
論文 / 著書情報
Article / Book Information

題目(和文) ペトリネットと時相論理を用いたリアクティブ並行システムの開発環
境の研究

Title(English) A programming environment for reactive and concurrent systems using
petri nets and temporal logic

著者(和文) 内平直志

Author(English) Naoshi Uchihira

出典(和文) 学位:博士(工学),
 学位授与機関:東京工業大学,
 報告番号:乙第3125号,
 授与年月日:1997年12月31日,
 学位の種別:論文博士,
 審査員:佐伯 元司

Citation(English) Degree:Doctor (Engineering),
 Conferring organization: Tokyo Institute of Technology,
 Report number:乙第3125号,
 Conferred date:1997/12/31,
 Degree Type:Thesis doctor,
 Examiner:

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

A Programming Environmentfor Reactive and Concurrent SystemsUsing Petri Nets and Temporal Logic
ZHjMCHH~j@}rQ$?

j"/F#VBT79F`N+/D-N&fNaoshi Uchihira
b? >VGraduate School of Information Science and EngineeringTokyo Institute of Technology

l~)HgX ps})X&fJ W;)Xl6

A thesis submitted to Tokyo Institute of Technologyin partial ful�llment of the requirement forthe degree of Doctor of EngineeringDecember, 1997

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems 1
ABSTRACTThere has been a rapid trend towards parallel, distributed, and interactive/reactive computing overthe past decade. Generally speaking, it is not so easy for ordinary programmers to produce correctand e�cient programs for these systems as compared with sequential programming. Therefore, somekind of computer-aided concurrent programming environment is necessary to achieve high productivityand high reliability. The purpose of this thesis is to present theories, methods and tools (programmingenvironments) for reactive and concurrent systems using Petri nets and temporal logic.Both Petri nets and temporal logic have been investigated as formal speci�cation languages for reactiveand concurrent systems. While temporal logic is appropriate for specifying the properties and constraintsof programs but inappropriate for specifying the behavioral structures of programs, Petri nets can specifythe behavioral structures but not the properties and constraints. In this thesis, the fusion of Petri nets andtemporal logic is proposed as a speci�cation language for reactive and concurrent systems. Then, practicaland e�cient veri�cation and synthesis methods using Petri nets and temporal logic and Petri-net-baseddesign methodology are described. Finally, a programming environment embedding these methods isintroduced. This thesis attempts in illustrating a typical programming paradigm and its environmentusing Petri nets and temporal logic.The main outcomes of this thesis are as follows.(1) Speci�cation by fusion of Petri nets and temporal logicThe fusion of Petri nets and temporal logic is proposed as a speci�cation language, and itsapplications to veri�cation and synthesis are considered. The remarkable point is that the pro-posed methods are for unbounded Petri nets, while former veri�cation and synthesis methodswere mainly for bounded (i.e., �nite) ones.(2) Compositional veri�cationAn e�cient and practical veri�cation method using transition systems (bounded Petri nets)and temporal logic is proposed. Generally, the computation costs for veri�cation increase expo-nentially as the scale of the programs increases. To overcome this problem, a reduction techniqueof the target program has been investigated using bisimulation equivalence. However, bisimula-tion equivalence cannot deal with \divergence" explicitly. Therefore, a new process equivalencerelation (��!-bisimulation equivalence) is proposed. A Process Query Language (PQL) which isan extended temporal logic and semantics of which is based on ��!-bisimulation equivalence isde�ned. Then, a compositional veri�cation method using PQL is proposed.(3) Compositional program adjustmentA new synthesis method using transition systems (bounded Petri nets) and temporal logic isproposed. Since conventional program generation from a temporal logic speci�cation is impracti-cal, this thesis proposes a new approach, \program adjustment". In program adjustment, a targetprogram written by programmers which may be functionally correct but may be imperfect in itstiming is automatically adjusted (tuned up) to satisfy given temporal logic constraints.(4) Petri-net-based software design methodologyA Petri-net-based software design method is proposed. In this method, a causality matrix isintroduced for an earlier design phase when the system structure is obscure and it is di�cult towrite Petri nets directly. A designer can construct Petri nets systematically from an ambiguousrequirement using the causality matrices according to the design method.(5) MENDELS ZONEA programming environment, MENDELS ZONE, based on the above techniques has beendeveloped. MENDEL net which is a high-level Petri net for reactive and concurrent systemsis used as the programming language. The designer constructs a program (MENDEL net) andveri�es it using temporal logic. If there are any bugs, the program can be adjusted. Finally, theconstructed program is executed on a parallel computer.

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems 2
5W

W;!79F`NBs=$,6=$$s?i/F#V/j"/F#V=K<$$BTWm0i_s0N
{WO^9^9g-/JjDD"k%7+7J,i$BTWm0i`N+/O$`!Wm0i`N+/Kf
YFJJKq7$%5iK$)f79F`JINj"/F#V79F`NBTWm0i`KOb$.j-
,Wa5lk3H,?$%3Nh&J=UH&'"Nb8:-*hSb.j-rN]9k?aKO$=U
H&'"+/NW;!YgOTDgG"k%\&fN*O$ZHjMCHH~j@}rQ$?j"/F#
V&BT79F`N=UH&'"+/Yg;QrN)9k3HG"k%
ZHjMCHH~j@}OHbKBT79F`NA0*JEM-R!H7F&f5lF-?%7+7$

~j@}O)s-RKO,7F$k,=$-RKOT,G"j$UKZHjMCHO=$-RKO,7F$
k,)s-RKOT,G"C?%=3G$\&fGO~j@}HZHjMCHN;gKhkj"/F#V&
BT79F`NEM-R!rNQ9k%5iK$ZHjMCHH~j@}rQ$?BQ*J!Z&g.j!
JINWG;Qr+/7$=lirH_~s@Wm0i`N+/D-Nnn*hS=UH&'"_W}!
@Ns(rTJ&%\&fKhj$ZHjMCHH~j@}rQ$?lDNqN*J=UH&'"+/Yg
NOrN)9k3H,G-?%
\&fNgJqN*.LH7FO$J<N`\,"k%(1) ZHjMCHH~j@}N;gKhkEM-R!NsF$

~j@}HZHjMCHN;g!r(7$ZHjMCH,~j@}r~?9+]+r!Z9k
"k4j:`r(7?%>h$-&JZHjMCHKP9k~j@}Khk!Z!ONilF$?
,$=lr-&GJ$lLNZHjMCHN!ZKH%7?%(2) Q_EM0!Z!N&f
+\79F` (-BZHjMCH)H~j@}rQ$?g,OWm0i`KP9kz(*J!Z

!r(7?%>h$~j@}NbGk!:!GO!ZKW9k39HNz/*}g,dj"j$3
lrsr9k?aKM9J}!,sF5l$=N1DK!ZP]NLsj!,"k%7+7$>h
N}0GO$Vbt+\Khk5Bk<WWNh}KX7Fdj,"C?%\&fGO$=Ndj@
rX&9kHHbK$=lr'59k77$Mj@} PQLrsF7$PQLrQ$?Q_EM!Z
!r(7?%(3) Wm0i`40!N&f
+\79F` (-BZHjMCH)H~j@}KhkBTWm0i`N77$g.!r(7?%

>hN~j@}+iNWm0i`g.!O$BQ,ONWm0i`K,Q9kKOEM-R=O*
hSW;LN@Gs=B*G"C?%=3G$Wm0i`4NN+0g.GOJ/$MV,n.7
?T04JWm0i` (+\79F`)r~j@}0G-R5l?EMr~?9h&Kt,*K+0
57*NWm0i`r8.9kVWm0i`40!WrsF7?%(4) MCHX~=UH&'"_W!NsF
ZHjMCHO1Jk-RjJG"j$"$^$JEM+iZHjMCHr3P9k?aN,

Iis (_W!),,WG"k%\&fGO$"$^$JEMrZHjMCHKqN=9kjJ
H7FxLX8^HjC/9r3~7?j"/F#V&BT79F`N=UH&'"_W!rsF
7?%(5) Wm0i_s0D-MENDELS ZONEN+/
e-NWG;Qr}g7?Wm0is_s0D-rBsW;!eKnn7?%33G$Wm0

i`Obe`ZHjMCHG"kMENDELMCHG-R9k%_WTOMCHX~_W!Khj
Wm0i` (MENDELMCH)rn.7$Wm0i`!ZGWm0i`r!Z7$b7dj@,"
klgOWm0i`40KhjWm0i`r~19k%5iK$8.5l?Wm0i`rB]KB
s^7seGBTG-k%

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems 3
AcknowledgmentsThis thesis was supervised by Prof. Motoshi Saeki. I am grateful for his kind and helpful guidanceand continuous encouragement which lead me to accomplishing my thesis. Also, this thesis was advisedby Prof. Takuya Katayama, Prof. Naoki Yonezaki, Prof. Takehiro Tokuda, Prof. Tomohiro Yoneda, andProf. Takashi Imaizumi. I am very thankful for their advice.The greater part of my research has been carried out as a part of MENDELS ZONE project at ToshibaCorporation. My special thanks go to Dr. Shinichi Honiden who was a project leader. At the beginningof the project, he provided me chance to study temporal logic and Petri nets from a software engineeringviewpoint. Throughout the project, he has properly supported, guided, and encouraged my researchactivities.Hideji Kawata is my research partner who made considerable contribution on the implementation andimprovement of our tools, MENDELS ZONE and SAVE/SFC. I wish to express my gratitude for hisgenerous collaboration.I also have many thanks to the all other members of the MENDELS ZONE project and SAVE/SFCproject, especially to Akihiko Ohsuga, Kazunori Matsumoto, Mikako Arami, Toshiaki Kasuya, ToruUraoka, Akiko Uraoka, and Toshibumi Seki. When PQL was applied to a practical machine controlprogram, the discussion with Satoshi Sumida was very helpful. I would like to thank him.When joining Toshiba in 1982, I was a novice in software engineering. A lot of senior researchers ofour laboratory educate, train, and promote me through the wide range of software engineering activities.These valuable experiences lie at the foundation of this thesis. I would like to thank them, especiallyKazuo Matsumura, Hideo Nakamura, Yutaka Ofude, and Shoichi Kojima.I am also grateful to successive directors and senior managers of the Systems & Software EngineeringLaboratory, Seiichi Nishijima, Sadakazu Watanabe, Mutsuhiro Arinobu, Masahiko Arai, Takeshi Kohno,Shinsuke Tamura, Junichiro Tsuda, and Kazuo Mikame. Without their continuous support and encour-agement, I could not continue the research about temporal logic and Petri nets during a long term (morethan 10 years).This research has been a�ected by both Petri net and software engineering communities. Many peoplegave me fruitful suggestions and critical comments in the related conferences. I would like to tender mythanks to them, especially Prof. Mikio Aoyama and Prof. Kunihiko Hiraishi. The MENDELS ZONEproject has been supported by ICOT. I am also indebted to members of ICOT.Finally, I reserve a special gratitude to my wife, Mari, for mental and physical support. I dedicatethis thesis to Mari and our baby girl, Akari.

Contents
1 Introduction 101 Motivation . 102 Background . 112.1 Formal Speci�cation for Reactive and Concurrent Systems 112.2 Veri�cation for Reactive and Concurrent Systems 142.3 Synthesis for Reactive and Concurrent Systems . 142.4 Design Methodology for Reactive and Concurrent Systems 152.5 Programming Environments for Reactive and Concurrent Systems 153 Synopsis . 162 Preliminaries: Models and Logics for Reactive and Concurrent Systems 191 Models for Reactive and Concurrent Systems . 191.1 Sequence . 191.2 Transition System . 191.3 B�uchi Sequential Automata . 201.4 Finite State Process . 211.5 Transition System with Concurrency . 221.6 Petri Net . 231.7 Models for Real-Time Systems . 241.8 Comparison of Models . 242 Logics for Reactive and Concurrent Systems . 242.1 Propositional Logic . 242.2 Linear Time Temporal Logic . 252.3 Branching Time Temporal Logic . 262.4 Process Logic . 272.5 Propositional Modal �-calculus . 282.6 Logics for Real-Time Systems . 282.7 Comparison of Logics . 283 Other Related Approaches . 293 Software Development Process for Reactive and Concurrent Systems 301 Reactive and Concurrent Systems (RCS) . 301.1 What is RCS? . 301.2 Characteristics of RCS . 311.3 Software Architecture of RCS . 321.3.1 Application Software and System Software 321.3.2 Concurrent Tasks . 321.3.3 Synchronization Part and Functional Part 332 Software Development Process for RCS . 332.1 Software Development Process for TFS . 352.2 Software Development Process for RCS . 352.3 Di�culties in Developing RCS . 363 Programming Environment for RCS Using Petri Nets and Temporal Logic 364 Summary . 394

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems 54 Speci�cation, Veri�cation, and Synthesis Using Petri Nets and Temporal Logic 401 Petri Nets and Temporal Logic as Speci�cation Language 401.1 How to Fuse Petri Nets and Temporal Logic . 411.2 Example of Speci�cation . 421.3 Theoretical Results . 422 Concurrent Program Veri�cation . 443 Concurrent Program Synthesis . 463.1 Composition of Petri Nets . 483.2 Petri Net Synthesis . 493.3 Concurrent Program Structure . 503.4 Temporal Logic Speci�cation . 523.5 Controller Synthesis . 523.6 Agent Synthesis . 524 Related Works . 545 Summary . 555 Compositional Veri�cation Using Modal Logic 561 Background and Motivation . 561.1 Background . 561.2 Motivation . 571.3 Overview of Main Results . 581.4 Organization of the Chapter . 592 Representation of Concurrent Programs . 592.1 Equivalence of Transition Systems for Compositional Veri�cation 592.2 Composition of Transition Systems . 613 Process Query Language . 623.1 SPQL (Strong Process Query Logic) . 623.2 PQL (Process Query Language) . 654 Compositional Veri�cation . 674.1 Veri�cation Scope . 674.2 Veri�cation Procedure . 674.3 Reduction Function . 694.4 Experiments . 694.4.1 The Jobshop . 694.4.2 The Manufacturing Machine Control Software 725 Toward Practical Veri�cation . 755.1 Translation Target Program to Transition Systems 755.2 Chemical Plant Control Software . 755.3 Veri�cation Tool . 816 Related Works . 826.1 Compositional Veri�cation Methods . 826.2 Comparison with Partial Order Approach . 837 Summary . 856 Compositional Program Adjustment 901 Motivation and Overview . 901.1 Motivation . 901.2 Overview of Main Results . 911.3 Organization of the Chapter . 932 Finite State Processes . 932.1 Equivalence of Finite State Processes . 932.2 Operators on Finite State Processes . 943 Program Adjustment . 963.1 Temporal Logic Constraints . 963.2 Basic Adjustment . 963.3 Compositional Adjustment . 984 Example and Experimental Result . 100

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems 64.1 Example: The Machine Control Program . 1004.2 Experimental Result . 1005 Program Adjustment in Standard Programming Languages 1046 Related Works . 1057 Summary . 1067 MENDEL Net: High-Level Petri Net for Reactive and Concurrent Systems 1071 Introduction . 1072 Petri Nets as Programming Language . 1072.1 Programming Language for Reactive and Concurrent Systems 1072.2 Extension of Petri Nets as Programming Language 1082.3 Petri-Net-Based Programming Languages . 1092.4 High-Level Petri Net as Programming Language 1103 MENDEL Net . 1113.1 Place . 1113.2 Transition . 1123.3 I/O Interface . 1143.4 Process-Oriented Hierarchy . 1143.4.1 Overview . 1143.4.2 Graphical Representation . 1153.4.3 Textual Representation . 1163.5 Process Scheduling Mechanism . 1173.5.1 Base-Level MENDEL Net . 1183.5.2 Meta-Level MENDEL Net . 1183.6 Timer . 1193.7 Macro Notations . 1204 Simple Example . 1215 Related Works: Petri Nets and Hierarchy . 1236 Summary . 1248 Petri-Net-Oriented Design Methodology 1271 Petri-Net-Oriented Design Methodology . 1272 Software Architecture of Control Systems . 1283 Causality Matrix . 1284 Design Method . 1305 Example: Lift Control System . 1335.1 Problem . 1335.2 Observation of actual design process . 1335.3 Qualitative Evaluation . 1396 Related Works . 1397 Summary . 1409 MENDELS ZONE: Petri-Net-Based Programming Environment 1411 Introduction . 1412 Requirements for Programming Environment . 1413 MENDELS ZONE . 1433.1 Graphical MENDEL Net Editor . 1453.2 Causality Matrix Editor . 1453.3 Software Reuse Support Tool . 1453.4 Veri�cation and Adjustment Tool . 1463.5 Program Execution on Multi-PSI . 1474 Software Development Process in MENDELS ZONE . 1475 Example: Power Plant Control System . 1496 Related Works . 1516.1 Comparison with STATEMATE . 1516.2 Comparison with Other Petri Net Tools . 1537 Summary . 154

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems 710 Conclusion 1551 Review of Developments . 1552 Current Status . 1553 Future Works . 155
List of Practical Examples of Reactive and Concurrent SystemsThe following middle-scale examples are relatively practical and used to show that the techniques proposedin this thesis can be applicable to actual systems.1. Manufacturing machine control systemcompositional veri�cation (Chapter 5)transition system + temporal logic (PQL)2. Chemical plant control systemcompositional veri�cation (Chapter 5)Petri net (SFC) + temporal logic (PQL)3. Lift control systemPetri-net-oriented design methodology (Chapter 8)Petri net (MENDEL net) + temporal logic (PLTL)4. Power plant control systemMENDELS ZONE (Chapter 9)Petri net (MENDEL net) + temporal logic (PLTL)

GlossaryNotation Meaning� transition function (transition system)? disabled� transition function (automaton)� unobservable internal action� action/transition sequence (run)� label sequence (word)� deadlock" empty sequenceX� a set of �nite sequences over XX! a set of in�nite sequences over XX1 X1 = X� [X!X a complementary set of XX1nX2 X1nX2 = X1 \X2T a set of transitionsA a set of actionsAct Act = A [f�gS a set of states� alphabet� state attribute assignment functionTS = (S; P;A; �; �; s0) transition systemN = (P; T; w;m0) Petri netm1[�> m2 m1 is reachable from m2 by a transition sequence ��(�) di�erential vector� labeling functionLN = (N; �) Labeled Petri netP = (S;A; L; �; �; s0; F) �nite state process (FSP)L=A sequences of L where all elements except A are deletedL(LN) Petri net languageL!(LN) Petri net in�nite languageL�!(LN) Petri net in�nite language with deadlockLfair�! (LN) Petri net fair in�nite language with deadlockTS1 j TS2 process compositions " divergenceTS1 ���! TS2 ��!-bisimulation equivalencef formula2f f is always true.}f f will be eventually true.f f will be true at the next time.f1 U f2 f1 continues to be true until f2 becomes true.TS j= f TS is a model of f� a�� f f will be sometime true after a is occurred (minimum �xed point)� a�+ f f will be sometime true after a is occurred (maximum �xed point)[[a]]�f f will be always true after a is occurred (minimum �xed point)[[a]]+f f will be always true after a is occurred (maximum �xed point)8

N. Uchihira: A Programming Environment for Reactive and Concurrent Systems 9apat f f is true at all time in all pathsapet f f is true at some time in all pathsepat f f is true at all time in some pathepet f f is true at some time in some path

Chapter 1Introduction1 MotivationComputer systems have been moving rapidly toward parallel, distributed, and reactive computing duringthe past decade. There is an increasing demand for programmers who can design concurrent programsfor these systems. However, generally speaking, compared with sequential programming it is not so easyto produce correct and e�cient concurrent programs. In particular, the cost of testing and debuggingbecomes a heavy burden. Moreover, most reactive systems (e.g. embedded control systems, process con-trol systems) require high reliability. Therefore, some kind of computer-aided concurrent programmingenvironments are necessary to enable ordinary programmers to develop concurrent programs while achiev-ing high productivity and high reliability. The programming environment means tools for veri�cation,debugging, performance evaluation, and methods to synthesize correct and e�cient programs.To achieve both high productivity and high reliability, a formal method is the most promising approachin the long run. In the formal method, speci�cations and programs (implementation) are described usingsome formal language, the semantics of which is formally de�ned. Then, the formal method providesveri�cation and synthesis methods for these speci�cations and programs. Many formal methods havebeen proposed for concurrent systems. For example, they include models of programs (e.g., transitionsystem, Petri net, automaton), logics of programs (e.g., Hoare logic, temporal logic, dynamic logic,process logic), and algebras of programs (e.g., CCS, CSP, ACP). Temporal logic is a especially usefulformal framework for speci�cation, veri�cation, and synthesis for concurrent programs. Therefore, theapplication of temporal logic to computer science has been actively investigated by many researchers allover the world from the late 1970's to the present.This thesis concentrates on reactive and concurrent systems. The purpose of this thesis is to es-tablish theories, methods and tools (programming environment) for these systems using temporal logic.Especially, much consideration is given to practical techniques in order to apply temporal logic to actualreactive and concurrent systems.To apply temporal logic to the actual development of reactive and concurrent systems, the followingissues should be considered.1. Actual systems cannot be fully described by temporal logicStandard temporal logic is too inconvenient to describe actual reactive and concurrent systems.Therefore, a syntactical extension of temporal logic for practical use or combination with othercomplementary formal languages is required.2. Cost of veri�cation and synthesis is beyond practical computing powerGenerally speaking, computing cost of veri�cation and synthesis based on formal methods becomesvery huge due to \state explosion problem". Consequently these methods are often applicable onlyto \toy programs". Techniques to avoid state explosion and reduce computing cost are required.3. Formal methods do not support the whole development processThe formal method is not an all-around player. It can support a few parts of the whole developmentprocess. Remaining parts of the process are done by traditional and informal methods. There is anobvious gap between formal methods and traditional and informal methods. Therefore, a design10

Chapter 1: Introduction 11methodology (guidelines) is required to specify how to utilize formal methods and informal meth-ods complementarily in the development of reactive and concurrent programs. Furthermore, theprogramming environment is required to mechanically support the design methodology throughoutthe entire development process.This thesis proposes the following solutions for above problems.1. Fusion of Petri nets and temporal logicTemporal logic is appropriate for specifying the properties and constraints of programs, but inap-propriate for explicitly specifying the behavioral structures of programs. In other words, temporallogic is declarative and not operational. On the other hand, Petri nets can specify the behavioralstructures operationally. In this thesis, a fusion of Petri nets and temporal logic is proposed as aspeci�cation language for reactive and concurrent systems.2. Compositional veri�cation and adjustmentA temporal logic model-checking method is actually useful to verify reactive and concurrent systems.However, as the scale of the programs increases, the computation costs for veri�cation increaseexponentially. To reduce the computation costs, this thesis introduces a compositional approachinto model-checking, and proposes a new modal logic, PQL, and a compositional veri�cation methodbased on PQL.Since it seems that the conventional program generation approach from temporal logic speci�cationis impractical, a new approach \program adjustment" is proposed, in which a target program madeby programmers is automatically adjusted (tuned up) to satisfy given temporal logic constraints.Since this also causes the state explosion problem, compositional program adjustment is proposedin this thesis.3. Petri-net-based design methodology and its programming environmentAs a software design methodology for reactive and concurrent systems, several methods have beenproposed which include OOAD and RTSAD. However, few are based on Petri nets. Since Petri netsare used as a speci�cation language in our approach, a Petri-net-based design method is proposedwhich gives guidelines for deriving detailed Petri nets from ambiguous requirements, and thenverifying and adjusting programs using Petri nets and temporal logic.MENDELS ZONE is a programming environment for reactive and concurrent systems, which sup-ports the software development process from �rst to last, including veri�cation, adjustment, andPetri-net-based design method.2 BackgroundTo providing the background for this thesis, this section presents a brief survey of software developmenttechniques for reactive and concurrent systems. Especially, focusing on formal techniques includingspeci�cation, veri�cation, synthesis, and design methodology (Fig. 1).2.1 Formal Speci�cation for Reactive and Concurrent SystemsSpecifying systems formally is an e�ective way to recognize and clarify ambiguous parts of the systemrequirement/speci�cation, and is necessary to verify the speci�cation and synthesize programs from thespeci�cations. A lot of speci�cation languages for reactive and concurrent systems have been proposed.Roughly speaking, they can be classi�ed into operational approaches and declarative approaches.� Operational ApproachIn an operational approach, reactive and concurrent systems are modeled with speci�cation mod-els/languages which are executable on the abstract machine. The operational (i.e., executable)speci�cation models for reactive and concurrent systems include transition systems, state machines,automata, Statechart and Petri nets. These models will be described in detail in Chapter 2. How-ever, these models are too primitive to describe practical systems. Therefore, several practical spec-i�cation languages which are based on some primitive model and extended from a practical point of

Chapter 1: Introduction 12

Specification

Verification
Synthesis

Design
Methodology

Temporal Logic
Dynamic Logic
Process Logic
Ì-Calculus

Transition System
Petri Net

Logical Reasoning
Model-checking

RTSAD, OOAD
DARTS, NOD

CCS
CSP
ACP

Tableaux Construction

Figure 1. Software Development Techniques for Reactive and Concurrent Systemsview. These speci�cation languages include PAIZLey [Zave 82, Zave 91], SDL, and Coloured PetriNet [Jensen 92, Jensen 95].� Declarative ApproachIn a declarative approach, systems are modeled by logical formulas or algebraic terms, and thenaxioms of the logics or algebras give the semantics of the systems. For concurrent systems, a lot ofdeclarative formalisms have been proposed, which include modal/program logic (Dynamic Logic,Temporal Logic, Process Logic, Modal �-calculus, UNITY logic, etc.) and process algebra (CCS,CSP, ACP, �-calculus, etc.).In this thesis, we focus on Temporal Logic. Temporal logic is a kind of modal logic in which modaloperators represent the topology of time. While the truth-values of propositions are constant in classicallogic, the truth-values of propositions can be changed with time in temporal logic. For example, astatement \if a proposition p is true now, p will have to be false at the next time" can be representedby a temporal logic formula, p � :p;where is a temporal operator representing the next time. This cannot be done directly by the classicallogic.From a historical point of view (see [Rescher 71]), temporal logic was initially investigated by philoso-phers and logicians since Prior constructed the �rst tense logic in the 1950s. Then, since the 1970s,temporal logic has been applied to computer science, especially, arti�cial intelligence1 and softwareengineering2 . Temporal logic is an especially useful formal framework for speci�cation, veri�cation, andsynthesis for reactive and concurrent systems. The application of temporal logic to these systems hasbeen actively investigated by many researchers all over the world from the late 1970's to the present. Thehistorical background of temporal logic was well surveyed by Galton [Galton 81].1 For example, McDermott's Temporal Logic, and Allen's Theory of Time.2 Pnueli initially systematized temporal logic [Pnueli 77] in software engineering.

Chapter 1: Introduction 13In this thesis, we adopt temporal logic as a formal speci�cation language for reactive and concurrentsystems for the following reasons.� The modality of temporal logic is intuitive and easy for software designers to understand.� A temporal logic formula can be translated into an equivalent !-automaton which is compatiblewith a state transition system and can be easily manipulated in veri�cation and synthesis.� Most reactive and concurrent systems can be basically modeled by state transition systems.Temporal logic has been applied to speci�cation, veri�cation, and synthesis for reactive and concurrentsystems. First, the research background on speci�cation by temporal logic is briey surveyed.There are several variants of temporal logic. The variant initially presented by Pnueli is lineartime temporal logic , which has been investigated chiey by Pnueli, Manna, and their group [Pnueli 77,Pnueli 81, Manna 81a, Manna 81b, Pnueli 86, Manna 92] for speci�cation and veri�cation of concurrentprograms. A second common version of temporal logic is branching time temporal logic [Ben-Ari 83,Emerson 85a]. Each logic assumes a di�erent underlying nature of time, as follows [Emerson 90a].� Linear time temporal logic: The course of time is linear; at each moment there is only onepossible future moment.� Branching time temporal logic: Time has a branching, tree-like nature; at each moment, timemay split into alternate courses representing di�erent possible futures.Linear time temporal logic is suitable for speci�cation for program synthesis, while branching time tempo-ral logic is suited to describe queries for veri�cation. Besides these two popular version, there are severalversions of temporal logic for concurrent programs (e.g., Partial Order Temporal Logic [Pinter 84], Inter-val Temporal Logic (ITL) [Moszkowski 86]).These logics are su�cient to consider the essential features of reactive and concurrent systems, but notexpressive enough to describe an entire system speci�cation. There are two approaches to make temporallogic suitable for practical speci�cations; extension of temporal logic and combination of temporal logicwith other formalisms (called dual-language approach in [Felder 94]).With regard to the �rst approach, temporal logic can be extended by introducing the following featuresfor practical speci�cations.� regular expression [Wolper 83b]� more than operator [Yoshimura 93]� unbounded message bu�ers [Sistla 84, Koymans 87]� modularity, compositionality and abstractness [Barringer 84, Josko 87, Yonezaki 91]� nonmonotonicity for avoiding frame problem [Saeki 87]� real-time [Alur 89, Ostro� 90]Furthermore, several executable speci�cation languages based on temporal logic have been proposed,inuenced by logic programming (e.g. Tempula [Moszkowski 86]), in which operational semantics canbe given to extended temporal logic formulas. These executable speci�cation languages are useful forprototyping of reactive and concurrent systems [Hale 87]. However, in spite of these extensions, it is stilldi�cult to describe an entire practical system by temporal logic. Moreover, these extensions often makeautomatic veri�cation and synthesis di�cult, and increase computing costs.With regard to the second approach, temporal logic is combined with another formalism as a speci-�cation language. Since temporal logic is declarative, a combination of temporal logic and other formallanguage having operational semantics, like transition system and Petri net is e�ective. A combination oftemporal logic and Petri net has been investigated recently by our group and others. These works will besurveyed in Chapter 4. The second approach appears promising and realistic for practical speci�cation.

Chapter 1: Introduction 142.2 Veri�cation for Reactive and Concurrent SystemsThe background on the research on veri�cation by temporal logic is briey surveyed. There are twoapproaches in veri�cation for reactive and concurrent systems; logical reasoning and model-checking.� Logical Reasoning Approach:Both speci�cation and implementation (program) are speci�ed by temporal logic formulas. If thespeci�cation is represented by a formula fs and the implementation is represented by a formula fi,then the implementation is correct i� fi � fs is valid. Manna and Pnueli [Manna 81b, Pnueli 81]presented methods for proving fi � fs inductively using axioms and inference rules. Furthermore,Manna and Wolper [Manna 84] presented an automatic veri�cation method based on refutation,where it is shown that :(fi � fs) is not satis�able using tableaux construction.� Model Checking Approach:In a model-checking approach, the speci�cation is represented by a temporal logic formula f , andthe implementation is represented as a model M of temporal logic. The implementation is correcti� M is a model of f (i.e., M j= f). Transition systems are usually used to represent models(i.e, implementations). Clarke, Emerson, and Sistla [Clarke 86] initially proposed an automaticveri�cation method of �nite-state concurrent systems based on model-checking. They dealt with abranching time temporal logic called CTL (Computation Tree Logic).Since the model-checking approach can provide a practical and widely applicable veri�cation methodas compared with the logical reasoning approach, much work based on model-checking has been doneover the last decades. The early researches in this area are well surveyed in [Clarke 87]. The latest trendscan be caught by watching the Annual Conference on Computer-Aided Veri�cation (CAV). These workscan be classi�ed into two types;� Extension of expressive ability of temporal logics and models (e.g., Fairness [Emerson 85b])� Local model-checking for Petri nets [Brad�eld 92]� Proposal of e�cient model-checking algorithmsSince model-checking can be regarded as a type of state space analysis method, the state explosionproblem is usually the limiting factor in applying these algorithms to realistic systems. Therefore, an e�-cient model-checking algorithm is required. These e�cient algorithms can be classi�ed into the followingthree approaches.� Symbolic Model Checking [Burch 90, McMillan 93]� Partial Order Approach [Valmari 90, Godefroid 91a, Godefroid 96]� Compositional Approach [Clarke 89]This thesis will focus on the compositional approach, and propose a new compositional veri�cationmethod.2.3 Synthesis for Reactive and Concurrent SystemsThe �rst attempts to synthesize reactive and concurrent systems from temporal logic speci�cations weredeveloped in [Manna 84] and [Emerson 82]. Propositional versions of linear time temporal logic andbranching time temporal logic are used as the speci�cation language in [Manna 84] and [Emerson 82],respectively. Both synthesis methods are based on tableaux construction representing models of the giventemporal logic formula. The target �nite-state program is generated from this tableaux.These pioneering synthesis method can be applied to the synthesis of closed reactive systems. Theclosed reactive system means a system in which all actions are observable and controllable. In contrast,open reactive systems has unobservable and uncontrollable actions. For example, a plant control systemconsists of a controller and controlled objects in which some actions and states are unobservable anduncontrollable from the controller. Pnueli and Rosner proposed a synthesis method for these openreactive systems [Pnueli 89a, Pnueli 89b, Pnueli 90].

Chapter 1: Introduction 15These works made worthy contributions from the theoretical view point. However, from the practicalpoint of view, they were suggestive but hard to apply to actual systems. The main reason is that it istoo di�cult and too expensive to describe a whole speci�cation by temporal logic and then synthesize awhole program from it. Therefore, a more practical approach is proposed, \program adjustment", whichmodi�es (adjusts) a given target program to satisfy a temporal logic speci�cation instead of generatinga whole program from it.2.4 Design Methodology for Reactive and Concurrent SystemsSoftware design methodology plays important part so that formal methods are utilized during the softwaredevelopment process. As a software design methodology for reactive and concurrent systems, severalmethods have been proposed; Real-Time Structured Analysis and Design (RTSAD), Object-OrientedAnalysis and Design (OOAD), and Design Approach for Real-Time Systems (DARTS).� Real-Time Structured Analysis and Design (RTSAD)Real-Time Structured Analysis and Design (RTSAD) is an extension of Structured Analysis andDesign for real-time systems. There are two popular variations which have been developed byWard [Ward 85, Ward 86] and Hatley [Hatley 87], respectively. In RTSAD, functional requirementsfor the target system are hierarchically decomposed into several functions, which are describedby data/control ow diagrams. In addition to the data/control ow diagrams, behavioralrequirements are represented by state transition diagrams. Since the data ow diagram isfamiliar to designers and easy to understand, RTSAD has been used on a wide variety of projectsand there is much experience in applying RTSAD. However, RTSAD is weak in its provision of taskstructuring guidelines which address how to structure the system into concurrent tasks.� DARTSIn the reactive and concurrent system design, task structuring is given considerable weight. DARTS(Design Approach for Real-Time Systems), which was proposed by Gomaa [Gomaa 93], is a designmethod based on RTSAD and emphasizes the decomposition of a real-time system into concurrenttasks. DARTS provides a set of task structuring criteria for structuring a real-time system intoconcurrent tasks, as well as guidelines for for de�ning the interfaces between tasks.� Object-Oriented Analysis and Design (OOAD)Object-Oriented Analysis and Design (OOAD) [Booch 94, Rumbaugh 91] is a design method basedon object-oriented paradigm. In OOAD, classes and objects are �rst identi�ed by analyzing theproblem domain, then object diagrams and class diagrams are developed to describe the rela-tionships between classes and objects. After de�ning the object structure, behavior for each objectis described by the state transition diagram. Finally, objects are classi�ed into tasks (activeobjects) and packages (passive objects) of the concurrent programming language.Generally speaking, each design method consists of several charts which represent functional, behav-ioral, and module structures of systems and guidelines (criteria) for deriving these charts. Data/controlow diagrams, state transition diagrams, and class/object diagrams are used as the design charts in theabove methods.Although a Petri net can be a promising design chart for reactive and concurrent systems, there arefew design methods which use Petri nets as the design chart and give guidelines for manipulating them.Reisig [Reisig 92] proposed a design method based on Petri nets. It is very suggestive but not su�cientlymature. This thesis considers a Petri-net-oriented design method, which is called Net-Oriented Designmethod (NOD) [Honiden 92].2.5 Programming Environments for Reactive and Concurrent SystemsA lot of tools have been proposed which support formal methods for reactive and concurrent systems.Recently, these tools have become sophisticated and are of practical use3 . The more well-known toolsinclude the following.3 Some of them can be easily obtained by INTERNET.

Chapter 1: Introduction 16� Tools based on state transition systems (state machine, automata):STATEMATE4 [Harel 90] and SPIN [Holzmann 91],� Tools based on process algebra5 :Concurrency Workbench (CWB) [Cleaveland 93] and AUTO/AUTOGRAPH [Boudol 89],� Tools based on Petri nets:DESIGN/CPN [Jensen 92] and Cabernet [Ghezzi 93].However, none of them is a comprehensive programming environment covering the overall developmentprocess which includes veri�cation, synthesis, and a design methodology based on Petri nets and temporallogic.3 SynopsisThe organization of this thesis is as follows (Fig. 2).Chapter 2 starts by providing de�nitions, models, and logics for reactive and concurrent systems asa preliminary section.Chapter 3 considers a software development process for reactive and concurrent systems. In thischapter, a de�nition and the characteristics of reactive and concurrent systems and a development processfor them are discussed. Finally, a software development process using Petri nets and temporal logicis conceptually proposed. According to this conceptual development process, detailed techniques aredescribed in the following chapters.In Chapter 4, a fusion of Petri nets and temporal logic is proposed as a speci�cation language forreactive and concurrent systems. Its expressive power and theoretical results are also considered. Insuccession, veri�cation and synthesis methods are shown as an application of speci�cation by Petri netsand temporal logic. Examples are provided to show the e�ectiveness of the veri�cation and synthesis.The remarkable point is that proposed methods are for unbounded Petri nets, while former veri�cationand synthesis methods were mainly for bounded (safe) Petri nets.Chapter 5 considers an e�cient and practical veri�cation method, temporal logic model-checking, for�nite-state (i.e. bounded) systems. The model-checking method is actually useful to verify reactive andconcurrent systems. However, as the scale of the programs increases, the computation costs for veri�cationincrease exponentially due to the state explosion. To ease the state explosion, a compositional approach tomodel-checking seems promising and is adopted here. The point of compositional veri�cation is to reduce(localize, minimize) the target program, leaving only essential information for each veri�cation query. Thereduction of the target program is formalized by process equivalence theory. This chapter introduces anew process equivalence relation (��!-bisimulation equivalence) for compositional veri�cation. This newrelation is required because conventional bisimulation equivalence, which was used in other compositionalveri�cation, cannot deal with \divergence" explicitly. An explanation of why conventional bisimulationequivalence does not work well with divergence is given, and then ��!-bisimulation is de�ned. Afterthis, Process Query Language (PQL) is proposed. PQL is a modal logic which is union of temporallogic and process logic, and the semantics of which is based on ��!-bisimulation equivalence. Then, thischapter proposes the compositional veri�cation method using PQL with consideration of the divergence.Its e�ectiveness is demonstrated by means of some experimental results.In Chapter 6, program synthesis using temporal logic is discussed. From the standpoint that theconventional program generation approach from temporal logic speci�cation, which was initially proposedby Manna and Wolper [Manna 84], is impractical, this chapter proposes a new approach, \programadjustment". In program adjustment, a target programmade by programmers, which may be functionallycorrect but may be imperfect in its timing, is automatically adjusted (tuned up) to satisfy given temporallogic constraints. To put it concretely, program adjustment is realized by adding an arbiter process whichis synchronized with and restricts the behavior of the target program. It is more feasible for ordinaryprogrammers to adopt the program adjustment approach compared to conventional program generationapproach for the following reasons.4 STATEMATE is a trademark of i-Logix5 These tools are also applicable for state transition systems which are equivalent to the process algebra.

Chapter 1: Introduction 17� It is not very di�cult for ordinary programmers to produce a target program, which satis�es atleast the functional requirements. A more di�cult task is to design and debug the timing of suchprograms.� It is easy for ordinary programmers to specify timing constraints, such as deadlock-free and starvation-free constraints, as compared with implementing them.� Computation cost of program adjustment is generally smaller than program generation.Furthermore, when a target program becomes large, the arbiter synthesis may cause a computing costexplosion. Therefore, we propose compositional adjustment.Chapter 7 considers Petri nets as a programming language instead of a speci�cation language. First,it is discussed what properties are required for a programming language for reactive and concurrent sys-tems, and what extensions are required to use Petri nets as a programming language. Then, a MENDELnet is introduced, which is a high-level Petri net for reactive and concurrent systems. A MENDEL netcan be used not only for speci�cation but also for programming (detail prototyping) owing to several ex-tensions, an I/O interface with the environment, concurrent tasks, and a mechanism for their scheduling.Chapter 8 proposes a software design methodology based on MENDEL nets and temporal logic,which is called Net-Oriented Design method (NOD). In this method, a causality matrix is introduced atan earlier design phase when the system structure is obscure and it is di�cult to write MENDEL netsdirectly. According to the design method utilizing causality matrices, a designer can construct MENDELnets systematically from an ambiguous requirement, then verify and adjust the MENDEL nets by methodsbased on temporal logic mentioned in earlier chapters.Chapter 9 shows an overview of a programming environment for reactive and concurrent systems,called MENDELS ZONE. MENDELS ZONE provides analysis tools based on formal methods (e.g.,veri�cation and adjustment tools) and a design support tool based on the informal design method (e.g.,causality matrix editor) in addition to the usual programming tools such as graphical MENDEL net editor,simulator, and compiler. MENDELS ZONE has been implemented on the parallel machine, Multi-PSI.Finally, Chapter 10 concludes this thesis, summarizing the research contributions, and presentingintentions for further work.Related our publications are summarized as follows.Chapter 4: [Uchihira 90b]Chapter 5: [Uchihira 92a]Chapter 6: [Uchihira 92c, Uchihira 95a]Chapter 7: [Uchihira 96b]Chapter 8: [Uchihira 92b]Chapter 9: [Uchihira 87, Uchihira 88, Uchihira 90a, Uchihira 92b, Uchihira 95a]

Chapter 1: Introduction 18

Chap. 4
Specification, Verification, and Synthesis

(Petri Nets and Temporal Logic)

Chap. 5
Compositional
 Verification

(Transition Systems
and PQL)

Chap. 6
Compositional

Adjustment
(Transition Systems
and Temporal Logic)

Chap. 7
Programming Language

(MENDEL Net)

Chap. 8
Design Methodology

(Net-Orineted Design Method)

Chap. 9
Programming Environment

(MENDELS ZONE)

Chap. 3
Development Process

Chap. 2
Preliminaries

Figure 2. Organization of The Thesis

Chapter 2Preliminaries: Models and Logics forReactive and Concurrent SystemsThis chapter introduces several notations and de�nitions of models and logics for reactive and concurrentsystems.1 Models for Reactive and Concurrent SystemsMany models have been proposed for reactive and concurrent systems. Most of them are based on statetransition systems which may be extended about concurrency and liveness. Among them, this sectionshows Transition System, B�uchi Sequential Automaton, Finite State Process, and Petri Net.1.1 SequenceTo begin with, we introduce several notations about sequences. In the context of this thesis, a sequenceis used to represent the time series of actions which a reactive and concurrent system takes, and stateswhich it stays in.Let X be a set. The set of all �nite sequences over X , including the empty sequence ", is denotedby X�. If there is no empty sequence ", the set is denoted by X+. The set of all in�nite sequencesover X is denoted by X!; ! means \in�nitely many". X1 is de�ned by X1 = X� [X!. X means acomplementary set of X . X1nX2 = X1 \X2For a sequence � 2 X1, �[i] means the i-th element in �; �(k) means the pre�x subsequence�[1]�[2]:::�[k] of �, and j � j the length of �.For A � X and L � X1, L=A is de�ned as L=A def= f�0 j 9� 2 L:8i:(�0[i] = �[i] if �[i] 2A; otherwise �0[i] = ")g. \/" is a label restriction operator. Intuitively, L=A consists of sequences ofL in which all elements except A are deleted.1.2 Transition SystemDe�nition 1 (Transition System)TS = (S; P;A; �; �; s0)S : A set of statesP : A set of state attributesA : A set of actionsAct = A [f�g� : an unobservable internal transition� : S ! 2P A boolean function� : S �Act! 2S A nondeterministic transition functions0 : An initial stateFor TS = (S; P;A; �; �; s0) and s; s0 2 S and a 2 A, p 2 �(s) means that a state attribute p is true ins, and s0 2 �(s; a) means that the system which stays in s can move to the state s0 after an action a.19

Chapter 2: Preliminaries 20According to Milner's notation [Milner 89], �(s; a) 3 s0 is expressed as s a! s0$s(�!)� a! (�!)�s0 isexpressed as s a) s0. Also, â expresses a when a 6= � , and â expresses " when a = � . Here, " means anempty string, that is, s �̂) s0 = s ") s0 = s(�!)�s0%We show a simple example of a transition system inFigure 3.Example 1 (Transition System) T = (fs0; s1; s2; s3g; fp1; p2g; fa; bg; �; �; s0) wheres0 a! s1; s0 b! s2; s1 b! s3; s2 a! s3; s3 �! s0; and �(s0) = fp1; p2g; �(s1) = fp1g; �(s2) = fp2g; �(s3) = ;.
p1,p2

p1 p2

s0

s1 s2

s3

a

b

b

a

Ó

Figure 3. Example of a transition systemDe�nition 2 (Finite Branching Condition)A �nite branching condition in TS = (S; P;A; �; �; s0) is:�(s; a) is a �nite set for 8s 2 S and 8a 2 A.This �nite branching condition is necessary for the fully automatic veri�cation and synthesis fortransition systems. When S, P , and A are �nite, the �nite branching condition is satis�ed. We assumeS, P , and A in TS are �nite whenever we do not mention it explicitly.1.3 B�uchi Sequential AutomataA transition system can model all possible (safe) behaviors of systems, but cannot model desirablebehaviors. A �nite automaton can express desirable (acceptable) behaviors explicitly using terminalstates.De�nition 3 (Finite Automaton) A �nite automaton is a tuple A = (�; S; �; s0; F), where� � is an alphabet,� S is a set of states,� � : S ��! 2s is a nondeterministic transition function,� s0 2 S is an initial state, and� F � S is a set of terminal states.A run of a �nite automaton A over a �nite word � = t1t2:::tn 2 �� is a state sequence s0; s1; :::; sn,where si 2 �(si�1; ti) for all i � 1. A run s0; s1; :::; sn is accepting if sn 2 F . A �nite word � is acceptedby A if there is an accepting run of A over �. The set of all words, accepted by A, is denoted L(A).A �nite automaton treats only �nite sequences (words). Since reactive and concurrent systems oftentakes in�nite ongoing computation, a �nite automaton on in�nite sequences is necessary to model them.De�nition 4 (B�uchi Sequential Automaton) B�uchi sequential automaton is a tuple A = (�; S; �; s0; F),where

Chapter 2: Preliminaries 21� � is an alphabet,� S is a set of states,� � : S ��! 2s is a nondeterministic transition function,� s0 2 S is an initial state, and� F � S is a set of designated states.A run of a B�uchi sequential automaton A over an in�nite word � = t1t2::: 2 �! is a sequence s0; s1; :::,where si 2 �(si�1ti) for all i � 1. A run s0; s1; ::: is accepting if for some s 2 F there are in�nitely manyi's such that si = s. An in�nite word � is accepted by A if there is an accepting run of A over �. The setof all words, accepted by A, is denoted L(A).1.4 Finite State ProcessA �nite state process [Kanellakis 90] is de�ned as a general model which includes both a transitionsystem and an automaton. Therefore a �nite state process can specify a transition system with livenessconditions as its acceptance condition.De�nition 5 (Finite State Process) A Finite State Process (FSP) is a seventuple P = (S;A; L; �; �; s0; F),where:� S is a �nite set of states,� A is a �nite set of actions,� L is a �nite set of synchronization labels,� � : S �A! S [f?g is a deterministic transition function (�(s; t) = ? means the action t 2 A isdisabled in the state s 2 S),� � : A! (L [f�g) is a labeling function, (� is an invisible internal action),� s0 2 S is an initial state, and� F � S is a set of designated states.Example 2 (Finite State Process) P = (fs0; s1; s2; s3g; ft1; t2; t3g; fa; bg; �; �; s0; fs3g) is a �nite stateprocess where �(s0; t1) = s1; �(s0; t2) = s2; �(s1; t2) = s3; �(s2; t1) = s3; �(s3; t3) = s0; �(t1) = a; �(t2) =b; �(t3) = �: (Fig.4)
s0

s3

s1 s2

t1/a

t2/b

t2/b

t1/a

t3/Ó action/label

designated state

initial state

Figure 4. Finite State ProcessLet P = (S;A; L; �; �; s0; F) be an FSP. A transition function can be extended such that � : S�A� !S [f?g, i.e., �(s; �a) def= �(�(s; �); a). Note, �(s; ") = s. Since a transition function is deterministic,a current state can be uniquely determined from an initial state and an action sequence. We call an

Chapter 2: Preliminaries 22action sequence a behavior. Similarly, we can extend a labeling function such that � : A� ! (L [f�g)�,i.e., �(�) = �(�[1])�(�[2]):::�(�[j � j]). In addition, �̂(�) is de�ned as the sequence gained by deleting alloccurrences of � from �(�). The set of reachable states from a state s in P is de�ned as RP (s) def= fs0 2S j 9� 2 A�:s0 = �(s; �)g and R+P (s) def= fs0 2 S j 9� 2 A+:s0 = �(s; �)g. Also, the set of all possibleaction sequences of P is de�ned as L(P) def= f� 2 A� j �(s0; �) 6= ?g, and the set of all possible labelsequences is de�ned as L�(P) def= f�̂(�) 2 L� j � 2 L(P)g. Since interest is in the in�nite behavior of anFSP, we introduce a set of in�nite action sequences L!(P) � A! and L�!(P) � (A! [A�f�g!) where� means deadlock: L!(P) def= f� 2 A! j 1 � 8k:�(s0; �(k)) 6= ?gL�! def= 8>><>>: f� 2 A! j 1 � 8k:�(s0; �(k)) 6= ?g[f� 2 A�f�g! j 9k:(8<: 1 � 8i � k:�(s0; �(i)) 6= ? and8a 2 A:�(�(s0; �(k)); a) = ? and�[j] = � for 8j > k 9=;)gL�!(P) is an extension of L(P) into a set of in�nite action sequences where if � 2 L(P) is a deadlocksequence (i.e., an inevitably �nite sequence), then � is represented as ��! 2 L�!(P).Lfair�! (P) � L�!(P) is de�ned as Lfair�! (P) def= f� j � 2 L�!(P) under the fairness conditiong wherethe fairness condition means whenever a behavior � in�nitely often passes through some state s, everyaction a enabled at s must appear in�nitely often on � (i.e., if s = �(s0; �(i)) for in�nitely many i and�(s; a) 6= ?, then s = �(s0; �(j)) and �[j + 1] = a for in�nitely many j).An FSP is a transition system with liveness conditions. In an FSP, liveness conditions are representedby designated nodes that indicate satis�able behavior of an FSP as follows.De�nition 6 (Satis�able Behavior) Let P = (S;A; L; �; �; s0; F) be an FSP. � 2 A! is a satis�ablebehavior, if �(s0; �(k)) 2 F for in�nitely many k � 1. Lb(P) � A! is de�ned as a set of all satis�ablebehaviors on P .Note that a satis�able behavior corresponds to an accepting run of B�uchi automaton.De�nition 7 (Completeness of FSP)Let P = (S;A; L; �; �; s0; F) be an FSP. P is complete if 8s 2 RP (s0):9s0 2 R+P (s) and s0 2 F . 2A state s 2 RP (s0), having no path to designated nodes from s, is called an unsatis�able state. If P iscomplete, P has no unsatis�able states. A behavior reaching an unsatis�able state is called an inevitablyunsatis�able behavior.Lemma 1 If an FSP P is complete, then Lfair�! (P) � Lsat(P). 2This lemma means that if P is complete, then a random transition over P leads to a satis�ablebehavior. Consequently, if P is complete, P is deadlock-free.1.5 Transition System with ConcurrencyTransition systems (�nite state processes, automata) have no ability to express concurrency explicitlyby themselves. Reactive and concurrent systems are constructed from some number of processes. Eachlocal process can be modeled as a transition system. When processes are modeled by transition systemsTS1; TS2; :::; TSn, concurrency among processes can be expressed as process composition TS1 j TS2 j ::: jTSn using composition operators `j'. TS1 j TS2 means a concurrent system in which TS1 and TS2 runconcurrently and communicate with each other. It is called communicating transition systems.Furthermore, transition systems are also used to de�ne semantics of process composition. Globalbehaviors of communicating transition systems can be expressed by one global transition system basedon interleaving semantics. In the interleaving semantics, concurrent structures of systems is expandedinto a set of nondeterministic global behaviors.Process composition and interleaving semantics will be explained in detail in Chapter 5 for transitionsystems and in Chapter 6 for �nite state processes.

Chapter 2: Preliminaries 23I/O automata and Statechart can be classi�ed into a kind of communicating transition systems. I/Oautomata is communicating transition systems featuring reactive properties. In I/O automata [Lynch 86,Lynch 88], each process is modeled by an automaton with input and output actions. Due to reactiveproperties, input actions cannot be controlled by the automaton, while output actions can be. Statecharts[Harel 87a] are extended transition systems in order to design large and complex reactive and concurrentsystems. Statecharts have several extended features including hierarchy, concurrency, and their visualformalisms. For example, a system which consists of three processes TS1; TS2; TS3 can be expressed inFig. 5. Since Statechart can express concurrency graphically, it is often used in design methodologies andCASE tools.
TS1 TS2

TS3

s10

s11

s20

s21

s22

s30s31

a11 a12
a22

a21

a24

a23

a32

a31

Figure 5. Concurrency in Statechart1.6 Petri NetA Petri net is another approach to express concurrency explicitly in addition to state transition models.De�nition 8 (Petri Net) A Petri net is a 4-tuple N = (P; T; w;m0) where:� P = fp1; p2; :::; png is a �nite set of places,� T = ft1; t2; :::tmg is a �nite set of transitions,� w : (P � T) [(T � P)! f0; 1; 2; 3; :::g is a weight function, w(p; t) is the weight of the arc from pto t and w(t; p) is the weight of the arc from t to p, especially w(p; t) = 0 (w(t; p) = 0) means thereexists no arc between p and t,� m0 : P ! f0; 1; 2; :::g is the initial marking.� P \ T = ; and P [T 6= ;A marking in a Petri net is changed according to the following �ring rules:� A transition is said to be enabled, if each input place p of t is marked with at least w(p; t) tokens.� Only one of the enabled transitions can �re at a time.� Firing of an enabled transition t removes w(p; t) tokens from each input place p of t, and addsw(t; p) tokens to each output place p of t.Let t be a transition and P = fp1; p2; ::; png be a set of places. An n-dimensional di�erential vectoris de�ned as �(t) = (w(t; p1) � w(p1; t); :::; w(t; pn) � w(pn; t)). Furthermore, �(t1t2:::tm) = �(t1) +�(t2) + :::+�(tm) for a transition sequence t1t2:::tm.When t 2 T is enabled at a marking m, we denote m[t>. After �ring t, if m0 is a new marking, wedenote m[t> m0. In the case that m1[t1> m2;m2[t2> m3; :::;mk�1[tk�1> mk for a transition sequence� = t1:::tk�1, we denote m1[� > mk. A set of reachable markings R(N) of Petri net N is de�ned asR(N) = fm j 9� 2 T �:m0[�> mg.

Chapter 2: Preliminaries 24De�nition 9 (Labeled Petri net) A labeled Petri net is a 2-tuple, LN = (N; �), whereN = (P; T; w;m0)is a Petri net and � : T ! �(alphabet) [f"(empty sequence)g is a labeling function.The labeling function � : T ! � [f"g is extended to � : T1 ! �1 by �(�)[i] = �(�[i]) for all � 2 Tand 1 � i �j � j. A sequence of transitions (� 2 T �) is called a legal �ring sequence on the Petri net Nif the �ring sequence � is allowed by the �ring rules; an in�nite sequence of the transitions (� 2 T!) isa legal �ring sequence if every pre�x is a legal �ring sequence. The set of all �nite (in�nite) legal �ringsequences of N is denoted by F (N) (F!(N)).De�nition 10 (Petri net language) L(N; �) is a �nite Petri net language generated from a labeled Petrinet (N; �) if L(N; �) = f�(�) 2 �� j � 2 F (N)g. Similarly, L!(N; �) = f�(�) 2 �! j � 2 F!(N)g is anin�nite Petri net language, and L�!(N; �) = f�(�) 2 �! j � 2 F!(N)g[f�(�) 2 �� j � 2 F (N) and 8t 2T:�t 62 F (N)g is a �-in�nite Petri net language. Here, \�-in�nite" means \in�nite including �!".Remark: L�!(N; �) may include �nite words such as s�!(s 2 ��), while L!(LN) includes onlyin�nite words.We introduce a label manipulation operator. When L � �, we de�ne a label restriction operator \/"for a labeling function as �=L : T ! L [f"g such that �=L(t) = �(t) if �(t) 2 L and �=L(t) = " if�(t) 62 L. This means h(t) 2 L is visible and h(t) 2 �nL is invisible. An identity function e : T ! T isde�ned as e(t) = t for all t 2 T . We use an abbreviation �=L def= e=L(�).1.7 Models for Real-Time SystemsSeveral models for real-time systems are proposed as extension of transition systems, automata, andPetri nets, which include timed automata (timed graphs) [Alur 90, Alur 91], timed transition systems[Henzinger 91], generalized stochastic Petri nets [Marsan 86, Marsan 95], time Petri nets [Berthomieu 91],and time basic nets [Bellettini 93]. In this thesis, we do not mention them in detail.1.8 Comparison of ModelsTable 1 shows comparison of models which we mentioned, with regard to concurrency and liveness.Table 1. Comparison of ModelsModels Concurrency LivenessTransition SystemTransition System with composition operators B�uchi Sequential Automaton Finite State Process with composition operators Statechart Petri Net 2 Logics for Reactive and Concurrent SystemsThis section introduces several temporal and modal logics: Linear Time Temporal Logic, BranchingTime Temporal Logic, Process Logic, and Propositional Modal �-calculus. These logics can provideuseful formalisms for specifying and verifying reactive and concurrent systems.2.1 Propositional LogicA logical language is given by an alphabet of symbols and the de�nition of a set of strings over language,called formulas. The simplest kind of a logical language is called propositional logic which can be givenas follows.

Chapter 2: Preliminaries 25SyntaxPropositional logic formulas are built from:� A set of all atomic propositions: Prop = fp1; p2; p3; :::; png,� Boolean connectives: ^ and :,� Parentheses: \(" and \)".The formation rules are:� An atomic proposition p 2 Prop is a formula,� If f1 and f2 are formulas, so are f1 ^ f2, :f1,� If f is a formula, so are (f).AbbreviationFurther logical operators and constants can be introduced to abbreviate particular formulas.Abbreviated Formula = Original Formulaf1 _ f2 = :(:f1 ^ :f2)f1 � f2 = :f1 _ :f2true = f _ :ffalse = :true2.2 Linear Time Temporal LogicTemporal logic is a special type of modal logic, where its modalities concern with time. There two possibleviews regarding the underlying nature of time. One is that the course of time is linear. The other is thattime has branching, tree-like nature. First, we show Propositional Linear time Temporal Logic (PLTL)based on the former view. Then, Propositional Branching time Temporal Logic based on the latter viewwill be shown.Syntax PLTL formulas are built from:� A set of all atomic propositions: Prop = fp1; p2; p3; :::; png� Boolean connectives: ^, _� Temporal operators: (\next"), U(\until")The formation rules are:� An atomic proposition p 2 Prop is a formula.� If f1 and f2 are formulas, so are f1 ^ f2, :f1, f1, f1Uf2.Semantics The operators intuitively have the following meanings: 2f (read next f): f is true for thenext state, f1Uf2 (read f1 until f2): f1 is true until f2 becomes true and f2 will eventually become true.The precise semantics are given as the Kripke structure [Manna 84].We use }f (\eventually f") as an abbreviation for (true U f) and 2f (\always f") as an abbreviationfor :F:f . Also, f1 _ f2 and f1 � f2 represent :(:f1 ^ :f2) and :f1 _ f2, respectively.Lemma 2 Given an PLTL formula f, one can build a B�uchi sequential automaton Af = (�; S; �; s0; F),where � = 2Prop, such that L(Af) is exactly the set of sequences satisfying formula f .

Chapter 2: Preliminaries 26Proof Ref. [Wolper 83a].Here, an accepted word � = P1P2P3:::Pi::: (Pi � P) means that all p 2 Pi are true and all p 62 Pi arefalse at time i (0 < i).De�nition 11 (Single Event Condition) A single event condition is de�ned as follows,fSEC = 2((_1�i�n pi) ^ (^1�i<j�n pi ^ pj))where p1; ::; pn are all atomic propositions. 2This single event condition provides that only just one atomic proposition is true at any moment[Manna 84]. When we build a B�uchi sequential automaton A0f = (�; S; �; s0; F) where f' is f with thesingle event condition, we can make � = Prop in place of � = 2Prop, because only one atomic propositionis true at each time.Example 3 (A0f) The following Af 0 (Fig.6) is built from PLTL formula f with the single event condition(i.e. f 0 = f ^ fSEC). f = 2(t1 � (:t1Ut2)) ^ 2(t2 �(:t2Ut1))Af 0 = (ft1; t2g; fs0; s1; s2; s3g; �; s0; fs0; s3g) where � = ffs1g = �(s0; t1); fs2g = �(s0; t2); fs3g =�(s1; t2)); fs3g = �(s2; t1); fs1g = �(s3; t1); fs2g = �(s3; t2)g.
s0

s1 s2

s3

t1

t2t1

t1
t2

t2

Figure 6. B�uchi Automaton Af 0 built from PLTL formula fDe�nition 12 Ls(f) is an in�nite language generated from an PLTL formula f under the single eventcondition, i� Ls(f) = L(Af 0) where f 0 = f ^ fSEC , and a set of atomic propositions Prop becomes analphabet of Af 0 .Lemma 3 Given an PLTL formula f , Ls(f) = Ls(:f), where Ls(f) = Prop!nLs(f).Proof. The paper [Wolper 83a] proved that L(Af1) = L(Af2), where f2 = :f1 and no single eventcondition is assumed there. This lemma is a special case of that theorem.22.3 Branching Time Temporal LogicWe will consider a simple version of propositional branching time temporal logic: CTL (Computation TreeLogic).

Chapter 2: Preliminaries 27Syntax CTL formulas are built from:� A set of all atomic propositions: Prop = fp1; p2; p3; :::; png� Boolean connectives: ^, _,� Temporal operators: , U ,� Path operators: 8, 9,The formation rules are:State Formulas� An atomic proposition p 2 Prop is a state formula.� If f1 and f2 are state formulas, so are f1 ^ f2, :f1.� If g is a path formula, then 8g and 9g are state formulas.Path Formulas� If g1 and g2 are state formulas, then g1, and g1Ug2 are path formulas.CTL Formulas� If f is a state formula, then f is a CTL formula.Semantics The operators intuitively have the following meanings: 8 f = \f becomes true at thenext time for all paths", 8f1Uf2 = \f2 becomes eventually true and f1 is true subsequently until then forall paths",9 f = \f becomes true at the next time for some path", 9f1Uf2 = \f2 becomes eventuallytrue and f1 is true subsequently until then for some path".The precise semantics of CTL formulas are de�ned with a tree-like structure M and a state s. Amodel of a CTL formula f is an in�nite tree over M starting at s (we denote (M; s) j= f). It is knownthat if a given CTL formula f is satis�able (i.e., it has at least one model), there exist a �nite transitionsystem TS = (S; P;A; �; �; s0) such that A = ; (i.e., without actions) and a model of f can be obtainedby unwinding TS (Small Model Theorem). Therefore we can regard transition systems without actionsas models of CTL formulas.In CTL, the formulas appearing in the scope of path quanti�ers are restricted to be a single temporaloperators. Therefore some PLTL formulas cannot be expressed in CTL. CTL* is extension of CTL, inwhich arbitrary PLTL formulas can appear in the scope of path quanti�ers. An arbitrary PLTL formulaf is expressed by 8f in CTL*.2.4 Process LogicA process logic is a kind of modal logics in which its modalities concern with actions.Syntax Propositional process logic (PPL) formulas are built from:� A set of actions: A� Boolean connectives: ^, _� Modal operators: hai for a 2 A� A constant: trueThe formation rules are:� A constant true is a formula.� If f1 and f2 are formulas, so are f1 ^ f2.� If f is a formula and a is an action (a 2 A), the haif is a formula.

Chapter 2: Preliminaries 28Semantics The operators intuitively have the following meanings: haif = \it is possible to execute anaction a and terminate in the state satisfying f".Formally, PPL formulas are also interpreted with a tree-like structure M and a state s. A model ofa PPL formula f is an in�nite tree over M starting at s (we denote (M; s) j= f). It is known that if agiven PPL formula f is satis�able (i.e., it has at least one model), there exist a �nite transition systemTS = (S; P;A; �; �; s0) such that P = ; (i.e., without state attributes) and a model of f can be obtainedby unwinding TS (Small Model Theorem). Therefore we can regard transition systems without stateattributes as models of PPL formulas.2.5 Propositional Modal �-calculus�-calculus is a variation of process logic extended with a least �xed point operator �. Since the �xedpoint operator is very powerful, �-calculus can express both temporal logic and process logic uniformly.We show the de�nition of propositional modal �-calculus.Syntax The propositional modal �-calculus has formulas built from:� A set of actions: A� A set of variables: V ar� Boolean connectives: ^, _� Modal operators: hai for a 2 A� A �xed-point operator: �The formation rules are:� A variable Z is a formula.� If f1 and f2 are formulas, so are f1 ^ f2.� If f is a formula and a is an action (a 2 A), the haif is a formula.� If f is a formula and Z is a variable (Z 2 V ar), the �Z:f is a formula.�Z:f means \every Z appearing in f are replaced with f". The semantics of �-calculus is de�ned inthe same way as PPL.2.6 Logics for Real-Time SystemsThere are two main approaches in introducing real-time into temporal logics.� introduction of a global clock (Explicit Clock Temporal Logic)ex. a ^ t = T � }(b ^ t � T + 10), where t is a global clock.� introduction of time bounds (Metric Temporal Logic)ex. 2<5f:RTTL [Ostro� 90] is an extended PLTL with a global clock variable. TCTL (Timed CTL) [Alur 90]is an extension of CTL for specifying real-time systems. Models of TCTL formula correspond to timedgraphs (timed automata). In this thesis, we do not mention them in detail.2.7 Comparison of LogicsTable 2 shows comparison of logics which we mentioned, with regard to relations between logics andmodels.

Chapter 2: Preliminaries 29Table 2. Comparison of LogicsLogics Models Equivalent ModelsPLTL in�nite sequences accepted sequences of B�uchi Sequential AutomatonCTL in�nite trees Transition System without actionsPPL in�nite trees Transition System without state attributes�-calculus in�nite trees Transition System with actions and state attributes3 Other Related ApproachesThere are a lot of other approaches for modeling and specifying reactive and concurrent systems, whichinclude� process algebra (CCS, CSP, ACP, �-calculus, chemical abstract machine),� data ow model (Kahn's model),� object-oriented model (Actor Model), and� concurrent logic programming (Concurrent Prolog, PARLOG, GHC).Since these models are out of scope of this thesis, we do not mention them in detail.

Chapter 3Software Development Process forReactive and Concurrent SystemsThis chapter proposes a conceptual software development process for reactive and concurrent systemsusing Petri nets and temporal logic.1 Reactive and Concurrent Systems (RCS)1.1 What is RCS?A reactive system was �rst de�ned by Pnueli [Pnueli 86] and Harel [Harel 87b]. They classi�ed com-puterized systems into two basically di�erent types: Transformational Systems and Reactive Systems.Transformational systems and reactive systems are de�ned in the book by Manna and Pnueli[Manna 92]as follows.� Transformational Systems (TFS): \A transformational program is the more conventional typeof program, whose role is to produce a �nal result at the end of a terminating computation. "� Reactive Systems: \A reactive program is a program whose role is to maintain an ongoinginteraction with its environment rather than to compute some �nal value on termination."We remark that reactive systems include real-time systems, that is to say, a real-time system is aspeci�c reactive system which has real-time constraints.Examples of reactive systems are as follows:� Embedded control systemsex. Home electric appliances, car electric appliances, and communication equipment (telephoneand facsimile).� Process control systemsex. Control systems for chemical plants, electric power plants, steel mill plant, and sewageplants.� Computer and network operating systemsex. Operating systems, switching systems, and computer network control software.� User interface management systemsex. Window systems for workstations and personal computers.Most reactive systems necessarily have concurrency which is often represented as concurrent tasks(multitasking) since the framework of the concurrent tasks is �t to model and implement reactive systemshaving several kinds of interactions which should be handled concurrently. Therefore we focus on reactiveand concurrent systems (RCS) in this thesis, especially embedded and process control systems.30

Chapter 3: Software Development Process 311.2 Characteristics of RCSWe summarize the characteristics of reactive and concurrent systems as follows.� Reactivity'RCS maintain an ongoing interaction with their environments. In the case of plant control systems,the environment is controlled objects of the plant, and the controller interacts with the controlledobjects through input devices (sensors) and output devices (commands) as shown in Fig. 7.
Controlled

Object

Controller

Command

Sensor

LAN

Control
Program

Controlled
Object

Controller

Command

Sensor

Control
Program

PlantFigure 7. Plant Control System� Nondeterminism'Behaviors of TFS are deterministic, that is, an output O can be de�ned as a functional relationO = f(I) for a given input I in TFS. On the contrary, behaviors of RCS are nondeterministicsince the environment of RCS has uncontrollable and unobservable elements. For example, timingand order of some sensory events (temperature and pressure changes) in chemical plants maybe nondeterministic. These timing and order of events have an inuence on the result. Thenondeterministic behaviors of RCS make it di�cult to test and debug the programs compared withTFS.� Real-time Properties'Most practical RCS have real-time properties to a greater or less extent%Real-time propertiesinclude the followings.{ Deadline adherence: The system should process tasks in accordance with their real-timedeadlines.{ Periodic processing: The tasks are activated periodically by timer events.The real-time systems can be classi�ed in terms of deadline adherence.{ Hard real-time systems: If the system cannot keep deadline, it may bring about a catas-trophic result.{ Soft real-time systems: Even if the system cannot keep deadline, it is possible to recoverit by a backup method (e.g. an exception handler).� Concurrent Tasks'The concurrent tasks are �t to model and implement RCS having several kinds of interactions whichshould be handled concurrently. In particular concurrent tasks are essential for real-time systems.For example, arrival of the interrupt results in a currently executing task being suspended, itscontents (a program counter, stacks, etc.) being saved, and an interrupt handler to process theinterrupt being invoked. After the interrupt has been serviced, the interrupted task's content isrestored so that it can resume execution. It may be possible to manage these interrupts withoutconcurrent tasks. However, a design without concurrent tasks is unnatural and makes the program

Chapter 3: Software Development Process 32di�cult to debug, maintain and reuse. Moreover RCS in distributed environments (e.g. RCS whichconsist of several controllers connected by networks) inevitably require concurrent tasks.In this thesis, a task and a process have the same meaning. However, we often use \task" in thecontext of the software design methodology and \process" in the theoretical context.These properties (reactivity, nondeterminism, real-time property, concurrent tasks) are called \timingfeatures of RCS" or \synchronization features of RCS", and the other features, which are in commonwith TFS, are called \functional features of RCS".1.3 Software Architecture of RCSWe will consider software architectures required to construct reactive and concurrent systems.1.3.1 Application Software and System SoftwareSoftware of a reactive and concurrent system consists of application software and system software (i.e., anoperating system). The system software provides abstract manipulations of computer hardware includingsystem resources, I/O devices, network devices, and timers (Fig. 8), and also provides concurrent taskingmechanisms including task generation, task scheduling, and task communication and synchronization.Application software is constructed on the system software by using system calls and run-time libraryprovided by the system software.
System Software

Application Software

Resource I/O Network

Software

Hardware

Timer

Figure 8. Application Software and System SoftwareIn reactive and concurrent systems, real-time operating systems and network operating systems areoften used as system software.1.3.2 Concurrent TasksApplication software of reactive and concurrent systems usually consists of several concurrent tasks.Gomaa classi�ed them into the following tasks [Gomaa 93].� I/O Tasks{ Asynchronous Device I/O Tasks{ Periodic I/O Tasks{ Resource Monitor Task� Internal Tasks{ Periodic Task

Chapter 3: Software Development Process 33{ Asynchronous Task{ Control Task{ User Role TaskConcurrent tasks can be classi�ed into I/O tasks , which correspond to I/O devices and hardwareresources and manage them, and internal tasks , which supervise these I/O tasks. From another viewpoint,tasks can be classi�ed into periodic tasks which are invoked periodically (e.g., every 100 milliseconds)and aperiodic tasks .1.3.3 Synchronization Part and Functional PartIn most application software of RCS, a process (task) can easily be separated into two parts: a synchro-nization part and a functional part [Manna 84].� Synchronization (Timing) Part: A part which enforces the necessary constraints on the relativetiming of the execution of the di�erent processes.� Functional Part: A part which manipulates the data and performs the computation required ofthe program.A functional part of RCS can be regarded as TFS. We focus on a design matter of synchronizationparts; how to design and verify synchronization parts and how to adjust synchronization parts, consideringfunctional parts.A synchronization part design is classi�ed into a centralized one and a decentralized one (Figure 9). Acentralized synchronization part is easier to design and verify, but more di�cult to implement e�ciently,especially in a distributed environment. Conversely, a decentralized synchronization part is harder todesign and verify, but can achieve run-time e�ciency.
Synchronization Part

Functional
Part

Functional
Part

Functional
Part

Synchronization
Part

Centralized Synchronization
Supervisor

Decentralized Synchronization
Supervisor

Synchronization
Part

Synchronization
Part

Process Process Process

Functional
Part

Functional
Part

Functional
Part

Figure 9. Synchronization PartA hierarchical synchronization supervisor is a compromised structure between a centralized one anda decentralized one (Figure 10). It can be constructed hierarchically where each level can be constructedas a centralized one, that is, easy to design and verify. As a whole, it looks like a decentralized one.For example, small embedded control systems such as home electric appliances adopt a structurehaving the hierarchical synchronization supervisor (Figure 11).In the next section we will consider a software development process for RCS which have these char-acteristics and structures.2 Software Development Process for RCSThis section takes a general view of the software development process for transformational systems (TFS)and reactive and concurrent systems (RCS), and considers a distinctive feature of RCS as compared withTFS.

Chapter 3: Software Development Process 34

SP FP

SP (=Synchronization Part) FP (=Functional Part)

SP FP SP FP

Process

Process Process ProcessFigure 10. Hierarchical Synchronization Supervisor

SP

Device

FP

SP (Main Controller) FP

SP

Device

FP SP

Device

FP

Environment (Controlled Object)

Controller

Device Controller Device Controller Device Controller

Figure 11. Hierarchical Synchronization Supervisor for Control Systems

Chapter 3: Software Development Process 352.1 Software Development Process for TFSAccording to the software life-cycle model, the software development process can be divided into severalphases. The most widely used software life-cycle model is often referred to as the \Waterfall" Model[Boehm 76]. Although the Waterfall Model has several limitations and alternative models are proposedto overcome them (Prototyping and Spiral Model), it is used here because it is su�cient to considerdistinctive features of the proposed software development process for RCS.Figure 12 shows the software development process which consists of the following phases.
Informal
Specification Analysis/Design Design

Document
Implementation Program

TestingDesign
Review

Validation

Figure 12. Software Development Process� Analysis/Design Phase: This phase includes requirement analysis and architectural design.The goal of the requirement analysis is to provide a complete description of what the system'sexternal behavior is. During the architectural design, the system's architecture is de�ned by designdocuments which describe how the system works internally. We intentionally do not divide thisphase into two phases (analysis and design) clearly because analysis and design are intertwined andit is di�cult to completely separate them in the actual software development.� Implementation Phase: This phase includes detailed design where the algorithmic details ofeach component are de�ned and coding in a programming language.� Validation Phase: This phase includes design review for design documents and testing for pro-grams. Testing consists of unit testing, integration testing, and system testing.2.2 Software Development Process for RCSThe software development process for RCS requires consideration of RCS characteristics(which is men-tioned in the section 1.2) in addition to those of TFS.� Input/Output ConsiderationInput/output considerations are important for RCS which interact with their environment throughI/O devices. In the analysis/design phase, an interface between a system and its environmentshould be de�ned and designed. This includes a software design of I/O driver.! Reactivity� Concurrent Task StructuringConcurrent task structuring is one of the most important issues in RCS design. Concurrent taskstructuring includes the designer's tradeo� between introducing tasks to simplify the design andnot introducing too many tasks which increase intertask communication overhead. Concurrenttask structuring criteria are needed to help the designer make the tradeo� and show him how todecompose a software system into tasks systematically.! Concurrent Tasks� Task Communication and Synchronization

Chapter 3: Software Development Process 36After task structuring, the task interface is de�ned. The task interface consists of communicationand synchronization between tasks. The most popular method of task communication design isa data ow diagram (DFD) which shows communication relationships between tasks, includinginput data, output data, and data stores. On the other hand, task synchronization design includesdeadlock prevention, mutual exclusion, and other timing issues. In the design phase, communicationand synchronization are designed using message communication, event synchronization, and datastores, which are implemented later using run-time support services (mail boxes, semaphore, eventag, etc.)! Concurrent Tasks and Nondeterminism� Performance DesignPerformance design is necessary for RCS to satisfy given real-time constraints. Performance designincludes performance analysis using simulation models and scheduling. A real-time operating systemprovides several mechanisms such as timer (set timer, get timer), task management (start task,terminate task, suspend task), and priority control (change priority). These mechanisms are usedfor the scheduling design to satisfy given real-time constraints.! Real-time Property and Nondeterminism2.3 Di�culties in Developing RCSGenerally speaking the development (especially testing and debugging) of RCS is more di�cult than thatof TFS. The safety and reliability of RCS are very important as they are used in crucial systems such aspower plants, chemical plants, and various computer embedded systems. As RCS become increasinglycomplex and distributed over computer networks complete testing of the safety of these programs becomesmore di�cult and the cost of testing and debugging becomes a heavy burden. The di�culty in testingand debugging RCS can be summarized as follows.� Concurrent thinking: The concurrent model is �t to design static structures of systems. However,it is di�cult to trace their dynamic behaviors concurrently because human thinking is essentiallysequential. Concurrent thinking which is required for designing, testing and debugging RCS is verydi�cult for designers to achieve.� Data and timing variations: In testing TFS, the designer has to consider only data variations.However, timing variations in addition to data variations have to be considered in testing RCS.Combination of data and timing variations makes testing very complicated.� Environment modeling: Since a program of the reactive system cannot function without itsenvironment, testing on the development machine requires an environment model and its simulator.The designer can test RCS with environment simulators, which are very useful in reducing testingcosts. However, simulator construction requires additional programming costs, and it is ine�ectiveto construct a handmade environment simulator for each RCS.� Lack of bug reappearance: Unlike in TFS, bugs do not necessarily reappear in RCS. For examplebugs which appear in the usual execution often disappear when using the debugging tool (it is calledthe probe e�ect). It makes debugging of RCS very di�cult.� Task structuring: As compared with module structuring in TFS, task structuring is more dif-�cult because physical constraints (real-time constraints and constraints due to devices) must beconsidered in addition to logical module structuring.3 Programming Environment for RCS Using Petri Nets andTemporal LogicThis section shows a basic concept and organization of the proposed software development process andits programming environment in this thesis. Then it is shown how the above di�culty is eased by them.

Chapter 3: Software Development Process 37Formal Speci�cation for RCSIn the proposed software development process, the formal speci�cation takes up a position as asoftware design document (SDD) which is produced through the analysis and design phase. The formalspeci�cation is used for the formal veri�cation and adjustment later.Many formal speci�cation languages are proposed. Some are declarative, and some are operational.However, speci�cation of practical systems requires both a declarative one and an operational one. Forexample, it is impossible to describe all of the practical systems by temporal logic (declarative one).Conversely, it is impossible to describe liveness properties such as deadlock-free by Petri nets (operationalone). An operational speci�cation language is suitable for describing static and dynamic structures ofthe system. On the other hand, a declarative one is suitable for describing constraints of the system.We adopt both Petri net and temporal logic as a formal speci�cation language for RCS because theycan complement each otherDesign Document ReuseThe development process promotes and supports reuse of software design documents written by Petrinets and temporal logic. Reusable components are stored in the reusable component library. Since Petrinets provide a graphical representation of reusable components in the library, the designer can easily graspthese components. Temporal logic provides a formal framework to check whether reusable componentswork just as the designer designed.Veri�cation and Adjustment for RCSThe software design document can be veri�ed by the formal method, that is, it is possible to verifywhether the given Petri net satis�es the given temporal logic constraints.Moreover, when the Petri net does not satisfy the temporal logic constraints, the Petri net can beautomatically adjusted to satisfy them.In particular, software reuse involves risk of bugs because the designer may not have an accurateunderstanding of reused components. So, veri�cation and adjustment can complement software reuse.Programming Language for RCSThe veri�ed and adjusted software design documents are coded with the programming language inthe implementation phase. The proposed development process also adopts Petri net as a programminglanguage. In this case, implementation is expected to be smoother because both design document languageand programming language are based on the same framework. However, since pure Petri net is insu�cientas a practical programming language for RCS, it should be extended.Design Methodology for RCSSoftware design documents written by using Petri nets and temporal logic are very formal and strict.Therefore, it is very di�cult to describe these documents directly from ambiguous and informal require-ments in analysis and design phase. There are many design methods such as RSA/RSD and OOA/OOD.However, they do not use Petri nets as their design documents (charts). A Petri-net-oriented designmethod for RCS is required in the development process.Software Development Process (Basic Concept)Based on the above consideration, the proposed software development process is summarized as follows(Fig. 13).1. Analyze and design a target system from informal speci�cation according to the Petri-net-baseddesign methodology.2. Construct a software design document written by using Petri nets and temporal logic. When re�ningPetri nets, reusable components are available.

Chapter 3: Software Development Process 38
Informal
Specification

Petri-net Basd
Design

Petri
Nets

Inplementation

Petri
Nets

Test

Adjustment

Validation

Temporal
Logic

Petri
Nets

Reuse

Reusable
Components

Verification

Figure 13. Proposed Software Development Process for RCS3. Verify and adjust the design document.4. Implement the design document and code it by using a Petri-net-based programming language.5. Test the generated program.Programming Environment for RCSThe programming environment supports the proposed software development process continuously. Itincludes� Graphic editor for Petri nets� Support tool for design and software reuse� Veri�cation and adjustment tool� Compiler/Interpreter of Petri-net-based programming language� Testing and debugging tools including program and environment simulatorsHow to Ease Di�culties in Developing RCSThe proposed software development process and its programming environment utilizing Petri netsand temporal logic can ease some di�culties of software development of reactive and concurrent systemsas follows.� Petri Nets: Petri nets provide a user-friendly graphical representation of reactive and concurrentsystems and also their environments. Petri nets are adopted from �rst to last (i.e., from design toimplementation) in the proposed software development process.! ease di�culties due to concurrent thinking, and environment modeling.� Temporal Logic: Temporal logic provides formal methods of speci�cation, veri�cation, and ad-justment about timing constraints of reactive and concurrent systems.! ease di�culties due to timing variations and lack of bug reappearance.

Chapter 3: Software Development Process 39� Methodology: Design methodology featuring Petri nets and temporal logic provides support sothat the designer can easily use these formal methods and design continuously from ambiguousrequirement to program implementation.! ease di�culties in task structuring.4 SummaryThis chapter has shown a conceptual overview of the software development process for reactive andconcurrent systems using Petri nets and temporal logic. In the following chapters, we explain the detailtechniques required to realize this software development process.

Chapter 4Speci�cation, Veri�cation, andSynthesis Using Petri Nets andTemporal LogicBoth Petri nets and temporal logic have been widely used to specify concurrent programs [Shatz 93]. Petrinets are appropriate to specify the behavioral structures of programs explicitly, while temporal logic isappropriate to specify the properties and constraints of programs. Since one can complement the other,using a combination of Petri nets and temporal logic is a highly promising approach to analyze, verify andsynthesize concurrent programs. This fusion of Petri nets and temporal logic as speci�cation languagebelongs to dual-language approach. For the purpose of automatic program veri�cation and synthesis,the emptiness problem (i.e. whether a legal �ring transition sequence satisfying a given temporal logicformula on a given Petri net exists) must be decidable. This chapter �rst reports a class to combinePetri nets and temporal logic as an in�nite language and whose emptiness problem is decidable. Then,we apply these results to veri�cation and synthesis of concurrent programs. Our veri�cation methodallows verifying several properties which cannot be covered by the traditional Petri net analysis, suchas analysis of mutual exclusion and partial ordering of events. Our synthesis method can be used tomodify an original concurrent program that is represented by a Petri net, to satisfy a given temporalspeci�cation.1 Petri Nets and Temporal Logic as Speci�cation LanguageAs mentioned at Chapter 1 (Section 2: Background), a speci�cation of reactive and concurrent systemscan be classi�ed into declarative approach and operational approach. Petri net and temporal logic aretypical speci�cation languages based on operational approach and declarative approach, respectively.The Petri net [Peterson 81, Murata 89] is widely accepted as a graphic and formal modeling tool, ap-plicable to reactive and concurrent systems, and it is suited for modeling behavioral structures [Shatz 93].However, Petri nets are de�cient in their ability to describe declarative constraints of programs, whichis a strong point of logic. On the other hand, temporal logic is successfully applied as a tool for theveri�cation [Pnueli 77] and synthesis [Manna 84] of concurrent programs, and suited for specifying theconstraints (declarative properties) of reactive and concurrent systems. Manna and Pnueli [Manna 92]classi�es these properties into two disjoint classes.� Safety Properties:A safety property claims that \something bad" does not happen.� Liveness Properties:A liveness property claims that \something good" eventually happens.Temporal logic can specify both safety property and liveness property. For example, prohibiting con-straints, such as \once an error event occurs, a start event must not be activated" can be describedexplicitly by temporal logic, but it can only be described implicitly by Petri nets.40

Chapter 4: Speci�cation, Veri�cation, and Synthesis 41Petri net and temporal logic can complement each other as shown in Table 3. Therefore, it is useful tocombine Petri nets and temporal logic as a speci�cation language for analyzing, verifying and synthesizingconcurrent programs. One can design concurrent programs operationally by Petri nets, while one canspecify them declaratively by temporal logic. We consider fusion of temporal logic and Petri nets, whichis called dual-language approach in [Felder 94].Table 3. Comparison of Petri Nets and Temporal LogicPetri Net Temporal LogicOperational(Executable) Declarative(Unexecutable)Suitable for Structure Description Suitable for Constraint DescriptionVisual and Textual Representation Textual RepresentationSince a bounded Petri net has only �nite states, expressive power of Petri nets combined with temporallogic is equivalent to one of �nite state transition systems combined with temporal logic. Veri�cation andadjustment using transition systems and temporal logic will be described in the subsequent chapters. Wefocus on unbounded Petri nets in this chapter.Several classes [Cherkasova 87, Howell 88, Suzuki 89] have already been proposed in which unboundedPetri nets are combined with temporal logic. However, these classes are inadequate for automatic ver-i�cation and synthesis because some are undecidable in regard to the emptiness problem (i.e. whetheror not there exists a legal �ring transition sequence satisfying a given temporal logic formula on a givenPetri net), and some are decidable but their complexity is as enormous as the reachability problem. Thedecidability of the emptiness problem is inevitable for automatic veri�cation and synthesis. In this chap-ter, we select a class combining Petri nets and propositional linear time temporal logic (PLTL), such thatits expressive power is less than classes mentioned above, but its emptiness problem is decidable, and itscomplexity is the same as the coverability problem. In this class, a transition �ring sequence correspondsto a model of the temporal logic formula, and it is possible to combine Petri nets and temporal logic as anin�nite Petri net language. In�nite Petri net languages were well investigated by Valk [Valk 83, Valk 85].The following results will be shown in this chapter using in�nite Petri net language techniques:1. It is decidable whether or not a Petri net satis�es a propositional temporal logic speci�cation.2. For a given Petri net N and propositional temporal logic speci�cation f , the new Petri net N 0 canbe constructed by modifying N , such that N 0 satis�es f .These results are applied to veri�cation and synthesis for concurrent programs in Sections 2 and 3,respectively.1.1 How to Fuse Petri Nets and Temporal LogicThere are several ways to combine a Petri net with temporal logic. The key point in combining iswhat the atomic proposition in temporal logic corresponds to in Petri nets. There are some possiblecorrespondences between atomic propositions in PLTL and Petri net properties as follows.(a) an atomic proposition mk(p) is true i� place p has at least one token.(b) an atomic proposition ge(p; c) is true i� place p has at least c tokens. 6(c) an atomic proposition en(t) is true i� a transition t is enabled.(d) an atomic proposition fi(t) is true i� a transition t just �res. 7For these correspondences, several research results are presented as shown in Table 4. It can be seenthat the emptiness problem becomes undecidable in some Petri nets combined with temporal logic. Someare decidable, but are limited to bounded Petri nets or restricted PLTL. Here, the emptiness problem isroughly de�ned as to decide whether, for a given Petri net N and a given temporal logic speci�cation6 (a) is a special case of (b), i.e. mk(p) = ge(p; 1).7 Note that fi(t) � en(t) always holds.

Chapter 4: Speci�cation, Veri�cation, and Synthesis 42f , there exists a legal �ring transition sequence on N satisfying f . Our purpose is to select an generalPetri net class combined with general PLTL in which the emptiness problem is decidable. The reasonis that decidability is necessary for automatic program veri�cation and synthesis, and unboundedness ofthe general Petri net is necessary for modeling asynchronous communication in concurrent programs.Table 4. Several Combinations of Petri Nets and Temporal LogicPaper Type Petri net Emptiness Problem[Katai 82] a safe decidable[Cherkasova 87] b,c,d general undecidable[Howell 88] a,c,d general undecidable[Suzuki 89] b,c,d general undecidabledecidable for restricted PLTL[Uchihira 90a] d bounded decidableHere, we adopt only d-type correspondence and combine the Petri net N and PLTL formula f asa formal language. A labeling function h : T ! Prop [f"g is used to map transitions t 2 T of N toatomic propositions fi(t) 2 Prop (i.e., h(t) = fi(t)). In addition, all transitions of N do not necessarilycorrespond to atomic propositions. Some transitions may be invisible to a user who describes temporallogic speci�cations (i.e. h(t) = " for a invisible transition t). We are now going to generally de�ne a newformal language from N , f , and h.De�nition 13 (L(N; f; h)) N = (P; T; w;m0) is a Petri net, and f is a PLTL formula which consistsof atomic propositions Prop, and h is a labeling function such that h : T ! Prop [f"g. We de�neL(N; f; h) def= L!(N; h) \ Ls(f), where L!(N; h) is an in�nite language generated from a labeledPetri net (N; h), and Ls(f) is an in�nite language generated from f under the single event condition 8 .L(N;L; h) 6= ; means that there exists a legal �ring transition sequence satisfying f on N .1.2 Example of Speci�cationA typical example of reactive and concurrent systems, mutual exclusion, is considered. In this example,a behavioral structure of the system is given by Petri net N shown in Fig. 14, and declarative constraintsare given by the following temporal logic formula.� d-typef = 2}fi(t11)^2}fi(t21)^2(fi(t11) �(:fi(t21) U fi(t12)))^2(fi(t21) � (:(fi(t11)) U fi(t22)))� a-type f = 2}mk(CS1) ^ 2}mk(CS2) ^ 2:(mk(CS1) ^mk(CS2))Here, CS and NCS mean \critical section" and \non-critical section", respectively. Both formulas meanthat this Petri net is deadlock-free and the mutual exclusion of critical sections CS1 and CS2 is preserved.1.3 Theoretical ResultsTheorem 1 (Decidability of Emptiness Problem of L(N; f; h)) The emptiness problem of L(N; f; h) (i.e.L(N; f; h) is empty or not) is decidable for given N , f , h.Proof. It is su�cient to prove that the emptiness problem of L!(N; h) \ Ls(f) is decidable. To beginwith, the following procedures are provided which constructs an extended coverability graph G from N ,h, and Ls(f).8 L!(N; h) and Ls(f) are de�ned in Chapter 2.

Chapter 4: Speci�cation, Veri�cation, and Synthesis 43
free

busy
CS2

NCS2
CS1

NCS1

t11

t12

t21

t22Figure 14. Petri Net N Representing Mutual ExclusionMain Procedure1. A B�uchi sequential automaton Af = (Prop; S; �; s0; F) accepting Ls(f) is constructed.2. Then, construct an extended coverability graph G from N = (P; T; w;m0), h and Af . G is alabeled directed graph. Each node x of G is represented as a k+2-tuple x = (x1; :::; xk; s; f) wherejP j = k; xi 2 f0; 1; :::g [f!g(1 � i � k), s 2 S, f 2 f0(normal node); 1(designated node)g. Eachedge e = (x; x0) is labeled with an element of T . A transition t 2 T is called to be enabled in x ift is enabled at a marking (x1; :::; xk) and �(s; h(t)) 6= ;, and t is called to be local enabled if t isenabled in the marking and h(t) = ". G is constructed as follows:(a) Start with a graph G containing only an initial node xinit = (x01; :::; x0k; s0; f) where m0 =(x01; :::; x0k), s0 is an initial state of Af , and f = 1 if s0 2 F , otherwise f = 0. Let xinit bean unapplied node.(b) Repeatedly apply the following Graph Addition Procedure to the new (unapplied) nodes of Guntil all nodes of G have been applied.Graph Addition Procedure1. Let x be a given node with x = (x1; ::; xk; s; f). Create new node candidates x0 = (x01; :::; x0k ; s0; f 0)from x according to the following (a)-(d) for all enabled transitions t at x and all s0 2 �(s; h(t)).Also create new node candidates x0 = (x01; :::; x0k; s; 0) according to (a)-(c) for all local enabledtransitions t:(a) x0i = ! if xi = ! (1 � i � k).(b) If there is a node y = (y1; :::; yk; s0; fy) on some path from xinit to x (that is an ancestor of x)such that yj � xj �w(pj ; t) +w(t; pj) for all j (1 � j � k) and yi < xi �w(pi; t) +w(t; pi) forsome i, then x0i = !.(c) For the other i, x0i = xi � w(pi; t) + w(t; pi).(d) f = 1 if s0 2 F , otherwise f = 0.2. If x0 is new in G, that is, G doesn't have the same node, then add a new node x0 and a new edgee = (x; x0) labeled with t. Otherwise add only a new edge e = (x; x0) labeled with t.The above procedure always terminates because G is �nite in the same way of the normal coverabilitygraph of a Petri net. Next, we prove the following claim.Claim: L!(N; h) \Ls(f) 6= ; i� there exists a cycle c = n0n1:::nkn0 on G such that n0 is a designatednode (i.e. f = 1) and �(�) � 0 where � = t1:::tk+1 is a transition sequence over c (i.e. ti is a label ofe(ni�1; ni)).

Chapter 4: Speci�cation, Veri�cation, and Synthesis 44Note that � is not necessary to be legal. The above claim follows directly from the result (Theorem3.11) of Valk and Jantzen [Valk 85]. Furthermore, it is decidable whether or not there exists such a cycleas follows: For each designated node n0, a set of all transition sequences � forming cycles on G passingthrough n0, can be represented by a regular expression R (e.g. R = (t1t2)� + (t1(t3 + t4)�t5)�). We wantto decide if there are some � 2 R such that �(�) � 0. For this purpose, we can regard R as commutative.Therefore, R can be expressed as a �nite sum of terms of the shape �0��1��2 :::��n such that �i 2 T �(0 �i � n), using the decomposition rules (AB = BA, A�B� = (AB)�(A� + B�), (A + B)� = A�B�,(A�B)� = " + A�B�B), which are described in the Conway's book [Conway 71]. For each �0��1��2 :::��n,we can e�ectively decide whether �(�0��11 ��22 :::��nn) = �(�0) + �1�(�1) + �2�(�2) + :::�n�(�n) � 0 forsome �1; �2; :::; �n � 0, by using linear programming.While Valk and Jantzen [Valk 85] showed that it is decidable whether there is a legal �ring sequenceon a Petri net satisfying various fairness constraints, this theorem shows that it is decidable whetherthere is a legal �ring sequence on a Petri net satisfying temporal logic constraints. It is also possible toprove this theorem by showing Petri net + temporal logic constraints to be equivalent to Petri net +some fairness constraints.When L(N; f; h) is nonempty, it is very important to �nd a concrete sequence accepted by L(N; f; h)for the sake of program synthesis.Theorem 2 (Construction of Legal Firing Sequence) If L(N; f; h) is nonempty, we can construct adeterministic legal �ring sequence �0�!c on N such that h(�0�!c) 2 L(N; f; h).Proof sketch. First, we rede�ne a weight function � as �(e) = �(transition of edge e) for edges of G.If L(N; f; h) is nonempty, there exists a cycle c = e0e2:::ek on G where e0 = (x0; x1); :::; ek = (xk�1; x0),�(c) � 0, and x0 is a designated node from Theorem 1. Remark that c might not be legal. We willshow cycle c can be constructed, and we can also construct a path p from the initial node xinit to thedesignated node x0, whose transition sequence is legal and a marking in x0 (let it mx0) is so large that cbecomes legal.� Construction of cycle cIn the same way as the proof of Theorem 1, we can compute �1; �2; :::; �n � 0, such that �(c) =�(e00)+�1�(e01)+�2�(e02)+ :::�n�(e0n) � 0 where e0i may not be adjacent to e0i+1. Each �i meanshow many times the edge e0i appears in c. Therefore, the construction of c can be reduced to theconstruction of Euler cycle c such that each edge e0i appears �i times in c.� Construction of path pWe can form the path into p = p0c�11 p1c�22 :::c�nn pn where ci means a cycle in which some place'smarking changes into ! on G (we call it i-th ! place). We would like to compute �1; �2; :::; �n � 0such that �(p0c�11 p1c�22 :::c�nn pn) � mx0 . Here, the problem is not so easy because p must be legal.The following recurrent formulas must be solved:(0) M0 = m0 +�(p0), and a path p0 from marking m0 must be legal,(i) Mi =Mi�1 + �i�(ci) + �(pi), and a path c�ii pi from marking Mi�1 must be legal,(n) Mn � mx0 .We point out that these formulas can be solved backward from the n-th formula, that is, we cancompute �i backward independently from �1; �2; :::; �i�1, because we can ignore j-th ! place forall j < i.After all, a deterministic legal transition sequence �0�!c such that h(�0�!c) 2 L(N; f; h) is directlyproduced from pc!.2 Concurrent Program Veri�cationConsider concurrent program veri�cation focusing on behavioral properties. After retracting the basicbehavioral structures represented by Petri nets from concurrent programs, it is possible to analyze thebehavioral properties of programs. This veri�cation means to check whether or not a given Petri net

Chapter 4: Speci�cation, Veri�cation, and Synthesis 45satis�es a given speci�cation. Temporal logic is adopted as a speci�cation language where atomic propo-sitions correspond to transition �ring as described in the previous chapter. Only the in�nite Petri netlanguage L!(N; h) is considered there, which does not care for �nite behaviors of N including deadlocks.Therefore, Petri net N is extended to Petri net N! which is made deadlock-free by adding a visibledummy transition nop (no operation) in Fig. 15.
nopFigure 15. nop (no operation)It will be shown how to verify whether a given concurrent program (N!) meets a given speci�cation(f). We assume that all transition are visible and atomic propositions of f are identi�ed with transitions.In this case, a labeling function to map transition to atomic propositions is an identity function e. Toverify that the program meets the speci�cations, it su�ces to check Ls(f) � L!(N!; e), which meanseach of all possible computations in Petri net N! is a model of PLTL formula f .De�nition 14 A deadlock-free Petri net N! satis�es the temporal logic speci�cation f with the singleevent condition i� Ls(f) � L!(N!; e). Deciding whether N! satis�es f is called a veri�cation problem.Theorem 3 The veri�cation problem is decidable.Proof. From Chapter 2 Lemma 2, the veri�cation problem (Ls(f) � L!(N!; e)) can be reduced to theemptiness problem (Ls(:f) \ L!(N!; e) = L(N!;:f; e) = ;). Therefore, it is decidable from Theorem.It will now be made clear what the inputs and outputs of this veri�cation are:INPUT: Concurrent program structure (represented by Petri net N!).INPUT: Speci�cation (represented by temporal logic f),OUTPUT: Yes / No,where "yes" means that the program satis�es the speci�cations, and "no" means it does not.It is signi�cant to analyze what is possible and what is not in this veri�cation method as follows:What is possible to verify� Mutual exclusionex. Intervals [t1; t2] and [t3; t4] between two transitions do not overlap each other:2(t1 � (:(t3 _ t1) U t2)) ^ 2(t3 � (:(t1 _ t3) U t4))Note: Though we cannot directly specify tokens of places, in the case of Fig. 16(a) an interval [t1; t2]can specify that place p has a token in the interval.� Partial ordering among transition �ringex. Transitions t1 and t2 �re in turn:2(t1 � (:t1 U t2)) ^ 2(t2 � (:t2 U t1))� Firing prohibitionex. Once t1 �res, t2 will never �re. 2(t1 � 2:t2)

Chapter 4: Speci�cation, Veri�cation, and Synthesis 46� Deadlock inevitabilityex. Transition t will eventually fall into deadlock.}2:t� Boundedness and safeness property It can be veri�ed by introducing dummy transitions. ex. }2:dto verify whether place p is bounded in Petri net with a dummy transition d (Fig. 16(b))
t1 t2p

(a) Existence of a token

p

(b) Verification of boundedness

d

Figure 16. What is Possible to VerifyWhat is impossible to verify� Number of tokensIt is impossible to generally verify the number of tokens in places, which could be used to specifyreachability property.� Possibility of deadlock (liveness property)This arises from the introduction of nop.Consideration for complexity gives a clear interpretation to these possibility and impossibility ofveri�cation. When PLTL formula is small enough compared with Petri net (in fact all example formulasmentioned above are small), complexity of our veri�cation method has the almost same order as thecoverability problem. Therefore, our method cannot verify in itself the reachability problem and livenessproperty, of which complexity is far larger than the coverability problem.Veri�cation Example As a simple example, verifying a concurrent program, let's consider a mutualexclusion problem containing unbounded bu�ers. A target Petri net N! is illustrated in Fig. 17, whereplaces p4 and p5 are unbounded bu�ers (this Petri net is deadlock free itself, therefore we ignore nopfor a simple explanation). Speci�cation f is given such that intervals [t1; t2] and [t3; t4] satisfy a mutualexclusion condition, as follows:f def= 2(t1 � (:t3 U t2)) ^ 2(t3 �(:t1 U t4))B�uchi sequential automaton A:f = (ft1; t2; t3; t4g; fs0; s1; s2; s3g; �; s0; fs3g) is shown in Fig. 18. Theextended coverability graph G can be generated from A:f and N! (Fig. 19). In G, no designated nodeexists. That means L(N!;:f; e) = ; from Theorem 1. We conclude N! satis�es f .3 Concurrent Program SynthesisIt is not easy for an ordinary programmer to realize a correct synchronization in concurrent programs,and it requires tremendous debugging e�orts. This section provides a method to synthesize a concurrentprogram automatically with reusable components by program tuning. The goal programs are synthesizedto satisfy the given speci�cation by tuning up reused programs that are represented by Petri nets. Wealso emphasize that our method adopts a compositional way to synthesize. It is necessary for two reasons:

Chapter 4: Speci�cation, Veri�cation, and Synthesis 47
p1

p2

p6p3

p4
p5

t1

t2

t3

t4

t5Figure 17. N!: Mutual Exclusion with an unbounded bu�er
s1

s3

s2s1

t1,t2,t3,t4

t2,t3 t4,t1

t1,t2,t3,t4

t3

t1

t1

t3

Figure 18. A:f
t1 100000 s0 0

011000 s2 0 011000 s0 0

100Ø00 s0 0

t1

t2
011Ø00 s2 0

t1

011Ø00 s0 0

100ØØ0 s0 0
011ØØ0 s2 0

010ØØ0 s1 0

t1
t2 t5

t5

t5

t1

t2

t5

t5

t5

t1

t3
t3 t4
010ØØ1 s0 0

011ØØ0 s0 0

Figure 19. G: Extended Coverability Graph

Chapter 4: Speci�cation, Veri�cation, and Synthesis 48� Reusable software itself is composed compositionally in ordinary software, and� global synthesis of a large-scale program requires huge, and therefore impractical, computing power.The model building techniques in Theorem 2 are used in this synthesis method.3.1 Composition of Petri NetsWe also introduce a composition operator "jL" which plays an important role in the synthesis method.De�nition 15 (Composition of labeled Petri nets) For given labeled Petri nets LN1 = (N1; h1), LN2 =(N2; h2), and a given label set L � � where N1 = (P1; T1; w1;m01), N2 = (P2; T2; w2;m02), P1 \ P2 = ;,and T1 \ T2 = ;, a labeled Petri net (N; h) = LN1 jL LN2, which is called a composition of LN1 andLN2 with L, is de�ned as follows.N = (P; T; w;m0), where� P = P1 [P2,� T = T 01 [T 02 [T 0 such that{ T 01 = ft 2 T1jh1(t) 62 Lg,{ T 02 = ft 2 T2jh2(t) 62 Lg,{ T 0 = ftij j h1(ti) = h2(tj) 2 Lg,� w(p; t) = 8<:w1(p; t) for t 2 T 01w2(p; t) for t 2 T 02w1(p; ti) + w2(p; tj) for t = tij 2 T 0w(t; p) is also de�ned similarly,� m0(p) = m01(p) +m02(p) for all p 2 P .Example 4 We show an example of a composition (N1; h1) jL (N2; h2) in Fig. 20. In this example,h1(t1) = b; h2(t4) = c; h1(t2) = h2(t3) = a, and L = fag.
(N1,h1) (N2,h2)

(N1,h1) (N2,h2)L

t1 t2 t3 t4 t1 t23 t4
b a a c b a c

Figure 20. Composition of Petri NetsLemma 4 Let LN , LN1,LN2 be labeled Petri nets and L � � be a set of labels. When LN = LN1 jLLN2, L(LN)=L = L(LN1)=L \L(LN2)=L, L!(LN)=L = L!(LN1)=L \ L!(LN2)=L, and L�!(LN)=L �L�!(LN1)=L \ L�!(LN2)=L. Here, L(LN) represents L(N; h) such that LN = (N; h).Proof. L(LN)=L = L(LN1)=L \ L(LN2)=L and L!(LN)=L = L!(LN1)=L \ L!(LN2)=L are clear.We prove L�!(LN)=L � L�!(LN1)=L \ L�!(LN2)=L by showing a example � 2 L�!(LN)=L and� 62 L�!(LN1)=L \ L�!(LN2)=L (Fig.21). In LN = LN1 jfc1;c2g LN2, a �ring sequence � = t1t5 fallsinto deadlock. Therefore, h(�) = �! 2 L�!(LN)=L, but h(�) 62 L�!(LN1)=L \ L�!(LN2)=L.

Chapter 4: Speci�cation, Veri�cation, and Synthesis 49
a1 a2

c1 c2

b1

c1 c2

b2

t2/a2

t3/c1

t4/b1

t6/c2

t5/b2

LN1 LN2

LN

{c1,c2}

t1/a1

Figure 21. Counter Example of L�!(LN)=L = L�!(LN1)=L \ L�!(LN2)=L3.2 Petri Net SynthesisDe�nition 16 Lfair�! (N; h) � L�!(N; h) is de�ned asLfair�! (N; h) def= fh(�) 2 �! [���! j � 2 F!(N) under the visibility-fairness conditiongwhere the visibility-fairness condition means whenever some visible transitions are in�nitely enabled, thenone of them will eventually �re. Here, L!(N; h) � Lfair�! (N; h)De�nition 17 A Petri net N = (P; T; w;m0) is deadlock-free i� there is at least one enabled transition forevery reachable marking. A labeled Petri net (N; h) is visibility-starvation-free i� Lfair�! (N; h) = L!(N; h),that is, there is no in�nite loop of invisible transitions (which looks like deadlock for the outside) underthe visibility-fairness condition.Now, we will show how to synthesize a new Petri net which satis�es temporal logic speci�cationsand is deadlock-free and visibility-starvation-free, by tuning up the original net (i.e. adding some places,transitions, and arcs to the original net).Theorem 4 (Petri Net Synthesis) If �0�!c 2 L!(N; h), a labeled Petri net (N 0; h0) can be constructedby adding some places, transitions, and arcs to N such that N 0 is deadlock-free, (N 0; h0) is visibility-starvation-free, and L!(N 0; h0) = �0�!c .Proof. It is easy to construct a labeled Petri net (Ns; e) such that L(Ns; e) = fs0s�cg. Then, make acomposed Petri net (Nc; hc) = (N; h) j� (Ns; e). Here, L!(Nc; hc) = L!(N; h)\L!(Ns; e) = fs0s!c g fromLemma 4. Finally, we can construct (N 0; h0) by tuning up (Nc; hc) according to the Valk and Jantzen'stuning method [Valk 85] (cf. Appendix I) such that N 0 is deadlock-free, and Lfair�! (N 0; h0) = L!(N 0; h0) =s0s!c .Corollary 1 Let (N; h) be a labeled Petri net and f be a PLTL formula. If L(N; f; h) 6= ;, a labeledPetri net (N 0; h) can be constructed by adding some places, transitions, and arcs to N such that N 0 isdeadlock free, (N 0; h0) is visibility-starvation-free, and Lfair�! (N 0; h0) � L(N; f; h) � Ls(f).From now on, we abbreviate fi(t) to just t for simplicity. In this case, a labeling function h of d-typeforms h = e=L where L is a set of visible transitions (i.e. atomic propositions).

Chapter 4: Speci�cation, Veri�cation, and Synthesis 50Example 5 (Petri Net Synthesis) A Petri netN is given in Fig. 22(a), and h = e=ft0; t1; t2g is a labelingfunction of N . And �0�!c 2 L!(N; h) is given where �0 = t0 and �c = t1t2. First, N� is constructed(Fig. 22(b)) such that L(N�; e) = f�0��cg. Then, (Nc; h) = (N; h) j� (N; e) is composed (Fig. 22(c)).Finally, N 0 is constructed as shown in Fig. 22(d). Here, Lfair�! (N 0; h) = L!(N 0; h) = f�0�!c g, and N 0 istuned up to be deadlock-free while Nc is not.
t2 t1t0t3

(a) N

t0

t1 t2

(b) NÈ

t2

t3 t0

t1 t2

t3 t0

t1

2

(d)N’(c) Nc

Figure 22. Example of Petri Net Synthesis3.3 Concurrent Program StructureIt is assumed that a target program consists of one controller (main controller) and several agents (devicecontroller) which control devices locally. While the controller controls each agent sequentially, the agent isindependent from other agents and they can run concurrently with each other. This structure (hierarchicalsynchronization supervisor, ref. Chapter 3) is very natural in some domains, such as robot control systemsand plant control systems. An example (Example 6) is shown in Fig. 23.The controller and the agent i communicate with each other by a set of synchronous communicationchannels Ci, like CCS [Milner 89]. It is assumed that a raw controller and raw agents have already beenconstructed from reusable software components up to this step. Here, the raw controller is representedby Petri net Nc = (Pc; Tc; wc;mc0), and the raw agent i is represent by Nai = (Pai ; Tai ; wai ;mai0).Communication channels Ci between Nc and Nai are de�ned as Ci = fhi(t) 2 Tc j t 2 Taig wherehi : Tai ! Tc [f"g is a labeling function (called "channel function") to connect Nai 's transitions withNc's transitions. If t 2 Tai and hi(t) = ", t is a internal and invisible transition which is not connectedwith Tc. In case of Example 6, a controller and an agent may be represented as shown in Fig. 24, andchannel functions are de�ned as hi(start) = starti, hi(end) = endi, hi(overflow) = " for each i.

Chapter 4: Speci�cation, Veri�cation, and Synthesis 51
Controller

Agent Agent

start2
end2end1

start1

device deviceFigure 23. Concurrent Program Structure

Controller Agent

start2

end2end1

start1 start

end

overflow

2
3

Figure 24. Original Controller and Agents

Chapter 4: Speci�cation, Veri�cation, and Synthesis 523.4 Temporal Logic Speci�cationThe user speci�es several constraints by a PLTL formula f with a set of atomic propositions Prop � Tcso that the controller satis�es f cooperating with all agents.Example 6� Prop = Tc = fstart1; end1; start2; end2g� f = 2(start1 � (:start2 U end1)) ^ 2(start2 � (:start1 U end2))The formula f above means that once Agent 1 starts, Agent 2 never starts until Agent 1 ends. Alsowhen Agent 2 starts, Agent 1 never starts until Agent 2 ends.Here, a concurrent program synthesis means to tune up reusable components to satisfy this speci�ca-tion (constraint). To start with, it is made clear what the inputs and outputs are:INPUT: Speci�cation f (written by PLTL)INPUT: Reused ProgramsOne raw Controller and several raw Agents and Channels (represented by Petri netsNc; Na1 ; Na2 ; :::; Nak ,and channel functions h1; h2; :::; hk)OUTPUT: Synthesized ProgramsOne Controller and several Agents and Channels (represented by Petri nets N 0c; N 0a1 ; N 0a2 ; :::; N 0ak ,and channel functions h01; h02; :::; h0k)The proposed program synthesis method consists of two procedures. First, we show the controllersynthesis procedure and then the agent synthesis procedure.3.5 Controller SynthesisThis controller synthesis procedure consists of the following four steps:Step 1: Each Petri netNai of agent i is reduced as far as possible [Lee 85] intoNrai such that L!(Nai ; h1) =L!(Nrai ; h1).Step 2: Make a composed Petri net (N; h) = (Nc; e) jC1 (Nra1 ; h1) jC2 ::: jCk (Nrak ; hk) . We abbrevi-ate this composition to Sync(Nc; Nra1 ; Nra2 ; :::; Nrak ; h1; h2; :::; hk), since it means synchronization ofProcesses with channels.Step 3: Construct an in�nite �ring sequence � = �0�!c on N such that h=Prop(�0�!c) 2 L(N; f; h=Prop)from Theorem 2.Step 4: Construct a deterministic Petri net N 0c such that L(N 0c; e) = f�0��c=Tcg.N 0c is a Petri net of the synthesized controller, that is a deterministic sequential program. In caseof Example 6, N 0c is synthesized from a transition sequence � = (start1end1start2end2)! which satis�esspeci�cation f , as shown in Fig. 25.3.6 Agent SynthesisFor each agent, we can construct a tuned agent Petri net N 0ai = (P 0ai ; T 0ai ; w0ai ;m0ai0) and a labelingfunction h0i : T 0ai ! Ci from Nrai , and �0�!c such that N 0ai is deadlock-free, (N 0ai ; h0i) is visibility-starvation-free, and L!(N 0ai ; h0i) = f�0�!c =Cig, using Theorem 4. Fig. 26 shows a composition (Nrai ; hi) jci (N�; e)where L!(N�; e) = f(startiendi)�g, and a synthesized agent in Example 6.Note that the synthesized controller is a deterministic sequential program while the tuned agentscan be nondeterministic concurrent programs. Here, we must assume the visibility-fairness condition foreach agent. After all, the controller N 0c and the agents N 0ai can run concurrently with synchronous com-munication by channels, of which structure is represented by Sync(N 0c; N 0a1 ; N 0a2 ; :::; N 0ak ; h01; h02; :::; h0k).The following theory assures that this composed concurrent program satis�es a given temporal logicspeci�cation.

Chapter 4: Speci�cation, Veri�cation, and Synthesis 53
start2

end2end1

start1

Figure 25. Synthesized Controller N 0c

start

end

overflow

2
3

start

end

overflow 2

3
4

overflow

Synthesized Agent

Composition

Figure 26. Composition (Nrai ; hi) jci (N� ; e) and Synthesized Agents N 0ai

Chapter 4: Speci�cation, Veri�cation, and Synthesis 54Theorem 5 If labeled Petri nets (N 0c; e); (N 0a1; h01); (N 0a2; h02); :::; (N 0ak ; h0k) are synthesized from Petri netsNc; Na1 ; Na2 ; :::; Nak , channel functions h1; h2; :::; hk, and a PLTL formula f with a set of atomic propo-sitions Prop, according to the above synthesis method, then� a composed labeled Petri net (N 0; h0) = Sync(N 0c; N 0a1 ; N 0a2 ; :::; N 0ak ; h01; h02; :::; h0k) is deadlock free,� (N 0; h0) is visibility-starvation-free, and� L!(N 0; h0=Prop) � L(N; f; h=Prop) � Ls(f), under the visibility-fairness conditionwhere (N; h) = Sync(N 0c; N 0a1 ; N 0a2 ; :::; N 0ak ; h01; h02; :::; h0k).Proof. It is followed from our method utilizing previous theorems.The main drawback in this synthesis is that a synthesized controller is deterministic. The controlleris serialized by a deterministic �ring sequence, while agents are non-deterministic and run concurrentlywith each other. However, when expanding a deterministic one to nondeterministic one that looks morenatural, it is indispensable to consider invisible transition of each agent, which requires other informationbesides given communication channels. Therefore, non-deterministic controller synthesis has danger ofdecreasing concurrency of a synthesized program.4 Related WorksWe compare our veri�cation and synthesis methods with related works.Veri�cation: One of common goals of other works [Cherkasova 87, Howell 88, Suzuki 89] is to uniformlyspecify most Petri net properties with temporal logic. Therefore its decision procedure inevitably fallsinto undecidable or costs more than the reachability problem. Complexity more than the reachabilityproblem is out of the practical veri�cation. Our method's complexity is almost equal to the coverabilityproblem because of abandoning some veri�cation properties, such as deadlock possibility. However, ourmethod still provides more special properties, such as analysis of partial ordering among transition �ringand mutual exclusion, which can not be covered by the traditional analysis. These abilities are e�ectivefor the concurrent program veri�cation. Our method is not all-around but can complement the traditionalanalysis.On the other hand, if we would restrict the Petri net into a bounded one, the veri�cation becomes sim-pler [Uchihira 90a, Katai 82]. However, an unbounded bu�er is sometimes necessary to specify ordinaryconcurrent programs. It might be possible to assume a large enough bounded bu�er in real programs.A bounded Petri net with a large bounded bu�er usually produces a larger coverability graph than onesof unbounded Petri nets. Recently, several e�cient veri�cation methods based on temporal logic modelchecking for bounded Petri nets have been proposed. They can be classi�ed into two types; symbolicmodel checking [Hiraishi 95] and partial order method [Yoneda 93]. In particular, Yoneda et. al. pro-posed an e�cient model checking method based on partial order for one-safe time Petri nets [Yoneda 93].It would be a future promising approach to apply techniques of symbolic model checking and partialorder method to unbounded Petri nets.Synthesis: We think the software-reuse-based program synthesis is highly practical. Our method di�ersfrom other synthesis methods [Manna 84, Clarke 82] that also use temporal logic speci�cations, in regardto the point of utilizing software reuse. Another signi�cant feature is to relax the automatic synthesisfor only �nite-state programs [Manna 84, Clarke 82] to in�nite-state programs, such as a Petri net. Ourmethod has the same approach as that of Valk and Jantzen [Valk 85] in point of tuning up existingprograms (reusable software) satisfying the given speci�cations. However, our method has the followingcharacteristic features:� the speci�cation is described with temporal logic, and� the program synthesis method consists of two phases; controller synthesis and agent synthesis.

Chapter 4: Speci�cation, Veri�cation, and Synthesis 555 SummaryThis chapter considers the fusion of unbounded Petri nets and temporal logic as a speci�cation languagefor reactive and concurrent systems. We propose a version of the fusion and prove that the emptinessproblem is decidable in this version. Then, veri�cation and synthesis for reactive and concurrent systemsare discussed based on these results. In this chapter,(1) we de�ne the class combining Petri nets and temporal logic which is decidable,(2) the decision procedure for this class is applied to concurrent program veri�cation, and(3) a two phase synthesis method is provided which modi�es reusable components to satisfy a speci-�cation.This research was carried out to establish veri�cation and synthesis for unbounded Petri nets andtemporal logic. E�cient veri�cation and synthesis for bounded Petri nets (i.e., transition systems) andtemporal logic will be described in the subsequent chapters.Appendix IResults of Valk and Jantzen's method are briey summarized. See the original paper [Valk 85] for proofs.De�nition 18� N = (P; T; w;m0) is a Petri net.� A marking m is T'-continual for some subset T' of T, i� there is an in�nite legal �ring sequencefrom m which contains all t 2 T 0 in�nitely often.� CONTINUAL(T 0) def= fm j m is T'-continualg.� N is a set of non negative integers. Let K � Nk, then the residue set of K, written res(K), is asmallest subset of K which satis�es res(K) +Nk = K +Nk.Theorem 6� res(CONTINUAL(T 0)) is �nite and can be e�ectively constructed.� Using res(CONTINUAL(T 0)), we can construct a new Petri net N 0 whose all reachable markingsare lying in CONTINUAL(T 0) with the same number of places of N , but possibly additionaltransitions and arcs.

Chapter 5Compositional Veri�cation UsingModal LogicThis chapter proposes PQL (Process Query Language) and the compositional veri�cation method ofreactive and concurrent systems using PQL. Our compositional approach is e�ective to ease the stateexplosion problem in the veri�cation.1 Background and MotivationTemporal logic model-checking method [Clarke 86] is very useful for veri�cation of reactive and concurrentsystems. However, a major drawback to using this method is that as the scale of the programs increase,the computation costs for veri�cation increase exponentially. An e�ective solution for this problem iscompositional veri�cation.This chapter focuses on the compositional veri�cation for �nite state transition systems instead ofPetri nets because of the following reasons.� In general a compositional veri�cation for in�nite systems [Winskel 90] is restricted and di�cult toapply to practical systems.� Many practical reactive and concurrent systems can be modeled as �nite state transition systems(with approximation).Compositional veri�cation for transition systems is formalized as process reduction in which the bisim-ulation equivalence of concurrent programs is used to extract from each system component (subprocess)only these abstract information necessary to verify each given query, thereby avoiding an explosion incost.In this chapter, PQL (Process Query Language) is proposed as an improved method in the solutionof this problem. PQL is based on modal logic which is the union of temporal logic and process logic.Then, this chapter proposed the compositional veri�cation method by using PQL with consideration ofthe divergence by internal transitions.We have applied this method to program veri�cation of sequencecontrol systems.1.1 BackgroundSince the framework of reactive and concurrent systems often can be expressed with transition systems,veri�cation methods based on temporal logic, process logic, CCS, ACP are well investigated [CAV 89,Beaten 90]. For example we have developed an automatic veri�cation system (PTSV: Practical TemporalSpeci�cation and Veri�cation tool) [Uchihira 89a] which is based on model-checking of CTL (ComputationTree Logic) [Clarke 86], and apply it to manufacturing systems.The veri�cation method based on model-checking can be summarized as follows. First, a at andglobal �nite-sate graph is generated, which expresses all possible behaviors of the target program. Forexample, when the target program consists of several processes, a at and global �nite-sate graph isgenerated by process composition based on interleaving semantics. Next, veri�cation of whether given56

Chapter 5: Compositional Veri�cation 57temporal logic queries are satis�ed is performed by tracing all the states of the graph. However, thisveri�cation method has the following problems.(1) State explosion problemA generated global �nite-state graph often becomes excessively large.(2) Lack of expression ability about \actions"CTL can express only queries about \states" and \state attributes".One of the promising approaches for the problem (1) is compositional veri�cation [Mishra 85, Clarke 89,Stirling 89b]%Compositional veri�cation is de�ned as follows in this thesis 9 .Compositional veri�cation is a method for generating a local and minimum �nite-state graphcompositionally for each veri�cation query and verifying it, instead of generating and verifyinga global and huge graph.Here, a local and minimum �nite-state graph means a graph in which only necessary information toverify a given query is kept and the rest is reduced. Because this compositional veri�cation method doesnot generate the global graph directly, the state explosion problem can be e�ectively eased.Based on this idea, Mishra and Clarke applied the hierarchical veri�cation method by CTL for ver-ifying asynchronous circuits [Mishra 85]. However, this method has some limits for expressive power ofveri�cation queries and is not a sophisticated and general method. Also, Clarke, Long and MacMillanproposed a compositional veri�cation method which introduced the compositional framework of CCS[Milner 89] (i.e., process composition and observation equivalence) for CTL model-checking. While CTLis a logic concerning \states" (state attributes), CCS is a calculus concerning \actions". Therefore, thepoint is how to handle \states" and \actions" in the same frame. This is also the solution for the problem(2). However, Clarke's veri�cation method [Clarke 89] could not express \states" and \actions" freelymixed with each other. On the other hand, researches have been undertaken to characterize CCS expres-sions by process logic (ex. Hennessy-Milner Logic : HML) [Hennessy 85a, Hennessy 85b]. Furthermore,new logics, which combine temporal logic and process logic, have been investigated. These logics canexpress \states" and \actions" freely mixed with each other, and yet cope with compositional framework.They, therefore, are promising as query language for compositional veri�cation. An example is Stirling'sGeneral Temporal Logic (GTL) [Stirling 89a, Stirling 89b]. GTL is a general logic which combines tempo-ral logics (linear-time temporal logic and branching-time temporal logic) and process logic (HML). Andfurther, Stirling and Walker proposed the compositional veri�cation method by GTL [Stirling 89b].1.2 MotivationThe point of compositional veri�cation is to reduce (localize, minimize) the global state graph, leav-ing only essential information for each veri�cation query. In the compositional veri�cation by GTL,this information is formalized by observation equivalence [Milner 89] . Whenever the reduced graph isobservation-equivalent to the original graph, it is assured that the reduction has no inuence on theveri�cation results, that is, it preserves the same results for every veri�cation query.However, the compositional veri�cation method based on observation equivalence has one problem.In observation equivalence, any divergence is ignored. The divergence [Milner 81, Walker 90] means anin�nite cycle (loop) of internal and unobservable transitions (i.e., � -actions) which cannot be observedand then looks like deadlock for an observer (we call it an external deadlock). This occurs due to thefact that a certain fairness is assumed for internal and unobservable transitions (i.e., if there is at leastone observable and executable action, there will not be an external deadlock by divergence). In the caseof compositional veri�cation, to make the transition observable or not will be decided by whether it isnecessary for a given veri�cation query or not. Therefore, if a di�erence in fairness exists depending uponthe given veri�cation query, a problem arises.For instance, in the transition system Ta shown in Fig. 27, the answer will be NO for a query: \Doesthe system eventually reach the end state for all paths" because there exists a path with an in�nite loop ofb which never reaches the end state. On the other hand, the answer will be Y ES if b is unobservable. Thereason is that Ta is recognized to be equivalent to Tb of Fig. 27 according to observation equivalence if b isunobservable (i.e., � -action). However, it is a problem from the standpoint of compositional veri�cation.9 The formal de�nition and survey of compositional veri�cation are described in detail in Section 6.1.

Chapter 5: Compositional Veri�cation 58
start

end

a

c

end

a

c

start start

end

c

b

b b

Ta Tb Tc

a a

Figure 27. Transition systems with/without divergenceThe existence of a path, which has an in�nite loop of b and never reaches the end state, must be recognizedregardless of observability of the action b.In order to introduce expressive power of recognizing divergence into logics, Intuitionistic HML(IHML) [Stirling 87] has been proposed. Furthermore, Stirling suggested (but not with any concreteproposal) the possibility of adding the IHML feature to GTL and expanding it (GTL + IHML). But evenif this \GTL + IHML" can be realized, there still remains the same problem. That is, the equivalencetheory (equivalence based on partial bisimulation preorder) [Stirling 87], which IHML is based on, maysometimes produce recognition (abstraction from the observer's point of view) which does not agree withintuition, depending upon which action will be made observable.In the case of Ta and Tc in Fig. 27, if b is not observable, divergence occurs in both transition systems,and Ta and Tc are equivalent from the equivalence theory of IHML. This equivalence is derived fromthe observation that both transition systems cannot take action c after action a in some path. However,a problem arises for the query: \Is there a state in which the system cannot take action c in all pathsafter action a." Intuitively, the answer should be NO for Ta and Y ES for Tc, regardless of whether bis observable or not. It is natural to be able to di�erentiate between these two cases. The equivalencetheory of IHML, which considers both Ta and Tc to be equivalent, will cause a loss of the necessaryinformation to verify the query. In other words, the compositional veri�cation of GTL + IHML reducesTc into Ta according to its equivalence theory, thereby creating stronger abstraction than necessary.From these points of argument, it can be concluded that the usual equivalence theories (observationequivalence, equivalence by partial bisimulation preorder) which the usual modal logics (HMLGTLGTL + IHML, etc.) based on, is aimed at equivalence relation from the viewpoint of the externalprocesses as observers and therefore, it is not appropriate to apply directly these equivalence relationsfor compositional veri�cation because of creating stronger abstraction than necessary. In compositionalveri�cation, \not observed" simply means \not paid attention" instead of \not synchronized". Therefore,even if a certain action is made unobservable, its existence must be preserved.1.3 Overview of Main ResultsIn this chapter, we propose Process Query Language (PQL) for compositional veri�cation in order tosolve the problem described above. PQL can clearly express and easily handle the cycles of unobservableactions, taking a di�erent approach from GTL + HML. The unique feature of PQL is the followings.� PQL is be able to uniformly express both temporal logic properties and the existence of cycles ofunobservable actions using the maximum/minimum �xed point operators.� Constraints about state attributes and actions can be expressed in the uniformed and exible way.� PQL provides several useful macros including the regular expression.� PQL model-checking is decidable and has the e�cient decision procedure. Furthermore, PQL has anew process equivalence relation (��!-bisimulation equivalence) which is used for the compositionalveri�cation. That is, if two transition systems (original one and reduced one) are equivalent, it isassured that every PQL query has the same answer.

Chapter 5: Compositional Veri�cation 591.4 Organization of the ChapterThe remainder of this chapter is organized as follows. Section 2 de�nes concurrent programs usingtransition systems and their equivalence relation (extended bisimulation equivalence). In Section 3, PQLis de�ned and it is shown that the discrimination ability of PQL is the same as the extended bisimulationequivalence. This means that even if the given concurrent program is reduced to a smaller equivalentprogram, veri�cation results of PQL will be preserved. A compositional veri�cation method using theresult obtained in Section 3 is proposed and its e�ectiveness is demonstrated by means of experimentalresults in Section 4. In Section 5, we consider how to apply this method to actual reactive and concurrentsystems. We introduce an application to chemical plant control systems by example. Section 6 mentionsrelated works in which other compositional veri�cation methods and a partial order method are surveyedand compared with our method.2 Representation of Concurrent ProgramsConcurrent programs are constructed from some number of processes. The program and each processare as transition systems T = (S; P;A; �; �; s0) [Arnold 92], which have been de�ned in Chapter 2.Here, we assume that S, P , and A are �nite sets for the automatic veri�cation. In this case, the �nitebranching condition holds.2.1 Equivalence of Transition Systems for Compositional Veri�cationWe introduce a new bisimulation equivalence of transition systems (��!-bisimulation equivalence), whichis an extension of Milner's weak bisimulation equivalence [Park 81, Milner 89] in order to recognize � -cycles. First, (weak) bisimulation used in CCS is de�ned for (S;Act; �).De�nition 19 (bisimulation)For (S;Act; �), a binary relation R � S � S is (weak) bisimulation if 8(s; t) 2 R implies� 8a 2 Act:8s0 2 S:(if s a! s0 then 9t0 2 S:t â) t0 ^ s0Rt0)� 8a 2 Act:8t0 2 S:(if t a! t0 then 9s0 2 S:s â) s0 ^ s0Rt0)The � -cycles cannot be recognized in bisimulation. Therefore, we introduce �!-bisimulation whichcan do.De�nition 20 (�!-divergence)For (S;Act; �) and s 2 S, s " def= 8n > 0:9s0 2 S:s(�!)ns0De�nition 21 (�!-bisimulation)For (S;Act; �), a binary relation R � S � S is �!-bisimulation if 8(s; t) 2 R implies� 8a 2 Act:8s0 2 S:(if s a! s0 then 9t0 2 S:t â) t0 ^ s0Rt0)� 8a 2 Act:8t0 2 S:(if t a! t0 then 9s0 2 S:s â) s0 ^ s0Rt0)� s " i� t "Furthermore, ��!-bisimulation is introduced for (S;Act; �; P; �) where state attributes P and aboolean function � is added to (S;Act; �) in order to take the equivalence of state attributes into consid-eration.De�nition 22 (��!-bisimulation)For (S;Act; �), a binary relation R � S � S is ��!-bisimulation if 8(s; t) 2 R implies� �(s) = �(t)� 8a 2 Act:8s0 2 S:(if s a! s0 then 9t0 2 S:t â) t0 ^ s0Rt0)

Chapter 5: Compositional Veri�cation 60� 8a 2 Act:8t0 2 S:(if t a! t0 then 9s0 2 S:s â) s0 ^ s0Rt0)� s " i� t "De�nition 23 (�;��!;���!)In (S;Act; �; P; �), for s1; s2 2 S$if there exists bisimulation such that (s1; s2) 2 R, then we denotes1 � s2. s1 ��! s2 and s1 ���! s2 are de�ned in the same manner.Theorem 7 (Relation between �;��!;���!)For every s1; s2 2 S in (S;Act; �; P; �), if s1 ���! s2, then s1 ��! s2, and if s1 ��! s2, then s1 � s2.Proof. This is clear from the de�nition. 2Since s1 � s2 is called bisimulation equivalence, s1 ���! s2 is to be called \��!-equivalence"%De�nition 24 (��!-equivalence for Transition Systems)For T1 = (S1; P; A; �1; �1; s01) and T2 = (S2; P; A; �2; �2; s02) (S1 \ S2 = ; is assumed), T1 and T2 is��!-equivalence (denoted by T1 ���! T2) if s01 ���! s02 in (S1 [S2; Act; �1 [�2; P; �1 [�2)��!-equivalence is the extended bisimulation equivalence which can handles �!-divergence and stateattributes, and it has higher discrimination ability than the bisimulation equivalence.For divergence, there are several researches by Milner[Milner 81], Stirling[Stirling 87], Walker[Walker 90].However, their equivalence (T1 �p T2 def= T1 v T2 ^ T2 v T1) based on partial bisimulation preorder (v)is weaker than �!-equivalence. For example (shown in Fig. 27), when b is unobservable (i.e. � action),Ta � Tb and Ta 6��! Tb, where � -cycle can be discriminated. Also, as Ta �p Tc and Ta 6��! Tc, theproblem pointed out in section 1 is solved.Figure 28 shows the diagram of proper inclusions among several well-known equivalence relations and�!-bisimulation equivalence. The arrow (!) means proper inclusion. For example, \�!-bisimulationequivalence ! bisimulation equivalence" means \for every T1; T2 if T1 ��! T2 then T1 � T2". The detailde�nitions of equivalence relations referred in this �gure are shown in Appendix II.

Trace Eq.�1'& $%
Failure Eq.�f'& $%
PartialBisimulation Eq.by Local Divergence�p'& $%PartialBisimulation Eq.by Global Divergence�gp'& $%Bisimulation Eq.�'& $%

�!-Bisimulation Eq.��!'& $%�	 XXXXXXXXXXXy
�

��	
CO

Qk

�

Figure 28. Comparison of equivalence relations

Chapter 5: Compositional Veri�cation 612.2 Composition of Transition SystemsA concurrent program is composed of processes (transition systems) which run concurrently and com-municate with each other by the handshaking-type synchronization mechanism. Here, operators (com-position,relabeling) concerning the composition of transition systems is to be introduced. Also, it will beproved that these operators preserve the ��!-equivalence.Composition: T1 j T2The transition system T = T1 j T2, which is composed of T1 = (S1; P1; A1; �1; �1; s01) and T2 =(S2; P2; A2; �2; �2; s02) such that P1 \ P2 = ;, is de�ned based on the interleaving semantics as follows:T = (S1 � S2; P1 [P2; A1 [A2; �; �; (s01; s02))where � : S1 � S2 ! 2P1[P2 is de�ned as�(s1; s2) = �1(s1) [�2(s2) for all s1 2 S1; s2 2 S2$� : S1 � S2 � (A1 [A2 [f�g)! 2S1�S2 is de�ned as$�((s1; s2); a) = 8>>>><>>>>: f(s01; s2) j s01 2 �1(s1; a)g if a 2 A1 ^ a 62 A2f(s1; s02) j s02 2 �2(s2; a)g if a 62 A1 ^ a 2 A2f(s01; s02) j s01 2 �1(s1; a); s02 2 �2(s2; a)g if a 2 A1 ^ a 2 A2f(s01; s02) j (s01 2 �1(s1; �); s02 = s2)_(s02 2 �2(s2; �); s01 = s1)g if a = �. Intuitively, T1 j T2 means a concurrent program in which T1 and T2 run concurrently and takesynchronous actions with the same labels, while T1 j T2 is formally de�ned as the above transition systemT . In other words, T1 j T2 is equivalent to T based on the interleaving semantics.relabeling: T [f]For T = (S; P;A; �; �; s0) and a relabeling function f = (fA; fP)suchthatfA : A [f�g ! 2A0[f�g(here, fA(�) = f�g), and fP : P ! P 0 [ftrueg (here, fP (p) = true means it makes the state attribute punobservable), the relabel-led transition system T 0 = T [f] is de�ned as follows:T 0 = (S; P 0; A0; �0; �0; s0)where �0 : S � (A0 [f�g)! 2S is de�ned as �0(s; a0) = fs0 j s0 2 �(s; a); a0 2 fA(a)g, and�0 : S ! 2P 0[ftrueg is de�ned as �0(s) = fP (�(s)).Intuitively, fA(a) = fa0g and fP (p) = p0 means simply relabeling a to a0 and p to p0, respectively.fA(a) = fa1; a2g means relabeling the original a to a1 and its replica to a2 after adding one more sametransition with the label a.Now, the actions and state attributes of the transition system T can be changed by the relabelingfunction f . This relabeling function is used to avoid overlapping of names of actions and state attributesin the case that the program consists of several same processes (i.e. T 0 = T [f1] j T [f2]). Also, therelabeling function is used to make actions and state attributes of T unobservable (i.e. fA(a) = f�g,fP (p) = true)%For convenience, this relabeling function fA can be denoted as follows:[fl011; :::l01k1g=l1; :::; fl0n1; :::l0nkng=ln]This denotes a function fA such that fA(li) = fl0i1; :::l0ikig for all i 2 f1; :::; ng. This applies to fP , too.Theorem 8 (Preservation of ��!-equivalence)If T11 ���! T12; T21 ���! T22, then T11 j T21 ���! T12 j T22; T11[f] ���! T12[f]Proof'This is obvious for relabeling. As for composition, as mentioned in Proposition 7.2 of [Milner 89],it is easily shown that the following relation R is ��!-bisimulation:R = f((s11; s21); (s12; s22)) j s11 ���! s12; s21 ���! s22; s11 2 S11; s12 2 S12; s21 2 S21; s22 2 S22g2

Chapter 5: Compositional Veri�cation 623 Process Query LanguageProcess Query Language (PQL) is introduced which is used to describe queries in the compositionalveri�cation for transition systems.The unique features of PQL is:� Constraints about state attributes and actions can be expressed in the uniformed exible way.� Divergence by � -cycles can be explicitly expressed using the maximum/minimum �xed point oper-ators.� Strong expression ability including the regular expression.First, a modal logic SPQL (Strong Process Query Logic) is de�ned, where � actions are observable,and then PQL is de�ned as a macro-language of SPQL where � actions are unobservable.3.1 SPQL (Strong Process Query Logic)SPQL is a modal logic which uni�es temporal logic and process logic with �xed point operators.De�nition 25 (SPQL formula)[Syntax]P : a set of state attributesA : a set of actionsSPQL formulas are recursively de�ned as follows. Here, a free state variable is a state logical variablewhich is not bound by any �xed point operator (�-operator).State Formula � A state logical variable Z is a state formula.� p 2 P and true are state formulas.� If f1 and f2 are state formulas, then f1 ^ f2 and :f1 are state formulas.� If f is a state formula, and Z is a free state logical variable appearing in f , and negationnesting of Z in f is even, then �Z:f is a state formula.� If g is a path formula, 9g is a state formula.Path Formula � a 2 A is a path formula.� If g1 and g2 are path formulas, then g1 ^ g2 and :g1 are path formulas.� If f is a state formula, then Xf and Tf are path formula.SPQL Formula � If a state formula f include no free state logical variables, then f is a SPQLformula.[Semantics]A state satisfying an SPQL formula f is called a model of f . V [[f]], a set of models of SPQL formulaf for a transition system T = (S; P;A; �; �; s0), will be de�ned. Here, we assume the following notations.� f : a state formula.� g : a path formula.� SF : a set of state formulas.� PF : a set of path formulas.� V [[f]] � S : a set of states satisfying f .� R[[g]] � S � S : a set of paths, whose length is 1 (i.e., edges), satisfying g.� (�Z:f1)f2 : a state formula in which a free state logical variable Z in f1 is replaced with f2.� [[S0]]�1 : a virtual state formula f such that V [[f]] = S0 (for example, [[;]]�1 = false; [[S]]�1 = true).

Chapter 5: Compositional Veri�cation 63V : SF ! 2S for a state formula f , which includes no free state logical variables, is de�ned as follows:V [[p]] = fs 2 S j p 2 �(s)gV [[9g]] = fs 2 S j 9(s; s0) 2 R[[g]])gV [[:f]] = S � V [[f]]V [[f1 ^ f2]] = V [[f1]] \ V [[f2]]V [[�Z:f]] = TfS0 � S j V [[(�Z:f)[[S0]]�1]] � S0gR : PF ! 2S�S is de�ned as follows:R[[a]] = f(s; s0)js a! s0gR[[:g]] = (S � S)�R[[g]]R[[g1 ^ g2]] = R[[g1]] \R[[g2]]R[[Xf]] =f(s; s0)j9a:(s a! s0 ^ a 6= � ^ s0 2 V [[f]])gR[[Tf]] =f(s; s0)j9a:(s a! s0 ^ a = � ^ s0 2 V [[f]])gAlso, the following convenient constants and operators are introduced.� false def= :true� f1 _ f2 def= :(:f1 ^ :f2)� �Z:f def= :�Z 0::(�Z:f)(:Z 0)The intuitive meaning of each operator is shown as follows.� ^(AND),_(OR);:(NOT).� Xf : f will be true immediately after any action except � occurs.� Tf : f will be true immediately after a � action occurs.� 9g : g is true on some path.� �Z:f : � is the minimum �xed point operator.�Z:f : expresses the minimum �xed point where a free state logical variable Z in f is recursivelybound with f itself.For instance, �Z:(f _ 9XZ) means \on some paths, f will be eventually satis�ed".� �Z:f : � is the maximum �xed point operator.For instance, �Z:(f _ 9XZ) means \on some paths, f will be eventually satis�ed, or thereexists an in�nite path (it cannot be decided by a �nite path)".The important properties of the minimum and maximum �xed point operators of SPQL are statedin the following lemmas. Here, it is de�ned that for �x:y, (�x:y)1z def= (�x:y)z and (�x:y)k+1z def=(�x:y)(�x:y)kz (k > 1).Lemma 5 (Monotonicity)S1 � S2) V [[(�Z:f)[[S1]]�1]] � V [[(�Z:f)[[S2]]�1]]Proof:As the number of the negation nesting on Z in f is even, the monotonic property is clear by the de�nitionof SPQL. 2

Chapter 5: Compositional Veri�cation 64Lemma 6 (Properties of minimum/maximum �xed point operators)(1) V [[�Z:f]] = limk!1(�S0:V [[(�Z:f)[[S0]]�1]])k;= limk!1 V [[(�Z:f)kfalse]]V [[�Z:f]] = limk!1(�S0:V [[(�Z:f)[[S0]]�1]])kS= limk!1 V [[(�Z:f)ktrue]](2) s 2 V [[�Z:f]] () 9k:8h � k:s 2 V [[(�Z:f)hfalse]](3) If S is �nite, for any f including � operators, there exists a formula f� of �nite length f� includingno � operators such that V [[f]] = V [[f�]].Proof:(1) Let Sk = (�S0:V [[(�Z:f)[[S0]]�1]])k; = V [[(�Z:f)kfalse]] and S! = limk!1 Sk. According to themonotonicity, 8S0 � S:(V [[(�Z:f)[[S0]]�1]] � S0) S! � S0):Also, it is clear that V [[(�Z:f)[[S!]]�1]] � S!;therefore, V [[�Z:f]] =\fS0 � S j V [[(�Z:f)[[S0]]�1]] � S0g = S!:Same for V [[�Z:f]].(2) Since ; � S1 � S2 � � � � S!,s 2 S! () 9k:8h � k:s 2 Sh () 9k:8h � k:s 2 V [[(�Z:f)hfalse]]:(3) When S is �nite, from (2) 9k:(V [[�Z:f]] = V [[(�Z:f)kfalse]]):Therefore, there exists a formula f 0, in which the most outer �-type subformula �Z:fsub of f issubstituted with (�Z:fsub)kfalse, such that V [[f]] = V [[f 0]]. By repeating this substitution operationuntil there is not any more �-type subformula, we can construct a formula f� including no �operators such that V [[f]] = V [[f�]].2De�nition 26 (Model)If s 2 S and s 2 V [[f]], s is called a model of an SPQL formula f , and is denoted as s j= f . Similarly, ifs0 2 V [[f]] for a transition system T = (S; P;A; �; �; s0), T is a model of an SPQL formula f , and denotedas T j= f .Theorem 9 (Decidability of SPQL model checking)For any transition system T = (S; P;A; �; �; s0) and any SPQL formula f , if S is �nite, there exists analgorithm which automatically decides whether T j= f .Proof:It is enough to show the algorithm which computes V [[�Z:f]] and V [[�Z:f]]. From lemma 6(1),[[�Z:f]] = limk!1(�S0:V [[(�Z:f)[[S0]]�1]])k;:Therefore, if S is �nite, it is decidable since (�S0:V [[(�Z:f)[[S0]]�1]])k; converges in a �nite number k.Same for V [[�Z:f]]. 2The e�cient model checking algorithm for SPQL can be implemented by extending those for CTL[Clarke 86].

Chapter 5: Compositional Veri�cation 653.2 PQL (Process Query Language)PQL is de�ned based on SPQL. In SPQL, the � action is assumed to be observable and it has to beexplicitly expressed in an SPQL formula like Tf . PQL is a language in which the � action is unobservable,and therefore it is not necessary to express the � action explicitly in the formulas.De�nition 27 (PQL formula)[Syntax]P : a set of state attributes.A : a set of actions.� A state logical variable Z is a state formula.� p 2 P and true are state formulas.� If f1 and f2 are state formulas, then f1 ^ f2 and :f1 are state formulas.� If f is a state formula and a 2 A, � a�+ f; � a�� f; � :�+ f; � :�� f; ��+ f; ��� fare state formulas.� If f is a state formula, and Z is a free state logical variable appearing in f , and negation nesting ofZ in f is even, then �Z:f is a state formula.� If a state formula f include no free state logical variables, then f is a PQL formula.The set of entire PQL formulas is denoted as LPQL.[Semantics]The PQL formula can be translated into an equivalent SPQL formula with the following rules. There-fore the semantics of a PQL formula is given as one of the translated SPQL formula.� � a�� f ,�Z1:(9((a ^X(�Z2:(f _ 9TZ2))) _ TZ1))� � a�+ f ,�Z1:(9((a ^X(�Z2:(f _ 9TZ2))) _ TZ1))� � :�� f ,�Z1:(9(X(�Z2:(f _ 9TZ2)) _ TZ1))� � :�+ f ,�Z1:(9(X(�Z2:(f _ 9TZ2)) _ TZ1))� ��� f , �Z:(f _ 9TZ)� ��+ f , �Z:(f _ 9TZ)� Other PQL formulas are also SPQL formulas.The intuitive meaning of each operator is shown as follows.� � a�� f : After an action a, it is possible to become a state in which f is satis�ed.� � a�+ f : After an action a, it is possible to become a state in which f is satis�ed, or there is adivergence of the � -cycle.When there exists a divergence of the � -cycle and it is impossible to become a state in which f issatis�ed after an action a,� a�� f is interpreted as false and� a�+ f is interpreted as true. In thelatter, the formula interpreted as true because the system never reaches a state in which f is unsatis�edwhen it falls into the divergence.For other PQL formulas, � :� f means 9a 2 A:� a� f , �� f means � "� f .PQL has a stronger expression ability than one of CTL, that is, PQL can express anything whichCTL can. PQL can express various kinds of veri�cation queries about actions and state attributes ofconcurrent programs from the temporal point of view. However, it cannot be said that PQL's readabilityis excellent enough for practical use, so the following macro-operators are introduced for convenience.Here, apat, apet, epat, and epet means 82, 8}, 92, and 9} of CTL temporal operators, respectively.That is, a = \8(for all)", p =\path", e = \9 (exists)" , and t = \time".

Chapter 5: Compositional Veri�cation 66� f1 _ f2 def= :(:f1 ^ :f2)� (�Z:f1)f2 (� notation is allowed to be appear explicitly in PQL formulas)� �Z:f def= :�Z 0::(�Z:f)(:Z 0)� [[a]]+f def= : � a�� :f� [[a]]�f def= : � a�+ :f� [[:]]+f def= : � :�� :f� [[:]]�f def= : � :�+ :f� [[]]+f def= : ��� :f� [[]]�f def= : ��+ :f� apat f def= [[]]+�Z:(f ^ [[:]]+Z)(f can always be true in all paths)� apet f def= [[]]+�Z:(f _ (� :�� true ^ [[:]]+Z))(f can eventually be true in all paths)� epat f def= � �� �Z:(f ^ ([[:]]+false_ � :�� Z))(f can always be true in some paths)� epet f def= � �� �Z:(f_ � :�� Z)(f can eventually be true in some paths)� external deadlock def= [[:]]+false(It looks deadlock from the observer, although the divergence may occur.)� internal divergence def= � �+ false(The divergence exists which cannot be observed.)� internal deadlock def= [[:]]+false ^ : � �+ false(It is complete deadlock without divergence)We show several examples of PQL formulas. We remark that PQL can express temporal propertiesequivalent to th regular expression.Example 7 Examples of veri�cation queries by PQL(1) apat(epet� a�� true)Meaning: an action a is deadlock-free.(2) �Z1:([[b]]+false ^ [[c]]+false ^ [[a]]+(�Z2:([[a]]+false ^ [[b]]+Z2 ^ [[c]]+Z1)))Meaning: The sequence of actions a,b, and c are equivalent to th regular expression(ab�c)�).As one of the most important properties of PQL, it is proved that the discrimination ability of PQLfor transition systems is equal to that of ��!-equivalence. That is, the transition systems which are��!-equivalent have the same results for any PQL veri�cation queries. This property is necessary for thecompositional veri�cation.De�nition 28 (�PQL) T1 �PQL T2 def= 8f 2 LPQL:(T1 j= f i� T2 j= f)

Chapter 5: Compositional Veri�cation 67Theorem 10 (Relationship between PQL and ��!-equivalence)For any transition systems T1 and T2, T1 ���! T2 , T1 �PQL T2Proof: Appendix 2Example 8 Simple veri�cation example by PQLFor three transition systems in Figure 27, when an action b is assumed to be unobservable (i.e. tauaction), veri�cation (model checking) results for three PQL formulas are shown in th Table 5. In thistable, YES means the transition system is a model of the PQL formula, and NO means it is not. Theseresults show that there exist PQL formulas which can discriminate these three transition systems. Itsupports that Ta 6���! Tb, Ta 6���! Tc, and Tb 6���! Tc.Table 5. Simple Example of Veri�cation Using PQLPQL Formula Ta Tb Tc� a��� c�� true YES YES YES[[a]]� � c�� true NO YES NO� a�� : � c�� true NO NO YES4 Compositional Veri�cationThe compositional veri�cation method for concurrent programs, based on the result of Theorem 10, isshown here. First, the veri�cation scope is introduced which is necessary for compositional veri�cation,then the veri�cation procedure is proposed.4.1 Veri�cation ScopeGenerally, each of veri�cation queries often may concern only a local properties of the target systems.Therefore, we introduce a veri�cation scope in order to explicitly state what potion of the program isexclusively veri�ed.To be more speci�c, the veri�cation scope V S of a transition system T = (S; P;A; �; �; s0) is expressedas V S = (P 0; A0), where P 0 � P and A0 � A are watched state attributes and actions in the veri�cation.Then a veri�cation query is expressed as a pair of a veri�cation scope V S and a PQL formula f , (V S; f).We remark that state attributes Pf and actions Af appearing in f must be included in the veri�cationscope V S = (A0; P 0) (i.e., Pf � P 0; Af � A0). In the veri�cation procedure, all the state attributes andactions which are not on the veri�cation scope V S are considered unobservable, and relabeled with � andtrue. This relabeling function derived from V S is denoted as lV S .Accordingly, T j= (V S; f), a macro-expression for describing veri�cation queries easily, is de�ned asT [lV S] j= f . It is more natural for veri�er to describe T j= (V S; f) in which V S is part of the veri�cationquery instead of T [lV S] j= f . For instance, for a query f =� : �� true, there may be some observableactions which do not appear in f explicitly, which can be expressed as observable using a veri�cationscope.4.2 Veri�cation ProcedureA basic idea of the compositional veri�cation is to achieve the global veri�cation as the composition oflocal veri�cations. In this case, instead of verifying globallyT j= (V S1; f1) ^ (V S2; f2) ^ ::: ^ (V Sn; fn);we verify compositionally T1 j= f1 ^ T2 j= f2 ^ ::: ^ Tn j= fn:

Chapter 5: Compositional Veri�cation 68Here, Ti is the projection of T onto the veri�cation scope V Si of fi. This means that state attributesand actions of T which are not appeared in V Si are interpreted as unobservable and T is reduced to Tias much as possible such that T [lV Si] �PQL Ti using the reduction function described later. Ti is calledthe projection transition system of T to V Si. The more local the scope V Si is, the smaller the projectiontransition system Ti is. These smaller projection transition systems can ease the state explosion problemwhich the naive construction of T often causes.It is shown how to construct the projection transition system as follows (Fig. 29). We only show thecase that the concurrent program T = T1 j T2 consists of two processes (transition systems), T1 and T2.When the program consists of n processes, it can be treated as an extension of one of 2 processes (i.e.,T = (:::((T1 j T2) j T3)::: j Tn)). The veri�cation query is expressed as (V S; f).
T1 T2

reduction reduction

red(T2[l2])

composition

reduction

Tf

red(T1[l1])

red(T1[l1]) | red(T2[l2])

Figure 29. Construction of projection transition systemsIf T is composed directly from T1 and T2, the size of T is of the multiplication order of T1 and T2,which is the cause of its state explosion. The following procedure to compose the projection transitionsystem Tf can ease the state explosion problem using a reduction function.Tf = red((red(T1[l1]) j red(T2[l2]))[lV S])Here, l1 and l2 are relabeling functions that make attributes and actions unobservable which do notappear in the veri�cation scope of f and do not related to the composition (i.e., synchronization) of T1and T2. That is, these attributes and actions are relabeled as true and � . Also, red is a reduction functionand T 0 = red(T) is a reduced transition system such that T ���! T 0 and j T j�j T 0 j. The concretereduction function will be mentioned in the following section.Based on Theorem 9, the model checking can be done for the projection transition system Tf instead ofT [lV S]. As T [lV S] ���! Tf , it is guaranteed that they have the same veri�cation result (i.e., T [lV S] �PQLTf) by Theorem 10. Since this compositional veri�cation method can control the maximum number ofstates of the temporary transition systems which are created during repeating composition and reduction,it is possible to verify large-scale concurrent programs.The following is the input and output of an automatic veri�cation tool using this method (Fig. 4.2)'INPUT:(1) Concurrent Program(expressed in terms of a composition of transition systems, including necessary relabeling func-tions).(2) Veri�cation Queries(each query is expressed as a pair of veri�cation scope and PQL formula)

Chapter 5: Compositional Veri�cation 69OUTPUT:(1) Answers to Each Veri�cation Queries(YES/NO)
Concurrent Program
- Composition of
 Transition Syatems

Verification Queries
- Scope
- PQL formula

Automatic Verification Tool

Answer (YES/NO)Figure 30. Input and output for the automatic veri�cation toolFrom above input information, the veri�cation tool can perform automatically relabeling, reduction,composition, and model checking, then output answers.4.3 Reduction FunctionReduction means generating the smaller transition system T 0 = red(T) from a given transition system Tsuch that T 0 is ��!-equivalent to T . Two reduction functions are introduced here.(1) Reduction by ��!-bisimulationLet R be the maximum ��!-bisimulation in T . The transition system, where all related(i.e., equivalent) nodes in R are reduced into one node, is called red(T). Then T 0 = red(T) isthe transition system with minimum states which satis�es T 0 ���! T . The e�cient algorithmto compute ��!-bisimulation R is acquired by modi�cation of an algorithm for bisimulation[Kanellakis 90].(2) Reduction by rewriting rulesAlthough the reduction by ��!-bisimulation can obtain the the transition system with min-imum states, its computation cost might swell in case when T is large. So, �ve heuristic rules(shown in Fig. 4.3) that rewrite a transition system focused on the tau actions are applied toreduce the transition system as much as possible. Since rewriting by these heuristic rules pre-serves the ��!-equivalence, the reduced transition system T 0 = red(T) satis�es T 0 = red(T)OT 0 ���! T . If compared with original reduction by ��!-bisimulation, the reduction rate maybe smaller, but it possesses the capability of speedy reduction for large scale transition systems.Furthermore, the combination of two reduction methods is e�ective in which heuristic rewritingrules are applied �rst before reduction by ��!-bisimulation.4.4 Experiments4.4.1 The JobshopUsing the simple example presented in \Communication and Concurrency" by Robin Milner [Milner 89],we con�rm e�ectiveness of the compositional veri�cation. The target program, jobshop, which we wantto verify, is given as the following composition of four process (jobber � 2; hammer;mallet).jobshop = (((jobber[lj1] j hammer[lh]) j mallet[lm]) j jobber[lj2])[ljs]The transition systems of these processes are shown in Fig. 32, and labeling functions are de�ned asfollows.

Chapter 5: Compositional Veri�cation 70

s1

s2

Ó s2

rule 1

Ð(s1)=Ð(s2)

s1

s2

rule 2

a a

s1

s2

a

s1

s3

Ó

s4

s2
a1 an

ana1
...

...

...

rule 3
s1

s3

Ó

s4

s2

ana1

...

...

s1

s2

Ó
s3

a

rule 4

a

s1

s2

Ó
s3

a

Ó

Ó
Ó

Ó

Ó

s0

s1

s2

sn s0

Ð(s0)=Ð(s1)=Ð(s2)=...=Ð(sn)

rule 5

Figure 31. Heuristic reduction rules

Chapter 5: Compositional Veri�cation 71� lj1 = ([�=easy; �=hard; �=normal; �=do; in1=in; out1=out;geth1=geth; puth1=puth; getm1=getm; putm1=putm]; []):� lj2 = ([�=easy; �=hard; �=normal; �=do; in2=in; out2=out;geth2=geth; puth2=puth; getm2=getm; putm2=putm]; []):� lh = ([�=error; fgeth1; geth2g=geth; fputh1; puth2g=puth]; [h off=off]):� lm = ([�=error; fgetm1; getm2g=getm; fputm1; putm2g=putm]; [m off=off]):� ljs = ([�=geth1; �=geth2; �=puth1; �=puth2; �=getm1;�=getm2; �=putm1; �=putm2; in=in1; in=in2; out=out1; out=out2]; []):
in

normal
hard

easy

getm geth

do

putm

puth

outgeth

do
do

jobber

getm

putm

error

off

geth

puth

error

off

mallet hammer

Figure 32. Example: The JobshopThe following veri�cation queries are given to the target program.(1) Can the deadlock occur? (([]; []); epet external deadlock)(2) Is there any internal divergence which cannot be observed? (([]; []); epet internal divergence)(3) Is there a pattern of the action sequence \in; in; out; out"?(([in; out]; []);� in��� in��� out��� out�� true)(4) Even if mallet is not available, if hammer is available, deadlock will never occur. Is it true?(([]; [m off; h off]); apat((m off ^ : � �� h off) � :external deadlock)KHow the veri�cation system works for above queries is shown in the following two steps.(Step1) Composition and Reduction: The projection transition system is composed for each queryin which unrelated actions and state attributes for the query are reduced as much as possible. Forinstance, for query (3), the projection transition system (jobshopf3) is composed in the following way.We remark that this composition procedure is automatically made of the original composition structureof jobshop and the veri�cation scope.jobshopf3 = red(red((red((red((red(jobber[lj1]) j red(hammer[lh0]))[lj1h])j red(mallet[lm0]))[lj1hm]) j red(jobber[lj2]))[lj1hmj2])[ljs0]);where� lh0 = ([�=error; fgeth1; geth2g=geth; fputh1; puth2g=puth]; [true=off]):

Chapter 5: Compositional Veri�cation 72� lm0 = ([�=error; fgetm1; getm2g=getm; fputm1; putm2g=putm]; [true=off]):� lj1h = [�=geth1; �=puth1]� lj1hm = [�=getm1; �=putm1]� lj1hmj2 = [�=geth2; �=puth2; �=getm2; �=putm2]� ljs0 = [in=in1; in=in2; out=out1; out=out2]� lj1 and lj2 are not changed%Table 6 shows the �nal state numbers of jobshop (original one) and jobshopf3 (reduced one), andmaximum numbers of states in two cases which are temporally created during composition and reductionprocedure. The two previously mentioned reduction functions are used here. This table shows that ourreduction method could reduce the �nal size of states to one-tenth of the original one.Table 6. E�ect of Reduction (The Jobshop)Transition System Final Size Maximum Temporary SizejobshopJoriginalK 164 164jobshopf3Jreduction function (1)K 17 72jobshopf3Jreduction function (2)K 90 110(Step2) Veri�cation: For each query f and its projection transition system jobshopf , the decision(YES/NO) on jobshopf j= f is made. The results of these decisions are shown in Table 7.Table 7. Result of Veri�cation (The Jobshop)Veri�cation Query Result(1) YES(2) YES(3) YES(4) YES4.4.2 The Manufacturing Machine Control SoftwareOur compositional veri�cation method was applied to a middle-scale manufacturing machine controlsoftware (Fig. 33). This machine consists of 5 arms, 4 chambers, and other equipment. An etchingchamber, a transfer chamber, an electrode, a pusher, and 2 inner arms constitute an etching unit. Twoetching units are identical. The outer arm repeatedly transports material wafers from a loading cassetteto one of two pushers in front of chambers (vacant one) via a wafer liner and from the pusher to anunloading cassette. The wafer liner puts a wafer in order. One inner arm transports material wafers froma pusher to an electrode in an etching chamber, and the other inner arm does in the opposite directory,that is, from an electrode to a pusher. In etching chamber, materials should be etched in a vacuum.The two gates are controlled to keep the etching chamber in a vacuum. Since these 5 arms can moveconcurrently, the control software becomes considerably complicated.This machine control software is controlled by a concurrent (multi-task) program which consists of16 element processes (tasks). Each process is a local controller of a corresponding controlled object (i.e.,arm, chamber, electrode, etc.). This control software is modeled by a set of communicating transitionsystems shown in Fig. 34 where transition systems are represented by safe Petri nets and synchronizationbetween transitions is represented by a dotted line. Table 8 shows the sizes of element processes. The statenumbers of each element process may seem to be small. It attributes to the fact that only synchronizationparts of systems are modeled by transition systems.The following veri�cation queries are given for the software.

Chapter 5: Compositional Veri�cation 73

outer_arm

pusher1 pusher2

loading_cassette unloading_cassettewafer_liner

etching_chamber1 etching_chamber2

inner_gate1

outer_gate1

inner_gate2

outer_gate2

arm11 arm12 arm21 arm22

transfer_
chamber1

transfer_
chamber2

electrode2
electrode1

Figure 33. Manufacturing Machine

Table 8. Machine Control SoftwareElement Process � The number of it State Number of Transition System(p1) Outer Arm � 1 6(p2) Wafer Liner � 1 3(p3) Loading Cassette � 1 5(p4) Electrode � 2 3(p5) Unloading Cassette � 1 5(p6) Setting Arm (armi1) � 2 6(p7) Extracting Arm (armi2) � 2 6(p8) Transfer Chamber � 2 2(p9) Etching Chamber � 2 4(p10)Pusher � 2 3

Chapter 5: Compositional Veri�cation 74

pusher1

arm11 arm12
transfer_chamber1(tc1)

etching_
chamber1
(ec1)

electrode1

inner_gate_open

outer_gate_open

etching

set_wafer

reset_wafer

empty

waiting

finished

discharge

release_
wafer

inner_
gate_close

catch_
wafer

outer_
gate_close

inner_gate_open

outer_gate_open

catch_
wafer

inner_
gate_close

release_
wafer

outer_
gate_close

gate_open

gate_close

high_
vaccum

inner_gate_
open

finished

gate_open gate_close

middle_
vaccum

low_
vaccum

reset_
wafer

set_
wafer empty

set_
wafer

reset_
wafer

wait_
etching

wait_
take_out

pusher2

arm21 arm22
transfer_chamber1(tc2)

etching_
chamber1
(ec2)

electrode2

inner_gate_open

outer_gate_open

etching

set_wafer

reset_wafer

empty

waiting

finished

release_
wafer

inner_
gate_close

catch_
wafer

outer_
gate_close

inner_gate_open

outer_gate_open

catch_
wafer

inner_
gate_close

release_
wafer

outer_
gate_close

gate_open gate_close

middle_
vaccum

low_
vaccum

reset_
wafer

set_
wafer empty

set_
wafer

reset_
wafer

wait_
etching

wait_
take_out

release_wafer_at_pusher1

moving

catch_wafer_at_liner

empty

release_wafer_at_pusher1

moving

catch_wafer_at_liner

release_wafer_at_cassette

moving

catch_wafer_at_pusher1

release_wafer_at_cassette

moving

catch_wafer_at_pusher1

release_wafer_at_liner catch_wafer_at_cassettemoving

outer_arm

set_wafer

reset_wafer

adjust_wafer empty

waiting

finished

wafer_liner in

set_wafer

reset_wafer

set_wafer

reset_wafer
out

set_wafer

reset_wafer

set_wafer

reset_wafer

unload_cassette
load_cassette

vaccum

inner_gate_
close

discharge

gate_open

gate_close

high_
vaccum

inner_gate_
open

finished vaccum

inner_gate_
close

Figure 34. Machine Control Software (Transition Systems)

Chapter 5: Compositional Veri�cation 751. The complete deadlock never occurs.(([]; []);:(epet internal deadlock))2. Whenever an action in occurs, an action out eventually occurs. The action in means a material isput in a loading cassette (cassette1), and the action out means a material is got out of an unloadingcassette (cassette2). (([in; out]; []); apat([[in]]�(apat(epet � out��))))3. An inner gate and an outer never become open at the same time to keep vacuum condition betterin an etching chamber.(([]; [tc1(outer gate open); ec1(inner gate open)]); apat:(tc1(outer gate open)^ec1(inner gate open)))(([]; [tc2(outer gate open); ec2(inner gate open)]); apat:(tc2(outer gate open)^ec2(inner gate open)))Figure 9 shows the e�ectiveness of reduction in the �rst veri�cation query (\the complete deadlocknever occurs"). Table 9. Machine Control Software (E�ect of Reduction)Transition System Final Size Maximum Temporary SizemachineJoriginalK 16741 16741machinered(reduction function (1)K 4 1276machineredJreduction function (2)K 1425 4218In this example, only synchronization parts of the system are modeled by transition systems. Actually,they have a lot of non-synchronization (functional) parts which are unrelated to veri�cation queries.Therefore, the reduction will be more e�ective.5 Toward Practical Veri�cation5.1 Translation Target Program to Transition SystemsHow does the designer model the target systems with transition systems in the practical software de-velopment? Since a transition system is a very simple model, it is impractical to describe the systemsusing naive transition systems. In fast most reactive and concurrent systems can be modeled as extended�nite state transition systems, such as Petri net, Statechart, HMS machine [Gabrielian 91], and SFC(Sequential Function Chart) [IEC 1131-3]. Generally speaking, it is possible to translate them to naivetransition systems with some approximation.This section presents an example of applying our compositional veri�cation method to actual chem-ical plant control systems, in which control programs written by SFC are automatically translated intotransition systems. SFC is a kind of safe Petri net which has shared memories. In the latter chapter,we will also provide high-level Petri nets (MENDEL nets) to describe the target reactive and concurrentsystems, from which transition systems can be retracted as skeletons of them.5.2 Chemical Plant Control SoftwareThis section shows how our veri�cation method can be applied to practical chemical plant control systems.The point of this application is how to translate a practical plant control system to a set of transitionsystems. We briey illustrate the translation and validation process using an example of a simple chemicalplant shown in Fig. 35.A requirement for a control software of this plant is described as follows. Two raw materials arepoured into a reactor via pipe1 and pipe2. When the level sensor of the reactor indicates high, valve1and valve2 are closed. Then, valve4 opens and hot steam is poured into the reactor via pipe4 until

Chapter 5: Compositional Veri�cation 76
valve1 valve2

reactor

agitator

level(high)

level(low)

temperature

pipe2pipe1

pipe3

pipe4

pipe5
valve3

valve4

Figure 35. Example of Chemical Plantthe temperature of the reactor becomes high. At high temperature, chemical reaction is caused by anagitator. Finally, produced materials are extracted from the reactor via pipe3 by valve3.In this example, the control software consists of two processes; the main control process (task1)and the temperature control process (task2) 10 . These tasks are described by SFC which is a populargraphical programming language for sequence control systems (Fig. 36 and Fig. 37).When applying the compositional veri�cation method to the plant control software, the target systemshould be translated to a set of transition systems. The target system consists of the control software andcontrolled objects (plant equipment), both of which should be translated to transition systems becausethe control software can not function without connecting it with controlled objects. We briey showprocedures of the translation.� SFC Tasks ! Transition SystemsIn translation from a SFC task to transition system, two issues have to be considered; concurrencywithin a task and access to shared memories.{ Concurrency within a taskEach SFC task is translated to a transition system. Since SFC is based on Petri nets, SFC mayhave concurrency in a task. For example, v1_open and v2_open are concurrently processedin Fig. 36. If a SFC task has no concurrency, then a generated transition system almostcorresponds to a SFC task by one to one. If a SFC task has concurrency, then a global transitionsystem is produced which is equivalent to the original SFC by interleaving concurrent actions.Note that this interleaving within a task has possibility to cause state explosion, but it usuallydoes not because most state explosions are caused by interleaving among concurrent tasks andnot by interleaving within a task.{ Access to shared memoriesIn plant control systems, communication among tasks and communication between tasks andplant are done by way of shared memories. It means asynchronous communication. As atransition system supposes only synchronous communication, access to shared memories haveto be translated into synchronous communication. In our method, possible access patterns ofa shared memory are modeled as actions, and each access is interpreted as synchronizationof the same actions. For example, �gure 39 illustrates how to translate accesses to sharedmemories for communication among task1 and valve1.Figure 38 shows a generated transition system of task1.� Plant Modeling with Transition Systems10 Here, \task" and \process" are identical. Since \task" is conventionally used in plant control systems, we use \task" inthe following explanation.

Chapter 5: Compositional Veri�cation 77
START

level_low

N v1_op

S timer1
v1_open

N v2_op

S timer2
v2_open

v1_opa timer1_up v2_opa timer2_up

timer1_up timer2_up

S timer1waiting

timer1_up

level_high

N v1_cl

S timer1
v1_close

N V2_cl

S tmer2
v2_close

v1_cla timer1_up v2_cla timer2_up

timer1_up timer2_up

S timer1
ag start

temper_high

S
timer1_up

ag stop R

agitator

agitator

N v3_op

S timer3
v3_open

v3_opa timer3_up

timer3_up

N v3_cl

S timer3
v3_close

v3_cla

timer3_up

timer3_up

N v1_cl

N v2_cl

error
 handling

S timer1waiting

level_low

timer1_up timer1_up

N v3_cl

timer1_up

waiting

switch

stop

switch

S switch
stop_or_
continue

Figure 36. Plant Control Software (task1)

Chapter 5: Compositional Veri�cation 78

START
temper_low

N v4_op

S timer4
v4_open

v4_opa timer4_up

timer4_up

N v4_cl

S timer4
v4_close

v4_cla timer4_up

timer4_up

waiting

temper_high

level_high

stop_or_
continue

STOP

switch

switch
waitingFigure 37. Plant Control Software (task2)

Chapter 5: Compositional Veri�cation 79Controlled objects should be directly modeled by the designer with transition systems. This may bea tedious job. Focusing on chemical plants, we have proposed a method to generate automaticallytransition systems (plant simulator) by reusing and connecting model fragments corresponding toplant equipment from plant con�guration data (e.g., process ow diagram) [Kawata 95, ?].
level(low)

v1(op),
timer1(set)

v2(op),
timer2(set)

v2(opa)

v2(opa)

v2(opa) v1(opa)

v2(op),
timer2(set) v1(op),

timer1(set)

v1(opa)

timer1(up) timer2(up)

timer1(up)timer2(up)
timer1(set)

level(high)

temper(high)

ag(start),timer1(set)

ag(end),timer1(up)

v3(op),timer3(set)

v3(opa)

timer1(set)

level(low)

v3(cl),
timer3(set)

v3(cla)

switch(off)

timer3(up)

switch(on)

timer3(up)
v1(cl),
v2(cl),
v3(cl)

switch(set)

timer1(up)

timer1(up)

v1(opa)
v2(op),
timer2(set) v1(op),

timer1(set)

timer1(up) timer2(up)

v1(cl),
timer1(set)

v2(cl),
timer2(set)

v2(cla)

v2(cla)

v2(cla) v1(cla)

v2(cl),
timer2(set) v1(cl),

timer1(set)

v1(cla)

timer1(up) timer2(up)

timer1(up)timer2(up)

v1(cla)
v2(cl),
timer2(set) v1(cl),

timer1(set)

timer1(up) timer2(up)

Figure 38. Transition System (task1)Figure 40 shows a �nal structure of the plant control system components of which are modeled bytransition systems.Veri�cation queries for this plant control software are listed as follows.� There exists no complete deadlock except normal termination (task1(stop) ^ task2(stop2)).(([]; [task1(stop); task2(stop2)]); apat(internal deadlock � (task1(stop) ^ task2(stop2))))� The normal termination state is reachable from every state which is reachable from an initial state.(([]; [task1(stop); task2(stop2)]); apat(epet (task1(stop) ^ task2(stop2))))� There are no abnormal states such that material pouring and extracting are simultaneously carriedout in the reactor.(([]; [valve1(open); valve2(open); valve3(open)]); apat:((valve1(open)_valve2(open))^valve3(open)))� There are no dangerous states such that a reactor is heated up although material is not �lled upenough.(([]; [valve4(open); level(high)]); apat valve4(open) � level(high))

Chapter 5: Compositional Veri�cation 80
task1 valve1

Shared
Memory

op

opa

cl

cla

op

opa

cl

cla

close

valve1

Control
Software

Controlled
Object

open

task1:op

task1:cl

task1:cla

task1:cl

task1:cl

task1:op task1:op

task1:opa

valve1:op
valve1:opa

valve1:cl valve1:cla

Figure 39. Modeling of Shared Memory
task1 task2

valve1

leveltimer1 timer2 timer3

reactor

temper

steam

ag valve2 valve3 valve4

switch

Figure 40. Structure of the Plant Control System

Chapter 5: Compositional Veri�cation 81In fact, This SFC program has a lot of bugs, most of which can be detected as complete deadlockexcept normal termination. To put it concretely, there exist the following bugs.� When a termination switch is turned on in certain timing, it is possible that one of tasks is termi-nated and the other is hung up.� Since task2 can not completely cope with error handling of task1, task2 is possibly hung up.� When it takes long time to close valve1 and valve2, heating process of task2 may be �nished. Onthat occasion, task1 may be hung up by waiting forever the temperature becomes high.The e�ectiveness of computing cost in compositional veri�cation in the case of deadlock detection isshown in Table 10. Table 10. State Space Generation (Chemical Plant Control System)Method States TransitionsCompositional Method 528 4064Naive State Space Generation 283439 21741685.3 Veri�cation ToolWe initially implemented primitive operations used in the compositional veri�cation including composi-tion, relabeling, reduction, and PQL model checker. However, when the veri�cation method is actuallyapplied, the following problems still remain.� It is not necessarily easy for ordinary designers to describe in PQL queries.� The exact location of bugs cannot be spotted even if the existence of bugs can be detected.� Process composition and relabeling operations are laborious.Therefore, we have developed a took kit named \VERASQUES" (VERi�cAtion Systems for temporal logicQUErieS) which is of general purpose and includes the following facilities to solve the above problems.� Primitive operation commands� PQL query generation interface� Debugger which supports to identify the location of bugs� PCL (Process Composition Language) which is a command language to describe operation proce-dures.When focusing on certain domains such as chemical plants, the more speci�c veri�cation tool can beavailable. SAVE/SFC [Uchihira 93a, Kawata 96] is a Simulation And Veri�cation Environment for SFCprograms which we have been now developing (Fig. 41). SAVE/SFC has a simulation facility in additionto the veri�cation facility. Moreover, veri�cation is tightly tuned up by merging compositional methodand partial order method [Uchihira 95b]and introducing a lot of heuristics.We have applied SAVE/SFC to a real chemical plant control software, where the plant consists of 28valves, 4 pumps, 5 measurements, and 1 reactor, and the program consists of 5 tasks. Many trivial bugscan be found by typical and varied simulation using the heuristic selection. Some complicated bugs thatare di�cult to �nd by typical simulation have been detected by exhaustive simulation using the logicalselection. The veri�cation generated the reduced state space which has 2800 states, and takes about 3hours.

Chapter 5: Compositional Veri�cation 82
 ��

Figure 41. SAVE/SFC6 Related Works6.1 Compositional Veri�cation MethodsMany compositional veri�cation methods have been proposed for a system which has compositionalstructure like CCS, CSP, and Modular Petri nets. Generally speaking, compositional veri�cation can bede�ned as� verifying properties of the components of a system, and then� deducing global properties from these local properties.This compositional approach can reduce veri�cation cost drastically. Compositional veri�cation shouldbe compositional in the structure of processes and work purely on the syntactical level without inspectingcomponents. An ideal method of compositional veri�cation can be formalized as follows.(op(T1; T2; :::; Ti; :::; Tn) j= f) ()opf ((T1 j= op�11 (f)); (T2 j= op�12 (f)); :::; (Ti j= op�1i (f)); :::; (Tn j= op�1n (f)))where T1; T2; :::; Ti; :::; Tn are component processes of the system and op(T1; T2; :::; Ti; :::; Tn) is a compositeprocess using an operator op over the components, f is a formula representing veri�cation queries, T j= fmeans a process T satis�es f , op�1i (f) is a formula which is derived from f and op for i-th argument ofop, opf is a logical operator corresponding to op. Here, op�1i (f) is a projection of f onto i-th argumentof op. Note that op�1i (f) is derived without inspecting components T1; T2; :::; Tn. This function op�1iplays an important role in the compositional veri�cation, that is, if Ti j= op�1i (f) can be locally veri�edfor every component Ti, then opf ((T1 j= op�11 (f)); (T2 j= op�12 (f)); :::; (Tn j= op�1n (f))) can be computedinstead of globally verifying op(T1; T2; :::; Ti; :::; Tn) j= f .For example, a summation operator \+" of CCS is good-natured for the compositional veri�cation.The compositional veri�cation with regard to \+" can be formalized as follows.(T1 + T2) j= haif () (T1 j= haif) _ (T2 j= haif);where op = +, op�1i (haif) = haif and ophaif = _. In this case, it is su�cient to prove local properties(T1 j= haif) and (T2 j= haif) instead of proving a global property (T1 + T2) j= haif .Unfortunately, it is proved that it is impossible to �nd op�1i (f) for every operator op of CCS[Fantechi 91]. In particular, a composition operator is inadequate for the ideal compositional veri�cation.Therefore, several non-ideal compositional veri�cation methods have been proposed with avoiding thisessential limitation.

Chapter 5: Compositional Veri�cation 831. Restriction of veri�cation queriesFor example, Winskel [Winskel 90] showed a compositional veri�cation for restricted assertions, inwhich an assertion over process composition (product) T1 � T2 should be described as product ofassertions A1 �A2.2. Introduction of component's information to op�1i (f)If we are allowed to inspect components T1; :::; Tn and use an extended projection op�1i (f; T1; :::; Tn)instead of op�1i (f), pseudo-compositional veri�cation is available. Since the projection op�1i doesnot require entire information of T1; :::; Tn, it is possible to derive a relatively simple and equivalentformula red(op�1i (f; T1; :::; Tn)) by apply reduction rules to the original op�1i (f; T1; :::; Tn). Andersenand Winskel [Andersen 92] propose a compositional veri�cation method based on this framework.The latter approach is essentially equivalent to our and Clarke's compositional veri�cation methods.The di�erence between them is concerned with the place on which information derived by inspectingcomponents is reected. In our and Clarke's methods, T+�i j= op�1i (f) is used instead of Ti j= op�1i (f)+�in verifying local properties, where T+�i = op(T1; :::; Ti; :::; Tn)op�1i (f)+� = op�1i (f; T1; :::; Tn):In other word, the information (+�) is reected on a transition system Ti in our and Clarke's methods,while it is reected on a formula op�1i (f) in Andersen and Winskel's method. Note that both methodsmake good use of reduction techniques. More speci�cally, we can show the following correspondence forthe formulation of our compositional veri�cation method described in Section 4.2.(T1 j T2 j= f1 ^ f2) ()((Tf1 j= f1) ^ (Tf2 j= f2))where Tf1 = T+�1 = red((red(T1[l11]) j red(T2[l12]))[lV S1]) and Tf2 = T+�2 = red((red(T1[l21]) jred(T2[l22]))[lV S2])Although Andersen and Winskel's approach is essentially equivalent to our and Clarke's methods, ourapproach is more appropriate for transition systems which can utilize (extended) bisimulation for processreduction.6.2 Comparison with Partial Order ApproachAnother approach to avoid the state explosion is partial order approach [Valmari 90, Godefroid 91a,Godefroid 91b, Wolper 93, Godefroid 96]. When there are many redundant interleaving simulation pathsover the state space, we can leave one representative path and delete the others by the partial ordermethod. Figure 42 illustrates an essential idea of the partial order method. A naive state space of P1 j P2has 18 states and 20 paths by transition interleaving (i.e., total ordering). Here, P1 and P2 synchronizeonly about actions a and b. However, if P1 and P2 are independent regarding actions t11; :::; t23, this naivestate space is redundant in order to detect deadlock. It is su�cient to analyze only one representativepath a! t11 ! t12 ! t13 ! t21 ! t22 ! t23 ! b which consists of 9 states.To compare the partial order method with the compositional method, we show Fig. 43 where t11; t13; t21; t23are internal (�) actions and processes P1 and P2 are �rst reduced and then composed. This method canreduce 18 states of a naive state space to 7 states.These two approaches can be characterized as follows.� Partial Order Method{ Compatibility with conventional testing and simulationPartial order method is well-suited to actual execution of target programs because a selectionmechanism of a representative path can be implemented as a smart scheduler. Veri�cationis modeled as a smart exhaustive simulation and harmonized with conventional testing andsimulation. In other words, conventional testing and simulation are interpreted as a specialcase of a smart exhaustive simulation based on the partial order method.

Chapter 5: Compositional Veri�cation 84
P1 P2

P1 | P2

t11

t12

t21

t22

t11

t11

t11

t21

t22t21

t21 t22

t22

t12

t12

t12

t13 t32

t13

t11

a a

b b

a

b

t21

t22

t13

t13

t13

t23

t23

t23

t23

t12

Figure 42. Partial Order Method
P1 P2

red(P1) | red(P2)

t11

t12

t21

t22

t13 t32

a a

b b

a

b

red(P1) red(P2)

t12 t22

a a

b b

t12

t12

t22

t22

Figure 43. Compositional Method

Chapter 5: Compositional Veri�cation 85{ Applicability to ill-structured systemsIt is not so di�cult to implement a smart scheduler which requires only information aboutdata and control dependency between processes. Therefore, it is applicable to ill-structuredsystems.{ Flat and global analysisSince the partial order method is a smart version of global state apace analysis, it can notmake good use of hierarchical and compositional structures of the target systems.� Compositional Method{ E�ectiveness for well-structured systemsThe compositional method is e�ective for well-structured systems which consist of many butuniform and mostly independent subprocesses because process reduction works well for them.{ Hierarchical and compositional analysisThe compositional method is e�ective for large but hierarchical systems because veri�cationis done compositionally where subprocesses are abstracted by process reduction.Since compositional methods and partial order methods are orthogonal, it is practical solution toutilize both methods complementarily (hybrid method). For example, we illustrate a typical hybridmethod for the target system which consists of two large processes P1 and P2 (Fig. 44). First P1 andP2 is reduced to simple interface processes which produces only behaviors related to given queries andsynchronization by the compositional method, then a smart state space generation is done by the partialorder method. Finally, the state space is analyzed by PQL model checker. In fact we adopted this hybridapproach in SAVE/SFC [Uchihira 93a, Uchihira 95b] which is mentioned in the previous section.
P1 P2

red(P2)

Reduction by
Compositional
Method

State Space
Generation by
Partial Order
Method

red(P1)

Model Checking

Target Program

State Space

PQL Queries

Figure 44. Hybrid Approach of Compositional and Partial Order Methods7 SummaryProcess Query Language of concurrent program veri�cation based on state logic and the compositionalveri�cation method were proposed and its e�ectiveness con�rmed by using the examples.This chapter focuses on the compositional veri�cation for transition systems, which have only �nitestates, in place of Petri nets, which may have in�nite states. A model-checking method for Petri nets wasproposed by [Brad�eld 92], which is very powerful but not compositional (he showed some remarks oncompositionality at page 82 of [Brad�eld 92]). In general the compositional veri�cation for Petri nets isdi�cult and impractical. Therefore, developing a compositional veri�cation method for Petri nets, whichmay be restricted to some degree but practical enough, is one of the further works.

Chapter 5: Compositional Veri�cation 86Appendix I : Proof of Theorem 10To proof theorem 10, several de�nitions and lemmas are introduced.De�nition 29 (�k��!)In (S;Act; �; P; �), for 8s; t 2 S;8k � 0,s �0��! t def=� �(s) = �(t)� s " i� t "s �k+1��! t def=� �(s) = �(t)� 8a:8s0:(if s a! s0 then 9t0:t â) t0 ^ s0 �k��! t0)� 8a:8t0:(if t a! t0 then 9s0:s â) s0 ^ s0 �k��! t0)� s " i� t "Lemma 7 (Relation of ���! and �k��!)(1) s ���! t , 1̂k=1(s �k��! t)(2) s 6���! t , 1_k=1(s 6�k��! t) , 9k:(s 6�k��! t)Proof. It is obvious from the de�nition.2Lemma 8 (Semantics of � �� f;� �+ f;� a�� f;� a�+ f) (1)s j=� �� f () 9t = ��:9s0:(s t! s0 ^ s0 j= f) (2)s j=� �+ f () 9t = ��:9s0:(s t! s0 ^ s0 j= f) _9t = �! :(s t!) (3)s j=� a�� f () 9t = ��a��:9s0:(s t! s0 ^ s0 j= f) (4)s j=� a�+ f () 9t = ��a��:9s0:(s t! s0 ^ s0 j= f) _9t = ��a�! :(s t!) _9t = �! :(s t!)Here 9t = ��a�� means 9t 2 f� ia� j j i; j � 0g.

Chapter 5: Compositional Veri�cation 87Proof.(1) From lemma 6, s 2 V [[� �� f]] = [[�Z:(f _ 9TZ)]] () 9k:s 2 V [[(�Z:(f _ 9TZ))kfalse]] =V [[(9T)k�1f]] () 9t = ��:(s t! s0 ^ s0 2 V [[f]]):(2) From lemma 6, V [[� �+ f]] = V [[�Z:(f _ 9TZ)]] = limk!1 V [[�Z:(f _ 9TZ)ktrue]] =limk!1Sk�1i=0 V [[(9T)if]] [V [[(9T)ktrue]]: Therefore, s 2 V [[� �+ f]] () 9i:(s 2 V [[(9T)if]]) _s 2 V [[(9T)!true]] () 9t = ��:(s t! s0 ^ s0 2 V [[f]]) _ t = �! :(s t!):(3) In the same way as (1), s 2 V [[� a�� f]] = V [[�Z1:(9(a ^X(�Z2:(f _ 9TZ2))) _ TZ1)]] ()9i; j:s 2 V [[(9T)i9(a ^X(9T)jf)]]: Therefore, s 2 V [[� a�� f]] () 9t = ��a��:(s t! s0 ^ s0 2V [[f]]):(4) In the same way as (2), V [[�Z:(f _ 9TZ)]] = limk!1(Sk�1i=0 V [[(9T)if]] [V [[(9T)ktrue]]): Therefore,s 2 V [[� a�+ f]] = V [[�Z1:(9(a ^X(�Z2:(f _ 9TZ2))) _ TZ1)]]() 9i; j:(s 2 V [[(9T)i9(a ^X(9T)jf)]])_9i:(s 2 V [[(9T)i9(a ^X(9T)!true)]])_s 2 V [[(9T)!true]]:Then, s 2 V [[� a�+ f]] () 9t = � ia� j :(s t! s0^s0 2 V [[f]])_9t = � ia�!:(s t!)_9t = �! :(s t!):2Proof of Theorem 10[Proof of T1 ���! T2 (T1 �PQL T2]If T1 6���! T2, it is su�cient to prove 9f:(T1 j= f ^ T2 6j= f). As 9k:(s01 6�k��! s02) from lemma 7, theinduction about k can be applied as follows. In the case of s 6�k��! t, f such that s j= f ^ t 6j= f can beconstructed for the following 4 cases.Case 1 �(s) 6= �(t)) f = p s:t: p 2 �(s); p 62 �(t):Case 2 s " ^:(t ")) f =� �+ false:J from Lemma 8)Case 3 s a! s0 ^ :9t0:(t â) t0)) f =� a�� true: (from de�nitions)Case 4 s a! s0 ^ 8t0i:(t â) t0) s0 6�k�1��! t0i))By the induction,8t0i:9fi:(s0 j= fi ^ t0i 6j= fi). Then, f =� a�� î fi.[Proof of T1 ���! T2) T1 �PQL T2]8f:(T1 ���! T2^T1 j= f) T2 j= f) is shown here. From Lemma 6(3), only �nite length PQL formulaswith no � operators should be considered. When PQL formulas which do not contain � operators, itcan be proved by the structural induction of PQL formulas as follows. Here the cases of f =� a �+f 0; f =� a�� f 0 are proved. As for other formulas, the proof can be provided in the same manner.� f =� a�� f 0'When s1 ���! s2 and s1 j=� a �� f 0, 9t1 = ��a��:(s1 t1! s01 ^ s01 j= f) from Lemma 8, also9t2 = ��a��:(s2 t2! s02 ^ s01 ���! s02) from s1 ���! s2. By the structural induction, s02 j= f 0, thens2 j=� a�� f 0.� f =� a�+ f 0'When s1 ���! s2 and s1 j=� a�+ f 0, from Lemma 8,(1) 9t = ��a��:(s1 t! s01 ^ s01 j= f), or(2) 9t = �!:(s t!), or(3) 9t = ��a�! :(s t!)%In the case of (1), it can be proved in the same manner as f =� a�� f 0. In the case of (2), sinces1 " and s1 ���! s2, s2 ". Therefore s2 j=� a�+ f 0. In the case of (3), since 9t1 = ��a��:(s1 t1!s01 ^ s01 ") and s1 ���! s2, 9t2 = ��a��:(s2 t2! s02 ^ s02 "). Therefore, s2 j=� a�+ f 0 2

Chapter 5: Compositional Veri�cation 88Appendix II : Well-known Equivalence Relations and DivergenceThis section shows detail de�nitions of well-known equivalence relations (trace equivalence, failure equiv-alence, partial bisimulation equivalence) referred in Fig. 28. Their relations are summarized from theviewpoint of \divergence".De�nition 30 (trace equivalence)Let S be a set of states, A be a set of actions (Act = A[f�g), and � : S�Act! 2S be a nondeterministictransition function. For (S;Act; �) and s; t 2 S, s and t are trace equivalent, written s �1 t, if 8� 2Act�:s �̂) i� t �̂)De�nition 31 (failure)For (S;Act; �) and s 2 S,failures(s) def= f(�; L) j � 2 Act�; L � A such that 9s0 2 S:(s �̂) s0 and s0 6 �! and 8a 2 L:s0 6 a!)gDe�nition 32 (failure equivalence)For (S;Act; �) and s1; s2 2 S, failure equivalence (�f) is de�ned as follows.s1 �f s2 () failure(s1) = failure(s2)De�nition 33 (partial bisimulation preorder by global divergence)For (S;Act; �), a partial bisimulation preorder with global divergence vg (� S � S) is de�ned as thelargest relation such thatif 8s; t 2 S; s vg t implies� 8a 2 Act:8s0 2 S:(if s a! s0 then 9t0 2 S:t â) t0 ^ s0 vg t0)� if :(s ") then{ :(t "){ 8a 2 Act:8t0 2 S:(if t a! t0 then 9s0 2 S:s â) s0 ^ s0 vg t0)De�nition 34 (partial bisimulation equivalence by global divergence)For (S;Act; �) and s; t 2 S, s �gp t () s vg t ^ t vg s:�gp is called partial bisimulation equivalence by global divergence.De�nition 35 (parameterized �!-divergence)For (S;Act; �) and s 2 S; a 2 Act, s " a def= s " or 9s0:(s â) s0 ^ s0 ")De�nition 36 (partial bisimulation preorder by local divergence)For (S;Act; �), a partial bisimulation preorder by local divergence v (� S � S) is de�ned as the largestrelation such thatif 8s; t 2 S; s v t implies� 8a 2 Act:8s0 2 S:(if s a! s0 then 9t0 2 S:t â) t0 ^ s0 v t0)� 8a 2 Act: if :(s " a) then{ :(t " a){ 8t0 2 S:(if t a! t0 then 9s0 2 S:s â) t0 ^ s0 v t0)De�nition 37 (partial bisimulation equivalence by local divergence)For (S;Act; �) and s; t 2 S, s �p t () s v t ^ t v s:�p is called partial bisimulation equivalence by local divergence.

Chapter 5: Compositional Veri�cation 89Partial bisimulation equivalence by local divergence is sometimes simply called \partial bisimulationequivalence". The discrimination ability of partial bisimulation equivalence by local divergence is thesame as Intuitionistic Hennessy-Milner Logic (IHML) [Stirling 87].Theorem 11 (Imvolvement Relation among Equivalence Relations)The imvolvement relation among equivalence relations is shown as follows.� ��!��gp� �gp��p� �gp��f� �f��1� �p��1Here, \R1 � R2" means \8s; t 2 S: if sR1t then sR2t".Proof. It is obvious from the de�nition.2Figure 45 shows a counter example which shows there is no imvolvement relation bwtween �f and�p. In this example, T1 �p T2 but T1 6�f T2. On the other hand, T3 6�p T4 but T3 �f T4.
a

b

tau

a

a

a ba

tau
a

T1 T2

a

bb

T3 T4

c d

a

bb

c d

a

Figure 45. Example which shows there is no imvolvement relation bwtween �f and �p

Chapter 6Compositional Program AdjustmentIn this chapter, we examine \program adjustment", a formal and practical approach to developing correctconcurrent programs, by automatically adjusting an imperfect program to satisfy given constraints. Aconcurrent program is modeled by a �nite state process, and program adjustment to satisfy temporallogic constraints is formalized as the synthesis of an arbiter process which partially serializes target (i.e.imperfect) processes to remove harmful nondeterministic behaviors. Compositional adjustment is alsoproposed for large-scale compound target processes, using process equivalence theory.1 Motivation and Overview1.1 MotivationThe di�culty of concurrent program debugging is mainly due to its nondeterministic behavior. Weclassify nondeterminism into the following 3 types.� Intended nondeterminism: Nondeterministic behaviors which the programmer intends to im-plement.� Harmful nondeterminism: Nondeterministic behaviors which the programmer does not intendto implement and does not expect.� Persistent nondeterminism: Nondeterministic behaviors which have no e�ect on the results.For example, Fig. 46 shows a simple Ada-like concurrent program \Seat Booking", where two pro-cesses read/write a shared memory \seat" to reserve one seat. This program has the 3 types of nonde-terministic behaviors.Intended nondeterminism The following nondeterministic behaviors �1 and �2 derive di�erent re-sults: P1 can book the seat (status1 = OK) in �1, but cannot (status1 = NG) in �2. However both arecorrect (intended behaviors).� �1 = l1 ! l2 ! l3 ! l4 ! l5 ! m1 ! m2 ! m5Result: status1 = OK; seat = OCCUPIED; status2 = NG.� �2 = m1 ! m2 ! m3 ! m4 ! m5 ! l1 ! l2 ! l5Result: status1 = NG; seat = OCCUPIED; status2 = OK.Harmful nondeterminism The following nondeterministic behavior �3 derives an incorrect result(double booking). So, this program has harmful nondeterminism.� �3 = l1 ! m1 ! l2 ! m2 ! l3 ! m3 ! l4 ! m4 ! l5 ! m5Result: status1 = OK; seat = OCCUPIED; status2 = OK.
90

Chapter 6: Compositional Program Adjustment 91Persistent nondeterminism The following two nondeterministic behaviors have the same result be-cause l1(write in status1) and m1(write in status2) are independent actions of each other. We call sucha situation persistent.� �4 = l1 !m1 ! l2 ! l3 ! l4 ! l5 ! m2 ! m5Result: status1 = OK; seat = OCCUPIED; status2 = NG.� �5 =m1 ! l1 ! l2 ! l3 ! l4 ! l5 ! m2 ! m5Result: status1 = OK; seat = OCCUPIED; status2 = NG.

seat
(Initially, seat := FREE)

P1 P2

l1: status1 := NG ;
l2: if seat.read = FREE then
l3: seat.write(OCCUPIED) ;
l4: status1 := OK ;
 end if ;
l5: terminate ;

m1: status2 := NG ;
m2: if seat.read = FREE then
m3: seat.write(OCCUPIED) ;
m4: status2 := OK ;
 end if ;
m5: terminate ;

status1 status2

read

write write

Figure 46. An example of a concurrent programIn our observation of concurrent program development, a programmer �rst tries to design and imple-ment processes so as to maximize concurrency, which may include 3 types of nondeterminism. He thenoften �nds harmful nondeterministic behaviors in testing and debugs them by partially serializing thecritical sections which interfere each other using synchronization mechanisms (e.g. semaphores). Bugsdue to harmful nondeterministic behaviors often account for a considerable part of all timing bugs.We will show that the debugging processes for harmful nondeterministic behaviors can be mechanicallysupported using formal methods. It can be also regarded as a practical application of program synthesistechniques to program modi�cation in debugging.1.2 Overview of Main ResultsWe propose \program adjustment" which automatically adjusts (debugs) an imperfect program to satisfygiven constraints. Here, we consider only timing constraints for concurrent programs that can be speci�edby temporal logic. In this context, \an imperfect program" is regarded as a program which is functionallycorrect but may be imperfect in its timing. We call such a program an FCTI program (Functionally-Correct Temporally-Imperfect program).A concurrent program is modeled with the �nite state process [Kanellakis 90] , which can specify the�nite state transition system with liveness conditions. It can not only represent the transition systemsin CCS [Milner 89], but also B�uchi automata [B�uchi 62]. A target FCTI program is compositionallyconstructed from several �nite state processes with the composition operator \j"(ex. P = (P11 j P12) j(P21 j P22) in Fig.47(a)).Basic Adjustment Program adjustment (basic adjustment) means to adjust an FCTI program tosatisfy given constraints by adding an arbiter process which is synchronized with and restricts the behaviorof the FCTI program (Fig.47(b)). The arbiter partially serializes the FCTI program to remove harmfulnondeterministic alternatives which do not satisfy given constraints. We will show an algorithm tosynthesize an arbiter process Cf automatically.

Chapter 6: Compositional Program Adjustment 92
P11 P12 P21 P22

P1 P2

P11 P12 P21 P22

P1
P2

C0

C1 C2

P

P’

(a)

P11 P12 P21 P22
P1 P2

P’

Cf

Process
Composition

(b)
Basic
Adjustment

(c)
Compositional
Adjustment

arbiter

Figure 47. Process Composition (a), Basic (b), and Compositional (c) AdjustmentInput: An FTCI program P .Input: Temporal logic constraints f .Output: An arbiter process Cf such that P j Cf satis�es f .Compositional Adjustment When a target program becomes large, the arbiter synthesis may causecomputing cost explosion. Therefore, we propose compositional adjustment, in which local arbiters aresynthesized in each composition step. For example, an adjusted program with local arbiters C0, C1, andC2 is shown as follows (Fig.47(c)).P 0 = (P11 j P12 j C1) j (P21 j P22 j C2) j C0In each composition step, the reduction of the �nite state process, based on process equivalence theory,can ease computing cost explosion. We introduce a new process equivalence relation (��!-bisimulation)to manipulate liveness properties because the traditional weak bisimulation equivalence used in CCScannot. ��!-bisimulation is used to reduce a �nite state process to a smaller and equivalent one in thecompositional adjustment.It is more feasible for ordinary programmers to adopt the program adjustment approach comparedto other methods which synthesize complete programs from (temporal logic) speci�cations [Manna 84,Emerson 82, Pnueli 90]. The reasons are as follows.� It is not very di�cult for ordinary programmers to produce an FCTI concurrent program, whichsatis�es at least the functional requirements. A more di�cult task is to design and debug the timingof such programs.� Many bugs are derived from harmful nondeterministic alternatives.� It is easy for ordinary programmers to specify timing constraints, such as deadlock-free and starvation-free constraints, as compared with implementing them.

Chapter 6: Compositional Program Adjustment 931.3 Organization of the ChapterThe remainder of this chapter is organized as follows. Section 2 de�nes Finite State Processes (FSP)and their equivalence relation and composition operator. Basic and compositional adjustment of FSPis described in Section 3. Section 4 shows a simple and nontrivial example and an experimental re-sult of compositional program adjustment. Finally, Section 5 takes program adjustment in standardprogramming languages into consideration, followed by related works and summary in Section 6 and 7.2 Finite State ProcessesThe basic model for concurrent programs is the �nite state process (FSP) de�ned in Chapter 2, whichcan specify the �nite state transition system with liveness conditions. First, we introduce an equiva-lence relation for FSPs. Then, several operators (composition, relabeling, and reduction) on FSPs areintroduced and their properties are shown.2.1 Equivalence of Finite State ProcessesWe now introduce ��!-bisimulation equivalence for FSP which was originally de�ned for compositionalveri�cation in Chapter 5. In this chapter, it is used to reduce an FSP to a smaller and equivalent one incompositional adjustment. ��!-bisimulation equivalence is rede�ned for FSPs as follows.De�nition 38 (�!-divergence)Let P = (S;A; L; �; �; s0; F) be an FSP. s 2 S is �!-divergent (s ") if 8n > 0:9s0 2 S:9� 2 A�:(j � j=n; �̂(�) = " and s0 = �(s; �)). 2De�nition 39 (��!-bisimulation Equivalence)Let P1 = (S1; A1; L1; �1; �1; s01; F1) and P2 = (S2; A2; L2; �2; �2; s02; F2) be FSPs. P1 and P2 are ��!-bisimulation equivalent (P1 ���! P2), if there is a binary relation R � S1 � S2, such that (s01; s02) 2 R,and 8s1 2 S1:8s2 2 S2:(s1; s2) 2 R ()� s1 2 F1 i� s2 2 F2,� s1 " i� s2 ",� 8t1 2 A1:8s01 2 S1:(if s01 = �1(s1; t1) then9� 2 A�2:9s02 2 S2:�̂1(t1) = �̂2(�); s02 = �2(s2; �); and (s01; s02) 2 R),� 8t2 2 A2:8s02 2 S2:(if s02 = �2(s2; t2) then9� 2 A�1:9s01 2 S1:�̂2(t2) = �̂1(�); s01 = �1(s1; �); and (s01; s02) 2 R):2 ��!-bisimulation is extended so that it can discriminate designated states and divergence, whichcannot be discriminated by weak bisimulation (the weak bisimulation ignores divergences, i.e., � -loopsand � -circles). The following lemma is derived from these discrimination abilities.Lemma 9 If P1 is complete and P1 ���! P2, then P2 is also complete. 2De�nition 40 (Reduction) For a given FSP P = (S;A; L; �; �; s0; F), a reduction of P , red(P) =(Sr; Ar; Lr; �r; �r; sr0; Fr), is an FSP such that P ���! red(P) and j Sr j�j S j. 2The smallest red(P) is constructed e�ectively by the relational coarsest partitioning algorithm [Paige 87,Kanellakis 90] such that all states of P that are ��!-bisimilar to each other are brought together into asingle state of red(P).

Chapter 6: Compositional Program Adjustment 942.2 Operators on Finite State ProcessesConcurrent programs are constructed as a composition of several FSPs that are synchronized with eachother. The composition and relabeling operators for FSPs are introduced and their important properties(substitutivity and reectivity) are shown.De�nition 41 (Composition Operator)For P1 = (S1; A1; L1; �1; �1; s10; F1) and P2 = (S2; A2; L2; �2; �2; s20; F2), a composition P = P1 j P2 isde�ned as follows.P = (S1 � S2 � f0; 1g2; (A1 [fidleg)� (A2 [fidleg); L1 [L2; �; �; (s10; s20; 0; 0); F), where� � : (S1 � S2 � f0; 1g2)� (A1 [fidleg)� (A2 [fidleg)! (S1 � S2 � f0; 1g2) [f?g such that�((s1; s2; f1; f2); (a1; a2)) =8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(�1(s1; a1); �2(s2; a2); f 01; f 02); when �1(a1) = �2(a2) 6= �; and f1 = f2 = 1;where � f 0i = 1 if �i(si; ai) 2 Fi;f 0i = 0 otherwise ; � (for each i = 1; 2)(�1(s1; a1); �2(s2; a2); f 01; f 02); when �1(a1) = �2(a2) 6= �; and (f1 = 0 _ f2 = 0);where � f 0i = 1 if �i(si; ai) 2 Fi _ fi = 1;f 0i = 0 otherwise ; � (for each i = 1; 2)(�1(s1; a1); s2; f 01; 0); when �1(a1) =2 (L1 \ L2); a2 = idle; and f1 = f2 = 1;where � f 01 = 1 if �1(s1; a1) 2 F1;f 01 = 0 otherwise ;(�1(s1; a1); s2; f 01; f2); when �1(a1) =2 (L1 \ L2); a2 = idle; and (f1 = 0 _ f2 = 0);where � f 01 = 1 if �1(s1; a1) 2 F1 _ f1 = 1;f 01 = 0 otherwise ;(s1; �2(s2; a2); 0; f 02); when �2(a2) =2 (L1 \ L2); a1 = idle; and f1 = f2 = 1;where � f 02 = 1 if �2(s2; a2) 2 F2;f 02 = 0 otherwise ;(s1; �2(s2; a2); f1; f 02); when �2(a2) =2 (L1 \ L2); a1 = idle; and (f1 = 0 _ f2 = 0);where � f 02 = 1 if �2(s2; a2) 2 F2 _ f2 = 1;f 02 = 0 otherwise ;?; otherwise ;� � : (A1 [fidleg �A2 [fidleg)! L1 [L2 [f�g such that8<: �((a1; a2)) = �1(a1) = �2(a2) if a1 2 A1 and a2 2 A2;�((a1; idle)) = �1(a1) if a1 2 A1;�((idle; a2)) = �2(a2) if a2 2 A2;� and F = f(s1; s2; f1; f2) j s1 2 S1; s2 2 S2; f1 = f2 = 1g.2 We remark that processes are synchronized at actions with the same labels in the above processcomposition. This composition is similar to composition in CCS[Milner 89] except for its treatment ofdesignated nodes. The following relabeling operators are used to relabel actions so that actions whichare synchronized in composition have the same labels.De�nition 42 (Relabeling Operator) For P = (S;A; L; �; �; s0; F) and a relabeling function f : L !L0 [f�g, P 0 = P [f] is de�ned as follows.P 0 = (S;A; L0; �; �0; s0; F); where � �0(a) = f(�(a)) if �(a) 6= �;�0(a) = � if �(a) = �:2Example 9 (Composition and Relabeling)� P1 = (fs0; s1; s2g; ft1; t2; t3; t4; t5g; fa1; b1; cg; �1; �1; s0; fs1g) where�1(s0; t1) = s1; �1(s0; t2) = s2; �1(s1; t3) = s2; �1(s2; t4) = s1; �1(s1; t5) = s1; �1(t1) = a1; �1(t2) =b1; �1(t3) = b1; �1(t4) = a1; �1(t5) = c.

Chapter 6: Compositional Program Adjustment 95� P2 = (fs0; s1; s2g; ft1; t2; t3; t4; t5g; fa2; b2; dg; �2; �2; s0; fs2g) where�2(s0; t1) = s1; �2(s0; t2) = s2; �2(s1; t3) = s2; �2(s2; t4) = s1; �2(s2; t5) = s2; �2(t1) = a2; �2(t2) =b2; �2(t3) = b2; �2(t4) = a2; �2(t5) = d.� relabeling functions: fi(ai) = a; fi(bi) = b, and fi(l) = l for other labels l 2 fc; dg (for each i=1,2).� P1[f1] j P2[f2] = (fs0; s1; s2; s3; s4g; f(t1; t1); (t2; t2); (t3; t3); (t4; t4); (t5; idle); (idle; t5)g;fa; b; c; dg; �; �; s0; fs3; s4g) where�(s0; (t1; t1)) = s1; �(s0; (t2; t2)) = s2; �(s1; (t3; t3)) = s3; �(s1; (t5; idle)) = s1; �(s2; (t4; t4)) =s4; �(s2; (idle; t5)) = s2; �(s3; (t4; t4)) = s1; �(s3; (idle; t5)) = s2; �(s4; (t3; t3)) = s2; �(s4; (t5; idle)) =s1; �((t1; t1)) = a; �((t2; t2)) = b; �((t3; t3)) = b; �((t4; t4)) = a; �((t5; idle)) = c; �((idle; t5)) = d.(Fig.48) 2
P1:

s0

s1 s2

t1/a1 t2/b1
t3/b1

t4/a1

t5/c

P2:
s0’

s1’ s2’

t1/a2 t2/b2
t3/b2

t4/a2

t5/d

P1[f1]|P2[f2]:
s0,s0’,
0,0(t1,t1)/a (t2,t2)/b (idle,t5)/d(t5,idle)/c

(t5,idle)/c(idle,t5)/d

(t3,t3)/b(t3,t3)/b

(t4,t4)/a

action/label

s1,s1’,
1,0

s2,s2’,
1,1

s2,s2’,
0,1

s1,s1’,
1,1Figure 48. Composition and RelabelingDe�nition 43 (Projection) Let P1 and P2 be FSPs. A left projection L(P1 j P2) # left is de�ned asL(P1 j P2) # left def= f�1=fidleg j 9� 2 L(P1 j P2):�[i] = (�1[i]; �2[i])g. Similarly, a right projectionL(P1 j P2) # right is de�ned. In the same way, projections of L!, Lfair�! , and Lb are de�ned. 2Lemma 10 (Reectivity) Let P1 and P2 be FSPs. If P = P1 j P2, then Lb(P) # left � Lb(P1) andLb(P) # right � Lb(P2). 2Lemma 11 (Substitutivity) ��!-bisimulation equivalence is preserved by composition and relabeling;that is, if P ���! Q, then 8R:(P j R ���! Q j R), and 8f:(P [f] ���! Q[f]). 2Reectivity and substitutivity are used in the basic adjustment and the compositional adjustment,respectively. These adjustments are described in the next section.

Chapter 6: Compositional Program Adjustment 963 Program AdjustmentThis section proposes program adjustment of FSPs. First, we show that a temporal logic constraint fcan be transformed to an equivalent FSP Pf . For an FTCI process P and a temporal logic constraint f ,P j Pf is a composed process in which P 's behaviors against f are disabled by Pf (i.e., safety propertiesare satis�ed). However, P j Pf is not necessarily complete (i.e., liveness properties may not be satis�ed).Program adjustment means to make P j Pf complete by adding arbiter process C (i.e., the adjustedprogram = P j Pf j C).3.1 Temporal Logic ConstraintsThe constraints for concurrent programs (safety properties and liveness properties) are speci�ed by propo-sitional liner time temporal logic (PLTL) 11 . Safety properties include admissible partial ordering ofactions (i.e., transition �ring), and liveness properties include deadlock and starvation about actions.Theorem 12 Given an PLTL formula f under a single event condition, one can build an FSP Pf =(S;A; L; �; �; s0; F) such that L corresponds to a set of atomic propositions of f , and Lb(Pf) is exactlythe set of behaviors whose label sequences satisfy the formula f . 2Proof. This is a FSP version of Lemma 2.We remark that a label sequence of a satis�able behavior in Pf corresponds to a model of an PLTLformula.Example 10 (Temporal Logic Constraints) Let a label set be L = fa1; a2g.� (1) 2}(a1 _ a2): Either a1 or a2 must in�nitely often occur.� (2) 2(a1 � 2(:a2)): Whenever a1 occurs, then a2 must never occur.FSPs which are generated from (1) and (2) are shown in Fig.49.
a1/a1 a2/a2

a1/a1 a2/a2

a2/a2

a1/a1

a1/a1

(1) (2)

Figure 49. FSPs Pf of Temporal Logic ConstraintsIn the context of the following program adjustment, we restrict temporal logic formulas so that Pf isdeterministic with regard to synchronization labels. In this case, some formulas, such as }2a, whichare translated to nondeterministic one, become not available. These formulas are suitable for veri�cation,but not for adjustment (synthesis) because the arbiter cannot look ahead at future behaviors as indicatedby Pnueli and Rosner[Pnueli 89a, Pnueli 89b].3.2 Basic AdjustmentWhen temporal logic constraints f can be translated to an FSP Pf , we have to show how to make anFSP P = Pf j P0 complete for the target FCTI program P0 by adding an arbiter process C. In otherwords, basic adjustment is de�ned as an arbiter synthesis for P = Pf j P0 (Fig. 50).In the following explanation, we assume that the target FSP P has already composed with Pf (i.e.,P = Pf j ::::), and do not mention Pf explicitly.Problem 1 (Basic Adjustment)11 Detail de�nitions are shown in Chapter 2.

Chapter 6: Compositional Program Adjustment 97
P0 fPf

C

P= P0 | Pf

composition

adjustment = arbiter synthesis

target
program

ArbiterFigure 50. Basic AdjustmentInput: An FSP P = (S;A; L; �; �; s0; F) (We assume P = Pf j :::).Output: A maximally permissive FSP C = (Sc; Ac; Lc; �c; �c; s0c; Fc) such that P j C is complete.\C is maximally permissive" means that for every C 0 if P j C 0 is complete then L(P j C 0) � L(P j C). 2The arbiter, C, restrains the target FSP P from falling into unsatis�able states by eliminating harmfulobservable transitions.Algorithm 1 (Single Arbiter Synthesis)(Step 0) P 0 := P .(Step 1) Find a set of unsatis�able states Su � S0 in P 0 = (S0; A0; L; �0; �0; s00; F 0). If there are nounsatis�able states, go to Step 4.(Step 2) Construct a pseudo-arbiter C 0 from P 0 as follows. At �rst, � � closure C� is de�ned asC� (s; a) def= fs0 j 9�:(s0 = �(s; �); �̂(�) = a)g for 8s 2 S0 and 8a 2 L [f"g,C� (Ssub; a) def= Ss2Ssub C� (s; a) for 8Ssub � S0 and 8a 2 L [f"g,thenC 0 = (S0c; A0c; L; �0c; �0c; C� (s00; "); S0c), where S0c = 2S0 ; A0c = fta j a 2 Lg [fts j s 2 S0g, and for8a 2 L, 8s0 2 S0c,� �0c(s0; ta) = C� (s0; a) 2 S0c if C� (s0; a) \ Su = ;,� �0c(s0; ta) = ? if C� (s0; a) \ Su 6= ;,� �0c(s0; ts0) = s0,and �0c(ta) = a and �0c(ts0) = � for 8a 2 L;8s0 2 S0c.We remark that \�0c(s0; ta) = ? if C� (s0; a) \ Su 6= ;" means elimination of all behaviors whichcannot be distinguished from inevitably unsatis�able behaviors by a label observer.(Step 3) P 0 := P 0 j C 0, and return to Step 1.(Step 4) Let the �nal pseudo-arbiter C 0, which is generated after applying Step 1 - Step 3 repeatedly,be the arbiter C.If C is empty (i.e., all behaviors are eliminated), C is called unrealizable; otherwise, C is calledrealizable.

Chapter 6: Compositional Program Adjustment 98Theorem 13 (Main Theorem) If an FSP C = (Sc; Ac; Lc; �c; �c; s0c; Fc) is realizable for a given FSPP = (S;A; L; �; �; s0; F) in the above algorithm, then P j C is complete and C is maximally permissive.2Sketch of proof. During Step 1 - Step 3, all inevitably unsatis�able behaviors are eliminated in the�nal P 0. Therefore, P 0 is complete. Since the transition function of C 0 is deterministic about its labels,C 0 restrains no satis�able behavior of P . Therefore P j C is complete and C is maximally permissive.Corollary 2 Lfair�! (P j C) # left � Lb(P j C) # left � Lb(P)2Proof. This proof is derived from Lemma 1 and Lemma 10 with Theorem 13.This corollary assures that P , adjusted by C, satis�es its liveness constraints, whenever its behaviorsare made by random transitions over states. We remark that an arbiter is e�ective in case Lfair�! (P) �Lb(P) does not hold (i.e., P has harmful nondeterministic behaviors).Example 11 (A single arbiter synthesis) Fig.51 shows a simple single arbiter synthesis. In the targetprocess P , only � = t3t6t7 is an inevitably unsatis�able behavior. Since ft3t6t7; t3t4g is a set of behaviorswhich cannot be distinguished from � (i.e. have the same label sequence \ab"), t4 and t7 are eliminated.From the remainder, the arbiter C can be constructed.
t1/a t3/a

t2/Ó
t5/Ó

t6/Ó

t7/b t8/c

t9/Ó

P (Target Program):

C (Arbiter): tS0/Ó

ta/a

tS1/Ó tc/c

t4/b

inevitably unsatisfiable
behavior

unsatisfiable state

s0

s1 s2

s3 s4

s5 s6

S0

S1
tc/c

S2

tS2/Ó

S0={s0}

S1={s1,s2,s4}

S1={s6,s2,s4}

Figure 51. Single Arbiter Synthesis3.3 Compositional AdjustmentWhen a target program that is composed hierarchically with many processes becomes very large, thearbiter synthesis may cause the following problems.1. The synthesis results in a computing cost explosion,2. A single arbiter is too restrictive to control the whole program precisely.

Chapter 6: Compositional Program Adjustment 99Therefore, we propose compositional adjustment, in which local arbiters are synthesized in eachcomposition step. The reduction of an FSP can ease the computing cost explosion in each step.Theorem 14 If P1 ���! P2, then C is an arbiter of P1 i� C is an arbiter of P2.2Proof. From Lemma 1 and Lemma 11, C j P1 is complete i� C j P2 is complete.Corollary 3 If C is an arbiter of red(P), then C is also an arbiter of P.2Algorithm 2 (Compositional Arbiter Synthesis) For simplicity, we explain compositional adjustmentfor the following target program that is constructed by two-level composition (Fig.47(c)). This algorithmcan be extended easily to arbitrary target programs.� Target Program: (P11[h11] j P12[h12])[h1] j (P21[h21] j P22[h22])[h2]where P11; P12; P21, and P22 are FSPs, and h11; h12; h21; h22; h1 and h2 are relabeling functions.� Temporal Logic Constraints:f1,f2,f0 are temporal logic constraints for each composition level.The compositional arbiter synthesis is done in a bottom-up way (Fig. 52).(Step 1) Low level arbiters C1 and C2 are synthesized for subprocesses P11[h11] j P12[h12] j Pf1 andP21[h21] j P22[h22] j Pf2 , respectively. We denote P1 def= (C1 j P11[h11] j P12[h12] j Pf1)[h1] andP2 def= (C2 j P21[h21] j P22[h22] j Pf2)[h2].(Step 2) Reduced subprocesses red(P1) and red(P2) are made from P1 and P2.(Step 3) A top level arbiter C0 is synthesized for a target process red(P1) j red(P2) j Pf0 .
P11 P12 P21 P22

Arbiter Synthesis Arbiter Synthesis

C1 C2

P1 P2

Composition

Reduction

Composition

Reduction

red(P1) red(P2)

Arbiter Synthesis

C0

Pf1 Pf2

Transform Transform

f1 f2

Pf0

Transform

f0

Figure 52. Compositional Arbiter SynthesisCorollary 2 assures that reduction preserves all information necessary for each local arbiter synthesis.The reduction in each step can cut down the synthesis cost. As the ratio of internal actions in the process

Chapter 6: Compositional Program Adjustment 100increases, so does the e�ectiveness of the reduction. Note that it is possible to synthesize directly asingle arbiter C 0 for the target programs. However, C 0 is too restrictive because it has less controllableactions compared with local arbiters, and its synthesis cost is more expensive without reduction. Processreduction by weak bisimulation equivalence has been already proposed and shown its e�ectiveness incompositional veri�cation by Clarke et. al. [Clarke 89]. However, the reduction preserving livenessproperties by ��!-bisimulation is our original work.4 Example and Experimental Result4.1 Example: The Machine Control ProgramIn this example we synthesize a single arbiter. The problem may be stated informally as follows. Thetarget program must be designed to control machines which cooperatively process (i.e., etch) printedcircuit boards (Fig.53). The coating machine applies resist to boards. The exposure machine exposesboards to the light. The development machine develops boards. The arm machine moves boards from onemachine to another. The target program is composed of 6 processes (Resist, Exposure, Development,Arm, and Trans � 2) which control corresponding machines. Trans represents board transportation.Each process is displayed as a Petri net, shown in Fig.54. With no arbiter, this system is FCTI becauseit falls into deadlock when an action label sequence of Arm \get r ! put e! get r" occurs. We give thefollowing temporal logic constraints:f = 2}(get r _ put e _ get e _ put d)which means Arm never falls into deadlock. An arbiter C is synthesized as follows: �rst, FSPs representing6 subprocesses are relabeled by relabeling functions fr; fe; fd; fa; ft1, and ft2, and are reduced, and FSPPf (Fig.55) representing temporal logic constraints f is generated. The target process P (Fig.56) iscomposed from these FSPs (including Pf). Finally, the arbiter C shown in Fig.57 is synthesized from P ,according to Algorithm 1. We can see that the adjusted program \C j Pf j Resist[fr] j Exposure[fe] jDevelopment[fd] j Arm[fa] j Trans[ft1] j Trans[ft2]" satis�es the above constraints. Figure 58 showsthe adjusted program represented by extended Petri net. You can see the target Petri net in Fig. 54 isadjusted by introducing the arbiter C in Fig. 58.

Exposure

Development Resist

Arm

Figure 53. Machine for Processing Printed Circuit Boards4.2 Experimental ResultWe will show how well the compositional method works when it is applied to a middle-scale manufacturingmachine control software. This machine is controlled by a concurrent (multi-task) program which consistsof 16 element processes (tasks). Table 11 shows the sizes of element processes. The state numbers of eachelement process may sound small. It attributes to the fact that only synchronization parts of systems aremodeled by FSPs.For this target processes, we give temporal logic constrains by f ; prohibition of illegal behaviorsof arms and deadlock-freedom for two symmetric process groups (P4; P6; P7; P8; P9; P10). Two arbiters

Chapter 6: Compositional Program Adjustment 101

get_r put_d

put_e get_e

Arm

Development

put_d

Resist

get_r

put_e get_e

Trans Trans
Exposure

put_e get_e

get_r put_d

hand-shake

Figure 54. Extended Petri net

get_r,put_e,
get_e,put_d

get_eget_r

put_d put_eFigure 55. FSP Pf for PLTL formula f

Chapter 6: Compositional Program Adjustment 102
Ó Ó

Ó

ÓÓ Ó

Ó

Ó

Ó

Ó

get_r

put_e

get_r

get_r

put_e

get_r

get_r

get_e

get_e

put_d

put_d

Ó
deadlock:
unsatisfiable
state

Figure 56. Target Process P (displaying only labels)

s0

s1 s2

s3

tS0/Ó

tput_d/put_d

tget_e/get_e

tget_r/get_r

tput_e/put_e
tS2/Ó

tS3/Ó

tS1/Ó

Figure 57. Synthesized Arbiter C

Chapter 6: Compositional Program Adjustment 103

get_r put_d

put_e get_e

Arm

Development

put_d

Resist

get_r

put_e get_e

Trans Trans
Exposure

put_e get_e

get_r put_d

get_r put_d

put_e get_e

Arbiter C

Figure 58. Adjusted Programwere synthesized after the compositional adjustment procedure. Fig. 4.2 shows their whole structure(communication and synchronization among processes).Table 11. Middle-scale Machine Control SoftwareElement FSP Number of States(p1) Distribution Arm 6(p2) Testing Equipment 3(p3) 1st Manufacturing Equipment 5(p4) 2nd Manufacturing Equipment � 2 3(p5) 3rd Manufacturing Equipment 5(p6) Set-up Arm � 2 6(p7) Extracting Arm � 2 6(p8) 1st door � 2 2(p9) 2nd door � 2 3(p10)Conveyer � 2 3The compositional adjustment procedure to synthesize two arbiters Cf1 and Cf2 is shown as follows12 .1. Pc1 = red(P4 j P6 j P7 j P8 j P9 j P10) (max size = 48 states)2. Pc2 = red(P1 j P2 j P3 j P5) (max size = 85 states)3. Pc3 = red(Pc1 j Pc2) (max size = 77 states)4. The �rst arbiter Cf1 is synthesized from f and Pc3 (max size = 385 states)12 Relabeling functions are omitted for simplicity.

Chapter 6: Compositional Program Adjustment 104
P2

P3 P5P1

P9

P4

P8

P9

P4

P8

P6 P7 P7P6

Communication and
Synchronization between
Processes

P10 P10
arbiter

Cf1
arbiter

Cf2

f f

Figure 59. Adjusted Middle-scale Machine Control Software5. Pc4 = red(Pc3 j Cf1) (max size = 88 states)6. Pc5 = red(Pc4 j Pc1) (max size = 239 states)7. The second arbiter Cf2 is synthesized from f and Pc5 (max size = 112 states)Here, the \max size" means the maximal number of states which are temporally created during pro-cess composition and reduction procedure at each step, and the worst case is max size = 385. Withoutthe compositional method (i.e, by the basic adjustment), the naive process composition of 16 processeswould generate far larger number of states since the max size is increasing monotonously without reduc-tion. Table 12 shows the maximum number of states in two cases (basic adjustment and compositionaladjustment). It says that the compositional method can reduce the maximum size to about 1/150 of thebasic adjustment.In this example, only synchronization parts of the system are modeled by FSPs. If they have a lot ofactions which are unrelated to synchronization, which are regarded as � actions, the process reductionwould be more e�ective.Table 12. Middle-scale Machine Control Software (E�ect of Process Reduction)Adjustment Type Maximum Temporary Size of StatesBasic Adjustment 61096Compositional Adjustment 3855 Program Adjustment in Standard Programming LanguagesThis section considers briey program adjustment in standard programming languages, instead of FSP.Program adjustment is applicable to concurrent programming languages which have a synchronous (i.e.,hand-shake) communication mechanism, like Ada and Occam. For example, Fig. 60 shows a programadjustment example for the Ada program used in the motivation section (Fig. 46). Two FSPs P1 andP2 are derived from the original program, then an arbiter is synthesized by the basic adjustment proce-dure, and �nally an adjusted Ada program13 is derived from FSPs and the arbiter. As you can see in13 Some trivial declarations are omitted.

Chapter 6: Compositional Program Adjustment 105Fig. 60, the arbiter controls the target programs using a rendezvous mechanism of Ada to remove harmfulnondeterministic behaviors (i.e., �3) mentioned in Section 1.When applying the program adjustment to Ada, we require the following two converters.� Ada ! FSP converter: The Ada program code is divided into basic blocks. Each basic block isassigned to one state of a generated FSP. Control ows between basic blocks are represented asedges between these states. Synchronous communication commands are also represented as edgeswith synchronization labels. Furthermore, the user can put arbitrary labels on edges which are usedto specify temporal logic constraints.� FSP ! Ada converter: A synthesized arbiter represented by a FSP is converted into an Ada taskwhich implements state transitions using loop and select constructs. Synchronization labels in thearbiter are converted into accept commands, and synchronization labels in the target processes areconverted into entry call commands.
l1

l2

l3

l4

l5

m1

m2

m3

m4

m5

in1 in2

out1

out1

out2

out2

in1 in2

out1 out2

N=0

N=1 N=2

task arbiter is
 entry in1 ;
 entry in2 ;
 entry out1 ;
 entry out2 ;
end arbiter ;

task body arbiter is
 N:integer:= 0 ;
begin
 loop
 select
 when N=0 =>
 accept in1 do N:=1; end in1 ;
 when N=0 =>
 accept in2 do N:=2; end in2 ;
 when N=1 =>
 accept out1 do N:=3; end out1 ;
 when N=2 =>
 accept out2 do N:=3; end out2 ;
 end select ;
 end loop :
end arbiter ;

P1 P2 Arbiter

Ó Ó

Ó

N=3

task body p1 is
begin
 status := NG ;
 arbiter.in1 ;
 if seat.read=FREE then
 seat.write(OCCUPIED) ;
 arbiter.out1 ;
 status := OK ;
 else
 arbiter.out1 ;
 end if ;
 terminate ;
end p1 ;

task body p2 is
begin
 status := NG ;
 arbiter.in2 ;
 if seat.read=FREE then
 seat.write(OCCUPIED) ;
 arbiter.out2 ;
 status := OK ;
 else
 arbiter.out2 ;
 end if ;
 terminate ;
end p2 ;Figure 60. Program Adjustment in Ada6 Related WorksOur previous works [Uchihira 87, Uchihira 90a, Uchihira 90b] had proposed program synthesis methodsbased on temporal logic. However, these methods generated a global state transition graph based onthe assumption that all process actions are visible (not internal) and controllable. This assumption is

Chapter 6: Compositional Program Adjustment 106restrictive, and the state transition graph often becomes huge, and its generation is expensive since itcannot be done compositionally. In this chapter, we introduce a CCS-like compositional framework toachieve compositional adjustment utilizing process reduction. Abadi, Lamport, and Wolper [Abadi 89]proposed a compositional program synthesis using the CCS-like compositional framework, where failureequivalence is adopted instead of our ��!-bisimulation equivalence. However, their approach is a top-downprogram re�nement, which di�ers from our bottom-up program adjustment approach. From another view,arbiter synthesis can be regarded as a control problem of discrete event systems (supervisory control) whichare well surveyed by Ramadge and Wonham [Ramadge 89]. However, while these works mainly considersafety properties, they showed no compositional synthesis methods satisfying liveness constraints. Theconcurrency control of database transactions [Bernstein 81] is much related to the program adjustment.Both are intended to remove harmful nondeterminism. The program adjustment can be regarded as theextended concurrency control applied to compositional (hierarchical) concurrent programs.7 SummaryWe have introduced the concept of \program adjustment" into concurrent programming. Program adjust-ment consists of partially synthesizing programs to remove bugs that are due to harmful nondeterministicbehaviors. In the proposed framework, program adjustment is de�ned as the synthesis of arbiter pro-cesses which control target processes with synchronization to satisfy their temporal logic constraints. Forcompositional adjustment, we have also introduced a new composition and equivalence for �nite stateprocesses which can preserve liveness properties, because the traditional CCS framework (compositionand equivalence) is not adequate for �nite state processes. These techniques are essential to the basicand compositional adjustment.We also remark that our method is suited for reactive systems which have uncontrollable and unob-servable elements in its environment since they can be modeled by � actions in FSP.

Chapter 7MENDEL Net: High-Level Petri Netfor Reactive and Concurrent SystemsUp to this chapter, Petri net is used as a speci�cation language for reactive and concurrent systems.This chapter focuses on a high-level Petri net as a rather programming language, and proposes a newhigh-level Petri net, called MENDEL net, which is suited for both specifying and implementing reactiveand concurrent systems.1 IntroductionAlthough many high-level Petri nets have been proposed, they are not practical enough to describe reac-tive and concurrent systems in the detail design and implementation phases. They are mainly intendedto describe concurrent systems in the modeling phase and are lacking in several important features (e.g.concurrent tasks, task communication/synchronization, I/O interface, task scheduling) for programmingreactive and concurrent systems. On the other hand, there are several programming languages based onPetri nets. However, they are deeply depend on its execution environment and not sophisticated as amodeling and speci�cation language.We propose MENDEL net which is a high-level Petri net extended by incorporating task, task commu-nication/synchronization, I/O interface, and task scheduling in a sophisticated manner. MENDEL netscan bridge the gap between Petri net as speci�cation language and Petri net as programming language.The remainder of the chapter is organized as follows. First Petri nets as programming languages forreactive and concurrent systems are considered in Section 2. Section 3 introduces MENDEL nets in detailand an example of MENDEL nets is shown in Section 4, followed by related works and a conclusion inSection 5 and Section 6. Finally, a syntax of MENDEL nets is shown in Appendix.2 Petri Nets as Programming Language2.1 Programming Language for Reactive and Concurrent SystemsA practical programming language for reactive and concurrent systems requires expressive power for thefollowing items.� I/O Interface with EnvironmentI/O interface with an environment (controlled objects) is necessary to de�ne and describe inputs(e.g. sensor information from devices) and output (e.g. control commands to devices) (Fig. 61).Concerning inputs, there are two types, active and passive. An active input device generates aninterrupt when it has some input to be processed by an interrupt handler of the system (controller).As a passive input device does not generate interrupt, the system (controller) should read somesensor data by an input handler periodically or on demand. Outputs like control commands aresent to devices by an output handler. These handlers (input, output, interrupt) are called devicedriver generally. 107

Chapter 7: MENDEL Net 108
Environment

(Controlled Objects)

Reactive and Concurrent System (RCS)

Output/Command

Input/Sensor

Program

Interrupt Handler

Device Driver

Input Handler

Output Handler

Figure 61. I/O Interface with Environment� Concurrent Tasks and Task Communication/SynchronizationIt is necessary to de�ne concurrent tasks and describe communication and synchronization betweenthese tasks. There are the following mechanisms to realize communication and synchronization[Andrews 83].{ communication/synchronization by shared memoriessemaphore, event ag, etc.{ communication/synchronization by message passingmail box (asynchronous message passing), rendezvous (synchronous message passing)� Real-Time Task SchedulingMost reactive systems are implemented by multi-tasking on a single processor. They require areal-time task scheduling mechanism to decide which task should be processed by the processor ata given moment. To realize the real-time scheduling, the following mechanisms are necessary andare usually provided by real-time operating systems.{ Task priority{ Task dispatching{ Interrupt handling{ Real-time management (timer, periodical sampling)� Abstraction MechanismA module (subroutine) and data abstraction (information hiding) are typical abstraction mech-anisms in most programming languages. Additionally, the following abstraction mechanisms aree�ective for reactive and concurrent systems.{ Abstraction and information hiding for communication and synchronization{ Abstraction and information hiding for I/O devices2.2 Extension of Petri Nets as Programming LanguageSince standard Petri nets cannot fully satisfy the above requirements for describing reactive and concur-rent systems, it is necessary to extend a standard Petri net as follows.� I/O Interface with EnvironmentIt is necessary to introduce I/O interface with the environment into Petri net explicitly. Concretely,special places and transitions which are linked to device drivers should be de�ned. For example,Petri net with external inputs and outputs (PNIO) [Ichikawa 85] shows a typical Petri net extensionwhich has I/O Interface.� Interface with Other Programming LanguagesReactive and concurrent systems may have data and numerical processing parts. It is di�cult toextend Petri net to manipulate directly these parts. Therefore, the practical solution is to introduceinterfaces with other programming languages for data and numerical processing.

Chapter 7: MENDEL Net 109� Concurrent Tasks and Scheduling MechanismAlthough a Petri net has concurrency in itself, the granularity of its concurrency is too small, thatis, transition-level. A module-level concurrency (i.e., task, process) should be introduced into Petrinets. Moreover, a scheduling mechanism which controls these tasks should also be expressed withinthe extended Petri nets.� Real-Time ExtensionTo introduce real-time into Petri nets, there are several approaches.{ Time delays are associated with transitions and/or places. These models include timed Petrinets and stochastic Petri nets [Marsan 86].{ A global clock is introduced, and then, time stamps are attached to tokens, which are used todescribe transition conditions and actions [Bellettini 93].{ Timers are prepared as built-in subnets, that is, interfaces with the timers are introduced intoPetri nets.� Individual Tokens and Hierarchical Net StructureBy extending tokens to possess individual attributes and values (we call them individual tokens), it ispossible to express high-level enabling conditions and actions accompanying transitions. Moreover,it is possible to fold several symmetric nets into a single net by means of individual tokens. On theother hand, hierarchical net structure (e.g., some subnets can be represented by one macro-placeor macro-transition) is necessary to design large-scale systems. These individual tokens and nethierarchy are regarded as abstraction mechanisms. Several extended Petri nets have been proposedin which these mechanisms are available. Generally, they are called high-level Petri nets.2.3 Petri-Net-Based Programming LanguagesIn the �eld of sequential control, programming languages based on Petri nets are popular, and severallanguages have been proposed. Some are widely used as languages for programmable logic controller(PLC) in the industry. Individual languages are introduced briey below.� SFCTraditionally, ladder charts and function blocks are used as programming languages for PLC. How-ever, these languages are structurally at, and di�cult to maintain when the program becomeslarge. In order to overcome this problem, it is e�ective to introduce a state-transition-based struc-ture (e.g. Petri net) into ladder charts and function blocks. Sequential Function Chart (SFC)[IEC 1131-3] is a popular programming language for PLC, which is originally based on Petri nets.SFC has interfaces with ladder charts and function blocks. These ladder charts and function blocksare used to describe transition conditions, actions, and I/O interface. SFC has been standardizedby International Electrotechnical Commission (IEC).� High-Level SFCSince SFC standardized by IEC is very basic, several extensions have been done by each PLCprovider. For example, Instrument Flow Chart (IFC) [Kojima 91] is a high-level SFC for plantcontrol systems (i.e., chemical plants and waterworks and sewage treatment plants), which has thefollowing extensions.{ Multi-tasking mechanism{ Domain-speci�c macro notations� MFG/PFSMFG/PFS [Miyagi 88] is a Mark Flow Graph (MFG) based programming language for controlsystems for discrete event production systems (DEPS). MFS is a Petri-net-based language whichhas the following additional features.{ Speci�c Tokens: Tokens represent \items" (material, work pieces, etc.) of DEPS.

Chapter 7: MENDEL Net 110{ I/O interface: Input and interrupt handlers are represented by speci�c transitions, and outputhandlers are represented by speci�c places.{ Modularity: A subnet-oriented modularity called \activity" is introduced which means a singleproduction operation of DEPS.Production Flow Schema (PFS) is a macro representation of MFG which can support stepwisere�nement in designing and programming.� C-net/SCRControl-net (C-net) is a visual programming language for sequential control which is based on asafe coloured Petri net. In C-net, some control program fragments including I/O interface with theenvironment can be described in each place, which are called place procedures. Hence, a net structureof C-net represents a transaction control program where each transaction consists of several placeprocedures. Station Controller (SCR) [Murata 90] is a programming and executing environmentwhich includes a C-net editor, a C-net interpreter, and an execution monitor. The C-net interpretersupports multi-task processing in which each task is described as a C-net.� K-NETK-NET [Nagao 92] is a programming environment for Flexible Manufacturing Systems (FMS). K-NET adopts a hierarchical high-level Petri net in which enabling conditions of transition and placeprocedures can be speci�ed by the following user-de�ned functions and logical I/O functions.{ user-de�ned function: The user can de�ne functions with C language which are used inenabling conditions and place procedures.{ logical I/O function: Logical I/O functions are also used in enabling conditions and placeprocedures. In the logical functions, each atomic proposition (logical I/O name) is linked tosome physical device.The K-NET programming environment consists of editor, simulator, C program generator, monitor,and document generator. Petri net descriptions in K-NET are translated into C programs by theC program generator and compiled and executed by factory computers.2.4 High-Level Petri Net as Programming LanguageSeveral high-level Petri nets and tools have been proposed, which include Coloured Petri Nets (CPN) andits tool (DESIGN/CPN) [Jensen 92, Jensen 95], Predicate/Transition Nets [Genrich 81] , and AlgebraicPetri Nets [Reisig 91] . CPN (DESIGN/CPN) introduces hierarchy constructs into nets to enable a large-scale system description. Although these high-level Petri nets provide sophisticated modeling ability, theycannot be used as a programming (implementation) language for reactive and concurrent systems as theyare. Principally, the following extension should be done according to Section 2.2.� I/O Interface with Environment� Concurrent Tasks and SchedulingSince an introduction I/O interface is easy, introduction of concurrent tasks and scheduling mechanismis essential. Hierarchy (module) constructs which these high-level Petri nets provide are subnet-oriented;that is, a part of the net (subnet) is regarded as a hierarchical unit and reduced to one node. This subnet-oriented hierarchy (module) is inadequate to represent concurrent tasks because it does not concernmodule-level concurrency. Reactive and concurrent systems require task-oriented modules and modulecomposition mechanism as provided in the process theory (e.g., CCS, CSP, ACP). Furthermore, taskscheduling cannot be speci�ed explicitly within the framework of these high-level Petri nets.On the other hand, there are some programming languages (C-net, K-NET) based on high-level Petrinets as mentioned in the previous section. Since they deeply depend on execution environment, they arenot sophisticated as speci�cation languages. For example, multi-tasking of SCR is speci�ed as a systemcon�guration outside C-net.The gap between Petri net as a speci�cation language and Petri net as a programming language isa serious problem in the Petri-net-based software development process. In the next section, we proposeMENDEL net to bridge this gap.

Chapter 7: MENDEL Net 1113 MENDEL NetA MENDEL net is a high-level Petri net for both specifying and implementing reactive and concurrentsystems. In particular, MENDEL net adopts process-oriented hierarchy and scheduling mechanism bytwo-level nets, which allows the concurrent tasks, task composition, synchronous/asynchronous commu-nication between them, and task scheduling to be explicitly represented in its model14 . By this feature,MENDEL net is distinguished from other high-level Petri nets as a speci�cation language (e.g., CPN)and as a programming language (e.g., C-net).A MENDEL net has the following properties in addition to the standard Petri net.� four types of places (state element, slot, ag, and port), and port attributes,� logic program description of transition conditions and actions,� I/O interface,� process-oriented net hierarchy,� two types of communication mechanisms (synchronous and asynchronous) between processes,� real-time scheduling mechanism by two-level nets, and� several macro representations.The above properties not only make MENDEL nets powerful enough to describe most reactive andconcurrent systems but also make it possible to automatically retract a skeleton of the MENDEL netsto be used for a net analysis phase (veri�cation and adjustment). MENDEL nets are designed to handledetailed descriptions as well as skeleton-level analysis. The above properties are explained in detail inthe following subsections. MENDEL net has both graphical and textual representation. The graphicalform is intuitive, but not perfect (i.e., only skeletons are shown). In the following explanation, bothrepresentations are used complementarily.3.1 PlaceThe places and transitions of standard Petri nets are very general and can have a wide variety of meanings.From the viewpoint of reactive and concurrent programs, places are classi�ed into four types (stateelements, slots, ags, and ports) as shown in Fig. 62.
state
element slot portflag

:attribute

:attribute

initial
assignment

Figure 62. Four Types of Places� state element: A place which represents the local state of a system. This type of place has atmost one token (i.e. it is safe). If the place has one token, it means that the system stays in thelocal state (called \the state element is active"). Otherwise, it means that the system does notstay in the local state (called \the state element is inactive"). The state elements are graphicallyrepresented by circles. Initial assignment of active state elements is represented by arrows startingfrom bold dots.14 MENDEL net uses a term process instead of task.

Chapter 7: MENDEL Net 112� slot: A place that represents data and database on a static storage. This type of place hasconstantly one token. The slots are graphically represented by horizontal bars similar to the datastores in Data Flow Diagram.� ag: A place that represents a Boolean variable on a static storage. If the place has a token, theag is true, otherwise false. The ags are often used for process synchronization, that is, used asevent ags. The ag is graphically represented by combination of two horizontal bars and a circle.� port: A place that represents an in�nite bu�er necessary for modeling data ow and asynchronouscommunication. Furthermore, the port may have several attributes which are used as indexes oftokens. For example, a token pushed with an attribute :att can be popped with :att. Each indexorganizes a FIFO queue. The ports are graphically represented by ellipses.This classi�cation produces informative structures utilized in Petri net design, analysis, understanding,and code generation. These four types of places are textually declared as follows.states([<state_element_name>,...],[<initial_state_element_name>,...]) ;slots([<slot_name>(<initial_value>),...]) ;flags([<flag_name>(<initial_value>),...]) ;ports([<port_name>(<initial_buffer>),...]) ;Example 12 (Place Declaration)states([s1,s2,s3],[s1]) ;slots([slot1(10),slot2(ok)]) ;flags([f1(true),f2(false),f3(true)]) ;ports([p1([]),p2([1,1,2]),p3([])]) ;3.2 TransitionIn MENDEL net, the transition is called a method for historical reasons. A method is graphicallyrepresented by a rectangle. The method's �ring conditions and actions are described in detail by theinscription language based on a logic programming language LPL15 . Therefore, a MENDEL net is a kindof high-level Petri net, where the individual tokens are represented in logic program terms (atom, integer,logical variable, and list), and the conditions and actions are described with guards and actions of LPLclauses, respectively. The textual form of a method follows:method(<method_name>, <exchange_term>,<input_list>,<output_list>) :-<guard> | <action> ;<guard> ::= <LPL predicate>, <LPL predicate>, ...<action> ::= <LPL predicate>, <LPL predicate>, ...The exchange term is used for synchronous communication which is described later. The input listand the output list mean a list of input places and a list of output places of the method, respectively.As the slot and port have individual tokens, they are described in the form: hslot namei(htermi) andhport namei(htermi). Regarding ports, attributes can be used to identify individual tokens in the form:hport namei : hattributei(htermi). In MENDEL net, there is no weight function associated with arcs, andthus, during �ring, just one individual token is taken from an input port and just one token is deliveredto an output port. The propagation of token information is done by uni�cation of logic program termsof tokens in the same manner as in Prolog. In hguardi, only LPL predicates which have no side-e�ectare available.A �ring rule of the MENDEL net is de�ned as follows.Enabled Method Search: Search all enabled methods satisfying the following conditions.� All input state elements of the method are active.15 In MENDELS ZONE, the concurrent logic programming language KL1 [Ueda 90, Chikayama 92] is actually used as ainscription language. However, we can regard the inscription language as Prolog because concurrency of KL1 does notplay an important role in MENDEL net. Here, we call it simply Logic Programming Language (LPL).

Chapter 7: MENDEL Net 113� All input ags of the method coinside with Boolean value of ags. (flag $ true, -flag $false)� Each term of the input slot is successfully uni�ed with the term described in the method.When the term of the method is variable, the value of the input slot term is assigned to thevariable, and then is referred in the guard and action part.� Each input port has at least one token. When the port has attributes, there is one token withthe same attribute that the method speci�es. Each term of the token is successfully uni�edwith the term described in the method. When the term of the method is variable, the valueof the input port term is assigned to the variable, and then is referred in the guard and actionpart.� The guard condition is true for the assigned variables.Method Selection: When there are plural enabled methods, select the upper one in the program text.Method Execution: A selected method is executed as follows.� Evaluate an action part of the method.� Make all input state elements inactive, and make all output state elements active.� Make Boolean value of ags coinside with the output ags. (flag $ true, -flag $ false)� Write values evaluated in the action part on each output slot.� Pop up the uni�ed token from every input port, then push one token with the value evaluatedin the action part into every output port.A method will be briey explained by the following example.Example 13 (Method (Fig. 63))method(move, _, [ready,x(N1),y(M1),type:job(ID)], [busy,x(N2),y(M2),ack(A)]) :-N1>0, M1>0 | N2 := N1+1, M2 := M1+1, A=ok(ID) ;
move

type

ack

ready

busy

x y

:job

Figure 63. Example of MethodIn this method example, the method move is enabled if the state element ready is active, there isat least one token with an attribute job in the port type whose term can be uni�ed with a variable ID,the guard (N1 > 0 and M1 > 0) is satis�ed where terms N1 and M1 are copied from the slots x andy. When the method move is executed (�red), the body (N2 := N1 + 1;M2 := M1 + 1; A = ok(ID))is evaluated, the state element ready becomes inactive and the state element busy becomes active, theevaluated terms N2 and M2 are written in the slots x and y, and the token is removed from the porttype and a token whose value is ok(ID) is pushed into the port ack.

Chapter 7: MENDEL Net 1143.3 I/O InterfaceIn MENDEL net, I/O interface with the environment is realized by assigning device drivers to distin-guished ags, slots, and ports (called I/O ags, I/O slots, and I/O ports). Note that state elementsare not available for I/O interfaces. These distinguished places are graphically represented by doublelines of the original shapes as shown in Fig. 64. The driver assignment is done using logical addressesio tag$hlogical addressi which indicate physical I/O addresses or program pointers of the driver pro-grams. Actual device drivers are implemented as physical I/O addresses and driver programs which aredependent on the hardware. The ports of Fig. 64 are declared using io slots, io flags, and io portstextually as follows. In this example, in and out mean I/O mode.Example 14 (I/O port Example)I/O slot and port in Fig. 64 are de�ned textually as follows.io_slots([hand1(io_tag$add1,out)]) ;io_ports([hand2(io_tag$add2,in)]) ;
I/O slot (out) I/O port (in)

hand1

hand2

io_tag$add1 io_tag$add2

HardwareFigure 64. Example of I/O Slot and Port3.4 Process-Oriented Hierarchy3.4.1 OverviewIn order to enable large-scale system description, it is necessary to introduce module constructs intoPetri nets. Many practical high-level Petri nets provide module constructs. However, most of them areclassi�ed into subnet-oriented hierarchy, that is, a part of net (subnet) is regarded as a hierarchical unitand reduced to one node. This subnet-oriented module is inadequate to represent concurrent processesand process composition of reactive and concurrent systems. Therefore, we propose process-orientedhierarchy.The hierarchical unit of MENDEL nets is a process (i.e., task). A process may consist of severalsubprocesses hierarchically. While transitions of each process are executed sequentially, the process canrun concurrently according to the scheduling mechanism which will be mentioned in the following section.The interaction between hierarchical units is de�ned as synchronous and asynchronous communicationbetween processes. The process interface is a set of external ports and external methods. A process canpush/pop tokens to/from external ports of subprocesses. Since ports are in�nite bu�ers, this interactionrealizes asynchronous communication. On the other hand, a process can synchronize its own methodswith the external methods of subprocesses (i.e., �re these methods simultaneously only if they are allenabled). Since data exchange is available using the exchange term, this interaction realizes synchronouscommunication. We emphasize that this process-oriented hierarchy can directly specify a compositionalstructure of well-researched concurrent process theories, such as CCS, ACP, CSP, and LOTOS. Unlikeprocess theories, MENDEL net allows only �xed composition, and therefore dynamic process creation isunavailable.

Chapter 7: MENDEL Net 115Another characteristic feature is indirect communication between processes. In MENDEL net, pro-cesses can communicate directly only with their parent processes. Communication between processes atthe same level is realized indirectly by way of the parent process. This restriction is introduced to securethe bene�t of process reuse, since direct communication makes processes strongly interdependent.3.4.2 Graphical Representation
process1

Extensive Form Reduced Form

p1

p2

s2s1

p01

p02

s01

s02

m02

m1

m2

p01

p02

p1

p2

m02

s01

s02

m2

m01

m03

m03

m01

process1

plug

plug

plug

Figure 65. Process-Oriented HierarchyFigure 65 illustrates a simple example of a MENDEL net including a process-oriented hierarchy. Theexternal ports and external methods are represented by bold ellipses and bold rectangles, respectively.These external ports and external methods are called plugs which mean interfaces with the parent process.The communication between processes is represented by linking dotted lines between places/methods.These dotted lines are semantically interpreted as transition fusion and place fusion (Fig. 66) introducedin [Christensen 92]. In the transition fusion, fused transitions can exchange data with each other by usinghexchange termi. From the viewpoint of the parent process, a subprocess is graphically represented bya large circle.
port1 port2 port1+2

a1

a2 a3

a4 a5

a6

a1
a4

a5

a2
a3

a6

fusion

method1 method2 method1+2

a1

a2 a3

a4 a5

a6

a1
a4

a5

a2
a3

a6

fusion

Figure 66. Place and Transition FusionThe various communication mechanisms can be realized by place and transition fusion as follows.

Chapter 7: MENDEL Net 116� ag fusion: event ag, semaphore,� port fusion: mail box,� method fusion: rendezvous.Since transition fusion (method fusion) realizes synchronous communication and place fusion (ag andport fusion) realizes asynchronous communication, MENDEL net can provide two types of communicationmechanisms.3.4.3 Textual RepresentationA process textually consists of the following four parts.� Declaration part (dec:f...g)declaration of places (state elements, slots, ags, ports)� Body part (body:f...g)declaration of subprocesses (<process_name>(<id>,<method_list>,<place_list>))� Method part (meth:f...g)de�nition of methods� Junk part (junk:f...g)de�nition of LPL clauses used in methodsA syntax of a process is de�ned as follows.process <process_name>(<external_method_list>,<external_place_list>):dec:{...} ;body:{...} ;meth:{...} ;junk:{...}}. Place and transition fusion are speci�ed by argument matching. The following MENDEL net is atextual form of Fig. 65. In this example, ports p01 and p02 of the parent process \main" are fused withports p1 and p2 of the process \process1" respectively, because these arguments are matched in the bodypart. In the same manner, a method m02 of \main" is fused with a method m2 of \process1".process main([],[]):{dec:{ports([p01([]),p02([])]) ;states([s1,s2],[s1]) ;} ;body:{process1(pid1,[m02],[p01,p02]) ;} ;meth:{method(m01,_,[],[p01(v1)]) ;method(m02,v2,[s01],[s02]) ;method(m03,_,[p02(X)],[]) ;};junk:{} ;}.process process1([m2],[p1,p2]):dec:{ports([p1(_),p2(_)]) ;states([s1,s2],[s1]) ;} ;meth:{method(m1,_,[s1,p1(X)],[s2]) ;method(m2,X,[s2],[s1,p2(X)]) ;} ;junk:{} ;}.

Chapter 7: MENDEL Net 117The above example shows communication between a parent process and a child process. Communica-tion between processes at the same level (�rst cousin processes) is described as follows. In this example,the method m1 play the role of communication channel. In the body part, each process is given di�erentprocess identi�cation (e.g., pid1, pid2) which makes it possible to create plural instances of the sameprocess.process main([],[]):{dec:{ports([p1([]),p2([])]) ;} ;body:{process1(pid1,[],[p1]) ;process1(pid2,[],[p2]) ;} ;meth:{method(m1,_,[p1(X)],[p2(X)]) ;};junk:{} ;}.3.5 Process Scheduling MechanismIn specifying and programming for actual reactive and concurrent systems, a scheduling mechanism playsan important role. Without information about the scheduling mechanism, simulation and analysis of themodel may di�er from the actual situation and become imperfect in the timing aspect, and usable onlyfor checking the functional aspect. To introduce the scheduling mechanism into the Petri net model,there are three approaches.� all-in-one type: Both an application and a scheduler are described in the same Petri net model.� separation type: An application is described by Petri nets, and a scheduler is described byanother model. While the interface with the scheduler may be provided in Petri nets, the schedulingmechanism itself is out of the Petri net model. Most Petri-net-based programming languages (e.g.,C-net/SCR) are of this type.� two-level type: An application and a scheduler are described in two Petri nets of di�erent levels;base-level net and meta-level net. A base-level net describes an application and a meta-level netdescribes a scheduler.Since a Petri net is not only used to specify concurrent programs but also suitable for describingschedulers [Vallejo 94], we adopt the two-level net approach for MENDEL net (Fig. 67). Merits of thetwo-level net include model consistency as compared with the separation type and easiness of descriptionand maintenance as compared with the all-in-one type.
Base-Level
MENDEL net
(Application)

Meta-Level
MENDEL net
(Scheduler)

scheduling commands
through meta-places

process status information
shared by both levelsFigure 67. Two-Level MENDEL NetsTo specify interaction between base-level net and meta-level net, we introduce the notions of meta-place and token sharing.� meta-place: A base-level net has special places, called meta-places, which are shared with a meta-level net by place fusion, and used to communicate with a meta-level net. A token that is put intoa meta-place in the base-level net is taken out and used in a meta-level net. These tokens representscheduling commands in MENDEL nets.

Chapter 7: MENDEL Net 118� token sharing: Some tokens in a base-level net can be shared with a meta-level net. Concretely,a meta-level net can change information of shared tokens which are referred to in a based-level net.Shared tokens are used to change and refer to the status of processes from both a base-level netand a meta-level net.In the following sections, the process scheduling mechanism using two-level nets, token sharing, andmeta-place is described in detail.3.5.1 Base-Level MENDEL NetSince a base-level MENDEL net has already been described in the previous sections (3.1 { 3.4), we explainseveral scheduling commands (tokens) sent from the application (base-level net) to the scheduler (meta-level net) via meta-places. Primitive scheduling commands include sta_prc, ter_prc, and sus_prcwhich are also used in the real-time operating system �-ITRON [Fukuoka 91] are briey explained asfollows.� sta prc(Proc,Prio): start the process at a processor Proc with a priority Prio.� ter prc: terminate the process.� sus prc: suspend the process.One meta-place is established corresponding to each process. In other words, each process has onemeta-place which accepts scheduling commands from other processes or from the process itself. We callthe meta-place process place. Graphically we use a large circle representing a process for its process place(Fig. 68).
process2

m1

:ter_prc
:sta_prc(1,2)

process1
process
place

Figure 68. Process Place and Scheduling CommandsA process place is textually identi�ed as hprocess idi. When sending commands to itself, self is usedinstead of hprocess idi. For example, a MENDEL net of Fig. 68 is textually described as follows. In thisexample, p1 represents hprocess idi.process process1([],[]):{dec:{}body:{process2(p1,[],[]) ;} ;meth:{method(m1,_,[],[p1:sta_prc(1,2),self:ter_prc]) ;} ;junk:{}}.3.5.2 Meta-Level MENDEL NetA scheduler is described as a meta-level net. A meta-level net manipulates tokens representing processstatus, called process status token, which are initially created by the sta prc command. When the sta prccommand is sent to a process place in the base-level net, all initial state elements of the corresponding

Chapter 7: MENDEL Net 119process are marked with tokens which have a process status information PSI . At the same time, thecorresponding process place in the meta-level net has a process status token which has the same PSI .It is token sharing; tokens in initial state elements in the base-level net and a token in a process placein the meta-level net share the same PSI . While usual individual tokens have values, these tokens havereferences to the shared PSI (Fig. 69).
value

usual token shared token

reference reference

valueFigure 69. Shared TokenThere are the following process statuses in PSI .� PSI.meta: process status changed by a meta-level nete.g., PSI:meta 2 factive; ready; wait; suspended; wait suspended; deadg� PSI.base: process status changed by a base-level nete.g., PSI:meta 2 fenabled; disabledgA process scheduler (meta-level net) can change process status (PSI.meta), which indicates a placewith the corresponding process token. In the base-level net, only active tokens (i.e., tokens PSI of whichis active) are available at method �ring. As dead tokens can never be changed to active unless the processis restated again, they can be removed from the base-level net. On the other hand, a base-level net canchange process status, enabled and disabled. When there are enabled methods regardless of PSI.meta,a process status becomes enabled, otherwise it becomes disabled. This status information (enabled ordisabled) is used for process dispatching in the scheduler.For example, a simple scheduler is described in Fig. 70 which is based on subset of �-ITRON for asingle processor. A place process if is an interface with a base-level net which forms place fusion withprocess places. Functional inscriptions of transitions are described by LPL as follows.� t1 (dispatch): The scheduler selects a process which is in the ready place and has the highestpriority and moves it to the active place.� t2 (preempt): When a process has just become in the ready place and has higher priority thanthe process in the active place, the scheduler exchanges status of these processes.� t3 (wait): When the active process has no enabled transitions in the base-level net (i.e., PSI:base =disabled), it is moved from the active place to the wait place.� t4 (ready): When the waiting condition of the wait process is satis�ed in the base-level net (i.e.,PSI:base = enabled), it is moved from the wait place to the ready place.� t5 { t18: omitted.3.6 TimerConcerning real-time extension of Petri nets, we adopt timers prepared as a built-in subnet,sys$timer(<tid>,[],[op,up]).Here, a setting/resetting port (op(set),op(reset)) and a referring ag (up) mean the interface of thetimer.

Chapter 7: MENDEL Net 120
activeready

wait

dead

P
P

P

P

P1 P1

P2P2

process_if

ter_prc(P)

sta_prc(P)

P
P

P
P

t1

t2

t5 t4

t6

wait-
suspended

suspended

p1 p3

p2

t7

t8

t12 t13
t9

t10

t14

t15

t16

t11

t17

sus_prc(P)

rsm_prc(P)

t3

Figure 70. Simple Scheduler Example (�-ITRON)process process([],[]){dec:{states([s1,s2],[s1]) ;ports([op([])]) ;flags([up]) ;};body:{sys$timer(t1,[],[op,up]) ;} ;meth:{method(m1,_,[s1],[s2,op(set)]) ;method(m2,_,[s2,up],[s1,op(reset)]) ;} ;junk:{}}.3.7 Macro NotationsGenerally speaking, actual descriptions by Petri nets are often troublesome. Macro notations are veryuseful in practice. Here, one of the macro notations, array representation, is introduced.Array Representation Occasionally, a reactive and concurrent system contains several subprocesseshaving the same structure. For example, a lift system may have several request buttons corresponding toevery oor. It is tedious to individually write all button processes. To overcome this problem, colouredPetri nets represent these subprocesses as separate coloured tokens on a single net structure. However,this approach is not suitable for the process-oriented hierarchy, because a process is a hierarchical unitand tokens should not be a process. Therefore, a MENDEL net provides an alternative: an array to

Chapter 7: MENDEL Net 121represent several subprocesses with the same structure, in the same manner as the CSP-based concurrentprogramming language Occam. Each arrayed process can be explicitly treated as a separate computingunit that can run on a separate CPU. Figure 71 shows a graphical array representation of N identicalprocesses, whose textual form follows.processfIg(mfIg)(infIg)(outfIg) � I : f1::Ng
on {I}

out {I}

m {I}

proc {I}

Figure 71. Graphical Representation of Array4 Simple ExampleA simple example of a MENDEL net (base-level net) is shown in Fig. 72, which describes a part of acontrol program of a telephone terminal. This MENDEL net speci�es how the phone terminal becomesconnected. The MENDEL net consists of �ve processes (main, phone, calling, hook, and ring), whereprocessmain activates other processes by sending sta prc commands to process places. In these processescalling and hook, I/O ports call driver and up driver are de�ned which detect input events from theenvironment, calling and taking up the receiver, respectively. After detecting calling, a process phonereceives a token from a port call of the process calling and makes a ag bell of a process ring active. Insuccession, the process ring sets an output slot bell driver on and o� to ring a bell intermittently usinga built-in subnet sys$timer. Finally, after detecting taking up the receiver, the process phone makes theag bell inactive, then the process ring stops ringing the bell./* main */process main([],[]):{dec:{states([start],[start]) ;ports([call([]),up([])]) ;flags([bell(false)]) ;};body:{phone(p1,[],[call,up,bell]) ;calling(p2,[],[call]) ;hook(p3,[],[up]) ;ring(p4,[],[bell]) ;};meth:{method(m1,[start],[p1:sta_prc(1,4),p2:sta_prc(1,2),p3:sta_prc(1,1),p4:sta_prc(1,3)) ;};junk:{};}./* phone */process phone([],[call,up,bell]):{dec:{

Chapter 7: MENDEL Net 122

bell_driver

standby

ringing

connnected

call

up

bell t1

t2

s_off

s_on

t1t2

toptup

sys$timer

call_driver

up_driver

t1

t1 t2

p1(phone)

p3(hook)

p4(ring)

p2(calling)start

:sta_prc

:sta_prc

:sta_prc

:sta_prc

bell

bell

m1

up

up

call

call

Figure 72. Example (Telephone Terminal)

Chapter 7: MENDEL Net 123ports([call(_),up(_)]) ;flags([bell(_)]) ;states([standby,ringing,connected],[standby]) ;};body:{};meth:{method(t1,_,[standby,call(on)],[ringing,bell]) ;method(t2,_,[ringing,up(on)],[connected,-bell]) ;};junk:{};}./* calling */process calling([],[call]):{dec:{io_ports([call_driver(io_tag$call,in)]) ;ports([call(_)]) ;};body:{};meth:{method(t1,_,[call_driver(_)],[call(on)]) ;};junk:{};}./* hook */process hook([],[up]):{dec:{io_ports([up_driver(io_tag$up,in)]) ;ports([up(_)]) ;};body:{};meth:{method(t1,_,[up_driver(up)],[up(on)]) ;method(t2,_,[up_driver(_)],[]) ;};junk:{};}./* ring */process ring([],[bell]):{dec:{io_ports([bell_driver(io_tag$bell,out)]) ;ports([top([])]) ;flags([bell(_),tup(false)]) ;states([s_off,s_on][s_off]) ;};body:{sys$timer(tim,[],[top,tup]) ;};meth:{method(t1,_,[s_off,bell],[s_on,top(set),bell_driver(on)]) ;method(t2,_,[s_on,up],[s_off,bell_driver(off),top(reset)]) ;};junk:{};}.5 Related Works: Petri Nets and HierarchySeveral hierarchies in Coloured Petri Net (CPN) were proposed in [Huber 90]. They introduced thenotion of pages (i.e., net modules), substitution transitions and substitution places, where a substitutiontransition/place is a macro node and represents a subpage which contains the detail of how it actuallyperforms the activity. It means subnet-oriented net hierarchy. Only the substitution transition is adoptedin DESIGN/CPN and this version is usually called Hierarchical Coloured Petri Net (HCPN). ModularColoured Petri Net (MCPN) [Christensen 92] extends HCPN by incorporating both place and transitionfusion. A more exible form of transition fusion was also proposed by extending CPN with synchroniza-tion channels [Christensen 94]. MCPN and CPN with synchronization channels are intended to representa process-oriented net hierarchy, which is similar to the hierarchy of MENDEL nets although they have

Chapter 7: MENDEL Net 124been proposed apart from MENDEL net. Furthermore, Object Petri Net (OPN) [Lakos 95] has not only aprocess-oriented and subnet-oriented net hierarchy but also a token-oriented net hierarchy, where tokensare allowed to be subnets encapsulating their own activity 16 . Other approaches of process-oriented nethierarchy include OBJSA net [Battiston 88] and Protob [Bruno 95]. OBJSA nets combine nets with alge-braic speci�cation techniques and support process composition by transition fusion. Process compositionby transition fusion is advantageous for compositional analysis techniques. OBJSA net is similar to LO-TOS which combines CCS with algebraic speci�cation techniques, where label synchronization of LOTOSis the same as transition fusion, and G-LOTOS [Bolognesi 89, Lee 91] provides a graphical representationwith a process-oriented hierarchy of LOTOS. Protob is a high-level Petri net in which systems can bestructured according to the principles of object orientation. An object model is a system's componentand its behavior is given by a net. Objects are enabled to communicate with other objects by interfaceplaces. The structure of objects in Protob is a tree; a compound object contains other objects. Thiscompositional structure is very similar to MENDEL net. However, Protob is, if anything, a speci�cationlanguage and objects in Protob do not directly correspond to concurrent processes. Compared withthese high-level nets with process-oriented net hierarchy, MENDEL nets are strongly process-orientedbecause process scheduling mechanism and I/O devices can be explicitly speci�ed within the MENDELnet framework. In other words, MENDEL nets are intended to be a programming language rather thana speci�cation language.6 SummaryThis chapter considered a Petri net as a programming language for reactive and concurrent systems.Although several Petri-net-based programming languages for reactive and concurrent systems have beenproposed, they are short of abstraction mechanisms and there is a large gap between Petri net as aspeci�cation language and Petri net as an implementation language. On the other hand, high-level Petrinets are lacking in several important features (e.g. concurrent tasks, task communication/synchronization,I/O interface, and task scheduling) for programming reactive and concurrent systems. Therefore weproposed a high-level Petri net, MENDEL net, for reactive and concurrent systems to bridge the gapbetween a speci�cation language and an implementation language.A MENDEL net features the following properties in addition to standard Petri nets.� I/O interface,� process-oriented net hierarchy, and� task scheduling mechanism modeled by two-level net approach.MENDEL nets are used as a speci�cation and programming language in the programming environmentMENDELS ZONE.
Syntax of MENDEL Net Textual Representation<program> ::= <process> | <program><process> ::='process' <process_name> '(' <external_method_list> ',' <external_place_list> ')'':' '{' <declaration_part> ';'<body_part> ';'<method_part> ';'<junk_part> ';''}' '.'16 There have been several proposals for combining object-orientation with Petri nets. They are classi�ed into object insidenets and Petri nets inside objects; in the former tokens are objects (e.g., OPN), in the latter Petri nets are used forspecifying the behavior of individual objects (e.g., HOOD nets [Giovanni91]). In the latter approach, hierarchy is notnecessarily provided by Petri nets.

Chapter 7: MENDEL Net 125<declaration_part> ::='dec' ':' '{'<declaration_list>'}'<declaration_list> ::= <declaration> ';' | <declaration_list><declaration> ::=<state_declaration> |<slot_declaration> |<flag_declaration> |<port_declaration><state_declaration> ::='states' '(' <state_list> ',' <initial_state_list> ')'<state_list> ::='[' { <state_element_name> ',' }* <state_element_name> ']' | '[' ']'<initial_state_list> ::='[' { <state_element_name> ',' }* <state_element_name> ']' | '[' ']'<slot_declaration> ::='slots' '(' <slot_list> ')' |'io_slots' '(' <io_slot_list> ')'<slot_list> ::= '[' { <slot_name> '(' <initial_value> ')' ',' }*<slot_name> '(' <initial_value> ')' ']'| '[' ']'<io_slot_list> ::= '[' {<io_slot> ',' }* <io_slot> ']' | '[' ']'<io_slot> ::= <slot_name> '(' 'io_tag' '$' <logical_address>, <io_mode> ')'<flag_declaration> ::='flags' '(' <flag_list> ')' |'io_flags' '(' <io_flag_list> ')'<flag_list> ::= '[' { <flag_name> '(' <initial_value> ')' ',' }*<flag_name> '(' <initial_value> ')' ']'| '[' ']'<port_declaration> ::='ports' '(' <port_list> ')' |'io_ports' '(' <io_port_list> ')'<port_list> ::= '[' { <port_name> '(' <initial_value> ')' ',' }*<port_name> '(' <initial_value> ')' ']'| '[' ']'<body_part> ::= 'body' ':' '{' { <process_call> ; }* '}'<process_call> ::= <process_name> '('<process_id> ','<external_method_list> ','<external_place_list> ')'<method_part> ::= 'meth' ':' '{' { <method> ; }* '}'<method> ::= 'method(' <method_name> ',' <exchange_term> ','<input_place_list> ',' <output_place_list> ')' ':-'<guard> '|' <action><input_place_list> ::= '[' { <place> ',' }* <place> ']' | '[' ']'<output_place_list> ::= '[' { <place> ',' }* <place> ']' | '[' ']'<place> ::= <state_element> | <flag> | <slot> | <port><state_element> ::= <state_element_name>

Chapter 7: MENDEL Net 126<flag> ::= <flag_name><slot> ::= <slot_name> '(' <LPL_term> ')'<port> ::= <port_name> '(' { <LPL_term> | <attribute> ':' <LPL_term> } ')'<guard> ::= { <LPL_predicate> ',' }* <LPL_predicate><action> ::= { <LPL_predicate> ',' }* <LPL_predicate><junk_part> ::= 'junk' ':' '{' { <LPL_clause> ; }* '}'

Chapter 8Petri-Net-Oriented DesignMethodologyThis chapter proposes a design methodology for MENDEL nets. Although many Petri net tools have beenproposed, most tools support only drawing, simulation, and analysis of Petri nets; few tools support thedesign methodology for Petri nets. While Petri nets are good �nal design documents easy to understand,analyzable, and executable, it is often di�cult to write Petri nets directly in an earlier design phase whenthe system structure is obscure. A proposed design method makes a designer to construct MENDEL netsstepwise and systematically using causality matrices and temporal logic.1 Petri-Net-Oriented Design MethodologyAs mentioned in Chapter 1, Petri nets are often inadequate in an early design phase when some partsof the system structure may be obscure. Particularly, while the structures of local processes, calledelementary processes, are usually tangible and able to be easily designed, the structures of a process tocoordinate elementary processes, called coordinator process, are often obscure at �rst in a reactive andconcurrent systems. Since a Petri net is a formal language and does not permit vagueness, it is di�cultto design systems from beginning to end using only Petri net.We focus on control systems which are typical instances of reactive and concurrent systems, and thenpropose a design method for them utilizing MENDEL net and additional complementary formalisms(causality matrix and temporal logic). The causality matrix represents causality relations among systemelements. It allows vagueness (abstract level description), so a designer can stepwise re�ne the causalitymatrix from an abstract level to a concrete level. Furthermore, draft Petri nets which are synthesizedfrom the causality matrix are validated using temporal logic. By doing these stepwise re�nements, thedesigner can construct a correct MENDEL net systematically.The proposed design method consists of the following phases.1. Initially elementary processes (i.e., tangible or concrete processes) which have interfaces with con-trolled objects (environment) and manipulate them are designed by MENDEL nets.2. Coordinators (i.e., conceptual processes) are created to coordinate elementary processes and ele-mentary processes are interconnected with them by communication channels.3. Coordinators are designed by stepwise re�nement using the causality matrix, and MENDEL netsare �nally produced which represent these coordinators.4. A target system which consists of elementary processes and coordinators are described by MENDELnets and are validated by simulation, veri�cation, and adjustment.The remainder of this chapter is organized as follows. Section 2 shows a typical software architectureof control systems. The causality matrix is described in Section 3. A detail procedure of the proposeddesign method is given in Section 4. Section 5 describes a MENDEL net design example for a lift system,followed by related works and a summary in Section 6 and Section 7.127

Chapter 8: Petri-Net-Oriented Design Methodology 1282 Software Architecture of Control SystemsFirst we show a typical model of control software (Fig. 73). In this model, control software consists ofelementary processes and coordinator processes.Elementary process: This process corresponds to some controlled object in the problem domain andmanages I/O devices to control them. For example, in a plant control system, valves pumps, andmotors are controlled objects.Coordinator process: This process corresponds to a set of functions required for controlling controlledobjects. This process coordinates elementary processes to accomplish these functions. The coordi-nator may be consists of a set coordinator processes.
Controlled Objects Controller

Control
Software

Coordinator

EP

EP

EP

EP

EP

D

D

D

D

D

D

D

D

D

D

EP = elementary process, D = I/O deviceFigure 73. Model of Control Software3 Causality MatrixThe causality matrix, C=[cij], is a type of an extended incidence matrix of a Petri net (Fig. 74), whereeach entry, cij , represents a causality relation between an i-th operator (i.e., method) and a j-th operand(i.e., state element, ag, slot, port, or external method). One of unique features of the causality matrix isits wide-spectrum property that the causality relation of each entry can range from an abstract level to aconcrete level (we call this a wide-spectrum causality relation). Table 13 shows wide-spectrum causalityrelations. For example, c11=\+" of Fig. 74 is an abstract level relation representing only existence ofrelation between the operator opr1 and the operand opd1; the details of the relation are not given atthis level. On the other hand, c23=\pop:X" is a concrete level relation in which the operator opr2 popsa token from the operand opd3 and uni�es the color of the token with X (i.e., X is assigned the colorof the token). A designer stepwise re�nes operators, operands, and causality relations from an abstractlevel to a concrete level, which is regarded as a design process. The wide-spectrum causality matrix hasthe following advantages compared with graphical Petri net representations.� The binary relation in the matrix is more adequate for system element analysis in the earlier designphase. It is much easier for a designer to decide what is a local abstract relation between every twoelements than to directly draw a rigid Petri net.� A spread-sheet editor for the matrix can provide powerful editing abilities. Copying, eliminating,decomposing, browsing, focusing, and checking can be implemented more easily than by a graph-ical one. Furthermore, graphical representations are di�cult to perceive without good topological

Chapter 8: Petri-Net-Oriented Design Methodology 129
operand

operator

opd1 opd2 opd3

state

external

opd4

guard bodyport

opr1

opr2

opr3

opr4

opr5

+

+

+

in

push

pop:X

+> +

+

pp<

X>0 true

Figure 74. Causality Matrix
Table 13. Wide-Spectrum Causality RelationsLEVEL RELATION EXPLANATIONAbstract level + some relationblank no relation/unde�nedIntermediate level (1) < input/cause> output/e�ectIntermediate level (2) sync synchronizationrw read or write from/to slotpp pop or push from/to porttrans state transitionIntermediate level (3) insync synchronization with input dataoutsync synchronization with output dataread read from slotwrite write to slotpop pop from portpush push to portin reference of statefrom transition from stateto transition to stateConcrete level KL1 KL1 code

Chapter 8: Petri-Net-Oriented Design Methodology 130arrangement. Current automatic topological arrangements in Petri net tools are not yet goodenough.� The wide-spectrum property makes backtracking easier. Backtracking is inevitable in a designprocess. However, the wide-spectrum property enables the designer to manipulate only common andconsistent design documents (causality matrices) throughout the design process, which minimizesthe modi�cation e�orts in backtracking.A concrete causality matrix can be transformed straightforward into a process of MENDEL nets. Inother words, a causality matrix is a matrix-based representation of MENDEL nets which allows vaguenessand informality. Figure 75 shows an example of straightforward transformation from a matrix to a processof MENDEL nets. Remark that each matrix corresponds to one process and does not have a hierarchicalstructure in itself, which should be represented by MENDEL nets.
operand

operator

free busy data

state

external

input

guard bodyport

get

put

from

to

write:X

read:X push:Y

trueX>0

true Y:=X+1

output

state portslot

external

to

from

pop:X

free

dataget put

busy

input output

Figure 75. Transformation from a Causality Matrix to a Net4 Design MethodThe proposed design method consists of four phases; design of elementary processes (Phase 1), processinterconnection and coordinator creation (Phase 2), design of coordinators (Phase 3), and validation(Phase 4).First, Phase 1 and Phase 2 are carried out using directly MENDEL net because elementary processesare not so obscure. Then, the design of the coordinator whose structure may be obscure is done bystepwise re�nement using the wide-spectrum causality matrix. A procedure of the matrix re�nement issummarized as follows.step 1: method recognitionstep 2: port and slot recognitionstep 3: state recognitionstep 4: functional re�nement (writing LPL code)Finally, MENDEL nets are veri�ed and adjusted using PLTL, and executed visually. Figure 76 outlinesthe ow chart of the following design methodology.

Chapter 8: Petri-Net-Oriented Design Methodology 131

start

P1-S1: Find elementary processes

P1-S2: Construct MENDEL nets

P2: Interconnect subprocesses
and create coordinator

P3-S1: Recognize methods

Phase 1

Phase 2

Phase 3

P3-S2: Recognize slots and ports

P3-S3: Recognize states

P3-S4: Describe LPL code

P3-S5: Generate MENDEL net

P4-S2: Verify

stop

Phase 4

P3-R1: Backtrack

P3-R2: Refine

P3-R3:
Decompose
coordinator

P4-S3: Adjust

P4-S1: Simulate

Figure 76. Design Method (Flow Chart)

Chapter 8: Petri-Net-Oriented Design Methodology 132[Phase 1](Step 1) Find elementary processes:Find all elementary processes whose structure is well de�ned, and enumerate the methods, slots,and ports for each process. Most hardware-constrained processes are elementary. For example, cageis one of the elementary processes in a lift system, and its methods include move up, move down,open door, and close door.(Step2) Construct a MENDEL net for each elementary process:Construct a MENDEL net for each elementary process by appending the state elements and arrowsto the methods, slots, and ports listed in step 1. Then, classify each port and method as externalone which becomes a plug and is accessed from other processes or internal one.[Phase 2] Interconnect elementary processes and create a coordinator:Create a new process (parent process) that consists of the elementary processes (subprocesses). Inter-connect the plugs of these subprocesses with asynchronous communication and synchronous communica-tion. Some plugs which cannot be directly connected may remain; in this case some process is requiredto coordinate them. Create a new subprocess (the coordinator) and connect the remaining plugs to it.Note that an initial coordinator has only external ports and methods that are connected to the remainingplugs of the elementary processes.[Phase 3](Step 1) Create an initial causality matrix and recognize methods:Create an initial causality matrix of the coordinator, in which only external ports and methods,listed in phase 1, are �lled. Then, recognize all functions (method candidates) of the coordinatorand �ll them in the matrix.(Step 2) Recognize internal ports and slots:Judge existence of the causality relation between external/internal methods and external ports, and�ll abstract level judgment (+ or blank) in the matrix. Stepwise re�ne these causality relationsinto a less abstract level. This stepwise re�nement helps a designer to recognize additional internalports and slots which are necessary to re�ne the causality relations.(Step 3) Recognize state elements:Find logical state elements of the coordinator (e.g., active, sleep, waiting, busy), and add themand �ll causality relations in the matrix. In the causality relation, each method should be decidedwhether it is enabled or not in each logical state. In addition, consider the partial ordering ofmethod �ring, and introduce dummy control state elements to put method �ring in order.(Step 4) Describe method inscriptions:Describe the detailed condition and action for each method by logic programming language. Atthis point, the causality matrix reaches its most concrete level.(Step 5) Generate MENDEL net processes:Finally, generate MENDEL net processes of coordinators straightforward from the most concrete-level matrices.In addition, the following design rules are applicable during Phase 3.(Rule 1) Cause design backtracking:When any design failures or unexpected functions that require structural rearrangements are de-tected, go back to any previous steps in Phase 3.(Rule 2) Re�ne methods, slots, and ports:Decompose and modify methods, ports, and slots if they have compound functions or meanings.(Rule 3) Decompose coordinators:Decompose coordinators if the coordinator becomes too large or too complex.

Chapter 8: Petri-Net-Oriented Design Methodology 133[Phase 4] Validate constructed MENDEL nets:(Step 1) Simulation:Execute MENDEL net by a simulator, and con�rm that it works well (i.e., it satis�es your require-ments).(Step 2) Veri�cation:Specify timing constrains for the target system using PLTL which are derived from the originalinformal speci�cation. Then, verify and analyze whether the constructed MENDEL net satis�esthese PLTL constraints (e.g., deadlock-free, interlock).(Step 3) Adjustment:If the MENDEL net does not satisfy all the speci�ed PLTL constraints, the designer must adjustthe MENDEL net to satisfy them, manually using a MENDEL net editor or automatically usingthe program adjustment mechanism described in Chapter 6.5 Example: Lift Control System5.1 ProblemThis problem is a revised version of the popular problem presented for the 4th International Workshopon Software Speci�cation and Design [IWSSD 87].List Control System:One lift is to be installed in a building with M oors. The problem concerns the logic to movecages between oors according to the following constraints:� The cage has a set of buttons, one for each oor. These illuminate when pressed and cause thecage to visit the corresponding oor. The illumination is canceled when the correspondingoor is visited by the cage, or when the button is pulled out (canceling the request).� Each oor has two buttons, one to request an up-lift and another to request a down-lift.These illuminate when pressed. The illumination is canceled when a cage visits the oor andis either moving in the desired direction, or has no outstanding requests. The illuminationmay also be canceled by pulling the button out (canceling the request).5.2 Observation of actual design processThe actual design process of the lift system will be traced using MENDELS ZONE. Here, \Pi-Sj :" meansStep j of Phase i; it is an index for the design methodology.(1) P1-S1: This lift system has four elementary processes: cage, button, oor button panel, andcage button panel.(2) P1-S2: The constructed MENDEL nets of these elementary processes are shown in Fig. 77.oor button panel, and cage button panel are constructed as parent processes of buttons. How-ever, since they are very physical and require no coordinators, they ware regarded as elementaryprocesses. Remark, c = cage, f = oor, req = request, can = cancel, vis = visit.(3) P2: The top level lift system is constructed by interconnecting 3 subprocesses: cage, oor button paneland cage button panel. Here are all plugs (open, up, down, c req, c can, c vis, f req, f can, f vis)remain unconnected. Therefore we create a coordinator process, and connect remaining plugs toit (Fig. 78).(4) P3-S1: The initial causality matrix is created. It has 6 external ports and 3 external methodscorresponding to the plugs initially connected in (3). We �nd the following functions (methodcandidates) of the coordinator and enter them in the matrix:� open: open the door of the cage when the cage visits the requested oor.

Chapter 8: Petri-Net-Oriented Design Methodology 134
up

down

open

close

vis!

req can

off
on

req
can

cage
button

f_vis

f_req f_can

button button

dn_visup_vis

up_req

c_vis

c_req c_can

button
[i]

vis

req can

floor_button_panel cage_button_panelFigure 77. Elementary Processes of Lift Control System
up

down

open

req
can

coordi
nator

floor_
button_
panel
 [i]

cage_
button_
panel

cage

f_vis

f_can

f_req

c_vis

c_can

c_reqFigure 78. Process Interconnection and Coordinator Creation

Chapter 8: Petri-Net-Oriented Design Methodology 135� up: move up to the target oor.� down: move down to the target oor.� c req / f req: accept requests from the cage button panel / oor button panel.� c can / f can : delete the canceled oor from the request queue.� c vis / f vis : acknowledge the cage button panel / oor button panel when the cage arrivesat the requested oor.(5) P3-S2: Causality relations are entered at the abstract level. We recognize 3 internal slot candi-dates (req que, current f, target f) and one additional method candidate (start), and add them tothe matrix (Fig. 79).open up down c req c can c bis f req f canmethod method method port port port port portexternal external external external external external external externalopen +up +down +c req +c can +c vis +f req +f can +f visstart f vis req que current f target fport slot slot slot guard bodyexternalopen + +updownc req +c can + +c vis + +f req +f can + +f vis + + +start + +Figure 79. Causality Matrix (Abstract Level)� req que: a request queue in which all requests are stored.� current f: the number of the current oor that the cage is currently staying.� target f: the number of the target oor to which the cage will go.� start: select a target oor from the request queue.(6) P3-R2&S3: While re�ning the causality relations stepwise, we re�ne the operators and operands,and recognize new state elements. The following case shows a fragment of this re�nement andstate recognition process. When re�ning the operator c can (Fig. 80(a)), that is a local view ofthe matrix, we notice that there are two cases.Case 1: The canceled request remains in req que.Case 2: The canceled request has already been selected as target f.Here, we divide c can into c can 1 (case 1) and c can 2 (case 2), and try to re�ne each operator.Then, we recognize that the states (active and sleep) are necessary to re�ne c can 2, and introducethem. Finally, the matrix shown in Fig. 80 (b) is derived.

Chapter 8: Petri-Net-Oriented Design Methodology 136(a) Original Matrixc can req que target fport slot slot guard bodyc can pop rw read@@��(b) Re�ned Matrixc can req que target f active sleepport slot slot state state guard bodyc can 1 pop:X read:Q1, write:Q2 read:Y in X n = Y cancel r(X,Q1,Q2)c can 2 pop:X read:Y from to X = Y trueFigure 80. Causality Matrix (Re�nement Example)(7) P3-R1: We notice that we have missed the fact that the cage should stop and open the door atthe oor that is stored in the req que even if it is not a current target. Consequently, we mustbacktrack and modify the design; we must modify the method open.(8) P3-R3: The coordinator is divided into 2 coordinators (cage controller and request controller),because the matrix becomes somewhat complex; so it is natural to divide its functions into thecage controller and the request controller. During this dividing, the following interface plugs(external ports) are introduced.� start: acknowledge that the cage has started.� end: acknowledge that the cage has visited the target oor.� exit: acknowledge that the request has been canceled.� current: inform the current oor that the cage is staying.� command: command that the cage opens the door or not.Divide the matrix into new two matrices which corresponds to generated coordinator processes(cage controller and request controller).(9) P3-S3 (for cage controller): After checking for any method conicts, we introduce 9 dummycontrol state elements (active, sleep, etc.) to serialize the methods (current, command, open, pass,up, and down) to avoid the conicts.(10) P3-S5: We implement inscriptions used in the methods (e.g., cancel r of Fig. 80) which com-pletes the stepwise re�nement of the matrix. The �nal causality matrix of the cage controller isshown in Fig. 81. From this matrix, MENDEL nets of the lift system can be generated automat-ically. Fig. 82 shows the top level process (lift system), and Fig. 83 shows one of the subprocesses(cage controller). In (b), slots are hide in the display for simpli�cation, and a triangle representsOR-connection of synchronous communication.(11) We can verify at its skeleton level whether or not this system satis�es the following constraints.� Deadlock freedom of a cage:PLTL formula = 2}(open _ up _ down)� Once a k-th oor is requested, the cage eventually visits the oor and opens the door unlessthe request is not canceled:PLTL formula = 2(((c req(k) _ f req(k)) ^2(:c can(k) ^ :f can(k))) � }open(k))In this case it is fortunately assured that this system satis�es these constraints in the skeletonlevel, so no adjustments are necessary.

Chapter 8: Petri-Net-Oriented Design Methodology 137
open up down start exit end command current sleep activemethod method method port method method port port state stateexternal external external external external external external externalopen outsyncend outsync toexit insync to fromstart pop:X from tocheck1 fromcheck2 fromcurrent push:CFpass pop:COMopen outsync pop:COMcheck3check4up outsync todown outsync totarget f wait op end ch wait com move up downslot state state state state state port portopen from toend fromexitstart write:X pop:Xcheck1 read:Y tocheck2 read:Ycurrent from topass from toopen from tocheck3 read:Y from tocheck4 read:Y from toup fromdown fromc oorslot guard bodyopen true trueend true trueexit true truestart true truecheck1 read:(X,) X=Y truecheck2 read:(X,) Xn =Y truecurrent read:CF true truepass COM=pass trueopen COM=open truecheck3 read:(X,) X < Y truecheck4 read:(X,) X > Y trueup read:(X,),write:(Y,up) true Y:=X+1down read:(X,),write:(Y,down) true Y:=X-1Figure 81. Causality Matrix (Concrete Level)

Chapter 8: Petri-Net-Oriented Design Methodology 138
cage

cage_
controller

request_
controller

cage_
button_
panel

floor_
button_
panel

updown

open

start
command

current

exit

end
f_vis

f_can

f_req

c_req

c_canc_vis

Figure 82. Constructed MENDEL nets (lift system)

start

sleep

end

active ch

wait_com

current

move

pass

openopen current

command

openFigure 83. Constructed MENDEL nets (cage controller)

Chapter 8: Petri-Net-Oriented Design Methodology 1395.3 Qualitative EvaluationWe briey show our experiences of the lift system design. When we designed it using only a Petri neteditor and with no methodology, we abandoned the use of the editor and did paper works in the earlierdesign phase because backtracking caused tedious editing and rearrangement. We used a Petri net editoronly for a fair copy of the paper works. On the other hand, when we use the causality matrix and theMENDEL net editor according the proposed design method, we succeed to �nish design of the lift systemwithout escaping paper works.6 Related WorksWe believe that existing competitors to the proposed design method are RTSAD [Ward 86], OOAD[Booch 94], DARTS [Gomaa 93], PAISLey [Zave 91], STATEMATE [Harel 90], and G-LOTOS [Lee 91].We have also proposed another design methodology using structured analysis [Honiden 90]. All supportdata ow, state machine, and hierarchy. The most obvious di�erence from our approach is that these arenot directly based on Petri nets. Each approach has similar abilities in general and distinct merits anddemerit in detail. Nevertheless, we favor the Petri-net-based approach from the following reasons.� Petri net is a multi-paradigm model which can represent both ow model and state model uniformly,while design charts have to be separated into ow model and state model in other design methods.This property is e�ective to have an accurate grasp of both static and dynamic structure of systems.� This approach can take advantage of graphical representations and a variety of analysis methodswhich have been and will be provided by many Petri net researchers.Recently, several Petri-net-based design methods have been reported. There are two following typesin these methods.� Compound Type: Petri net are used only to represent state models instead of other substitutivecharts (i.e., state transition diagram or Statechart), where ow models are represented by anotherchart.� Pure Type (Net-Oriented Design Method): Petri net are used to represent causality relationsamong system elements, which include both state models and ow models. We call this type ofdesign method Net-Oriented Design Method.Pinci and Shapiro proposed a methodology in which CPN are integrated with SADT (StructuredAnalysis and Design Technique) [Pinci 91]. SADT is a sophisticated and well-used methodology forrequirement analysis [Ross 77]. Bruno also proposed a design method by combination of high-level Petrinets (Protob nets) and structure diagrams (Quid) [Bruno 95] instead of SADT. However, SADT and Quidare based on data ow diagrams and lacks the state transition feature, while our causality matrix supportsboth data ow and state transition features. Etessami's rule-based design methodology [Etessami 91] isanother Petri-net-based approach which uses Abstract Petri Net (APN). A unique feature of APN is thecombination of timed and colored Petri net. According to the rule-based design methodology, a designer�rst formalizes the speci�cation by means of a set of rules and lists attributes representing the statusof a target system. Then, he retracts places from the attributes and transitions from the rules, and�nally describes APN. Etessami's approach seems to be in the same research direction as our approach.However, Etessami's methodology is less systematic (therefore, has no computer support) and is weakerin design backtracking. In addition, APN is not hierarchical.The design method by Reisig [Reisig 92] is one of the purest Petri-net-based design method, where ituses two types of Petri nets, Channel Agency net (C/A net) and Individual Token net (I/T net). C/Anet is used only to represent static structure of the target system, while I/T net is a simple high-levelPetri net and used to static and dynamic structure. Similar to our approach, a C/A net is used in anearlier design phase, then it is re�ned stepwise into an I/T net. This design method is very interestingand promising. However, it is rough and immature in detail and has plenty of room for improvement.We are now trying to improve this method and combine it with our method [Uchihira 93b].

Chapter 8: Petri-Net-Oriented Design Methodology 1407 SummaryThis chapter has proposed a Petri-net-based design method which utilizes causality matrices and temporallogic. According to this design method, the designer can construct Petri nets by stepwise re�nement froman abstract level at the earlier design phase to a concrete level at the �nal phase. Our method can beclassi�ed into net-oriented design methods, where Petri nets are used to represent various causalityincluding data ow, control ow, and state transition. Therefore our method can be distinguished fromother popular design methods such as OOAD and RTSAD.However, net-oriented design methods are not yet mature enough to be used for practical softwaredesign as compared with other design methods. We need further experiences and deep considerationabout net-oriented design methods.

Chapter 9MENDELS ZONE: Petri-Net-BasedProgramming EnvironmentThis chapter describes MENDELS ZONE, a Petri-net-based programming environment, which is pur-posed being suitable for reactive and concurrent systems. MENDELS ZONE adopts MENDEL nets, andprovides several utilities including temporal logic veri�cation and adjustment, and computer-aided designmethod, which are mentioned in the previous chapters.1 IntroductionSince it is often troublesome for ordinary programmers to produce reactive and concurrent programsas compared with sequential programs, several kinds of CASE (Computer-Aided Software Engineering)tools are inevitable. Requirements for CASE tools for reactive and concurrent systems include editors(graphical and textual), simulators (program simulator, I/O simulator, and environment simulator),debugger, execution monitor, validation tools (veri�cation and analysis), program generater (compiler,translator, and program synthesis), performance evaluation tool, software reuse support tool (programcomponent library), and documentation tool.MENDELS ZONE [Uchihira 87, Honiden 90, Uchihira 90a] is a programming environment for reactiveand concurrent systems, which had been developed over 8 years by 3{7 persons as a part of the FifthGeneration Computer System Project (FGCS) [Furukawa 92]. It facilitates the di�cult task of concurrentprogramming for reactive and concurrent systems. MENDELS ZONE adopts a high-level Petri net,MENDEL net, as a kernel programming language. In addition to a MENDEL net editor and a compilerto the concurrent programming language, MENDELS ZONE provides two appealing features describedbelow.(1) Veri�cation and adjustment using Petri nets and temporal logic(2) Computer-aided design method for high-level Petri netsWith regard to the latter feature, MENDELS ZONE is unique compared with other Petri net toolsbecause they so far support only the drawing (graphical editor), simulation, and analysis (reachabilityand invariant analysis) of Petri nets [Feldbrugge90].The remainder of this chapter is organized as follows. First requirements for CASE tools for reactiveand concurrent systems are considered in Section 2. Overview and structure of MENDELS ZONE aregiven in Section 3. Section 4 illustrates a software development process in MENDELS ZONE. Section 5introduces a middle-scale example, followed by related works in Section 6.2 Requirements for Programming EnvironmentA programming environment consists of several constituent tools. The following tools are useful fordeveloping reactive and concurrent systems using Petri nets.141

Chapter 9: MENDELS ZONE 142� Graphical EditorAn editor is the most fundamental programming tool. In the Petri-net-based programming envi-ronment, a graphical editor is indispensable because the graphical representation of Petri net is oneof the most strong points. The recent remarkable progress of graphical user interface technologymakes it easier and less expensive to develop sophisticated graphical editors. There still remainssome room for consideration in regard to graphical manipulation of hierarchy (module) of Petrinets.� Program SynthesizerProgram synthesis is de�ned to generate an executable program from an unexecutable speci�cationsuch as temporal logic and algebraic speci�cation. It is not realistic to synthesize a whole pro-gram in actual software development. Partial program synthesis is a promising solution. Programadjustment is included in this approach.� Program Generater (Compiler or Translator)A machine-executable code should be automatically generated from graphical representation of theprogram. In particular, the cross-compiler is required in case that the execution environment di�ersfrom the programming environment. Actually, most embedded systems require the cross-compiler.� Simulator and DebuggerWhen the execution environment di�ers from the programming environment, simulation and debug-ging in the programming environment are very useful. Simulation in the programming environmentrequires not only a program execution simulator but also an I/O hardware simulator and an envi-ronment simulator.� Validation ToolValidation tools include a testing tool and a veri�cation tool. Testing is easy to apply but di�cultto cover all possible cases. On the other hand, formal veri�cation can check all possible casesby analyzing the program source code. Veri�cation is very promising for safety-critical reactivesystems. However, veri�cation is usually hard to apply ill-structured systems and very expensive.From the practical point of view, complementary use of both testing and veri�cation is e�ectiveand necessary [Uchihira 95b].� Execution MonitorAfter testing and debugging the program in the programming environment, it is also necessaryto execute and test the program in the actual execution environment as integration testing. Inthis case, execution monitor is indispensable. Especially visual execution monitor is e�ective forconcurrent systems. We emphasize that testing in the actual execution environment is not so easybecause it does not reproducible behavior. For example, errors which appear in the usual executionoften disappear when using the monitor (it is called probe e�ect).� Performance Evaluation and Real-Time Analysis ToolPerformance evaluation is important for some reactive and concurrent systems. Timed Petri netare often used for this purpose. Real-time scheduling analysis (e.g., rate monotonic analysis) is alsouseful for hard real-time systems using real-time operating systems [Stankovic 95].� Software Reuse Support ToolIn general software reuse is very e�ective to achieve high productivity. The recent programmingenvironment such as Visual Basic and Visual C++ provide powerful software reuse mechanisms.However, there are some room for consideration in regard to software reuse for reactive and con-current systems.� Requirement Analysis and Design Methodology Support ToolSupport tools used analysis and design phases are called upper CASE tool, while editor, testing anddebugging tools are called lower CASE tool. There are many upper CASE tools supporting OOADand RTSAD. However, most of them are used only for analysis and design phases and are linkedto editing, testing and debugging tools. Recently programming environments which integrate both

Chapter 9: MENDELS ZONE 143upper CASE tool and lower CASE tool are required and some have been proposed. Petri nets arepromising framework to achieve this integrated programming environment.� Documentation ToolSome documentation of the �nal product is necessary for its maintenance. The documentation toolproduces documents from program information which can be retracted in the above tools (e.g.,graphical editor), or generates documents from the source code by reverse engineering.3 MENDELS ZONEMENDELS ZONE is a CASE tool kit for concurrent programming. The kernel concurrent programminglanguage is MENDEL, which is a textual form of a MENDEL net 17 . MENDEL programs are compiledinto the concurrent logic programming language KL1 [Ueda 90, Chikayama 92] and executed on theparallel computer Multi-PSI [Taki 89] 18 . MENDEL is regarded as a user-friendly macro languageof KL1, whose purpose is similar to A'UM [Yoshida 88] and AYA [Suzaki 91]. However, MENDEL(MENDEL net) is more convenient for designers to use in designing state-transition-based reactive andconcurrent systems.MENDELS ZONE provides the following facilities.� Automatic generation of MENDEL elementary processes from algebraic speci�cation [Honiden 91a],� MENDEL-net-based programming environment backed up by design methodology [Uchihira 92b],and� Veri�cation and adjustment tool using bounded MENDEL nets and temporal logic [Uchihira 95a].
(f) Translater

KL1 Program

Multi-PSIEnvironment

(g) Animater
(Visual Monitor)

(b) MENDEL Net
Editor Verification

MEDEL Net

Temporal
Logic

Editing & Visualizing Tools

Adjustment

(e) Analyzing
Tools

Component Library
(Subnet, Process)

(a) Component
SynthesisTool

(d) Software
Reuse

(c) Causality
Matrix
Editor

Performance
Evaluation

I/OFigure 84. MENDELS ZONE (Block Diagram)Figure 84 shows a block diagram of MENDELS ZONE. These tools are implemented on Multi-PSIexcept for a causality matrix editor. We have also proposed a performance evaluation tool [Honiden 94]for MENDEL programs. However, it was not yet implemented in MENDELS ZONE. Table 14 shows howMENDELS ZONE satis�es requirements of CASE tools enumerated in the previous section.Figure 85 shows the graphical user interface of MENDELS ZONE, which consists of several subwin-dows. The designer basically constructs MENDEL nets and execute them through this interface. Thefollowing sections describe constituent tools of MENDELS ZONE in detail.17 MENDELS ZONE supports an only subset of MENDEL net, because Multi-PSI is a symbol manipulation machine, nota real-time control machine. For example, MENDELS ZONE omits scheduling facilities of MENDEL net.18 MENDEL programs can also be translated into the C language and be executed on a distributed personal computersystem [Uchihira 89b].

Chapter 9: MENDELS ZONE 144
Table 14. Requirements for CASE tools and MENDELS ZONERequirements MENDELS ZONEGraphical Editor (b)Program Synthesizer (a),(e)Program Generator (f)Simulator/Debugger |Validation Tool (e)Execution Monitor (g)Performance Evaluation |Reuse Support (d)Design Methodology (c)Documentation |(a) | (g) indicate functions of MENDELS ZONE which are shown in the block diagram (Fig. 84).

MENDELS ZONE

Message Window

I/O Definition
Editor

Process
Library

Temporal
Logic
Specification
Editor

MENDEL Net
Graphical Editor & Visual Monitor

(a)

(b)

(c)

(d)

(e)Figure 85. MENDELS ZONE (Graphical User Interface)

Chapter 9: MENDELS ZONE 1453.1 Graphical MENDEL Net Editor� MENDEL Net EditorThe designer constructs each process of MENDEL nets using a graphic editor (Fig. 85(a)) whichprovides the creation, deletion, and placement functions for ports, state elements, ags, slots,methods, arrows, and tokens. This editor also supports the hierarchical expansion and reduction ofnets, and the transition over the process-oriented hierarchy (i.e., from process to subprocess, andvice versa).� Method EditorThe method editor provides several editing functions speci�c to a high-level Petri net. Using themethod editor, the designer describes methods (their conditions and actions) in detail with KL1.Furthermore, the editor checks syntax and consistency of edited methods. This method editor isactivated by clicking the target method in the MENDEL net editor.� I/O De�nition EditorThis I/O de�nition editor (Fig. 85(b)) is used to assign I/O devices to I/O places. MENDELSZONE provides the following I/O devices.{ Files: The program reads/writes character streams from/to designated �les.{ Windows: The program reads/writes character streams from/to standard input/output win-dows.{ Lists: The program reads character streams represented as lists (e.g., [a; b; c; d; :::]).3.2 Causality Matrix EditorThis spread-sheet editor supports stepwise re�nement of the causality matrix. It provides the followingfunctions:� creation, deletion, and renaming of methods, ports, slots, and state elements,� dividing methods, ports, slots, and state elements into detailed ones,� checking whether re�ned relations are legal, and� localizing and focusing the view of relations of designer's interest.The causality matrix editor is implemented on a UNIX workstation and consists of 3 parts; a generalpurpose spread-sheet editor (Oleo), a consistency checker, and a translator.� Oleo: a free software for spread-sheet editing.� Checker checks whether the matrix data edited by Oleo are consistent.� Translator translates the matrix data into MENDEL nets.3.3 Software Reuse Support ToolReusable processes are stored in the process library (Fig. 85(c)). This library tool supports browsing andsearching. In MENDELS ZONE, processes can be not only retrieved and but also interconnected in twomain ways; manually and automatically.Manual InterconnectionThe designer selects an process from an process library and interconnects these processes with arrowsmanually. These operations are carried out graphically using the MENDEL net editor.

Chapter 9: MENDELS ZONE 146Automatic InterconnectionThe designer gives program speci�cations as a set of input/output attributes which are a kind ofI/O data type. Appropriate processes are then selected from an process library and interconnectedautomatically by pattern matching of these I/O attributes. Automatic retrieval and interconnection arecarried out, according to the following principles [Uchihira 87, Honiden 94].(1) A pair of plugs having the same attributes can be interconnected.(2) All required output attributes must be reachable from given input attributes through connectedprocesses and arrows.These automatic retrieval and interconnection can be formalized as a simple and classical planningproblem in Arti�cial Intelligence. For example, when the following attributes are given, process B, C,and D are retrieved and interconnected as shown in Fig. 86.� Input attribute a, b ;� Output attribute e ;
Process

C
Process

D

Process
A

Process
B

Process
E

Process
H

Process
F

a

a

c c

e

e

b
d

d

b

k

e

g

c

c b

k

a

input attribute input attribute

output attribute
Process Library

Retrieval

Interconnection

Figure 86. Automatic Process Retrieval and InterconnectionMore Flexible Automatic InterconnectionThis automatic retrieval and interconnection (i.e., automatic binding) seems to be not powerfulenough. The binding mechanism depends on the simple pattern matching between output and inputattribute names. In some cases, it might �nd no candidate to �t the given I/O attributes, or a lot ofcandidates in other cases. More information must be needed to select the most adequate candidate. Toovercome this problem, we adopt a kind of semantic network (called attribute network) which representsthe attribute structure and de�ne a metric to order the candidates on the semantic network. Detailtechniques are described in [Uchihira 87].3.4 Veri�cation and Adjustment ToolIn the previous chapters, compositional veri�cation and adjustment was investigated for transition sys-tems. When MENDEL nets are supposed to be bounded, veri�cation and adjustment can be also appliedto MENDEL nets, because bounded MENDEL nets are equivalent to transition systems. Therefore, onlyskeletons of MENDEL net structures are automatically retracted (detailed KL1 codes of methods are ig-nored) in MENDELS ZONE. Furthermore, every asynchronous communication should be approximatedby bounded bu�ers.

Chapter 9: MENDELS ZONE 147Then the veri�cation tool checks whether a MENDEL net satis�es the given PLTL constraints enteredby the designer using the PLTL editor (Fig. 85(d)). If the net fails to satisfy the constraints, theadjustment tool can automatically adjust (tune up) the net to satisfy the PLTL constraints by addingan arbiter process [Uchihira 90a, Uchihira 95a].We note that PQL is not used and PLTL is used as a speci�cation language in MENDELS ZONE.The reason is that the same speci�cation language must be used for both veri�cation and adjustment.Unfortunately, we do not provide compositional adjustment method for PQL. To be exact, we do not tryto provide it because we think branching time temporal logic including PQL is ill-suited for synthesisand adjustment. Veri�cation method for bounded Petri nets and temporal logic is a special case of ourmethod proposed in Chapter 4. Moreover, we can also use other e�cient veri�cation methods for PLTLafter bounded Petri nets are translated to transition systems. For example, a model checking method forPLTL [Vardi 86] is one of the most e�cient one.The veri�cation and adjustment are based on the theorem proving method (i.e., tableau construction)of PLTL that is e�ciently executed on Multi-PSI. The basic idea of parallel graph generation algorithmwhich is used in generating �nite state processes from PLTL is shown in [Patent KOUKAI H4-259071].3.5 Program Execution on Multi-PSIThe adjusted MENDEL net is translated into its textual form (MENDEL program). The MENDELprogram is compiled into a KL1 program by the MENDEL translator. The generated KL1 programcan be executed on Multi-PSI. Each Process of the MENDEL program may run on the di�erent CPU.Several compilation techniques (e.g., separate compilation) are introduced here to deal with large-scaleprograms. During execution, �ring methods blink on the visual monitor (Fig. 85(a)), and the values(colors) of the tokens are displayed on the message window (Fig. 85(d)). The designer can visually checkthat the program behaves satisfactorily.4 Software Development Process in MENDELS ZONEFig. 87 (Data Flow Diagram) and Fig. 88 (Flow Chart) show a typical software development process inMENDELS ZONE. The designer should construct a target program according to the following steps.
Informal
Specification

Petri-net Basd
Design

MENDEL
Nets

Inplementation

MENDEL
Nets

Visual
Execution

Adjustment

Validation

Temporal
Logic

MENDEL
Nets

Reuse

Reusable
Components

Verification

Figure 87. Software Development Process in MENDELS ZONE (Data Flow Diagram)(Step 1): MENDEL Net ConstructionA designer constructs a MENDEL net using the MENDEL net editor and the process library asfollows.� (Step 1-1) Construct elementary MENDEL processes basically by software reuse, whereMENDELS ZONE provides a process library and a process retrieval tool. If the library has no

Chapter 9: MENDELS ZONE 148suitable reusable MENDEL processes, MENDELS ZONE can synthesize it from a given alge-braic speci�cation. It is also possible for the designer to construct the elementary MENDELprocess by himself using the MENDEL net editor.� (Step 1-2) Interconnect MENDEL processes by communication links using the graphic editorto make a new compound MENDEL process. A large-scale program can be constructed in thiscompositional way. The designer can also make use of an automatic process interconnectionmechanism provided in MENDELS ZONE.Constructed programs are functionally-correct temporally-imperfect (FTCI) because a designerreuses programs whose possible behaviors he may not fully understand; so communication linksmay be incomplete.(Step 2): MENDEL Net Veri�cation and AdjustmentThe compositional adjustment is used in cooperation with the veri�cation. In MENDELS ZONE,the designer �rst �nds existing bugs by the veri�cation step, then adjusts the program to removethe bugs by the adjustment step.
(2-2) Verification

Start

Stop

(Step 1) MENDEL Net Construction
(1-1) Construct Elementary Processes
(1-2) Interconnect Processes

satisfiable

unsatisfiable

(2-3) Adjustment

(Step 3) Translation

(Step 4) Execution and Test

(2-1) PLTL Specification

bugFigure 88. Software Development Process in MENDELS ZONE (Flow Chart)After constructing an FCTI MENDEL net, the designer speci�es safety and liveness properties thatmust be satis�ed by MENDEL net. These properties are speci�ed by temporal logic.The veri�cation and adjustment procedure in MENDELS ZONE is as follows.� (Step 2-1) The designer gives a PLTL formula for a MENDEL net of each elementary orcompound process.� (Step 2-2)MENDELS ZONE checks whether a MENDEL net satis�es a given PLTL formula.� (Step 2-3) When it does not satisfy the PLTL formula, the adjustment method is invoked.(Step 3) and (Step 4): Concurrent Program Generation and ExecutionThe adjusted MENDEL program is compiled into a KL1 program, which can be executed on Multi-PSI. The designer can check visually that the adjusted program satis�es his expectation. If not, heshould consider two types of bugs.� Bugs in the temporal logic constraints, and

Chapter 9: MENDELS ZONE 149� Bugs in the KL1 code attached to transitions (i.e., its enable conditions and additional actions),which are ignored in translating to FSP.� Bugs hidden when translating unbounded MENDEL nets to bounded nets.5 Example: Power Plant Control SystemUsing MENDELS ZONE, we have constructed and evaluated several small-scale and middle-scale reactiveand concurrent systems including a lift control system, a machine control system for processing (i.e.,etching) printed circuit boards 19 , and a control system for a power plant 20 . This section explains amiddle-scale example of the power plant (Fig. 89) in detail.
Power Plant Controller

plant status

control
commands

Plant
DB

Control
Rule
DB

Figure 89. Power Plant Control SystemA requirement of the system is summarized as follows. A controller observes plant status continuouslyand periodically, and in response to changes of plant status it selects control commands according to thecontrol rules, then the controller sends commands back to the plant. This control cycle consists of thefollowing steps.1. The controller periodically watches current plant status and updates a plant database.2. Changes of plant status is detected by comparing the current status with the previous status in theplant database.3. The most appropriate control rule is selected based on changes of status from a control rule database.4. The selected rule is applied to derive control goals.5. To achieve the control goal, concrete commands are computed and sent to the plant.First, the designer decomposes the control software into 6 elementary processes (Fig. 90).
Plant
Simulator

Transmission

Timer

DDC

Action

MMI

Figure 90. Power Plant Control System (Process Structure)19 This was demonstrated at The National Fifth Generation Computer System Symposium 1991.20 This was demonstrated at International Conference on Fifth Generation Computer Systems 1992 [FGCS 92].

Chapter 9: MENDELS ZONE 150� Plant process (Controlled Objects)This process provides current plant status to the controller, receives control commands from thecontroller and changes the status according to the commands. In our experimental system onMulti-PSI, a plant simulator is used instead of an actual plant.� Transmission processThis process transmits plant status and control commands from/to an action process and a DDCprocess to/from the plant process.� Action processThe current plant status and previous plant status stored in the plant database are compared inthis process. The action process detects changes of the plant status, then decides which control ruleis applied. By evaluating the rule, a control goal is derived.� DDC (Direct Digital Control) processTo achieve the control goal given by the action process, concrete commands are computed and sentto the transmission process using DDC.� Timer processThis process provides real-time management to other processes.� MMI (Man-Machine Interface) processThis process provides the operator interface which includes plant status monitoring and the operatorinstruction handling.First, each process is constructed by the MENDEL net editor. Here, only the action process isexplained in detail. We suppose that the designer initially construct a MENDEL net of the actionprocess shown in Fig. 91 where data ow among ports, slots, and methods is speci�ed but control ow ismissing. Control ow is latter synthesized by program adjustment from temporal logic speci�cation.
append_data

init_act

get_from_act get_from_tim get_from_mmi

renew_DB find_changes

select_klgs

eval_klgs

unfold_klgs

plant_DB rule_DB

dist_message

newdata1 newdata2

changes

from_com from_act from_tim from_mmi

to_com to_act to_tim to_ddc to_mmi

message

trigger_klgs
eval

trigger

bypass

pre_com timer_com mmi_com

Figure 91. MENDEL net of action process

Chapter 9: MENDELS ZONE 151The action process includes several methods to access the plant database. Some of methods areshown in the textual form as follows. An action part of each method is described by KL1 predicates (e.g.,generate_new_data), which are de�ned in a junk part.method(append_data,_,[from_com(Data),pre_com(Com)],[newdata1(ND1),newdata2(ND2)]) :-true | generate_new_data(Data,Com,ND1,ND2).method(find_changes,_,[newdata2(ND),plant_DB(PDB)],[changes(CL)]) :-true | detect_changes(ND,PDB,CL).method(renew_DB,_,[newdata1(ND1),plant_DB(PDB1)],[plant_DB(PDB2)]) :-true | database_update(ND1,PDB1,PDB2).method(select_klgs,_,[changes(CL),rule_DB(RDB),mmi_com(MC)],[bypass(KLGS)]) :-true | select_klgs_from_rdb(MC,CL,RDB,KLGS).method(trigger_klgs,_,[timer_com(TC1),bypass(KLGS)],[timer_com(TC2),trigger(KLGS)]) :-TC1 = ok | TC2 = nil.method(eval_klgs,_,[trigger(KLGS),plant_DB(PDB)],[eval(NewGoal)]) :-true | evaluate_klgs(KLGS,PDB,NewGoal).For this process, the designer can specify temporal logic speci�cation using the PLTL editor. Thespeci�cation is mainly related to access control of the plant database so as to preserve consistency ofdata.� : append_data U init_actBefore initializing the plant database, no access to the database is permitted.� 2(append_data �(: renew_DB U find_changes))The plant database must not be renewed before checking the changes between current and previousstatus.� 2(append_data �(: trigger_klgs U renew_DB))After updating the plant database, rule evaluation is triggered o�.� 2(append_data �(: append_data U eval_klgs))Getting a new plant status is not permitted before rule evaluation is �nished.In this case, these constrains are obviously not satis�ed, then MENDELS ZONE adjusts the processautomatically. The adjustment does not require large computing cost (within 1 minute). As a result,5 state elements are added to the original MENDEL net to satisfy temporal logic speci�cation. Theadjusted process can be watched in Fig. 92. In this �gure, added state elements are painted halftone,and slots are not displayed for simplicity.After all elementary processes are constructed, they are interconnected with the MENDEL net editor.Figure 93 shows a top-level process in MENDELS ZONE which corresponds to the process structure ofFig. 90. In the top level, the designer can verify and adjust a MENDEL net again. In this example, heveri�es whether it is deadlock free. Actually, several deadlock states are detected. Since they are dueto bugs of elementary processes, he does not use the program adjustment at top level and debugs themmanually. A size of a �nal MENDEL net amounts to 4300 lines in MENDEL textual representation.Finally, all processes (MENDEL program) are compiled into KL1 codes (6200 lines) and executedand monitored visually on MENDELS ZONE. It is reported that development cost is cut down to halfcompared with the case that the designer implemented the same system using naked KL1 and Multi-PSI[Uraoka 92]. This cost-down results from reduction of debugging e�orts because debugging of the nakedKL1 program is troublesome for ordinary programmers.6 Related Works6.1 Comparison with STATEMATESTATEMATE is another CASE tool for reactive and concurrent systems, in which three types of charts(module-chart, activity-chart, and Statechart) are written by the designer. These charts correspond toelements of MENDEL net as shown in Table 15.We compare MENDELS ZONE with STATEMATE in regard to the following items.

Chapter 9: MENDELS ZONE 152

Figure 92. MENDELS ZONE (Adjusted Action Process)

Figure 93. MENDELS ZONE (Top-level MENDEL net)

Chapter 9: MENDELS ZONE 153Table 15. STATEMATE vs. MENDELS ZONESTATEMATE MENDELS ZONEmodule (module-chart) processcontrol activity (activity-chart) coordinatoractivity (activity-chart) methoddata store (activity-chart) slot, portstate (Statechart) statedata ow arrowcontrol ow arrowinscription language KL1� State Transition Model Complemented by Data FlowBoth MENDELS ZONE and STATEMATE adopt an extended state transition model (i.e, Petrinet and Statechart) which plays a key part in reactive control systems, while a data ow modelis also utilized complementarily. This approach is favorable in most CASE tools for reactive andconcurrent systems.� ViewpointSTATEMATE adopts three type of charts (module-chart, activity-chart, Statechart) and supports amulti-view design method using them, while MENDELS ZONE adopts one type of chart (MENDELnet) and supports a single-view design method. The multi-view design is suited for analyzingambiguous requirements in the earlier design phase and understanding outline of the systems in themaintenance phase. However, it is di�cult to keep consistency among three charts. On the otherhand, the single-view design is suited to trace dynamic behaviors in the testing and debugging phasebecause design information is represented uniformly and consistently. However, it is not easy todescribe MENDEL nets in the earlier design phase; a causality matrix is introduced in MENDELSZONE.� HierarchyWhile MENDEL net adopts only process-oriented hierarchy, STATEMATE provides several typesof hierarchy; concept-oriented hierarchy in activity-chart which is useful for top-down stepwisere�nement, and state-oriented hierarchy in Statechart which is useful to specify exception handling.On the other hand, STATEMATE does not much care about process structure as compared withMENDELS ZONE.� AnalysisSTATEMATE provides a simulation and a global state analysis tool, while MENDELS ZONEprovides veri�cation and adjustment using temporal logic. Veri�cation ability of temporal logic isstronger than global state analysis in STATEMATE. However, the analysis tools of STATEMATEis more sophisticated from user's point of view.� Code GenerationSTATEMATE generates C programs or Ada programs from the described three charts, whileMENDELS ZONE generates KL1 programs from MENDEL nets.From the above consideration, we can summarize comparison between MENDELS ZONE and STATE-MATE as follows. MENDELS ZONE and STATEMATE are generally similar, but their target in softwaredevelopment process is di�erent. MENDELS ZONE puts emphasis on the design phase where integrationand tractability with a single chart are important, while STATEMATE puts emphasis on the analysisphase where it is important to collect functions and arrange them in order from three types of charts.6.2 Comparison with Other Petri Net ToolsMost Petri net tools (DESIGN/CPN, GreatSPN, Cabernet, etc.) are used only for modeling, simulating,and analyzing systems in a prototyping phase. After �nishing the prototyping phase, a target concurrent

Chapter 9: MENDELS ZONE 154program for an actual reactive and concurrent system has to be manually reconstructed in an implemen-tation phase. Some tools can generate program source code written by standard languages. However,these are sequential programming languages. For example, Design/CPN provides the automatic gener-ation of SML (Standard ML) codes [Jensen 92], where SML is not a concurrent programming language.MENDELS ZONE can automatically generate target concurrent programs directly from high-level Petrinets where generated programs run e�ciently in the real parallel and distributed environment.7 SummaryWe have presented an overview and a system structure of MENDELS ZONE and how to constructconcurrent programs using MENDELS ZONE. MENDELS ZONE is just an experimental system in orderto adopt and evaluate novel technologies developed by us (veri�cation, adjustment, design method).Although it is immature, it is reported that in the middle-scale example the designer can constructconcurrent programs easier in MENDELS ZONE than he does it with naked KL1.Since Multi-PSI is designed for parallel symbol manipulation and not for reactive systems, MENDELSZONE is week in implementation accommodated to the actual reactive and real-time environment. Weshall implement another version of MENDELS ZONE on the other platform in future.

Chapter 10Conclusion1 Review of DevelopmentsI have proposed software development techniques for reactive and concurrent systems using Petri net andtemporal logic. These techniques include speci�cation, veri�cation, synthesis, and design methodology.Particularly, to put veri�cation and synthesis into practical, I introduced the compositional programveri�cation and compositional program adjustment. To embody and evaluate these techniques, I havealso developed a programming environment, MENDELS ZONE. MENDELS ZONE is available to thepublic as ICOT Free Software, accessible via Internet (http://www.icot.or.jp/ICOT/IFS/ifs.html)2 Current StatusMENDELS ZONE shows a typical process and a CASE environment for software development usingPetri net and temporal logic. I believe that MENDELS ZONE can play an important role as a referenceprototype of CASE tools for reactive and concurrent systems. However, since MENDELS ZONE isno more than the prototype, practical domain-speci�c CASE tools should be reconstructed based onMENDELS ZONE for actual software development. In fact, we have been constructing a CASE tool forchemical plant control systems (SAVE/SFC, ref. Chapter 5, Section 5.3), in which several techniques ofMENDELS ZONE have been adopted.Of course, some of techniques proposed in this thesis are immature and inexperienced for the actualsoftware development. The relation of Petri net and temporal logic is well researched and mature from thetheoretical point of view. However, from the practical point of view, there is still room for improvementin the e�cient veri�cation and adjustment techniques. Moreover, Petri-net-oriented design methodologyis a unexplored research subject, and our work is nothing but one of trail-blazing e�orts. Three phasenet-oriented software design method [Uchihira 97a] which we recently proposed is another trail-blazinge�ort.3 Future WorksOur future works can be summarized into the following directions.� Sophisticated Speci�cation Language{ High-level Petri Net: Although a proposed High-level Petri net (MENDEL net) has asu�cient expressive power, there is still room for improvement in easiness of describing theactual systems. An introduction of domain-speci�c macro-expressions seems to be a shorterway to the solution.{ Temporal Logic: Although several extended temporal logics handling real-time have beenproposed, there is no extended temporal logics handling controllability and observability ex-plicitly, which are essential feature of reactive systems. We are doing research on the temporallogic extended to handle controllability and observability.155

Chapter 10: Conclusion 156� Composite Program Veri�cationTo be concerned with e�cient program veri�cation based on model checking, there are other ap-proaches besides compositional veri�cation. One of them is a partial order approach, which isfull of promise and well investigated these years. It is practical to use compositional methodand partial order method case by case and complementarily mentioned in Chapter 5. Further-more, it is promising to harmonize and integrate both veri�cation and conventional validationtechniques like testing/simulation in the common CASE environment. Hypersequential program-ming [Uchihira 96c, Uchihira 97b, Uchihira 97c] is our latest challenging proposal in this direction.Hypersequential programming is intended to make actual concurrent programs highly reliable byconventional testing which is strengthened by veri�cation techniques.� Cultivation of Adjustment and Petri-Net-Based Design MethodologySince program adjustment and Petri-net-based design methodology which I proposed belong topioneer's work, it is very important to cultivate the subjects from now on. In particular, it isnecessary to apply these methods to practical examples, evaluate, and improve them.

Bibliography[Abadi 89] M. Abadi, L. Lamport, P. Wolper, Realizable and Unrealizable Speci�cations of Reac-tive Systems, 16th International Colloquium on Automata, Languages, and Programming(ICALP), Lecture Notes in Computer Science, Vol.372, Springer-Verlag, 1989.[Andrews 83] G.R. Andrews and F.B. Schneider, Concept and Notations for Concurrent Programming,ACM Computing Surveys, Vol.15, No.1, 1983.[Alur 89] R. Alur and T.A. Henzinger, A Really Temporal Logic, Proc. IEEE 30th Annual Symp.on Foundations of Computer Science (FOCS), 1989.[Alur 90] R. Alur, C. Courcoubetis, D. Dill, Model-Checking for Real-Time Systems, Proc. 5th IEEESymp. on Logic in Computer Science (LICS), 1990.[Alur 91] R. Alur and D. Dill, The Theory of Timed Automata, Real-Time: Theory and Practice,Lecture Notes in Computer Science, Vol.600, Springer-Verlag, 1991.[Arnold 92] A. Arnold, Finite Transition Systems, Masson (in French), 1992, Prentice Hall (inEnglish), 1994.[Andersen 92] H.R. Andersen and G. Winskel, Compositional Checking of Satisfaction, Conferenceon Computer-Aided Veri�cation (CAV'91), Lecture Notes in Computer Science, Vol.575,Springer-Verlag, 1991.[Battiston 88] E. Battiston, F. de Cindio, G. Mauri, OBJSA Nets: A Class of High-Level Nets havingObjects as Domains, Advances in Petri Nets, Lecture Notes in Computer Science, Vol.340,Springer-Verlag, 1988.[Barringer 84] H. Barringer, R. Kuiper, A. Pnueli, Now YouMay Compose Temporal Logic Speci�cations,Proc. 16th ACM Symp. on Theory of Computing (STOC), 51{63, 1984.[Beaten 90] J. Beaten, ed., Application of Process Algebra, Cambridge Univ. Press, 1990.[Bellettini 93] C. Bellettini, M. Felder, and M. Pezze', Merlot: A Tool for Analysis for Real-TimeSpeci�cations, Proc. of 7th Internat. Workshop on Software Speci�cation and Design(IWSSD), 1993.[Ben-Ari 83] M. Ben-Ari, A. Pnueli, Z. Manna, The Temporal Logic of Branching Time, Acta Infor-matica, 20, 1983.[Bernstein 81] F.A. Bernstein, N.Goodman, Concurrency Control in Distributed Database Systems,ACM Computing Surveys, Vol.13, No.2, 1981.[Berthomieu 91] B. Berthomieu and M. Diaz, Modeling and Veri�cation of Time Dependent SystemsUsing Time Petri Nets, IEEE Trans. on Software Engineering, Vol.17, No.3, 1991.[Boehm 76] B.W. Boehm, Software Engineering, IEEE Trans. on Computers, Dec., 1976.[Bolognesi 89] , T. Bolognesi and D.Latella, Techniques for the Formal De�nition of the G-LOTOSSyntax, 1989 IEEE Workshop on Visual Languages, 1989.[Booch 94] G. Booch, Object Oriented Design with Application, (second edition), The Ben-jamin/Cummings Publishing, 1994.157

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 158[Boudol 89] G. Boudol, V. Roy, R. de Simone, D. Vergamini, Process Calculi, From Theory to Practice:Veri�cation Tools, INRIA Report, No.1098, 1989.[Brad�eld 92] J. C. Brad�eld, Verifying Temporal Properties of Systems, Birkh�auser , 1992.[Brauer 91] W.Brauer, R.Gold, W.Vogler, A Survey of Behaviour and Equivalence Preserving Re�ne-ments of Petri Nets, Advances in Petri Nets 1990, Lecture Notes in Computer Science,Vol.493, Springer-Verlag, 1991.[Bruno 95] G. Bruno, Model-based Software Engineering, Chapman & Hall, 1995.[B�uchi 62] J.R. B�uchi, A decision method in restricted second order arithmetic, Proc. Internat. Congr.Logic, Method. and Philos. Sci., 1960, also Stanford University Press, 1962.[Burch 90] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, J. Hwang, Symbolic ModelChecking: 1020 States and Beyond, Proc. 5th IEEE Symp. on Logic in Computer Science(LICS), 1990.[Cherkasova 87] L.A.Cherkasova and V.E.Kotov, The Undecidability of Propositional Temporal Logic forPetri Nets, Computers and Arti�cial Intelligence Vol.6, No. 2, 1987.[Chikayama 88] T. Chikayama, et al. , Overview of the Parallel Inference Machine Operating System (PI-MOS), Proc. of Internat. Conf. on Fifth Generation Computer Systems 1988 (FGCS88),ICOT, 1988.[Chikayama 92] T. Chikayama, Operating System PIMOS and Kernel Language KL1, Proc. of Internat.Conf. on Fifth Generation Computer Systems 1992 (FGCS92), ICOT, 1992.[Christensen 92] S.Christensen, L.Petrucci, Towards a Modular Analysis of Coloured Petri Nets, Proc.13th Internat. Conf. on Application and Theory of Petri Nets (ICATPN), Lecture Notesin Computer Science, Vol.616, Springer-Verlag, 1992.[Christensen 94] S.Christensen, N.D. Hansen, Coloured Petri Nets Extended with Channels for Syn-chronous Communication, Proc. 15th Internat. Conf. on Application and Theory of PetriNets (ICATPN), Lecture Notes in Computer Science, Vol.815, Springer-Verlag, 1994.[Clarke 82] E.M. Clarke, and E.A. Emerson, Design and Synthesis of Synchronization Skeletons UsingBranching Time Temporal Logic, Lecture Notes in Computer Science, Vol.131, Springer-Verlag, 1982.[Clarke 86] E.M. Clarke, E.A. Emerson, and A.P. Sistla, Automatic Veri�cation of Finite-state Con-current Systems Using Temporal Logic Speci�cations, ACM Trans. on Programming Lan-guages and Systems, Vol. 8, No. 2, 1986.[Clarke 87] E.M. Clarke and O. Gr�umberg, Reaserch on Automatic Veri�cation of Finite-state Con-current Systems, Ann. Rev. Comput.Sci., 1987.2,260-290, 1987.[Clarke 89] E.M. Clarke, E.E. Long, and K.L. McMillan, Compositional Model Checking, Proc. 4thIEEE Symp. on Logic in Computer Science (LICS), 1989.[Cleaveland 93] R. Cleaveland, J. Parrow, B. Ste�en, The Concurrency Workbench: A Semantics-BasedTool for the Veri�cation of Concurrent Systems, ACM Trans. on Programming Languagesand Systems, Vol.15, No.1, 1993.[CAV 89] J. Sifakis, (Ed.), Automatic Veri�cation Methods for Finite State Systems. Lecture Notesin Computer Science, Vol.407, Springer-Verlag, 1989.[CAV 93] C. Courcoubetis (Ed.), CAV'93 Conference on Computer-Aided Veri�cation, Lecture Notesin Computer Science, Vol.697, Springer-Verlag, 1993.[CAV 94] D. L. Dill (Ed.), CAV'94 Conference on Computer-Aided Veri�cation, Lecture Notes inComputer Science, Vol.818, Springer-Verlag, 1994.[Conway 71] J. H. Conway, Regular Algebra and Finite Machines, Chapman and Hall, 1971.

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 159[Davis 90] A.M. Davis, Software Requirements Analysis & Speci�cation, Prentice Hall, 1990.[Emerson 82] E.A. Emerson and E.M. Clarke, Using Branching Time Temporal Logic to SynthesizeSynchronization Skeletons, Science of Computer Programming, 2, 1982.[Emerson 85a] E.A. Emerson and J.Y. Halpern, Decision Procedures and Expressiveness in the TemporalLogic of Branching Time, J. Computer and System Sciences, 30, 1985.[Emerson 85b] E.A. Emerson, C.-L. Lei, Modalities for Model Checking: Branching Time Strikes Back,Proc. 12th ACM Symp. on Principles of Programming Languages (POPL), 1985.[Emerson 90a] E.A. Emerson, Temporal and Modal Logic, in Handbook of Theoretical Computer Science,Volume B, Formal Methods and Semantics, The MIT Press, 1990.[Emerson 90b] E.A. Emerson and J. Srinivasan, A Decidable Temporal Logic to Reason about ManyProcesses, Proc. ACM 9th Symp. on Principle of Distributed Computing (PODC), 1990.[Etessami 91] F.S. Etessami and G.S. Hura, Rule-Based Design Methodology for Solving Control Prob-lems, IEEE Trans. on Software Engineering, Vol.17, No.3, 1991.[Fantechi 91] A. Fantechi, S. Gnesi, G. Ristori, Compositionality and bisimulation: A negative result,Information Processing Letters, 39, 109{114, 1991.[Feldbrugge90] F.Feldbrugge : \Petri Net Tool Overview 1989", Advances in Petri Nets 1989, LectureNotes in Computer Science, Vol.424, Springer-Verlag, 1990.[Felder 94] M. Felder, D. Mandrioli, A. Morzenti, Proving Properties of Real-Time Systems ThroughLogical Speci�cations and Petri Net Models, IEEE Trans. on Software Engineering, Vol.20,No.2, 1994.[FGCS 92] MENDELS ZONE, Demonstration at Internat. Conf. Fifth Generation Computer Systems(FGCS'92), 1992.[Fukuoka 91] K. Fukuoka, A. Yokozawa, K. Tamaru, Hierarchical design of a �ITRON speci�cationkernel: TR2, Proc. The Eighth TRON Project Symposium, IEEE Comput. Soc. Press,1991.[Furukawa 92] K. Furukawa, Logic programming as the integrator of the Fifth Generation ComputerSystems project, Commun. ACM, Vol.35, No.3, 82-92, 1992.[Gabrielian 91] A. Gabrielian and M.K. Franklin, Multi-level Speci�cation and Veri�cation of Real-TimeSoftware, Proc. 12th Internat. Conf. on Software Engineering (ICSE), 1990.[Galton 81] A. Galton, Temporal Logic and Computer Science: An Overview, Temporal Logics andTheir Applications (A. Galton, ed.), Academic Press, 1 { 52, 1987.[Genrich 81] H.J. Genrich and K. Lautenbach, System Modeling with High-Level Petri Nets, TheoreticalComputer Science, 13, 1981.[Ghezzi 93] C. Ghezzi, H. Felder, M. Paul, Real-Time Systems: A Survey of Approaches to FormalSpeci�cation and Veri�cation, Proc. on 4th European Software Engineering Conference(ESEC), 1993.[Giovanni91] R. Di Diovanni, Hood Nets, Advances in Petri Nets 1991, Lecture Notes in ComputerScience, Vol.524, Springer-Verlag, 1991.[Godefroid 91a] P. Godefroid, P. Wolper, A Partial Approach to Model Checking, Proc. 6th IEEE Symp.on Logic in Computer Science (LICS), 1991.[Godefroid 91b] P. Godefroid, and P. Wolper, Using Partial Orders for the E�cient Veri�cation ofDeadlock Freedom and Safety Properties, Conference on Computer-Aided Veri�cation(CAV'91), Lecture Notes in Computer Science, Vol.575, Springer-Verlag, 1991, also For-mal methods in System Design, Vol.2, No.2, Kluwer Academic Publishers, 1993.

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 160[Godefroid 96] P. Godefroid, Partial-OrderMethods for the Veri�cation of Concurrent Systems | An Ap-proach to the State-Explosion Problem |, Lecture Notes in Computer Science, Vol.1032,Springer-Verlag, 1996.[Gomaa 93] H. Gomaa, Software Design Methods for Concurrent and Real-Time Systems, Addison-Wesley , 1993.[Kawata 95] H. Kawata and N. Uchihira, Automatic Generation of Plant Simulator to Verify SequenceControl Software (in Japanese), SICE Federated Symposium on Systems and Information,Toyama, Nov., 1995.[Kawata 96] H. Kawata and N. Uchihira, Practical Program Validation for Plant Control SystemsUsing SFC and Temporal Logic, 1996 IEEE International Conference on Systems, Man,and Cybernetics (SMC'96), 1996.[Katai 82] O. Katai and S. Iwai, Construction of Scheduling Rules for Asynchronous, ConcurrentSystems Based on Tense Logic (in Japanese), Trans. of SICE, Vol. 18, No. 12, 1982.[Kojima 91] F. Kojima and T. Koike, Advanced Con�guration Tolls for DCS, ISA Trans., Vol.30,No.2, 1991.[Kanellakis 90] P. C. Kanellakis, S. A. Smolka, CCS Expressions, Finite State Processes and ThreeProblems of Equivalence, Information and Computation, 86, 1990.[Koymans 87] R. Koymans, Specifying Message Passing Systems Requires Extending Temporal Logic,in Temporal Logic in Speci�cation (B. Banieqbal, H. Barringer, A. Pnueli, eds.) LectureNotes in Computer Science, Vol.398, Springer-Verlag, 1987.[Kr�oger 87] F. Kr�oger, Temporal Logic of Programs, Springer-Verlag, 1987.[Hale 87] R. Hale, Using Temporal Logic for Prototyping: The Design of a Lift Controller, inTemporal Logic in Speci�cation (B. Banieqbal, H. Barringer, A. Pnueli, eds.) Lecture Notesin Computer Science, Vol.398, Springer-Verlag, 1987.[Harel 87a] D. Harel, Statechart: A visual formalism for complex systems, Sci. Comput. Program.,Vol.8, No.3, 1987.[Harel 87b] D. Harel, A. Pnueli, J.P. Schmidt, R. Sherman, On the Formal Semantics of Statechart,Proc. 2nd IEEE Symp. on Logic in Computer Science (LICS), 1987.[Harel 90] D. Harel, et al., STATEMATE: A Working Environment for the Development of ComplexReactive Systems, IEEE Trans. on Software Engineering, Vol.16, No.4, 1990.[Hatley 87] D. Hatley and I. Pirbhai, Strategies for Real-Time System Speci�cation, Dorset House,1987.[Hennessy 85a] M. Hennessy, and R. Milner, Algebraic Laws for Nondeterminism and Concurrency,Journal of ACM, Vol. 32, No. 1, 1985.[Hennessy 85b] M. Hennessy and C. Stirling, The Power of the Future Perfect in Program Logics,Information and Control, 67, 1985.[Hennessy 88] M. Hennessy, Algebraic Theory of Processes, MIT Press, 1988.[Henzinger 91] T. A. Henzinger, Z. Manna, A. Pnueli, Timed Transition Systems, Real-Time: Theoryand Practice, Lecture Notes in Computer Science, Vol.600, Springer-Verlag, 1991.[Hiraishi 95] K. Hiraishi and M. Nakano, On Symbolic Model Checking in Petri Nets, IEICE Trans.Fundam. Electron. Commun. Comput. Sci., Vol.E78-A, No.11, 1995.[Hoare 84] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1984.[Holzmann 91] G. J. Holzmann, Design and Validation of Computer Protocols, Prentice Hall, 1991.

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 161[Honiden 86a] S. Honiden, N. Uchihira, T. Kasuya, MENDEL: Prolog Based Concurrent Object OrientedLanguage, Proc. IEEE COMPCON'86, 1986.[Honiden 86b] S. Honiden. N. Uchihira, A. Ohsuga, and T. Kasuya, MENDEL: Meta-Inferential SystemDescription Language (in Japanese), Trans. Inf. Process. Soc. Japan, Vol. 27, No. 2, 219{217, 1986.[Honiden 90] S. Honiden, N. Uchihira, K. Matsumoto, K. Matsumura, M. Arai, An Application ofStructural Modeling and Automated Reasoning to Real-Time Systems Design, Real-TimeSystems, Vol.1, No.4, 313{331, 1990.[Honiden 91a] S. Honiden, A. Ohsuga, N. Uchihira, An Integration Environment to Put Formal Speci�-cations into Practical Use in Real-Time Systems, Proc. 6th IWSSD, 1991.[Honiden 91b] S. Honiden, N. Uchihira, K. Itoh, An Application of Arti�cial Intelligence to PrototypingProcess in Performance Design for Real-Time Systems, Proc. on 3rd European SoftwareEngineering Conference (ESEC), Lecture Notes in Computer Science, Vol.550, Springer-Verlag, 1991.[Honiden 92] S. Honiden and N. Uchihira, Net-Oriented Analysis and Design, IEICE Trans. Fundam.Electron. Commun. Comput. Sci., Vol.E75-A, No.10, 1992.[Honiden 94] S. Honiden, K. Nishimura, N. Uchihira, K. Itoh, An Application of Arti�cial Intelligenceto Object-Oriented Performance Design for Real-Time Systems, IEEE Trans. on SoftwareEngineering, Vol.20, No.11, 1994.[Honiden 96] S. Honiden, A. Ohsuga, N. Uchihira, MENDELS ZONE: A parallel program developmentsystem based on formal speci�cations, Information and Software Technology, Vol.38, 1996.[Howell 88] R.R. Howell, L.E. Rosier, and H.C. Yen, A Taxonomy of Fairness and Temporal LogicProblems for Petri Nets, Lecture Notes in Computer Science, Vol.324, Springer-Verlag,1988.[Huber 90] P. Huber, et al., Hierarchies in Coloured Petri Nets, Advances in Petri Nets 1990, LectureNotes in Computer Science, Vol.483, Springer-Verlag, 1990.[Ichikawa 85] A. Ichikawa, K. Yokoyama, and S. Kurogi, Reachability and Control of Discrete EventSystems Represented by Conict-Free Petri Nets, Proc. IEEE Internat. Symp. on Circuitsand Systems, 1985.[IEC 1131-3] IEC 1131-3, IEC International Standard for Programmable Controllers, Part 3: Program-ming Languages (IEC 1131-3), International Electrotechnical Commission, 1993.[IWSSD 87] Problem Set, in Proceedings of the 4th International Workshop on Software Speci�cationand Design (IWSSD), 1987.[Jensen 90] K. Jensen, Coloured Petri Nets: A High Level Language for System Design and Analysis,Advances in Petri Nets 1990, Lecture Notes in Computer Science, Vol.483, Springer-Verlag,1990.[Jensen 92] K. Jensen, Coloured Petri Nets, Basic Concept, Analysis Methods and Practical Use, Vol-ume 1, Springer-Verlag, 1992.[Jensen 95] K. Jensen, Coloured Petri Nets, Basic Concept, Analysis Methods and Practical Use, Vol-ume 2, Springer-Verlag, 1995.[Josko 87] B. Josko, MCTL { An Extension of CTL for Modular Veri�cation of Concurrent Systems,in Temporal Logic in Speci�cation (B. Banieqbal, H. Barringer, A. Pnueli, eds.) LectureNotes in Computer Science, Vol.398, Springer-Verlag, 1987.[Lakos 95] C. Lakos, From Coloured Petri Nets to Object Petri Nets, Proc. 16th Internat. Conf.on Application and Theory of Petri Nets (ICATPN), Lecture Notes in Computer Science,Vol.935, Springer-Verlag, 1995.

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 162[Lamport 94] L. Lamport, The Temporal Logic of Actions, ACM Trans. on Prog. Lamg. Syst., Vol.16,No.3, 1994.[Lee 91] E. S. Lee, et al., Construction and Implementation of a Speci�cation Environment SEGLBased on G-LOTOS (in Japanese), Trans. Inf. Process. Soc. Japan, Vol.32, No.3, 1991.[Lee 85] K. Lee and J. Favrel, Hierarchical Reduction Method for Analysis and Decomposition ofPetri Nets, IEEE Trans. on SMC, Vol.SMC-15, No.2, 1985.[Lynch 86] N. Lynch and M. Merritt, Introduction to the Theory of Nested Transactions, Proc.Internat. Conf. on database Theory (ICDT'86), 1986.[Lynch 88] N. Lynch and M. Tuttle, Introduction to Input/Output Automata, MIT Technical ReportMIT/LCS/TM-373, 1988.[Marsan 86] M. Ajmone Marsan, G.Balbo and G.Conte, Performance Models of Multiprocessor Sys-tems, The MIT Press, 1986.[Marsan 95] M. Ajmone Marsan, G. Balbo and G. Conte, S. Donatelli, and G. Franceschinis, Modelingwith Generalized Stochastic Petri Nets, John Wiley & Sons, 1995.[McMillan 93] K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.[Manna 81a] Z. Manna and A. Pnueli, Veri�cation of Concurrent Programs, Part I: The TemporalFramework, Stanford University Technical Report, No.STAN-CS-81-836, 1981.[Manna 81b] Z. Manna and A. Pnueli, Veri�cation of Concurrent Programs, Part II: Temporal ProofPrinciples, Stanford University Technical Report, No.STAN-CS-81-843, 1981.[Manna 84] Z.Manna and P.Wolper, Synthesis of Communicating Processes from Temporal Logic Spec-i�cation, ACM Trans. Program. Lang. & Syst., Vol. 6, No. 1, pages 68 - 93, 1984.[Manna 92] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concurrent Systems -speci�cation -, Springer-Verlag , 1992.[Milner 81] R. Milner, A Modal Characterization of Observable Machine-behaviour, Lecture Notes inComputer Science, Vol.112, Springer-Verlag, 1981.[Milner 89] R. Milner, Communication and Concurrency. Prentice Hall, 1989.[Mishra 85] B. Mishra, and E.M. Clarke, Hierarchical Veri�cation of Asynchronous Circuit UsingTemporal Logic. Theoretical Computer Science, 38, 1985.[Miyagi 88] P.E.Miyagi, K.Hasegawa, K.Takahashi, A Programming Language for Discrete Event Pro-duction Systems Based on Production Flow Schema and Mark Flow Graph, Trans. of theSociety of Instrument and Control Engineering, Vol.24, No.2, Feb. 1988.[Moszkowski 86] B.C. Moszkowski, Executing Temporal Logic Programs, Cambridge Univ. Press, 1986.[Murata 89] T. Murata, Petri Nets: Properties, Analysis and Applications, Proc. IEEE, Vol. 77, No.4, 1989.[Murata 90] T. Murata and N. Komoda, Real-Time Control Software for Transaction Processing Basedon Colored Safe Petri Net Model, Real-Time Systems, Vol.1, No.4, 299{312, 1990.[Nagao 92] Y. Nagao, et al., Petri Net Based Programming System for FMS, IEICE Trans. Fundam.Electron. Commun. Comput. Sci., Vol.E75-A, No.10, 1992.[Ostro� 90] J.S. Ostro�, Temporal Logics for Real-Time Systems Research Studies Press, 1990.[Paige 87] R. Paige, R.E.Tarjan, Three Partition Re�nement Algorithms, SIAM J. Comput., 16,No.6, 1987.[Park 81] D.Park, Concurrency and automata on in�nite sequences, Lecture Notes in ComputerScience, Vol.104, Springer-Verlag, 1981.

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 163[Patent KOUKAI H4-259071] M. Arami, N. Uchihira, Graph Generation Method, Japan Patent O�ceKOUKAI H4-259071, 1991.[Peterson 81] J.L.Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, Inc., 1981.[Pinci 91] V.O.Pinci and R.M.Shapiro, An Integrated Software Development Methodology Based onHierarchical Colored Petri Nets, Advances in Petri Nets 1991, Lecture Notes in ComputerScience, Vol.524, Springer-Verlag, Springer-Verlag , 1991.[Pinter 84] S.S. Pinter, P. Wolper, A Temporal Logic for Reasoning about Partially Ordered Compu-tations, Proc. 3rd ACM Symp. on Principles of Distributed Computing, 1984.[Plaisted 86] D. A. Plaisted, A Decision Procedure for Combinations of Propositional Temporal Logicand Other Specialized Theories, Journal of Automated Reasoning, 2, 1986.[Pnueli 77] A. Pnueli, The Temporal Logic of Programs, Proc. 18th IEEE Symp. on Foundations ofComputer Science, 1977.[Pnueli 81] A. Pnueli, Temporal Semantics of Concurrent Programs, Theoretical Computer Science,13, 1981.[Pnueli 86] A. Pnueli, Application of Temporal Logic To the Speci�cation and Veri�cation of ReactiveSystems: A survey of Current Trends, in Current Trends in Concurrency (J.W. de Back-ker, W.-P. de Roever, G. Rozenverg, eds.), Lecture Notes in Computer Science, Vol.224,Springer-Verlag, 1986.[Pnueli 89a] A. Pnueli and R. Rosner, On the Synthesis of an Asynchronous Reactive Module, 16thInternational Colloquium on Automata, Languages, and Programming (ICALP), LectureNotes in Computer Science, Vol.372, Springer-Verlag, 1989.[Pnueli 89b] A. Pnueli and R. Rosner, On the synthesis of a reactive module, Proc. 16th ACM Principleof Programming Languages (POPL), 1989.[Pnueli 90] A. Pnueli and R. Rosner, Distributed Reactive Systems are Hard to Synthesize, Proc.IEEE 31st Annual Symp. on Foundations of Computer Science (FOCS), 1990.[Ramadge 89] P.J. Ramadge and W.M. Wonham, The Control of Discrete Event Systems, Proc. IEEE,Vol.77, No.1, 81{98, 1989.[Rescher 71] N. Rescher and A. Urquhart, Temporal Logic, Springer-Verlag, 1971.[Reisig 87] W. Reisig, Petri Nets in Software Engineering, Advances in Petri Nets, Lecture Notes inComputer Science, Vol.255, Springer-Verlag, 63{96, 1987.[Reisig 91] W. Reisig, Petri Nets and Algebraic Speci�cation Theoretical Computer Science, 80, 1991.[Reisig 92] W.Reisig, A Primer in Petri Net Design, Springer-Verlag,1992.[Ross 77] D.T. Ross, Structured Analysis: A Language for Communicating Idea, IEEE Trans. onSoftware Engineering, Vol.3, No.1, 1977.[Rumbaugh 91] J.Rumbaugh, et al., Object-Oriented Modeling and Design, Prentice-Hall, 1991.[Saeki 87] M. Saeki, Non-Monotonic Propositional Temporal Logic and its Application to FormalSpeci�cations (in Japanese), Trans. Inf. Process. Soc. Japan, Vol.28, No.6, 1987.[Shatz 93] S. M. Shatz, Development of Distributed Software: Concepts and Tools, Macmillan, NewYork, 1993.[Sistla 84] A.P. Sistla, E.M. Clarke, N. Francez, A.R. Meyer, Can Message Bu�ers Be Axiomatizedin Linear Temporal Logic?, Information and Control, 63, 1984.[Stankovic 95] J.A. Stankovic, Implications of Classical Scheduling Results for Real-Time Systems, IEEEComputer, Vol.28, No.6, 1995.

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 164[Stirling 87] C. Stirling, Modal Logic for Communicating Systems, Theoretical Computer Science, 49,1987.[Stirling 89a] C. Stirling, Temporal Logic for CCS, Lecture Notes in Computer Science, Vol.354,Springer-Verlag, 1989.[Stirling 89b] C. Stirling and D. Walker, CCS, Liveness, and Local Model Checking in Linear TimeMu-calculus, Lecture Notes in Computer Science, Vol.407, Springer-Verlag, 1989.[Suzaki 91] K.Suzaki and T.Chikayama, AYA: Process-Oriented Concurrent Programming Languageon KL1 (in Japanese), Proc. KL1 Programming Workshop'91, 1991.[Suzuki 89] I. Suzuki and H. Lu, Temporal Petri Nets and Their Application to Modeling and Analysisof a Handshake Daisy Chain Arbiter, IEEE Trans. on Computers, Vol.38, No.5, 1989.[Suzuki 90] I. Suzuki, Formal Analysis of the Alternating Bit Protocol by Temporal Petri Nets, IEEETrans. on Software Engineering, Vol.16, No.11, 1990.[Taki 89] K. Taki, The FGCS Computing Architecture, Information Processing, 89, (Proc. IFIP11th World Computer Congress), 627{632, 1989.[Leeuwen 90] J. Van Leeuwen (ed.), Handbook of Theoretical Computer Science, Volme B, Formal Modelsand Semantics, The MIT Press/Elsevier, 1990.[Uchihira 87] N. Uchihira, T. Kasuya, K. Matsumoto, S. Honiden, Concurrent Program Synthesis withReusable Components Using Temporal Logic, Proc. IEEE COMPSAC'87, 1987.[Uchihira 88] N. Uchihira, K. Matsumoto, S. Honiden, H. Nakamura, MENDELS: Concurrent ProgramSynthesis System Using Temporal Logic, Proc. 6th Logic Programming Conference (K.Furukawa, et al., eds.), Lecture Notes in Computer Science, Vol.327, Springer-Verlag, 50{68, 1988.[Uchihira 89a] N. Uchihira, K. Nishimura, S. Sumida, and H. Kawata. Veri�cation and Debugging of Con-current Robot Control Programs Using Temporal Logic (in Japanese). The 3rd NationalMeeting of Japan Society of Arti�cial Intelligence, 1989.[Uchihira 89b] N. Uchihira and S. Honiden, Concurrent Programming Language Based on Petri Nets onIntelligent Distributed Processing System (in Japanese). IEICE Technical Report CPSY89-34, 1989.[Uchihira 90a] N. Uchihira, H. Kawata, K. Matsumoto, M. Ito, S. Honiden, Synthesis of ConcurrentPrograms: Automated Reasoning Complements Software Reuse, Proc. IEEE 23rd HawaiiInternational Conference on System Science (HICSS), 1990.[Uchihira 90b] N. Uchihira and S. Honiden, Veri�cation and synthesis of concurrent programs using Petrinets and temporal logic, Trans. on IEICE, Vol.E73, No.12 , 1990.[Uchihira 92a] N. Uchihira, PQL: Modal Logic for Compositional Veri�cation of Concurrent Programs(in Japanese), Trans. IEICE Vol.J75-DI, No.2 , 1992), also its english version, Systemsand Computers in JAPAN, Vol. 25, No.1, Jan., Scripta Technica (John Wiley & Sons),1994.[Uchihira 92c] N. Uchihira, Compositional synthesis for cooperating discrete event systems from modulartemporal logic speci�cations, IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,Vol.E75-A, No.3, 1992.[Uchihira 92b] N. Uchihira, M. Arami, S. Honiden, A Petri-Net-Based Programming Environment andIts Design Methodology for Cooperating Discrete Event Systems, IEICE Trans. Fundam.Electron. Commun. Comput. Sci., Vol.E75-A, No.10, 1992.[Uchihira 92d] N. Uchihira and S. Honiden, Petri Net and Temporal Logic (in Japanese), Petri nets andits Application, 240{251, SICE Publishing O�ce, 1992.

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 165[Uchihira 92e] N. Uchihira and S. Honiden, MENDELS ZONE: Petri-net-based Programming Environ-ment for Cooperative Discrete Event Systems (in Japanese), SICE 10th Workshop onDiscrete Event Systems, 21{28, Niigata, 1992.[Uchihira 93a] N. Uchihira, M. Arami, H. Kawata, Program Veri�cation for Sequence Control Systems,Toshiba Review, Vol.48, No.10, 1993.[Uchihira 93b] N. Uchihira and S. Honiden, Software Design Methodology using High-Level Petri Nets(in Japanese), SICE 12th Workshop on Discrete Event Systems, 73-80, Matsuyama, 1993.[Uchihira 95a] N. Uchihira, S. Honiden, Compositional Adjustment of Concurrent Programs to SatisfyTemporal Logic Constraints in MENDELS ZONE, IEEE 28th Hawaii International Con-ference on System Science (HICSS), 1995, also in J. Systems and Software, Vol.33, No.3,207-221, 1996.[Uchihira 95b] N. Uchihira and H. Kawata, Practical Program Validation for State-Based Reactive Con-current Systems { Harmonization of Simulation and Veri�cation {, IEICE Trans. Fundam.Electron. Commun. Comput. Sci., Vol.E78-A, No.11, 1995.[Uchihira 96a] N. Uchihira, MENDELS ZONE, Tool Presentation, Proc. 17th Internat. Conf. on Appli-cation and Theory of Petri Nets (ICATPN), Osaka, 1996.[Uchihira 96b] N. Uchihira and S. Honiden, A High-Level Petri Net for Accurate Modeling of Reactive andConcurrent Systems, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., Vol.E79-A, No.11, 1996.[Uchihira 96c] N. Uchihira, S. Honiden, T. Seki, Hypersequential Programming { A Novel Paradigmfor Concurrent Programming {, 1st International Workshop on Software Engineering forParallel and Distributed Systems, Berlin, 1996.[Uchihira 97a] N. Uchihira and S. Honiden, Three Phase Net-Oriented Software Design Method (inJapanese), Trans. Inf. Process. Soc. Japan, Vol.38, No.1, 1997.[Uchihira 97b] N. Uchihira, H. Kawata, Scenario-Based Hypersequential Programming: Concept and Ex-ample, 2nd International Workshop on Software Engineering for Parallel and DistributedSystems, Boston, 1997.[Uchihira 97c] N. Uchihira, S. Honiden, T. Seki, Hypersequential Programming | A New Paradigm forConcurrent Program Development |, IEEE Concurrency, Vol.5, No.3, 1997.[Ueda 90] K. Ueda and T. Chikayama, Design of the Kernel Language for the Parallel InferenceMachine, Comput. J., Vol.33, No.6, 494{500 (1990).[Uraoka 92] T. Uraoka, J. Yamamoto, A. Ohsuga, S. Honiden, An Algebraic Speci�cation and Veri�-cation of a Plant Control Expert System (in Japanese), IPSJ Technical Report, SE 86-15,1992.[Valk 83] R.Valk, In�nite Behavior of Petri Nets, Theoretical Computer Science, 25, 1983.[Valk 85] R.Valk and M.Jantzen, The Residue of Vector Sets with Applications to DecidabilityProblems in Petri Nets, Acta Informatica, 21, 1985.[Vallejo 94] F. Vellejo, J.A. Gregorio, M. G. Harbour, J.M. Drake, Shared Memory Multimicropro-cessor Operating System with an Extended Petri Net Model, IEEE Trans. on ParallelDistrib. Syst., Vol.5, No.7, 1994.[Valmari 90] A. Valmari, Stubborn Sets for Reduced State Space Generation, Proc. 11th Internat. Conf.on Application and Theory of Petri Nets (ICATPN), Lecture Notes in Computer Science,Vol.483, Springer-Verlag, 491{515, 1990.[Vardi 86] M.Y. Vardi and P. Wolper, An Automata-Theoretic Approach to Automatic ProgramVeri�cation, Proc. 1st IEEE Symp. on Logic in Computer Science (LICS), 1986.

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 166[Walker 90] D.J. Walker, Bisimulation and Divergence. Information and Computation, 85, 1990.[Ward 85] P. Ward and S. Mellor, Structured Development for Real-time Systems, Vol.1 { Vol.4,Prentice Hall, 1985.[Ward 86] P. Ward, The Transformation Schema: An Extension of the Data Flow Diagram toRepresent Control and Timing, IEEE Trans. on Software Engineering, Vol.12, No.2, 1986.[Winskel 90] G. Winskel, On the Compositional Checking of Validity, Proc. 1st Internat. Conf. on Con-currency Theory (CONCUR'90), Lecture Notes in Computer Science, Vol.458, Springer-Verlag, 1990.[Wolper 83a] P. Wolper, M.Y. Vardi, and A.P. Sistla, Reasoning about In�nite Computation Paths,Proc. IEEE 24th Annual Symp. on Foundations of Computer Science (FOCS), 1983.[Wolper 83b] P. Wolper, Temporal Logic Can Be More Expressive, Information and Control, 56, 1983.[Wolper 88] P. Wolper, On the Relation of Programs and Computations to Models of Temporal Logic,Temporal Logic in Speci�cation (B. Banieqbal, H. Barringer, A. Pnueli, eds.), LectureNotes in Computer Science, Vol.398, Springer-Verlag, 1987.[Wolper 93] P. Wolper and P. Godefroid, Partial-Order Methods for Temporal Veri�cation, Proc.4th Internat. Conf. on Concurrency Theory (CONCUR'93),Lecture Notes in ComputerScience, Vol.715, Springer-Verlag, 1993.[Yoshida 88] K. Yoshida and T. Chikayama, A'UM { Stream-Based Concurrent Object-Oriented Lan-guage {, Proc. Internat. Conf. on Fifth Generation Computer Systems 1988 (FGCS88),ICOT, 1988.[Yoshida 90] K. Yoshida, A'UM A Stream-Based Concurrent Object-Oriented Programming Language,Ph.D Thesis, Keio University, 1990.[Yonezaki 91] N. Yonezaki, Conceptual Modeling in MSL, Advances in Information Modeling and Knowl-edge Bases, IOS Press, 1991.[Yoneda 93] T. Yoneda, A. Shibayama, B-H. Schlinglo�, E.M. Clarke, E�cient Veri�cation of ParallelReal-Time Systems, Conference on Computer-Aided Veri�cation (CAV'93), Lecture Notesin Computer Science, Vol.697, Springer-Verlag, 1993.[Yoshimura 93] N. Yoshimura, N. Yonezaki, More Expressive Temporal Logic for Speci�cation, 5thInternat. Conf. on Software Engineering and Knowledge Engineering, 1993.[Zave 82] P. Zave, An Operational Approach to Requirements Speci�cation for Embedded Systems,IEEE Trans. on Software Engineering, Vol.8, No.3, 1982.[Zave 91] P. Zave, An Insider's Evaluation of PAISLey, IEEE Trans. on Software Engineering,Vol.17, No.3, 1991.[Zhou 92] M.C. Zhou, F. DiCesare, A. Desrochers, Hybrid Methodology for Synthesis of Petri NetModels for Manufacturing Systems, IEEE Trans. Robotics and Automation, Vol.8, No.3 ,1992.

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 167
Publications by the Author

Journals1. N. Uchihira and S. Honiden, Veri�cation and synthesis of concurrent programs using Petri nets andtemporal logic, Trans. IEICE, Vol.E73, No.12, 2001-2010, 1990.2. N. Uchihira, PQL: Modal Logic for Compositional Veri�cation of Concurrent Programs (in Japanese),Trans. IEICE, Vol.J75-DI, No.2, 76-87, 1992, also its English version, Systems and Computers inJAPAN, Vol. 25, No.1, Scripta Technica (John Wiley & Sons), 1994.3. N. Uchihira, Compositional Synthesis for Cooperating Discrete Event Systems from Modular Tem-poral Logic Speci�cations, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., Vol.E75-A,No.3, 380-391, March, 1992.4. N. Uchihira, M. Arami, S. Honiden, A Petri-Net-Based Programming Environment and its DesignMethodology for Cooperating Discrete Event Systems, IEICE Trans. Fundam. Electron. Commun.Comput. Sci., Vol.E75-A, No.10, 1335-1347, 1992.5. N.Uchihira and H. Kawata, Practical Program Validation for State-Based Reactive ConcurrentSystems { Harmonization of Simulation and Veri�cation {, IEICE Trans. Fundam. Electron.Commun. Comput. Sci., Vol.E78-A, No.11, 1995.6. N. Uchihira and S. Honiden, Compositional Adjustment of Concurrent Programs to Satisfy Tem-poral Logic Constraints in MENDELS ZONE, J. Systems and Software, Vol.33, No.3, 207-221,1996.7. N. Uchihira and S. Honiden, A High-Level Petri Net for Accurate Modeling of Reactive and Con-current Systems, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., Vol.E79-A, No.11,1797-1808, 1996.8. N. Uchihira and S. Honiden, Three Phase Net-Oriented Software Design Method (in Japanese),Trans. Inf. Process. Soc. Japan, Vol.38, No.1, 1997.9. N. Uchihira, S. Honiden, T. Seki, Hypersequential Programming| A New Paradigm for ConcurrentProgram Development |, IEEE Concurrency, Vol.5, No.3, 44-54, 1997.10. S. Honiden. N. Uchihira, A. Ohsuga, and T. Kasuya, MENDEL: Meta-Inferential System Descrip-tion Language (in Japanese), Trans. Inf. Process. Soc. Japan, Vol. 27, No. 2, 219-217, 1986.11. S. Honiden, N. Uchihira, K. Matsumoto, K. Matsumura, M. Arai, An Application of StructuralModeling and Automated Reasoning to Real-Time Systems Design, Real-Time Systems, Vol.1,No.4, 313-331, 1990.12. S. Honiden, N. Sueda, A. Hoshi, N. Uchihira, K. Mikame, Software Prototyping with ReusableComponents, J. Inf. Process. Japan, Vol. 9, No. 3, 123-129, 1986.13. S. Honiden, A. Ohsuga, and N. Uchihira, An integration method of real time SA and object orienteddesign using algebraic and temporal logic speci�cations (in Japanese) Trans. Inf. Process. Soc.Japan, Vol.33, No.2, 173-182, 1992.

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 16814. S. Honiden and N. Uchihira, Net-oriented analysis and design, IEICE Trans. Fundam. Electron.Commun. Comput. Sci., Vol.E75-A, No.10, 1317-1325, 1992.15. S. Honiden, K. Nishimura, N. Uchihira, K. Itoh, An Application of Arti�cial Intelligence to Object-Oriented Performance Design for Real-Time Systems, IEEE Trans. on Software Engineering,Vol.20, No.11, 1994.16. S. Honiden, A. Ohsuga, N. Uchihira, MENDELS ZONE: A parallel program development systembased on formal speci�cations, Information and Software Technology, Vol.38, 181{189, 1996.Conferences1. N. Uchihira, T. Kasuya, K. Matsumoto, S. Honiden, Concurrent Program Synthesis with ReusableComponents Using Temporal Logic, Proc. IEEE COMPSAC'87, Tokyo, 1987.2. N. Uchihira, K. Matsumoto, S. Honiden, and H. Nakamura, MENDELS: Concurrent ProgramSynthesis System Using Temporal Logic, Proc. the 6th Logic Programming Conference, Tokyo,1987, also in Lecture Notes in Computer Science, Vol.327, Springer-Verlag, 1988.3. N. Uchihira, H. Kawata, K. Mastumoto, M. Ito, S. Honiden, Synthesis of Concurrent Programs:Automated Reasoning Complements Software Reuse, 23rd Hawaii International Conference onSystem Science (HICSS), 1990.4. N. Uchihira and S. Honiden, Compositional Adjustment of Concurrent Programs to Satisfy Tem-poral Logic Constraints in MENDELS ZONE, Proc. IEEE 28th Hawaii International Conferenceon System Science (HICSS), 1995.5. N. Uchihira, S. Honiden, T. Seki, Hypersequential Programming { A Novel Paradigm for ConcurrentProgramming {, 1st International Workshop on Software Engineering for Parallel and DistributedSystems, Berlin, Chapman & Hall, 1996.6. N. Uchihira, H. Kawata, Scenario-Based Hypersequential Programming: Concept and Example,2nd International Workshop on Software Engineering for Parallel and Distributed Systems, Boston,IEEE Computer Society Press, 277-283, 1997.7. N. Uchihira, H. Kawata, F. Tamura, Scenario-Based Hypersequential Programming: Formulationof Parallelization, International Symposium on High Performance Computing (ISHPC), Fukuoka,Lecture Notes in Computer Science, Vol.1336, Springer-Verlag, 267-240, 1997.8. N. Uchihira, How to Make Concurrent Programs Highly Reliable { More Than State Space Analysis,International Conference on Application of Concurrency to System Design, Aizu-Wakamatsu, IEEEComputer Society Press, 16-23, 1998.9. S. Honiden, N. Uchihira, K. Mastumoto, K. Matsumura, M. Arai, An Application of StructuralModeling and Automated Reasoning to Concurrent Program Design, Proc. IEEE 22th HawaiiInternational Conference on System Science (HICSS), Vol.II: Software Track, 134-141, 1989.10. S. Honiden, A. Ohsuga, and N. Uchihira, An Integration Environment to Put Formal Speci�cationsinto Practical Use in Real-time Systems, Proc. the Sixth International Workshop on SoftwareSpeci�cation and Design (IWSSD), IEEE Comput. Soc. Press, 102-109, 1991.11. S. Honiden, N. Uchihira, and K. Itoh, An Application of Arti�cial Intelligence to PrototypingProcess in Performance Design for Real-time Systems, Proc. 3rd European Software EngineeringConference (ESEC), Lecture Notes in Computer Science, Vol.550, Springer-Verlag, 1991.12. S. Honiden, N. Uchihira, K. Matsumoto, and K. Itoh, A Prototyping Process for PerformanceDesign in Real-time Systems, Proc. InfoJapan '90, Vol.1, 103-110, North-Holland, 1990.13. H. Kawata and N.Uchihira, Practival Program Validation for Plant Control Systems Using SFC andTemporal Logic, 1996 IEEE International Conference on Systems, Man, and Cybernetics (SMC'96),1996.

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 169Articles1. S. Honiden, N. Uchihira, K. Matsumoto, Temporal Logic and Petri Nets (in Japanese), OperationsResearch, Japan Society of Operations Research, Oct., 1987.2. S. Honiden, N. Uchihira, H. Nakamura, Automatic Programming for Control Systems (in Japanese),Inf. Process. Soc. Japan, Vol.28, No.10, 1398-1404, 1987.3. K. Matsumoto, N. Uchihira, S. Honiden, Temporal Logic and their Applications (in Japanese), Inf.Process. Soc. Japan, Vol.30, No.6, 651-657, 1989.4. N. Uchihira, S. Honiden, Petri Nets and Temporal Logic (in Japanese), SICE Special Interest Groupfor Discrete Event Systems (ed.), Petri Nets and Its Applications, SICE, 1992.5. M. Aoyama, K. Hiraishi, N. Uchihira, Software Development Methodologies Based on High LevelPetri Nets (in Japanese), Computer Software, Vol.11, No.4, 3-19, Japan Society for Software Scienceand Technology (JSSST), 1994.6. N. Uchihira and H. Kawata, Exhaustive Simulation of Discrete Event Systems (in Japanese), Journalof The Society of Instrument and Control Engineers (SICE), Vol.35, No.10, 763-769, 1996.7. N. Uchihira and H. Kawata, Testing Control Programs: A Survay (in Japanese), Journal of IPSJVol.39, No.1, 19-25, 1998.8. N. Uchihira, K. Hiraishi, M. Aoyama, Petri Nets: Book and Tool Review (in Japanese), Journal ofIPSJ Vol.39, No.1, 67-70, 1998.Books1. K. Itoh, S. Honiden, N. Uchihira, Prototyping Tools (in Japanese), Keigaku Shuppan, 1987.2. M. Aoyama, N. Uchihira, K. Hiraishi, Petri Nets { Theory and Practice { (in Japanese), AsakuraShoten, 1995.

Index�-calculus, 28!-automaton, 13��!-bisimulation equivalence, 59, 93�!-bisimulation, 59�!-divergence, 59, 93abstraction, 108activity-chart, 151adjustment, 90algebraic Petri net, 110aperiodic task, 33arbiter, 91attribute network, 146AUTO/AUTOGRAPH, 16B�uchi sequential automaton, 20, 43base-level net, 117basic adjustment, 91, 96bisimulation, 59bisimulation equivalence, 60branching time temporal logic, 13, 26C-net, 110Cabernet, 16causality matrix, 127, 128, 145causality matrix editor, 145coloured Petri net (CPN), 110communicating transition systems, 22completeness, 22composition, 61compositional adjustment, 92, 98compositional veri�cation, 57, 82computation tree logic (CTL), 26concurrency control, 106concurrent tasks, 108CTL, 26, 56CTL*, 27CWB, 16DARTS, 15DESIGN/CPN, 16, 110divergence, 57dual-language approach, 13, 41event ag, 108external deadlock, 57failure, 88failure equivalence, 88, 106

fairness condition, 22FCTI program, 91FGCS, 141�nite automaton, 20�nite branching condition, 20�nite state process, 21�ring rule, 23formal method, 10formal speci�cation, 37formula, 24free state logical variable, 62function block, 109G-LOTOS, 124general temporal logic, 57general temporal logic (GTL), 57generalized stochastic Petri net, 24GTL, 57harmful nondeterminism, 90Hennessy-Milner Logic (HML), 57hierarchical synchronization supervisor, 50high-level Petri nets, 109High-level SFC, 109HML, 57HMS machine, 75hypersequential programming, 156I/O automata, 23I/O de�nition editor, 145I/O task, 33IFC, 109IHML, 89indirect communication, 115inevitably unsatis�able behavior, 22information hiding, 108initial marking, 23intended nondeterminism, 90interleaving semantics, 22internal task, 33Intuitionistic HML (IHML), 58KL1, 112, 143Kripke structure, 25ladder chart, 109legal �ring sequence, 24linear time temporal logic, 13, 25liveness property, 40170

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 171lower CASE tool, 142mail box, 108maximum �xed point operator, 63MENDEL net, 111MENDEL net editor, 145MENDEL translator, 147MENDELS ZONE, 17, 141, 143meta-level net, 117meta-place, 117method, 112method editor, 145MFG/PFS, 109minimum �xed point operator, 63model-checking, 56module-chart, 151Multi-PSI, 143multi-view design method, 153Net-Oriented Design Method, 139OBJSA net, 124observation equivalence, 57Oleo, 145OOAD, 15page, 123parameterized �!-divergence, 88partial bisimulation equivalence, 88partial bisimulation equivalence by global diver-gence, 88partial bisimulation preorder by local divergence,88partial bisimulation preorder with global diver-gence, 88partial order approach, 83, 156partial order method, 54, 83path formula, 62periodic task, 33persistent nondeterminism, 90Petri net, 23, 75Petri net language, 24Petri-net-oriented design methodology, 127place, 23place fusion, 115place procedure, 110PLTL, 25PLTL editor, 147plug, 115PQL (Process Query Language), 62predicate/transition net, 110probe e�ect, 36, 142process library, 145process logic, 57process place, 118process status information, 119process status token, 118process-oriented hierarchy, 114

process-oriented net hierarchy, 123program adjustment, 90programmable logic controller (PLC), 109programming environment, 141propositional logic, 24propositional process logic (PPL), 27Protob, 124PTSV, 56RCS, 30reactive and concurrent system, 30reactive system, 30realizable, 97reduction function, 69relabeling, 61rendezvous, 108RTSAD, 15safety property, 40satis�able behavior, 22SAVE/SFC, 81SCR, 110semaphore, 108SFC, 75, 76, 109single event condition, 26single-view design method, 153software design document (SDD), 37SPIN, 16SPQL (Strong Process Query Logic), 62SPQL formula, 62state explosion problem, 14state formula, 62Statechart, 23, 75, 151STATEMATE, 16, 151subnet-oriented hierarchy, 114subnet-oriented net hierarchy, 123substitution place, 123substitution transition, 123supervisory control, 106symbolic model checking, 54task communication, 108task scheduling, 108task synchronization, 108temporal logic, 25TFS, 30three phase net-oriented software design method,155time basic net, 24time Petri net, 24, 54timed automata, 24timed graph, 24timed transition system, 24token sharing, 117token-oriented net hierarchy, 124trace equivalence, 88transformational system, 30

N. Uchihira: Programming Environment for Reactive and Concurrent Systems 172transition, 23transition fusion, 115transition system, 19unrealizable, 97unsatis�able state, 22upper CASE tool, 142VERASQUES, 81veri�cation scope, 67visual monitor, 147

