51,52, S3}, P, S0, {s3}) is shown in Fig. 18. The
extended coverability graph G can be generated from A, and N, (Fig. 19). In G, no designated node
exists. That means L(N,,—f,e) = @ from Theorem 1. We conclude N, satisfies f.

3 Concurrent Program Synthesis

It is not easy for an ordinary programmer to realize a correct synchronization in concurrent programs,
and it requires tremendous debugging efforts. This section provides a method to synthesize a concurrent
program automatically with reusable components by program tuning. The goal programs are synthesized
to satisfy the given specification by tuning up reused programs that are represented by Petri nets. We
also emphasize that our method adopts a compositional way to synthesize. It is necessary for two reasons:



Chapter 4: Specification, Verification, and Synthesis

pl

tl /.\ 8

() O
p2

t2 t4

D4O 15 O "

Figure 17. N,: Mutual Exclusion with an unbounded buffer

O t1,t2,t3,t4
CE) =D

t1,t2,t3,t4

Figure 18. A_,f

t1 100000 s0 0 t1

( 011000520 ) ( 011000500 )

2
( 011000s2 0)<L( 10000500 )
tl
01100 s0 0 2 t5 t5

1

t5

A~ ‘ : t5
( 0110 w0s00) ( 1000 »0s0 ON_t1
E 011w v0s20
2 t3 t4 : >

010w »1s00
010w w0s10 )
t5

Figure 19. G: Extended Coverability Graph



Chapter 4: Specification, Verification, and Synthesis 48

e Reusable software itself is composed compositionally in ordinary software, and
e global synthesis of a large-scale program requires huge, and therefore impractical, computing power.

The model building techniques in Theorem 2 are used in this synthesis method.

3.1 Composition of Petri Nets

2

We also introduce a composition operator ”|;” which plays an important role in the synthesis method.

Definition 15 (Composition of labeled Petri nets) For given labeled Petri nets LNy = (Ny, hy), LNy =
(N27h2), and a given label set L C ¥ where N1 = (P17T1,U)1,m01), NQ = (P2,T2,w2,m02), P1 n PQ = w,
and Ty N Ty = 0, a labeled Petri net (N,h) = LNy | LNs, which is called a composition of LN; and
LN, with L, is defined as follows.

N = (P,T,w, mgp), where

° P=P1UP2,
o T =T/UTyUT' such that
— T{ ={t € Th|hi(t) ¢ L},
= Ty = {t € Ty|hy(t) ¢ L},
= T" = {tij | lu(t;) = ha(t;) € L},
o w(p,t) =
wy (p,t) fort € T

wsy(p,t) for t € T
w1 (p, ti) + ’LUQ(p7 tj) fort = tij eT’

w(t,p) is also defined similarly,
o mo(p) = mo1(p) + mo2(p) for all p € P.

Example 4 We show an example of a composition (N1,h1) | (N2, h2) in Fig. 20. In this example,
hl(tl) = b,hg(t4) =, hl(t2) = h2(t3) = a, and L = {a}

b a a c b a C
[ ] [ ]| [s] [t4]|j\>[tl] [ s ] [wu]

(NLA1) (N2.h2) (NLh1) | [ (N2,h2)

Figure 20. Composition of Petri Nets

Lemma 4 Let LN, LN;,LN, be labeled Petri nets and L C ¥ be a set of labels. When LN = LNy |1,
LNy, L(LN)/L = L(LNy)/L N L(LNs)/L, Lo(LN)/L = L,(LN)/L N Lyu(LNs)/L, and Law(LN)/L S
Lao(LNy)/LN LA, (LN2)/L. Here, L(LN) represents L(N, h) such that LN = (N, h).

Proof. L(LN)/L = L(LN,)/Ln L(LN,)/L and L,(LN)/L = L,(LN;)/L N L,(LNy)/L are clear.
We prove La,(LN)/L O Lao(LNy)/L N Law(LN3)/L by showing a example n € La,(LN)/L and
N & Law(LN1)/L N Lau(LN2)/L (Fig.21). In LN = LNy |f¢, ¢,y LN2, a firing sequence 0 = t,t5 falls
into deadlock. Therefore, h(6) = A¥ € La,(LN)/L, but h(8) € Lan(LN1)/L N La,(LNs)/L.



Chapter 4: Specification, Verification, and Synthesis 49

LN1 LN2
al a2 | bl b2

cl c2 cl c2

Figure 21. Counter Example of LAy, (LN)/L = LA, (LN1)/LNLa,(LN2)/L

3.2 Petri Net Synthesis
Definition 16 L\""(N,h) C La,(N,h) is defined as

LfA‘ZT(N, h) o {h(F) € Z¥ UT*A¥ | 0 € F,,(N) under the visibility-fairness condition}

where the visibility-fairness condition means whenever some visible transitions are infinitely enabled, then
one of them will eventually fire. Here, L,(N,h) C L1"" (N, h)

Definition 17 A Petrinet N = (P,T,w, mg) is deadlock-free iff there is at least one enabled transition for
every reachable marking. A labeled Petri net (N, h) is visibility-starvation-free iff L’;‘ZT(N ,h) = L,(N,h),
that is, there is no infinite loop of invisible transitions (which looks like deadlock for the outside) under
the visibility-fairness condition.

Now, we will show how to synthesize a new Petri net which satisfies temporal logic specifications
and is deadlock-free and visibility-starvation-free, by tuning up the original net (i.e. adding some places,
transitions, and arcs to the original net).

Theorem 4 (Petri Net Synthesis) If cq0% € L, (N,h), a labeled Petri net (N',h') can be constructed
by adding some places, transitions, and arcs to N such that N' is deadlock-free, (N', h') is visibility-
starvation-free, and L, (N',h') = og0?.

Proof. It is easy to construct a labeled Petri net (N, e) such that L(Ng,e) = {sosi}. Then, make a
composed Petri net (N;, he) = (N,h) | (Ns,e). Here, L,(N¢, he) = Ly(N,h)N L, (Ns,e) = {s9s¥} from
Lemma 4. Finally, we can construct (N',h’) by tuning up (N, h.) according to the Valk and Jantzen’s
tuning method [Valk 85] (cf. Appendix I) such that N’ is deadlock-free, and Lkﬁr (N',h)=L,(N",I)=

w
S0Se -

Corollary 1 Let (N,h) be a labeled Petri net and f be a PLTL formula. If L(N, f,h) # 0, a labeled
Petri net (N',h) can be constructed by adding some places, transitions, and arcs to N such that N' is
deadlock free, (N', 1) is visibility-starvation-free, and LL*"(N' 1’y C L(N, f,h) C L(f).

From now on, we abbreviate fi(t) to just ¢ for simplicity. In this case, a labeling function h of d-type
forms h = e/L where L is a set of visible transitions (i.e. atomic propositions).



Chapter 4: Specification, Verification, and Synthesis 50

Example 5 (Petri Net Synthesis) A Petrinet N is given in Fig. 22(a), and h = e/{to, t1,t2} is a labeling
function of N. And 606¥ € L, (N,h) is given where 6y = to and 8. = t;t5. First, Ny is constructed
(Fig. 22(b)) such that L(Ng,e) = {600%}. Then, (N.,h) = (N,h) |x (N,e) is composed (Fig. 22(c)).
Finally, N’ is constructed as shown in Fig. 22(d). Here, LfA‘ZT(N’7h) = L, (N',h) = {60}, and N' is
tuned up to be deadlock-free while N, is not.

(@) N (b) N 6 Q

O

SN
>
OF

t2 t t0 tl <
\@/ . :
(c) Nc (AN’

A
A

t2 t1 t2 1

)OO

Figure 22. Example of Petri Net Synthesis

3.3 Concurrent Program Structure

It is assumed that a target program consists of one controller (main controller) and several agents (device
controller) which control devices locally. While the controller controls each agent sequentially, the agent is
independent from other agents and they can run concurrently with each other. This structure (hierarchical
synchronization supervisor, ref. Chapter 3) is very natural in some domains, such as robot control systems
and plant control systems. An example (Example 6) is shown in Fig. 23.

The controller and the agent i communicate with each other by a set of synchronous communication
channels C;, like CCS [Milner 89]. It is assumed that a raw controller and raw agents have already been
constructed from reusable software components up to this step. Here, the raw controller is represented
by Petri net N. = (P.,T.,w., M), and the raw agent ¢ is represent by N,, = (Pa;,Ta;, Wa;, Mayy)-
Communication channels C; between N. and N,, are defined as C; = {h;(t) € T, | t € T,,} where
hi:T,, — T.U{e} is a labeling function (called ”channel function”) to connect N,,’s transitions with
N.’s transitions. If t € T, and h;(t) = e, ¢ is a internal and invisible transition which is not connected
with T.. In case of Example 6, a controller and an agent may be represented as shown in Fig. 24, and
channel functions are defined as h;(start) = start;, h;(end) = end;, h;(over flow) = ¢ for each 1.



Chapter 4: Specification, Verification, and Synthesis

Controller

startl start?

endl end2

Agent

device . device

Figure 23. Concurrent Program Structure

startl start?

endl end2 end

Controller Agent

Figure 24. Original Controller and Agents

o1



Chapter 4: Specification, Verification, and Synthesis 52

3.4 Temporal Logic Specification

The user specifies several constraints by a PLTL formula f with a set of atomic propositions Prop C T,
so that the controller satisfies f cooperating with all agents.

Example 6
e Prop =T, = {start,, endy, starty, ends}

e f=0(starty D OQ(—starte U endy)) A O(startys D O(—start; U endsy))

The formula f above means that once Agent 1 starts, Agent 2 never starts until Agent 1 ends. Also
when Agent 2 starts, Agent I never starts until Agent 2 ends.

Here, a concurrent program synthesis means to tune up reusable components to satisfy this specifica-
tion (constraint). To start with, it is made clear what the inputs and outputs are:

INPUT: Specification f (written by PLTL)

INPUT: Reused Programs
One raw Controller and several raw Agents and Channels (represented by Petri nets N., Na,, Nayy -y Nay s
and channel functions hy, ha, ..., hy)

OUTPUT: Synthesized Programs
One Controller and several Agents and Channels (represented by Petri nets N., N/

N/
ay)’
and channel functions hf, hj, ..., h})

az’ "

., N!

ap?

The proposed program synthesis method consists of two procedures. First, we show the controller
synthesis procedure and then the agent synthesis procedure.

3.5 Controller Synthesis

This controller synthesis procedure consists of the following four steps:

Step 1: Each Petrinet N,; of agent ¢ is reduced as far as possible [Lee 85] into N, such that L., (N,,;,h1) =
Lu.) (Nt’:, ’ hl ) :

Step 2: Make a composed Petri net (N,h) = (Ne,e) |, (N, h1) | - e (Ng ,hi) . We abbrevi-

ap?
ate this composition to Sync(Ne, N7, NJ, ..., NJ , hi, ha, ..., h), since it means synchronization of
Processes with channels.

Step 3: Construct an infinite firing sequence 8 = 8p6% on N such that h/Prop(600%) € L(N, f, h/Prop)
from Theorem 2.

Step 4: Construct a deterministic Petri net N! such that L(N.,e) = {6,0/T.}.

N is a Petri net of the synthesized controller, that is a deterministic sequential program. In case
of Example 6, N/ is synthesized from a transition sequence 6 = (start;end, startaends)” which satisfies
specification f, as shown in Fig. 25.

3.6 Agent Synthesis

For each agent, we can construct a tuned agent Petri net N, = (P, T, ,w, ,m,. o) and a labeling

function A} : T, — C; from N/, and 6p0¢ such that N/ is deadlock-free, (N, h}) is visibility-starvation-
free, and L, (N, ,h;) = {0007 /C;}, using Theorem 4. Fig. 26 shows a composition (N7, h;) |c; (No,e)
where L, (Ny,e) = {(start;end;)*}, and a synthesized agent in Example 6.

Note that the synthesized controller is a deterministic sequential program while the tuned agents
can be nondeterministic concurrent programs. Here, we must assume the visibility-fairness condition for
each agent. After all, the controller N/ and the agents N can run concurrently with synchronous com-
munication by channels, of which structure is represented by Sync(N., N, ,Ni ..., N; by, hy, ... hy).
The following theory assures that this composed concurrent program satisfies a given temporal logic
specification.




Chapter 4: Specification, Verification, and Synthesis 53

Figure 25. Synthesized Controller N/

start ) £ start )
..........................  J—o
2
P

overflow

end

Composition o
Y end
J

Synthesized Agent

Figure 26. Composition (Ng ., h;) |¢; (Ng,e) and Synthesized Agents Ny



Chapter 4: Specification, Verification, and Synthesis 54

Theorem 5 If labeled Petri nets (N/,e), (N, h}),(Nia, hy), ..., (N}, , hi) are synthesized from Petri nets
N¢yNayy Nayy ooy Na,., channel functions hy, ha, ..., h, and a PLTL formula f with a set of atomic propo-
sitions Prop, according to the above synthesis method, then

e a composed labeled Petri net (N',h') = Sync(N!, N!

ai?

N; N ,hi,hj, ..., k) is deadlock free,

o N
e (N' 1) is visibility-starvation-free, and

e L,(N',h'/Prop) C L(N, f,h/Prop) C Ls(f), under the visibility-fairness condition
where (N, h) = Sync(NZ, N, , Ny, ..., Ny, by, hy, .. hy).

Proof. It is followed from our method utilizing previous theorems.

The main drawback in this synthesis is that a synthesized controller is deterministic. The controller
is serialized by a deterministic firing sequence, while agents are non-deterministic and run concurrently
with each other. However, when expanding a deterministic one to nondeterministic one that looks more
natural, it is indispensable to consider invisible transition of each agent, which requires other information
besides given communication channels. Therefore, non-deterministic controller synthesis has danger of
decreasing concurrency of a synthesized program.

4 Related Works

We compare our verification and synthesis methods with related works.

Verification: One of common goals of other works [Cherkasova 87, Howell 88, Suzuki 89] is to uniformly
specify most Petri net properties with temporal logic. Therefore its decision procedure inevitably falls
into undecidable or costs more than the reachability problem. Complexity more than the reachability
problem is out of the practical verification. Our method’s complexity is almost equal to the coverability
problem because of abandoning some verification properties, such as deadlock possibility. However, our
method still provides more special properties, such as analysis of partial ordering among transition firing
and mutual exclusion, which can not be covered by the traditional analysis. These abilities are effective
for the concurrent program verification. Our method is not all-around but can complement the traditional
analysis.

On the other hand, if we would restrict the Petri net into a bounded one, the verification becomes sim-
pler [Uchihira 90a, Katai 82]. However, an unbounded buffer is sometimes necessary to specify ordinary
concurrent programs. It might be possible to assume a large enough bounded buffer in real programs.
A bounded Petri net with a large bounded buffer usually produces a larger coverability graph than ones
of unbounded Petri nets. Recently, several efficient verification methods based on temporal logic model
checking for bounded Petri nets have been proposed. They can be classified into two types; symbolic
model checking [Hiraishi 95] and partial order method [Yoneda 93]. In particular, Yoneda et. al. pro-
posed an efficient model checking method based on partial order for one-safe time Petri nets [Yoneda 93].
It would be a future promising approach to apply techniques of symbolic model checking and partial
order method to unbounded Petri nets.

Synthesis: We think the software-reuse-based program synthesis is highly practical. Our method differs
from other synthesis methods [Manna 84, Clarke 82] that also use temporal logic specifications, in regard
to the point of utilizing software reuse. Another significant feature is to relax the automatic synthesis
for only finite-state programs [Manna 84, Clarke 82] to infinite-state programs, such as a Petri net. Our
method has the same approach as that of Valk and Jantzen [Valk 85] in point of tuning up existing
programs (reusable software) satisfying the given specifications. However, our method has the following
characteristic features:

e the specification is described with temporal logic, and

e the program synthesis method consists of two phases; controller synthesis and agent synthesis.



Chapter 4: Specification, Verification, and Synthesis 55

5 Summary

This chapter considers the fusion of unbounded Petri nets and temporal logic as a specification language
for reactive and concurrent systems. We propose a version of the fusion and prove that the emptiness
problem is decidable in this version. Then, verification and synthesis for reactive and concurrent systems
are discussed based on these results. In this chapter,

(1) we define the class combining Petri nets and temporal logic which is decidable,
(2) the decision procedure for this class is applied to concurrent program verification, and

(3) a two phase synthesis method is provided which modifies reusable components to satisfy a speci-
fication.

This research was carried out to establish verification and synthesis for unbounded Petri nets and
temporal logic. Efficient verification and synthesis for bounded Petri nets (i.e., transition systems) and
temporal logic will be described in the subsequent chapters.

Appendix I
Results of Valk and Jantzen’s method are briefly summarized. See the original paper [Valk 85] for proofs.
Definition 18

e N = (P, T,w,mg) is a Petri net.

e A marking m is T’-continual for some subset T’ of T, iff there is an infinite legal firing sequence
from m which contains all t € T" infinitely often.

o CONTINUAL(T') < {m|m is T-continual}.

e N is a set of non negative integers. Let K C N*, then the residue set of K, written res(K), is a
smallest subset of K which satisfies res(K) + N* = K + N*,

Theorem 6

e res(CONTINUAL(T")) is finite and can be effectively constructed.

e Using res(CONTINUAL(T')), we can construct a new Petri net N’ whose all reachable markings
are lying in CONTINUAL(T') with the same number of places of N, but possibly additional
transitions and arcs.



Chapter 5

Compositional Verification Using
Modal Logic

This chapter proposes PQL (Process Query Language) and the compositional verification method of
reactive and concurrent systems using PQL. Our compositional approach is effective to ease the state
explosion problem in the verification.

1 Background and Motivation

Temporal logic model-checking method [Clarke 86] is very useful for verification of reactive and concurrent
systems. However, a major drawback to using this method is that as the scale of the programs increase,
the computation costs for verification increase exponentially. An effective solution for this problem is
compositional verification.

This chapter focuses on the compositional verification for finite state transition systems instead of
Petri nets because of the following reasons.

e In general a compositional verification for infinite systems [Winskel 90] is restricted and difficult to
apply to practical systems.

e Many practical reactive and concurrent systems can be modeled as finite state transition systems
(with approximation).

Compositional verification for transition systems is formalized as process reduction in which the bisim-
ulation equivalence of concurrent programs is used to extract from each system component (subprocess)
only these abstract information necessary to verify each given query, thereby avoiding an explosion in
cost.

In this chapter, PQL (Process Query Language) is proposed as an improved method in the solution
of this problem. PQL is based on modal logic which is the union of temporal logic and process logic.
Then, this chapter proposed the compositional verification method by using PQL with consideration of
the divergence by internal transitions.We have applied this method to program verification of sequence
control systems.

1.1 Background

Since the framework of reactive and concurrent systems often can be expressed with transition systems,
verification methods based on temporal logic, process logic, CCS, ACP are well investigated [CAV 89,
Beaten 90]. For example we have developed an automatic verification system (PTSV: Practical Temporal
Specification and Verification tool) [Uchihira 89a] which is based on model-checking of CTL (Computation
Tree Logic) [Clarke 86], and apply it to manufacturing systems.

The verification method based on model-checking can be summarized as follows. First, a flat and
global finite-sate graph is generated, which expresses all possible behaviors of the target program. For
example, when the target program consists of several processes, a flat and global finite-sate graph is
generated by process composition based on interleaving semantics. Next, verification of whether given

56



Chapter 5: Compositional Verification 57

temporal logic queries are satisfied is performed by tracing all the states of the graph. However, this
verification method has the following problems.

(1) State explosion problem
A generated global finite-state graph often becomes excessively large.

(2) Lack of expression ability about “actions”
CTL can express only queries about “states” and “state attributes”.

One of the promising approaches for the problem (1) is compositional verification [Mishra 85, Clarke 89,
Stirling 89b]. Compositional verification is defined as follows in this thesis 9 .

Compositional verification is a method for generating a local and minimum finite-state graph
compositionally for each verification query and verifying it, instead of generating and verifying
a global and huge graph.

Here, a local and minimum finite-state graph means a graph in which only necessary information to
verify a given query is kept and the rest is reduced. Because this compositional verification method does
not generate the global graph directly, the state explosion problem can be effectively eased.

Based on this idea, Mishra and Clarke applied the hierarchical verification method by CTL for ver-
ifying asynchronous circuits [Mishra 85]. However, this method has some limits for expressive power of
verification queries and is not a sophisticated and general method. Also, Clarke, Long and MacMillan
proposed a compositional verification method which introduced the compositional framework of CCS
[Milner 89] (i.e., process composition and observation equivalence) for CTL model-checking. While CTL
is a logic concerning “states” (state attributes), CCS is a calculus concerning “actions”. Therefore, the
point is how to handle “states” and “actions” in the same frame. This is also the solution for the problem
(2). However, Clarke’s verification method [Clarke 89] could not express “states” and “actions” freely
mixed with each other. On the other hand, researches have been undertaken to characterize CCS expres-
sions by process logic (ex. Hennessy-Milner Logic : HML) [Hennessy 85a, Hennessy 85b]. Furthermore,
new logics, which combine temporal logic and process logic, have been investigated. These logics can
express “states” and “actions” freely mixed with each other, and yet cope with compositional framework.
They, therefore, are promising as query language for compositional verification. An example is Stirling’s
General Temporal Logic (GTL) [Stirling 89a, Stirling 89b]. GTL is a general logic which combines tempo-
ral logics (linear-time temporal logic and branching-time temporal logic) and process logic (HML). And
further, Stirling and Walker proposed the compositional verification method by GTL [Stirling 89b].

1.2 Motivation

The point of compositional verification is to reduce (localize, minimize) the global state graph, leav-
ing only essential information for each verification query. In the compositional verification by GTL,
this information is formalized by observation equivalence [Milner 89] . Whenever the reduced graph is
observation-equivalent to the original graph, it is assured that the reduction has no influence on the
verification results, that is, it preserves the same results for every verification query.

However, the compositional verification method based on observation equivalence has one problem.
In observation equivalence, any divergence is ignored. The divergence [Milner 81, Walker 90] means an
infinite cycle (loop) of internal and unobservable transitions (i.e., T-actions) which cannot be observed
and then looks like deadlock for an observer (we call it an external deadlock). This occurs due to the
fact that a certain fairness is assumed for internal and unobservable transitions (i.e., if there is at least
one observable and executable action, there will not be an external deadlock by divergence). In the case
of compositional verification, to make the transition observable or not will be decided by whether it is
necessary for a given verification query or not. Therefore, if a difference in fairness exists depending upon
the given verification query, a problem arises.

For instance, in the transition system T;, shown in Fig. 27, the answer will be NO for a query: “Does
the system eventually reach the end state for all paths” because there exists a path with an infinite loop of
b which never reaches the end state. On the other hand, the answer will be Y ES if b is unobservable. The
reason is that T}, is recognized to be equivalent to T}, of Fig. 27 according to observation equivalence if b is
unobservable (i.e., 7-action). However, it is a problem from the standpoint of compositional verification.

9 The formal definition and survey of compositional verification are described in detail in Section 6.1.



Chapter 5: Compositional Verification 58

end end end

Ta Th Tc

Figure 27. Transition systems with/without divergence

The existence of a path, which has an infinite loop of b and never reaches the end state, must be recognized
regardless of observability of the action b.

In order to introduce expressive power of recognizing divergence into logics, Intuitionistic HML
(THML) [Stirling 87] has been proposed. Furthermore, Stirling suggested (but not with any concrete
proposal) the possibility of adding the IHML feature to GTL and expanding it (GTL + IHML). But even
if this “GTL + IHML” can be realized, there still remains the same problem. That is, the equivalence
theory (equivalence based on partial bisimulation preorder) [Stirling 87], which ITHML is based on, may
sometimes produce recognition (abstraction from the observer’s point of view) which does not agree with
intuition, depending upon which action will be made observable.

In the case of T, and T. in Fig. 27, if b is not observable, divergence occurs in both transition systems,
and T, and T. are equivalent from the equivalence theory of IHML. This equivalence is derived from
the observation that both transition systems cannot take action c¢ after action a in some path. However,
a problem arises for the query: “Is there a state in which the system cannot take action ¢ in all paths
after action a.” Intuitively, the answer should be NO for T, and Y ES for T,, regardless of whether b
is observable or not. It is natural to be able to differentiate between these two cases. The equivalence
theory of IHML, which considers both T, and 7T, to be equivalent, will cause a loss of the necessary
information to verify the query. In other words, the compositional verification of GTL + IHML reduces
T. into T, according to its equivalence theory, thereby creating stronger abstraction than necessary.

From these points of argument, it can be concluded that the usual equivalence theories (observation
equivalence, equivalence by partial bisimulation preorder) which the usual modal logics (HML, GTL,
GTL + THML, etc.) based on, is aimed at equivalence relation from the viewpoint of the external
processes as observers and therefore, it is not appropriate to apply directly these equivalence relations
for compositional verification because of creating stronger abstraction than necessary. In compositional
verification, “not observed” simply means “not paid attention” instead of “not synchronized”. Therefore,
even if a certain action is made unobservable, its existence must be preserved.

1.3 Overview of Main Results

In this chapter, we propose Process Query Language (PQL) for compositional verification in order to
solve the problem described above. PQL can clearly express and easily handle the cycles of unobservable
actions, taking a different approach from GTL 4+ HML. The unique feature of PQL is the followings.

e PQL is be able to uniformly express both temporal logic properties and the existence of cycles of
unobservable actions using the maximum /minimum fixed point operators.

e Constraints about state attributes and actions can be expressed in the uniformed and flexible way.
e PQL provides several useful macros including the regular expression.

e PQL model-checking is decidable and has the efficient decision procedure. Furthermore, PQL has a
new process equivalence relation (r7w-bisimulation equivalence) which is used for the compositional
verification. That is, if two transition systems (original one and reduced one) are equivalent, it is
assured that every PQL query has the same answer.



Chapter 5: Compositional Verification 59

1.4 Organization of the Chapter

The remainder of this chapter is organized as follows. Section 2 defines concurrent programs using
transition systems and their equivalence relation (extended bisimulation equivalence). In Section 3, PQL
is defined and it is shown that the discrimination ability of PQL is the same as the extended bisimulation
equivalence. This means that even if the given concurrent program is reduced to a smaller equivalent
program, verification results of PQL will be preserved. A compositional verification method using the
result obtained in Section 3 is proposed and its effectiveness is demonstrated by means of experimental
results in Section 4. In Section 5, we consider how to apply this method to actual reactive and concurrent
systems. We introduce an application to chemical plant control systems by example. Section 6 mentions
related works in which other compositional verification methods and a partial order method are surveyed
and compared with our method.

2 Representation of Concurrent Programs

Concurrent programs are constructed from some number of processes. The program and each process
are as transition systems T' = (S, P, A, m, d, sg) [Arnold 92], which have been defined in Chapter 2.

Here, we assume that S, P, and A are finite sets for the automatic verification. In this case, the finite
branching condition holds.

2.1 Equivalence of Transition Systems for Compositional Verification

We introduce a new bisimulation equivalence of transition systems (wrw-bisimulation equivalence), which
is an extension of Milner’s weak bisimulation equivalence [Park 81, Milner 89] in order to recognize 7-
cycles. First, (weak) bisimulation used in CCS is defined for (S, Act, d).

Definition 19 (bisimulation)
For (S, Act,d), a binary relation R C S x S is (weak) bisimulation if V(s,t) € R implies

o Va € ActNs' € S.(if s % s' then ' € S.t LA s'Rt")
o Va € ActNt' € S.(if t 5 t' then Is' € S.s L g A s'Rt")

The 7-cycles cannot be recognized in bisimulation. Therefore, we introduce Tw-bisimulation which
can do.

Definition 20 (rw-divergence)

For (S, Act,0) and s € S,
st “oyn>03s € S.s(5)ms!

Definition 21 (rw-bisimulation)
For (S, Act,0), a binary relation R C S x S is Tw-bisimulation if V(s,t) € R implies

o Va € ActNs' € S.(if s % s' then ' € S.t LA s'Rt")
o Ya € ActNt' € S.(if t 5 t' then Is' € S.s L g A s'Rt")

e st iff t1

Furthermore, wrw-bisimulation is introduced for (S, Act,d, P,w) where state attributes P and a
boolean function 7 is added to (S, Act, d) in order to take the equivalence of state attributes into consid-
eration.

Definition 22 (n7w-bisimulation)

For (S, Act,0), a binary relation R C S x S is mTw-bisimulation if V(s,t) € R implies
o 7(s) =m(t)

o Va € ActNs' € S.(if s % s' then ' € S.t LA s'Rt")



Chapter 5: Compositional Verification 60

o Vac ActVt' € S.(if t S t' then Is' € S.s L5 A s'Rt")
e st iff t1

Definition 23 (~,Xrw, Xrrw)
In (S, Act,d, P, ), for s1,s2 € S, if there exists bisimulation such that (si,s2) € R, then we denote
81 A S3. 81 Réry So and S Rprw S2 are defined in the same manner.

Theorem 7 (Relation between x, ~,.,, Xrrw)
For every si,s2 € S in (S, Act,d, P,7), if $1 Rnrw S2, then $1 &,y So, and if $1 &, S, then s1 & ss.
Proof. This is clear from the definition. O

Since s1 & s5 is called bisimulation equivalence, $1 Xrro So is to be called “mrw-equivalence”.

Definition 24 (n7w-equivalence for Transition Systems)
For T1 = (Sl,P,A,W1,51,801) and T2 = (SQ,P,A,W2,52,502) (51 n 52 = @ is assumed), T1 and T2 is
rTw-equivalence (denoted by Ty ®rry To) if So1 Rrrw So2 in (S1 U Sy, Act,d1 U by, P,y U ms)

wTw-equivalence is the extended bisimulation equivalence which can handles Tw-divergence and state
attributes, and it has higher discrimination ability than the bisimulation equivalence.

For divergence, there are several researches by Milner[Milner 81], Stirling[Stirling 87], Walker[Walker 90].

However, their equivalence (T =, T def T, C Ty ATy C T4) based on partial bisimulation preorder (C)

is weaker than Tw-equivalence. For example (shown in Fig. 27), when b is unobservable (i.e. 7 action),
T, ~ T, and T, %+, T3, where T-cycle can be discriminated. Also, as T, &, T. and T, #;, T, the
problem pointed out in section 1 is solved.

Figure 28 shows the diagram of proper inclusions among several well-known equivalence relations and
Tw-bisimulation equivalence. The arrow (—) means proper inclusion. For example, “7w-bisimulation
equivalence — bisimulation equivalence” means “for every 17,715 if T} ~,, 15 then T} ~ T5”. The detail
definitions of equivalence relations referred in this figure are shown in Appendix II.

Partial
Bisimulation Eq.
by Local Divergence

~p

Partial
Failure Eq. Bisimulation Eq.
by Global Divergence
il ~9
P Tw-Bisimulation Eq.
%Tw

Bisimulation Eq.

Trace Eq.

~

Figure 28. Comparison of equivalence relations



Chapter 5: Compositional Verification 61

2.2 Composition of Transition Systems

A concurrent program is composed of processes (transition systems) which run concurrently and com-
municate with each other by the handshaking-type synchronization mechanism. Here, operators (com-
position,relabeling) concerning the composition of transition systems is to be introduced. Also, it will be
proved that these operators preserve the wrw-equivalence.

Composition: T | Ty
The transition system T = T; | T», which is composed of T} = (S, P, A1,71,01,801) and Tp =
(Sa, P2, As, 72,82, S02) such that Py N P, = @, is defined based on the interleaving semantics as follows:

T = (Sl x Sy, PLUP,, Ay U Ay, 7,6, (801,802))

where 7 : 51 x So — 2P1YP2 ig defined as
71'(81,82) = 71'1(81) Uﬂ'Q(SQ) for all s; € Sy, 85 € 55,
§:81 x Sy x (A UAy U{r}) = 25%% ig defined as,

{(s1,52) | s € d1(s1,a)} ifacA Aad A,
{(s1,85) | 85 € d2(s2,a)} ifag Ay Na € Ay
0((s1,82),a) =< {(s1,85) | s| € 01(s1,a),sh € da(s2,a)} if a € Ay Aa € Ay
{(s1,55) [ (s1 € 01(s1,7), 85 = s2)V
(sh € 62(s2,7),81 =s1)} ifa=7

Intuitively, Ty | T» means a concurrent program in which 77 and T run concurrently and take
synchronous actions with the same labels, while T; | T is formally defined as the above transition system
T. In other words, T} | T is equivalent to T based on the interleaving semantics.

relabeling: T[f]

For T = (S,P, A, 7, 6,s0) and a relabeling function f = (fa, fp)suchthatfa : AU {7} — 2A'V{7}
(here, fa(r) ={7}), and fp: P — P'U {true} (here, fp(p) = true means it makes the state attribute p
unobservable), the relabel-led transition system T’ = T'[f] is defined as follows:

T/ = (Sv PlaAlaﬂJa(s’aSO)

where §' : S x (A" U {r}) — 27 is defined as §'(s,a’) = {s' | s' € 6(s,a),a’ € fa(a)}, and
7' § — 2P'Ultruel g defined as 7'(s) = fp(w(s)).

Intuitively, fa(a) = {a'} and fp(p) = p' means simply relabeling a to a' and p to p', respectively.
fa(a) = {a1, a2} means relabeling the original a to a; and its replica to as after adding one more same
transition with the label a.

Now, the actions and state attributes of the transition system T can be changed by the relabeling
function f. This relabeling function is used to avoid overlapping of names of actions and state attributes
in the case that the program consists of several same processes (i.e. T' = T[fi] | T[f2]). Also, the
relabeling function is used to make actions and state attributes of 7" unobservable (i.e. fa(a) = {7},

fr(p) = true).
For convenience, this relabeling function f4 can be denoted as follows:

[{llllv llkl}/llv sy {lfnlv l;zkn}/ln]
This denotes a function fa such that fa(l;) = {l};,..I};, } for all i € {1,...,n}. This applies to fp, too.

Theorem 8 (Preservation of nrw-equivalence)

If Ty Rrrw Th2, To1 Rrrw Toz, then Tiy | Tor Rrrw Thz | To2, Tii[f] Rarw Ti2[f]

Proof: This is obvious for relabeling. As for composition, as mentioned in Proposition 7.2 of [Milner 89,
it is easily shown that the following relation R is wTw-bisimulation:

R = {((s11,521), (512, 822)) | 811 Rrrw S12,521 Rrrw S22, 511 € S11,512 € Si2, 521 € Sa1, 522 € S }0



Chapter 5: Compositional Verification 62

3 Process Query Language

Process Query Language (PQL) is introduced which is used to describe queries in the compositional
verification for transition systems.
The unique features of PQL is:

e Constraints about state attributes and actions can be expressed in the uniformed flexible way.

e Divergence by 7-cycles can be explicitly expressed using the maximum /minimum fixed point oper-
ators.

e Strong expression ability including the regular expression.

First, a modal logic SPQL (Strong Process Query Logic) is defined, where 7 actions are observable,
and then PQL is defined as a macro-language of SPQL where 7 actions are unobservable.

3.1 SPQL (Strong Process Query Logic)

SPQL is a modal logic which unifies temporal logic and process logic with fixed point operators.

Definition 25 (SPQL formula)

[Syntax]
P : a set of state attributes
A : a set of actions
SPQL formulas are recursively defined as follows. Here, a free state variable is a state logical variable
which is not bound by any fixed point operator (u-operator).

State Formula e A state logical variable Z is a state formula.
e p € P and true are state formulas.
e If fi and f> are state formulas, then fi; A fy and —f; are state formulas.

o If f is a state formula, and Z is a free state logical variable appearing in f, and negation
nesting of Z in f is even, then uZ.f is a state formula.

e If g is a path formula, dg is a state formula.

Path Formula e a € A is a path formula.
e If g1 and g» are path formulas, then g, N g and =g, are path formulas.
e If f is a state formula, then X f and T f are path formula.

SPQL Formula e If a state formula f include no free state logical variables, then f is a SPQL
formula.

[Semantics]
A state satisfying an SPQL formula f is called a model of f. V[f], a set of models of SPQL formula
f for a transition system T = (S, P, A, 7,6, so), will be defined. Here, we assume the following notations.

f : a state formula.

g : a path formula.
e SF': a set of state formulas.

e PF : a set of path formulas.

VI[f] C S: a set of states satisfying f.

R[g] C S x S : a set of paths, whose length is 1 (i.e., edges), satistying g.

(AZ.f1)f2 : a state formula in which a free state logical variable Z in fi is replaced with fs.

[S']7! : a virtual state formula f such that V[f] = S’ (for example, [0]~' = false, [S]™' = true).



Chapter 5: Compositional Verification 63

V : SF — 25 for a state formula f, which includes no free state logical variables, is defined as follows:

VIpl ={s € S|pe€ n(s)}

V[3gl ={s€ S|3(s,s") € R[g])}
V[-fl=5-V[f]

VIfi A f2] = VIAINV]f2]

VIuZ.fl=N{s"' € S|VIAZ.NH[S'T '] €5}

R : PF — 25%5 js defined as follows:
R[a] = {(s,s")|s = s’}
R[~g] = (S x S) — R[g]
R[g1 A g2] = R[g:] N R[g-]
R[Xf] =
{(s,8")Fa.(s B ' Ana#TAs €V}
R[Tf] =
{(s,8")Fa.(s B ' ha=1As € V[f])}

Also, the following convenient constants and operators are introduced.

def
e false = —true

def

e fiVfe = a(=fi A=fa)

o vZ.f Y —uzZ' ~(\Z.f)(~2")

The intuitive meaning of each operator is shown as follows.

e A(AND),V(OR),—~(NOT).

e X f: f will be true immediately after any action except 7 occurs.
e Tf: f will be true immediately after a 7 action occurs.

e dg: g is true on some path.

e uZ.f : uis the minimum fixed point operator.

uZ.f : expresses the minimum fixed point where a free state logical variable Z in f is recursively
bound with f itself.

For instance, uZ.(f V 3X Z) means “on some paths, f will be eventually satisfied”.

e vZ.f :vis the maximum fixed point operator.

For instance, vZ.(f V 3XZ) means “on some paths, f will be eventually satisfied, or there
exists an infinite path (it cannot be decided by a finite path)”.

The important properties of the minimum and maximum fixed point operators of SPQL are stated

in the following lemmas. Here, it is defined that for A\z.y, (\z.y)'z o (Ar.y)z and (A\z.y)k+ttz o

A\z.y)Ary)rz (k> 1).
Lemma 5 (Monotonicity)

SiCSy = VIAZAISIT ' c VIAZ.HLS2] ']

Proof:
As the number of the negation nesting on Z in f is even, the monotonic property is clear by the definition
of SPQL. O



Chapter 5: Compositional Verification 64

Lemma 6 (Properties of minimum/maximum fixed point operators)

(1)

VInZ.f] klgn;O(AS’-Vﬂ(AZ-f)[[5’]]’1]])’“0
Jim. VIAZ.f)k false]

(AS" VINZ.H[ST DS

VivZz.f] =

lim
k— oo

= lem VIAZ.f)*true]

(2) s€V[uZ.f] < FkVYh> ks V[(A\Z.f)" false]

(3) If S is finite, for any f including u operators, there exists a formula f* of finite length f* including
no p operators such that V[f] = V[f*].
Proof:

(1) Let S* = AS".V[AZ.H[S'T D0 = V[(\Z.f)* false] and S¥ = limg_ oo S*. According to the
monotonicity,
vS' c S.(VIAZ.NH[S'T']cS = svcS).
Also, it is clear that
VIAZNHIS“T ' c s,

therefore,
VIuzZfl=([{s' €S| VIMZ.NIST 1S 8} = 5.

Same for V[vZ.f].
(2) Since p c St c S%---C S¥,
SESY = FkVh>kse S < IIkVh>ksc V[A\Z.f)" false].

(3) When S is finite, from (2)
3k.(V[uZ.f] = VI(NZ.f)* false]).

Therefore, there exists a formula f', in which the most outer p-type subformula uZ.fsu, of f is
substituted with (\Z.fsu)* false, such that V[ f] = V[f']. By repeating this substitution operation
until there is not any more u-type subformula, we can construct a formula f* including no u
operators such that V[f] = V[f*].

a

Definition 26 (Model)

If s € S and s € V[f], s is called a model of an SPQL formula f, and is denoted as s |= f. Similarly, if
so € V[f] for a transition system T = (S, P, A, , 6, s0), T is a model of an SPQL formula f, and denoted
asT = f.

Theorem 9 (Decidability of SPQL model checking)

For any transition system T = (S, P, A, 7,9, s9) and any SPQL formula f, if S is finite, there exists an
algorithm which automatically decides whether T = f.

Proof:

It is enough to show the algorithm which computes V[uZ.f] and V[vZ.f]. From lemma 6(1),

WZ.f] = lim AS'VIOAZ.HIST]*0.

lim
k—o0
Therefore, if S is finite, it is decidable since (AS'.V[(AZ.f)[S']*])*® converges in a finite number k.
Same for V[vZ.f]. O

The efficient model checking algorithm for SPQL can be implemented by extending those for CTL
[Clarke 86].



Chapter 5: Compositional Verification 65

3.2 PQL (Process Query Language)

PQL is defined based on SPQL. In SPQL, the 7 action is assumed to be observable and it has to be
explicitly expressed in an SPQL formula like T'f. PQL is a language in which the 7 action is unobservable,
and therefore it is not necessary to express the 7 action explicitly in the formulas.

Definition 27 (PQL formula)
[Syntax]

P : a set of state attributes.
A : a set of actions.

A state logical variable Z is a state formula.

e p € P and true are state formulas.

If f1 and f> are state formulas, then fi A fo and —f; are state formulas.

If f is a state formula anda € A, K a>T f,<a>" f,<.>T <. > f, <>t f,<>" f
are state formulas.

If f is a state formula, and Z is a free state logical variable appearing in f, and negation nesting of
Z in f is even, then uZ.f is a state formula.

e If a state formula f include no free state logical variables, then f is a PQL formula.

The set of entire PQL formulas is denoted as Lpgr..
[Semantics]

The PQL formula can be translated into an equivalent SPQL formula with the following rules. There-
fore the semantics of a PQL formula is given as one of the translated SPQL formula.

e LLa> f&
,uZl(EI((a A X(,U/Zg(f \Y E'TZQ))) V TZl))

e La>T f =
l/Zl.(H((a A X(’/Z2(f V E'TZQ))) V TZl))

o K. >7 f =4
wZy (X (uZs.(f v IAT Z2)) vV T Z1))

e . > fo
l/Zl(H(X(I/Z2(f \Y E'TZQ)) V TZl))

o K> feuZ(fv3aTZz)

o <> fevZ(fvaTZ)

e Other PQL formulas are also SPQL formulas.

The intuitive meaning of each operator is shown as follows.

e KL a>" f: After an action a, it is possible to become a state in which f is satisfied.

e < a>1 f: After an action a, it is possible to become a state in which f is satisfied, or there is a
divergence of the 7-cycle.

When there exists a divergence of the 7-cycle and it is impossible to become a state in which f is
satisfied after an action a, < a >~ f is interpreted as false and < a >7T f is interpreted as true. In the
latter, the formula interpreted as true because the system never reaches a state in which f is unsatisfied
when it falls into the divergence.

For other PQL formulas, < . > f means da € A. € a> f, <> f means < € > f.

PQL has a stronger expression ability than one of CTL, that is, PQL can express anything which
CTL can. PQL can express various kinds of verification queries about actions and state attributes of
concurrent, programs from the temporal point of view. However, it cannot be said that PQL’s readability
is excellent enough for practical use, so the following macro-operators are introduced for convenience.
Here, apat, apet, epat, and epet means VO, Y, 30, and 3P of CTL temporal operators, respectively.
That is, a = “V(for all)”, p =“path”, e = “3 (exists)” , and ¢t = “time”.



Chapter 5: Compositional Verification 66

def

fivfe = =(=fi A-f)
(AZ.f1)f2 (X notation is allowed to be appear explicitly in PQL formulas)

o vZ.f Y —uZ' ~(\Z.f)(=7")

o [altf T ~<a>~f

o [l f E ~<a>tf

o [T E <> f

o [T/ E m<x. >t

o [N E <>

o[ f E <>t

o apat f [0z AL 2)
(f can always be true in all paths)
def

e apet f = [[[TuZ.(f V(K .> true A[[]]T2))
(f can eventually be true in all paths)

o epat f Y < > vZ(F AL falsev < > Z))
(f can always be true in some paths)

d
e epet f < > pZ.(fv&.>" 7)
(f can eventually be true in some paths)

o external_deadlock "< [T false
(It looks deadlock from the observer, although the divergence may occur.)

e internal _divergence = < > false
(The divergence exists which cannot be observed.)

o internal_deadlock "< [N false A= < >T false
(It is complete deadlock without divergence)

We show several examples of PQL formulas. We remark that PQL can express temporal properties
equivalent to th regular expression.

Example 7 Examples of verification queries by PQL

(1) apat(epet < a >~ true)
Meaning: an action a is deadlock-free.
(2) vZy. ()] false AT false Alal) (v Z2.([[a]] " false A BT Z2 A[[]]T Z1)))
Meaning: The sequence of actions a,b, and ¢ are equivalent to th regular expression

(ab*c)*).

As one of the most important properties of PQL, it is proved that the discrimination ability of PQL
for transition systems is equal to that of wrw-equivalence. That is, the transition systems which are
wTw-equivalent have the same results for any PQL verification queries. This property is necessary for the
compositional verification.

Definition 28 (~por)

de .
T R PpQL TS Zf \V/f € LPQL~(T1 |= f iff Ty |= f)



Chapter 5: Compositional Verification 67

Theorem 10 (Relationship between PQL and wrw-equivalence)
For any transition systems T and T5,

Ty Rprw I & Ty =por T
Proof: Appendix O

Example 8 Simple verification example by PQL

For three transition systems in Figure 27, when an action b is assumed to be unobservable (i.e. tau
action), verification (model checking) results for three PQL formulas are shown in th Table 5. In this
table, YES means the transition system is a model of the PQL formula, and NO means it is not. These
results show that there exist PQL formulas which can discriminate these three transition systems. It
supports that T, %rrw Ty, Ty %rnrw Te, and Ty #rry, Te.

Table 5. Simple Example of Verification Using PQL

PQL Formula T, Ty T,
La> K> true YES YES YES
[[a]]” € ¢ >~ true NO YES NO

La>" " KLe> true NO NO YES

4 Compositional Verification

The compositional verification method for concurrent programs, based on the result of Theorem 10, is
shown here. First, the verification scope is introduced which is necessary for compositional verification,
then the verification procedure is proposed.

4.1 Verification Scope

Generally, each of verification queries often may concern only a local properties of the target systems.
Therefore, we introduce a verification scope in order to explicitly state what potion of the program is
exclusively verified.

To be more specific, the verification scope V'S of a transition system T' = (S, P, A, m, §, s9) is expressed
as V.S = (P, A"), where P’ C P and A" C A are watched state attributes and actions in the verification.
Then a verification query is expressed as a pair of a verification scope V.S and a PQL formula f, (V'S, f).
We remark that state attributes P; and actions Ay appearing in f must be included in the verification
scope VS = (A, P’') (i.e., Py C P', Ay C A"). In the verification procedure, all the state attributes and
actions which are not on the verification scope V'S are considered unobservable, and relabeled with 7 and
true. This relabeling function derived from V'S is denoted as Iy g.

Accordingly, T | (V'S, f), a macro-expression for describing verification queries easily, is defined as
T[lvs] | f. Tt is more natural for verifier to describe T = (V'S, f) in which V'S is part of the verification
query instead of T[lys] = f. For instance, for a query f =< . >~ true, there may be some observable
actions which do not appear in f explicitly, which can be expressed as observable using a verification
scope.

4.2 Verification Procedure

A basic idea of the compositional verification is to achieve the global verification as the composition of
local verifications. In this case, instead of verifying globally

T |: (Vslafl) A (VS2af2) ARTIAN (Vsnafn)a

we verify compositionally
TEANDE oA ATy fa



Chapter 5: Compositional Verification 68

Here, T; is the projection of T onto the verification scope V'S; of f;. This means that state attributes
and actions of T" which are not appeared in V' S; are interpreted as unobservable and T is reduced to T;
as much as possible such that T[lys,] ®por T; using the reduction function described later. T; is called
the projection transition system of T to V'S;. The more local the scope V'S; is, the smaller the projection
transition system T; is. These smaller projection transition systems can ease the state explosion problem
which the naive construction of T often causes.

It is shown how to construct the projection transition system as follows (Fig. 29). We only show the
case that the concurrent program T' = T} | T> consists of two processes (transition systems), 71 and Ts.
When the program consists of n processes, it can be treated as an extension of one of 2 processes (i.e.,
T = (...((Th | T2) | T5)..- | T»))- The verification query is expressed as (V'S, f).

O8O

| reduction | reduction

red(T1[11]) . red(T2[12])

composition

reduction

red(T1[I1]) | red(T2[12])

Tf

Figure 29. Construction of projection transition systems

If T is composed directly from T} and T5, the size of T is of the multiplication order of T} and T5,
which is the cause of its state explosion. The following procedure to compose the projection transition
system Ty can ease the state explosion problem using a reduction function.

Ty = red((red(Ty[lh]) | red(T5[l5])[lvs])

Here, [; and Iy are relabeling functions that make attributes and actions unobservable which do not
appear in the verification scope of f and do not related to the composition (i.e., synchronization) of T}
and T5. That is, these attributes and actions are relabeled as true and 7. Also, red is a reduction function
and 7" = red(T) is a reduced transition system such that T &.,, T’ and | T |>| T" |. The concrete
reduction function will be mentioned in the following section.
Based on Theorem 9, the model checking can be done for the projection transition system 7’ instead of
[lvg] As T[lys] ®rrw Ty, it is guaranteed that they have the same verification result (i.e., T[lyvs] ®porL
Ty ) by Theorem 10. Since this compositional verification method can control the maximum number of
states of the temporary transition systems which are created during repeating composition and reduction,
it is possible to verify large-scale concurrent programs.
The following is the input and output of an automatic verification tool using this method (Fig. 4.2) :

INPUT:

(1) Concurrent Program
(expressed in terms of a composition of transition systems, including necessary relabeling func-
tions).

(2) Verification Queries
(each query is expressed as a pair of verification scope and PQL formula)



Chapter 5: Compositional Verification 69

OUTPUT:

(1) Answers to Each Verification Queries
(YES/NO)

Concurrent Program Verification Queries
- Composition of - Scope
Transition Syatems - PQL formula

Automatic Verification Tool

( Answer (YES/NO) J

Figure 30. Input and output for the automatic verification tool

From above input information, the verification tool can perform automatically relabeling, reduction,
composition, and model checking, then output answers.

4.3 Reduction Function

Reduction means generating the smaller transition system 7" = red(T) from a given transition system T'
such that T” is mTw-equivalent to T'. Two reduction functions are introduced here.

(1) Reduction by mrw-bisimulation

Let R be the maximum 7w7w-bisimulation in 7. The transition system, where all related
(i.e., equivalent) nodes in R are reduced into one node, is called red(T). Then T’ = red(T) is
the transition system with minimum states which satisfies 7" ~;,, T. The efficient algorithm
to compute wrw-bisimulation R is acquired by modification of an algorithm for bisimulation
[Kanellakis 90].

(2) Reduction by rewriting rules

Although the reduction by wrw-bisimulation can obtain the the transition system with min-
imum states, its computation cost might swell in case when T is large. So, five heuristic rules
(shown in Fig. 4.3) that rewrite a transition system focused on the tau actions are applied to
reduce the transition system as much as possible. Since rewriting by these heuristic rules pre-
serves the mrw-equivalence, the reduced transition system 7" = red(T') satisfies T' = red(T') 1%
T' ~pro T. If compared with original reduction by wrw-bisimulation, the reduction rate may
be smaller, but it possesses the capability of speedy reduction for large scale transition systems.
Furthermore, the combination of two reduction methods is effective in which heuristic rewriting
rules are applied first before reduction by w7w-bisimulation.

4.4 Experiments
4.4.1 The Jobshop

Using the simple example presented in “Communication and Concurrency” by Robin Milner [Milner 89],
we confirm effectiveness of the compositional verification. The target program, jobshop, which we want
to verify, is given as the following composition of four process (jobber x 2, hammer, mallet).

jobshop = (((obber[lj1] | hammer[ly]) | mallet[l,]) | jobber(l;2])[;s]

The transition systems of these processes are shown in Fig. 32, and labeling functions are defined as
follows.



Chapter 5: Compositional Verification

\ /

\ /
L8 QD

7 (sl)=x (s2)

IO 6 )
al.. an /l.. an
ORI oM
\/\ "E4> \/
N~
NN N
oSO GNE 0

/N

n(s0)=n(sl)=n(s2)=...=xn(sn)

Figure 31. Heuristic reduction rules

\
()

a

70



Chapter 5: Compositional Verification 71

e lj1 = ([r/easy, T/hard, T [normal,T/do,inl/in,outl/out,
gethl/geth, puthl/puth, getm1/getm, putm1/putm],[]).

o Iy = ([r/easy, T /hard, T /normal, T/do,in2/in, out2/out,
geth2/geth, puth2/puth, getm?2/getm, putm?2/putm], [ ]).

o [, = ([r/error,{gethl, geth2}/geth, {puthl, puth2}/puth],[hof f/of f]).
o [, = ([r/error,{getm1, getm2}/getm, {putml, putm?2}/putm], [mof f/of f]).

o l;s = ([t/gethl, T/geth2, T [puthl, T /puth2,T/getm]l,
7/getm?2, 7 /putm1, T /putm?2,in/inl,in/in2, out /outl, out/out2],[]).

4 N
jobber

Y
mallet

Y
hammer

out

Figure 32. Example: The Jobshop

The following verification queries are given to the target program.
(1) Can the deadlock occur? (([],[]), epet external_deadlock)
(2) Is there any internal divergence which cannot be observed? (([],[]), epet internal divergence)

(3) Is there a pattern of the action sequence “in,in, out, out”?
(([in, out],[ ]), € in >~ <K in >~ <K out >~ K out >~ true)

(4) Even if mallet is not available, if hammer is available, deadlock will never occur. Is it true?
(([ 1, [m-of f, h-of 1), apat((m-of f A= <K >~ h_of f) D —external_deadlock))

How the verification system works for above queries is shown in the following two steps.
(Stepl) Composition and Reduction: The projection transition system is composed for each query
in which unrelated actions and state attributes for the query are reduced as much as possible. For
instance, for query (3), the projection transition system (jobshopy,) is composed in the following way.

We remark that this composition procedure is automatically made of the original composition structure
of jobshop and the verification scope.

jobshops, = red(red((red((red((red(jobber[l;1]) | red(hammer[ly]))[l1n])
| red(mallet[ly:]))[j1nm]) | red(jobber(ljz]))[jinm 2] s 1),

where

o [y = ([r/error,{gethl, geth2}/geth, {puthl, puth2}/puth], [true/of f]).



Chapter 5: Compositional Verification 72

Ly = ([T /error, {getm1, getm2} / getm, {putm1, putm?2} /putm], [true/of f]).

Ljin = [7/gethl, T /puthl]

Lithm = [T/getm], T/putm]1]

® Liihmse = [T/geth2, T /puth2, T /getm2, T /putm2]

lisr = [in/inl,in/in2, out /outl, out /out2]
e [;; and lj> are not changed.

Table 6 shows the final state numbers of jobshop (original one) and jobshopy, (reduced one), and
maximum numbers of states in two cases which are temporally created during composition and reduction
procedure. The two previously mentioned reduction functions are used here. This table shows that our
reduction method could reduce the final size of states to one-tenth of the original one.

Table 6. Effect of Reduction (The Jobshop)

Transition System Final Size  Mazimum Temporary Size
jobshop (original) 164 164
jobshopy, (reduction function (1)) 17 72
jobshopy, (reduction function (2)) 90 110

(Step2) Verification: For each query f and its projection transition system jobshopy, the decision
(YES/NO) on jobshops |= f is made. The results of these decisions are shown in Table 7.

Table 7. Result of Verification (The Jobshop)

Verification Query Result

1) YES
(2) YES
(3) YES
(4) YES

4.4.2 The Manufacturing Machine Control Software

Our compositional verification method was applied to a middle-scale manufacturing machine control
software (Fig. 33). This machine consists of 5 arms, 4 chambers, and other equipment. An etching
chamber, a transfer chamber, an electrode, a pusher, and 2 inner arms constitute an etching unit. Two
etching units are identical. The outer arm repeatedly transports material wafers from a loading cassette
to one of two pushers in front of chambers (vacant one) via a wafer liner and from the pusher to an
unloading cassette. The wafer liner puts a wafer in order. One inner arm transports material wafers from
a pusher to an electrode in an etching chamber, and the other inner arm does in the opposite directory,
that is, from an electrode to a pusher. In etching chamber, materials should be etched in a vacuum.
The two gates are controlled to keep the etching chamber in a vacuum. Since these 5 arms can move
concurrently, the control software becomes considerably complicated.

This machine control software is controlled by a concurrent (multi-task) program which consists of
16 element processes (tasks). Each process is a local controller of a corresponding controlled object (i.e.,
arm, chamber, electrode, etc.). This control software is modeled by a set of communicating transition
systems shown in Fig. 34 where transition systems are represented by safe Petri nets and synchronization
between transitions is represented by a dotted line. Table 8 shows the sizes of element processes. The state
numbers of each element process may seem to be small. It attributes to the fact that only synchronization
parts of systems are modeled by transition systems.

The following verification queries are given for the software.



Chapter 5: Compositional Verification

etching_chamberl etching_chamber2
electrodel O O - GIECHOE2
inner_gatel inner_gate2
transfer_ transfer_
Cha_mberl armll armi2 arm21l  arm22, chambierz
outer_gatel outer_gate2

pusherl O O pusher2

outer_arm
loading_cassette wafer_liner unloading_cassette

Figure 33. Manufacturing Machine

Table 8. Machine Control Software

Element Process x The number of it  State Number of Transition System

pl) Outer Arm x 1

p2) Wafer Liner x 1

p3) Loading Cassette x 1

p4) Electrode x 2

p5) Unloading Cassette x 1

p6) Setting Arm (arm;;) X 2
p7) Extracting Arm (arm;2) X 2
p8) Transfer Chamber x 2
p9) Etching Chamber x 2
pl0)Pusher x 2

W N UtWUtwoo

(
(
(
(
(
(
(
(
(
(




Chapter 5: Compositional Verification

load_cassette

unload_cassette ( A
N

reset_wafer
reset_wafer

-

wafer_liner

- - {roset wafer]

adjust_wafer

outer_arm

pusherl

H
.
Y 4 : H :
R I =y = = g i i ey =3 =3 eset
aler aler aler ater ater g afer afer : ater
H H

armll i arml2
"G

uter_gate_open | = =

arm22

release_ | [ner_
water jate_close

5

uter_
h jate_close

gate_close |=

Q8.

release_
wafer

uter_

e N T oner_
wafer ate_close
ta‘e,mose

catch_
wafer -

AN

_ : etching_
etching_ : chamberl
chamberl : (ec2)

Figure 34. Machine Control Software (Transition Systems)



Chapter 5: Compositional Verification 75

1. The complete deadlock never occurs.

(1, D), =(epet internal_deadlock))

2. Whenever an action in occurs, an action out eventually occurs. The action in means a material is
put in a loading cassette (cassettel), and the action out means a material is got out of an unloading
cassette (cassette2).

(([in, out],[]), apat([[in]]~ (apat(epet < out >7))))

3. An inner gate and an outer never become open at the same time to keep vacuum condition better
in an etching chamber.

(([], [tel (outer_gate_open), ecl(inner_gate_open))), apat—(tcl(outer_gate_open)Aecl(inner_gate_open)))
(([], [tc2(outer _gate_open), ec2(inner_gate_open)]), apat—(tc2(outer_gate_open)Aec2(inner_gate_open)))

Figure 9 shows the effectiveness of reduction in the first verification query (“the complete deadlock
never occurs”).

Table 9. Machine Control Software (Effect of Reduction)

Transition System Final Size  Mazimum Temporary Size
machine (original) 16741 16741
machine,.q(reduction function (1)) 4 1276
machine,.q (reduction function (2)) 1425 4218

In this example, only synchronization parts of the system are modeled by transition systems. Actually,
they have a lot of non-synchronization (functional) parts which are unrelated to verification queries.
Therefore, the reduction will be more effective.

5 Toward Practical Verification

5.1 Translation Target Program to Transition Systems

How does the designer model the target systems with transition systems in the practical software de-
velopment? Since a transition system is a very simple model, it is impractical to describe the systems
using naive transition systems. In fast most reactive and concurrent systems can be modeled as extended
finite state transition systems, such as Petri net, Statechart, HMS machine [Gabrielian 91], and SFC
(Sequential Function Chart) [IEC 1131-3]. Generally speaking, it is possible to translate them to naive
transition systems with some approximation.

This section presents an example of applying our compositional verification method to actual chem-
ical plant control systems, in which control programs written by SFC are automatically translated into
transition systems. SFC is a kind of safe Petri net which has shared memories. In the latter chapter,
we will also provide high-level Petri nets (MENDEL nets) to describe the target reactive and concurrent
systems, from which transition systems can be retracted as skeletons of them.

5.2 Chemical Plant Control Software

This section shows how our verification method can be applied to practical chemical plant control systems.
The point of this application is how to translate a practical plant control system to a set of transition
systems. We briefly illustrate the translation and validation process using an example of a simple chemical
plant shown in Fig. 35.

A requirement for a control software of this plant is described as follows. Two raw materials are
poured into a reactor via pipel and pipe2. When the level sensor of the reactor indicates high, valvel
and valve2 are closed. Then, valve4 opens and hot steam is poured into the reactor via pipe4 until



Chapter 5:

Compositional Verification 76

valvel valve2
pipel pipe2

agitator
temperature gg}— m

N 02 level(high)

valve4 ><

reactor level(low)

pipe3 E i valve3

Figure 35. Example of Chemical Plant

the temperature of the reactor becomes high. At high temperature, chemical reaction is caused by an
agitator. Finally, produced materials are extracted from the reactor via pipe3 by valve3.

In this

example, the control software consists of two processes; the main control process (task;)

and the temperature control process (tasks) ° . These tasks are described by SFC which is a popular
graphical programming language for sequence control systems (Fig. 36 and Fig. 37).

When applying the compositional verification method to the plant control software, the target system
should be translated to a set of transition systems. The target system consists of the control software and

controlled

objects (plant equipment), both of which should be translated to transition systems because

the control software can not function without connecting it with controlled objects. We briefly show
procedures of the translation.

e SFC

Tasks — Transition Systems

In translation from a SFC task to transition system, two issues have to be considered; concurrency
within a task and access to shared memories.

Concurrency within a task

Each SFC task is translated to a transition system. Since SFC is based on Petri nets, SFC may
have concurrency in a task. For example, v1_open and v2_open are concurrently processed
in Fig. 36. If a SFC task has no concurrency, then a generated transition system almost
corresponds to a SFC task by one to one. If a SFC task has concurrency, then a global transition
system is produced which is equivalent to the original SFC by interleaving concurrent actions.
Note that this interleaving within a task has possibility to cause state explosion, but it usually
does not because most state explosions are caused by interleaving among concurrent tasks and
not by interleaving within a task.

Access to shared memories

In plant control systems, communication among tasks and communication between tasks and
plant are done by way of shared memories. It means asynchronous communication. As a
transition system supposes only synchronous communication, access to shared memories have
to be translated into synchronous communication. In our method, possible access patterns of
a shared memory are modeled as actions, and each access is interpreted as synchronization
of the same actions. For example, figure 39 illustrates how to translate accesses to shared
memories for communication among taskl and valvel.

Figure 38 shows a generated transition system of task1.

e Plant Modeling with Transition Systems

10 Here, “task” and “process” are identical. Since “task” is conventionally used in plant control systems, we use “task” in
the following explanation.



Chapter 5: Compositional Verification

level_low
| || A4
I 10 <
v
Y‘ V‘
N|[v1 op N{v2_op
vl_open v2_open
vl_opa timerl_up v2_opa timer2_up
| | | v A
H /] H | H
timerl_up \ timer2_up
A\
waiting
level_high
| | A4
, 1 — —y—
imerl, )
timerd_up y timerl_up
2 v
N|vl_cl N|V2_cl
vl_close v2_close
vl_cla timerl_up v2_cla timer2_up
| | | 4 4
. . H | H H—
l timerl_up timer2_up
v
waiting
temper_high
| | ] A4
[ 1
v
S |timerl
ag start -
timerl_up
| | | \ 4
[ 11
Y
ag stop R [agitator|
v
N|v3_op
v3_open
v3_opa timer3_up 17
| | | 4
H | /] H |
l timer3_up
waiting
level_low
| | A 4 v
H ——t— H
timerl_up "‘ timer1_up
N|v3_cl
v3_close vy
error
timer3_up % handling
| | | 4
H | /] H |
v3_cla l timer3_up
stop_or_
continue
switch [
H —— —
switch
Y

Figure 36. Plant Control Software (taskl)



Chapter 5: Compositional Verification

CSTART D

temper_low <
|_| | | | \ /
[ [ _
level_high v
N|v4_op
v4_open

v4_opa timer4_up

——— H

v timerd_up
waiting
temper_high
v
v
N|[v4_cl
v4_close

vA_cla  timer4_up

H = A

timer4_up
v
stop_or_
continue
switch |
— —HA—
A4 switch

@ waiting
I

Figure 37. Plant Control Software (task2)



Chapter 5: Compositional Verification

79

Controlled objects should be directly modeled by the designer with transition systems. This may be
a tedious job. Focusing on chemical plants, we have proposed a method to generate automatically
transition systems (plant simulator) by reusing and connecting model fragments corresponding to
plant equipment from plant configuration data (e.g., process flow diagram) [Kawata 95, ?].

level(low)

timer1(up)

vi(op),

W

timer2(set)

/

timer2(up)

v2(op),
timer2(set)

timer2(uj

timerl(set)

v2(opa) v1(op),

timerl(set)

/

2 1i
timer2(up) v2(opa) timerlts::)pa) timer1(up)
level(high) timer1(up)
timer1(up) Vi, va(el), timer2(up)
timerl(set]
1(cl timerl(up) timer2(up. 2(cla)
vi(cla) v2(cla
v2(cl),
timer2(set) m 0 \‘O
W‘ % v2(cla /
timer2(up) va{ela) vi(ea) timer1(up)
P temper(high) P
ag(start),timer1(set)
ag(end),timer1(up) imerl(up)
timer3(up) v3(op),timer3(set)
vi(cl),
v2(cl),
3 v3(cl)
va(opa) switch(off)
timerl(set) v3(cl), switch(set)
M _timer3(sety~ 7\
level(low) v3(cla) switch(on)
timer3(up)

Figure 38. Transition System (taskl)

Figure 40 shows a final structure of the plant control system components of which are modeled by

transition systems.

Verification queries for this plant control software are listed as follows.

There exists no complete deadlock except normal termination (task1(stop) A task2(stop2)).

(([l, [task1(stop), task2(stop2)]), apat(internal _deadlock D (taskl(stop) A task2(stop2))))

The normal termination state is reachable from every state which is reachable from an initial state.

(([], [task1(stop), task2(stop2)]), apat(epet (taskl(stop) A task2(stop2))))

out in the reactor.

There are no abnormal states such that material pouring and extracting are simultaneously carried

(([], [valvel(open), valve2(open), valve3(open)]), apat =((valvel(open)Vvalve2(open)) Avalve3(open)))

enough.

There are no dangerous states such that a reactor is heated up although material is not filled up

(([], [valved(open), level (high)]), apat valved(open) D level(high))



Chapter 5: Compositional Verification

op op
Control Shared ggntrctﬂled
Software Memory jec

opa opa

cl cl

taskl valvel valvel
cla cla
taskl:cla

8
@)

askl:cl

valvel:cl valvel:cla

taskl:op taskl:op

valvel:op

-

taskl:opa

=
()
O

taskl:op

.
3

taskl:cl

taskl:cl valvel:opa

Figure 39. Modeling of Shared Memory

()
steam

Figure 40. Structure of the Plant Control System

reactor

80



Chapter 5: Compositional Verification 81

In fact, This SFC program has a lot of bugs, most of which can be detected as complete deadlock
except normal termination. To put it concretely, there exist the following bugs.

e When a termination switch is turned on in certain timing, it is possible that one of tasks is termi-
nated and the other is hung up.

e Since task2 can not completely cope with error handling of taskl, task2 is possibly hung up.

e When it takes long time to close valvel and valve2, heating process of task2 may be finished. On
that occasion, taskl may be hung up by waiting forever the temperature becomes high.

The effectiveness of computing cost in compositional verification in the case of deadlock detection is
shown in Table 10.

Table 10. State Space Generation (Chemical Plant Control System)

Method States | Transitions
Compositional Method 528 4064
Naive State Space Generation | 283439 2174168

5.3 Verification Tool

We initially implemented primitive operations used in the compositional verification including composi-
tion, relabeling, reduction, and PQL model checker. However, when the verification method is actually
applied, the following problems still remain.

e It is not necessarily easy for ordinary designers to describe in PQL queries.
e The exact location of bugs cannot be spotted even if the existence of bugs can be detected.
e Process composition and relabeling operations are laborious.

Therefore, we have developed a took kit named “VERASQUES” (VERificAtion Systems for temporal logic
QUErieS) which is of general purpose and includes the following facilities to solve the above problems.

e Primitive operation commands
e PQL query generation interface
e Debugger which supports to identify the location of bugs

e PCL (Process Composition Language) which is a command language to describe operation proce-
dures.

When focusing on certain domains such as chemical plants, the more specific verification tool can be
available. SAVE/SFC [Uchihira 93a, Kawata 96] is a Simulation And Verification Environment for SFC
programs which we have been now developing (Fig. 41). SAVE/SFC has a simulation facility in addition
to the verification facility. Moreover, verification is tightly tuned up by merging compositional method
and partial order method [Uchihira 95bJand introducing a lot of heuristics.

We have applied SAVE/SFC to a real chemical plant control software, where the plant consists of 28
valves, 4 pumps, 5 measurements, and 1 reactor, and the program consists of 5 tasks. Many trivial bugs
can be found by typical and varied simulation using the heuristic selection. Some complicated bugs that
are difficult to find by typical simulation have been detected by exhaustive simulation using the logical
selection. The verification generated the reduced state space which has 2800 states, and takes about 3
hours.



Chapter 5: Compositional Verification 82

T
FBATCR.H
G006

G006, 5T
G006, 570
oL

Figure 41. SAVE/SFC

6 Related Works

6.1 Compositional Verification Methods

Many compositional verification methods have been proposed for a system which has compositional
structure like CCS, CSP, and Modular Petri nets. Generally speaking, compositional verification can be
defined as

e verifying properties of the components of a system, and then
e deducing global properties from these local properties.

This compositional approach can reduce verification cost drastically. Compositional verification should
be compositional in the structure of processes and work purely on the syntactical level without inspecting
components. An ideal method of compositional verification can be formalized as follows.

(Op(T17T27 7T‘l,,T'n) '= f) e
ops(Ty | opr ' (N))s (Te | opz ' () os (Ti |= 097 (), (T = 00 ()

where Ty, T, ..., T}, ..., T,, are component processes of the system and op(Th, Ts, ..., T}, ..., T»,) is a composite
process using an operator op over the components, f is a formula representing verification queries, T = f
means a process 1 satisfies f, op[l( f) is a formula which is derived from f and op for i-th argument of
op, opy is a logical operator corresponding to op. Here, op[l( f) is a projection of f onto i-th argument
of op. Note that op; *(f) is derived without inspecting components Ty, T, ..., T,,. This function op; *
plays an important role in the compositional verification, that is, if 7; = op; ' (f) can be locally verified
for every component T}, then op;((Ty = opy ' (f)), (Ts = op3 (), .o, (T = 0p; ' (f))) can be computed
instead of globally verifying op(T1,T%, ..., T3, ..., Tn) E f.

For example, a summation operator “+” of CCS is good-natured for the compositional verification.
The compositional verification with regard to “+” can be formalized as follows.

M+ T) Ela)f = (TiE @)V (T E(@f),

where op = +, opi_l(<a>f) = (a)f and op(ayy = V. In this case, it is sufficient to prove local properties
(Ty = (a)f) and (T |= {a) f) instead of proving a global property (T} + T>) = (a) f.

Unfortunately, it is proved that it is impossible to find op[l(f) for every operator op of CCS
[Fantechi 91]. In particular, a composition operator is inadequate for the ideal compositional verification.
Therefore, several non-ideal compositional verification methods have been proposed with avoiding this
essential limitation.



Chapter 5: Compositional Verification 83

1. Restriction of verification queries
For example, Winskel [Winskel 90] showed a compositional verification for restricted assertions, in
which an assertion over process composition (product) Ty x T should be described as product of
assertions A; x As.

2. Introduction of component’s information to opfl( )
If we are allowed to inspect components 77, ..., T}, and use an extended projection opi’1 (f,Th,....,Tn)
instead of opi_l( 1), pseudo-compositional verification is available. Since the projection opi_1 does
not require entire information of 77, ..., T),, it is possible to derive a relatively simple and equivalent
formula red(op; " (f, Ty, ..., Tn)) by apply reduction rules to the original op; ' (f, T4, ..., T,). Andersen
and Winskel [Andersen 92] propose a compositional verification method based on this framework.

The latter approach is essentially equivalent to our and Clarke’s compositional verification methods.
The difference between them is concerned with the place on which information derived by inspecting
components is reflected. In our and Clarke’s methods, T;" |= op; *(f) is used instead of T |= op; *(f)**
in verifying local properties, where
T+t = op(Ty, ..., T, ..., T},)

2

Opi_l(f)+a = Opi_l(fv T17 7Tn)

In other word, the information (+«) is reflected on a transition system 7; in our and Clarke’s methods,
while it is reflected on a formula op; *(f) in Andersen and Winskel’s method. Note that both methods
make good use of reduction techniques. More specifically, we can show the following correspondence for
the formulation of our compositional verification method described in Section 4.2.

(T | e Efinfo) =
(Tr, E 1) ATy E f2))

where Ty, = T, = red((red(Ti[l11]) | red(T:[lhs]))[lvs,]) and Ty, = T5* = red((red(Ti[l21]) |
red(Ts[1xa]))[lv s, )

Although Andersen and Winskel’s approach is essentially equivalent to our and Clarke’s methods, our
approach is more appropriate for transition systems which can utilize (extended) bisimulation for process
reduction.

6.2 Comparison with Partial Order Approach

Another approach to avoid the state explosion is partial order approach [Valmari 90, Godefroid 91a,
Godefroid 91b, Wolper 93, Godefroid 96]. When there are many redundant interleaving simulation paths
over the state space, we can leave one representative path and delete the others by the partial order
method. Figure 42 illustrates an essential idea of the partial order method. A naive state space of P; | Py
has 18 states and 20 paths by transition interleaving (i.e., total ordering). Here, P; and P, synchronize
only about actions a and b. However, if P; and P, are independent regarding actions t11, ..., t23, this naive
state space is redundant in order to detect deadlock. It is sufficient to analyze only one representative
path a — t17 — t12 — t13 = to1 — too — to3 — b which consists of 9 states.

To compare the partial order method with the compositional method, we show Fig. 43 where ¢11, t13, 121,23
are internal (7) actions and processes P; and P, are first reduced and then composed. This method can
reduce 18 states of a naive state space to 7 states.

These two approaches can be characterized as follows.

e Partial Order Method

— Compatibility with conventional testing and simulation

Partial order method is well-suited to actual execution of target programs because a selection
mechanism of a representative path can be implemented as a smart scheduler. Verification
is modeled as a smart exhaustive simulation and harmonized with conventional testing and
simulation. In other words, conventional testing and simulation are interpreted as a special
case of a smart exhaustive simulation based on the partial order method.



Chapter 5: Compositional Verification

P1 P2

t11

t12

t13

a P1|P2 .
tl‘]/ \131
21 112 O 21 O 122
> o Lm0
o | R mm
tZ}‘ tl‘s/ t2>‘ ‘4[2 \t??, ‘é.l
O t13 O t23 O
{32 tZ}‘O‘/ \O t12
tZ}‘ ‘4[3
b b

Figure 42. Partial Order Method

P1 P2

11 t21

t13 t32

t12 t22 |f\> t12

red(P1) red(P2) red(P1) | red(P2)

Figure 43. Compositional Method

84



Chapter 5: Compositional Verification 85

— Applicability to ill-structured systems
It is not so difficult to implement a smart scheduler which requires only information about
data and control dependency between processes. Therefore, it is applicable to ill-structured
systems.

— Flat and global analysis

Since the partial order method is a smart version of global state apace analysis, it can not
make good use of hierarchical and compositional structures of the target systems.

e Compositional Method

— Effectiveness for well-structured systems

The compositional method is effective for well-structured systems which consist of many but
uniform and mostly independent subprocesses because process reduction works well for them.

— Hierarchical and compositional analysis

The compositional method is effective for large but hierarchical systems because verification
is done compositionally where subprocesses are abstracted by process reduction.

Since compositional methods and partial order methods are orthogonal, it is practical solution to
utilize both methods complementarily (hybrid method). For example, we illustrate a typical hybrid
method for the target system which consists of two large processes P, and P, (Fig. 44). First P; and
P, is reduced to simple interface processes which produces only behaviors related to given queries and
synchronization by the compositional method, then a smart state space generation is done by the partial
order method. Finally, the state space is analyzed by PQL model checker. In fact we adopted this hybrid
approach in SAVE/SFC [Uchihira 93a, Uchihira 95b] which is mentioned in the previous section.

Target Program red(P1l)  red(P2)

N s
> Reduction by
P1 P2 |j‘> Compositional |j‘>
Method
J N\
A
-
PQL Queries @
.
v State Space v

State Space

' Generation by
Model Checking Partial Order

Method

Figure 44. Hybrid Approach of Compositional and Partial Order Methods

7 Summary

Process Query Language of concurrent program verification based on state logic and the compositional
verification method were proposed and its effectiveness confirmed by using the examples.

This chapter focuses on the compositional verification for transition systems, which have only finite
states, in place of Petri nets, which may have infinite states. A model-checking method for Petri nets was
proposed by [Bradfield 92], which is very powerful but not compositional (he showed some remarks on
compositionality at page 82 of [Bradfield 92]). In general the compositional verification for Petri nets is
difficult and impractical. Therefore, developing a compositional verification method for Petri nets, which
may be restricted to some degree but practical enough, is one of the further works.



Chapter 5: Compositional Verification

Appendix I : Proof of Theorem 10

To proof theorem 10, several definitions and lemmas are introduced.

Definition 29 (=£,,)
In (S, Act,d, P, ), for Vs, t € S,Vk > 0,

def
~0 =
ERSH A

o 7(s) =m(t)
e st iff t1

def
~k+1 =
sttt =

o 7(s) =m(t)
o VaVs'.(if s 5 s then 't Ly ~k 1)
o Va.vt'.(if t 5t then 3s'.s LAs ~k )
e st iff t1

Lemma 7 (Relation of ~.,. and zf’,,w)

k
(1) § Rrrw b < (S Rrrw t)

=3

k

1

(2) s F'?"’LWTW t ~ \/ (8 %i'l’w t) ~ Ek(s %i'l’w t)
k=1

Proof. It is obvious from the definition.O

Lemma 8 (Semantics of < > f,< > f,<a> f,<a>" f)

sEL > f = 3t=7*.§|s'.(s$s'/\s_’|:f)

skEC >Tf = =13 (s SN ESfV

AU =1Y(s5)
sE<a> f = H=r'ar"3s (s > AsE])

sELa>T f = Elt:T*aT*.Els'.(s—t>s'/\_'|:f)\/

Here 3t = t*ar* means 3t € {r'ar? |i,j > 0}.

86



Chapter 5: Compositional Verification 87

Proof.

(1) From lemma 6, s € V[« >~ f] = [uZ.(fv3ITZ)] <= 3Fks € V[A\Z.(f vITZ))* false] =
VIAT)F-1f] < 3t =7"(s > s As € Vf]).

(2) From lemma 6, V[< >T f] = V[vZ.(f VITZ)] =limp_ oo V[NZ.(f V ITZ)*true] =
limg 00 Ui:ol VI@ET) f]U V[(3T)*true]. Therefore, s € V[K >1 f] < Fi.(s € V[(IT)if]) Vv
s e V[(ET)“true] <= It =r1"(s N = VIfH)vt=1¥(s 4 ).

(3) In the same way as (1), s € V[ a>" f] = V[uZi.3(aAX(uZs.(f VITZy)))VTZ)] =
Ji,j.s € V[(IT)'I(a A X(AT)? f)]. Therefore, s € V[ a >~ f] < 3t =r1"ar".(s > s’ As' €
VIfD.

(4) In the same way as (2), V[vZ.(fVv3ITZ)] = limk%oo(Uf;Ol VI@ET)! f] U V[(3T)*true]). Therefore,
seV[ga>T fl=V[vZi.3aAXwZy.(f VITZy))) VTZ)]

<~ 3i,j.(s e V[AT) Ia A XAT) £)])VIi.(s € V[IT)I(a A X (3T)*true)])vs € V[(IT)*true].

Then, s € V[< a >% f] < 3t =riar?.(s 5 s'As’ € V[f])VIt = riar®.(s 5 )vIt = 7%.(s 3 ).
O

Proof of Theorem 10

[Proof of T} =y, To < Ty =por T3]

If T\ #rro To, it is sufficient to prove 3f.(Ty | f ATy & f). As Fk.(so1 %5, s02) from lemma 7, the
induction about k can be applied as follows. In the case of s #%__ t, f such that s = f At [~ f can be
constructed for the following 4 cases.

Case 1 7(s) #7m(t) = f=pst.pemn(s),pgn(t).

Case 2 st A=(t1) = f=< >1 false. (from Lemma 8)
Case 3 5 5 s’ A—3t'.(t N t') = f=<a> true. (from definitions)

Case 4 5 5 s/ AVE.(t 3¢/ = o b=l ) =
By the induction,

VE.3fi(s' = fi A f). Then, f =< a>" ) fi.

[PI‘OOf of T' ~prw Tn = T RPQL TQ]

Vi(T) Rprw To ATy = f = T2 [ f) is shown here. From Lemma 6(3), only finite length PQL formulas
with no p operators should be considered. When PQL formulas which do not contain u operators, it
can be proved by the structural induction of PQL formulas as follows. Here the cases of f =< a >
f' f =< a>" f"are proved. As for other formulas, the proof can be provided in the same manner.

o f=xKa> f:
When s1 &7, $2 and 1 E< a >~ ', Ity = 5 am".(s1 b sy A sy | f) from Lemma 8, also
Ity = 7 at*.(s2 Y sh A S Rrrw sh) from s1 Ry S2. By the structural induction, s, = f/, then
S2 E a>" f.
o f=<a>T f:
When s1 &y, s2 and 51 E< a >T f', from Lemma 8,
(1)
(2)
(3) 3t =7 ar?.(s ).

rar (s1 5 s, As| = f), or

3t
3t

T™.(s =), or

In the case of (1), it can be proved in the same manner as f =< a >~ f'. In the case of (2), since
s1 T and $1 Rrrw 52, 52 T. Therefore sy =< a > f'. In the case of (3), since It; = 7*ar*.(s1 b
s A8 1) and 81 Ry S2, o = TFaT* (59 A sh A sh 1). Therefore, sy =< a > f' O



Chapter 5: Compositional Verification 88

Appendix II : Well-known Equivalence Relations and Divergence

This section shows detail definitions of well-known equivalence relations (trace equivalence, failure equiv-
alence, partial bisimulation equivalence) referred in Fig. 28. Their relations are summarized from the
viewpoint of “divergence”.

Definition 30 (trace equivalence)
Let S be a set of states, A be a set of actions (Act = AU{r}), and § : S x Act — 2° be a nondeterministic
transition function. For (S, Act,0) and s,t € S, s and t are trace equivalent, written s &1 t, if V0 €

Act*.s > ifft >
Definition 31 (failure)
For (S, Act,0) and s € S,

failures(s) o {(6,L) | 6 € Act*,L C A such that 3s" € S.(s Lo and ¢ A andVa € L.s' )}

Definition 32 (failure equivalence)
For (S, Act,d) and s1,s2 € S, failure equivalence (=) is defined as follows.

81 Rf So <= failure(sy) = failure(ss)

Definition 33 (partial bisimulation preorder by global divergence)
For (S, Act, ), a partial bisimulation preorder with global divergence C, (C S x S) is defined as the
largest relation such that
ifVs,t € S,s C, t implies
e Va € ActVs' € S.(if s 5 s' then 3t' € Sit N C,t)
e if—(s1) then
-t )
— Va € Act¥t' € S.(if t St then Is’ € S.s LS C,t)
Definition 34 (partial bisimulation equivalence by global divergence)

For (S, Act,0) and s,t € S,
srpt <= sCatAtE,s.

~9 is called partial bisimulation equivalence by global divergence.

Definition 35 (parameterized Tw-divergence)

For (S, Act,0) and s € S,a € Act,

p )
sta =4 st or3s'(s=s A1)

Definition 36 (partial bisimulation preorder by local divergence)
For (S, Act,d), a partial bisimulation preorder by local divergence C (C S x S) is defined as the largest
relation such that
ifVs,t € S,s C t implies
e Va € ActVs' € S.(if s 5 s’ then 3t' € Sit LHAsC t')
e Va € Act. if =(s 1 a) then
~a(tta)
— W € S.(if t 5t then I’ € S.s St/ As' T )
Definition 37 (partial bisimulation equivalence by local divergence)

For (S, Act,0) and s,t € S,
sript <= sCEANEL s,

~, is called partial bisimulation equivalence by local divergence.



Chapter 5: Compositional Verification 89

Partial bisimulation equivalence by local divergence is sometimes simply called “partial bisimulation
equivalence”. The discrimination ability of partial bisimulation equivalence by local divergence is the
same as Intuitionistic Hennessy-Milner Logic (IHML) [Stirling 87].

Theorem 11 (Imvolvement Relation among Equivalence Relations)
The imvolvement relation among equivalence relations is shown as follows.

o o, ,CrR

] zpczl

Here, “Ry C Ry” means “Vs,t € S. if sRyt then sRst”.

Proof. It is obvious from the definition.O
Figure 45 shows a counter example which shows there is no imvolvement relation bwtween ~; and
~,. In this example, T1 =, T» but T} %5 T5. On the other hand, T3 %, Ty but T3 = T}.

tau

Figure 45. Example which shows there is no imvolvement relation bwtween & and ~,



Chapter 6

Compositional Program Adjustment

In this chapter, we examine “program adjustment”, a formal and practical approach to developing correct
concurrent programs, by automatically adjusting an imperfect program to satisfy given constraints. A
concurrent program is modeled by a finite state process, and program adjustment to satisfy temporal
logic constraints is formalized as the synthesis of an arbiter process which partially serializes target (i.e.
imperfect) processes to remove harmful nondeterministic behaviors. Compositional adjustment is also
proposed for large-scale compound target processes, using process equivalence theory.

1 Motivation and Overview

1.1 Motivation

The difficulty of concurrent program debugging is mainly due to its nondeterministic behavior. We
classify nondeterminism into the following 3 types.

e Intended nondeterminism: Nondeterministic behaviors which the programmer intends to im-
plement.

e Harmful nondeterminism: Nondeterministic behaviors which the programmer does not intend
to implement and does not expect.

e Persistent nondeterminism: Nondeterministic behaviors which have no effect on the results.

For example, Fig. 46 shows a simple Ada-like concurrent program “Seat Booking”, where two pro-
cesses read/write a shared memory “seat” to reserve one seat. This program has the 3 types of nonde-
terministic behaviors.

Intended nondeterminism The following nondeterministic behaviors 8; and 65 derive different re-
sults: Py can book the seat (status; = OK) in 0y, but cannot (status; = NG) in 62. However both are
correct (intended behaviors).

o 01211—>l2—>13—>l4—>l5—>m1 — Mo — Mp
Result: status; = OK, seat = OCCUPIED, statuss = NG.

[ 02:m1 — Mg — M3 —> My —ms =11 == 5
Result: status; = NG, seat = OCCUPIED, statusy; = OK.

Harmful nondeterminism The following nondeterministic behavior #3 derives an incorrect result
(double booking). So, this program has harmful nondeterminism.
093:l1—>m1—>l2—>m2—>13—>m3—>l4—>m4—>l5—>m5

Result: status; = OK, seat = OCCUPIED, statuss = OK.

90



Chapter 6: Compositional Program Adjustment 91

Persistent nondeterminism The following two nondeterministic behaviors have the same result be-
cause [y (write in status;) and mq(write in statuss) are independent actions of each other. We call such
a situation persistent.

[ 04:11—>m1—>l2—>l3—>l4—>l5—>m2—>m5
Result: status; = OK, seat = OCCUPIED, statuss = NG.

[ 9521111—)11—)l2—)l3—)l4—)l5—)ﬂ’L2—)ﬂ’L5
Result: status; = OK, seat = OCCUPIED, statuss = NG.

P1 P2

e ™) read ™)
11: statusl := NG ; . | m1: status2 := NG ;
12: if seat.read = FREE then |~ "] m2: if seat.read = FREE then
13: seat.write(OCCUPIED); L | m3: seat.write(OCCUPIED) ;
14: statusl := OK; m4: status2 := OK;
end if ; end if ;
L15: terminate ; ) Lm5: terminate ; )
write write
\ 4 \ 4 \ 4 \ 4
seat

statusl status2

(Initially, seat := FREE)

Figure 46. An example of a concurrent program

In our observation of concurrent program development, a programmer first tries to design and imple-
ment processes so as to maximize concurrency, which may include 3 types of nondeterminism. He then
often finds harmful nondeterministic behaviors in testing and debugs them by partially serializing the
critical sections which interfere each other using synchronization mechanisms (e.g. semaphores). Bugs
due to harmful nondeterministic behaviors often account for a considerable part of all timing bugs.

We will show that the debugging processes for harmful nondeterministic behaviors can be mechanically
supported using formal methods. It can be also regarded as a practical application of program synthesis
techniques to program modification in debugging.

1.2 Overview of Main Results

We propose “program adjustment” which automatically adjusts (debugs) an imperfect program to satisfy
given constraints. Here, we consider only timing constraints for concurrent programs that can be specified
by temporal logic. In this context, “an imperfect program” is regarded as a program which is functionally
correct but may be imperfect in its timing. We call such a program an FCTI program (Functionally-
Correct Temporally-Imperfect program).

A concurrent program is modeled with the finite state process [Kanellakis 90] , which can specify the
finite state transition system with liveness conditions. It can not only represent the transition systems
in CCS [Milner 89], but also Biichi automata [Biichi 62]. A target FCTI program is compositionally
constructed from several finite state processes with the composition operator “|”(ex. P = (P11 | Pi2) |
(P21 | P22) in F1g47(a))

Basic Adjustment Program adjustment (basic adjustment) means to adjust an FCTI program to
satisfy given constraints by adding an arbiter process which is synchronized with and restricts the behavior
of the FCTT program (Fig.47(b)). The arbiter partially serializes the FCTI program to remove harmful
nondeterministic alternatives which do not satisfy given constraints. We will show an algorithm to
synthesize an arbiter process C'y automatically.



Chapter 6: Compositional Program Adjustment 92

(@)

P1 P2
S (CIICRCHC)
Composition

(b) ... arbiter
Basic

ravment e | (o)™ () (=)™ (e

(c) P P2
Compositional @ @
Adjustment P

Figure 47. Process Composition (a), Basic (b), and Compositional (c) Adjustment

Input: An FTCI program P.
Input: Temporal logic constraints f.

Output: An arbiter process Cy such that P | Cy satisfies f.

Compositional Adjustment When a target program becomes large, the arbiter synthesis may cause
computing cost explosion. Therefore, we propose compositional adjustment, in which local arbiters are
synthesized in each composition step. For example, an adjusted program with local arbiters Cy, Cy, and
(5 is shown as follows (Fig.47(c)).

P'= (P | Pia | C1) | (Por | P2 | C3) | Co

In each composition step, the reduction of the finite state process, based on process equivalence theory,
can ease computing cost explosion. We introduce a new process equivalence relation (77w-bisimulation)
to manipulate liveness properties because the traditional weak bisimulation equivalence used in CCS
cannot. wrw-bisimulation is used to reduce a finite state process to a smaller and equivalent one in the
compositional adjustment.

It is more feasible for ordinary programmers to adopt the program adjustment approach compared
to other methods which synthesize complete programs from (temporal logic) specifications [Manna 84,
Emerson 82, Pnueli 90]. The reasons are as follows.

e It is not very difficult for ordinary programmers to produce an FCTI concurrent program, which
satisfies at least the functional requirements. A more difficult task is to design and debug the timing
of such programs.

e Many bugs are derived from harmful nondeterministic alternatives.

e It is easy for ordinary programmers to specify timing constraints, such as deadlock-free and starvation-
free constraints, as compared with implementing them.



Chapter 6: Compositional Program Adjustment 93

1.3 Organization of the Chapter

The remainder of this chapter is organized as follows. Section 2 defines Finite State Processes (FSP)
and their equivalence relation and composition operator. Basic and compositional adjustment of FSP
is described in Section 3. Section 4 shows a simple and nontrivial example and an experimental re-
sult of compositional program adjustment. Finally, Section 5 takes program adjustment in standard
programming languages into consideration, followed by related works and summary in Section 6 and 7.

2 Finite State Processes

The basic model for concurrent programs is the finite state process (FSP) defined in Chapter 2, which
can specify the finite state transition system with liveness conditions. First, we introduce an equiva-
lence relation for FSPs. Then, several operators (composition, relabeling, and reduction) on FSPs are
introduced and their properties are shown.

2.1 Equivalence of Finite State Processes

We now introduce mrw-bisimulation equivalence for FSP which was originally defined for compositional
verification in Chapter 5. In this chapter, it is used to reduce an FSP to a smaller and equivalent one in
compositional adjustment. wrw-bisimulation equivalence is redefined for FSPs as follows.

Definition 38 (rw-divergence)
Let P = (S,A,L,d,7,s0,F) be an FSP. s € S is Tw-divergent (s 1) if Vn > 0.3s' € S.30 € A*.(] 0 |=
n,7(0) = and s = §(s,0)). O

Definition 39 (n7w-bisimulation Equivalence)

Let P1 = (Sl,Al,Ll,(Sl,ﬂ'l,S()l,Fl) and PQ = (SQ,AQ,LQ,(SQ,FQ,SOQ,FQ) be FSPs. P1 and P2 are mTw-
bisimulation equivalent (P &.,, P»), if there is a binary relation R C Sy x Ss, such that (so1, S02) € R,
and Vs; € S1.Vsy € S3.(s1,82) € R <

e 51 € F iff s5 € F>,
L4 SlT i6‘52T,

[ ] \V/tl S Al.Vs'l € 51( 1fs'1 = 51(81,t1) then
30 € A;E'Sé € Sg.fl(tl) = 71:2(9),812 = 52(52,0), and (811,812) S R),
0

[ ] \V/tg S A2.v5l2 € 52( 1f5/2 = 02 S2,t2) then
30 € AIE'S& € 51.71:2(t2) = 71:1(9),811 = 51(51,0), and (811,812) € R)

mTw-bisimulation is extended so that it can discriminate designated states and divergence, which
cannot be discriminated by weak bisimulation (the weak bisimulation ignores divergences, i.e., 7-loops
and 7-circles). The following lemma is derived from these discrimination abilities.

Lemma 9 If P; is complete and P, =, P>, then Ps is also complete. O

Definition 40 (Reduction) For a given FSP P = (S, A,L,§,7,s0,F), a reduction of P, red(P) =
(SryAr, Ly, 0y, 70, 8rg, Fr), is an FSP such that P .., red(P) and | S, |<| S |. O

The smallest red(P) is constructed effectively by the relational coarsest partitioning algorithm [Paige 87,
Kanellakis 90] such that all states of P that are mrw-bisimilar to each other are brought together into a
single state of red(P).



Chapter 6: Compositional Program Adjustment 94

2.2 Operators on Finite State Processes

Concurrent programs are constructed as a composition of several FSPs that are synchronized with each
other. The composition and relabeling operators for FSPs are introduced and their important properties
(substitutivity and reflectivity) are shown.

Definition 41 (Composition Operator)
For Pl = (SlaAlaLla(slaﬂ'laSlOaFl) and P2 = (S2,A2,L2,52,7T2,520,F2), a COI’IlpOSitiOH P = Pl | P2 is
defined as follows.

P = (Sl X 52 X {0, 1}2, (Al U {zdle}) X (A2 U {zdle}), Ll U LQ, 5,71’, (510, 520,0, 0),F>, where

o 5:(S1 x Sy x {0,1)2) x (A1 U {idle}) x (As U {idle}) — (S1 x S» x {0,132) U { L} such that
6((s1, 52, f1, f2), (a1, a2)) =

((61(s1,a1),02(s2,a2), f1, f3), when mi(a1) = ma(a2) # 7, and f1 = fo =1,

f{:l 1f61(sl,a1) EFi7 S

fl =0 otherwise , (for each i =1,2)

(01(s1,a1),02(s2,a2), f1, f3), when mi(a1) = ma(az) # 7, and (f1 =0V f, =0),
fi=1 if0i(si,a5) € 5V fi =1, -

where { /=0 otherwise , ( for each i =1,2)

(61(s1,a1),52, f,0), when wi(a1) ¢ (L1 N La),as = idle, and f; = fo =1,
f{ =1 if51(81,a1) € F17

where { fi =0 otherwise ,

(01(s1,01), 82, f1, f2), when mi(a1) ¢ (L1 N La),az = idle, and (fy =0V f2 = 0),
f{ =1 ifél(sl,al) S F1 Vfl = ]-7

where { fi =0 otherwise ,

(81,(52(82,a2),0,f£), when 7r2(a2) ¢ (Ll n Lg),al =idle, and f1 = f2 =1,
fé =1 if52(52,a2) S FZ,

where { f4 =0 otherwise ,

(s1,02(s2,a2), f1, f3), when m2(az) ¢ (L1 N Lz),a1 = idle, and (fiy =0V fy =0),
fé =1 I'f(sg(SQ,ag) € FyV f2 =1,

where { f5 =0 otherwise ,

| L, otherwise ,

where

o 7: (A U{idle} x Ay U{idle}) — Ly U Ly U {7} such that

= my(ay) ifa; € Ay and as € A,,
) ifa1 EAl,
) ifa2 €A2,

m((a1,a2)) = mi(a1)
ﬂ((al,idle)) = 71'1((11
m((idle, az)) = m2(az

e and F = {(Sl,SQ,fl,fz) | S1 € 51,82 S Sg,fl = fg = 1}.

We remark that processes are synchronized at actions with the same labels in the above process
composition. This composition is similar to composition in CCS[Milner 89] except for its treatment of
designated nodes. The following relabeling operators are used to relabel actions so that actions which
are synchronized in composition have the same labels.

Definition 42 (Relabeling Operator) For P = (S, A, L,d,7,so, F') and a relabeling function f : L —
L'u {7}, P' = P[f] is defined as follows.

P = (S, A L4 1 s, F), where { :EZ; ii(ﬂ'(a)) 1:f7r(a) i

a

Example 9 (Composition and Relabeling)
o P = ({507 51, 52}7 {tla t2, 13,14, t5}7 {ala bla C}a 517 1,50, {51}) where

01(s0,t1) = 81,01(s0,t2) = 82,01(51,t3) = 52,01(82,t4) = 51,01(51,t5) = 51, ™ (t1) = a1, m(t2) =
by, mi(t3) = b1, m(ta) = a1, mi(t5) = c.



Chapter 6: Compositional Program Adjustment 95

L4 P2 = ({80731782}7{t17t27t37t47t5}7{a’27b27d}7627ﬂ-27807{82}) where
62(s0,t1) = 81,02(50,t2) = 82,02(51,t3) = S2,02(S2,t4) = 51,02(82,t5) = s2,m2(t1) = az,ma(t2) =
by, ma(ts) = ba, ma(ts) = ag, ma(ts) = d.

e relabeling functions: f;(a;) = a, f;(b;) = b, and f;(I) = for other labels | € {c,d} (for each i=1,2).

b Pl[fl] | P2[f2] = ({507 S1, 52, 53, 54}7 {(tlvtl)v (t27 t2)7 (t37t3)7 (t47 t4)7 (t57idle)v (idleat5)}v
{a,b,c,d},d,m, s0,{s3,54}) where

0(s0, (t1,t1)) = s1,0(s0, (t2,t2)) = s2,0(s1,(t3,t3)) = s3,0(s1, (t5,4dle)) = s1,0(s2,(ta,ts)) =

84,(5(827 (idle,t5)) = S92, (5(83, (7547 t4)) = 81,(5(83, (zdle7 t5)) = S92, (5(847 (1537 t3)) (84, (t5,zdle))

Sl,ﬂ((tl,tl)) = a,ﬂ'((tz,tg)) = b,ﬂ'((t37t3)) = b,ﬂ'((t47t4)) = a77r((t5,idle)) ((zdle t5)) d.
(Fig.48) O

P1: P2:

t1/a t2/bl tl/a2 t2/b2
t5/c 3/ bl t3/b2 t5/d
SOBOINOSOW
~_—

. ) Kaction/label

P1[f1]|P2[f2]:
(t5,idle)/c

(|dIe Byd (G.ide)c

Figure 48. Composition and Relabeling

Definition 43 (Projection) Let P, and P, be FSPs. A left projection L(Py | Py) | left is defined as

L(P | P) | left = {6.1/{idle} | 30 € L(P, | P2).0[i] = (61]7], 92[1] }. Similarly, a right projection

L(Py, | P) | right is defined. In the same way, projections of L, L “" and Ly are defined. O

Lemma 10 (Reflectivity) Let P, and P> be FSPs. If P = P, | Py, then Ly(P) | left C Ly(P;) and
Lb(P) d Tight C Lb(PQ). O

Lemma 11 (Substitutivity) m7rw-bisimulation equivalence is preserved by composition and relabeling;
that is, if P Rrr Q, then VR.(P | R X7 Q | R), and Vf.(P[f] ®rrw Q[f]). O

Reflectivity and substitutivity are used in the basic adjustment and the compositional adjustment,
respectively. These adjustments are described in the next section.



Chapter 6: Compositional Program Adjustment 96

3 Program Adjustment

This section proposes program adjustment of FSPs. First, we show that a temporal logic constraint f
can be transformed to an equivalent FSP P;. For an FTCI process P and a temporal logic constraint f,
P | Py is a composed process in which P’s behaviors against f are disabled by Py (i.e., safety properties
are satisfied). However, P | Py is not necessarily complete (i.e., liveness properties may not be satisfied).
Program adjustment means to make P | Py complete by adding arbiter process C' (i.e., the adjusted
program = P | Py | C).

3.1 Temporal Logic Constraints

The constraints for concurrent programs (safety properties and liveness properties) are specified by propo-
sitional liner time temporal logic (PLTL) !! . Safety properties include admissible partial ordering of
actions (i.e., transition firing), and liveness properties include deadlock and starvation about actions.

Theorem 12 Given an PLTL formula f under a single event condition, one can build an FSP P; =
(S,A,L,d,7,s0, F) such that L corresponds to a set of atomic propositions of f, and Ly(Py) is exactly
the set of behaviors whose label sequences satisfy the formula f. O

Proof. This is a FSP version of Lemma 2.

We remark that a label sequence of a satisfiable behavior in P corresponds to a model of an PLTL
formula.

Example 10 (Temporal Logic Constraints) Let a label set be L = {ay,as}.
e (1) OO (ay V ag): Either a; or as must infinitely often occur.
e (2) O(a; D OO(—ay)): Whenever a; occurs, then as must never occur.

FSPs which are generated from (1) and (2) are shown in Fig.49.

O ) @O0

all/al { { a2/a2 al/al

al/a@O a2/a2 3 al/al

Figure 49. FSPs P; of Temporal Logic Constraints

In the context of the following program adjustment, we restrict temporal logic formulas so that Py is
deterministic with regard to synchronization labels. In this case, some formulas, such as {Oa, which
are translated to nondeterministic one, become not available. These formulas are suitable for verification,
but not for adjustment (synthesis) because the arbiter cannot look ahead at future behaviors as indicated
by Pnueli and Rosner[Pnueli 89a, Pnueli 89b].

3.2 Basic Adjustment

When temporal logic constraints f can be translated to an FSP Py, we have to show how to make an
FSP P = Py | Py complete for the target FCTI program Py by adding an arbiter process C. In other
words, basic adjustment is defined as an arbiter synthesis for P = Py | Py (Fig. 50).

In the following explanation, we assume that the target FSP P has already composed with Py (i.e.,
P = Py |...), and do not mention P explicitly.

Problem 1 (Basic Adjustment)

11 Detail definitions are shown in Chapter 2.



Chapter 6: Compositional Program Adjustment 97

program

composition

adjustment = arbiter synthesis

@ Arbiter

Figure 50. Basic Adjustment

Input: An FSP P = (S,A,L,0,7,s0,F) (We assume P = Py | ...).
Output: A maximally permissive FSP C = (S., A¢, Lc, dc, e, Soc, F.) such that P | C is complete.
“C is maximally permissive” means that for every C' if P | C' is complete then L(P | C') C L(P | C). O

The arbiter, C, restrains the target FSP P from falling into unsatisfiable states by eliminating harmful
observable transitions.

Algorithm 1 (Single Arbiter Synthesis)

(Step 0) P':=P.

(Step 1) Find a set of unsatisfiable states S, C S’ in P' = (S, A", L, , 7', sy, F'). If there are no
unsatisfiable states, go to Step 4.

(Step 2) Construct a pseudo-arbiter C' from P’ as follows. At first, T — closure C; is defined as

Cr(s,a) 2 {s'30.(s' = 6(s,0),#(8) = a)} for Vs € S" and Va € LU {e},
def

Cr(Ssup,a) = Usesmb C-(s,a) for VSsuy C S" and Va € LU {e},
then A
C' = (S, AL L6, 7, Cr(sh,e),S"), where S = 25 AL = {t, | a € LYU {t, | s € S'}, and for

VYa € L, Vs' ES{’_,
o 5.(s'ty) =Cr(s',a) € SLIfCr(s',a) NS, =0,
o 0.(s' t,) = LifCr(s',a) NS, #0,
o 0.(s' ty) =

and 7’ (t,) = a and 7r2(t51) =7 forVa € L,Vs' € S!.

We remark that “0.(s',t,) = L if C-(s',;a) NS, # 0” means elimination of all behaviors which
cannot be distinguished from inevitably unsatisfiable behaviors by a label observer.

(Step 3) P':=P'| (', and return to Step 1.

(Step 4) Let the final pseudo-arbiter C', which is generated after applying Step 1 - Step 3 repeatedly,
be the arbiter C.

If C is empty (i.e., all behaviors are eliminated), C' is called unrealizable; otherwise, C is called
realizable.



Chapter 6: Compositional Program Adjustment 98

Theorem 13 (Main Theorem) If an FSP C' = (S., A., L., 6., 7., Soc, Ft.) is realizable for a given FSP
P =(S,A L, m, s0,F) in the above algorithm, then P | C is complete and C is maximally permissive.
O

Sketch of proof. During Step 1 - Step 3, all inevitably unsatisfiable behaviors are eliminated in the
final P’. Therefore, P’ is complete. Since the transition function of C' is deterministic about its labels,
C' restrains no satisfiable behavior of P. Therefore P | C is complete and C' is maximally permissive.

Corollary 2 4
LIY™(P | C) Lleft C Ly(P | C) L left C Ly(P)

a

Proof. This proof is derived from Lemma 1 and Lemma 10 with Theorem 13.
This corollary assures that P, adjusted by C, satisfies its liveness constraints, whenever its behaviors

are made by random transitions over states. We remark that an arbiter is effective in case LKT(P) C
Ly(P) does not hold (i.e., P has harmful nondeterministic behaviors).

Example 11 (A single arbiter synthesis) Fig.51 shows a simple single arbiter synthesis. In the target
process P, only 0 = tststr is an inevitably unsatisfiable behavior. Since {tstgtr,t3ts} is a set of behaviors
which cannot be distinguished from 6 (i.e. have the same label sequence “ab”), t4 and t; are eliminated.
From the remainder, the arbiter C' can be constructed.

P (Target Program): ‘
@& \tglf@ to/ T
SHORDO

/e

inevitably unsatisfiable

G behavior
unsatisfiable state
tS0/ T
S1={s6,s2,54}
ts2/t -
S1={s1,s2,54}. O
ta/a
. . L
tsi/t <; i>tc/c

Figure 51. Single Arbiter Synthesis

S0={s0}
C (Arbiter): :

Ry

3.3 Compositional Adjustment

When a target program that is composed hierarchically with many processes becomes very large, the
arbiter synthesis may cause the following problems.

1. The synthesis results in a computing cost explosion,

2. A single arbiter is too restrictive to control the whole program precisely.



Chapter 6: Compositional Program Adjustment 99

Therefore, we propose compositional adjustment, in which local arbiters are synthesized in each
composition step. The reduction of an FSP can ease the computing cost explosion in each step.

Theorem 14 If P; ~,., P>, then C is an arbiter of Py iff C' is an arbiter of Ps.
O

Proof. From Lemma 1 and Lemma 11, C | P; is complete iff C' | P, is complete.

Corollary 3 If C is an arbiter of red(P), then C'is also an arbiter of P.
O

Algorithm 2 (Compositional Arbiter Synthesis) For simplicity, we explain compositional adjustment
for the following target program that is constructed by two-level composition (Fig.47(c)). This algorithm
can be extended easily to arbitrary target programs.

e Target Program:
(Prifhai] | Priz[ha2])[Pa] | (Pa1lha1] | Pozlhoz])[he]
where ]‘_)117 Plg, P21, and P22 are FSPS, and h117 h12, ]7,217 hgz, hl and h2 are relabeling functions.

e Temporal Logic Constraints:
f1,f2,fo are temporal logic constraints for each composition level.

The compositional arbiter synthesis is done in a bottom-up way (Fig. 52).

(Step 1) Low level arbiters Cy and Cy are synthesized for subprocesses Pi1[hi1] | Pi2[hi12] | Pp, and

def

P21[h21] | P22[h22] | Pf2, respectively. We denote P1 = (Cl | P11[h11] | P12[h12] | Pfl)[hl] and

de
P, Y (Cy | Parlhar] | Paslhas] | Pr,)lhe].

(Step 2) Reduced subprocesses red(Py) and red(P») are made from P, and P.

(Step 3) A top level arbiter Cy is synthesized for a target process red(Py) | red(Ps) | Py, .

f 2
|

Arbiter Synthesis| I'I'ransform | Arbiter Synthesis

Transform

| Reduction%rbiter Synthesis | Reduction |
red(P1) @ red(P2)

Figure 52. Compositional Arbiter Synthesis

Corollary 2 assures that reduction preserves all information necessary for each local arbiter synthesis.
The reduction in each step can cut down the synthesis cost. As the ratio of internal actions in the process



Chapter 6: Compositional Program Adjustment 100

increases, so does the effectiveness of the reduction. Note that it is possible to synthesize directly a
single arbiter C’ for the target programs. However, C’ is too restrictive because it has less controllable
actions compared with local arbiters, and its synthesis cost is more expensive without reduction. Process
reduction by weak bisimulation equivalence has been already proposed and shown its effectiveness in
compositional verification by Clarke et. al. [Clarke 89]. However, the reduction preserving liveness
properties by m7w-bisimulation is our original work.

4 Example and Experimental Result

4.1 Example: The Machine Control Program

In this example we synthesize a single arbiter. The problem may be stated informally as follows. The
target program must be designed to control machines which cooperatively process (i.e., etch) printed
circuit boards (Fig.53). The coating machine applies resist to boards. The exposure machine exposes
boards to the light. The development machine develops boards. The arm machine moves boards from one
machine to another. The target program is composed of 6 processes (Resist, Exposure, Development,
Arm, and Trans x 2) which control corresponding machines. T'rans represents board transportation.
Each process is displayed as a Petri net, shown in Fig.54. With no arbiter, this system is FCTI because
it falls into deadlock when an action label sequence of Arm “get_r — put_e — get_r” occurs. We give the
following temporal logic constraints:

f=00(getr V puteV get_e V put_d)

which means Arm never falls into deadlock. An arbiter C is synthesized as follows: first, FSPs representing
6 subprocesses are relabeled by relabeling functions f., fe, fa, fa, ft1, and fi2, and are reduced, and FSP
P; (Fig.55) representing temporal logic constraints f is generated. The target process P (Fig.56) is
composed from these FSPs (including Py). Finally, the arbiter C' shown in Fig.57 is synthesized from P,
according to Algorithm 1. We can see that the adjusted program “C' | Py | Resist[f.] | Exposure[fe] |
Development[fi] | Arm[f.] | Trans(f:,] | Trans[f,]” satisfies the above constraints. Figure 58 shows
the adjusted program represented by extended Petri net. You can see the target Petri net in Fig. 54 is
adjusted by introducing the arbiter C in Fig. 58.

V4
=18 NN
Resist ’ . : Development

Exposure

Figure 53. Machine for Processing Printed Circuit Boards

4.2 Experimental Result

We will show how well the compositional method works when it is applied to a middle-scale manufacturing
machine control software. This machine is controlled by a concurrent (multi-task) program which consists
of 16 element processes (tasks). Table 11 shows the sizes of element processes. The state numbers of each
element process may sound small. It attributes to the fact that only synchronization parts of systems are
modeled by FSPs.

For this target processes, we give temporal logic constrains by f; prohibition of illegal behaviors
of arms and deadlock-freedom for two symmetric process groups (Py, Ps, Pr, Ps, Py, P1g). Two arbiters



Chapter 6: Compositional Program Adjustment 101

ﬁ Resist Development %

‘ hand-shake Q

Exposure

Figure 54. Extended Petri net

get_r,put_e,
get_e,put_d

get_r get_e
put_d Q put_e

Figure 55. FSP Py for PLTL formula f



deadlock:
unsatisfiable
state "\

Chapter 6: Compositional Program Adjustment

put_e

get_r

Figure 56. Target Process P(displaying only labels)

tS0/ T

tget_r‘/w,{ut_d/put_d

OF;

tSl/t tS2/t

tput_e/put_e tget_e/get_e

<> tS3/ v

Figure 57. Synthesized Arbiter C

102



Chapter 6: Compositional Program Adjustment 103

Arbiter C

Development

————

===~

ﬁ________

Trans

Exposure

Figure 58. Adjusted Program

were synthesized after the compositional adjustment procedure. Fig. 4.2 shows their whole structure
(communication and synchronization among processes).

Table 11. Middle-scale Machine Control Software

Element FSP Number of States
(p1) Distribution Arm

(p2) Testing Equipment

(p3) 1st Manufacturing Equipment

(p4) 2nd Manufacturing Equipment x 2
(p5) 3rd Manufacturing Equipment
(
(
(
(
(

p7) Extracting Arm x 2
p8) 1st door x 2

p9) 2nd door x 2
p10)Conveyer x 2

W WM OO UtwUtwoo

)
)
)
5)
p6) Set-up Arm x 2
7)
)
)
0

The compositional adjustment procedure to synthesize two arbiters C'r; and Cy» is shown as follows'? .

1. Pcl red(P4 | P6 | P7 | Pg | Pg | PlO) (max_size =48 states)

2. P =red(P, | Py | Ps | Ps) (max_size = 85 states)

3. P.3g =red(P.; | P.s) (max_size = 77 states)

4. The first arbiter C'py is synthesized from f and P.; (max_size = 385 states)

12 Relabeling functions are omitted for simplicity.



Chapter 6: Compositional Program Adjustment 104

Communication and
e Synchronization between
Processes

arbiter | —— »— | arbiter
Cfl Cf2

Figure 59. Adjusted Middle-scale Machine Control Software

5. P,y =red(P. | Cy1) (max_size = 88 states)
6. P.5 = red(P.s | P.1) (max_size = 239 states)
7. The second arbiter Cys is synthesized from f and P.; (max_size = 112 states)

Here, the “max_size” means the maximal number of states which are temporally created during pro-
cess composition and reduction procedure at each step, and the worst case is max_size = 385. Without
the compositional method (i.e, by the basic adjustment), the naive process composition of 16 processes
would generate far larger number of states since the maxz_size is increasing monotonously without reduc-
tion. Table 12 shows the maximum number of states in two cases (basic adjustment and compositional
adjustment). It says that the compositional method can reduce the maximum size to about 1/150 of the
basic adjustment.

In this example, only synchronization parts of the system are modeled by FSPs. If they have a lot of
actions which are unrelated to synchronization, which are regarded as 7 actions, the process reduction
would be more effective.

Table 12. Middle-scale Machine Control Software (Effect of Process Reduction)

Adjustment Type Mazximum Temporary Size of States
Basic Adjustment 61096
Compositional Adjustment 385

5 Program Adjustment in Standard Programming Languages

This section considers briefly program adjustment in standard programming languages, instead of FSP.
Program adjustment is applicable to concurrent programming languages which have a synchronous (i.e.,
hand-shake) communication mechanism, like Ada and Occam. For example, Fig. 60 shows a program
adjustment example for the Ada program used in the motivation section (Fig. 46). Two FSPs P; and
P, are derived from the original program, then an arbiter is synthesized by the basic adjustment proce-
dure, and finally an adjusted Ada program'? is derived from FSPs and the arbiter. As you can see in

13 Some trivial declarations are omitted.



Chapter 6: Compositional Program Adjustment 105

Fig. 60, the arbiter controls the target programs using a rendezvous mechanism of Ada to remove harmful
nondeterministic behaviors (i.e., #3) mentioned in Section 1.
When applying the program adjustment to Ada, we require the following two converters.

e Ada — FSP converter: The Ada program code is divided into basic blocks. Each basic block is
assigned to one state of a generated FSP. Control flows between basic blocks are represented as
edges between these states. Synchronous communication commands are also represented as edges
with synchronization labels. Furthermore, the user can put arbitrary labels on edges which are used
to specify temporal logic constraints.

e FSP — Ada converter: A synthesized arbiter represented by a FSP is converted into an Ada task
which implements state transitions using loop and select constructs. Synchronization labels in the
arbiter are converted into accept commands, and synchronization labels in the target processes are
converted into entry call commands.

Arbiter

out 2

outl

task arbiter is
entry inl ;
entry in2 ;
entry outl ;
entry out2 ;

end arbiter ;

task body arbiter is
N integer:= 0 ;

begi n
task body plis task body p2 is | oop
begi n begin sel ect
status := NG ; status := NG : when N=O =>
arbiter.inl ; arbiter.in2 ; accept inl do N:=1; end inl ;
if seat.read=FREE then if seat.read=FREE then  When N=0 => _
seat.wite( OCCUPI ED) ; seat.write( OCCUPI ED) ; accept in2 do N:=2; end in2 ;
arbiter.outl ; arbiter.out?2 ; when N=1 =>
status := K ; status := K : accept outl do N:=3; end outl ;
el se el se when N=2 =>
arbiter.outl ; arbiter.out?2 ; accept out2 do N:=3; end out2 ;
end if ; end if ; end sel ect ;
termnate ; termnate ; end | oop :
end pl ; end p2 ; end arbiter ;

Figure 60. Program Adjustment in Ada

6 Related Works

Our previous works [Uchihira 87, Uchihira 90a, Uchihira 90b] had proposed program synthesis methods
based on temporal logic. However, these methods generated a global state transition graph based on
the assumption that all process actions are visible (not internal) and controllable. This assumption is



Chapter 6: Compositional Program Adjustment 106

restrictive, and the state transition graph often becomes huge, and its generation is expensive since it
cannot be done compositionally. In this chapter, we introduce a CCS-like compositional framework to
achieve compositional adjustment utilizing process reduction. Abadi, Lamport, and Wolper [Abadi 89]
proposed a compositional program synthesis using the CCS-like compositional framework, where failure
equivalence is adopted instead of our m7w-bisimulation equivalence. However, their approach is a top-down
program refinement, which differs from our bottom-up program adjustment approach. From another view,
arbiter synthesis can be regarded as a control problem of discrete event systems (supervisory control) which
are well surveyed by Ramadge and Wonham [Ramadge 89]. However, while these works mainly consider
safety properties, they showed no compositional synthesis methods satisfying liveness constraints. The
concurrency control of database transactions [Bernstein 81] is much related to the program adjustment.
Both are intended to remove harmful nondeterminism. The program adjustment can be regarded as the
extended concurrency control applied to compositional (hierarchical) concurrent programs.

7 Summary

We have introduced the concept of “program adjustment” into concurrent programming. Program adjust-
ment consists of partially synthesizing programs to remove bugs that are due to harmful nondeterministic
behaviors. In the proposed framework, program adjustment is defined as the synthesis of arbiter pro-
cesses which control target processes with synchronization to satisfy their temporal logic constraints. For
compositional adjustment, we have also introduced a new composition and equivalence for finite state
processes which can preserve liveness properties, because the traditional CCS framework (composition
and equivalence) is not adequate for finite state processes. These techniques are essential to the basic
and compositional adjustment.

We also remark that our method is suited for reactive systems which have uncontrollable and unob-
servable elements in its environment since they can be modeled by 7 actions in FSP.



Chapter 7

MENDEL Net: High-Level Petri Net
for Reactive and Concurrent Systems

Up to this chapter, Petri net is used as a specification language for reactive and concurrent systems.
This chapter focuses on a high-level Petri net as a rather programming language, and proposes a new
high-level Petri net, called MENDEL net, which is suited for both specifying and implementing reactive
and concurrent systems.

1 Introduction

Although many high-level Petri nets have been proposed, they are not practical enough to describe reac-
tive and concurrent systems in the detail design and implementation phases. They are mainly intended
to describe concurrent systems in the modeling phase and are lacking in several important features (e.g.
concurrent tasks, task communication/synchronization, I/O interface, task scheduling) for programming
reactive and concurrent systems. On the other hand, there are several programming languages based on
Petri nets. However, they are deeply depend on its execution environment and not sophisticated as a
modeling and specification language.

We propose MENDEL net which is a high-level Petri net extended by incorporating task, task commu-
nication/synchronization, I/O interface, and task scheduling in a sophisticated manner. MENDEL nets
can bridge the gap between Petri net as specification language and Petri net as programming language.

The remainder of the chapter is organized as follows. First Petri nets as programming languages for
reactive and concurrent systems are considered in Section 2. Section 3 introduces MENDEL nets in detail
and an example of MENDEL nets is shown in Section 4, followed by related works and a conclusion in
Section 5 and Section 6. Finally, a syntax of MENDEL nets is shown in Appendix.

2 Petri Nets as Programming Language

2.1 Programming Language for Reactive and Concurrent Systems

A practical programming language for reactive and concurrent systems requires expressive power for the
following items.

e I/0 Interface with Environment

I/0O interface with an environment (controlled objects) is necessary to define and describe inputs
(e.g. sensor information from devices) and output (e.g. control commands to devices) (Fig. 61).

Concerning inputs, there are two types, active and passive. An active input device generates an
interrupt when it has some input to be processed by an interrupt handler of the system (controller).
As a passive input device does not generate interrupt, the system (controller) should read some
sensor data by an input handler periodically or on demand. Outputs like control commands are
sent to devices by an output handler. These handlers (input, output, interrupt) are called dewvice
driver generally.

107



Chapter 7: MENDEL Net 108

Reactive and Concurrent System (RCS)

Input/Sensor I’:::::::::::N\ (T =

| | (emetHandr ) 1w !

e | -

. 1 ( Input Handler \ : 1 :
Environment I 7"} | Program |
(Controlled Objects) i ( OutputHandler "\ 1 1
| S kA H

" Device Driver 1 " 1

Output/Command S —————— 4 ———————— /

Figure 61. I/O Interface with Environment

e Concurrent Tasks and Task Communication/Synchronization

It is necessary to define concurrent tasks and describe communication and synchronization between
these tasks. There are the following mechanisms to realize communication and synchronization
[Andrews 83].

— communication/synchronization by shared memories
semaphore, event flag, etc.

— communication/synchronization by message passing
mail box (asynchronous message passing), rendezvous (synchronous message passing)

e Real-Time Task Scheduling

Most reactive systems are implemented by multi-tasking on a single processor. They require a
real-time task scheduling mechanism to decide which task should be processed by the processor at
a given moment. To realize the real-time scheduling, the following mechanisms are necessary and
are usually provided by real-time operating systems.

— Task priority

— Task dispatching

— Interrupt handling

— Real-time management (timer, periodical sampling)

e Abstraction Mechanism

A module (subroutine) and data abstraction (information hiding) are typical abstraction mech-
anisms in most programming languages. Additionally, the following abstraction mechanisms are
effective for reactive and concurrent systems.

— Abstraction and information hiding for communication and synchronization

— Abstraction and information hiding for I/O devices

2.2 Extension of Petri Nets as Programming Language

Since standard Petri nets cannot fully satisfy the above requirements for describing reactive and concur-
rent systems, it is necessary to extend a standard Petri net as follows.

e I/0 Interface with Environment

It is necessary to introduce I/0O interface with the environment into Petri net explicitly. Concretely,
special places and transitions which are linked to device drivers should be defined. For example,
Petri net with external inputs and outputs (PNIO) [Ichikawa 85] shows a typical Petri net extension
which has I/O Interface.

e Interface with Other Programming Languages

Reactive and concurrent systems may have data and numerical processing parts. It is difficult to
extend Petri net to manipulate directly these parts. Therefore, the practical solution is to introduce
interfaces with other programming languages for data and numerical processing.



Chapter 7: MENDEL Net 109

e Concurrent Tasks and Scheduling Mechanism

Although a Petri net has concurrency in itself, the granularity of its concurrency is too small, that
is, transition-level. A module-level concurrency (i.e., task, process) should be introduced into Petri
nets. Moreover, a scheduling mechanism which controls these tasks should also be expressed within
the extended Petri nets.

e Real-Time Extension

To introduce real-time into Petri nets, there are several approaches.

— Time delays are associated with transitions and/or places. These models include timed Petri
nets and stochastic Petri nets [Marsan 86].

— A global clock is introduced, and then, time stamps are attached to tokens, which are used to
describe transition conditions and actions [Bellettini 93].

— Timers are prepared as built-in subnets, that is, interfaces with the timers are introduced into
Petri nets.

e Individual Tokens and Hierarchical Net Structure

By extending tokens to possess individual attributes and values (we call them individual tokens), it is
possible to express high-level enabling conditions and actions accompanying transitions. Moreover,
it is possible to fold several symmetric nets into a single net by means of individual tokens. On the
other hand, hierarchical net structure (e.g., some subnets can be represented by one macro-place
or macro-transition) is necessary to design large-scale systems. These individual tokens and net
hierarchy are regarded as abstraction mechanisms. Several extended Petri nets have been proposed
in which these mechanisms are available. Generally, they are called high-level Petri nets.

2.3 Petri-Net-Based Programming Languages

In the field of sequential control, programming languages based on Petri nets are popular, and several
languages have been proposed. Some are widely used as languages for programmable logic controller
(PLC) in the industry. Individual languages are introduced briefly below.

e SFC

Traditionally, ladder charts and function blocks are used as programming languages for PLC. How-
ever, these languages are structurally flat, and difficult to maintain when the program becomes
large. In order to overcome this problem, it is effective to introduce a state-transition-based struc-
ture (e.g. Petri net) into ladder charts and function blocks. Sequential Function Chart (SFC)
[TEC 1131-3] is a popular programming language for PLC, which is originally based on Petri nets.
SFC has interfaces with ladder charts and function blocks. These ladder charts and function blocks
are used to describe transition conditions, actions, and I/O interface. SFC has been standardized
by International Electrotechnical Commission (IEC).

e High-Level SFC

Since SFC standardized by IEC is very basic, several extensions have been done by each PLC
provider. For example, Instrument Flow Chart (IFC) [Kojima 91] is a high-level SFC for plant
control systems (i.e., chemical plants and waterworks and sewage treatment plants), which has the
following extensions.

— Multi-tasking mechanism

— Domain-specific macro notations

e MFG/PFS

MFG/PFS [Miyagi 88] is a Mark Flow Graph (MFG) based programming language for control
systems for discrete event production systems (DEPS). MFS is a Petri-net-based language which
has the following additional features.

— Specific Tokens: Tokens represent “items” (material, work pieces, etc.) of DEPS.



Chapter 7: MENDEL Net 110

— I/0 interface: Input and interrupt handlers are represented by specific transitions, and output
handlers are represented by specific places.

— Modularity: A subnet-oriented modularity called “activity” is introduced which means a single
production operation of DEPS.

Production Flow Schema (PFS) is a macro representation of MFG which can support stepwise
refinement in designing and programming.

e C-net/SCR

Control-net (C-net) is a visual programming language for sequential control which is based on a
safe coloured Petri net. In C-net, some control program fragments including I/O interface with the
environment can be described in each place, which are called place procedures. Hence, a net structure
of C-net represents a transaction control program where each transaction consists of several place
procedures. Station Controller (SCR) [Murata 90] is a programming and executing environment
which includes a C-net editor, a C-net interpreter, and an execution monitor. The C-net interpreter
supports multi-task processing in which each task is described as a C-net.

o K-NET

K-NET [Nagao 92] is a programming environment for Flexible Manufacturing Systems (FMS). K-
NET adopts a hierarchical high-level Petri net in which enabling conditions of transition and place
procedures can be specified by the following user-defined functions and logical I/O functions.

— user-defined function: The user can define functions with C language which are used in
enabling conditions and place procedures.

— logical I/O function: Logical I/O functions are also used in enabling conditions and place
procedures. In the logical functions, each atomic proposition (logical I/O name) is linked to
some physical device.

The K-NET programming environment consists of editor, simulator, C program generator, monitor,
and document generator. Petri net descriptions in K-NET are translated into C programs by the
C program generator and compiled and executed by factory computers.

2.4 High-Level Petri Net as Programming Language

Several high-level Petri nets and tools have been proposed, which include Coloured Petri Nets (CPN) and
its tool (DESIGN/CPN) [Jensen 92, Jensen 95], Predicate/Transition Nets [Genrich 81] , and Algebraic
Petri Nets [Reisig 91] . CPN (DESIGN/CPN) introduces hierarchy constructs into nets to enable a large-
scale system description. Although these high-level Petri nets provide sophisticated modeling ability, they
cannot be used as a programming (implementation) language for reactive and concurrent systems as they
are. Principally, the following extension should be done according to Section 2.2.

e I/0 Interface with Environment
e Concurrent Tasks and Scheduling

Since an introduction I/O interface is easy, introduction of concurrent tasks and scheduling mechanism
is essential. Hierarchy (module) constructs which these high-level Petri nets provide are subnet-oriented;
that is, a part of the net (subnet) is regarded as a hierarchical unit and reduced to one node. This subnet-
oriented hierarchy (module) is inadequate to represent concurrent tasks because it does not concern
module-level concurrency. Reactive and concurrent systems require task-oriented modules and module
composition mechanism as provided in the process theory (e.g., CCS, CSP, ACP). Furthermore, task
scheduling cannot be specified explicitly within the framework of these high-level Petri nets.

On the other hand, there are some programming languages (C-net, K-NET) based on high-level Petri
nets as mentioned in the previous section. Since they deeply depend on execution environment, they are
not sophisticated as specification languages. For example, multi-tasking of SCR is specified as a system
configuration outside C-net.

The gap between Petri net as a specification language and Petri net as a programming language is
a serious problem in the Petri-net-based software development process. In the next section, we propose
MENDEL net to bridge this gap.



Chapter 7: MENDEL Net 111

3 MENDEL Net

A MENDEL net is a high-level Petri net for both specifying and implementing reactive and concurrent
systems. In particular, MENDEL net adopts process-oriented hierarchy and scheduling mechanism by
two-level nets, which allows the concurrent tasks, task composition, synchronous/asynchronous commu-
nication between them, and task scheduling to be explicitly represented in its model'* . By this feature,
MENDEL net is distinguished from other high-level Petri nets as a specification language (e.g., CPN)
and as a programming language (e.g., C-net).

A MENDEL net has the following properties in addition to the standard Petri net.

e four types of places (state element, slot, flag, and port), and port attributes,

e logic program description of transition conditions and actions,

e I/0 interface,

e process-oriented net hierarchy,

e two types of communication mechanisms (synchronous and asynchronous) between processes,
e real-time scheduling mechanism by two-level nets, and

e several macro representations.

The above properties not only make MENDEL nets powerful enough to describe most reactive and
concurrent systems but also make it possible to automatically retract a skeleton of the MENDEL nets
to be used for a net analysis phase (verification and adjustment). MENDEL nets are designed to handle
detailed descriptions as well as skeleton-level analysis. The above properties are explained in detail in
the following subsections. MENDEL net has both graphical and textual representation. The graphical
form is intuitive, but not perfect (i.e., only skeletons are shown). In the following explanation, both
representations are used complementarily.

3.1 Place

The places and transitions of standard Petri nets are very general and can have a wide variety of meanings.
From the viewpoint of reactive and concurrent programs, places are classified into four types (state
elements, slots, flags, and ports) as shown in Fig. 62.

initial
assignment :attribute

:attribute

State

element slot flag port

Figure 62. Four Types of Places

e state element: A place which represents the local state of a system. This type of place has at
most one token (i.e. it is safe). If the place has one token, it means that the system stays in the
local state (called “the state element is active”). Otherwise, it means that the system does not
stay in the local state (called “the state element is inactive”). The state elements are graphically
represented by circles. Initial assignment of active state elements is represented by arrows starting
from bold dots.

14 MENDEL net uses a term process instead of task.




Chapter 7: MENDEL Net 112

e slot: A place that represents data and database on a static storage. This type of place has
constantly one token. The slots are graphically represented by horizontal bars similar to the data
stores in Data Flow Diagram.

e flag: A place that represents a Boolean variable on a static storage. If the place has a token, the
flag is true, otherwise false. The flags are often used for process synchronization, that is, used as
event flags. The flag is graphically represented by combination of two horizontal bars and a circle.

e port: A place that represents an infinite buffer necessary for modeling data flow and asynchronous
communication. Furthermore, the port may have several attributes which are used as indexes of
tokens. For example, a token pushed with an attribute :att can be popped with :att. Each index
organizes a FIFO queue. The ports are graphically represented by ellipses.

This classification produces informative structures utilized in Petri net design, analysis, understanding,
and code generation. These four types of places are textually declared as follows.

states([<state_element_name>,...],[<initial_state_element_name>,...]) ;
slots([<slot_name>(<initial_value>),...]) ;
flags([<flag_name>(<initial_value>),...]) ;
ports([<port_name>(<initial_buffer>),...]) ;

Example 12 (Place Declaration)

states([s1,s2,s3],[s1]) ;
slots([slot1(10),slot2(ok)]) ;
flags([f1(true),f2(false),f3(true)]) ;
ports([p1([]),p2([1,1,2]1),p3([1D1) ;

3.2 Transition

In MENDEL net, the transition is called a method for historical reasons. A method is graphically
represented by a rectangle. The method’s firing conditions and actions are described in detail by the
inscription language based on a logic programming language LPL'® . Therefore, a MENDEL net is a kind
of high-level Petri net, where the individual tokens are represented in logic program terms (atom, integer,
logical variable, and list), and the conditions and actions are described with guards and actions of LPL
clauses, respectively. The textual form of a method follows:

method (<method_name>, <exchange_term>,<input_list>,<output_list> ) :-
<guard> | <action> ;

<guard> ::= <LPL predicate>, <LPL predicate>,
<action> ::= <LPL predicate>, <LPL predicate>,

The exchange_term is used for synchronous communication which is described later. The input_list
and the outputlist mean a list of input places and a list of output places of the method, respectively.
As the slot and port have individual tokens, they are described in the form: (slot_name)({term)) and
(port_name)((term)). Regarding ports, attributes can be used to identify individual tokens in the form:
(port_-name) : (attribute)((term)). In MENDEL net, there is no weight function associated with arcs, and
thus, during firing, just one individual token is taken from an input port and just one token is delivered
to an output port. The propagation of token information is done by unification of logic program terms
of tokens in the same manner as in Prolog. In (guard), only LPL predicates which have no side-effect
are available.

A firing rule of the MENDEL net is defined as follows.

Enabled Method Search: Search all enabled methods satisfying the following conditions.

e All input state elements of the method are active.

15 Tn MENDELS ZONE, the concurrent logic programming language K1 [Ueda 90, Chikayama 92] is actually used as a
inscription language. However, we can regard the inscription language as Prolog because concurrency of KL1 does not
play an important role in MENDEL net. Here, we call it simply Logic Programming Language (LPL).



Chapter 7: MENDEL Net 113

e All input flags of the method coinside with Boolean value of flags. (flag <> true, -flag <>
false)

e Each term of the input slot is successfully unified with the term described in the method.
When the term of the method is variable, the value of the input slot term is assigned to the
variable, and then is referred in the guard and action part.

e Each input port has at least one token. When the port has attributes, there is one token with
the same attribute that the method specifies. Each term of the token is successfully unified
with the term described in the method. When the term of the method is variable, the value
of the input port term is assigned to the variable, and then is referred in the guard and action
part.

e The guard condition is true for the assigned variables.
Method Selection: When there are plural enabled methods, select the upper one in the program text.
Method Execution: A selected method is executed as follows.

e Evaluate an action part of the method.
e Make all input state elements inactive, and make all output state elements active.
e Make Boolean value of flags coinside with the output flags. (flag < true, —-flag < false)

e Write values evaluated in the action part on each output slot.

Pop up the unified token from every input port, then push one token with the value evaluated
in the action part into every output port.

A method will be briefly explained by the following example.

Example 13 (Method (Fig. 63))

method (move, _, [ready,x(N1),y(M1),type:job(ID)], [busy,x(N2),y(M2),ack(A)]) :-
N1>0, M1>0 | N2 := Ni1+1, M2 := Mi+1, A=ok(ID) ;

o) @~
type
;job [
X

<|

move

ack

o Q,,

Figure 63. Example of Method

In this method example, the method mowve is enabled if the state element ready is active, there is
at least one token with an attribute job in the port type whose term can be unified with a variable 1D,
the guard (N1 > 0 and M1 > 0) is satisfied where terms N1 and M1 are copied from the slots x and
y. When the method move is executed (fired), the body (N2 := N1+ 1,M2:= M1+ 1,A = ok(ID))
is evaluated, the state element ready becomes inactive and the state element busy becomes active, the
evaluated terms N2 and M2 are written in the slots x and y, and the token is removed from the port
type and a token whose value is ok(ID) is pushed into the port ack.



Chapter 7: MENDEL Net 114

3.3 I/O Interface

In MENDEL net, I/O interface with the environment is realized by assigning device drivers to distin-
guished flags, slots, and ports (called I/O flags, I/O slots, and I/O ports). Note that state elements
are not available for I/O interfaces. These distinguished places are graphically represented by double
lines of the original shapes as shown in Fig. 64. The driver assignment is done using logical addresses
io_tag$(logical .address) which indicate physical I/O addresses or program pointers of the driver pro-
grams. Actual device drivers are implemented as physical I/O addresses and driver programs which are
dependent on the hardware. The ports of Fig. 64 are declared using io_slots, io_flags, and io_ports
textually as follows. In this example, in and out mean I/O mode.

Example 14 (I/O port Example)
I/0 slot and port in Fig. 64 are defined textually as follows.

io_slots([handl(io_tag$addl,out)]) ;
io_ports([hand2(io_tag$add2,in)]) ;

I/0 slot (out) I/O port (in)
------------- handl |
v
io_tag$addl io_tag$add2
Hardware

Figure 64. Example of I/O Slot and Port

3.4 Process-Oriented Hierarchy
3.4.1 Overview

In order to enable large-scale system description, it is necessary to introduce module constructs into
Petri nets. Many practical high-level Petri nets provide module constructs. However, most of them are
classified into subnet-oriented hierarchy, that is, a part of net (subnet) is regarded as a hierarchical unit
and reduced to one node. This subnet-oriented module is inadequate to represent concurrent processes
and process composition of reactive and concurrent systems. Therefore, we propose process-oriented
hierarchy.

The hierarchical unit of MENDEL nets is a process (i.e., task). A process may consist of several
subprocesses hierarchically. While transitions of each process are executed sequentially, the process can
run concurrently according to the scheduling mechanism which will be mentioned in the following section.
The interaction between hierarchical units is defined as synchronous and asynchronous communication
between processes. The process interface is a set of external ports and external methods. A process can
push/pop tokens to/from external ports of subprocesses. Since ports are infinite buffers, this interaction
realizes asynchronous communication. On the other hand, a process can synchronize its own methods
with the external methods of subprocesses (i.e., fire these methods simultaneously only if they are all
enabled). Since data exchange is available using the ezchange_term, this interaction realizes synchronous
communication. We emphasize that this process-oriented hierarchy can directly specify a compositional
structure of well-researched concurrent process theories, such as CCS, ACP, CSP, and LOTOS. Unlike
process theories, MENDEL net allows only fixed composition, and therefore dynamic process creation is
unavailable.



Chapter 7: MENDEL Net 115

Another characteristic feature is indirect communication between processes. In MENDEL net, pro-
cesses can communicate directly only with their parent processes. Communication between processes at
the same level is realized indirectly by way of the parent process. This restriction is introduced to secure
the benefit of process reuse, since direct communication makes processes strongly interdependent.

3.4.2 Graphical Representation

plug mo1 mo1
processl N s01
-
po1 pOl
{1
processl """ moz
s01 m
P2
p02
s02 s02

. mO03 O
. P02
Extensive Form o O——@ Reduced Form

Figure 65. Process-Oriented Hierarchy

Figure 65 illustrates a simple example of a MENDEL net including a process-oriented hierarchy. The
external ports and external methods are represented by bold ellipses and bold rectangles, respectively.
These external ports and external methods are called plugs which mean interfaces with the parent process.
The communication between processes is represented by linking dotted lines between places/methods.
These dotted lines are semantically interpreted as transition fusion and place fusion (Fig. 66) introduced
in [Christensen 92]. In the transition fusion, fused transitions can exchange data with each other by using
(exchange_term). From the viewpoint of the parent process, a subprocess is graphically represented by

a large circle.
al \a4 / ab al\ aiyas
/ a2 \a3 a6 a2 / \aG
a3

o Nt fo o\ | %o

methodl presssns] method2 imethod1+2

Jo \s e SARY

Figure 66. Place and Transition Fusion

iy

The various communication mechanisms can be realized by place and transition fusion as follows.



Chapter 7: MENDEL Net 116

e flag fusion: event flag, semaphore,
e port fusion: mail box,
e method fusion: rendezvous.

Since transition fusion (method fusion) realizes synchronous communication and place fusion (flag and
port fusion) realizes asynchronous communication, MENDEL net can provide two types of communication
mechanisms.

3.4.3 Textual Representation

A process textually consists of the following four parts.

e Declaration part (dec:{...})
declaration of places (state elements, slots, flags, ports)

e Body part (body:{...})
declaration of subprocesses (<process_name>(<id>,<method_list>,<place_list>))

e Method part (meth:{...})
definition of methods

e Junk part (junk:{...})
definition of LPL clauses used in methods

A syntax of a process is defined as follows.

process <process_name>( <external method_list>,<external_place_list>):
dec:{...} ;

body:{...} ;
meth:{...} ;
junk:{...}

Place and transition fusion are specified by argument matching. The following MENDEL net is a
textual form of Fig. 65. In this example, ports p01 and p02 of the parent process “main” are fused with
ports pl and p2 of the process “processl” respectively, because these arguments are matched in the body
part. In the same manner, a method m02 of “main” is fused with a method m2 of “processl”.

process main([]1,[1):{

dec:q{
ports([p01([1),p02([1)1) ;
states([s1,s2],[s1]) ;

s

body: {
processi(pidl, [m02], [p01,p02]) ;

s

meth:{
method (m01,_, [1, [p01(v1)]) ;
method(m02,v2, [s01], [s02]) ;
method (m03, _, [p02(X)],[1) ;

};

junk:{} ;

}.

process processi([m2], [p1,p2]):
dec:q{
ports([p1(_),p2()]1) ;
states([s1,s2],[s1]) ;
s
meth:{
method(m1,_, [s1,p1(X)]1,[s2]) ;
method (m2,X, [s2], [s1,p2(X)]) ;
}
junk:{} ;
}.



Chapter 7: MENDEL Net 117

The above example shows communication between a parent process and a child process. Communica-
tion between processes at the same level (first cousin processes) is described as follows. In this example,
the method m1 play the role of communication channel. In the body part, each process is given different
process identification (e.g., pidl, pid2) which makes it possible to create plural instances of the same
process.

process main([1,[]1):{
dec:q{
ports([p1([1),p2([1D1) ;
} s
body: {
processi(pidi, [1, [p1]) ;
processi(pid2,[]1, [p2]) ;
} s
meth:{
method(m1,_, [p1(X)]1, [p2(X)]1) ;
};
junk:{} ;
}.

3.5 Process Scheduling Mechanism

In specifying and programming for actual reactive and concurrent systems, a scheduling mechanism plays
an important role. Without information about the scheduling mechanism, simulation and analysis of the
model may differ from the actual situation and become imperfect in the timing aspect, and usable only
for checking the functional aspect. To introduce the scheduling mechanism into the Petri net model,
there are three approaches.

e all-in-one type: Both an application and a scheduler are described in the same Petri net model.

e separation type: An application is described by Petri nets, and a scheduler is described by
another model. While the interface with the scheduler may be provided in Petri nets, the scheduling
mechanism itself is out of the Petri net model. Most Petri-net-based programming languages (e.g.,
C-net/SCR) are of this type.

e two-level type: An application and a scheduler are described in two Petri nets of different levels;
base-level net and meta-level net. A base-level net describes an application and a meta-level net
describes a scheduler.

Since a Petri net is not only used to specify concurrent programs but also suitable for describing
schedulers [Vallejo 94], we adopt the two-level net approach for MENDEL net (Fig. 67). Merits of the
two-level net include model consistency as compared with the separation type and easiness of description
and maintenance as compared with the all-in-one type.

scheduling commands
~ through meta-places '

Base-Level » Meta-Level
MENDEL net MENDEL net
(Application) | (Scheduler)

./ process status information \.
shared by both levels

Figure 67. Two-Level MENDEL Nets

To specify interaction between base-level net and meta-level net, we introduce the notions of meta-
place and token sharing.

e meta-place: A base-level net has special places, called meta-places, which are shared with a meta-
level net by place fusion, and used to communicate with a meta-level net. A token that is put into
a meta-place in the base-level net is taken out and used in a meta-level net. These tokens represent
scheduling commands in MENDEL nets.



Chapter 7: MENDEL Net 118

e token sharing: Some tokens in a base-level net can be shared with a meta-level net. Concretely,
a meta-level net can change information of shared tokens which are referred to in a based-level net.
Shared tokens are used to change and refer to the status of processes from both a base-level net
and a meta-level net.

In the following sections, the process scheduling mechanism using two-level nets, token sharing, and
meta-place is described in detail.

3.5.1 Base-Level MENDEL Net

Since a base-level MENDEL net has already been described in the previous sections (3.1 — 3.4), we explain
several scheduling commands (tokens) sent from the application (base-level net) to the scheduler (meta-
level net) via meta-places. Primitive scheduling commands include sta_prc, ter_prc, and sus_prc
which are also used in the real-time operating system u-ITRON [Fukuoka 91] are briefly explained as
follows.

e sta_pre(Proc,Prio): start the process at a processor Proc with a priority Prio.
e ter_prc: terminate the process.

e sus_prc: suspend the process.

One meta-place is established corresponding to each process. In other words, each process has one
meta-place which accepts scheduling commands from other processes or from the process itself. We call
the meta-place process place. Graphically we use a large circle representing a process for its process place
(Fig. 68).

process

place processl

————————— process2 ter_pr

:sta_pre(1,2)

Figure 68. Process Place and Scheduling Commands

A process place is textually identified as (process_id). When sending commands to itself, self is used
instead of (process_id). For example, a MENDEL net of Fig. 68 is textually described as follows. In this
example, pl represents (process_id).

process processi([1,[1):{
dec:{}
body: {
process2(p1,[1,[1) ;
}
meth: {
method(ml,_,[],[pl:sta_prc(1,2),self:ter_prcl) ;
}
junk:{}

3.5.2 Meta-Level MENDEL Net

A scheduler is described as a meta-level net. A meta-level net manipulates tokens representing process
status, called process status token, which are initially created by the sta_prc command. When the sta_pre
command is sent to a process place in the base-level net, all initial state elements of the corresponding



Chapter 7: MENDEL Net 119

process are marked with tokens which have a process status information PSI. At the same time, the
corresponding process place in the meta-level net has a process status token which has the same PSI.
It is token sharing; tokens in initial state elements in the base-level net and a token in a process place
in the meta-level net share the same PSI. While usual individual tokens have values, these tokens have
references to the shared PST (Fig. 69).

usual token shared token
|refer‘(;nce | | refer‘('ence |
|va;ue |

Figure 69. Shared Token

There are the following process statuses in PST.

e PST.meta: process status changed by a meta-level net
e.g., PSI.meta € {active, ready, wait, suspended, wait_suspended, dead}

e PSTI.base: process status changed by a base-level net
e.g., PSI.meta € {enabled, disabled}

A process scheduler (meta-level net) can change process status (PSI.meta), which indicates a place
with the corresponding process token. In the base-level net, only active tokens (i.e., tokens PST of which
is active) are available at method firing. As dead tokens can never be changed to active unless the process
is restated again, they can be removed from the base-level net. On the other hand, a base-level net can
change process status, enabled and disabled. When there are enabled methods regardless of PSI.meta,
a process status becomes enabled, otherwise it becomes disabled. This status information (enabled or
disabled) is used for process dispatching in the scheduler.

For example, a simple scheduler is described in Fig. 70 which is based on subset of u-ITRON for a
single processor. A place process_if is an interface with a base-level net which forms place fusion with
process places. Functional inscriptions of transitions are described by LPL as follows.

e t1 (dispatch): The scheduler selects a process which is in the ready place and has the highest
priority and moves it to the active place.

e t2 (preempt): When a process has just become in the ready place and has higher priority than
the process in the active place, the scheduler exchanges status of these processes.

e t3 (wait): When the active process has no enabled transitions in the base-level net (i.e., PST.base =
disabled), it is moved from the active place to the wait place.

e t4 (ready): When the waiting condition of the wait process is satisfied in the base-level net (i.e.,
PS1.base = enabled), it is moved from the wait place to the ready place.

e t5 — t18: omitted.

3.6 Timer
Concerning real-time extension of Petri nets, we adopt timers prepared as a built-in subnet,
sys$timer (<tid>, [1, [op,upl) .

Here, a setting/resetting port (op(set),op(reset)) and a referring flag (up) mean the interface of the
timer.



Chapter 7: MENDEL Net 120

T T

{ )]
N\ y A

process_if

ter;pfc(i:’)

Figure 70. Simple Scheduler Example (u-ITRON)

process process([],[1){
dec:{
states([s1,s2],[s1]) ;
ports(Lop([1)]1) ;
flags([upl) ;
};
body: {
sys$timer(t1, [1, [op,upl) ;
1
meth:{
method(ml,_, [s1], [s2,op(set)]) ;
method (m2,_, [s2,up], [sl,op(reset)]) ;
}
junk:{}
}.

3.7 Macro Notations

Generally speaking, actual descriptions by Petri nets are often troublesome. Macro notations are very
useful in practice. Here, one of the macro notations, array representation, is introduced.

Array Representation Occasionally, a reactive and concurrent system contains several subprocesses
having the same structure. For example, a lift system may have several request buttons corresponding to
every floor. It is tedious to individually write all button processes. To overcome this problem, coloured
Petri nets represent these subprocesses as separate coloured tokens on a single net structure. However,
this approach is not suitable for the process-oriented hierarchy, because a process is a hierarchical unit
and tokens should not be a process. Therefore, a MENDEL net provides an alternative: an array to



Chapter 7: MENDEL Net 121

represent several subprocesses with the same structure, in the same manner as the CSP-based concurrent
programming language Occam. Each arrayed process can be explicitly treated as a separate computing
unit that can run on a separate CPU. Figure 71 shows a graphical array representation of N identical
processes, whose textual form follows.

process{I}(m{I})(in{I})(out{I}) =TI :{1..N}

O on {lI}

Figure 71. Graphical Representation of Array

4 Simple Example

A simple example of a MENDEL net (base-level net) is shown in Fig. 72, which describes a part of a
control program of a telephone terminal. This MENDEL net specifies how the phone terminal becomes
connected. The MENDEL net consists of five processes (main, phone, calling, hook, and ring), where
process main activates other processes by sending sta_prc commands to process places. In these processes
calling and hook, 1/O ports call_driver and up_driver are defined which detect input events from the
environment, calling and taking up the receiver, respectively. After detecting calling, a process phone
receives a token from a port call of the process calling and makes a flag bell of a process ring active. In
succession, the process ring sets an output slot bell_driver on and off to ring a bell intermittently using
a built-in subnet sys$timer. Finally, after detecting taking up the receiver, the process phone makes the
flag bell inactive, then the process ring stops ringing the bell.

/* main */
process main([],[]1):{
dec:{
states([start], [start]) ;
ports([call([1),up([D]) ;
flags([bell(false)]) ;
};
body:{
phone(p1, [], [call,up,bell]) ;
calling(p2, ], [calll) ;
hook(p3, [1, [upl) ;
ring(p4,[1, [belll) ;
}
meth:{
method(m1, [start], [pl:sta_prc(1,4),p2:sta_prc(1,2),p3:sta_prc(1,1),pd:sta_prc(1,3)) ;
};
junk:{};

/* phone */
process phone([],[call,up,bell]):{
dec:{



Chapter 7: MENDEL Net 122

:sta_prc
ml | .
start | 'sta_prc p2(calling)
( N
p4(ring) 'sta_prc call_driver
( ‘ O
sys$timer 'sta_prc

connnected

HA N H
bell_driver L )i —up

Figure 72. Example (Telephone Terminal)




Chapter 7: MENDEL Net

}.

ports([call(_),up(_)]1) ;
flags([bell(_)]) ;

states([standby,ringing,connected], [standby])

};
body:{};
meth:{

method(t1,_, [standby,call(on)], [ringing,bell]) ;
method(t2,_, [ringing,up(on)], [connected,-bell]) ;

}
junk:{};

/* calling */
process calling([],[call]):{

}.

dec:{

io_ports([call_driver(io_tag$call,in)]) ;

ports([call(_)]) ;
}
body:{};
meth:{

};
junk:{};

/* hook */
process hook([], [up]):{

}.

dec:{
io_ports([up_driver(io_tag$up,in)]) ;
ports([up(_)]1) ;

};

body:{};

meth:{
method(t1,_, [up_driver(up)], [up(on)]) ;
method (t2,_, [up_driver(_)1,[1) ;

};

junk:{};

/* ring */
process ring([], [bell]):{

5 Related Works: Petri Nets and Hierarchy

dec:{

io_ports([bell_driver(io_tag$bell,out)]) ;

ports([top([1)1) ;
flags([bell(_),tup(false)]) ;
states([s_off,s_on] [s_off]) ;
I
body:{
sys$timer (tim, [1, [top,tupl) ;
I
meth:{

method(t1,_, [s_off,bell], [s_on,top(set),bell_driver(on)])
method (t2,_, [s_on,up]l, [s_off,bell_driver(off),top(reset)]) ;

};
junk:{};

method(t1l,_,[call_driver(_)],[call(on)]) ;

s

s

123

Several hierarchies in Coloured Petri Net (CPN) were proposed in [Huber 90]. They introduced the
notion of pages (i.e., net modules), substitution transitions and substitution places, where a substitution
transition/place is a macro node and represents a subpage which contains the detail of how it actually
performs the activity. It means subnet-oriented net hierarchy. Only the substitution transition is adopted
in DESIGN/CPN and this version is usually called Hierarchical Coloured Petri Net (HCPN). Modular
Coloured Petri Net (MCPN) [Christensen 92] extends HCPN by incorporating both place and transition
fusion. A more flexible form of transition fusion was also proposed by extending CPN with synchroniza-
tion channels [Christensen 94]. MCPN and CPN with synchronization channels are intended to represent
a process-oriented net hierarchy, which is similar to the hierarchy of MENDEL nets although they have



Chapter 7: MENDEL Net 124

been proposed apart from MENDEL net. Furthermore, Object Petri Net (OPN) [Lakos 95] has not only a
process-oriented and subnet-oriented net hierarchy but also a token-oriented net hierarchy, where tokens
are allowed to be subnets encapsulating their own activity '® . Other approaches of process-oriented net
hierarchy include OBJSA net [Battiston 88] and Protob [Bruno 95]. OBJSA nets combine nets with alge-
braic specification techniques and support process composition by transition fusion. Process composition
by transition fusion is advantageous for compositional analysis techniques. OBJSA net is similar to LO-
TOS which combines CCS with algebraic specification techniques, where label synchronization of LOTOS
is the same as transition fusion, and G-LOTOS [Bolognesi 89, Lee 91] provides a graphical representation
with a process-oriented hierarchy of LOTOS. Protob is a high-level Petri net in which systems can be
structured according to the principles of object orientation. An object model is a system’s component
and its behavior is given by a net. Objects are enabled to communicate with other objects by interface
places. The structure of objects in Protob is a tree; a compound object contains other objects. This
compositional structure is very similar to MENDEL net. However, Protob is, if anything, a specification
language and objects in Protob do not directly correspond to concurrent processes. Compared with
these high-level nets with process-oriented net hierarchy, MENDEL nets are strongly process-oriented
because process scheduling mechanism and I/O devices can be explicitly specified within the MENDEL
net framework. In other words, MENDEL nets are intended to be a programming language rather than
a specification language.

6 Summary

This chapter considered a Petri net as a programming language for reactive and concurrent systems.
Although several Petri-net-based programming languages for reactive and concurrent systems have been
proposed, they are short of abstraction mechanisms and there is a large gap between Petri net as a
specification language and Petri net as an implementation language. On the other hand, high-level Petri
nets are lacking in several important features (e.g. concurrent tasks, task communication/synchronization,
I/O interface, and task scheduling) for programming reactive and concurrent systems. Therefore we
proposed a high-level Petri net, MENDEL net, for reactive and concurrent systems to bridge the gap
between a specification language and an implementation language.
A MENDEL net features the following properties in addition to standard Petri nets.

¢ I/0 interface,
e process-oriented net hierarchy, and
e task scheduling mechanism modeled by two-level net approach.

MENDEL nets are used as a specification and programming language in the programming environment
MENDELS ZONE.

Syntax of MENDEL Net Textual Representation

<program> ::= <process> | <program>
<process> ::=
’process’ <process_name> ’(’ <external_method_list> ’,’ <external_place_list> ’)’
2. J{J

<declaration_part> ’;’
<body_part> ’;’
<method_part> ’;’
<junk_part> ’;’

> } LA

16 There have been several proposals for combining object-orientation with Petri nets. They are classified into object inside
nets and Petri nets inside objects; in the former tokens are objects (e.g., OPN), in the latter Petri nets are used for
specifying the behavior of individual objects (e.g., HOOD nets [Giovanni91]). In the latter approach, hierarchy is not
necessarily provided by Petri nets.



Chapter 7: MENDEL Net

<declaration_part> ::=
,dec, ):) ){)
<declaration_list>

)})
<declaration_list> ::= <declaration> ’;’ | <declaration_list>

<declaration> ::=
<state_declaration> |
<slot_declaration> |
<flag_declaration> |
<port_declaration>

<state_declaration> ::=
’states’ ’(’ <state_list> ’,’ <initial_state_list> ’)’

<state_list> ::=
’[? { <state_element_name> ’,’ }* <state_element_name> ’]°’ | ’[’

<initial_state_list> ::=
’[? { <state_element_name> ’,’ }* <state_element_name> ’]°’ | ’[’

<slot_declaration> ::=
’slots’ ’(’ <slot_list> ’)’ |
’io_slots’ ’(’ <io_slot_list> ’)’

<slot_list> ::= [’ { <slot_name> ’(’ <initial_value> ’)’ ’,’ }x
<slot_name> ’(’> <initial_value> ’)’ ’]°
I )[) J]J
<io_slot_list> ::= ’[’ {<io_slot> ’,’ }* <io_slot> ’]1’ | [’ ’]’
<io_slot> ::= <slot_name> ’(’ ’io_tag’ ’$’ <logical_address>, <io_mode>

<flag_declaration> ::=
’flags’ ’(’ <flag_list> ’)’ |
’io_flags’ ’(’ <io_flag_list> ’)’

<flag_list> ::= ’[’ { <flag_name> ’(’ <initial_value> ’)’ ’,’ }*
<flag_name> ’(’ <initial_value> )’ ']’
| ,[, )])

<port_declaration> ::=
’ports’ ’(’ <port_list> ’)’ |
’io_ports’ ’(’ <io_port_list> ’)’

<port_list> ::= ’[’ { <port_name> ’(’ <initial_value> ’)’ ’,’ }*
<port_name> ’(’ <initial_value> ’)’ ']’
I )[) J]J
<body_part> ::= ’body’ ’:’ ’{’ { <process_call> ; }x ’}’
<process_call> ::= <process_name> ’(’

<process_id> ’,’
<external_method_list> ’,°’
<external_place_list> ’)’

<method_part> ::= ’meth’ ’:> ’{’ { <method> ; }* )

<method> ::= ’method(’ <method_name> ’,’ <exchange_term> °’,’

<input_place_list> ’,’ <output_place_list> ’)’ ’:

<guard> ’|’ <action>

<input_place_list> ::= [’ { <place> ’,’ }* <place> ]’ | ’[* ’]1’
<output_place_list> ::= [’ { <place> ’,’ }* <place> ]’ | ’[* ’]’
<place> ::= <state_element> | <flag> | <slot> | <port>

<state_element> ::= <state_element_name>

125

)))



Chapter 7: MENDEL Net 126

<flag> ::= <flag_name>

<slot> ::= <slot_name> ’(’ <LPL_term> ’)°’

<port> ::= <port_name> ’>(’> { <LPL_term> | <attribute> ’:’ <LPL_term> } ’)’
<guard> ::= { <LPL_predicate> ’,’ }* <LPL_predicate>

<action> ::= { <LPL_predicate> ’,’ }* <LPL_predicate>

<junk_part> ::= ’junk’ ’:’ ’{’ { <LPL_clause> ; }x* '}



Chapter 8

Petri-Net-Oriented Design
Methodology

This chapter proposes a design methodology for MENDEL nets. Although many Petri net tools have been
proposed, most tools support only drawing, simulation, and analysis of Petri nets; few tools support the
design methodology for Petri nets. While Petri nets are good final design documents easy to understand,
analyzable, and executable, it is often difficult to write Petri nets directly in an earlier design phase when
the system structure is obscure. A proposed design method makes a designer to construct MENDEL nets
stepwise and systematically using causality matrices and temporal logic.

1 Petri-Net-Oriented Design Methodology

As mentioned in Chapter 1, Petri nets are often inadequate in an early design phase when some parts
of the system structure may be obscure. Particularly, while the structures of local processes, called
elementary processes, are usually tangible and able to be easily designed, the structures of a process to
coordinate elementary processes, called coordinator process, are often obscure at first in a reactive and
concurrent, systems. Since a Petri net is a formal language and does not permit vagueness, it is difficult
to design systems from beginning to end using only Petri net.

We focus on control systems which are typical instances of reactive and concurrent systems, and then
propose a design method for them utilizing MENDEL net and additional complementary formalisms
(causality matrix and temporal logic). The causality matriz represents causality relations among system
elements. It allows vagueness (abstract level description), so a designer can stepwise refine the causality
matrix from an abstract level to a concrete level. Furthermore, draft Petri nets which are synthesized
from the causality matrix are validated using temporal logic. By doing these stepwise refinements, the
designer can construct a correct MENDEL net systematically.

The proposed design method consists of the following phases.

1. Initially elementary processes (i.e., tangible or concrete processes) which have interfaces with con-
trolled objects (environment) and manipulate them are designed by MENDEL nets.

2. Coordinators (i.e., conceptual processes) are created to coordinate elementary processes and ele-
mentary processes are interconnected with them by communication channels.

3. Coordinators are designed by stepwise refinement using the causality matrix, and MENDEL nets
are finally produced which represent these coordinators.

4. A target system which consists of elementary processes and coordinators are described by MENDEL
nets and are validated by simulation, verification, and adjustment.

The remainder of this chapter is organized as follows. Section 2 shows a typical software architecture
of control systems. The causality matrix is described in Section 3. A detail procedure of the proposed
design method is given in Section 4. Section 5 describes a MENDEL net design example for a lift system,
followed by related works and a summary in Section 6 and Section 7.

127



Chapter 8: Petri-Net-Oriented Design Methodology 128

2 Software Architecture of Control Systems

First we show a typical model of control software (Fig. 73). In this model, control software consists of
elementary processes and coordinator processes.

Elementary process: This process corresponds to some controlled object in the problem domain and
manages 1/O devices to control them. For example, in a plant control system, valves pumps, and
motors are controlled objects.

Coordinator process: This process corresponds to a set of functions required for controlling controlled
objects. This process coordinates elementary processes to accomplish these functions. The coordi-
nator may be consists of a set coordinator processes.

Controlled Objects Controller
1 N ’_E oo T )
|
OB S
| N—
(: LN
O Coordinator

e

————————————— e

EP = elementary process, D = 1/O device

Figure 73. Model of Control Software

3 Causality Matrix

The causality matrix, C=[c;;], is a type of an extended incidence matrix of a Petri net (Fig. 74), where
each entry, ¢;;, represents a causality relation between an i-th operator (i.e., method) and a j-th operand
(i.e., state element, flag, slot, port, or external method). One of unique features of the causality matrix is
its wide-spectrum property that the causality relation of each entry can range from an abstract level to a
concrete level (we call this a wide-spectrum causality relation). Table 13 shows wide-spectrum causality
relations. For example, c;1="“+" of Fig. 74 is an abstract level relation representing only existence of
relation between the operator opr! and the operand opdi; the details of the relation are not given at
this level. On the other hand, co3=“pop:X” is a concrete level relation in which the operator opr2 pops
a token from the operand opd3 and unifies the color of the token with X (i.e., X is assigned the color
of the token). A designer stepwise refines operators, operands, and causality relations from an abstract
level to a concrete level, which is regarded as a design process. The wide-spectrum causality matrix has
the following advantages compared with graphical Petri net representations.

e The binary relation in the matrix is more adequate for system element analysis in the earlier design
phase. It is much easier for a designer to decide what is a local abstract relation between every two
elements than to directly draw a rigid Petri net.

e A spread-sheet editor for the matrix can provide powerful editing abilities. Copying, eliminating,
decomposing, browsing, focusing, and checking can be implemented more easily than by a graph-
ical one. Furthermore, graphical representations are difficult to perceive without good topological



Chapter 8: Petri-Net-Oriented Design Methodology

operand | opdl opd2 opd3 opd4
state port guard body
operator external
oprl + push
opr2 in pop:X X>0 true
opr3 > + +
oprd + +
opr5 + < pp
Figure 74. Causality Matrix
Table 13. Wide-Spectrum Causality Relations
LEVEL RELATION EXPLANATION
Abstract level + some relation
blank no relation/undefined
Intermediate level (1) < input/cause
> output/effect
Intermediate level (2) sync synchronization
rw read or write from/to slot
pp pop or push from/to port
trans state transition
Intermediate level (3) insync synchronization with input data
outsync synchronization with output data
read read from slot
write write to slot
pop pop from port
push push to port
in reference of state
from transition from state
to transition to state
Concrete level KL1 KL1 code

129



Chapter 8: Petri-Net-Oriented Design Methodology 130

arrangement. Current automatic topological arrangements in Petri net tools are not yet good
enough.

e The wide-spectrum property makes backtracking easier. Backtracking is inevitable in a design
process. However, the wide-spectrum property enables the designer to manipulate only common and
consistent design documents (causality matrices) throughout the design process, which minimizes
the modification efforts in backtracking.

A concrete causality matrix can be transformed straightforward into a process of MENDEL nets. In
other words, a causality matrix is a matrix-based representation of MENDEL nets which allows vagueness
and informality. Figure 75 shows an example of straightforward transformation from a matrix to a process
of MENDEL nets. Remark that each matrix corresponds to one process and does not have a hierarchical
structure in itself, which should be represented by MENDEL nets.

operand | free busy data input output
state state slot port port guard body
operator external external
get from to write:X pop:X X>0 true
put to from read:X push:Y true Y:=X+1

< >

free

get data put

busy

Figure 75. Transformation from a Causality Matrix to a Net

4 Design Method

The proposed design method consists of four phases; design of elementary processes (Phase 1), process
interconnection and coordinator creation (Phase 2), design of coordinators (Phase 3), and validation
(Phase 4).

First, Phase 1 and Phase 2 are carried out using directly MENDEL net because elementary processes
are not so obscure. Then, the design of the coordinator whose structure may be obscure is done by
stepwise refinement using the wide-spectrum causality matrix. A procedure of the matrix refinement is
summarized as follows.

step 1: method recognition

step 2: port and slot recognition

step 3: state recognition

step 4: functional refinement (writing LPL code)

Finally, MENDEL nets are verified and adjusted using PLTL, and executed visually. Figure 76 outlines
the flow chart of the following design methodology.



Chapter 8: Petri-Net-Oriented Design Methodology

y

P1-S1: Find elementary processes

¥

P1-S2: Construct MENDEL nets

P2: Interconnect subprocesses
and create coordinator

Phase 1

Phase 2

Phase 3

P3-S1: Recognize methods

¥

P3-R1: Backtrack

P3-S2: Recognize slots and ports

¥

P3-S3: Recognize states

P3-R2: Refine

¥

P3-S4: Describe LPL code

¥

P3-S5: Generate MENDEL net

P3-R3:
Decompose
coordinator

P4-S1: Simulate

P4-S2: Verify

P4-S3: Adjust

( stop )

Phase 4

Figure 76. Design Method (Flow Chart)

131



Chapter 8: Petri-Net-Oriented Design Methodology 132

[Phase 1]

(Step 1) Find elementary processes:

Find all elementary processes whose structure is well defined, and enumerate the methods, slots,
and ports for each process. Most hardware-constrained processes are elementary. For example, cage
is one of the elementary processes in a lift system, and its methods include move_up, move_down,
open_door, and close_door.

(Step2) Construct a MENDEL net for each elementary process:

Construct a MENDEL net for each elementary process by appending the state elements and arrows
to the methods, slots, and ports listed in step 1. Then, classify each port and method as external
one which becomes a plug and is accessed from other processes or internal one.

[Phase 2] Interconnect elementary processes and create a coordinator:

Create a new process (parent process) that consists of the elementary processes (subprocesses). Inter-
connect the plugs of these subprocesses with asynchronous communication and synchronous communica-
tion. Some plugs which cannot be directly connected may remain; in this case some process is required
to coordinate them. Create a new subprocess (the coordinator) and connect the remaining plugs to it.
Note that an initial coordinator has only external ports and methods that are connected to the remaining
plugs of the elementary processes.

[Phase 3]

(Step 1) Create an initial causality matriz and recognize methods:
Create an initial causality matrix of the coordinator, in which only external ports and methods,
listed in phase 1, are filled. Then, recognize all functions (method candidates) of the coordinator
and fill them in the matrix.

(Step 2) Recognize internal ports and slots:

Judge existence of the causality relation between external/internal methods and external ports, and
fill abstract level judgment (+ or blank) in the matrix. Stepwise refine these causality relations
into a less abstract level. This stepwise refinement helps a designer to recognize additional internal
ports and slots which are necessary to refine the causality relations.

(Step 3) Recognize state elements:

Find logical state elements of the coordinator (e.g., active, sleep, waiting, busy), and add them
and fill causality relations in the matrix. In the causality relation, each method should be decided
whether it is enabled or not in each logical state. In addition, consider the partial ordering of
method firing, and introduce dummy control state elements to put method firing in order.

(Step 4) Describe method inscriptions:
Describe the detailed condition and action for each method by logic programming language. At
this point, the causality matrix reaches its most concrete level.

(Step 5) Generate MENDEL net processes:

Finally, generate MENDEL net processes of coordinators straightforward from the most concrete-
level matrices.

In addition, the following design rules are applicable during Phase 3.

(Rule 1) Cause design backtracking:

When any design failures or unexpected functions that require structural rearrangements are de-
tected, go back to any previous steps in Phase 3.

(Rule 2) Refine methods, slots, and ports:

Decompose and modify methods, ports, and slots if they have compound functions or meanings.

(Rule 3) Decompose coordinators:

Decompose coordinators if the coordinator becomes too large or too complex.



Chapter 8: Petri-Net-Oriented Design Methodology 133

[Phase 4] Validate constructed MENDEL nets:

(Step 1) Simulation:
Execute MENDEL net by a simulator, and confirm that it works well (i.e., it satisfies your require-
ments).

(Step 2) Verification:
Specify timing constrains for the target system using PLTL which are derived from the original
informal specification. Then, verify and analyze whether the constructed MENDEL net satisfies
these PLTL constraints (e.g., deadlock-free, interlock).

(Step 3) Adjustment:

If the MENDEL net does not satisfy all the specified PLTL constraints, the designer must adjust
the MENDEL net to satisfy them, manually using a MENDEL net editor or automatically using
the program adjustment mechanism described in Chapter 6.

5 Example: Lift Control System

5.1 Problem

This problem is a revised version of the popular problem presented for the 4th International Workshop
on Software Specification and Design [IWSSD 87].

List Control System:
One lift is to be installed in a building with M floors. The problem concerns the logic to move
cages between floors according to the following constraints:

e The cage has a set of buttons, one for each floor. These illuminate when pressed and cause the
cage to visit the corresponding floor. The illumination is canceled when the corresponding
floor is visited by the cage, or when the button is pulled out (canceling the request).

e Each floor has two buttons, one to request an up-lift and another to request a down-lift.
These illuminate when pressed. The illumination is canceled when a cage visits the floor and
is either moving in the desired direction, or has no outstanding requests. The illumination
may also be canceled by pulling the button out (canceling the request).

5.2 Observation of actual design process

The actual design process of the lift system will be traced using MENDELS ZONE. Here, “P;-S;:” means
Step j of Phase ¢; it is an index for the design methodology.

(1) P1-S1: This lift system has four elementary processes: cage, button, floor_button_panel, and
cage_button_panel.

(2) P1-S2: The constructed MENDEL nets of these elementary processes are shown in Fig. 77.
floor_button_panel, and cage_button_panel are constructed as parent processes of buttons. How-
ever, since they are very physical and require no coordinators, they ware regarded as elementary
processes. Remark, ¢ = cage, f = floor, req = request, can = cancel, vis = visit.

(3) P2: The top level lift_system is constructed by interconnecting 3 subprocesses: cage, floor_button_panel
and cage_button_panel. Here are all plugs (open, up, down, c_req, c_can, c-vis, f-req, f-can, [-vis)
remain unconnected. Therefore we create a coordinator process, and connect remaining plugs to
it (Fig. 78).

(4) P3-S1: The initial causality matrix is created. It has 6 external ports and 3 external methods
corresponding to the plugs initially connected in (3). We find the following functions (method
candidates) of the coordinator and enter them in the matrix:

e open: open the door of the cage when the cage visits the requested floor.



Chapter 8: Petri-Net-Oriented Design Methodology 134

cage

button
open up
on
off Y
-
close down
req
can
req can
1 vis
button
req w can
| I ]
floor_button_panel cage_button_pane

Figure 77. Elementary Processes of Lift Control System

req
can
f_vis
f_can ]
up M “—\/ floor_
SRR B . L button_
panel
- O OC ] [i]
H i < /
down
— ) L1 f_req
cage coordi
9 nator )
- C_Vis —
open CEE = cage_
.............................. _ button_
c_can
panel

c_req

Figure 78. Process Interconnection and Coordinator Creation



Chapter 8: Petri-Net-Oriented Design Methodology

e up: move up to the target floor.

e down: move down to the target floor.

at the requested floor.

c-can | f-can : delete the canceled floor from the request queue.

c-req | f-req: accept requests from the cage_button_panel | floor_button_panel.

135

c-vis | f_vis : acknowledge the cage_button_panel /| floor_button_panel when the cage arrives

(5) P3-S2: Causality relations are entered at the abstract level. We recognize 3 internal slot candi-
dates (req_que, current_f, target_f) and one additional method candidate (start), and add them to
the matrix (Fig. 79).

Figure 79. Causality Matrix (Abstract Level)

e reqg_que: a request queue in which all requests are stored.

start: select a target floor from the request queue.

target_f: the number of the target floor to which the cage will go.

open up down c_req c_can c_bis f_req f_can
method method | method port port port port port
external | external | external | external | external | external | external | external
open +
up +
down +
c_req +
c_can +
c_vis +
f_req +
f_can +
f_vis
start
f_vis req_que | current_f | target_f
port slot slot slot guard | body
external
open + +
up

down

c_req +

c_can + +

c_vis + +

f_req +

f_can + +

f_vis + + +

start + +

current_f: the number of the current floor that the cage is currently staying.

(6) P3-R2&S3: While refining the causality relations stepwise, we refine the operators and operands,
and recognize new state elements. The following case shows a fragment of this refinement and
state recognition process. When refining the operator c_can (Fig. 80(a)), that is a local view of
the matrix, we notice that there are two cases.

Case 1: The canceled request remains in req_que.

Case 2: The canceled request has already been selected as target_f.

Here, we divide c_can into c_can_1 (case 1) and c_can_2 (case 2), and try to refine each operator.
Then, we recognize that the states (active and sleep) are necessary to refine c_can_2, and introduce
them. Finally, the matrix shown in Fig. 80 (b) is derived.



Chapter 8: Petri-Net-Oriented Design Methodology 136

(a) Original Matrix

ccan | req_que | target_f
port slot slot guard | body
c_can pop ‘ rw | read ‘ ‘ ‘

V

(b) Refined Matrix

c_can req-que target_f | active | sleep

port slot slot state state guard body
cccan_l | pop:X | read:Ql, write:Q2 | read:Y in X\ =Y | cancel_-rl(X,Q1,Q2)
ccan_2 | pop:X read:Y from to X=Y true

Figure 80. Causality Matrix (Refinement Example)

(7) P3-R1: We notice that we have missed the fact that the cage should stop and open the door at
the floor that is stored in the req_que even if it is not a current target. Consequently, we must
backtrack and modify the design; we must modify the method open.

(8) P3-R3: The coordinator is divided into 2 coordinators (cage_controller and request_controller),
because the matrix becomes somewhat complex; so it is natural to divide its functions into the
cage controller and the request controller. During this dividing, the following interface plugs
(external ports) are introduced.

e start: acknowledge that the cage has started.

e end: acknowledge that the cage has visited the target floor.
e cxit: acknowledge that the request has been canceled.

e current: inform the current floor that the cage is staying.

e command: command that the cage opens the door or not.

Divide the matrix into new two matrices which corresponds to generated coordinator processes
(cage_controller and request_controller).

(9) P3-S3 (for cage_controller): After checking for any method conflicts, we introduce 9 dummy
control state elements (active, sleep, etc.) to serialize the methods (current, command, open, pass,
up, and down) to avoid the conflicts.

(10) P3-S5: We implement inscriptions used in the methods (e.g., cancel_rfl of Fig. 80) which com-
pletes the stepwise refinement of the matrix. The final causality matrix of the cage controller is
shown in Fig. 81. From this matrix, MENDEL nets of the lift system can be generated automat-
ically. Fig. 82 shows the top level process (lift_system), and Fig. 83 shows one of the subprocesses
(cage_controller). In (b), slots are hide in the display for simplification, and a triangle represents
OR-connection of synchronous communication.

(11) We can verify at its skeleton level whether or not this system satisfies the following constraints.
e Deadlock freedom of a cage:

PLTL formula = O (open V up V down)

e Once a k-th floor is requested, the cage eventually visits the floor and opens the door unless
the request is not canceled:

PLTL formula = O(((c-req(k) V f-req(k)) A O(—c_can(k) A =f_can(k))) D Sopen(k))

In this case it is fortunately assured that this system satisfies these constraints in the skeleton
level, so no adjustments are necessary.



Chapter 8: Petri-Net-Oriented Design Methodology 137

open up down start exit end command current sleep | active
method method | method port method | method port port state state
external | external | external | external | external | external external external
open outsync
end outsync to
exit insync to from
start pop:X from to
checkl from
check2 from
current push:CF
pass pop:COM
open outsync pop:COM
check3
check4
up outsync to
down outsync to
target_f | wait_op end ch wait_.com | move up down
slot state state state state state port port
open from to
end from
exit
start write:X pop:X
check1 read:Y to
check2 read:Y
current from to
pass from to
open from to
check3 read:Y from to
check4 read:Y from to
up from
down from
c_floor
slot guard body
open true true
end true true
exit true true
start true true
checkl read:(X,.) X=Y true
check?2 read:(X,.) X\ =Y true
current read:CF true true
pass COM=pass true
open COM=open true
check3 read:(X,.) X<Y true
check4 read:(X,.) X>Y true
up read:(X,.),write:(Y,up) true Y:=X+1
down read:(X,_),write:(Y,down) true Y:=X-1

Figure 81. Causality Matrix (Concrete Level)



Chapter 8: Petri-Net-Oriented Design Methodology

c_vis| c_cal

re
|:| exit —ea

request_

open controller f-. | |..... controller
A A f_vis
{3 ioend T % O_’D_’O
E?‘_l current T T
start EJ
command

Figure 82. Constructed MENDEL nets (lift_system)

start command

active

T I
Iy P~

Qg

sleep
current
pass
1 ] M
Q
wait_com
end open i move open current

D |—| open

Figure 83. Constructed MENDEL nets (cage_controller)

138



Chapter 8: Petri-Net-Oriented Design Methodology 139

5.3 Qualitative Evaluation

We briefly show our experiences of the lift system design. When we designed it using only a Petri net
editor and with no methodology, we abandoned the use of the editor and did paper works in the earlier
design phase because backtracking caused tedious editing and rearrangement. We used a Petri net editor
only for a fair copy of the paper works. On the other hand, when we use the causality matrix and the
MENDEL net editor according the proposed design method, we succeed to finish design of the lift system
without escaping paper works.

6 Related Works

We believe that existing competitors to the proposed design method are RTSAD [Ward 86], OOAD
[Booch 94], DARTS [Gomaa 93], PAISLey [Zave 91], STATEMATE [Harel 90], and G-LOTOS [Lee 91].
We have also proposed another design methodology using structured analysis [Honiden 90]. All support
data flow, state machine, and hierarchy. The most obvious difference from our approach is that these are
not directly based on Petri nets. Each approach has similar abilities in general and distinct merits and
demerit in detail. Nevertheless, we favor the Petri-net-based approach from the following reasons.

e Petrinet is a multi-paradigm model which can represent both flow model and state model uniformly,
while design charts have to be separated into flow model and state model in other design methods.
This property is effective to have an accurate grasp of both static and dynamic structure of systems.

e This approach can take advantage of graphical representations and a variety of analysis methods
which have been and will be provided by many Petri net researchers.

Recently, several Petri-net-based design methods have been reported. There are two following types
in these methods.

e Compound Type: Petri net are used only to represent state models instead of other substitutive
charts (i.e., state transition diagram or Statechart), where flow models are represented by another
chart.

e Pure Type (Net-Oriented Design Method): Petri net are used to represent causality relations
among system elements, which include both state models and flow models. We call this type of
design method Net-Oriented Design Method.

Pinci and Shapiro proposed a methodology in which CPN are integrated with SADT (Structured
Analysis and Design Technique) [Pinci 91]. SADT is a sophisticated and well-used methodology for
requirement analysis [Ross 77]. Bruno also proposed a design method by combination of high-level Petri
nets (Protob nets) and structure diagrams (Quid) [Bruno 95] instead of SADT. However, SADT and Quid
are based on data flow diagrams and lacks the state transition feature, while our causality matrix supports
both data flow and state transition features. Etessami’s rule-based design methodology [Etessami 91] is
another Petri-net-based approach which uses Abstract Petri Net (APN). A unique feature of APN is the
combination of timed and colored Petri net. According to the rule-based design methodology, a designer
first formalizes the specification by means of a set of rules and lists attributes representing the status
of a target system. Then, he retracts places from the attributes and transitions from the rules, and
finally describes APN. Etessami’s approach seems to be in the same research direction as our approach.
However, Etessami’s methodology is less systematic (therefore, has no computer support) and is weaker
in design backtracking. In addition, APN is not hierarchical.

The design method by Reisig [Reisig 92] is one of the purest Petri-net-based design method, where it
uses two types of Petri nets, Channel Agency net (C/A net) and Individual Token net (I/T net). C/A
net is used only to represent static structure of the target system, while I/T net is a simple high-level
Petri net and used to static and dynamic structure. Similar to our approach, a C/A net is used in an
earlier design phase, then it is refined stepwise into an I/T net. This design method is very interesting
and promising. However, it is rough and immature in detail and has plenty of room for improvement.
We are now trying to improve this method and combine it with our method [Uchihira 93b].



Chapter 8: Petri-Net-Oriented Design Methodology 140

7 Summary

This chapter has proposed a Petri-net-based design method which utilizes causality matrices and temporal
logic. According to this design method, the designer can construct Petri nets by stepwise refinement from
an abstract level at the earlier design phase to a concrete level at the final phase. Our method can be
classified into net-oriented design methods, where Petri nets are used to represent various causality
including data flow, control flow, and state transition. Therefore our method can be distinguished from
other popular design methods such as OOAD and RTSAD.

However, net-oriented design methods are not yet mature enough to be used for practical software
design as compared with other design methods. We need further experiences and deep consideration
about net-oriented design methods.



Chapter 9

MENDELS ZONE: Petri-Net-Based
Programming Environment

This chapter describes MENDELS ZONE, a Petri-net-based programming environment, which is pur-
posed being suitable for reactive and concurrent systems. MENDELS ZONE adopts MENDEL nets, and
provides several utilities including temporal logic verification and adjustment, and computer-aided design
method, which are mentioned in the previous chapters.

1 Introduction

Since it is often troublesome for ordinary programmers to produce reactive and concurrent programs
as compared with sequential programs, several kinds of CASE (Computer-Aided Software Engineering)
tools are inevitable. Requirements for CASE tools for reactive and concurrent systems include editors
(graphical and textual), simulators (program simulator, I/O simulator, and environment simulator),
debugger, execution monitor, validation tools (verification and analysis), program generater (compiler,
translator, and program synthesis), performance evaluation tool, software reuse support tool (program
component library), and documentation tool.

MENDELS ZONE [Uchihira 87, Honiden 90, Uchihira 90a] is a programming environment for reactive
and concurrent systems, which had been developed over 8 years by 3—7 persons as a part of the Fifth
Generation Computer System Project (FGCS) [Furukawa 92]. It facilitates the difficult task of concurrent
programming for reactive and concurrent systems. MENDELS ZONE adopts a high-level Petri net,
MENDEL net, as a kernel programming language. In addition to a MENDEL net editor and a compiler
to the concurrent programming language, MENDELS ZONE provides two appealing features described
below.

(1) Verification and adjustment using Petri nets and temporal logic
(2) Computer-aided design method for high-level Petri nets

With regard to the latter feature, MENDELS ZONE is unique compared with other Petri net tools
because they so far support only the drawing (graphical editor), simulation, and analysis (reachability
and invariant analysis) of Petri nets [Feldbrugge90].

The remainder of this chapter is organized as follows. First requirements for CASE tools for reactive
and concurrent systems are considered in Section 2. Overview and structure of MENDELS ZONE are
given in Section 3. Section 4 illustrates a software development process in MENDELS ZONE. Section 5
introduces a middle-scale example, followed by related works in Section 6.

2 Requirements for Programming Environment

A programming environment consists of several constituent tools. The following tools are useful for
developing reactive and concurrent systems using Petri nets.

141



Chapter 9: MENDELS ZONE 142

e Graphical Editor

An editor is the most fundamental programming tool. In the Petri-net-based programming envi-
ronment, a graphical editor is indispensable because the graphical representation of Petri net is one
of the most strong points. The recent remarkable progress of graphical user interface technology
makes it easier and less expensive to develop sophisticated graphical editors. There still remains
some room for consideration in regard to graphical manipulation of hierarchy (module) of Petri
nets.

e Program Synthesizer

Program synthesis is defined to generate an executable program from an unexecutable specification
such as temporal logic and algebraic specification. It is not realistic to synthesize a whole pro-
gram in actual software development. Partial program synthesis is a promising solution. Program
adjustment is included in this approach.

e Program Generater (Compiler or Translator)

A machine-executable code should be automatically generated from graphical representation of the
program. In particular, the cross-compiler is required in case that the execution environment differs
from the programming environment. Actually, most embedded systems require the cross-compiler.

e Simulator and Debugger

When the execution environment differs from the programming environment, simulation and debug-
ging in the programming environment are very useful. Simulation in the programming environment
requires not only a program execution simulator but also an I/O hardware simulator and an envi-
ronment simulator.

e Validation Tool

Validation tools include a testing tool and a verification tool. Testing is easy to apply but difficult
to cover all possible cases. On the other hand, formal verification can check all possible cases
by analyzing the program source code. Verification is very promising for safety-critical reactive
systems. However, verification is usually hard to apply ill-structured systems and very expensive.
From the practical point of view, complementary use of both testing and verification is effective
and necessary [Uchihira 95b].

o Ezecution Monitor

After testing and debugging the program in the programming environment, it is also necessary
to execute and test the program in the actual execution environment as integration testing. In
this case, execution monitor is indispensable. Especially visual execution monitor is effective for
concurrent systems. We emphasize that testing in the actual execution environment is not so easy
because it does not reproducible behavior. For example, errors which appear in the usual execution
often disappear when using the monitor (it is called probe effect).

e Performance Evaluation and Real-Time Analysis Tool

Performance evaluation is important for some reactive and concurrent systems. Timed Petri net
are often used for this purpose. Real-time scheduling analysis (e.g., rate monotonic analysis) is also
useful for hard real-time systems using real-time operating systems [Stankovic 95].

e Software Reuse Support Tool

In general software reuse is very effective to achieve high productivity. The recent programming
environment such as Visual Basic and Visual C++ provide powerful software reuse mechanisms.
However, there are some room for consideration in regard to software reuse for reactive and con-
current systems.

e Requirement Analysis and Design Methodology Support Tool

Support tools used analysis and design phases are called upper CASE tool, while editor, testing and
debugging tools are called lower CASE tool. There are many upper CASE tools supporting OOAD
and RTSAD. However, most of them are used only for analysis and design phases and are linked
to editing, testing and debugging tools. Recently programming environments which integrate both



Chapter 9: MENDELS ZONE 143

upper CASE tool and lower CASE tool are required and some have been proposed. Petri nets are
promising framework to achieve this integrated programming environment.

e Documentation Tool

Some documentation of the final product is necessary for its maintenance. The documentation tool
produces documents from program information which can be retracted in the above tools (e.g.,
graphical editor), or generates documents from the source code by reverse engineering.

3 MENDELS ZONE

MENDELS ZONE is a CASE tool kit for concurrent programming. The kernel concurrent programming
language is MENDEL, which is a textual form of a MENDEL net 7 . MENDEL programs are compiled
into the concurrent logic programming language KLI [Ueda 90, Chikayama 92] and executed on the
parallel computer Multi-PSI [Taki 89] 8 . MENDEL is regarded as a user-friendly macro language
of KL1, whose purpose is similar to A’UM [Yoshida 88] and AYA [Suzaki 91]. However, MENDEL
(MENDEL net) is more convenient for designers to use in designing state-transition-based reactive and

concurrent systems.
MENDELS ZONE provides the following facilities.

e Automatic generation of MENDEL elementary processes from algebraic specification [Honiden 91al,

e MENDEL-net-based programming environment backed up by design methodology [Uchihira 92b],
and

e Verification and adjustment tool using bounded MENDEL nets and temporal logic [Uchihira 95a].

- : i
(a) Component Component Library (d) Software ! Performance :
SynthesisTool (Subnet, Process) Reuse i Evaluation !

Editing & Visualizing Tools MEDELNi]q—; (e) Analyzing
; Tools
(©) Causality | | I\ iENDEL Net
Matrix Editor Verification
Editor
(f) Translater Adjustment
(9) Animater I
(Visual Monitor)
KL1 Program
[ ] Temporal
Logic
mTTTTTTTTTTTTTTTTTT
! Environment i /0 Multi-PS|
RS 1

Figure 84. MENDELS ZONE (Block Diagram)

Figure 84 shows a block diagram of MENDELS ZONE. These tools are implemented on Multi-PSI
except for a causality matrix editor. We have also proposed a performance evaluation tool [Honiden 94]
for MENDEL programs. However, it was not yet implemented in MENDELS ZONE. Table 14 shows how
MENDELS ZONE satisfies requirements of CASE tools enumerated in the previous section.

Figure 85 shows the graphical user interface of MENDELS ZONE, which consists of several subwin-
dows. The designer basically constructs MENDEL nets and execute them through this interface. The
following sections describe constituent tools of MENDELS ZONE in detail.

17 MENDELS ZONE supports an only subset of MENDEL net, because Multi-PSI is a symbol manipulation machine, not
a real-time control machine. For example, MENDELS ZONE omits scheduling facilities of MENDEL net.

18 MENDEL programs can also be translated into the C language and be executed on a distributed personal computer
system [Uchihira 89b].



Chapter 9: MENDELS ZONE 144

Table 14. Requirements for CASE tools and MENDELS ZONE

Requirements MENDELS ZONE
Graphical Editor (b)
Program Synthesizer (a),(e)
Program Generator (f)
Simulator/Debugger —
Validation Tool (e)
Execution Monitor (g)
Performance Evaluation —
Reuse Support (d)
Design Methodology (c)
Documentation —

(a) — (g) indicate functions of MENDELS ZONE which are shown in the block diagram (Fig. 84).

MENDELS ZONE

(b)
1/0O Definition
Editor (@

(©

Process
Library MENDEL Net
Graphical Editor & Visual Monitor

(d)
Temporal
Logic
[ Specification
Editor © Message Window

Figure 85. MENDELS ZONE (Graphical User Interface)



Chapter 9: MENDELS ZONE 145

3.1

Graphical MENDEL Net Editor

e MENDEL Net Editor

The designer constructs each process of MENDEL nets using a graphic editor (Fig. 85(a)) which
provides the creation, deletion, and placement functions for ports, state elements, flags, slots,
methods, arrows, and tokens. This editor also supports the hierarchical expansion and reduction of
nets, and the transition over the process-oriented hierarchy (i.e., from process to subprocess, and
vice versa).

Method Editor

The method editor provides several editing functions specific to a high-level Petri net. Using the
method editor, the designer describes methods (their conditions and actions) in detail with KL1.
Furthermore, the editor checks syntax and consistency of edited methods. This method editor is
activated by clicking the target method in the MENDEL net editor.

I/O Definition Editor

This I/O definition editor (Fig. 85(b)) is used to assign I/O devices to I/O places. MENDELS
ZONE provides the following I/O devices.

— Files: The program reads/writes character streams from/to designated files.

— Windows: The program reads/writes character streams from/to standard input/output win-
dows.

— Lists: The program reads character streams represented as lists (e.g., [a,b,¢,d,...]).

3.2 Causality Matrix Editor

This spread-sheet editor supports stepwise refinement of the causality matriz. It provides the following
functions:

e creation, deletion, and renaming of methods, ports, slots, and state elements,

e dividing methods, ports, slots, and state elements into detailed ones,

e checking whether refined relations are legal, and

e localizing and focusing the view of relations of designer’s interest.

The causality matrix editor is implemented on a UNIX workstation and consists of 3 parts; a general
purpose spread-sheet editor (Oleo), a consistency checker, and a translator.

e Oleo: a free software for spread-sheet editing.

e Checker checks whether the matrix data edited by Oleo are consistent.

e Translator translates the matrix data into MENDEL nets.

3.3 Software Reuse Support Tool

Reusable processes are stored in the process library (Fig. 85(c)). This library tool supports browsing and
searching. In MENDELS ZONE, processes can be not only retrieved and but also interconnected in two
main ways; manually and automatically.

Manual Interconnection
The designer selects an process from an process library and interconnects these processes with arrows
manually. These operations are carried out graphically using the MENDEL net editor.



Chapter 9: MENDELS ZONE 146

Automatic Interconnection

The designer gives program specifications as a set of input/output attributes which are a kind of
I/O data type. Appropriate processes are then selected from an process library and interconnected
automatically by pattern matching of these I/O attributes. Automatic retrieval and interconnection are
carried out, according to the following principles [Uchihira 87, Honiden 94].

(1) A pair of plugs having the same attributes can be interconnected.

(2) All required output attributes must be reachable from given input attributes through connected
processes and arrows.

These automatic retrieval and interconnection can be formalized as a simple and classical planning
problem in Artificial Intelligence. For example, when the following attributes are given, process B, C,
and D are retrieved and interconnected as shown in Fig. 86.

e Input attribute a, b ;

e Qutput attribute e ;

input attribute input attribute

a b
Interconnection d b

/ \ "

d \
_ i
O_.D..O Process
‘\ <P\ -060:

Retrieval 9

<O O Oa

‘ ’ P fOCeSS
S

e Oe Ok

output attribute .
P Process Library

Figure 86. Automatic Process Retrieval and Interconnection

More Flexible Automatic Interconnection

This automatic retrieval and interconnection (i.e., automatic binding) seems to be not powerful
enough. The binding mechanism depends on the simple pattern matching between output and input
attribute names. In some cases, it might find no candidate to fit the given I/O attributes, or a lot of
candidates in other cases. More information must be needed to select the most adequate candidate. To
overcome this problem, we adopt a kind of semantic network (called attribute network) which represents
the attribute structure and define a metric to order the candidates on the semantic network. Detail
techniques are described in [Uchihira 87].

3.4 Verification and Adjustment Tool

In the previous chapters, compositional verification and adjustment was investigated for transition sys-
tems. When MENDEL nets are supposed to be bounded, verification and adjustment can be also applied
to MENDEL nets, because bounded MENDEL nets are equivalent to transition systems. Therefore, only
skeletons of MENDEL net structures are automatically retracted (detailed KL1 codes of methods are ig-
nored) in MENDELS ZONE. Furthermore, every asynchronous communication should be approximated
by bounded buffers.



Chapter 9: MENDELS ZONE 147

Then the verification tool checks whether a MENDEL net satisfies the given PLTL constraints entered
by the designer using the PLTL editor (Fig. 85(d)). If the net fails to satisfy the constraints, the
adjustment tool can automatically adjust (tune up) the net to satisfy the PLTL constraints by adding
an arbiter process [Uchihira 90a, Uchihira 95a].

We note that PQL is not used and PLTL is used as a specification language in MENDELS ZONE.
The reason is that the same specification language must be used for both verification and adjustment.
Unfortunately, we do not provide compositional adjustment method for PQL. To be exact, we do not try
to provide it because we think branching time temporal logic including PQL is ill-suited for synthesis
and adjustment. Verification method for bounded Petri nets and temporal logic is a special case of our
method proposed in Chapter 4. Moreover, we can also use other efficient verification methods for PLTL
after bounded Petri nets are translated to transition systems. For example, a model checking method for
PLTL [Vardi 86] is one of the most efficient one.

The verification and adjustment are based on the theorem proving method (i.e., tableau construction)
of PLTL that is efficiently executed on Multi-PSI. The basic idea of parallel graph generation algorithm
which is used in generating finite state processes from PLTL is shown in [Patent KOUKAI H4-259071].

3.5 Program Execution on Multi-PSI

The adjusted MENDEL net is translated into its textual form (MENDEL program). The MENDEL
program is compiled into a KL1 program by the MENDEL translator. The generated KL1 program
can be executed on Multi-PSI. Each Process of the MENDEL program may run on the different CPU.
Several compilation techniques (e.g., separate compilation) are introduced here to deal with large-scale
programs. During execution, firing methods blink on the wvisual monitor (Fig. 85(a)), and the values
(colors) of the tokens are displayed on the message window (Fig. 85(d)). The designer can visually check
that the program behaves satisfactorily.

4 Software Development Process in MENDELS ZONE

Fig. 87 (Data Flow Diagram) and Fig. 88 (Flow Chart) show a typical software development process in
MENDELS ZONE. The designer should construct a target program according to the following steps.

s
Informal Reusable
Specification Components
-
J l Validation
-
Petri-net Basd Reuse MENDEL o Adjustment |1 . MENDEL
Design Nets ™ Nets
-
— J
(Temporal Verification .
kLogic L] Inplementation

l

Visual l+—» MENDEL
Execution Nets
o

Figure 87. Software Development Process in MENDELS ZONE (Data Flow Diagram)

(Step 1): MENDEL Net Construction
A designer constructs a MENDEL net using the MENDEL net editor and the process library as
follows.

e (Step 1-1) Construct elementary MENDEL processes basically by software reuse, where
MENDELS ZONE provides a process library and a process retrieval tool. If the library has no



Chapter 9: MENDELS ZONE 148

suitable reusable MENDEL processes, MENDELS ZONE can synthesize it from a given alge-
braic specification. It is also possible for the designer to construct the elementary MENDEL
process by himself using the MENDEL net editor.

e (Step 1-2) Interconnect MENDEL processes by communication links using the graphic editor
to make a new compound MENDEL process. A large-scale program can be constructed in this
compositional way. The designer can also make use of an automatic process interconnection
mechanism provided in MENDELS ZONE.

Constructed programs are functionally-correct temporally-imperfect (FTCI) because a designer
reuses programs whose possible behaviors he may not fully understand; so communication links
may be incomplete.

(Step 2): MENDEL Net Verification and Adjustment

The compositional adjustment is used in cooperation with the verification. In MENDELS ZONE,
the designer first finds existing bugs by the verification step, then adjusts the program to remove
the bugs by the adjustment step.

( Start )

(Step 1) MENDEL Net Construction
(1-1) Construct Elementary Processes
(1-2) Interconnect Processes

1
y

(2-1) PLTL Specification

!

(2-2) Verification

satisfiable

1 unsatisfiable

(2-3) Adjustment

1.7

(Step 3) Translation

|

(Step 4) Execution and Test

Figure 88. Software Development Process in MENDELS ZONE (Flow Chart)

After constructing an FCTI MENDEL net, the designer specifies safety and liveness properties that
must be satisfied by MENDEL net. These properties are specified by temporal logic.

The verification and adjustment procedure in MENDELS ZONE is as follows.

e (Step 2-1) The designer gives a PLTL formula for a MENDEL net of each elementary or
compound process.

e (Step 2-2) MENDELS ZONE checks whether a MENDEL net satisfies a given PLTL formula.
e (Step 2-3) When it does not satisfy the PLTL formula, the adjustment method is invoked.

(Step 3) and (Step 4): Concurrent Program Generation and Ezecution

The adjusted MENDEL program is compiled into a KLL1 program, which can be executed on Multi-
PSI. The designer can check visually that the adjusted program satisfies his expectation. If not, he
should consider two types of bugs.

e Bugs in the temporal logic constraints, and



Chapter 9: MENDELS ZONE 149

e Bugs in the KL1 code attached to transitions (i.e., its enable conditions and additional actions),
which are ignored in translating to FSP.

e Bugs hidden when translating unbounded MENDEL nets to bounded nets.

5 Example: Power Plant Control System

Using MENDELS ZONE, we have constructed and evaluated several small-scale and middle-scale reactive
and concurrent systems including a lift control system, a machine control system for processing (i.e.,
etching) printed circuit boards '° , and a control system for a power plant 2° . This section explains a
middle-scale example of the power plant (Fig. 89) in detail.

Control
Plant gyle
plant status DB pB
D —
control
commands ’—‘—‘—‘»
Power Plant Controller

Figure 89. Power Plant Control System

A requirement of the system is summarized as follows. A controller observes plant status continuously
and periodically, and in response to changes of plant status it selects control commands according to the
control rules, then the controller sends commands back to the plant. This control cycle consists of the
following steps.

1. The controller periodically watches current plant status and updates a plant database.

2. Changes of plant status is detected by comparing the current status with the previous status in the
plant database.

3. The most appropriate control rule is selected based on changes of status from a control rule database.
4. The selected rule is applied to derive control goals.
5. To achieve the control goal, concrete commands are computed and sent to the plant.

First, the designer decomposes the control software into 6 elementary processes (Fig. 90).

Plant
Simulator

Transmission

DDC

Figure 90. Power Plant Control System (Process Structure)

19 This was demonstrated at The National Fifth Generation Computer System Symposium 1991.
20 This was demonstrated at International Conference on Fifth Generation Computer Systems 1992 [FGCS 92].



Chapter 9: MENDELS ZONE 150

e Plant process (Controlled Objects)
This process provides current plant status to the controller, receives control commands from the
controller and changes the status according to the commands. In our experimental system on
Multi-PSI, a plant simulator is used instead of an actual plant.

e Transmission process
This process transmits plant status and control commands from/to an action process and a DDC
process to/from the plant process.

e Action process
The current plant status and previous plant status stored in the plant database are compared in
this process. The action process detects changes of the plant status, then decides which control rule
is applied. By evaluating the rule, a control goal is derived.

e DDC (Direct Digital Control) process
To achieve the control goal given by the action process, concrete commands are computed and sent
to the transmission process using DDC.

e Timer process
This process provides real-time management to other processes.

e MMI (Man-Machine Interface) process
This process provides the operator interface which includes plant status monitoring and the operator
instruction handling.

First, each process is constructed by the MENDEL net editor. Here, only the action process is
explained in detail. We suppose that the designer initially construct a MENDEL net of the action
process shown in Fig. 91 where data flow among ports, slots, and methods is specified but control flow is
missing. Control flow is latter synthesized by program adjustment from temporal logic specification.

|append_da1a |get_from_act | |get_fr0m_tim | |get_from_mmi|
I_| 1 1 1
pre_com timer_com mmi_com
newdata2

| renew_DB | |findfchanges|
select_klgs
- rle_DB @)

unfold_klgs trigger_klgs

message

eval_klgs

w

trigger

Figure 91. MENDEL net of action process



Chapter 9: MENDELS ZONE 151

The action process includes several methods to access the plant database. Some of methods are
shown in the textual form as follows. An action part of each method is described by KL1 predicates (e.g.,
generate_new_data), which are defined in a junk part.

method (append_data,_, [from_com(Data) ,pre_com(Com)], [newdatal(ND1) ,newdata2(ND2)]) :-
true | generate_new_data(Data,Com,ND1,ND2).
method(find_changes, _, [newdata2(ND) ,plant_DB(PDB)], [changes(CL)]) :-
true | detect_changes(ND,PDB,CL).
method (renew_DB, _, [newdatal (ND1) ,plant_DB(PDB1)], [plant_DB(PDB2)]) :-
true | database_update(ND1,PDB1,PDB2).
method(select_klgs,_, [changes(CL) ,rule_DB(RDB) ,mmi_com(MC)], [bypass(KLGS)]) :-
true | select_klgs_from_rdb(MC,CL,RDB,KLGS) .
method (trigger_klgs,_, [timer_com(TC1) ,bypass(KLGS)], [timer_com(TC2) ,trigger (KLGS)]) :-
TC1 = ok | TC2 = nil.
method (eval_klgs,_, [trigger (KLGS) ,plant_DB(PDB)], [eval (NewGoal)]) :-
true | evaluate_klgs(KLGS,PDB,NewGoal).

For this process, the designer can specify temporal logic specification using the PLTL editor. The
specification is mainly related to access control of the plant database so as to preserve consistency of
data.

e — append_data U init_act
Before initializing the plant database, no access to the database is permitted.

e 0( append_data D (O(— renew_DB U find_changes ))
The plant database must not be renewed before checking the changes between current and previous
status.

e O( append_data D (-~ trigger_klgs U renew_DB ))
After updating the plant database, rule evaluation is triggered off.

e ( append_data D (O(— append_data U eval_klgs ))
Getting a new plant status is not permitted before rule evaluation is finished.

In this case, these constrains are obviously not satisfied, then MENDELS ZONE adjusts the process
automatically. The adjustment does not require large computing cost (within 1 minute). As a result,
5 state elements are added to the original MENDEL net to satisfy temporal logic specification. The
adjusted process can be watched in Fig. 92. In this figure, added state elements are painted halftone,
and slots are not displayed for simplicity.

After all elementary processes are constructed, they are interconnected with the MENDEL net editor.
Figure 93 shows a top-level process in MENDELS ZONE which corresponds to the process structure of
Fig. 90. In the top level, the designer can verify and adjust a MENDEL net again. In this example, he
verifies whether it is deadlock free. Actually, several deadlock states are detected. Since they are due
to bugs of elementary processes, he does not use the program adjustment at top level and debugs them
manually. A size of a final MENDEL net amounts to 4300 lines in MENDEL textual representation.

Finally, all processes (MENDEL program) are compiled into KL1 codes (6200 lines) and executed
and monitored visually on MENDELS ZONE. It is reported that development cost is cut down to half
compared with the case that the designer implemented the same system using naked KL1 and Multi-PSI
[Uraoka 92]. This cost-down results from reduction of debugging efforts because debugging of the naked
KL1 program is troublesome for ordinary programmers.

6 Related Works

6.1 Comparison with STATEMATE

STATEMATE is another CASE tool for reactive and concurrent systems, in which three types of charts
(module-chart, activity-chart, and Statechart) are written by the designer. These charts correspond to
elements of MENDEL net as shown in Table 15.

We compare MENDELS ZONE with STATEMATE in regard to the following items.



Chapter 9: MENDELS ZONE 152

EXTERN attribute

exit | Top Menu: bin ~ data ‘sxooute utility exit
BIND clear create flash garnst utility exit
from_act!

>exp92>act]| refresh normal part [N

from_com!

[rom_mmi}
from_tim!
to_act?

to_com?

setteen et_ton

LIBRARY big search edit

act0 ¢ Action w

tim ¢ 04-Apr-9 [t
mm i ¢ 06-Apr-9

act ¢ 06-Apr-9

sim ¢ 06-Apr-9 Rt act

expg2 ¢ O6-Apr-9

TSL clear save doit exit

domain ([append_data, {
ind_changes, Tenew

DB, trigger klgs, niof TS
eval_klgsl) K

. ki expand end,
O (append_data- O (-trigger_klgsUren %! Current TSL

string! empty

ew_DB))
—append_dataUinit_act file name>action, tsl
O (append_data> O (-append_dataleval

_klgs))

Figure 92. MENDELS ZONE (Adjusted Action Process)

EXTERN attribute exit | Top Menu: bind data execute utility exit
BIND clear create flash garnst utility exit
KA empLy kK >exp92| refresh normal part [N
Tin
- (
LIBRARY big search edit
tim ¢ 04 Apr 9 ot
mm i ¢ 06-Apr-9
act ¢ 06-Ap1-9 et
sim ¢ 06-Apr-9 -
expd2 ¢ 06-Apr-9 '}
tab_exam ¢ Fxample W itescn
TSL clear save doit exit st
domain ([append_data, {
ind_changes, Tenew .
DB, trigger klgs,
eval_klgsl)
ade-soon
. ki expand, .,
O (append_data- O (-trigger_klgsUren %! expand end,
ew_DB)) K: Current TSL stTing: empty
—append_dataUinit_act
O (append_data> O (-append_dataleval file name>@letion. %sl
klgs)) ki firing methodsll

Figure 93. MENDELS ZONE (Top-level MENDEL net)



Chapter 9: MENDELS ZONE 153

Table 15. STATEMATE vs. MENDELS ZONE

STATEMATE MENDELS ZONE
module (module-chart) process

control activity (activity-chart) | coordinator
activity (activity-chart) method

data store (activity-chart) slot, port

state (Statechart) state

data flow arrow

control flow arrow

inscription language KL1

e State Transition Model Complemented by Data Flow

Both MENDELS ZONE and STATEMATE adopt an extended state transition model (i.e, Petri
net and Statechart) which plays a key part in reactive control systems, while a data flow model
is also utilized complementarily. This approach is favorable in most CASE tools for reactive and
concurrent systems.

e Viewpoint

STATEMATE adopts three type of charts (module-chart, activity-chart, Statechart) and supports a
multi-view design method using them, while MENDELS ZONE adopts one type of chart (MENDEL
net) and supports a single-view design method. The multi-view design is suited for analyzing
ambiguous requirements in the earlier design phase and understanding outline of the systems in the
maintenance phase. However, it is difficult to keep consistency among three charts. On the other
hand, the single-view design is suited to trace dynamic behaviors in the testing and debugging phase
because design information is represented uniformly and consistently. However, it is not easy to
describe MENDEL nets in the earlier design phase; a causality matrix is introduced in MENDELS
ZONE.

e Hierarchy

While MENDEL net adopts only process-oriented hierarchy, STATEMATE provides several types
of hierarchy; concept-oriented hierarchy in activity-chart which is useful for top-down stepwise
refinement, and state-oriented hierarchy in Statechart which is useful to specify exception handling.
On the other hand, STATEMATE does not much care about process structure as compared with
MENDELS ZONE.

e Analysis

STATEMATE provides a simulation and a global state analysis tool, while MENDELS ZONE
provides verification and adjustment using temporal logic. Verification ability of temporal logic is
stronger than global state analysis in STATEMATE. However, the analysis tools of STATEMATE
is more sophisticated from user’s point of view.

e Code Generation

STATEMATE generates C programs or Ada programs from the described three charts, while
MENDELS ZONE generates KL1 programs from MENDEL nets.

From the above consideration, we can summarize comparison between MENDELS ZONE and STATE-
MATE as follows. MENDELS ZONE and STATEMATE are generally similar, but their target in software
development process is different. MENDELS ZONE puts emphasis on the design phase where integration
and tractability with a single chart are important, while STATEMATE puts emphasis on the analysis
phase where it is important to collect functions and arrange them in order from three types of charts.

6.2 Comparison with Other Petri Net Tools

Most Petri net tools (DESIGN/CPN, GreatSPN, Cabernet, etc.) are used only for modeling, simulating,
and analyzing systems in a prototyping phase. After finishing the prototyping phase, a target concurrent



Chapter 9: MENDELS ZONE 154

program for an actual reactive and concurrent system has to be manually reconstructed in an implemen-
tation phase. Some tools can generate program source code written by standard languages. However,
these are sequential programming languages. For example, Design/CPN provides the automatic gener-
ation of SML (Standard ML) codes [Jensen 92], where SML is not a concurrent programming language.
MENDELS ZONE can automatically generate target concurrent programs directly from high-level Petri
nets where generated programs run efficiently in the real parallel and distributed environment.

7 Summary

We have presented an overview and a system structure of MENDELS ZONE and how to construct
concurrent programs using MENDELS ZONE. MENDELS ZONE is just an experimental system in order
to adopt and evaluate novel technologies developed by us (verification, adjustment, design method).
Although it is immature, it is reported that in the middle-scale example the designer can construct
concurrent programs easier in MENDELS ZONE than he does it with naked KL1.

Since Multi-PSI is designed for parallel symbol manipulation and not for reactive systems, MENDELS
ZONE is week in implementation accommodated to the actual reactive and real-time environment. We
shall implement another version of MENDELS ZONE on the other platform in future.



Chapter 10

Conclusion

1 Review of Developments

I have proposed software development techniques for reactive and concurrent systems using Petri net and
temporal logic. These techniques include specification, verification, synthesis, and design methodology.
Particularly, to put verification and synthesis into practical, I introduced the compositional program
verification and compositional program adjustment. To embody and evaluate these techniques, I have
also developed a programming environment, MENDELS ZONE. MENDELS ZONE is available to the
public as ICOT Free Software, accessible via Internet (http://www.icot.or.jp/ICOT/IFS/ifs.html)

2 Current Status

MENDELS ZONE shows a typical process and a CASE environment for software development using
Petri net and temporal logic. I believe that MENDELS ZONE can play an important role as a reference
prototype of CASE tools for reactive and concurrent systems. However, since MENDELS ZONE is
no more than the prototype, practical domain-specific CASE tools should be reconstructed based on
MENDELS ZONE for actual software development. In fact, we have been constructing a CASE tool for
chemical plant control systems (SAVE/SFC, ref. Chapter 5, Section 5.3), in which several techniques of
MENDELS ZONE have been adopted.

Of course, some of techniques proposed in this thesis are immature and inexperienced for the actual
software development. The relation of Petri net and temporal logic is well researched and mature from the
theoretical point of view. However, from the practical point of view, there is still room for improvement
in the efficient verification and adjustment techniques. Moreover, Petri-net-oriented design methodology
is a unexplored research subject, and our work is nothing but one of trail-blazing efforts. Three phase
net-oriented software design method [Uchihira 97a] which we recently proposed is another trail-blazing
effort.

3 Future Works

Our future works can be summarized into the following directions.

e Sophisticated Specification Language

— High-level Petri Net: Although a proposed High-level Petri net (MENDEL net) has a
sufficient expressive power, there is still room for improvement in easiness of describing the
actual systems. An introduction of domain-specific macro-expressions seems to be a shorter
way to the solution.

— Temporal Logic: Although several extended temporal logics handling real-time have been
proposed, there is no extended temporal logics handling controllability and observability ex-
plicitly, which are essential feature of reactive systems. We are doing research on the temporal
logic extended to handle controllability and observability.

155



Chapter 10: Conclusion 156

e Composite Program Verification

To be concerned with efficient program verification based on model checking, there are other ap-
proaches besides compositional verification. One of them is a partial order approach, which is
full of promise and well investigated these years. It is practical to use compositional method
and partial order method case by case and complementarily mentioned in Chapter 5. Further-
more, it is promising to harmonize and integrate both verification and conventional validation
techniques like testing/simulation in the common CASE environment. Hypersequential program-
ming [Uchihira 96¢, Uchihira 97b, Uchihira 97¢] is our latest challenging proposal in this direction.
Hypersequential programming is intended to make actual concurrent programs highly reliable by
conventional testing which is strengthened by verification techniques.

e Cultivation of Adjustment and Petri-Net-Based Design Methodology

Since program adjustment and Petri-net-based design methodology which I proposed belong to
pioneer’s work, it is very important to cultivate the subjects from now on. In particular, it is
necessary to apply these methods to practical examples, evaluate, and improve them.



Bibliography

[Abadi 89]

[Andrews 83]

[Alur 89]

[Alur 90]

[Alur 91]

[Arnold 92]

[Andersen 92]

[Battiston 88]

[Barringer 84]

[Beaten 90]

[Bellettini 93]

[Ben-Ari 83|

[Bernstein 81]

M. Abadi, L. Lamport, P. Wolper, Realizable and Unrealizable Specifications of Reac-
tive Systems, 16th International Colloquium on Automata, Languages, and Programming
(ICALP), Lecture Notes in Computer Science, Vol.372, Springer-Verlag, 1989.

G.R. Andrews and F.B. Schneider, Concept and Notations for Concurrent Programming,
ACM Computing Surveys, Vol.15, No.1, 1983.

R. Alur and T.A. Henzinger, A Really Temporal Logic, Proc. IEEE 30th Annual Symp.
on Foundations of Computer Science (FOCS), 1989.

R. Alur, C. Courcoubetis, D. Dill, Model-Checking for Real-Time Systems, Proc. 5th IEEE
Symp. on Logic in Computer Science (LICS), 1990.

R. Alur and D. Dill, The Theory of Timed Automata, Real-Time: Theory and Practice,
Lecture Notes in Computer Science, Vol.600, Springer-Verlag, 1991.

A. Arnold, Finite Transition Systems, Masson (in French), 1992, Prentice Hall (in
English), 1994.

H.R. Andersen and G. Winskel, Compositional Checking of Satisfaction, Conference
on Computer-Aided Verification (CAV’91), Lecture Notes in Computer Science, Vol.575,
Springer-Verlag, 1991.

E. Battiston, F. de Cindio, G. Mauri, OBJSA Nets: A Class of High-Level Nets having
Objects as Domains, Advances in Petri Nets, Lecture Notes in Computer Science, Vol.340,
Springer-Verlag, 1988.

H. Barringer, R. Kuiper, A. Pnueli, Now You May Compose Temporal Logic Specifications,
Proc. 16th ACM Symp. on Theory of Computing (STOC), 51-63, 1984.

J. Beaten, ed., Application of Process Algebra, Cambridge Univ. Press, 1990.

C. Bellettini, M. Felder, and M. Pezze’, Merlot: A Tool for Analysis for Real-Time
Specifications, Proc. of 7th Internat. Workshop on Software Specification and Design
(IWSSD), 1993.

M. Ben-Ari, A. Pnueli, Z. Manna, The Temporal Logic of Branching Time, Acta Infor-
matica, 20, 1983.

F.A. Bernstein, N.Goodman, Concurrency Control in Distributed Database Systems,
ACM Computing Surveys, Vol.13, No.2, 1981.

[Berthomieu 91] B. Berthomieu and M. Diaz, Modeling and Verification of Time Dependent Systems

[Boehm 76]
[Bolognesi 89]

[Booch 94]

Using Time Petri Nets, IEEE Trans. on Software Engineering, Vol.17, No.3, 1991.
B.W. Boehm, Software Engineering, IEEE Trans. on Computers, Dec., 1976.

, T. Bolognesi and D.Latella, Techniques for the Formal Definition of the G-LOTOS
Syntax, 1989 IEEE Workshop on Visual Languages, 1989.

G. Booch, Object Oriented Design with Application, (second edition), The Ben-
jamin/Cummings Publishing, 1994.

157



N. Uchihira: Programming Environment for Reactive and Concurrent Systems 158

[Boudol 89]  G. Boudol, V. Roy, R. de Simone, D. Vergamini, Process Calculi, From Theory to Practice:
Verification Tools, INRIA Report, No.1098, 1989.

[Bradfield 92] J. C. Bradfield, Verifying Temporal Properties of Systems, Birkh&user , 1992.

[Brauer 91]  W.Brauer, R.Gold, W.Vogler, A Survey of Behaviour and Equivalence Preserving Refine-
ments of Petri Nets, Advances in Petri Nets 1990, Lecture Notes in Computer Science,
Vol.493, Springer-Verlag, 1991.

[Bruno 95] G. Bruno, Model-based Software Engineering, Chapman & Hall, 1995.

[Biichi 62] J.R. Biichi, A decision method in restricted second order arithmetic, Proc. Internat. Congr.
Logic, Method. and Philos. Sci., 1960, also Stanford University Press, 1962.

[Burch 90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, J. Hwang, Symbolic Model
Checking: 10%° States and Beyond, Proc. 5th IEEE Symp. on Logic in Computer Science
(LICS), 1990.

[Cherkasova 87] L.A.Cherkasova and V.E.Kotov, The Undecidability of Propositional Temporal Logic for
Petri Nets, Computers and Artificial Intelligence Vol.6, No. 2, 1987.

[Chikayama 88] T. Chikayama, et al. , Overview of the Parallel Inference Machine Operating System (PI-
MOS), Proc. of Internat. Conf. on Fifth Generation Computer Systems 1988 (FGCS88),
ICOT, 1988.

[Chikayama 92] T. Chikayama, Operating System PIMOS and Kernel Language KL1, Proc. of Internat.
Conf. on Fifth Generation Computer Systems 1992 (FGCS92), ICOT, 1992.

[Christensen 92] S.Christensen, L.Petrucci, Towards a Modular Analysis of Coloured Petri Nets, Proc.
13th Internat. Conf. on Application and Theory of Petri Nets (ICATPN), Lecture Notes
in Computer Science, Vol.616, Springer-Verlag, 1992.

[Christensen 94] S.Christensen, N.D. Hansen, Coloured Petri Nets Extended with Channels for Syn-
chronous Communication, Proc. 15th Internat. Conf. on Application and Theory of Petri
Nets (ICATPN), Lecture Notes in Computer Science, Vol.815, Springer-Verlag, 1994.

[Clarke 82] E.M. Clarke, and E.A. Emerson, Design and Synthesis of Synchronization Skeletons Using
Branching Time Temporal Logic, Lecture Notes in Computer Science, Vol.131, Springer-
Verlag, 1982.

[Clarke 86] E.M. Clarke, E.A. Emerson, and A.P. Sistla, Automatic Verification of Finite-state Con-
current Systems Using Temporal Logic Specifications, ACM Trans. on Programming Lan-
guages and Systems, Vol. 8, No. 2, 1986.

[Clarke 87]  E.M. Clarke and O. Griimberg, Reaserch on Automatic Verification of Finite-state Con-
current Systems, Ann. Rev. Comput.Sci., 1987.2,260-290, 1987.

[Clarke 89]  E.M. Clarke, E.E. Long, and K.L. McMillan, Compositional Model Checking, Proc. 4th
IEEFE Symp. on Logic in Computer Science (LICS), 1989.

[Cleaveland 93] R. Cleaveland, J. Parrow, B. Steffen, The Concurrency Workbench: A Semantics-Based
Tool for the Verification of Concurrent Systems, ACM Trans. on Programming Languages
and Systems, Vol.15, No.1, 1993.

[CAV 89] J. Sifakis, (Ed.), Automatic Verification Methods for Finite State Systems. Lecture Notes
in Computer Science, Vol.407, Springer-Verlag, 1989.

[CAV 93] C. Courcoubetis (Ed.), CAV’938 Conference on Computer-Aided Verification, Lecture Notes
in Computer Science, Vol.697, Springer-Verlag, 1993.

[CAV 94] D. L. Dill (Ed.), CAV’9/ Conference on Computer-Aided Verification, Lecture Notes in
Computer Science, Vol.818, Springer-Verlag, 1994.

[Conway 71] J. H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, 1971.



N. Uchihira: Programming Environment for Reactive and Concurrent Systems 159

[Davis 90] A M. Davis, Software Requirements Analysis & Specification, Prentice Hall, 1990.

[Emerson 82] E.A. Emerson and E.M. Clarke, Using Branching Time Temporal Logic to Synthesize
Synchronization Skeletons, Science of Computer Programming, 2, 1982,

[Emerson 85a] E.A. Emerson and J.Y. Halpern, Decision Procedures and Expressiveness in the Temporal
Logic of Branching Time, J. Computer and System Sciences, 30, 1985.

[Emerson 85b] E.A. Emerson, C.-L. Lei, Modalities for Model Checking: Branching Time Strikes Back,
Proc. 12th ACM Symp. on Principles of Programming Languages (POPL), 1985.

[Emerson 90a] E.A. Emerson, Temporal and Modal Logic, in Handbook of Theoretical Computer Science,
Volume B, Formal Methods and Semantics, The MIT Press, 1990.

[Emerson 90b] E.A. Emerson and J. Srinivasan, A Decidable Temporal Logic to Reason about Many
Processes, Proc. ACM 9th Symp. on Principle of Distributed Computing (PODC), 1990.

[Etessami 91] F.S. Etessami and G.S. Hura, Rule-Based Design Methodology for Solving Control Prob-
lems, IEEE Trans. on Software Engineering, Vol.17, No.3, 1991.

[Fantechi 91] A. Fantechi, S. Gnesi, G. Ristori, Compositionality and bisimulation: A negative result,
Information Processing Letters, 39, 109-114, 1991.

[Feldbrugge90] F.Feldbrugge : “Petri Net Tool Overview 1989”, Advances in Petri Nets 1989, Lecture
Notes in Computer Science, Vol.424, Springer-Verlag, 1990.

[Felder 94] M. Felder, D. Mandrioli, A. Morzenti, Proving Properties of Real-Time Systems Through
Logical Specifications and Petri Net Models, IEEE Trans. on Software Engineering, Vol.20,
No.2, 1994.

[FGCS 92] MENDELS ZONE, Demonstration at Internat. Conf. Fifth Generation Computer Systems
(FGCS’92), 1992.

[Fukuoka 91] K. Fukuoka, A. Yokozawa, K. Tamaru, Hierarchical design of a uITRON specification
kernel: TR2, Proc. The FEighth TRON Project Symposium, IEEE Comput. Soc. Press,
1991.

[Furukawa 92] K. Furukawa, Logic programming as the integrator of the Fifth Generation Computer
Systems project, Commun. ACM, Vol.35, No.3, 82-92, 1992,

[Gabrielian 91] A. Gabrielian and M.K. Franklin, Multi-level Specification and Verification of Real-Time
Software, Proc. 12th Internat. Conf. on Software Engineering (ICSE), 1990.

[Galton 81]  A. Galton, Temporal Logic and Computer Science: An Overview, Temporal Logics and
Their Applications (A. Galton, ed.), Academic Press, 1 — 52, 1987.

[Genrich 81] H.J. Genrich and K. Lautenbach, System Modeling with High-Level Petri Nets, Theoretical
Computer Science, 13, 1981.

[Ghezzi 93]  C. Ghezzi, H. Felder, M. Paul, Real-Time Systems: A Survey of Approaches to Formal
Specification and Verification, Proc. on 4th European Software Engineering Conference
(ESEC), 1993.

[Giovanni9l] R. Di Diovanni, Hood Nets, Advances in Petri Nets 1991, Lecture Notes in Computer
Science, Vol.524, Springer-Verlag, 1991.

[Godefroid 91a] P. Godefroid, P. Wolper, A Partial Approach to Model Checking, Proc. 6th IEEE Symp.
on Logic in Computer Science (LICS), 1991.

[Godefroid 91b] P. Godefroid, and P. Wolper, Using Partial Orders for the Efficient Verification of
Deadlock Freedom and Safety Properties, Conference on Computer-Aided Verification
(CAV’91), Lecture Notes in Computer Science, Vol.575, Springer-Verlag, 1991, also For-
mal methods in System Design, Vol.2, No.2, Kluwer Academic Publishers, 1993.



N. Uchihira:

Programming Environment for Reactive and Concurrent Systems 160

[Godefroid 96] P. Godefroid, Partial-Order Methods for the Verification of Concurrent Systems — An Ap-

[Gomaa 93]

[Kawata 95]

[Kawata 96]

[Katai 82]

[Kojima 91]

proach to the State-Explosion Problem —, Lecture Notes in Computer Science, Vol.1032,
Springer-Verlag, 1996.

H. Gomaa, Software Design Methods for Concurrent and Real-Time Systems, Addison-
Wesley , 1993.

H. Kawata and N. Uchihira, Automatic Generation of Plant Simulator to Verify Sequence
Control Software (in Japanese), SICE Federated Symposium on Systems and Information,
Toyama, Nov., 1995.

H. Kawata and N. Uchihira, Practical Program Validation for Plant Control Systems
Using SFC and Temporal Logic, 1996 IEEFE International Conference on Systems, Man,
and Cybernetics (SMC’96), 1996.

O. Katai and S. Iwai, Construction of Scheduling Rules for Asynchronous, Concurrent
Systems Based on Tense Logic (in Japanese), Trans. of SICE, Vol. 18, No. 12, 1982.

F. Kojima and T. Koike, Advanced Configuration Tolls for DCS, ISA Trans., Vol.30,
No.2, 1991.

[Kanellakis 90] P. C. Kanellakis, S. A. Smolka, CCS Expressions, Finite State Processes and Three

[Koymans 87]

[Kroger 87]

[Hale 87]

[Harel 87a]

[Harel 87b]

[Harel 90]

[Hatley 87]

Problems of Equivalence, Information and Computation, 86, 1990.

R. Koymans, Specifying Message Passing Systems Requires Extending Temporal Logic,
in Temporal Logic in Specification (B. Baniegbal, H. Barringer, A. Pnueli, eds.) Lecture
Notes in Computer Science, Vol.398, Springer-Verlag, 1987.

F. Kroger, Temporal Logic of Programs, Springer-Verlag, 1987.

R. Hale, Using Temporal Logic for Prototyping: The Design of a Lift Controller, in
Temporal Logic in Specification (B. Baniegbal, H. Barringer, A. Pnueli, eds.) Lecture Notes
in Computer Science, Vol.398, Springer-Verlag, 1987.

D. Harel, Statechart: A visual formalism for complex systems, Sci. Comput. Program.,
Vol.8, No.3, 1987.

D. Harel, A. Pnueli, J.P. Schmidt, R. Sherman, On the Formal Semantics of Statechart,
Proc. 2nd IEEE Symp. on Logic in Computer Science (LICS), 1987.

D. Harel, et al., STATEMATE: A Working Environment for the Development of Complex
Reactive Systems, IEEE Trans. on Software Engineering, Vol.16, No.4, 1990.

D. Hatley and I. Pirbhai, Strategies for Real-Time System Specification, Dorset House,
1987.

[Hennessy 85a] M. Hennessy, and R. Milner, Algebraic Laws for Nondeterminism and Concurrency,

Journal of ACM, Vol. 32, No. 1, 1985.

[Hennessy 85b] M. Hennessy and C. Stirling, The Power of the Future Perfect in Program Logics,

[Hennessy 88]

Information and Control, 67, 1985.
M. Hennessy, Algebraic Theory of Processes, MIT Press, 1988.

[Henzinger 91] T. A. Henzinger, Z. Manna, A. Pnueli, Timed Transition Systems, Real-Time: Theory

[Hiraishi 95]

[Hoare 84]

and Practice, Lecture Notes in Computer Science, Vol.600, Springer-Verlag, 1991.

K. Hiraishi and M. Nakano, On Symbolic Model Checking in Petri Nets, IEICE Trans.
Fundam. Electron. Commun. Comput. Sci., Vol.LE78-A, No.11, 1995.

C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1984.

[Holzmann 91] G. J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, 1991.



N. Uchihira:

Programming Environment for Reactive and Concurrent Systems 161

[Honiden 86al

[Honiden 86b]

[Honiden 90]

[Honiden 91a]

[Honiden 91b]

[Honiden 92]

[Honiden 94]

[Honiden 96]

[Howell 88]

[Huber 90]

[Ichikawa 85]

[IEC 1131-3]

[TWSSD 87]

[Jensen 90]

[Jensen 92]

[Jensen 95]

[Josko 87]

[Lakos 95]

S. Honiden, N. Uchihira, T. Kasuya, MENDEL: Prolog Based Concurrent Object Oriented
Language, Proc. IEEE COMPCON’86, 1986.

S. Honiden. N. Uchihira, A. Ohsuga, and T. Kasuya, MENDEL: Meta-Inferential System
Description Language (in Japanese), Trans. Inf. Process. Soc. Japan, Vol. 27, No. 2, 219—
217, 1986.

S. Honiden, N. Uchihira, K. Matsumoto, K. Matsumura, M. Arai, An Application of
Structural Modeling and Automated Reasoning to Real-Time Systems Design, Real-Time
Systems, Vol.1, No.4, 313-331, 1990.

S. Honiden, A. Ohsuga, N. Uchihira, An Integration Environment to Put Formal Specifi-
cations into Practical Use in Real-Time Systems, Proc. 6th IWSSD, 1991.

S. Honiden, N. Uchihira, K. Itoh, An Application of Artificial Intelligence to Prototyping
Process in Performance Design for Real-Time Systems, Proc. on 3rd European Software
Engineering Conference (ESEC), Lecture Notes in Computer Science, Vol.550, Springer-
Verlag, 1991.

S. Honiden and N. Uchihira, Net-Oriented Analysis and Design, IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., VoLE75-A, No.10, 1992.

S. Honiden, K. Nishimura, N. Uchihira, K. Ttoh, An Application of Artificial Intelligence
to Object-Oriented Performance Design for Real-Time Systems, IEEE Trans. on Software
Engineering, Vol.20, No.11, 1994.

S. Honiden, A. Ohsuga, N. Uchihira, MENDELS ZONE: A parallel program development,
system based on formal specifications, Information and Software Technology, Vol.38, 1996.

R.R. Howell, L.E. Rosier, and H.C. Yen, A Taxonomy of Fairness and Temporal Logic
Problems for Petri Nets, Lecture Notes in Computer Science, Vol.324, Springer-Verlag,
1988.

P. Huber, et al., Hierarchies in Coloured Petri Nets, Advances in Petri Nets 1990, Lecture
Notes in Computer Science, Vol.483, Springer-Verlag, 1990.

A. Tchikawa, K. Yokoyama, and S. Kurogi, Reachability and Control of Discrete Event
Systems Represented by Conflict-Free Petri Nets, Proc. IEEE Internat. Symp. on Circuits
and Systems, 1985.

IEC 1131-3, IEC International Standard for Programmable Controllers, Part 3: Program-
ming Languages (IEC 1131-3), International Electrotechnical Commission, 1993.

Problem Set, in Proceedings of the 4th International Workshop on Software Specification
and Design (IWSSD), 1987.

K. Jensen, Coloured Petri Nets: A High Level Language for System Design and Analysis,
Advances in Petri Nets 1990, Lecture Notes in Computer Science, Vol.483, Springer-Verlag,
1990.

K. Jensen, Coloured Petri Nets, Basic Concept, Analysis Methods and Practical Use, Vol-
ume 1, Springer-Verlag, 1992.

K. Jensen, Coloured Petri Nets, Basic Concept, Analysis Methods and Practical Use, Vol-
ume 2, Springer-Verlag, 1995.

B. Josko, MCTL — An Extension of CTL for Modular Verification of Concurrent Systems,
in Temporal Logic in Specification (B. Baniegbal, H. Barringer, A. Pnueli, eds.) Lecture
Notes in Computer Science, Vol.398, Springer-Verlag, 1987.

C. Lakos, From Coloured Petri Nets to Object Petri Nets, Proc. 16th Internat. Conf.
on Application and Theory of Petri Nets (ICATPN), Lecture Notes in Computer Science,
Vol.935, Springer-Verlag, 1995.



N. Uchihira:

Programming Environment for Reactive and Concurrent Systems 162

[Lamport 94]

[Lee 91]

[Lee 85]

[Lynch 86]

[Lynch 88]

[Marsan 86|

[Marsan 95]

[McMillan 93]
[Manna 81a]

[Manna 81b]

[Manna 84]

[Manna 92]

[Milner 81]

[Milner 89]
[Mishra 85]

[Miyagi 88|

L. Lamport, The Temporal Logic of Actions, ACM Trans. on Prog. Lamg. Syst., Vol.16,
No.3, 1994.

E. S. Lee, et al., Construction and Implementation of a Specification Environment SEGL
Based on G-LOTOS (in Japanese), Trans. Inf. Process. Soc. Japan, Vol.32, No.3, 1991.

K. Lee and J. Favrel, Hierarchical Reduction Method for Analysis and Decomposition of
Petri Nets, IEEE Trans. on SMC, Vol.SMC-15, No.2, 1985.

N. Lynch and M. Merritt, Introduction to the Theory of Nested Transactions, Proc.
Internat. Conf. on database Theory (ICDT’86), 1986.

N. Lynch and M. Tuttle, Introduction to Input/Output Automata, MIT Technical Report
MIT/LCS/TM-375, 1988.

M. Ajmone Marsan, G.Balbo and G.Conte, Performance Models of Multiprocessor Sys-
tems, The MIT Press, 1986.

M. Ajmone Marsan, G. Balbo and G. Conte, S. Donatelli, and G. Franceschinis, Modeling
with Generalized Stochastic Petri Nets, John Wiley & Sons, 1995.

K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.

Z. Manna and A. Pnueli, Verification of Concurrent Programs, Part I: The Temporal
Framework, Stanford University Technical Report, No.STAN-CS-81-836, 1981.

Z. Manna and A. Pnueli, Verification of Concurrent Programs, Part II: Temporal Proof
Principles, Stanford University Technical Report, No.STAN-CS-81-843, 1981.

Z.Manna and P.Wolper, Synthesis of Communicating Processes from Temporal Logic Spec-
ification, ACM Trans. Program. Lang. & Syst., Vol. 6, No. 1, pages 68 - 93, 1984.

Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems -
specification -, Springer-Verlag , 1992.

R. Milner, A Modal Characterization of Observable Machine-behaviour, Lecture Notes in
Computer Science, Vol.112, Springer-Verlag, 1981.

R. Milner, Communication and Concurrency. Prentice Hall, 1989.

B. Mishra, and E.M. Clarke, Hierarchical Verification of Asynchronous Circuit Using
Temporal Logic. Theoretical Computer Science, 38, 1985.

P.E.Miyagi, K.Hasegawa, K.Takahashi, A Programming Language for Discrete Event Pro-
duction Systems Based on Production Flow Schema and Mark Flow Graph, Trans. of the
Society of Instrument and Control Engineering, Vol.24, No.2, Feb. 1988.

[Moszkowski 86] B.C. Moszkowski, Ezecuting Temporal Logic Programs, Cambridge Univ. Press, 1986.

[Murata 89]

[Murata 90]

[Nagao 92]

[Ostroff 90]
[Paige 87]

[Park 81]

T. Murata, Petri Nets: Properties, Analysis and Applications, Proc. IEEE, Vol. 77, No.
4, 1989.

T. Murata and N. Komoda, Real-Time Control Software for Transaction Processing Based
on Colored Safe Petri Net Model, Real-Time Systems, Vol.1, No.4, 299-312, 1990.

Y. Nagao, et al., Petri Net Based Programming System for FMS, IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., VoL.LE75-A, No.10, 1992.

J.S. Ostroff, Temporal Logics for Real-Time Systems Research Studies Press, 1990.

R. Paige, R.E.Tarjan, Three Partition Refinement Algorithms, SIAM .J. Comput., 16,
No.6, 1987.

D.Park, Concurrency and automata on infinite sequences, Lecture Notes in Computer
Science, Vol.104, Springer-Verlag, 1981.



N. Uchihira:

Programming Environment for Reactive and Concurrent Systems 163

[Patent KOUKATI H4-259071] M. Arami, N. Uchihira, Graph Generation Method, Japan Patent Office

[Peterson 81]

[Pinci 91]

[Pinter 84]

[Plaisted 86]

[Pnueli 77)

[Pnueli 81]

[Pnueli 86]

[Pnueli 89a)

[Pnueli 89b]

[Pnueli 90]

[Ramadge 89]

[Rescher 71]
[Reisig 87]

[Reisig 91]
[Reisig 92]
[Ross 77]

KOUKAI H4-259071, 1991.
J.L.Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Inc., 1981.

V.0.Pinci and R.M.Shapiro, An Integrated Software Development Methodology Based on
Hierarchical Colored Petri Nets, Advances in Petri Nets 1991, Lecture Notes in Computer
Science, Vol.524, Springer-Verlag, Springer-Verlag , 1991.

S.S. Pinter, P. Wolper, A Temporal Logic for Reasoning about Partially Ordered Compu-
tations, Proc. 8rd ACM Symp. on Principles of Distributed Computing, 1984.

D. A. Plaisted, A Decision Procedure for Combinations of Propositional Temporal Logic
and Other Specialized Theories, Journal of Automated Reasoning, 2, 1986.

A. Pnueli, The Temporal Logic of Programs, Proc. 18th IEEE Symp. on Foundations of
Computer Science, 1977.

A. Pnueli, Temporal Semantics of Concurrent Programs, Theoretical Computer Science,
13, 1981.

A. Pnueli, Application of Temporal Logic To the Specification and Verification of Reactive
Systems: A survey of Current Trends, in Current Trends in Concurrency (J.W. de Back-
ker, W.-P. de Roever, G. Rozenverg, eds.), Lecture Notes in Computer Science, Vol.224,
Springer-Verlag, 1986.

A. Pnueli and R. Rosner, On the Synthesis of an Asynchronous Reactive Module, 16th
International Colloquium on Automata, Languages, and Programming (ICALP), Lecture
Notes in Computer Science, Vol.372, Springer-Verlag, 1989.

A. Pnueli and R. Rosner, On the synthesis of a reactive module, Proc. 16th ACM Principle
of Programming Languages (POPL), 1989.

A. Pnueli and R. Rosner, Distributed Reactive Systems are Hard to Synthesize, Proc.
IEEF 31st Annual Symp. on Foundations of Computer Science (FOCS), 1990.

P.J. Ramadge and W.M. Wonham, The Control of Discrete Event Systems, Proc. IEEE,
Vol.77, No.1, 81-98, 1989.

N. Rescher and A. Urquhart, Temporal Logic, Springer-Verlag, 1971.

W. Reisig, Petri Nets in Software Engineering, Advances in Petri Nets, Lecture Notes in
Computer Science, Vol.255, Springer-Verlag, 63-96, 1987.

W. Reisig, Petri Nets and Algebraic Specification Theoretical Computer Science, 80, 1991.
W.Reisig, A Primer in Petri Net Design, Springer-Verlag,1992.

D.T. Ross, Structured Analysis: A Language for Communicating Idea, IEEE Trans. on
Software Engineering, Vol.3, No.1, 1977.

[Rumbaugh 91] J.Rumbaugh, et al., Object-Oriented Modeling and Design, Prentice-Hall, 1991.

[Saeki 87]

[Shatz 93]

[Sistla 84]

M. Saeki, Non-Monotonic Propositional Temporal Logic and its Application to Formal
Specifications (in Japanese), Trans. Inf. Process. Soc. Japan, Vol.28, No.6, 1987.

S. M. Shatz, Development of Distributed Software: Concepts and Tools, Macmillan, New
York, 1993.

A P. Sistla, E.M. Clarke, N. Francez, A.R. Meyer, Can Message Buffers Be Axiomatized
in Linear Temporal Logic?, Information and Control, 63, 1984.

[Stankovic 95] J.A. Stankovic, Implications of Classical Scheduling Results for Real-Time Systems, I[EEE

Computer, Vol.28, No.6, 1995.



N. Uchihira: Programming Environment for Reactive and Concurrent Systems 164

[Stirling 87]  C. Stirling, Modal Logic for Communicating Systems, Theoretical Computer Science, 49,
1987.

[Stirling 89a] C. Stirling, Temporal Logic for CCS, Lecture Notes in Computer Science, Vol.354,
Springer-Verlag, 1989.

[Stirling 89b] C. Stirling and D. Walker, CCS, Liveness, and Local Model Checking in Linear Time
Mu-calculus, Lecture Notes in Computer Science, Vol.407, Springer-Verlag, 1989.

[Suzaki 91]  K.Suzaki and T.Chikayama, AYA: Process-Oriented Concurrent Programming Language
on KL1 (in Japanese), Proc. KL1 Programming Workshop’91, 1991.

[Suzuki 89]  I. Suzuki and H. Lu, Temporal Petri Nets and Their Application to Modeling and Analysis
of a Handshake Daisy Chain Arbiter, IEEE Trans. on Computers, Vol.38, No.5, 1989.

[Suzuki 90]  I. Suzuki, Formal Analysis of the Alternating Bit Protocol by Temporal Petri Nets, IEEE
Trans. on Software Engineering, Vol.16, No.11, 1990.

[Taki 89] K. Taki, The FGCS Computing Architecture, Information Processing, 89, (Proc. IFIP
11th World Computer Congress), 627-632, 1989.

[Leeuwen 90] J. Van Leeuwen (ed.), Handbook of Theoretical Computer Science, Volme B, Formal Models
and Semantics, The MIT Press/Elsevier, 1990.

[Uchihira 87] N. Uchihira, T. Kasuya, K. Matsumoto, S. Honiden, Concurrent Program Synthesis with
Reusable Components Using Temporal Logic, Proc. IEEE COMPSAC’87, 1987.

[Uchihira 88] N. Uchihira, K. Matsumoto, S. Honiden, H. Nakamura, MENDELS: Concurrent Program
Synthesis System Using Temporal Logic, Proc. 6th Logic Programming Conference (K.
Furukawa, et al., eds.), Lecture Notes in Computer Science, Vol.327, Springer-Verlag, 50—
68, 1988.

[Uchihira 89a] N. Uchihira, K. Nishimura, S. Sumida, and H. Kawata. Verification and Debugging of Con-
current Robot Control Programs Using Temporal Logic (in Japanese). The 3rd National
Meeting of Japan Society of Artificial Intelligence, 1989.

[Uchihira 89b] N. Uchihira and S. Honiden, Concurrent Programming Language Based on Petri Nets on
Intelligent Distributed Processing System (in Japanese). IEICE Technical Report CPSY
89-34, 1989.

[Uchihira 90a] N. Uchihira, H. Kawata, K. Matsumoto, M. Ito, S. Honiden, Synthesis of Concurrent
Programs: Automated Reasoning Complements Software Reuse, Proc. IEEE 23rd Hawaii
International Conference on System Science (HICSS), 1990.

[Uchihira 90b] N. Uchihira and S. Honiden, Verification and synthesis of concurrent programs using Petri
nets and temporal logic, Trans. on IEICE, Vol.E73, No.12 , 1990.

[Uchihira 92a] N. Uchihira, PQL: Modal Logic for Compositional Verification of Concurrent Programs
(in Japanese), Trans. IEICE Vol.J75-DI, No.2 | 1992), also its english version, Systems
and Computers in JAPAN, Vol. 25, No.1, Jan., Scripta Technica (John Wiley & Sons),
1994.

[Uchihira 92c] N. Uchihira, Compositional synthesis for cooperating discrete event systems from modular
temporal logic specifications, IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,
Vol.E75-A, No.3, 1992.

[Uchihira 92b] N. Uchihira, M. Arami, S. Honiden, A Petri-Net-Based Programming Environment and
Its Design Methodology for Cooperating Discrete Event Systems, IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., VolLE75-A, No.10, 1992.

[Uchihira 92d] N. Uchihira and S. Honiden, Petri Net and Temporal Logic (in Japanese), Petri nets and
its Application, 240-251, SICE Publishing Office, 1992.



N. Uchihira: Programming Environment for Reactive and Concurrent Systems 165

[Uchihira 92e] N. Uchihira and S. Honiden, MENDELS ZONE: Petri-net-based Programming Environ-
ment for Cooperative Discrete Event Systems (in Japanese), SICE 10th Workshop on
Discrete Event Systems, 21-28, Niigata, 1992.

[Uchihira 93a] N. Uchihira, M. Arami, H. Kawata, Program Verification for Sequence Control Systems,
Toshiba Review, Vol.48, No.10, 1993.

[Uchihira 93b] N. Uchihira and S. Honiden, Software Design Methodology using High-Level Petri Nets
(in Japanese), SICE 12th Workshop on Discrete Event Systems, 73-80, Matsuyama, 1993.

[Uchihira 95a] N. Uchihira, S. Honiden, Compositional Adjustment of Concurrent Programs to Satisfy
Temporal Logic Constraints in MENDELS ZONE, IEEE 28th Hawaii International Con-
ference on System Science (HICSS), 1995, also in J. Systems and Software, Vol.33, No.3,
207-221, 1996.

[Uchihira 95b] N. Uchihira and H. Kawata, Practical Program Validation for State-Based Reactive Con-
current Systems — Harmonization of Simulation and Verification —, IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., VoLE78-A, No.11, 1995.

[Uchihira 96a] N. Uchihira, MENDELS ZONE, Tool Presentation, Proc. 17th Internat. Conf. on Appli-
cation and Theory of Petri Nets (ICATPN), Osaka, 1996.

[Uchihira 96b] N. Uchihira and S. Honiden, A High-Level Petri Net for Accurate Modeling of Reactive and
Concurrent Systems, IFICE Trans. Fundam. Electron. Commun. Comput. Sci., Vol.E79-
A, No.11, 1996.

[Uchihira 96c] N. Uchihira, S. Honiden, T. Seki, Hypersequential Programming — A Novel Paradigm
for Concurrent Programming —, 1st International Workshop on Software Engineering for
Parallel and Distributed Systems, Berlin, 1996.

[Uchihira 97a] N. Uchihira and S. Honiden, Three Phase Net-Oriented Software Design Method (in
Japanese), Trans. Inf. Process. Soc. Japan, Vol.38, No.1, 1997.

[Uchihira 97b] N. Uchihira, H. Kawata, Scenario-Based Hypersequential Programming: Concept and Ex-
ample, 2nd International Workshop on Software Engineering for Parallel and Distributed
Systems, Boston, 1997.

[Uchihira 97c] N. Uchihira, S. Honiden, T. Seki, Hypersequential Programming — A New Paradigm for
Concurrent Program Development —, IEEE Concurrency, Vol.5, No.3, 1997.

[Ueda 90] K. Ueda and T. Chikayama, Design of the Kernel Language for the Parallel Inference
Machine, Comput. J., Vol.33, No.6, 494-500 (1990).

[Uraoka 92] T. Uraoka, J. Yamamoto, A. Ohsuga, S. Honiden, An Algebraic Specification and Verifi-
cation of a Plant Control Expert System (in Japanese), IPSJ Technical Report, SE 86-15,
1992.

[Valk 83] R.Valk, Infinite Behavior of Petri Nets, Theoretical Computer Science, 25, 1983.

[Valk 85] R.Valk and M.Jantzen, The Residue of Vector Sets with Applications to Decidability
Problems in Petri Nets, Acta Informatica, 21, 1985.

[Vallejo 94]  F. Vellejo, J.A. Gregorio, M. G. Harbour, J.M. Drake, Shared Memory Multimicropro-
cessor Operating System with an Extended Petri Net Model, IEEE Trans. on Parallel
Distrib. Syst., Vol.5, No.7, 1994.

[Valmari 90] A. Valmari, Stubborn Sets for Reduced State Space Generation, Proc. 11th Internat. Conf.
on Application and Theory of Petri Nets (ICATPN), Lecture Notes in Computer Science,
Vol.483, Springer-Verlag, 491-515, 1990.

[Vardi 86] M.Y. Vardi and P. Wolper, An Automata-Theoretic Approach to Automatic Program
Verification, Proc. 1st IEEE Symp. on Logic in Computer Science (LICS), 1986.



N. Uchihira: Programming Environment for Reactive and Concurrent Systems 166

[Walker 90]
[Ward 85]

[Ward 86]

[Winskel 90]

[Wolper 83a]

[Wolper 83b]
[Wolper 88]

[Wolper 93]

[Yoshida 88]

[Yoshida 90]

[Yonezaki 91]

[Yoneda 93]

D.J. Walker, Bisimulation and Divergence. Information and Computation, 85, 1990.

P. Ward and S. Mellor, Structured Development for Real-time Systems, Vol.1 — Vol.4,
Prentice Hall, 1985.

P. Ward, The Transformation Schema: An Extension of the Data Flow Diagram to
Represent Control and Timing, IEEE Trans. on Software Engineering, Vol.12, No.2, 1986.

G. Winskel, On the Compositional Checking of Validity, Proc. 1st Internat. Conf. on. Con-
currency Theory (CONCUR’90), Lecture Notes in Computer Science, Vol.458, Springer-
Verlag, 1990.

P. Wolper, M.Y. Vardi, and A.P. Sistla, Reasoning about Infinite Computation Paths,
Proc. IEEE 24th Annual Symp. on Foundations of Computer Science (FOCS), 1983.

P. Wolper, Temporal Logic Can Be More Expressive, Information and Control, 56, 1983.

P. Wolper, On the Relation of Programs and Computations to Models of Temporal Logic,
Temporal Logic in Specification (B. Banieqbal, H. Barringer, A. Pnueli, eds.), Lecture
Notes in Computer Science, Vol.398, Springer-Verlag, 1987.

P. Wolper and P. Godefroid, Partial-Order Methods for Temporal Verification, Proc.
4th Internat. Conf. on Concurrency Theory (CONCUR’93),Lecture Notes in Computer
Science, Vol.715, Springer-Verlag, 1993.

K. Yoshida and T. Chikayama, A’UM — Stream-Based Concurrent Object-Oriented Lan-
guage —, Proc. Internat. Conf. on Fifth Generation Computer Systems 1988 (FGCSS8S8),
ICOT, 1988.

K. Yoshida, A’'UM A Stream-Based Concurrent Object-Oriented Programming Language,
Ph.D Thesis, Keio University, 1990.

N. Yonezaki, Conceptual Modeling in MSL, Advances in Information Modeling and Knowl-
edge Bases, IOS Press, 1991.

T. Yoneda, A. Shibayama, B-H. Schlingloff, E.M. Clarke, Efficient Verification of Parallel
Real-Time Systems, Conference on Computer-Aided Verification (CAV’93), Lecture Notes
in Computer Science, Vol.697, Springer-Verlag, 1993.

[Yoshimura 93] N. Yoshimura, N. Yonezaki, More Expressive Temporal Logic for Specification, 5th

[Zave 82]

[Zave 91]

[Zhou 92]

Internat. Conf. on Software Engineering and Knowledge Engineering, 1993.

P. Zave, An Operational Approach to Requirements Specification for Embedded Systems,
IEEE Trans. on Software Engineering, Vol.8, No.3, 1982.

P. Zave, An Insider’s Evaluation of PAISLey, IEEE Trans. on Software Engineering,
Vol.17, No.3, 1991.

M.C. Zhou, F. DiCesare, A. Desrochers, Hybrid Methodology for Synthesis of Petri Net
Models for Manufacturing Systems, IEEE Trans. Robotics and Automation, Vol.8, No.3 ,
1992.



N. Uchihira: Programming Environment for Reactive and Concurrent Systems 167
[ ] [ ]
Publications by the Author
Journals

1. N. Uchihira and S. Honiden, Verification and synthesis of concurrent programs using Petri nets and
temporal logic, Trans. IEICE, Vol.E73, No.12, 2001-2010, 1990.

2. N. Uchihira, PQL: Modal Logic for Compositional Verification of Concurrent Programs (in Japanese),
Trans. IEICE, Vol.J75-DI, No.2, 76-87, 1992, also its English version, Systems and Computers in
JAPAN, Vol. 25, No.1, Scripta Technica (John Wiley & Sons), 1994.

3. N. Uchihira, Compositional Synthesis for Cooperating Discrete Event Systems from Modular Tem-
poral Logic Specifications, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., VolL.E75-A,
No.3, 380-391, March, 1992.

4. N. Uchihira, M. Arami, S. Honiden, A Petri-Net-Based Programming Environment and its Design
Methodology for Cooperating Discrete Event Systems, IEICE Trans. Fundam. Electron. Commun.
Comput. Sci., Vol.E75-A, No.10, 1335-1347, 1992.

5. N.Uchihira and H. Kawata, Practical Program Validation for State-Based Reactive Concurrent
Systems — Harmonization of Simulation and Verification —, IEICE Trans. Fundam. Electron.
Commun. Comput. Sci., Vol.LE78-A, No.11, 1995.

6. N. Uchihira and S. Honiden, Compositional Adjustment of Concurrent Programs to Satisfy Tem-
poral Logic Constraints in MENDELS ZONE, J. Systems and Software, Vol.33, No.3, 207-221,
1996.

7. N. Uchihira and S. Honiden, A High-Level Petri Net for Accurate Modeling of Reactive and Con-
current Systems, IFICE Trans. Fundam. Electron. Commun. Comput. Sci., Vol.LE79-A, No.11,
1797-1808, 1996.

8. N. Uchihira and S. Honiden, Three Phase Net-Oriented Software Design Method (in Japanese),
Trans. Inf. Process. Soc. Japan, Vol.38, No.1, 1997.

9. N. Uchihira, S. Honiden, T. Seki, Hypersequential Programming — A New Paradigm for Concurrent
Program Development —, IEEE Concurrency, Vol.5, No.3, 44-54, 1997.

10. S. Honiden. N. Uchihira, A. Ohsuga, and T. Kasuya, MENDEL: Meta-Inferential System Descrip-
tion Language (in Japanese), Trans. Inf. Process. Soc. Japan, Vol. 27, No. 2, 219-217, 1986.

11. S. Honiden, N. Uchihira, K. Matsumoto, K. Matsumura, M. Arai, An Application of Structural
Modeling and Automated Reasoning to Real-Time Systems Design, Real-Time Systems, Vol.1,
No.4, 313-331, 1990.

12. S. Honiden, N. Sueda, A. Hoshi, N. Uchihira, K. Mikame, Software Prototyping with Reusable
Components, J. Inf. Process. Japan, Vol. 9, No. 3, 123-129, 1986.

13. S. Honiden, A. Ohsuga, and N. Uchihira, An integration method of real time SA and object oriented

design using algebraic and temporal logic specifications (in Japanese) Trans. Inf. Process. Soc.
Japan, Vol.33, No.2, 173-182, 1992.



N. Uchihira: Programming Environment for Reactive and Concurrent Systems 168

14.

15.

16.

S. Honiden and N. Uchihira, Net-oriented analysis and design, IEICE Trans. Fundam. Electron.
Commun. Comput. Sci., Vol.LE75-A, No.10, 1317-1325, 1992.

S. Honiden, K. Nishimura, N. Uchihira, K. Itoh, An Application of Artificial Intelligence to Object-
Oriented Performance Design for Real-Time Systems, IEEE Trans. on Software Engineering,
Vol.20, No.11, 1994.

S. Honiden, A. Ohsuga, N. Uchihira, MENDELS ZONE: A parallel program development system
based on formal specifications, Information and Software Technology, Vol.38, 181-189, 1996.

Conferences

1.

10.

11.

12.

13.

N. Uchihira, T. Kasuya, K. Matsumoto, S. Honiden, Concurrent Program Synthesis with Reusable
Components Using Temporal Logic, Proc. IEEE COMPSAC’87, Tokyo, 1987.

. N. Uchihira, K. Matsumoto, S. Honiden, and H. Nakamura, MENDELS: Concurrent Program

Synthesis System Using Temporal Logic, Proc. the 6th Logic Programming Conference, Tokyo,
1987, also in Lecture Notes in Computer Science, Vol.327, Springer-Verlag, 1988.

. N. Uchihira, H. Kawata, K. Mastumoto, M. Ito, S. Honiden, Synthesis of Concurrent Programs:

Automated Reasoning Complements Software Reuse, 23rd Hawaii International Conference on
System Science (HICSS), 1990.

. N. Uchihira and S. Honiden, Compositional Adjustment of Concurrent Programs to Satisfy Tem-

poral Logic Constraints in MENDELS ZONE, Proc. IEEE 28th Hawaii International Conference
on System Science (HICSS), 1995.

. N. Uchihira, S. Honiden, T. Seki, Hypersequential Programming — A Novel Paradigm for Concurrent

Programming —, 1st International Workshop on Software Engineering for Parallel and Distributed
Systems, Berlin, Chapman & Hall, 1996.

. N. Uchihira, H. Kawata, Scenario-Based Hypersequential Programming: Concept and Example,

2nd International Workshop on Software Engineering for Parallel and Distributed Systems, Boston,
TEEE Computer Society Press, 277-283, 1997.

N. Uchihira, H. Kawata, F. Tamura, Scenario-Based Hypersequential Programming: Formulation
of Parallelization, International Symposium on High Performance Computing (ISHPC), Fukuoka,
Lecture Notes in Computer Science, Vol.1336, Springer-Verlag, 267-240, 1997.

. N. Uchihira, How to Make Concurrent Programs Highly Reliable — More Than State Space Analysis,

International Conference on Application of Concurrency to System Design, Aizu-Wakamatsu, IEEE
Computer Society Press, 16-23, 1998.

. S. Honiden, N. Uchihira, K. Mastumoto, K. Matsumura, M. Arai, An Application of Structural

Modeling and Automated Reasoning to Concurrent Program Design, Proc. IEEE 22th Hawaii
International Conference on System Science (HICSS), Vol.II: Software Track, 134-141, 1989.

S. Honiden, A. Ohsuga, and N. Uchihira, An Integration Environment to Put Formal Specifications
into Practical Use in Real-time Systems, Proc. the Sizth International Workshop on Software
Specification and Design (IWSSD), IEEE Comput. Soc. Press, 102-109, 1991.

S. Honiden, N. Uchihira, and K. Itoh, An Application of Artificial Intelligence to Prototyping
Process in Performance Design for Real-time Systems, Proc. 3rd European Software Engineering
Conference (ESEC), Lecture Notes in Computer Science, Vol.550, Springer-Verlag, 1991.

S. Honiden, N. Uchihira, K. Matsumoto, and K. Itoh, A Prototyping Process for Performance
Design in Real-time Systems, Proc. InfoJapan 90, Vol.1, 103-110, North-Holland, 1990.

H. Kawata and N.Uchihira, Practival Program Validation for Plant Control Systems Using SFC and
Temporal Logic, 1996 IEEE International Conference on Systems, Man, and Cybernetics (SMC’96),
1996.



N. Uchihira: Programming Environment for Reactive and Concurrent Systems 169

Articles

1. S. Honiden, N. Uchihira, K. Matsumoto, Temporal Logic and Petri Nets (in Japanese), Operations
Research, Japan Society of Operations Research, Oct., 1987.

2. S. Honiden, N. Uchihira, H. Nakamura, Automatic Programming for Control Systems (in Japanese),
Inf. Process. Soc. Japan, Vol.28, No.10, 1398-1404, 1987.

3. K. Matsumoto, N. Uchihira, S. Honiden, Temporal Logic and their Applications (in Japanese), Inf.
Process. Soc. Japan, Vol.30, No.6, 651-657, 1989.

4. N. Uchihira, S. Honiden, Petri Nets and Temporal Logic (in Japanese), SICE Special Interest Group
for Discrete Event Systems (ed.), Petri Nets and Its Applications, SICE, 1992.

5. M. Aoyama, K. Hiraishi, N. Uchihira, Software Development Methodologies Based on High Level

Petri Nets (in Japanese), Computer Software, Vol.11, No.4, 3-19, Japan Society for Software Science
and Technology (JSSST), 1994.

6. N. Uchihira and H. Kawata, Exhaustive Simulation of Discrete Event Systems (in Japanese), Journal
of The Society of Instrument and Control Engineers (SICE), Vol.35, No.10, 763-769, 1996.

7. N. Uchihira and H. Kawata, Testing Control Programs: A Survay (in Japanese), Journal of IPSJ
Vol.39, No.1, 19-25, 1998.

8. N. Uchihira, K. Hiraishi, M. Aoyama, Petri Nets: Book and Tool Review (in Japanese), Journal of
IPS.J Vol.39, No.1, 67-70, 1998.

Books

1. K. Itoh, S. Honiden, N. Uchihira, Prototyping Tools (in Japanese), Keigaku Shuppan, 1987.

2. M. Aoyama, N. Uchihira, K. Hiraishi, Petri Nets — Theory and Practice — (in Japanese), Asakura
Shoten, 1995.



Index

p-calculus, 28

w-automaton, 13

mTw-bisimulation equivalence, 59, 93
Tw-bisimulation, 59

Tw-divergence, 59, 93

abstraction, 108
activity-chart, 151
adjustment, 90

algebraic Petri net, 110
aperiodic task, 33

arbiter, 91

attribute network, 146
AUTO/AUTOGRAPH, 16

Biichi sequential automaton, 20, 43
base-level net, 117

basic adjustment, 91, 96
bisimulation, 59

bisimulation equivalence, 60
branching time temporal logic, 13, 26

C-net, 110

Cabernet, 16

causality matrix, 127, 128, 145
causality matrix editor, 145
coloured Petri net (CPN), 110
communicating transition systems, 22
completeness, 22

composition, 61

compositional adjustment, 92, 98
compositional verification, 57, 82
computation tree logic (CTL), 26
concurrency control, 106
concurrent tasks, 108

CTL, 26, 56

CTL*, 27

CWB, 16

DARTS, 15

DESIGN/CPN, 16, 110
divergence, 57

dual-language approach, 13, 41

event flag, 108
external deadlock, 57

failure, 88
failure equivalence, 88, 106

170

fairness condition, 22

FCTI program, 91

FGCS, 141

finite automaton, 20

finite branching condition, 20
finite state process, 21

firing rule, 23

formal method, 10

formal specification, 37
formula, 24

free state logical variable, 62
function block, 109

G-LOTOS, 124

general temporal logic, 57

general temporal logic (GTL), 57
generalized stochastic Petri net, 24
GTL, 57

harmful nondeterminism, 90
Hennessy-Milner Logic (HML), 57
hierarchical synchronization supervisor, 50
high-level Petri nets, 109

High-level SFC, 109

HML, 57

HMS machine, 75

hypersequential programming, 156

I/O automata, 23

I/O definition editor, 145

I/0 task, 33

IFC, 109

IHML, 89

indirect communication, 115
inevitably unsatisfiable behavior, 22
information hiding, 108

initial marking, 23

intended nondeterminism, 90
interleaving semantics, 22
internal task, 33

Intuitionistic HML (IHML), 58

KL1, 112, 143
Kripke structure, 25

ladder chart, 109

legal firing sequence, 24

linear time temporal logic, 13, 25
liveness property, 40



N. Uchihira: Programming Environment for Reactive and Concurrent Systems

lower CASE tool, 142

mail box, 108

maximum fixed point operator, 63
MENDEL net, 111

MENDEL net editor, 145
MENDEL translator, 147
MENDELS ZONE, 17, 141, 143
meta-level net, 117

meta-place, 117

method, 112

method editor, 145

MFG/PFS, 109

minimum fixed point operator, 63
model-checking, 56

module-chart, 151

Multi-PSI, 143

multi-view design method, 153

Net-Oriented Design Method, 139

OBJSA net, 124
observation equivalence, 57
Oleo, 145

OOAD, 15

page, 123
parameterized Tw-divergence, 88
partial bisimulation equivalence, 88

partial bisimulation equivalence by global diver-

gence, 88

partial bisimulation preorder by local divergence,

88

partial bisimulation preorder with global diver-

gence, 88
partial order approach, 83, 156
partial order method, 54, 83
path formula, 62
periodic task, 33
persistent nondeterminism, 90
Petri net, 23, 75
Petri net language, 24

Petri-net-oriented design methodology, 127

place, 23

place fusion, 115

place procedure, 110

PLTL, 25

PLTL editor, 147

plug, 115

PQL (Process Query Language), 62
predicate/transition net, 110
probe effect, 36, 142

process library, 145

process logic, 57

process place, 118

process status information, 119
process status token, 118
process-oriented hierarchy, 114

process-oriented net hierarchy, 123
program adjustment, 90

programmable logic controller (PLC), 109

programming environment, 141
propositional logic, 24

propositional process logic (PPL), 27

Protob, 124
PTSV, 56

RCS, 30

reactive and concurrent system, 30
reactive system, 30

realizable, 97

reduction function, 69

relabeling, 61

rendezvous, 108

RTSAD, 15

safety property, 40

satisfiable behavior, 22
SAVE/SFC, 81

SCR, 110

semaphore, 108

SFC, 75, 76, 109

single event condition, 26
single-view design method, 153

software design document (SDD), 37

SPIN, 16

SPQL (Strong Process Query Logic), 62

SPQL formula, 62

state explosion problem, 14
state formula, 62

Statechart, 23, 75, 151
STATEMATE, 16, 151
subnet-oriented hierarchy, 114
subnet-oriented net hierarchy, 123
substitution place, 123
substitution transition, 123
supervisory control, 106
symbolic model checking, 54

task communication, 108
task scheduling, 108

task synchronization, 108
temporal logic, 25

TFS, 30

171

three phase net-oriented software design method,

155
time basic net, 24
time Petri net, 24, 54
timed automata, 24
timed graph, 24
timed transition system, 24
token sharing, 117
token-oriented net hierarchy, 124
trace equivalence, 88
transformational system, 30



N. Uchihira: Programming Environment for Reactive and Concurrent Systems 172

transition, 23
transition fusion, 115
transition system, 19

unrealizable, 97
unsatisfiable state, 22
upper CASE tool, 142

VERASQUES, 81
verification scope, 67
visual monitor, 147



