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Abstract

H, control is one of the most effective methodologies in robust control, and much attention
has been paid to it in recent years. So far, the H, controller has been given with a dynamical
order that is equivalent to the sum of the orders of a plant and weighting functions. However it
is frequently too high to use in practice. Under these circumstances, this thesis considers the
problem of designing low-order H., controllers. It considers two kinds of approaches: a direct
one in which a low-order controller is derived directly in the process of the controller design,
and an indirect one in which a high-order controller is designed first and then approximated
to a lower-order one.

First, this thesis starts with non-standard H., control problems, which have certain key
structures for reducing the dynamical order of the controllers. A class of low-order controllers
for the non-standard H, problems is derived directly based on an algebraic operation in a
class of full-order controllers. This derivation indicates that it is possible to design low-order
controllers for problems that are reducible to one of the non-standard H., problems. So far,
people have usually avoided treating the non-standard H., problems and they have been
solved after being transformed into standard one. This study is a new attempt to utilize the
non-standard H,, problems.

Second, this thesis also shows that some representative control system design problems
are reducible to the non-standard problems, and proposes new formulations for solving these
problems. It then proposes methods of designing low-order controllers for two kinds of prob-
lems: robust servo controller design and two-degree-of-freedom controller design. It is found
that the low-order controllers can be designed based on the new formulations. Besides being
used to design low-order controllers, the new formulations make it easier to design controllers
than formulations based on the standard H,, problems.

Lastly, this thesis also considers an indirect approach that treats a specialized solution
of the numerically solved H,, controller, which is represented by a linear fractional trans-
formation of an optimized Youla parameter. In many cases the numerical approach yields
an extremely high-order Youla parameter and the H., controller becomes high order. We
propose reducing the order of the H,, controller by reducing the order of the Youla parame-
ter. One of advantages of the reduction method is that the resultant reduced-order controller

satisfies closed loop properties: internal stability and closed loop pole specification.

iii
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Notation

men

Re(c)

1G(3)]loo
BHse

lI>

>
S
=
5

set of integers

set of real numbers

set of complex numbers

set of m X n matrices on F, where F might be Z or R or C.

real part of c € C

imaginary part of ¢ € C

n X n identity matrix

zero matrix

an n X n diagonal matrix with a; as its i-th diagonal element

transpose of a matrix M € R™*"

pseudo inverse matrix of M

orthogonal complement of M

{reR" | Mzx=0}

{yeR™ | y=Mz,xeR"}

an eigenvalue of a square matrix A € R™*", where i = [1,2,--+ ,n]

the largest eigenvalue of a matrix A

the smallest eigenvalue of a matrix A

spectral radius of a matrix A

the largest singular value of a matrix A

trace of a matrix A

equivalent under nonsingular transformations

set of proper stable real rational transfer functions

H,, norm of a transfer function G(s) € RHx

set of bounded transfer functions in R H s

defined as

i = Ax + Bu

y=Cz+ Du
a system descrived with the transfer function D + C(sI — A)™1B

{seC | |s+a|=pRe(s) <0}

{seC | |s+a]<pb,Re(s)<0}

a system described with the state space equation {
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Some of transformations that will be used in this thesis are defined as follows.

For a matrix partitioned as

Gu1 G2
G p—
[ Go1 Gao ] ’

we define a linear fractinal transformation (LFT), a homographic transformation (HMT),

and a dual homographic transformation (DHM) as follows.

o If det(I — G22Q) # 0, then the LFT is defined and is denoted as
Fi(G,Q) = Gi1 + G12Q(I — G22Q) ' Gan.
o If det(G21Q + Ga2) # 0, then the HMT is defined and is denoted as

HM (G, Q) = (G11Q + G12)(G21Q + Gaa) ™t

o If det(G11 + QGa1) # 0, then the DHM is defined and is denoted as

DHM (G, Q) = (G11 + QGa1)  (G12 + QGa2).

Those transformations are related with each other by an equation:

Gia — G11G5'Gay  G11Go! } >
Fi (G, = HM _ _ ;
1 ( Q) (|: _G211G22 G211 Q

Gy G5 G ]
= DHM 12 _ 12 : , > .
([ _G?2G121 Ga1 — G22G121G11 @
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Chapter 1

Introduction

1.1 Overview of the thesis

With the advances in technology, the role of control systems has become more important and
they are required to act more precise and to perform robust in the presence of uncertain-
ties of plants. In recent years, a robust control theory has developed and high-performance
controllers have become easy to design. On the other hand, the resultant controllers are
derived with high order [55], and they are sometimes hard to implement [1]. Thus, design-
ing a low-order controller is an important problem that must be settled [1]. Although the
designing of low-order robust controllers has been the subject of many studies, it is still an
unsettled problem. In this thesis, we are devoted to the issue of designing the low-order
robust controllers.

In the first place, this thesis focuses on a non-standard H, control problem that is a key
to the low-order robust controller design. In the non-standard problem, a class of plants for
which we consider the controller design includes plants that can be stabilized with minimal-
order-observer-based feedback controllers [41, 42, 30]. Hence, it is hoped that approaching
the non-standard problem from the viewpoint of the minimal-order-observer-design enables
us to develop a method for a wider class of low-order robust controller designs. Thus, the
main result of this thesis provides a complete characterization of low-order H., controllers
for the non-standard problem.

Although, in this thesis, the non-standard problem is a fundamental topic to give methods
for designing the low-order robust controllers, it is too abstract to make the most of practically.
Hence, a question “What sorts of practical problems of robust controller design reduce to the
non-standard Ho, problem ¢ 7 may arise. To answer this question, the class of the practical
problems that are reducible to the non-standard problem should be clarified. This thesis
investigates the problems of an integral-type robust controller design and a two-degree-of-
freedom (TDF) controller design. It then proposes methods for designing the low-order H
controllers in those two kinds of problems.

This thesis also considers an indirect approach, in which a model approximation method
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is used to reduce the order of the controller. In the studies of control application, there are
many cases that have adopted the indirect approach. Nevertheless, there are few theoretical
results about the reduction of the robust controller. Hence, there is no choice but to rely
on the rule of trial and error for reducing the controller. In this thesis, we shall focus on a
numerical solution of the H, controller that is derived with the so-called Youla-parameter
approach [69, 3, 43|, where it is known that a resultant H., controller becomes high-order.
However, there is no theoretical result for reducing the order of such a controller. Under
the circumstance, this thesis proposes a way to reduce the order of the controller and gives
a sufficient condition for the approximated controller satisfies the closed loop properties:

internal stability and some closed loop pole specification.

1.2 Studies of the low-order controller design

A problem of designing the low-order controller has been an interest of many researchers
for long time, however it is still an open problem. As stated in an earlier monograph [1],
there are two approaches to designing low-order controllers for high-order plants. One is a
direct approach, in which the parameters of the low-order controller are computed by some
optimization procedure [2, 33]. The other is an indirect approach, in which a high-order
controller is designed first and then the dynamical order of the controller is reduced by using
some model approximation method [52, 18, 56].

Designing low-order controllers with the direct approach [2, 28, 57, 8, 9, 46] is a difficult
problem. However, in recent years, a numerical method [3, 16, 32] for control system design
has provided a new way for designing low-order controllers directly, and in this way the
condition for existence of a fixed-order controller is expressed with an LMI (Linear Matrix
Inequality) with a constraint of matrix rank [33, 63, 31]. Nevertheless, it is still difficult
to solve the inequality numerically because solving the inequality reduces to a non-convex
feasibility problem. Hence the approach via the numerical method requires further studies of
the numerical algorithm [57, 8, 4, 46], and it is still important that the way to derive directly
the low-order robust controller be studied from another point of view. On the other hand, the
present study slightly differs from the earlier studies. It first clarifies a class of problems for
which the low-order controllers can be designed and then analyzes some synthesis problems
that are reducible to that class.

Essentially, the controller design with evaluation of the closed loop performances and the
controller reduction with evaluation of the input-output properties of the controller itself
are independent problems [1]. Hence, it is not always true that the good approximation
of the controller in a sense of input-output properties means the good approximation of
the closed loop properties. Although many model reduction methods [1, 52, 72, 73, 62, 63]
are available, there are difficulties in preserving the closed loop performances of an original

controller. In recent years, Goddard [20] proposed a method for the controller approximation
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with preserving closed loop performances. This thesis also considers an indirect approach to
designing the low-order controller, and it treats the controller order reduction in such a way

that the required closed loop performances are assured.

1.3 The non-standard H., problems

This section briefly introduces the non-standard H., problems, which give a key to the
designing of the low-order robust controllers, and refers to past studies concerned with the

non-standard H,, problems.

1.3.1 Problem description

This thesis treats the following linear, time-invariant, finite dimensional system:

z(t) = Az(t) + Biw(t) + Bau(t)
z(t) = Chz(t) + Digu(?) ; (1.1)
( ) = ng(t) + Dgl’w( )

where z(t) € R" is the state variable, z(t) € RP! is the controlled output, y(t) € RP? is
the measurement output, w(t) € R™! is the exogenous (disturbance) input and wu(t) € R™?
is the control input. The matrices A, By, By, C1,Co, D12, D21 are real, constant and of the
appropriate dimensions. The system in (1.1) is called a generalized plant, and the system is

represented as follows.

A| B B
g = | Guls) Guals) | _
G( )_ G21(s) GQQ(S) :| o g; 19021 D012 (1.2)

The purpose of control is to design a controller K (s) that is connected with the generalized

plant as
u=K(s)y.

A closed loop system composed of the generalized plant and the controller is illustrated in

Figure 1.1. Then, the transfer function of the closed loop system is represented as

Z -— la—— W

G(s)

]
K(s)

Figure 1.1: A closed loop system

Tzw(s) = Fi (G(S)7 K(S)) :
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Remark 1.3.1 The components of w(t) are all the exogenous inputs: references, distur-
bances, sensor noise, and so on. The components of z(t) are all the signals we wish to
control: tracking errors between reference signals and plant outputs, actuator signals whose
values must be kept between certain limits, and so on. The vector y(t) contains the outputs

of all sensors. Finally u(t) contains all controlled inputs to the generalized plant.
The H, control problem is stated as follows.

Definition 1.3.1 (The Ho, control problem) Determine whether or not there exists a con-

troller K (s) such that the closed loop system is internally stable and satisfies
[Tew(8)lloo <1,
where the Hoo norm of a transfer function F(s) € RHo is defined as

[Flloe = sup Omaz [F(5)] = Sup imaa [F(jw)] -
Re(s)>0 weR

Parametrize all such controllers when one exists.

Remark 1.3.2 Many of the synthesis problems in the control engineering can be reduced
to the Ho control problem [10, 12]. For example, problems of designing controllers which
provides robust stability, robust performances, low-sensitivity, and so on are all reducible to
the Hy, problem.

1.3.2 Assumptions

In earlier papers [11, 19], the Ho, problem is considered under the following assumptions with

regard to the system (1.1).

Al
1) (A, By) is stabilizable.
2) (A,Cy) is detectable.
A2
1) rank(Dj2) = mg. (Di2 is of full column rank.)
2) rank(Da1) = pa. (D21 is of full row rank.)
A3

1) the system G12(s) has no invariant zeros on the imaginary axis.

2) the system G2;(s) has no invariant zeros on the imaginary axis.
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Assumption A1 concerns the existence of a stabilizing controller for the system (1.1). The
two parts of assumption A2 mean that there are no inputs in u which have the same effect
on the output, that the exogenous signals in w affect the states, and that the true states are
not directly measurable. Under the assumptions of A2, the assumption A3-1) is equivalent
to the condition such that

A—jw[ BQ .
rank([ o Diy ])—n—i—mg, Yw € R,

and the assumption A3-2) is equivalent to the condition such that

A—ij B1 .
rank([ o Doy })-n—i—pg, Vw € R.

(See appendix A.1.)

The system (1.1) satisfying these assumptions is called the standard generalized plant
and the corresponding H, problem is called the standard H., problem. If one of these
assumptions is not satisfied, the system (1.1) is called the non-standard generalized plant

and the corresponding H,, problem is called the non-standard H,, problem.

1.3.3 Past studies on the non-standard H,, problems

Many studies of the Hy, control treat the standard Hs, problem [11, 19], however we are
sometimes faced with the non-standard problems in which the generalized plant does not
satisfy one of the assumptions: A1, A2 and A3. This thesis especially treats the non-
standard H,, control problem where the assumption A2 is not satisfied, that is, the rank
conditions of the direct feed-through terms of the subsystems Gia(s) and Goi(s) are not
satisfied.

The non-standard problems are treated in several papers [35, 51, 60, 50, 64, 65]. Stoor-
vogel [65] and Sampei et al. [60] studied the non-standard Hs, control problems by using
the Riccati inequalities, and they derived an H,, controller of McMillan degree n which is
identical with that of the generalized plant. Kimura et al. [35] treated the non-standard Hx,
control problems by using the concept of J-lossless, and they derived the H,, controller which
is represented with a free parameter. Furthermore, the LMI approach [16, 32, 31] enabled us
to solve the controller design problems without being conscious of almost all the assumptions.

The correspondence between the non-standard H,, problem and the low-order controller
design was first pointed out by Zhang and Hosoe [71], and Stoorvogel, Sabeli and Chen [65]
respectively. Zhang et al. derived a low-order controller for the H,, problem where the
partial states of the real plant are measurable without noise. The discussion in their article
is, however, restricted to the plant in which partial states are measurable without noise and
is fairly difficult. On the other hand, Stoorvogel et al. derived a low-order controller for
the non-standard H,, problem. Their discussion bases a matrix inequality approach and

the minimal-order observer design, however, the resultant controller is not parametrized.
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Recently, Xin et al. [68] studied the designing of the low-order controller for continuous and
discrete time singular H, control problem based on LMI. However, the controller is not
parametrized with free parameters and its structure is unclear.

Besides the problem of designing the low-order controller, problems in utilizing the non-
standard H, control for practical problems have not been tackled in any study, so far. In the
application of the standard H,, problem, it is known what kind of the control problems is
reducible to the standard problem. On the other hand, the problem in the application of the
non-standard H,, control is an open problem. Thus, first, this thesis aims at constructing
a general way of designing the low-order H,, controller for the problem of the non-standard
H, control, second, it aims at clarifying what kind of practical control problems is reducible
to the non-standard problem, then a method of designing the low-order robust controller is

to be shown.

1.4 Related issue to the non-standard problem

This section looks into the non-standard H,, problem from the viewpoint of the low-order
controller design and its applications. It will give us understanding of backgrounds of discus-

sions in later sections.

1.4.1 Fundamental non-standard solution via reduced-order observer de-
sign
Consider a generalized plant that is simplified as
( 561} [An A12:||:-%'1:| [311} [321]
L= - -
[ T2 A1 A T2 By | " By |

z=C] |: 1 + Disu , (13)

T2
SRCES PINES
[92] [ O C22 T2 * I, v

where it is assumed that the triple ([ ﬁ; ﬁ;z ] , [ gz; } , [ Ip%ml C'02 , ]) is stabiliz-

able and detectable. Here, it should be noted that the matrix is of full column rank,

@)
Iml
hence the system is a generalized plant of the non-standard problem where the assumption
A2-2) is not satisfied. Although this system seems like a special case of the non-standard
generalized plant, it can be given by an equivalent transformation of the generalized plant
(1.1). In this system, it should be noted that a partial state variable z; € RP2=™ is directly
observed through the observation of a measurement output y;. In order to use information
of each state variable, there is therefore no need to estimate the partial state variable x1 and

the dynamics of the observer can be reduced. Actually, since the state variable x1 and the
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input u are available, we can describe the system in the following form.

ig = Apwy + Biaw+ [ Azr Bo | [ 'Zl }
y2 = Cooxo + I w

(1.4)

This system represents a dynamical system of the state variable xo. The detectability of the

pair <[ A Ar ] , [ Ipymy - O ]) means that the pair (Age, Ca2) is detectable. Hence,
Ay Az O Cxn

all the state variables in the system (1.3) can be estimated by using a reduced-order observer

of the form:

sz(A22—H022)i2+[A21 H | [g; } + Bosu
A O A~ I O U1 ’
= 7]=+ [0 0] 0]

where the matrix Aoy — H 99 is stable. On the other hand, from the stabilizability assumed

(1.5)

above, if all the states of the system (1.3) are estimated, the system is stabilized with a state

feedback controller of the form:
u=|F F]4%,

where Z is an estimate of the state and the feedback gain [ Fi Fy ] stabilizes the matrix
A1+ B Fy Ap+ Bo1 By

. From these, it can be verified that a reduced-order-observer-
A1 + BaaFy Ay + Bk

Plant
w
X1 Y1
u —
X2 Y2
I— ————————— I
I E X1 |
A I
O<(F)<| % ¥
I
__________ I
Controller

Figure 1.2: A closed loop system

based output feedback controller:

To = (Agg — HCY) &g + [ A H | [ g; ] + Bosu
(1.6)
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stabilizes the system (1.3), because the A-matrix of the closed loop system composed of (1.3)
and (1.6) is represented as
A+ B by Ajg Ba1 F5

A1 + BaoFy Ago Bos Iy
A1 + BooFy HC9y Age — HCo3 + By Fy

A1+ BnFy Aig+ BaFy 1w Bu B,
~ | A9y + BooFy Ay + BogFy | BooFy )

and is verified to be stable. By using the observer design, we can obtain an H, controller [15].
The closed loop system is illustrated in Figure 1.2.

Thus, the non-standard problem corresponds to a problem of the minimal-order-observer-
based controller design and is a key problem in designing a low-order robust controller. It is
well known that the standard H, controller can be given with an LFT (Linear Fractional
Transformation) of a central solution and a free parameter, and that the McMillan degree of
the solution is more than that of the generalized plant [11]. A recent paper [65] pointed out
that McMillan degree of the non-standard H., controller can be reduced to an order lower
than that of the standard controller, and that paper derived a reduced-order H, controller by
using Riccati inequality approach. This thesis aims at deriving the class of the reduced-order

H controllers by way of Riccati equation approach.

1.4.2 Integral-type low-order robust controller design

In the controller design, there are many cases where the controller is required to contain
integrators. The integral-type robust controller design is indispensable for a synthesis of the
robust servo system. However, in general, the framework of the H,, control doesn’t produce
the integral-type controller. The problem of designing the integral-type robust controller has
been studied by many researchers and many approaches based on the standard H,, control
have been proposed. On the other hand, approaches based on the non-standard H., control
have not been studied well even though the problem naturally reduces to some non-standard
H, problems. One of reasons why the approach based on the non-standard H., control is
unpopular is that the solution is complicated compared with the approach of the standard
H, control.

Let us consider an SISO system in Figure 1.3, where P(s) is a plant assumed to have
neither poles nor zeros on the imaginary axis. This assumption is relaxed in a later chapter.
Consider a simple reference tracking problem, where reference signal r is supposed to be the
step-formed input. To let the output y track the reference signal r, we require the controller
K (s) to contain an integrator. One of the effective ways to meet this requirement is to
introduce the integrator into the weight Wy (s) and to let the transfer function 7%, (s) € RHo.
This is done by letting T, (s) satisfy the following inequality:

[ Ter(8)lloo <, (1.7)
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T
Ws(s)
ro T u
FK(s) > P(s) y
7 — la—— 1 (: W)

G(9)

(r-y)=w E j u
K(s)

Figure 1.3: A closed loop system

where 7 is a positive real number given beforehand. Thus we consider the H,, problem
stated as: find internally stabilizing controller K(s) such that inequality (1.7) is satisfied.
Since no states of the weight Ws(s) are observed by K(s), the generalized plant in Figure 1.3
doesn’t satisfy the assumptions A1-2) nor A3-2), and the problem is thus a non-standard
H, problem. For the problems of this type, many approaches based on the conversion to the
standard H., problem have been proposed. The book of Zhou, Doyle and Glover [73] lists
two types of approaches.

One is based on factorization of the weight Ws(s) into the parts of integrators and another.
The factorization makes the problem the standard one. This approach derives an integral-
type controller by a series of process: (1) factorizing the weight, (2) solving a problem of the
standard H, control, and (3) modifying a controller derived from the problem to an integral
type. Thus, this approach requires one to follow several steps. The other is an approximative
one, in which the weight Wy(s) is approximated in such a way that the integral part of Wi(s)

is replaced as follows:

1 1
- =
S+ € S

)

where € is a small positive real number. By the replacement of the integrator in Wy(s), the
generalized plant in Figure 1.3 satisfies the assumptions A1-2) and A3-2), and the problem
reduces to the standard H,, problem. This approach has convenience, on the other hand,
it derives an incomplete integral-type controller. The other famous one is an approach that
uses the generalized Hy, control [39, 40, 49, 47], where it is required to derive a pseudo-

stabilizing solution of ARE. Thus, there are many approaches to solve the problem, however,
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the solutions are complex or incomplete. This is because the solutions are restricted by the

standard problem.

On the other hand, we treat the problem of the integral-type robust controller design as
the non-standard H., problem for the generalized plant described in Figure 1.4, where the

output from Wi(s) is measured by K (s). In the generalized plant, while the assumptions A1-

u
» P(9) y
Z4— l— = (W)
_ | G(9
u
yi
Y2 | K(s)

Figure 1.4: An alternative generalized plant

2) and A3-2) are satisfied, the assumption A2-2) is not satisfied because the dimension of
the measurement output is greater than that of the external input. Thus the H., problem for
the system in Figure 1.4 is the non-standard problem where the matrix Do is of full column
rank, and the problem can be solved by using the solution of the non-standard problem we
focus on. Although we can solve the problem of integral-type robust controller design, there
is another problem; that is, the resultant integral-type controller K(s) becomes high-order
than the system G(s) by the dimension of Wy(s). For this problem, we show that our study
on the designing of the reduced-order Hy, controller contributes. Compared with previous
works, while the problem description is essentially identical to the description in the works
of Zhang, et al. [71] and Hozumi et al. [26], our study takes a different approach to solving
the problem of the integral-type H,, controller design, and enables us to extend the result

for TDF control system design to be stated below.
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1.4.3 Low-order TDF controller design

TDF control is one effective way to attain feedback performances and tracking performance
simultaneously. Figure 1.5 illustrates the TDF control system where K(s) is a feedback
controller and F'(s) is a feedforward controller. A past study [66, 44] on the TDF control

' TRy o0t Pe

Y
<

K(S) =

Figure 1.5: TDF control system

has shown a property such that the feedback and tracking performances are determined in-
dependently by the feedback and feedforward controllers. Based on the property, the TDF
controller is frequently designed in two steps: the feedback controller design and the feedfor-
ward controller design. Here, suppose that the output feedback controller is designed in the

first step. Then the feedforward controller is designed such that it satisfies the specification:

W (s) (M(s) = Tyr(s))ll oo <,

where M (s) is a model of the tracking signal, W,(s) is a weight, and Ty, (s) is the closed loop

transfer function from the signal r to y. This specification is illustrated in Figure 1.6. In

= M(s)
r + z
— Wi(s)
o F(9 [>O— P9 ,
u —_—
T y
K(S) (=
z r
-— -—
G(s)

=l
F(s)

Figure 1.6: A feedforward controller design in the second step

this design, it should be noted that the order of F'(s) becomes no less than twice the order of

P(s). Hence, the order of the TDF controller becomes not less than 3 times as much as that
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of the plant model. That is, the two-step design of the TDF controller results in a high-order
controller. In the previous studies [17, 5, 6, 24], in order to design a reduced-order TDF
controller, the dynamics of the feedback controller which is designed beforehand is used as
the dynamics in the feedforward controller.

However, in these studies, it isn’t noted that the above property is guaranteed in the
only case where the controllers are independently designed. Specifically, the low-order TDF
controller design inevitably causes any correlation in the structures of the feedback controller
and the feedforward controller. Hence, it is important to analyze the trade-off between these
performances of the TDF control system in which the controllers have any correlation. This
thesis first analyzes the trade-off between these performances of the low-order TDF control
system, in which the controllers share the same dynamics, and shows that the independence

of the performances is not maintained in this case.

Z «— l— I

G(9)

Figure 1.7: Simultaneous design of TDF controller

From the above reason, designing of the TDF controller is considered with a simultaneous
approach rather than the two-step approach. Figure 1.7 illustrates a generalized plant for the
simultaneous design of the TDF controller. In this formulation, the feedback controller and
the feedforward controller are designed simultaneously. It should be noted that the resultant
controllers share the common dynamics, and the degree of the controller is not increased
unnecessarily. On the other hand, it is interesting to note that the system in Figure 1.7 is
the non-standard generalized plant discussed in the previous sections. Hence, it is expected

that the order of the controller can be further reduced.

1.5 H, controller reduction

There are many model reduction methods that are applicable for the controller order reduc-
tion. However it is difficult to reduce the order of the controller with preserving the closed
loop performances of the H,, controller. Let us consider the closed loop system illustrated

in Figure 1.1, where the controller stabilizes the system and satisfies the constraint such that

172 (G(s), K(8)] o0 < 1. (1.8)
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Then we reduce the order of the controller with some model reduction method, if the order
of the controller is too high to implement in practical use. However, neither the constraint
of (1.8) nor the stability of closed loop system is necessarily satisfied even if the reduction
error of the controller is small. This indicates that good approximation in the sense of open
loop property doesn’t mean good approximation in the sense of closed loop property. Hence,
when we evaluate the properties of closed loop systems, the controller approximation should
be considered. On the other hand, it is hard to evaluate the degradations in the closed loop

properties when we approximate the controller.

y G(S) u

Figure 1.8: Closed loop system

In this thesis, we consider the method for the H,, controller reduction by way of the
reduction of the Youla parameter Q(s) that is designed such that the closed loop performances
are satisfied. We focus on the H., controller that is designed based on a numerical approach
where the Youla parameter is optimized under some specification. The closed loop system is

illustrated in Figure 1.8. It should be noted that the controller is represented as
K(s) = Fi1(M(s),Q(s)),

where the system M (s) is given a priori. It should also be noted that the closed loop transfer

function T}, (s) can be represented as
Tow(s) = T1 — Ta(s)Q(s)T5(s),

where Ti(s),T>(s) and T3(s) are stable transfer functions which depend on factorization of
the plant and control specifications. This representation is useful for evaluating the closed
loop performances.

Let us define the optimal Youla parameter as

Q*(s) argQ(sggngwH (s)ll

If we approximate Q*(s) with @, (s), an inequality:
min || T (5)[loo = 171 — ToQ" (s)T3(5)| o
< [T = ToQr (8)T3(5) ]| o0 + 17200 1 T3]0 [| Q7 (5) — @r(5)]loo
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holds. Letting closed loop transfer functions as

Th,(s) & Ti—TaQ"(s)T3(s)

[ Ty — T2QT(S)T3(S)

T2 oo |75l 0o |Q7 (5) — Qr(5)[loo

o

g

o
>

(1>

the inequality is written
120 () oo < T2 (8)lloo + - (1.9)

As shown in Figure 1.9, the inequality (1.9) indicates that at every frequency, the graph of

Figure 1.9: An interpretation of inequality 1.9

T7,(jw) lies in a disk of center T}, (jw), radius v. From the inequality, it can be seen that good
approximation of Q*(s) with @, (s) suppresses the degradation in the closed loop performance.
Furthermore, it should be noted that the approximation @, (s) € RH, guarantees the closed
loop stability; moreover, the closed loop poles depend directly on the poles of @Q,(s). Hence,
if we could obtain an approximation method that preserves the region in which poles of the
system are located, we can propose an approximation method of the controller that satisfies
a constraint of closed loop pole position.

These observations motivate to approximate the parameter Q(s) in order to approximate
the H, controller. Thus, we propose a method of H,, controller reduction based on the

approximation of the Youla parameter.

1.6 Contribution

The new results and the original points of this thesis are listed as follows.

1. The reduced-order H,, controllers are derived in the non-standard H,, problems. The
class of the reduced-order controllers belongs to a generalized class of the minimal order
observer based output feedback controllers. Derivation of the reduced-order controllers
is based on an algebraic operation; that is, it is based on the selection of the free

parameters in the general representation of the non-standard solutions.
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2. As an application of the non-standard problems, a method for designing an integral-type
robust controller is proposed. This method makes it possible to design the low-order
integral-type robust controller easily and is also applicable to a low-order TDF controller

design.

3. In the analysis of the low-order TDF control system, we point out a necessity to con-
sider the trade-off between the feedback performances and the tracking performance.
Specifically, in the case of the low-order TDF controller, in which controllers share com-
mon dynamics, it is clarified that the independent property among those performances

is not maintained.

4. Based on the above analysis, it is pointed out that the low-order TDF controller design
problem should be treated as a simultaneous optimization problem. In the synthesis
of the low-order TDF control system, an approach based on the non-standard H.,
problem is proposed. Specifically, the result of the reduced-order H, controller design
is applicable to this approach and a method for designing some kind of low-order TDF

controller is proposed.

5. An H,, controller reduction method based on the reduction of the high-order Youla
parameter is proposed. This method makes it easy to take closed loop specifications
into account. That is, the reduced-order controller guarantees the closed loop properties
such as internal stability and closed loop pole specification, and the degradation in the
closed loop performance: the H,, norm of the closed loop transfer function can be

evaluated.

1.7 Organization

The organization of this thesis is as follows. Chapter 2 gives two-types of reduced-order con-
trollers of the non-standard H,, problem. The results given in this chapter are fundamental
to chapters of 3, 4 and 5. Chapter 3 considers a synthesis of the low-order robust servo con-
trol. It treats the problem as the non-standard H,, problem and derives the integral-type Ho
controller. Chapters 4 and 5 consider the problem of the low-order Two-Degree-of-Freedom
controller design. Chapter 4 analyzes the low-order TDF control system and shows that there
is a trade-off between the feedback performance and the tracking performance. Based on the
analysis, the chapter discusses the formulations of the low-order TDF controller. Chapter
5 proposes a method for designing the low-order TDF controller. It is based on the non-
standard H., control. Chapter 6 considers the method for reducing the order of the Ho
controller, which is a special solution of a numerical approach. Chapter 7 is the conclusion.

The structure of the thesis is illustrated in Figure 1.10, where a symbol C indicates a chapter.
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Chapter 2

Reduced-order non-standard H
controller design

2.1 Introduction

This chapter treats a fundamental issue to give a reduced-order H,, controller. In partic-
ular, problems that are focused on are the non-standard H,, control problems, where the
dimensions of the control inputs are greater than those of the controlled outputs, and the
dimensions of the measurement outputs are greater than those of the disturbance inputs.
As a special case, those types of the non-standard H., problems include the H,, problems
of systems with partial state feedback [71] and redundant inputs [59]. It is known that the
dynamical order of the observer-based feedback controller for a plant whose partial state
variables are measured without noise can be reduced by the number of the partial state vari-
ables [30, 64, 65, 68, 70]. We thus hope that we can derive the reduced-order controller in
the non-standard H., problems.

Thus, this chapter aims to generalize the reduced-order controller design based on the
non-standard Hs, control problems. It starts from deriving the class of full-order H,, con-
trollers [45, 51], in which the controllers are parametrized with free parameters. The remark-
able difference between the classes of the H., controllers in the non-standard problem and
in the standard problem lies in the parametrization of these controllers. The H,, controllers
of the non-standard problems are represented with larger number of free parameters than
that of the standard problem. The difference in the structure of H,, problems reflects the
difference in the parametrizations of these controllers. Hence, the free parameters in the H,
controllers of the non-standard problems are keys to derive the reduced-order H, controller.

In fact, the approach taken here is based on the selection of the free parameters in the
full-order H., controllers. The results given in this chapter are stated as follows. Two types
of reduced-order H,, controllers are derived. One of the controllers is the minimal order
observer type, where the order of the controller is less than that of the generalized plant

by the number of the disturbance-free outputs. The other one is the dual version of the

17
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aforementioned case, where the order of the controller is less than that of the generalized
plant by the number of the redundant inputs. Results given in this chapter will be utilized

in the later chapters.

2.2 Formulation

Let us consider the generalized plant described in (1.1) or (1.2). This section considers the

class of non-standard Hs, control problems where the following assumptions are satisfied.

A1l 1) (A, By) is stabilizable, and 2) (A, Cs) is detectable.
A2’ One of the following cases is satisfied.

Case 1 Djy and Dy are of full row rank.
Case 2 Djy and Dy are of full column rank.

Case 3 Djs is of full row rank and Ds; is of full column rank.

A3 VwER;{A_]wI Bs ]and[A_]wI By

Ci D12 Cy Doy ] are of full rank.

In this thesis, we call the H,, problem, where the assumptions A1, A2’-Case i and A3’
hold, the non-standard H,, problem of case i.

In the H, problems of case 1 and case 3, we put the assumption such that the matrix

[ g 2 ] is of full column rank. In these cases, By and D15 are supposed to be of the form:
12

= = -5 -5 , By € R™*P1, 2.1
TN RS @)
where Bsp is of full column rank.

In the problems of case 2 and case 3, we put the assumption such that the matrix
[ Cy Doy ] is of full row rank. In these cases, Co and Dy; are supposed to be of the
form:

Cy i O

[02:D21]:[022:]m1

:| ) 022 € lexn) (22)

where Cy; is of full row rank.

These assumptions imposed on the system don’t lose the generality in the system (1.1),
because an equivalent transformation on the output variable: § = My, |M| # 0, and an
input transformation on the input variable: @ = N~!u,|N| # 0 in the system (1.1) yield the
matrices in the equations (2.1) and (2.2). In this case, if a control low u = K (s)y is obtained,

the real control law is reconstructed as u = NK(s)My.
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2.3 Preliminaries
2.3.1 Pseudo inverse matrix and orthogonal complement matrix

For a singular and full-rank matrix, a pseudo inverse matrix and an orthogonal complement

matrix are defined as follows.

1. Let D be of full column rank, the matrices D' and D+ are defined according to the

following equalities:

[51“1) (DL)T}:I,
I

2. Let D be of full row rank, the matrices DT and D+ are defined according to the following

equalities:

i o

T
DD+ D+ (Di) ~ 7.

We call the matrix D pseudo inverse matrix of D, and call the matrix D' orthogonal

complement matrix.

2.3.2 Invariant zeros

Let us consider the system

ro- [415].

where the matrix D is nonsingular and is of full rank. Then the invariant zeros of T'(s) are

characterized as follows.

Lemma 2.3.1 1. Let D be of full column rank, then the invariant zeros of T(s) are the
unobservable modes of the pair (A — BDTC, D+C).

2. Let D be of full row rank, then the invariant zeros of T'(s) are the uncontrollable modes

of the pair (A — BDTC, BD1).

Proof. See section A.1. ]
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2.3.3 Canonical transformation of the generalized plant

Our subsequent analysis is greatly simplified if the generalized plant is transformed so that
the invariant zeros are explicitly represented. Therefore, the generalized plant is transformed

to a canonical form:

T'AT |T'By, T'B,
G(s)=| C1T @) Dy |,
CoT' | Dy @

where the matrix 7' is supposed to be nonsingular. Then, the following lemma holds.

Lemma 2.3.2 (1) Assume the generalized plant of case 1 or case 3, i.e., Dig is of full
row rank, let the stable and unstable zero modes of the subsystem Gi2(s) be A_ and

Ay € R™7". Then the following transformation is possible

| T74(A - BD},0NT T~ ByDiy | T'B,D),

Ay Ap Ay Asg Iy py 1 Basuu
A1z Ay Az Ay : @ " Bagul
@) ) A_ O @) I B22lu
O O 0 A" O ' By

L (23)

where \i(A14) < 0, both of the pairs (A1, Ima—p1) and (A4, Baay) are controllable, and

A4 has no jw eigenvalues.

(2) Assume the generalized plant of case 2 or case 3, i.e., Doy is of full column rank, let the
stable and unstable zero modes of the subsystem Go1(s) be A_ and A, € R, Then

the following transformation is possible

[ An Az O @)
A A 0) @)
T '(A-BDLCyT R 0
D5 CoT S (2.4)
—————— e Ass Az O Ay
DGt R
Coou Cootr Cozpp Cogpr

where \i(A14) < 0, both of the pairs (All,lprml) and (A, Caapr) are observable, and

A has no jw eigenvalues.

Proof. (1) Choose a basis V for the controllable subspace of (A — BQDJ{QC’l, ByDi5). Fur-

thermore, choose a basis U such that the transformation matrix

M2[V U |
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is nonsingular. Then the following transformation is possible

M~Y(A -~ ByD},C1)M = [ A4 4 }

O Ay

_ B
M 1B2D‘|1'2: |: A22u :|7

where (Aj, Bglu) is controllable and (Ay, ngl) is stabilizable.

By the previous assumption, Bglu is of full column rank and we put Bglu as
A Iy, —
By = [ m20 P } .

Let us define a nonsingular transformation matrix J:

Jé[‘g ?]ER"X”.
2

Then J; and Jy are nonsingular and the following equation holds:

-1 -1
J7MY(A = ByD},Cy)MJ = [ SO ALy Aﬂ?]

O Jy LA,

Putting J; and A; as

[ X A A
JI_[O I}’Al_[z‘hm A122]

and substituting these into J;° LA, J1, the following equation is obtained

TVAL = [ A — XA A X — XA X + Ajig — XA ] ’

Aja1 A121 X + Aro

where (Aj22, A121) is controllable, since (A1, Bglu) is controllable. Hence the arbitrary eigen-
values of A191X + Aj99 can be specified. Choose matrix X such that all the eigenvalues of
A191X + Aqo9 lie in the left half plane and define the stable matrix A4 as follows.

A1 X + Ajpe 2 Ay

From this definition J; LA,.Jq can be represented as

_ A Ag
J AL = :
Lo [ Az Ay
On the other hand, choosing a matrix J, that does permutation and diagonalization, J, YA, T,
becomes
_ A O
‘]2 1A4‘]2 = |: 0 A+ :| ;
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where the matrix A_ is a stable zero-mode of Gi2(s) and the matrix A, is an unstable

zero-mode of G12(s). Hence by putting JflAng as

A21 A22 :|

T gy = [ Axz Agy

the following equations are obtained

A A Agp A
A1z Ay Az Ay
O O A_ O
0O 0 O A,

J MY (A - ByDI,Cy)MJ =

I By, = [ Finy—ps ] .

Partitioning J’lelBgDJ{Q as

B22uu
Jt o B J'B B
J*lelB DT _ I: 1 ~ :| I: A22u :l — |: 1_ A22u :l — A22ul
. o Jy' Bag J5 ' Boyy Bau
Boaur
and putting
MJ=T
follow the results in equation (2.4).
1s result tollows by applying the dual argument of the proo . [ ]
2) Thi 1t foll b lyi he dual f th f(1

2.4 The non-standard H,, problem of case 2

This section derives full-order and reduced-order controllers of the non-standard H, problem

of case 2. That is, we consider the H,, problem for a generalized plant:

A | Bi B

| G| O i Dy
CO=leyfoTo |

022 Im1: @)

where the assumptions A1, A2’-case 2 and A3’ are satisfied. We put variables as follows.

[caioa =[O ]

Cog ' I,y

2.4.1 Characterization of zeros in Gy (s)

Let us consider the non-standard problem of case 2. Since Do; is of full column rank, it is
assumed that the generalized plant has been put into a basis corresponding to the canoni-

cal form in equation (2.4). Hence, the following equations can be assumed without loss of
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generality
A A O O
A3 ' A O O
A— B,Dl Cy = 13 14 LA € R(p2—m1)x(p2—m1)
e Azy : Ay A_ O 1 (2.5)
Az ' Aze O Ay ’ :

DfiCo=[Ipy-m, O O O]
D}, Cy = [ Coou ' Cootr Coopt Cozpr | £ [ Coou | Cagp |, Cagy € RP2X(P27m1)

where \;(A14) < 0, both of the pairs (Ai1,[,,—m,) and (A4, Cayy) are observable, and
A, € R™ has no jw eigenvalues. We call A_ the stable zero mode of Go1(s) and Ay the
unstable zero mode of G (s).

For notational ease, let us partition the following matrices.

By = [—g—lu—] , By, € RP2mm)xm
1

_ B2u
B2 = [_ By

G = [ Cu : Cur Cirt Crpr ] = [ Cuy : Cir ] , Cyy € RP1X(p2—m1)

:| , B2u c R(pg—ml)xmg (26)

Under the above preparations, let us choose Ly such that the observable subspace of the
pair (A — Bngng, D2L1 Cy) is stabilized, and put Ly as follows

€ Rx(p2—m), (2.7)

where Ly, € R(P2=m1)x(p2=m1) ig chosen such that A;q + Lp, is stable, and Ly, € RIX (p2—m1)

is an arbitrary matrix. Then we define Azy as follows:

A+ Ly, A O
t L O
Azg = A— B1D2102 + LHD2102 =

where the (1,1)-block of the matrix Az is stable.
Next, let us choose Fp such that the unstable zero-mode of G (s) is stabilized without
effecting the stable mode of Azp. This implies that Fp is chosen such that a matrix Ay £

Az + EHD;ICQ is stable under the following constraint:
UEg =0, (2.8)
where U is a row-basis of the stable subspace in Az, that is, U satisfies
UAzp =AU,

where A is a stable mode of Azy.
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Hence, temporarily, we choose Fy as

0]
0]
a
Ent| ¥ (2.9)
Epnao
Then A is represented as follows
Ag = Az + EHD£102
A+ Ly, Aqo ) 0]
B 0 Ay 0 0
= ) Asy A ) !
A3z + Ly, + Efg2oCoo Azs + Er2oCor  Ef02Co2r Ay + Ep2aCogyy
(2.10)

where Eoo can be chosen such that A4 + EpoaCasy is stable, because the pair (A4, Cagpr)

is observable. Then the matrix Ay is stable.

2.4.2 A necessary condition for the solvability

First, we introduce Full Control problem, which will be used to derive a necessary condition

for the solvability in the non-standard H., problem of case 2.

Definition 2.4.1 Let us consider the generalized plant (1.1), where the assumption A1 is
satisfied. Suppose that the matrices Bs and D1s are defined as follows

By=[1, O], Diup=[0 I, ]. (2.11)

Then the Hy, problem for a generalized plant

is called FC (Full Control) problem.
The following lemma is useful for solving the non-standard H,, problems.

Lemma 2.4.1 Suppose that the Hy, problem with the assumption A1 is solvable. Then it is

necessary that the FC problem is solvable.

Proof. If the output feedback controller of u = K (s)y solves the Ho, problem, it is necessary
that the controller of the form:
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solves the FC problem. [ |

From Lemma 2.4.1, it is necessary that the non-standard H., problem for G(s) where
Bs and Djy are supposed to hold (2.11) is solvable. Hence we consider the non-standard
problem for the generalized plant Gpc(s) where the assumptions A1, A2’-case 2 and A3’
are satisfied.

If we choose an observer gain H and a feedback gain F' such that
H 2 —B\D}, + LyDs; + EyD},
HCy
relfa]
then A+ HCy = A+ BoF = Ap is stable. From Lemma A.2.1, the stabilizing controllers
K(s) for Gaa(s) are parametrized with a free parameter Q(s) € RHoo, and the closed loop

lI>

transfer function G, = F; (Grc(s), K(s)) is represented as follows.

sz(s) =F (MZ(S); _QD21) ) Q(S) € RH
Ag |Ex O
MQ(S) = Cl O D12
DLy | T 0

From the above discussion, it can be seen that the Hy, problem for Grc(s) is solvable,
if and only if the H, problem for Ms(s) is solvable. Hence we consider the H, problem for
MQ(S).

Lemma 2.4.2 Suppose that the matrices Ly and Ex are selected as in (2.7) and (2.9) such
that Agr is stable. Then, if the non-standard Ho, problem of case 2 is solvable, it is necessary

that the ARE
T T t o\ pi
YAL, + AznY +Y {CTCy - (02102) D}y VY =0, (2.12)
where
Azg LA BlD£102 + LHD%iCQ
has a stabilizing solution Y > O, which stabilizes a matriz
A T t o) pt
Ay 2 Az +Y {Cl o (Dmcg> D2102} . (2.13)

Proof. Consider the H., problem for the generalized plant Ms(s) where Ay is stable.
Seeing the matrix Diy given in (2.11), it can be verified that Ms(s) holds the assumptions
A1, A2 and A3, hence the Ho, problem for Ms(s) is the standard problem. The solvability
condition for the standard problem reduces to the condition such that the ARE in (2.12) has

a nonnegative definite stabilizing solution Y. [ |
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Theorem 2.4.1 Suppose that the matrices Ly and Ef are selected as in (2.7) and (2.9)
such that Ap is stable, and that there exists a stabilizing solution Y > O in the ARE (2.12).

Then the solution Y can be represented as follows:

y = [ 8 g } € RV, (2.14)

where Y, € R™! is a nonnegative definite stabilizing solution of reduced-order ARE:
VAL + ALY, + Y, (CF,C1pr — €9y, Co2,) Yy = O. (2.15)

Proof. (Necessity:) Suppose that there exists a stabilizing solution Y > O in the ARE
(2.12). The ARE can be represented as follows.

YAL, + AyY =0 (2.16)

Let U be a row-basis of the stable subspace of the matrix Azy. Then the basis U satisfies

the following equation:
UAgzpg =AU, (2.17)

where

A+ Ly, A O
A= 0O Ay O |. (2.18)
@) Aszg A_

After post-multiplication by U7, the equation (2.16) becomes
VAL UT + AyYUT = (YUT) AT + Ay (YUT) = 0.

Since both A and Ay are stable matrices, one can apply Lemma A.3.1 to this equation and
deduce that

YUt = 0. (2.19)

Since Y is a symmetric matrix, it must be of the form in (2.14). By substituting this Y into
the ARE (2.12), the reduced-order ARE (2.15) can be deduced. Hence it is necessary that
the ARE has a nonnegative definite stabilizing solution Y.

(Sufficiency:) Suppose that there exists a stabilizing solution Y; > O in the reduced-
order ARE (2.15). Then the matrix

AYT = A+ + Yvr (C%;rclrr - 02T2rrc22rr)
is stable. If we select Y as in (2.14), it can be verified that
T T T o
Ay = Agy+YCrc - (DQICQ> D}, Cy

A1+ Ly, A O O
O Aix O 0]

O Ay A O

Ass A3y Agz Ay,

T

(2.20)
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where

Ass = Asz + Ly, + Yy (CF,.Crp — Cay Ca2it)
Azy = Azy + Y, (CL,.Cuyr — Coa,,Conuy)
Ay3 =Y, (CF,Crr — C0 Ca2y1)

is a stable matrix, and that the matrix Y satisfies the ARE in (2.12). Hence the ARE has a

nonnegative definite stabilizing solution Y. [ |

2.4.3 Lossless factorization of G(s)
Up to this part, the matrix Ey is fixed as in (2.9). Again, let us choose Ep as follows:
; T
By =-Y (DLCs) . (2.21)
Since UY = O, Ep satisfies (2.8). Then the following lemma is stated.

Lemma 2.4.3 Suppose that the ARE in (2.12) has a nonnegative definite stabilizing solution

Y. Then the following statements are equivalent.

1. A controller K (s) stabilizes a closed loop system (G(s), K(s)), and satisfies

171 (G(s), K(s)) floo < 1.

2. A controller K(s) stabilizes a closed loop system (Gimp(s), K(s)), and satisfies
171 (Gmp(s), K (s)) oo < 1,

where Gymp(s) is represented as follows:

A| B —-Ey B
Gtmp(s) = 4 0] Dqo (222)
Cs Doy 0]

and A and Bg are

A=A+vclo
BQ = By +YC’1TD12

Proof. We can factorize G(s) as follows:
G(s) = O(s) * Gemp(9),

where * is star-product which is defined in section A.4, and ©(s) is represented as follows

A | By -YCT

O(s) = O11(s) O12(s) ] _ C, 19) T c RH
@21(8) @22(8) DT 02 I O 00
21
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— || o loo< 1
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E _t Gtmp < u K . y
u K | Yy

Figure 2.1: Lossless factorization

where
Ao = A+ HyoCy
Hu = —B\ D}, + EyD}, + Ly D3;. (2.23)

Since the ARE in (2.12) has a nonnegative definite stabilizing solution Y, it can be verified
that the following equations hold.

YAL + A Y + BeBE =0
YCL+ BeDE =0
DeDE =1

Where Bg,Co and Dg are defined as follows:

Be = [ Eu —YC?],Ce:[ 1 },De:[

O I ]
DI Cy '

I O

From the above fact and Lemma A.5.1, we can verify that ©7(s) is inner function. Further-
more, it can be verified that O, (s) € RHs and Ogy(c0) = O, hence the system O7(s) is
lossless, where lossless-ness of a system is listed in section A.6.

Denote the system G, as
Gaw = F1(0, F1 (Gip, K)) -
From the definition of the H,,-norm, it is verified that
1Gawlls <1 & ||GLl. (2.24)
On the other hand, ||GZ, ||~ satisfies
165l = ||7(©. 7t Gy DT
= |7 (&" 71 Gomp 7).

Since ©7 is lossless, from Lemma A.6.1 the following equivalence is verified.

[l <t & [AGumB|_<1 & 15 GumBl<1 (229

Hence, from (2.24) and (2.25) it is shown that the statements 1 and 2 are equivalent. ]
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2.4.4 Parametrization of full-order H., controller

Under the necessary condition such that the ARE in (2.12) has a nonnegative definite sta-
bilizing solution Y, the H, problem for G(s) is reduced to the Hy, problem for Gipmp(s).
Hence, in this section, we consider the Ho, problem for Gypmp(s). First, let us parametrize
the stabilizing controllers for Giy,y(s).

Suppose that (fl, Bg) is stabilizable. Then we can choose a feedback gain F' such that
Ap 2 A+ ByF
is stable, and let us choose an observer gain Hy, as in (2.23), then
Ag 2 A+ Ho Oy = Ay

is stable. From Lemma A.2.1, the class of stabilizing controllers is represented as follows.

Ay + BQF ‘ —H _BQ
K(s)=F F O —I |,Q(s)],0Q(s) € RH« (2.26)
—CY I O

Then the closed loop transfer function is represented as follows
Fi (Grnp(3), K (5)) = Fi (Ma(s), ~Q(5) Do )

where

i A+ ByF |Bi—Ey By
Ms(s) = | C1+ DyoF (0] Dy | . (2.27)
0 I 0]

From (2.27), the solvability conditions of the Hy, problems for G, (s) and for My(s) are

equivalent, hence we consider the Ho, problem for My(s).

Theorem 2.4.2 The non-standard Ho, problem for the generalized plant which satisfies as-
sumptions A1, A2’-case 2 and A3’ is solvable if and only if an ARE:

X (4= B0}, ) + (A BgDhCl)T X
+X {BlBlT — B,Di, (BQDIQ>T} X + (DﬁCl)T DLy =0 (2.28)

and an ARE in (2.15) have stabilizing solutions X > O andY, > O which satisfy p (XY) < 1,

where

O O
r=lo 4]

Under such conditions, the class of the Hy controllers is represented as:

K2, = {K2%(s) : N(s) € BHoo,W(s) € RHoo}



30 REDUCED-ORDER NON-STANDARD H,, CONTROLLER DESIGN

where N(s) and W (s) are free parameters, and K2 (s) is represented as follows

Ay +E2FOO Hy : _BQE

—F O, X

Kgosz}“l S | N(s) W(s 2.29
(5 Bl o1 [ N(s) W(s) ] (229)
D3 Cy Dy; !

and

Ay = A+YCLC, + H Oy
By =By + YCT Dy
Cy = Dy BT X + ¢y
t t £\
Fo = {—1)1201 - i, (BQDIQ) X} Z

i t o) pt 1
Heo = ~BiD}, — v (D},Cy) Diy + L3,
Z=(I-YX)"
S = (DyD1s)

SIS

Proof. The H,, problem for My(s) in (2.27) is DF (Disturbance Feedforward) problem. In
appendix A.7 the solution for the DF problem is listed. By using the solution, we derive the
solution for the non-standard H., problem of case 2.

(Solvability condition:) The solvability condition for the DF problem is such that
ARE:

T 1 T 1
SO+ TS + STS + (01201) DLCy =0,
where
UL A-B,DI,C
A T _pa ot (A )\
T 2 (B, — Ey) (By — Ex)” — BoDl, (BQDu)

has a nonnegative definite stabilizing solution S. By using a definition in appendix A.8, we

represent the solvability condition such that

{ Hg € Dom (Ric) (2.30)

S = Ric(Hg) > 0 °

where

oo v T
S = T
— (D3C1)" DG =9t

Since Hg satisfies
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where Y > O is a stabilizing solution of the ARE in (2.12), and Hx is defined as follows:

T
yoa | A-BDLG B\BY - B,D}, (B.D},)
X = T T
- (DhC) DG - (A- BDLO)

the solvability condition (2.30) is equivalent to

Hx € Dom (Ric)
X =Ric(Hy) >0 , (2.31)
p(XY) <1
where Y > O is a stabilizing solution of the ARE in (2.12). The solvability condition (2.31)
implies that the ARE (2.28) has a nonnegative definite stabilizing solution X, and which

satisfies p(XY) < 1, where YV = { 0 0

0 Y
solution of ARE (2.15).
Conversely if the solvability condition (2.31) is satisfied, Hg € Dom (Ric). Then it can
be verified that the matrix

}, and Y, is a nonnegative definite stabilizing

a0t (BN 5= At f f P \"
@—&Dm@ﬂ@)S:A+&{JMQ—DHQMM)S}

is stable, and (fl, Bg) is stabilizable.

(Derivation of the controller:) Suppose that the solvability condition (2.31) is satis-
fied. In the beginning of this subsection, the feedback gain F' can be selected from arbitrary
matrix which stabilizes Ap = A+ ByF. Since the condition (2.31) satisfies, we select F such
that

s pi t (gt )"
F = Fuy 2 =D},Cy - Dy (B:D],) 8.
where

S=XZ7
Z=(1I-YX)"'.

By using the formula in Lemma A.7, we can derive the controller

A+ ByFo | = (Bi—Ey) —BoX
—Q(S)Dgl = .7:1 O O X y N(S) , (2.32)
(Bi—Eg)' s I O

N

where N(s) € BHs, and ¥ = (D%Dlg)_ )

follows:

The equation (2.32) can be represented as

—Q(S)Dgl = EN(S) (I - MQQ(S)N(S))_l Mgl(s), (233)
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where

Mgl(s) = I — @(S) (Bl — EH)
Mas(s) = —B(s)ByX
O(s) = (B; — Ex)" 8 (s[ —A- BQFC,O)_l .

In the equation (2.33) Dy is of full column rank, hence the solution of ()(s) is represented

as follows:
Q(s) = —EN(s) (I — Ma2(s)N(s)) " Ma1(s)D}; + W (s) Dy,

where W (s) € RHI2*P27m1) Gince (I — Myy(s)N(s)) ' € RHoo, we can replace W (s) such
that

W(S) = - (I — N(S)MQQ(S))_l (W(s) + N(s)@(s)LH)’ W(S) c RHZ(LDQX(ID—ml).

Then the solution Q(s) is given as

Qs) = ~S(I - N(&)Mao(s) ™ {N(s) (Dl + () Hoo) + W(s)DS; }
A—FBQFOO ‘ Hoo : _322
o O -
=B T E)TE DL T 0 L NGs) Wis) ]| (2.34)
O D2l1 I O

where N (s) € BHoo, W(s) € RHM2*P27™) By applying this Q(s) into (2.26), we can derive
the Ho, controller in (2.29). ]

Remark 2.4.1

1. The class of Hy, controllers is represented with two free parameters, where one of them
is a free parameter in BH~ and the other one is a free parameter in RHoo. On the
other hand, in the standard Ho, problem, the class of Hs controller is represented with
only a free parameter in BHso. One of differences between the standard problem and

the non-standard problem appears in this point.

2. The dynamical order of the central solution equals the dynamical order of the generalized
plant, where we call the Hy controller, whose free parameters are fized to zero, a central

solution.

3. By using the free parameter, we can improve any performance of the central solution.
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2.4.5 Derivation of reduced-order H., controller

This subsection derives reduced-order non-standard H., controller. First, let us represent
the full-order H, controller with DHMT as follows:

K3(s)

DHM | |- 25 24 o F | [ Ns) W(s) ]

- 1
|: Ay BQ :| |: AY Hoo (2'35)
C() [371] | Cls) | N(s)D; + W (s) Dy |
where Ck(s) is defined as follows.
Ck(s) 2 —X"'Fy + N(s)D},CoZ + W (s)Dg; Cs. (2.36)

The matrix Ay is written in the equation (2.20), where Lg,, € R>P2=71) is an arbitrary

matrix. We can choose Ly, such that Az = O holds. Hence, by letting Ly, as
Ly, = —Asz — Y, (CF, 011 — C39y Caot) (2.37)

the matrix Ay is represented as

A1+ Ly, A O O
O Ay O O
O Ay A O
O Azqg Agz Ay,

Ay =

Then the matrix Ay satisfies

AyVy =Vy (A1 + Lu,),

I

where Vy = [ p26m1 } e R*(P2=m1) ig of full column rank. Hence, if Ck (s) satisfies

Cx(s)Vy = O, (2.38)

the pair (Ay, Ck(s)) is not observable, hence the dynamical order of the controller K2 (s) is
reduced by the number of po — m;.

From equation (2.36), the matrix Ck(s) is represented with the free parameter W (s) €
RHm2 P 27m1), and is spanned by the row-basis of Dy;Cs. Since Ds;CoVy = I, pm, holds,

if we choose the free parameter W (s) as
W(s)=— (—Eleoo + N(s)D§1(§22> Vy, (2.39)

the matrix Vy satisfies (2.38). Thus we can derive a reduced-order H., controller.
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Theorem 2.4.3 Under the same solvability condition as in Theorem 2.4.2, the class of
reduced-order Hy, controllers is represented as:

K2 ={K2(s): N(s) € BHx},

where N(s) is a free parameter, and K'2(s) is represented as follows

Ay | B H.,
K22(s) = DHM > 1F,, |2t 2 'F. Dy |,N(s)], (2.40)
Cp, | O Dk —CpDy

and

A+ Ly, A O O

AY = g : A e Ran7 AY e R(nf(pgfml))x(nf(pg—ml))
i Y
O |
By = [_Bgu_} e R™™M2 B, ¢ R (p2—m1))xma
By
Ho = [_tf?ly?%;}_lﬁ?i _} cRVP. [ € RO (aom) e
[oe)

Foo=[ Fooy Fooy |, Fooy € R™2XP2mm) B ¢ Rmzx(n=(p2=m1))
Dglébz _ [ Cp, : Cp, ] . Cp, € Rm1X(P2*m1)’CD2 e R X (n=(p2—m1))
Proof. From the previous argument, the reduced order controller is derived by substituting

Ly, in (2.37) and W(s) in (2.39) into K2 (s) in (2.35). Since K2 is a subset of K2, the

reduced order controller is an H, controller. [ ]

Remark 2.4.2 The dynamical order of the central solution in K2 is n — (pa —my), which
is lower than that of the central solution in K2, by the number of po — my. The controller
order reduction is analogous to the order reduction in observer-based controllers, where the
order of an observer is reduced by the number of independent outputs that are not corrupted

by disturbances.

Remark 2.4.3 The controller parameters are also represented as follows:
Ay = A, + Y, (CL.C1, — C35,Caa,)
By = By + Y,C}. D1y
Hy = —By D}, — Y,Ch, D}, + L, D3y
Foo, = —DI, {CmZn + C 21 + (DIQ)T (B3, + 35521)}
Fo, = —DI, {0111212 + C1p 222 + (DIQ)T (B3,S12 + 35522)}

Be, = BL,S11 4 BSo1 4 CoonZ11 + Cogy Zon
Be, = B, S12 + B1Soy + CoonZ1o + Cagy Zao,
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where
Ay O O O O O
A,=1 A3 A- O |, Y.,=| 0 0 0 | e Rv(2=m))x(n—(p2—m1))
Ay O Ay O 0 Y,
S11 1 S12 Z11 1 Z12 Ly
S =XZ= |-G -~ - ) = |\"5 "7 " ) = |- ==~ )
I:S21:S22] [221:Z22] [ H2:|

and X > O is a stabilizing solution of ARE in (2.52) and Y, > O is a stabilizing solution of
ARE in (2.15).

2.4.6 The controller structure

This subsection reviews the full-order controller and the reduced-order controller from the
viewpoint of the observer based output controller. The central solution in the class of full-

order Ho, controller in (2.29) is represented as

{ @ :Ay§c+32u—Hooy (2.41)

U= Fol

where Z is a state variable of the controller. If we assume an orthogonal condition: Ci‘r Dqo =

O, these equations can be written as

{ i = Ai 4 Byu+ Hy, (Coi —y) + YCT C1

2.42
u = Fyl ( )

From these equations, it can be seen that the controller has the structure of an observer-based

controller. In order to interpret the structure of the controller, let us consider the system:

T
&= Az + Biw+ Byu+Y {cchlx + (D;@) w}

(2.43)
y = Cox + Dyyw
By letting the error between the states of the systems in (2.42) and (2.43) as
A A
e=x— 1,
the dynamical equation of the error can be given as follows.
¢ = Aye (2.44)

Since all of the eigenvalues in the matrix
Ay = A+YCLC, + H Oy

have negative real parts, as the time intends to oo, from any initial values of e(0) the error
e(t) converges to zero. Thus, the controller in (2.41) consists of an observer for the system in
(2.43) and a state feedback controller. Figure 2.2 illustrates the structure of the closed loop

system that is constructed with the central controller.
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Figure 2.2: The structure of the closed loop system

By representing the class of the H, controllers with the equation (2.35), the structure of
the observer can also be seen explicitly in the H,, controller which is represented with free
parameters. Figure 2.3 illustrates the H,, controller with the observer-based representation
where the dynamical equation of the observer is expressed explicitly. The size of the matrix
Ay equals the dynamical order of a full-order observer. Since Ck(s) is a function of the free
parameters, the selection in the free parameters reduces to yield the unobservable subspace
in the pair (Ay,Ck(s)), and the order of the controller can be reduced by the number of
the degrees of the subspace. Hence, this type of the reduced-order H,, controller can be

interpreted as a minimal-order-observer-type H., controller.

2.5 The non-standard H,, problem of case 1

This section derives full-order and reduced-order controllers of the non-standard H, problem
in case 1. Since the problem of case 1 is the dual problem of case 2, discussions of this section
are dual of the previous section, hence details of the procedure in the derivation of the full-

order controller are omitted. In this case, we treat a generalized plant:

A‘B1;B21 Bao
Gs)=| o0 I, |,
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B2

Y

N(s)Dz% + W(S)Dat’

>
+

37

Ck(s)

Ay

Figure 2.3: The structure of K2 (s)

\

where the assumptions A1, A2’-casel and A3’ are satisfied. We put variables as follows.

2.5.1

Characterization of zeros in Gi5(s)

Let us consider the non-standard problem of case 1. Since Dq» is of full row rank, it is assumed

that the generalized plant has been put into a basis corresponding to the canonical form in

equation (2.3). Hence the following equations can be assumed without loss of generality

A A Ay Ay
A Agg Ay (ma—p1)x (ma—p1)
o A o , A € Rlm2—p1 2—Dp1
0 0 A,

ByDis =

ByDl, =

_@2_2“_“_] , Booyy € R(m2—p1)xma

, (2.45)

where \;(A14) < 0, both of the pairs (A11, Ipm,—p,) and (A4, Bagy) are controllable, and A

has no jw eigenvalues. We call A_ the stable zero mode of Gi2(s) and A unstable zero

mode of G1a(s).
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For notational ease, let us partition the following matrices.

Bruu_
. Blul N Bluu (m2—p1)xm
Bl — Bllu — |:_ _Bl_l > Bluu € R
By

Cl = [ Cll : Clr ] c Rp1><n7 Cll c RPIX(mQ*pl)
C2 = [ CQ[ : CQT ] c Rp2><717 CQZ c RPQX(mQ*pl).

Under the above preparations, let us choose Lr such that the controllable subspace of
the pair (A — BQDJ{QC&, BngLQ) is stabilized, and put Lg as follows

Lp £ [ LFI —A1g —Ao LF22 ] S R(mQ_pl)Xn, (246)

where Lp, € R(m2=p1)x(m2-p1) ig chosen such that Aj; + L, is stable, and Lp,, € R(m2=p1)xr
is an arbitrary matrix. Then Azp is defined as follows:

An1+Lp, O O

I
I

AZF = A— BQDJ{201 + BQDELF = A13 AM A23 | A24
I

where the (1,1)-block of Azp is a stable.
Next, let us choose Er such that the unstable zero-mode of Gpa(s) is stabilized without
effecting the stable mode of Azp. This implies that Er is chosen such that the following

constraint:
ErV =0, (2.47)
where V is a basis of the stable subspace in Azp, that is, V satisfies
AzrV = VA,

where A is a stable mode of Azp.

Hence, temporarily, we choose Fr as
Er2[0 O O Ep,|. (2.48)
Then Ap is represented as follows

Ap = AZF+B2D12EF

An+Lr, O O Ay + Lp, + BaouwEr
_ Ars Ay A Agq + Baoyi Er22 (2.49)
O O A_ Booru Er22 ’ .

0] O O Ay + BoyErae

where Epo9o can be chosen such that Ay + Bogy Erag is stable, because the pair (A4, Bagy) is

controllable. Then the matrix Ap is stable.
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2.5.2 A necessary condition for the solvability

First, we introduce Full Information problem, which will be used to derive a necessary con-

dition for the solvability in the non-standard H., problem of case 1.

Definition 2.5.1 Let us consider the generalized plant (1.1), where the assumption A1l is
satisfied. Suppose that the matrices Co and Doy are defined as follows

02:“;], Dﬂ:[i} (2.50)

Then the Hy problem for a generalized plant

A| B1 B

Ci| O . D
Gri(s)= |75 r 5|

n |

O | Ly ' O

is called FI (Full Information) problem.
The following lemma is useful for solving the non-standard H, problems.

Lemma 2.5.1 Suppose that the Hy, problem with the assumption A1 is solvable. Then it is

necessary that the FI problem is solvable.

Proof. Omitted. ]
From Lemma 2.5.1, it is necessary that the non-standard H,, problem where C5 and Dsy

are supposed to hold (2.50) is solvable. Hence we consider the non-standard problem for the

generalized plant Gpy(s) where the assumptions A1, A2’-case 1 and A3’ are satisfied.

If we choose a feedback gain F' and an observer gain H such that

F2 _DI,C, 4+ DisLr + Dl,Er (2.51)
H%][ BF —-B ],

then A+ BoF = A+ HCy = Ap is stable. From Lemma A.2.1, the stabilizing controllers
K(s) for Gaa(s) are parametrized with a free parameter Q(s) € RHoo, and the closed loop

transfer function G, = F; (Gri(s), K(s)) is represented as follows.

Gaw(s) = F (Mi(s),—D12Q), Q(s) € RHwo
Arp ‘ By BQDIQ

Mi(s)=| Ep]| O I
O | Dy 0]

From the above discussion, the H,, problem for Gr;(s) is solvable, if and only if the H,
problem for M;(s) is solvable. Hence we consider the Ho, problem for M (s).
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Lemma 2.5.2 Suppose that the matrices Lp and Ep are selected as in (2.46) and (2.48)
such that Ap is stable. Then, if the non-standard H., problem of case 1 is solvable, it is
necessary that the ARE

T
XAzp+ ALpX + X {BlBlT — B,DI, (BQDIQ) } X =0, (2.52)
where
Azr 2 A— ByD1,C) + ByDis L
has a stabilizing solution X > O, which stabilizes a matriz
A T i P\
Ax 2 Agp + {BlBl — ByDl, (B2D12> }X. (2.53)
Proof. Omitted. [ |

Theorem 2.5.1 Suppose that the matrices Ly and Ep are selected as in (2.46) and (2.48)
such that Ap is stable, and that there exists a stabilizing solution X > O in the ARE (2.52).

Then the solution X can be represented as follows:

X = [ g )?r } € RM™, (2.54)

where X, € R™" is a nonnegative definite stabilizing solution of reduced-order ARE:
X, Ay + ALX, + X, (BuBiy;, — BaauBaoy) Xy = O. (2.55)

Proof. Omitted. [ |
By using X in (2.54), the matrix Ax is represented as follows:

T i i \7
Ax = Agp+{ BBl - BoDly (B2D]y) X

An+Lp, O O 14:122
Az Ay Az Ay
O O A Ap |’
O O O Ax

(2.56)

T

where
Agy = Agy + Ly, + (BiuuBi — BosuuBiay) X
Agy = Aoy + (BruBiy — BazwBaoy) X
Ay = (BuuBly — BooiuBiyy)
Ax, = Ay + (BuBiy; — BaauBaoy) -

From Theorem 2.5.1, since the matrix Ay, is stable, the matrix Ax is also stable.
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2.5.3 Parametrization of full-order H., controller
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Theorem 2.5.2 The non-standard H, problem for the generalized plant which satisfies as-
sumptions A1, A2’-case 1 and A3’ is solvable if and only if an ARE in (2.55) has a stabilizing

solution X4 > O, and an ARE:
f o) t
Y (A= BIDLGy) + (A-BiDLCy) Y
T +\7 t 1 N\t
+Y Cl Cl - (CQD21) CQ-DQl Y + B1D21 (B1D21> =0
has a stabilizing solution Y > O which satisfy p (XY) < 1, where

O O
x=lo 2|

Under such conditions, the class of the Hy, controllers is represented as:
K& = {K3(s): N(s) € BHoo, W(s) € RHoo }

where N(s) and W (s) are free parameters, and K (s) is represented as follows

Kl (s)=F Fo o | DI, Dis [

U R

and
Ax = A+ BB X 4+ ByF,,
By = By + YOI Dy
Cy = Dy B X + Cy
i 1 i i \7
Fu = =D}yCy + DisLp - D}y (B:D),) X
i t A\ P
He =2 {—BlD21 - v (Dh,cy) D21}
Z=I-YX)!
Y = (DuD3;)

N

Proof. Omitted.

Remark 2.5.1

(2.57)

(2.58)

1. By comparing the controllers of case 1 and case 2, it can be verified that each controller

has dual structure of another controller.

2. The dynamical order of the central solution equals the dynamical order of the generalized

plant, where we call the Hy, controller, whose free parameters are fixed to zero, a central

solution.

3. By using the free parameter, we can improve any performance of the central solution.
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2.5.4 Derivation of reduced-order H., controller

By using the free parameter in K., we derive the reduced-order H,, controller. First, let us

represent the full-order H,, controller with a homogeneous transformation as follows:

Ax | ZB;Dl, BoDfy —H. %!

1 _ ' N(s)
Ko(s) = HM| | F| DI, D + O |, [ W(s)
Cy 9] o ' 1
-1
Foo | DI,N(s) + DsW(s) | | Co | =71 ’ '
where Bg(s) is defined as
B (s) £ ZByDI,N(s) + BoD;W (s) — HooX 7L (2.60)

In the equation (2.56), since the matrix Lp,, € R(Mm2=PXT ig arbitrary, we can choose

L, such that Ay = O holds. Hence let us choose Lp,,
Lpy, = = Az — (BruuBiy — BoauuBaon) X (2.61)

then the matrix Ax is represented as

An+Lr O O O
A13 A14 A23 {124
O O A_ Ay
O O 0O Ax,

Ax =

The matrix Ax satisfies
UxAx = (A + Lp) Ux,
where Ux = [ I,—p, O ] € R(™27P1X"_ Hence, if By (s) satisfies
UxBx(s) = O, (2.62)

the pair (Ax, B (s)) has an uncontrollable subspace, hence the order of the controller in XL
is reduced by the number of mo — py.

From equation (2.60), the matrix Bg(s) is represented with the free parameter W (s) €
RHoo, and is spanned by the basis of ByDi. Since UxBaDis = In,—p, holds, if we choose

the free parameter W (s) as
W(s) = —Usx (ZBQDIQN(S) - HOOE_l) , (2.63)

the matrix Ux satisfies (2.62). Thus we can derive a reduced-order H,, controller.
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Theorem 2.5.3 Under the same solvability condition as in Theorem 2.5.2, the class of

reduced-order Hy, controllers is represented as:
Kb ={K3(s): N(s) € BH},

where N(s) is a free parameter, and K1 (s) is represented as follows

{ix\ Bp, —H, 2!
KIN(s)=HM | | Fy | DI, — D&5Bp, DLH., S | N(s) |, (2.64)
CQ @) E_l

and

Ay = Az : _ € R™™, AX e R(n=(m2-p1))x(n—(m2—p1))
O | AX
O |
ZEQDI2 _ [_gg _] , Bp, € R(m2—p1)xp1’BD2 e R(n—(m2-p1))xp1
2
Hoy = | Moot | pg o e Rmp)xw2 [ ¢ Rin—(mo=p)xps
o0 Hoog ) 01 Y o002

Foo - |: _DJlrQCll + Df_2LF1 | Foo ] € ngxn7 Foo € RmQX(ni(inpl))
Cy = [ Cy ' O } eRPXM Oy € RP2*(n—(m2—p1))

Proof. From the previous argument, the reduced order controller is derived by substituting
Lp,, in (2.61) and W (s) in (2.63) into K1 (s) in (2.59). Since KL is a subset of K., the

reduced order controller is an H,, controller. [ ]

Remark 2.5.2 The dynamical order of the central solution in KLL is n — (mg — p1), which
is lower than that of the central solution in KL, by the number of ma — p1. The controller
order reduction is analogous to the order reduction in dual-observer-based controllers, where

the order of the controller is reduced by the number of redundant inputs.

Remark 2.5.3 The controller parameters are also represented as follows:
Ax = A, + (BllBE - BmBgTzl) X,
Cy = Oy, + Dy B X,
— —DI,C1, + DL, — DI, Bh, X,

Fy
T T T r
Hyo, = — S Z11Buruu + Z12B1; 4 (5110 + 512C3,) <D21)

H/_/H,_/
)
N —+
~

T
Hy, = — {221B1uu + Z29 By + (521057 + 52203;) (DfL)

Bp, = Z11Basuuy + Z19Baogy + S11CT; + S12CF,
Bp, = Zo1 Bosuy + Zag Bagy + So1C + S02CT
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where
Ay Agz Ay O 0O O
A= 0 A Ap |, X.=|0 0 0O | eRO(m-p))x(n—(m2—p1))
O 0 Ay, 0 0 X,
S11 1 Sia Z11 1 Zho Lr
S - ZY = |- 5 ~ —~ — 5 Z = |- 55—~ - 5 L = |21 s
[Smfsm] [Z2le22] E [LFQ]

and X, > O is a stabilizing solution of ARE in (2.55) and'Y > O is a stabilizing solution of
ARE in (2.57).

2.5.5 The controller structure

This subsection reviews the full-order controller and the reduced-order controller from the
viewpoint of the dual-observer based output controller. The central solution in the class of

full-order H, controller in (2.58) is represented as

&= (AX+HOOC*2)55+HOOy
u=—Fox

where Z is a state variable of the controller. If we assume a orthogonal condition: Dngf =0,

these equations can be written as

u=—Fyt
v=Hov . (2.65)
v=y+ (o2

From these equations, it can be seen that the controller has the structure of a dual-observer-
based controller. In order to interpret the structure of the controller, let us consider the

system:

T
Yy = Cox + Dyyw

(2.66)

Then let us construct a composite system from the systems (2.66) and (2.65). By letting a

new state variable of the composite system as

~

n=ux+1,

the dynamical equation of the composite system is given as follows:

T

i A+BBTX 0 1[n 2{31 +Y (DhC,) } I

| = L | T w+ v
T 0] Ax T o I

v=1[Cy 0][2%02110
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w
Z{B1+Y(D21Cz2)"} D21
+
v + X I_[ n Ca O+ %
+ \
A
BiBr'X [~
+ ~ | >€
P
A
BiB1'X [~¢
BZFoa

Figure 2.4: The composite system

where it should be noted that v € R”, and that the subsystem of the state variable & is
unobservable.  The composite system is illustrated in Figure 2.4. Hence, the composite
system of the state variable 7 is stabilizable with an output feedback controller, if the pair
(A + BlBlTX , Cg) is observable. In fact, the output feedback controller:

v=Hyv
stabilizes the system as follows:

7;] = AXna

where Ay is a stable matrix. The size of the matrix Ax equals the dynamical order of a
full-order observer.

By representing the class of the Ho, controllers with the equation (2.64), the structure
of the dual-observer can also be seen explicitly in the H,, controller which is represented
with free parameters. Figure 2.5 illustrates the H., controller with the dual-observer-based
representation where the dynamical equation of the dual-observer is expressed explicitly. The
size of the matrix Ax equals the dynamical order of a full-order dual-observer. Since Bg(s)
is a function of the free parameters, the selection in the free parameters reduces to yield

the uncontrollable subspace in the pair (Ax, Bx(s)), and the order of the controller can be
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+ u
D1N(s) + Di2W(S) —O
+
Fo
y X X
O = B(s) = [ &
- +
Ax

Figure 2.5: The structure of K} (s)

reduced by the number of the degrees of the subspace. Hence, this type of the reduced-order

H, controller can be interpreted as a minimal-order dual-observer-type H, controller.

2.6 The non-standard H,, problem of case 3

This section derives full-order and reduced-order controllers in the non-standard H., problem
of case 3. Since the problem of case 3 combines problems of cases 1 and 2, the procedure
in the derivation of full-order controller is similar to the derivations in the problems of cases
1 and 2. However the reduced-order controller is slightly different from the reduced-order
controllers in the problems of cases 1 and 2. Hence, details of the procedure in the derivation
of the full-order controller are omitted, and almost all of discussions are devoted for the
derivation of the reduced-order controller.

We treat a generalized plant:

Caz | Im,
where the assumptions A1, A2’-case 3 and A3’ are satisfied. We put variables as follows.

Ca i O H 32_]:{_321 ng]

e 1 By | _[Bu By
[ G2 Do | [022 ' Iy Dy

2.6.1 Parametrization of full-order H., controller

Since the matrix Do; is of full column rank, we can derive a necessary condition for the
solvability in the problem of case 3 in the same manner that is used in the problem of case
2. Thus we deduce the necessary condition by using the result of the FC problem.

As is seen in the problem of case 2, we can choose a matrix Ly such that the matrix

Ayg=A— Bngng + LHD2L102
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satisfies

UAzg =AU, )\ (A)<O,Vi
kerU C ker U, ’

where U is a row-basis of the stable subspace in Azy, and U, is a row-basis of observable
subspace of the pair (A — Bngng,Dé-le). Also, we can choose a matrix Eg such that

the matrices Ay = Az + EHDgng and Fpy satisfy

Ai (AH) < 0,Vi
UEy = O. (2.67)

Lemma 2.6.1 Suppose that the matrices Ly and Egy are chosen such that the matriz Ay
is stable. Then, if the non-standard Hy, problem of case 3 is solvable, it is necessary that the
ARE in (2.12) has a stabilizing solution Y > O.

Proof. From Lemma 2.4.1, in this case, it is also necessary that the FC problem for G(s)
where By = I,, Bao = O is solvable. The solvability condition is equivalent to the condition
such that the H,, problem for Ms(s) is solvable. Hence, as is in the problem of case 2, it is
necessary that the ARE in (2.12) has a stabilizing solution Y > O. ]

Suppose that the ARE in (2.12) has a stabilizing solution Y > O. Then we can choose a

matrix Fy as
t T
Ey=-Y (Dmcg) . (2.68)

The matrix Epy satisfies (2.67), and stabilizes the matrix Ay. Hence, let us choose Ep as
in (2.68). Then, as is in the problem of case 2, Lemma 2.4.3 holds. Under the necessary
condition such that the ARE in (2.12) has a nonnegative definite stabilizing solution Y, the
H, problem for G(s) is reduced to the Hy, problem for Gymp(s):

A|Bi—-Ey B
Gimp(s) = | C1 @) Dy |,
CQ Doy O

where D15 is of full row rank, and

A=A+vclo
BQ = By + YCfDlg
Hence, we consider the Hy, problem for Gimp(s). As is in the problem of case 2, let us

parametrize the stabilizing controllers for Gy (s).

Suppose that (fl, Bg) is stabilizable. Then we can choose a feedback gain F' such that

AFéA—i-BQF
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is stable. Here, since Dis is of full row rank, as is in the problem of case 1, we choose F' as
__nf 1 T
F =—-D,Cy + Dy5LF + D, EF.
Then the matrix Ap is represented as

Ap = Azp + ByD},Ep,
Azp=A— BQDIQCl + BQD%QLF,

where Er is an arbitrary matrix which satisfies a constraint:
ErV =0,

where V' is a basis of the stable subspace in Az g, and Lg is chosen such that the controllable
subspace of the pair (A — BQDJ{QC&, BQDfé) is stabilized.

Next, let us choose an observer gain H, as in (2.23), then
Ag éA—i—HOOCQ = Ay

is stable. From Lemma A.2.1, the class of stabilizing controllers is represented as follows.

Ay + ByF ‘ ~Hy,, —DB
K(s)=Fi F O I |,Q(s)],Q(s) e RHw (2.69)
—Cy I 0

Then the closed loop transfer function is represented as follows
Fi(Gump(s), K(s)) = Fi (Ms(s), =D12Q(s) D21 ) , (2.70)

where

A + BQF ‘ By — FEgy BQDIQ
My(s) = | Ep o) T . (2.71)
O 1 0]

From (2.70), the solvability conditions of the H., problems for Gipy(s) and for Ms(s) are

equivalent, hence we consider the H., problem for M3(s).

Theorem 2.6.1 The non-standard H, problem for the generalized plant which satisfies as-
sumptions A1, A2’-case 3 and A3’ is solvable if and only if an ARFEs in (2.52) and (2.12)
have stabilizing solutions X > 0 and Y > O which satisfy p (XY') < 1. Under the conditions,

the class of the Hy, controllers is represented as:

Koo = {Koxo(8) : N(s) € BHoo, Wi(s) € RHoo,i = 1,2,3},
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where N(s) and W;(s),¥i are free parameters, and K (s) is represented as follows

A+ ByFoo + HooOs | Hoo | —ByDl, —ByDiy

—F O D] Di [ N(s) Wl(s)]
Koo(s)=F | |[-----2°7 J N . 2 ___ 2 12 __|
(5) =7 plGz DL T 0 0 Wals) Wi(s)
D3;Cy Dyi' O O
(2.72)
and

A=A+vCTC,

By = By + YOI Dy

Cy = DBl X + Cy

Fo—d_pt.ci—pi (B0 x\ 74 DLE
00 1201 12 | B2lqq + DipLrp
H.—_B,Di —v(Dic,) DI + LyDk

00 19 2102 o1 + LaD;
Z=(I-YX)".

Proof. The H, problem for Mj3(s) in (2.71) is DF (Disturbance Feedforward) problem. In
appendix A.7 the solution for the DF problem is listed. By using the result from Lemma
A.7.1, we derive the solution for the non-standard H,, problem of case 3.

(Solvability condition:) The solvability condition for the DF problem is such that
ARE:

SAzp + ALLS + 875 =0, (2.73)
where
~ ~ T
T2 (By— En) (B — Bn)" - BoDly (B>Dl,)

has a nonnegative definite stabilizing solution S. By using a definition in appendix A.8, we

represent the solvability condition such that

Hg € Dom (Ric)
15
{ §Z Ric(Hg) > 0 (2.74)
where
A T
Hg 2 [ - } :
O AL,
H g satisfies
T 1 P \T
1 Y]y _ | Aze BiBT - Bl (BoDl) 46 [[ 1Y
O 1 S O —AT O I ’
ZF
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where Y > O is a stabilizing solution of the ARE in (2.12), and J is defined as
1 t 1 i T
6 = (LuD3Cs = BaDlyLi) Y +Y (LuD$Co — BoDly L )
Since a matrix U,, which is a row-basis of observable subspace of the pair (A - B D;ng, D4 Cg) ,
satisfies U,Y = O, the matrix D2l102 satisfies
Dy CoY = 0.
Hence, the solvability condition (2.74) is equivalent to

Hx € Dom (Ric)
X = Ric (FIX) >0 (2.75)
p(XY) <1

where H x 1s defined as follows:

T T
Azr BiBT — ByDl, (BQDIQ) _ {BQDIQLFY Y (BQDIQLF) }
0] -AL.

Hx £

)

and Y > O is a stabilizing solution of the ARE in (2.12). The solvability condition (2.75)
implies that the ARE:

XA AT X + x4 B BT - B0 (BD1) L x
zF + AzpX + 157 2Ly | D219
1 i T
- X {BgDmLFY 1Y <B2D12LF) } X=0 (2.76)

has a nonnegative definite stabilizing solution X, and which satisfies p(XY') < 1.
On the other hand, from the solvability condition in (2.74), it can be verified that the
matrix S = Ric (H g) satisfies

SByDf; = O,
hence
X = Ric(Hy)
- (1+8v)7s
satisfies
X ByDi; = O. (2.77)

From the equation in (2.77), the ARE in (2.76) is reduced to the ARE in (2.52). Thus, the
solvability condition (2.74) is equivalent to the condition:
Hx € Dom (Ric)

X =Ric(Hx)> O ,
p(XY) <1
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where Hx is given as follows

T
Hy 2 AHwBﬁf—&Dh@ﬁﬁg l

@) —-AL .

This implies that the ARE in (2.52) has a stabilizing solution X > O where X satisfies
p(XY) < 1.
Conversely if the solvability condition (2.75) is satisfied, it can be verified that Hg €

Dom (Ric). Hence, the matrix
5,00 (Bopt) §— A+ E f L f R
Agr = ByDy (BaDly) § = A+ By { ~DlyCy + DisLp — D}y (B2D]y) S

is stable, hence (fl, Bg) is stabilizable.

(Derivation of the controller:) In the beginning of this subsection, the feedback gain
F is selected such that Ap = A+ ByF is stable. Here, we choose F' based on the solution of
the ARE in (2.52). Suppose that the solvability condition (2.31) is satisfied. Now, we select
F such that

~ T .
F = Fu 2 =D},Cy + DL - D}y (BaD)y) 5,
where
S=Xx27
Z=(1I-YX)™".

Then Ap = A + ByF. is stable. By using the formula in Lemma A.7 we can derive the

controller
A+ ByFy, ‘ —(B1 — En) _BQDIQ
—D12Q(s) D21 = Fi @) @) I JN(s) |, (2.78)
(B — Eg)'' S I O

where N(s) € BHoo. The equation (2.78) can be represented as follows:
—D12Q(8)Da1 = (I — N(s)Maa(s)) ™" N(s)Ma(s), (2.79)
where
Mgl(s) =1- (I)(S) (Bl - EH)
My(s) = —®(s)B2D],
T~ R -1
O(s) = (B — Ep) S@I—A—Bﬂ%) .

In the equation (2.79), Djy is of full row rank and Ds; is of full column rank, hence the

solution of Q(s) is derived as follows:

Q(s) =~ | pl, D%g][(I_N(S)MDVEVZ)()S_;N(S)le(S) %;HDT}
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where W;(s) € RHoo. Since (I — May(s)N(s))™" € RHoo, we can replace Wi(s) as

Wi(s) = (I —N(s)Maz(s))™ ( 1(8) + N(s)®(s) L)

A

Wa(s) = Wals) {1+ Maa(s) (I = N()Maa(s) ™ N(s) } Ma (s)
Wa(s) = Wals)Maa(s) (I = N(s)Maa(s)) ™" (Wals) + N()(s) L)
FWi(s) + Wi (3)2(s) L,

where W;(s) € RHo are free parameters. Then the solution Q(s) is represented as follows:
A -1
- _ T 1 | N(s) Wa(s) Moo(s) —CI’(S)Bng‘Q
Q(s) [ D, Di ] {I [ Wals) Wa(s) 2 5

[ N(s) Wi(s) } [ D}, + 9(s)Hoo ]
DJ_
21
A+ ByFy | ~Hs —BoDl, —BsDiy

N o | O 1 Dy __ Dip__ ,[N(s) W1<s>} |
(B1—Ep)"S|-Dy, 1 O 0 Wa(s) Wi(s)
O ~Dyi' O 0

(2.80)

where N(s) € BHoo, Wi(s) € RHo. By applying this Q(s) into (2.69), we can derive the
H, controller in (2.72). ]

2.6.2 Derivation of reduced-order H., controllers based on characterization
of zeros in Gy (s)

This subsection derives the reduced-order non-standard H., controller. Since Ds; is of full
column rank, it is assumed that the generalized plant has been put into a basis corresponding
to the canonical form in equation (2.4). Hence the following equations can be assumed without

loss of generality

. T _ A3 Ay O @) (p2—m1)x(p2—m1)
A B1D21CQ = A31 : A32 A O ,AH eR
Az ' Ay O Ay ’

D2L102 [ Iy, ml,O O O]

D} Cy = [ Coou | Costy Coopt Cazgy | 2 [ Coou ' Coor |, Cogy € RP2X(P2mm)
where A\;j(A14) < 0, both of the pairs (A1, Ip,—m,) and (A4, Cagryr) are observable, and
Ay € R has no jw eigenvalues. We call A_ the stable zero mode of Ga1(s) and Ay the
unstable zero mode of Ga;(s).

For notational ease, let us partition the following matrices.

1

21

Ci=[Cw Cur Ciu Cip |2 Cu Cy ], Ciy € RPY¥P2mm)
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Under the above preparation, let us represent the full-order Ho, controller in (2.72) with

the dual homogeneous transformation as follows:

Ay By Hy
D19 J Dy 1 O
— - T | Foo LNT ! N(s) Wal(s)
Kals) = DHM Mg e o ke
Dy, CoZ (0] v Dy
D3, Cs O ' Dy |
Ay By a4y | H
= D1y N(s) Wi(s) } [DT } . (2.81)
C C 21
K(S) (Df‘Q)T K(S) [ WQ(S) Wg(s) D%l
where Ck(s) is defined as follows.
D12 N(s) | ot A Wi(s) | Ho
Ck(s) & — Fy D}, CyZ D31 Cs. 2.82
K(S) [(D%Q)T + |: WQ(S):| 212 + Wg(S) 21V2 ( )

In the equation (2.20), since the matrix Ly,, € R*®P2=™1) ig arbitrary, we can choose
Ly, such that Asz = O holds. Hence let us choose Ly,

Ly, = —Ass — Y, (CF,, 01y — C39y, Caoit) (2.83)

then the matrix Ay is represented as

An+Ly, A2 O O
O Ay O O
O Ay A O
) Azg Agz Ay,

Ay =

The matrix Ay satisfies

AyVy =Vy (A1 + Lu,),

I

where Vy = [ p25m1 } € R™*P2=m1)  Hence, if Ck(s) satisfies

CK(S)VY = O, (2.84)

the pair (Ay,Ck(s)) is not observable, hence the order of the controller K (s) is reduced
by the number of py — m;.

From equation (2.82), the matrix Ck(s) is represented with the free parameter W;(s) €
R'Hxo, and is spanned by the row-basis of Dzﬁ C5. Since Dzﬁ CoV = I,,_m, holds, if we choose
the free parameters Wi (s) and Ws(s) as

o= (-] o

the matrix Vy satisfies (2.84). Thus we can derive a reduced-order H., controller.

N(s)

Foo + [ W) ] D§1022> Vi, (2.85)
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Theorem 2.6.2 Under the same solvability condition as in Theorem 2.6.1, the class of

reduced-order Hy, controllers is represented as:
K32 ={K232(s) : N(s) € BHoo, Wa(s) € RHoo}

where N(s) is a free parameter, and K'32(s) is represented as follows

N(s)
732 — 732
K!32(s) = DHM | M3 (s), [ Wa(s) }) , (2.86)
and
iy B L.
Dqy Dis Dys
MgSQ (3) = - oo T T Foo DJ‘
) L(sz__ 2 __sz__l{_(Pﬁ_)_J__i_Q_l_

I ~
Ay = i ERVM, Ay € RO (p2=m))x(n=(p2=m1))
Y o Ay Y

O |

E2 _ |:_B2u_:| € RnXmQ’ B2 c R(ﬂ*(pgfmﬂ)xmg
By
Ho = [_tf?ly?%;}_lﬁ?i _} cRVP. [ € RO (aom) e
[oe)

FOO = [ Fool F<>02 ] , F<>01 € Rmzx(mfrm)’FOOQ c RMQX(nf(pgfml))
D;léQZ = [ C’D1 CD2 ] , CDl e lex(pQ*ml)’CDQ c lex(n—(mfml)).

Proof. From the previous argument, the reduced order controller is derived by substituting
Ly, in (2.83) and Wi(s) and W3(s) in (2.85) into Koo (s) in (2.81). Since K732 is a subset of

Koo, the reduced order controller is an H,, controller. [ ]

Remark 2.6.1 The dynamical order of the central solution in K32 is n — (py — my), which
is lower than that of the central solution in Ko by the number of po — my. The controller
order reduction is analogous to the order reduction in observer-based controllers, where the
order of the controller is reduced by the number of independent outputs that are not corrupted

by disturbances.

2.6.3 Derivation of reduced-order H., controllers based on characterization
of zeros in Gi5(s)

This subsection derives the reduced-order non-standard H., controller.

Corollary 2.6.1 Under the same condition in Theorem 2.6.1, the class of the Ho, controllers

s also represented as follows:

Koo = {Koo(8) : N(s) € BHoo, Wi(s) € RHoo,i = 1,2,3},
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where N(s) and W;(s),¥i are free parameters, and K (s) is represented as follows

N(s) Wi(s)
_ 1
Kﬂ@_ﬂ<MA$[Ww)WM$ (2.87)
and
A+ ByFoo + HoCy | —Ho  ZB2D}, ByDfy
F O . DI D
ML(s)=|------ e T_;__Jz____y__
- 21C:2 Dy 0 0
—Ds;Cy Dy ' O O
A=A+ B BIX
By = By + YCI' Dy
Cy = Dy B X + Oy
t 1 t t\7
Fg:JMQ+DM@—Q4&D@ X
T T T 1
szz{—&Dm—Y(Dmaa Dm}+LHDm
Z=(I-YX)".
Proof. Omitted. [ |

Since Dis is of full row rank, it is assumed that the generalized plant has been put into
a basis corresponding to the canonical form in equation (2.3). Hence the following equations

can be assumed without loss of generality

All A12 A21 A22

A— BQDJ{ZCl = A013 A014 13123 AO24 , Aqp € R(m2—p1)x(ma—p1)
O 0 0 A
ImQ*pl
0]
ByDi; = et ’
| O
_Boouu
B B
BoDi. — 22ul | & 2uu | p € R(ma—p1)xma
2712 Booyy, Boy |7
| Boay

where \;(A14) < 0, both of the pairs (A11, Iym,—p,) and (A4, Bagy) are controllable, and A

has no jw eigenvalues. We call A_ the stable zero mode of Gi2(s) and A unstable zero
mode of G1a(s).
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For notational ease, let us partition the following matrices.

Bruu_
. Blul N Bluu (m2—p1)xm
By

Cy = [ Cy Chr ] cRPIX" Oy, € RP1*(m2—p1)
Cy = [ Cy Coy ] e RP2X" (0y € RP2X(m2—p1)

Under the above preparations, let us represent the full-order Ho, controller in (2.87) with

the homogeneous transformation as follows:

et =10 (0, [ ) W9 )

= N(s) Wi(s A
i 1 1 IRYA ’
Foo ‘ [Dl? D1y ] |:W2(8) Ws(s) ] Ca ‘ {Dm (Dai) J
(2.88)
where M (s) and By (s) are defined as

) Ax | ZByD], ByDfy —HoDy —Ho (Dg)"
Ma($) £ | Ex| Dip Dy 1 O _____ 0____

ég O 0 D21 (D2ll)_T_
Br(s) 2 ZByD}, [ N(s) Wi(s) ]

+B2Diy [ Wals) Wa(s) | — Heo { Dy (Dg)" ] . (2.89)

In the equation (2.56), since the matrix Lp,, € RU™27PUX" ig arbitrary, we can choose

Lp,, such that 12122 = O holds. Hence let us choose Lp,,
Lp, = —As — (BruwBiy — BoouwuBaoy) X» (2.90)

then the matrix Ax is represented as

An+Lr O O O
A13 A14 A23 {124
O O A_ Ay
O O 0O Ax,

Ax =

The matrix Ax satisfies
UxAx = (An + Lp ) Ux,
where Uy = [ Iy,—p, O | € R(M27PX" Hence, if B (s) satisfies

UxBK(S) = O, (2.91)



2.6. THE NON-STANDARD H., PROBLEM OF CASE 3 o7

the pair (Ax, Bx(s)) is not controllable, hence the order of the controller in K is reduced
by the number of mo — py.

From equation (2.89), the matrix Bg(s) is represented with the free parameter Wj(s) €
RHs, and is spanned by the basis of B2D1l2. Since UXBQDIL2 = Ipy,—p, holds, if we choose
the free parameters Wa(s) and Ws(s) as

[ Wa(s) Wa(s) | = —Ux (ZBQD{2 [ N(s) Wi(s) | — Hoo [ Dy (DE)T ]) (2.92)
the matrix Ux satisfies (2.91). Thus we can derive a reduced-order H, controller.

Theorem 2.6.3 Under the same solvability condition as in Theorem 2.6.1, the class of

reduced-order Ho, controllers is represented as:
K3t = {K232'(s) : N(s) € BHoo, W1(s) € RHeo}

where N(s) is a free parameter, and K13 (s) is represented as follows

K3'(s) = HM (M3 (s),[ N(s) Wi(s) ]), (2.93)
and
Ay ‘ Bp, | —Ho, [ Doy (Dé-l)T ]
M2(s) = | Fuo | Dl ~ DBy 1 DigHoey | D (D5)" |
s 0 ' —[ D (D21)T I
AutLp, O 0 O
Az N (o — (i —
Ay = - R™ "™ A R (n—(m2—p1))x (n—(m2—p1))
X O : Ay € ) X €
O |
Z§2DJ{2 — [_gg_l _] . Bp, e Rtmz—pi)xp g Rn=(ma=p1))xpy
2

H, = [_I_:rcél _} . Hu, € RUm2mpi)xp2 [ e RM=(m2=p1))xps

Fyo = [ —DIQCM + DisLp, Fy ] e RM2Xn, [ ¢ RmaX(n—(ma—p))
02 = [ 02l I 02 } c RPQXTL’ 02 c RpQX(nf(mQ*pl)).

Proof. From the previous argument, the reduced order controller is derived by substituting
Lp,, in (2.90) and Wa(s) and W3(s) in (2.92) into K (s) in (2.88). Since KZ3! is a subset of

Koo, the reduced order controller is an H,, controller. [ ]

Remark 2.6.2 The dynamical order of the central solution in KZ3! is n — (mg — p1), which
is lower than that of the central solution in Ko by the number of ms — p1. The controller
order reduction is analogous to the order reduction in dual-observer-based controllers, where

the order of the controller is reduced by the number of redundant inputs.
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Figure 2.6: The magnetic levitation system

2.7 A numerical example and discussions

2.7.1 Magnetic levitation system

In this thesis, we use a model of a magnetic levitation system to examine the effectiveness of

proposed methods by numerical examples. Let us consider the magnetic levitation system[34]

shown in the Figure 2.6, where the vertical position z,,[m] of a steel ball is controlled by

operating the terminal voltage of an electromagnet e[V]. R[] is a resistance of the exci-

tation circuit and L[H] is an inductance of the coil and i[A] is an excitation current of the

electromagnet. M [kg| is mass of the steel ball. Let us assume that the movement of the ball

is restricted to the vertical axis, then we can describe the equation of the motion

d*x 1, 0L
M—2" = Mg+ =i

dt? g g—|—21 O
i Lo
e z—i-dt( i)

Also, let us assume that the inductance L satisfies the equation

L(zy,) = —— + Lo,

where ), X, Ly are some parameters.

The state variables are defined as follows

xé[xl T xg]T:[i Tm xm]T

and the input variable u and the output variable y are defined as follows.

u=e Yy==Imnm
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Then the state space equation of the magnetic levitation system is written as follows.

{QZUQ—(X+3?3)2R}I'1 X4z
Q(XJrff»‘a)-FLQo(X+903)2 Lo(X+z3)+Q
el s - +10 u
2M(X+x3)2
T2 0

Thus, the system is represented as a nonlinear state space equation. By expanding the

nonlinear equation into Taylor series around an equilibrium point

xeq - [ Ty 0 xg ]T’ ueqa

and by approximating high-order terms, a linear approximation form can be given as follows

T = Az + Bu
where A and B are defined as
[ _Xx.R $ 0
Q+LoX: (Q+LoXc)X. , air a2 0
A 2 —ng 0 ng = ag1 0 ao3
MX?2 MX3
0 ¢ 1 0 ¢ 0 1 0
- X,
Q+L0XC bl
B & 0 =01,
| 0 0

and X, Z,u,y are defined as follows

X, & X+4f
_ A
T = XT— e
_ A
U = U— Ueg
= A
Y = Y —Yeq-

By using the Laplace transformation for the equation (2.94), we can obtain a set of transfer

functions from the input w to the output ¥:
P(s;M,R,Q,Lo,X) 2 [0 0 1](sI—A)7'B.

By substituting the values of the parameters in Table 2.1 into the above equation, we can

obtain a transfer function, which we call a nominal model, as follows

—67.03
(s —47.8)(s + 46.3)(s + 14.9)°

P(s) = (2.95)
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Table 2.1: The values of parameters

M R Q Ly X xy 3
0.54 | 11.6 | 8.513 x 10~% | 0.789 | 0.0043 | 1.144 | 0.006

2.7.2 An uncertain plant with partial state measurement

For the linear model of the magnetic levitation system, in this chapter we assume that some of
the sates are measured without disturbances, and the other states are measured with being

effected by disturbances. Thus the model ]5(3) which we assume here can be written as

follows
Tz = Ax + Bu
P(s):{ ="
Y2 = X2
Y3 = T3 +w

where, w indicates an input of the disturbance that is caused by the approximation error or
. . T .
measurement noise. The variables © = [ T1 To X3 ] and u correspond to each variable

with upper ver in the equation (2.94).

...............................................................

y
: X1 -
P(s)

Figure 2.7: The plant model

We assume that the dynamical equation of the disturbance w can be written as follows

& = Az + Bu
w = Cypx +dyu ’

AP+ {

where, A(s) indicates a model of a perturbation that causes the disturbance. Here, it should
be noted that both states in the plant and the perturbation are common. Then the whole
plant model is illustrated in Figure 2.7. In this chapter, we assume that a transfer function
of the error system between the nominal model P(s) and the perturbed model:

& = Az + Bu

Ys =x3+w
w = Cypx + dyu
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Figure 2.8: Gain plots of the perturbation and its boundary

has already been identified, and is plotted in Figure 2.8 with red line.

For the error system, we set a boundary of the perturbation such that a partial system

from the input u to the output y3 varies in a set
P ={(1+A(s)) P(s) : [A(jw)| < [Wr(jw)|, Vw}, (2.96)

where Wr(s) is a function of the relative error bound between the perturbed model and P(s).

In this thesis, by trial and error, we select Wr(s) as
Wr(s) = 0.2 x 1078(5.05% + 2.0 x 10*s® + 1.0 x 10°s + 10),

such that the plant set P includes the perturbed plant. Figure 2.8 plots the gain of the
weighting function Wr(s)P(s) with green line.

2.7.3 Low order robust controller design

We construct a generalized plant G(s) for the robust controller design as shown in Fig-
ure 2.9. Then, by solving the problem of finding a stabilizing controller K (s) such that
|F1 (G(s), K(s)) ||loo < 1, we can obtain a robust controller. Thus we have reduced the robust

controller design problem as an H,, problem. By setting the realization of Wg(s) as
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K(s)

A4

U

y

Figure 2.9: The generalized plant

the generalized plant G(s) can be written as follows

where, C,, is partitioned as

[ ail  ail2 0 O 0 ; —b1 T
asy 0 a3 O 0 : 0
0 1 0 O 0, O
O O Bg Ag| Bg ! O
= | cw Cw, Cwy O | O D —dw |
00 0 cs|olo
1 0 0 O 01 0
0 1 0 O]0, 0
. O 0 1 O 1 ! 0

C’w:[cw1 Cwsy cw3].

By substituting each parameter into G(s) and applying an equivalent transformation by

100
T:

S = O

10
11
0 0

0
0
0
1

, we can derive the generalized plant as
—13 12 0 0 (O —-3.4 1
2400 2500 2500 0 0 : 0
—2400 —2500 —2500 0 0 3.4
1.0 1.0 10 —-1.0x107°|1.0" 0
0.098 0.10 0.099 0 0 167x1077 |, (2.97)
S0 00 050 [0l o0
1.0 0 0 0 0 1 0
0 1.0 0 0 0, 0
1.0 1.0 1.0 0 1.0 0 i
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where the weighting function Wg(s) is put as

0.5
s+ 0.00001"

It can easily be verified that G(s) satisfies the assumptions A1, A2’-Case2 and A3’, hence
the H, problem is the non-standard H,, problem of case 2. Thus, by following the results

Ws(s) =

given in section 2.4 we can derive the low-order H,, controller whose order is two. Here, it
should be also noted that G(s) in (2.97) satisfies the assumption in (2.5). Thus, by using the
result of Theorem 2.4.3, a reduced order H,, controller can be given as

—79%x10° —2.6x10% | -7.8x 10° —8.0x 10° 0

K(s) = 0 —1.0 x 1075 0 0 1.0
—23x10° —75x10° | -23x10° —23x10° 0

The order of the controller is two, and is lower than that of G(s) by second order, which is

equal to the dimension of the state measurable without noise.

A
v+

A

K(s)

A A

Figure 2.10: The closed loop system
In this figure, P;(s) indicates a perturbed plant: (1 + A(s))P(s).

In order to examine the performance of the controller, free responses from an initial state
zo=[0 0 1.0x1073]"
2.7.3 illustrates the plots of the free responses, where Figure 2.7.3-(a) is the response of the

are simulated in the closed loop system of Figure 2.10. Figure

nominal closed loop system, and Figure 2.7.3-(b) is the response of the perturbed closed
loop system. It can be verified that both of the closed loop systems are stable, and that
the controller is certainly the robust controller. Thus, we have designed a low-order robust

controller by using the method proposed in this chapter.

2.7.4 Discussion

From the example it is verified that the low-order H,, controller is certainly derived for the

partial state feedback system, where the partial states are measured without disturbances.



64 REDUCED-ORDER NON-STANDARD H,, CONTROLLER DESIGN

x 10 (a) Free response from an initial state: [0 0 0.001], a case of nominal plant
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Figure 2.11: The closed loop responses

(a) is an initial response in the closed loop system where the nominal plant P(s) is used. (b)
is an initial response in the closed loop system where a perturbed plant (1 + A(s))P(s) is
used.

Correctness of the theoretical result that is derived in this chapter is also verified. Although,
for the system of the partial state feedback, it is known that a low-order controller which bases
its structure on a reduced-order observer can stabilize the system, the method of designing
the low-order Hy, controller, which is derived with so-called ARE approach [11, 47], has not
been known except the study of Zhang and Hosoe [71]. On the other hand, as compared with
the study of them, our result is more general in the point that we can treat all of the cases

of the non-standard problems.

The above numerical example is merely one of instances in which the theoretical result
given in this chapter is applicable. There must exist other examples in which the result is also
applicable. However, it is hard to find out a non-trivial example that is applicable the result.
Hence, it is useful to clarify the class of the applicable problems. The following chapters will

make it clear to utilize the result given in this chapter.
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2.8 Summary

By using the free parameters in the class of the full order controllers, this chapter has given
the reduced-order controllers of the non-standard H., control problems where D5 is of full
row rank and Do is of full column rank. The controllers are also represented with free
parameters; hence, the classes of the reduced-order controllers are derived. The classes are
divided into two types: reduced-order observer type and reduced-order dual observer type.
The orders of the controllers are listed in Table 2.2. Since the classes of the reduced-order
controllers are subclass of the non-standard controllers, the reduced-order controllers satisfy
the same H,, norm specifications that the full order controllers satisfy. Thus, we have given
a fundamental result for designing a low order H, controller, and have clarified one of merits
formulating as the non-standard problems. The effectiveness of this method for designing the

reduced-order H, controller will be shown with practical problems in later chapters.

Table 2.2: Order of each controller
In this table, n is the order of the generalized plant, p; is the number of the controlled
outputs, ps is the number of the measurement outputs, m; is the number of the disturbance
inputs and meo is the number of the control inputs.

Cases of problems deg (K)
| Gasel ] n(ma—p1) |
Case 2 n— (pa —mq)







Chapter 3

A synthesis of low-order
integral-type controller

3.1 Introduction

This chapter considers a synthesis problem of a robust servo control system [14] where it is
required that controlled outputs track step-formed references in the presence of uncertainties
in a plant. It is known that in the case where the references are assumed to be of the step-
formed signals, the robust servo controller requires to include integrators in its structure.
Hence the problem is formulated as an integral-type H., controller design. This problem
naturally reduces to some of the non-standard H., problems in which the non-standard H,
problem of case 2 is included.

Up to now, there are many studies concerned about the integral-type H,, controller
design [23, 27, 26, 25, 49, 47, 39, 40, 73]. In these studies the problem is often solved under
a transformation to the standard H,, problem. Omne well known approach is based on an
approximation of the integrator with a stable first-order transfer function [73]. This approach
enables the H,, controller to be designed easily but the controller becomes an approximated
integral-type controller. Mita et al. [49, 47] and Liu et al. [39, 40] proposed the concept of
pseudo-stabilization of the ARE and solved the problem based on the standard H., control.
Hara et al. [23, 27, 26, 25] proposed a method based on the transformation of the generalized
plant and the re-construction of the controller. Mita, et al. also proposed a method [48]
to solve the problem where the plant has poles on the jw-axis, and that method requires to
factorize the plant into a part having the jw-poles and another part. Other interesting results
for the robust servo controller design include the results by Zhang et al. [71] and Hozumi et
al. [26] where the problem is treated as some of the non-standard H, problems.

In this study, we treat the integral-type H., controller design as the non-standard H.,
problem where a direct feed-through term of the subsystem from the external input to the
measurement output (i.e., Do) is column full rank. Although, solving the non-standard H,

problem has some advantages, a defect such that the resultant controller becomes high-order

67
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r K(s) Yp

Y

P(s)

Y

Figure 3.1: A closed loop system

arises. Furthermore, in the case where a plant has the jw-poles, a solution to the problem
becomes more complex. This chapter treats the problem as the non-standard H,, problem in
both of the cases where the plant has no integrators and the plant has the jw-poles. Thus the
main topic of this study is the derivation of the low-order controller for the problem of the
integral-type H,, controller design. Another topic is the treatment of the both of the cases

where the plant has no integrators and the plant has integrators in a less complex manner.

3.2 Robust servo controller design
3.2.1 Specifications

Consider a feedback system shown in Figure 3.1, where K(s) is a controller and P(s) is a

plant which satisfies the following assumptions:
e P(s) € CP*™ has no jw-invariant zeros,
e m=>p.

These assumptions are fundamental for the robust servo system design[14]. In Figure 3.1,
r € RP represents the reference signal, u € R™ is the signal of control input, y, € RP is the
output from the plant and y € RP which represents the error is the input to the controller.
We denote the closed loop system in Figure 3.1 as (P(s), K(s)). Specifications of the robust

servo system design are
S1 stabilize the closed loop system (P(s), K(s)),

S2 let the H,, norm of closed loop transfer functions be less than v, where v € R is a positive

number fixed a priori,

S3 in the presence of the modeling error in P(s) and step-shaped disturbances, let the
control outputs asymptotically track the reference inputs which are restricted to the

step-shaped signals.

The specification S1 is necessary for the closed loop system to be internally stable. Besides

improving the transient responses of the outputs in the closed loop system, the specification
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S2 assures the robust stability of the closed loop system in the presence of additive or multi-
plicative uncertainty in the plant. The specification S3 is the requirement for the system to

hold a performance of the robust tracking.

3.2.2 Formulation with the mixed sensitivity problem

In the early many studies, for the above specifications the H,, control problem with the
generalized plant described in Figure 3.2 is solved. In this figure Wr(s) and Wg(s) represent
the weighting functions. This is the generalized plant of the well-known mixed sensitivity

problem. Thus, by solving the H, control problem which is formulated as

| Z | <

where T3,,,(s) denotes a transfer function from the signal w to the signal z;, the specifications
S1 and S2 are satisfied. In order to satisfy the specification S3, integrators are introduced

into the weighting function Wg(s). This is because if a condition
T w(s) € RHoo (3.1)

is satisfied for the weight Wg(s) such that

Wes) = V3) gire(s) € R, Ws(0) £ 0, (3.2)

S

then the H., controller includes an integrator in the case where P(s) has no integrators,
hence in this case the specification S3 is satisfied. Thus, by solving the mixed sensitivity
problem with the weighting function in (3.2), the robust servo controller can be designed in

the case where P(s) has no integrators. If we give minimal state space representations of

P(s), Wg(s) and Wr(s) as
é A—P’— Ap € R»X™w (3.3)

A BW Tw X Naw
Ty O ,Aw € R (3.4)

T(s)P(s) £ [W’T} (3.5)

the state space representation of the generalized plant in Figure 3.2 is written as follows:

[Aw —BwCp | Bw, O
O Ap | 0 'Bp
Gms(s) = CW 0 0] ; @)
0 o |o L
0 T Cer L0
A | B B
O [AB B i) Gl
- |G 0 Ds i G| (3.6)
Gy | Da O 21(s 22(s
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Figure 3.2: The generalized plant for mixed sensitivity problem

However, it should be noted that there are difficulties in solving the mixed sensitivity
problem form two points. The first point is that the mixed sensitivity problem with the
weight Wg(s) in (3.2) is the non-standard problem where the assumptions A1-2) and A3-2)
are not satisfied. This is easily verified from the generalized plant in (3.6). Especially a
deviation from the assumption A1-2) makes the problem hard to solve. The other point is
that the above formulation is not complete in the case where P(s) has integrators. In this
case, the condition (3.1) is satisfied regardless whether the controller has integrators or not,
hence there is a possibility such that the solution derives an H., controller which has no
integrators. The control system, where the controller has no model of the reference input
or the disturbance input, is not robust in the presence of the uncertainty of the plant. This
leads to a new formulation for the integral-type H., controller design, where the problem is

considered in the two cases where 1) P(s) has no jw-poles, and 2) P(s) has jw-poles.

3.3 In the case P(s) has no jw-poles
3.3.1 Formulation

In this section, it is assumed that the original plant of P(s) has no poles on the jw-axis. In
the first place, let us review the generalized plant of Figure 3.2. In the generalized plant, the
state of the weighting function Wg(s), which is unstable transfer function, is not measurable
from the output y, hence the system is not detectable and the assumption A1-2) is not
satisfied. Also in this generalized plant, since the dimensions of the signals w and y are
equal, the invariant zeros of the system from w to y include the mode of Wg(s) (See appendix
A.1.), hence the assumption A3-2) is also not satisfied. Therefore, the H,, control problem
for the generalized plant of Figure 3.2 is the non-standard H,, control problem where the
assumptions A1-2) and A3-2) are not satisfied.

On the other hand, let us consider a generalized plant in Figure 3.3. In the generalized
plant the weighting function Wg(s) is also selected such that (3.2) is satisfied. A difference in
the generalized plants of Figure 3.2 and Figure 3.3 is that the observed outputs have increased

in the case of Figure 3.3, where we assume that the state of Wg(s) is observed from an output
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Figure 3.3: The generalized plant for mixed sensitivity problem formulated as the non-
standard problem

y1. Assume that P(s), Ws(s) and Wr(s) have the same state space representations in (3.3)
o (3.5), and that W;(s) has the following stabilizable and detectable state space realization

AW Bw]

Wi(s) [Inw 0

(3.7)

where Wi (s) is a strictly proper rational transfer function such that the poles are located

only on the domain {s : Re(s) < 0}. For simplicity Ws(s) € RHo is selected as a constant

Cw. Then the state space realization of the generalized plant G(s) is represented as follows

[Aw —BwCp | Bw, O]
0] Ap O : Bp
Cw @) O, 0
Gl = 1o Cr 0) :Im

T, "0 10 0
L O —Cp Ip I 0 |
(A | B B

_ | B 21 [ Guls) Grals)

= Ci| O Dol = Gor(s) Ganls) (3.8)
(| Dy O 21 22

In this generalized plant, since Do is a matrix of full column rank, the assumption A2-2) is
not satisfied. On the other hand, the assumption A1-2), i.e., the detectability condition of
the pair (A, Cy) is satisfied since the sates of Wg(s) are measurable through the output y;.
Furthermore, since Dy is of full column rank, the invariant zeros of Ga;(s) are unobservable
poles of the pair (A — Bngng, D3;Cy), which include the unobservable poles of the pair
(A, C5).* All the modes of Wg(s) are included in the observable subspace of the pair (A, Cs),
hence the unstable modes of Wg(s) are not included in the invariant zeros of Ga1(s). In fact,

from the expression such that

A O
_ t w
[_4 - _BEQZLCP_] —| 0o 4p (3.9)
D35 Cy ‘_fn‘ O

*If A; is an unobservable pole of the pair (A, C2), Jv; # O; Av; = \jv;, C2v; = O. Then A; and v; satisfy
(A — BlDEIOQ) v; = A\ivi, D31C2v; = O. Thus )\, is an unobservable pole of the pair (A — BlD;1027 Dglng).
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Figure 3.4: The generalized plant and the integral-type H,, controller

it is apparently verified that the observable mode of the pair (A — Bngng, Dy,Cy) is the
mode of Wg(s). On the other hand, it is also verified that the unobservable mode of the pair
(A— Bngng, D3;C5) is the mode of P(s). From the assumption such that P(s) has no jw
poles, the assumption A3-2) is satisfied. Thus, the H,, control problem for the generalized
plant of Figure 3.4 is the non-standard H., problem where the assumption A2-2) is not
satisfied.

3.3.2 A high-order controller design

Thus the problem of the robust servo system design is reduced to the non-standard H,
problem of case 2. Hence, by following its solution which has already been given in chapter
2, we can obtain an Hy, controller K, (s). Then as shown in Figure 3.4, by combining a
part of the weight Wg(s) and K. (s), an integral-type Hy, controller K(s) is constructed as

follows.

i) = et | 1) (3.10)

Certainly, K 7(s) is a controller which satisfies specifications S1, S2 and S3. However, it should
be noted that the order of the controller is higher than that of the generalized plant G(s) by
the order of Wy (s). Thus, this approach yields a high-order controller, and this is a defect of
this approach.
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3.3.3 A low-order controller design

This section aims at deriving the integral-type Ho, controller of low order. This section first
derives the controller K (s) which is the Hy, controller of the non-standard H,, control
problem for G(s) in (3.8). Since G(s) fits the generalized plant of the non-standard Hao
problem of case 2, whose solution has already been discussed in the previous section 2.4. By
using the solution we can solve the problem as follows.

Let us define Ly such that the observable mode of the pair (A — Bngng,DQLng) is
stabilized with Ly, that is,

Ly = |: Lgl :| € R(nw-i—np)xnw’ VLHI € {LH1 : Re()\Z(AW +LH1)) < O,Vi}.

Also, let us define Az g as follows
Az = A— B\D},Cy + Ly D3Cs. (3.11)
Lemma 3.3.1 If the ARFEs:
X (A - BQDIQCl) + (A - BQDIQCl)T X
+X {BlBlT — B,D}, (BQDL)T} X+ (DﬁCl)T DLCI =0 (3.12)
and
YA§H+AZHY+Y{01T01 - (Dglcz)TD;cQ}Y =0 (3.13)

have stabilizing solutions X > O and 'Y > O which satisfy p(XY) < 1, the class of the Ho

controllers for G(s) in (3.8) is represented as:
Koo = {Koxo(8) : N(s) € BHoo, W(s) € RHoo} »

where N(s) and W (s) are free parameters, and K (s) is represented as follows

Ay + By | Ha | By

—F, o\ I,
Tl 1Y m [ N(s) W(s , 3.14
DI Cyz | D], [ NGs) W) ] (3:14)

Dy Cy Dy !

Koo(s) - ﬂ

where
Ay = A+ YC?Cl + H,Cy
By = By +YCI' Dy
Cy = Dy BT X + Cy
t i i \7
Fo = {—1)1201 — D, (B2Dl;) X} z
He = —B DY — v (D1,Cy) DI, + LD
o0 19 2102 o1 T LD
Z=I-YX)".
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Proof. From Theorem 2.4.2, the result is immediately derived. [ |
As we have considered in chapter 2, it is possible to reduce the order of the H,, controller
derived above. Thus we derive the reduced-order H, controller and obtain the integral-type,

reduced-order H., controller. The following lemma is useful for the derivation.

Lemma 3.3.2 Assume that the ARE in (3.13) has a positive semi-definite stabilizing solu-

tion. Then the stabilizing solution of the ARE can be represented as follows:

Y = [ g ler ] € ROwtmw) X (nptnu), (3.15)

where Y, > O is a stabilizing solution of the reduced-order ARE:
Y, AL + ApY, + Y, (C1.Cr — CECP) Y, = O. (3.16)
Proof. The ARE in (3.13) can be represented as follows
YAL + AznY =0, (3.17)
where Ay is denoted as
Ay =Azg+Y {Cchl - (D;@)TD;CQ}

and is a stable matrix. Let U be a row-basis of the stable subspace of Azy. Then the matrix

U can be selected as U = [ I,, O ] Then the matrix U satisfies the following equation:
UAzg = (Aw + Ly,) U.
Pre-multiplying the equation (3.17) by U, the following equation is obtained
(UAL + (Aw + Ly,) (UY) =O.

Since Re (Ai(Ay)) < 0 and Re (A; (Aw + Lp,)) < 0 hold, the solution Y satisfies UY = O
(See appendix A.3.1) and Y must be in the form (3.15). By substituting ¥ > O in (3.15)
into the ARE in (3.13), ¥, > O must be a solution of the reduced-order ARE in (3.16). =
In the second place, let us represent the full-order H., controller given in (3.14) with
DHMT as follows:
Ay | By Hy
Ku(s) = DHM -l-);fl%jz- %"- i-l-%l- [ N(s) W(s) ]
D3:Cy | O ' Dy
_ Ay | B, 17N Ay | Hy
- [ Cr(s) | Im } [ Ck(s) | N(s)D}; + W (s)Dy; |

where Ck(s) is defined as follows.

Ci(s) £ —Fy + N(s)D},CoZ + W (s) D31 Co. (3.18)
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By using the result of Lemma 3.3.2 the matrix Ay can be represented as follows

Aw + Lp, O

Ay = 0 Ap+Y, (CECr — CFCp) |7

where Y, > O is a stabilizing solution of the reduced-order ARE in (3.16). In the equation
(3.18), Ck(s) is explicitly represented with the free parameter W(s) € RHs. Hence an
adequate selection of the free-parameter W (s) yields pole-zero cancellations in the controller,

and the order of the controller can be reduced.

Theorem 3.3.1 Under the same solvability condition as in Lemma 3.3.1, the class of reduced

order Hy, controllers is parametrized as follows:

Ay | Bp Hyo,
K’ (s) = DHM ~Foo, | I Foo, D5y ,N(s) |, (3.19)
Cp, | O D} —Cp,Ds

where N(s) € BH is a free parameter, and fly,Bp,HoowFool,FooQ,C’Dl,CD2 are defined

as follows:

Ay = Ap+ Y, (CLCr — CHCp)

Bp = Bp +Y,CF.

Hoo, = [ o YTC%; }

Foo = [ Foo, Feo, }’ Fo, e R™* ™ F, € R™X™

D} CyZ = Cp, Cp, ]|, Cp, € R™>™ (p, € RM*",

Proof. By setting the free parameter as
W(s) = — (Foo + N@)D&@Z) v,
where V is a full column rank matrix defined as

v N I: ]gw :| c R(nw—f—np)xnw7

the matrices Ay and Cg(s) satisfy

AyV = V(AW + LHl)
Cr(s)V =0

Hence the pair (Ay, Ck(s)) is unobservable, and the order of the controller is reduced by the

dimension of rank (V') = n,,. Then the reduced order H,, controller is derived. [

Remark 3.3.1 The McMillan degree of the central solution of the Hoy controller in (3.14)

is reduced by the dimension of rank (V') = n,,, and is equal to n,.
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Figure 3.5: The generalized plant and the integral-type, reduced-order H., controller

Remark 3.3.2 [t should be also noted that the class of the reduced-order Hy, controllers is
represented with free parameter N(s) € BHxo.

Remark 3.3.3 In this theorem the reduced order TDF controller is represented with DHMT,
and this implies that the controller is in a form of coprime factorization over RHso. This
form is useful for reducing the order of the controller by approrimation, because it is hard to

apply approximation methods for unstable systems.

From the above theorem, a reduced-order controller K’ (s) is derived. Then as shown in
Figure 3.5, by combining a part of the weight Wg(s) and K_(s), an integral-type, reduced-

order H., controller is constructed as follows.

I

Kz = k| 1 | (3.20)

From Figure 3.5, it can be verified that the controller K. é@”(s) satisfies the specifications S1,
S2 and S3. The controller is parametrized with a free parameter N(s) € BH. The order
of the central solution is n, + n,, which is lower than that of the controller K7(s) in (3.10).
Thus we can derive an integral-type, reduced-order H, controller by way of reconstruction

of the controller.

3.3.4 A direct derivation of an integral-type H,, controller

In the previous section, the integral-type, reduced-order H, controller is derived indirectly.

This section aims at deriving the integral-type, reduced-order H, controller directly. Firstly,
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we investigate modes of the full-order Hy, controller in (3.14). The following definition is

useful for the investigation.

Definition 3.3.1 (Reduction mode of ARE) Assume that the ARE in (3.13) has a posi-
tive semi-definite stabilizing solution Y . If there exists a full row rank matriz U which satisfies

the equations:

UAzyg = AU (3.21)
UY =0, (3.22)

then we call the matriz A reduction mode of the ARE and U eigen-subspace of the mode.

Remark 3.3.4 In the standard Hy, problem, where Doy is of full row rank, the solution is

given by solving an ARE:
T
Y (A= BIDLG) + (A-BiDLCy) Y
T T
+Y {cchl - (PLcs) D;CQ} Y + B, D4 (B1D2i1> = 0. (3.23)

In this case, the reduction mode of the ARE in (3.23) is restricted to the mode of the stable
invariant zeros of Gai(s), that is, it is restricted to the stable uncontrollable mode of the
pair (A — Bngng,BlDQLI). This is stated in Lemma A.10.1. On the other hand, in the
non-standard Hs, problem of case 2, not only the mode of the stable invariant zeros of Ga1(s)
but also the stable mode which is obtained by stabilizing the observable mode of the pair
(A— Bngng,DleCg) are included in the reduction mode of the ARE. This can be verified
from the discussion in section 2.4: for a full row rank matriz U the equations (2.17) and (2.19)
hold, where the stable matriz A in (2.18) includes the stabilized mode and the stable zero mode.
In the case of the non-standard Hs, problem for the generalized plant in (3.8), the observable
mode of the pair (A — Bngng,DZLng) is stabilized with Ly, such that Ay = Ay + Lp, is
stable, and Ay is included in the reduction mode of the ARE in addition to the mode of the

stable invariant zeros of Go1(s).

The following lemma clarifies the relationship between the reduction mode of the ARE

and the structure of the non-standard H,, controller.

Lemma 3.3.3 Assume that the non-standard Hy, controller Ko (s) € Koo in (3.14) is min-
imal realized. Then if the full row rank matriz U, which is an eigen-subspace of the reduction
mode of the ARE in (3.13), satisfies

UBs = O, (3.24)

the eigenvalues of A1 = Aw + Ly, are included in K (s) € K2 as its real modes.
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Proof.  Since a full row rank matrix U £ [ I,, O | satisfies the equations (3.21) and
(3.22) for A = Ay, the matrix U holds the equation:

UAy = MU,
where Ay is represented as
T i T
Ay = Agy +Y {CTCi = (DLGy) DLGo, (3.25)

hence A; is a mode of Ay. If the matrix U satisfies (3.24), the so-called A-matrix of the Ho,
controller in (3.14)

Ako & Ay + (B2 + YO Dip) Fi
satisfies
UAk,, = MU,

where U is a matrix of full row rank. Hence, if K (s) is a minimal form, A is a real mode of
K (s). This implies that the eigenvalues of A; are included as the poles of the Hy, controller.
|

Remark 3.3.5 Since in the generalized plant G(s) in (3.8) the matriz U satisfies (3.24),
from the Lemma 3.5.3 it follows that if Aw is a stable matriz, that is, Wg(s) is a stable
transfer function, Ly, can be selected as zero and the mode of Wg(s) is included in the modes
of the controller. Hence the eigenvalues of Ws(s) are included in K (s) as its eigenvalues
if we choose Wg(s) as a stable transfer function, or Wg(s) is regarded as a stable transfer

function.

Based on the above idea, we intend to introduce the jw-eigenvalues of Wg(s) into the
controller. For this purpose the concept of pseudo-stabilization is adopted. The concept is
firstly proposed [49] in the problem of the standard H, control.

This study extends the pseudo-stabilizing solution of the ARE in the case of non-standard

H, problem of case 2.

Definition 3.3.2 A pseudo-stabilizing solution of the ARE in (3.13) is defined as a solution
that satisfies both of the following items.

1. for a full row rank matriz U, the following equations are satisfied

UAZH = AU, Re ()\Z(A)) S O,Vi
Uy =0,

where Az is the matriz which is defined in (3.11) and Y is a positive semi-definite
solution of the ARE in (3.13).
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2. real parts of all the eigen values of Ay in (3.25) are negative except the eigenvalues of

A

Remark 3.3.6 In the standard Hs problem, the pseudo-stabilizing solution of ARFE is inter-
preted as the stabilizing solution of the ARE where jw-invariant zeros of Go1(s) are regarded
as stable zeros. On the other hand, in the non-standard H., problem of case 2, the pseudo-
stabilizing solution of ARFE is interpreted as the stabilizing solution of the ARE where not
only the jw-invariant zeros of Ga1(s) but also jw-mode which is included in the observable
mode of the pair (A — Bngng, Dy;Cy) are regarded as stable modes.

The following theorem enables us to give a pseudo-stabilizing solution of the ARE in
(3.13) with solving the stabilizing solution of the ARE.

Theorem 3.3.2 Let us consider the ARE in (5.13). The stabilizing solution Y > O, which
is obtained with the observable mode of the pair (A — Bngng,Dﬁ-ng) is stabilized, equals
the pseudo-stabilizing solution Y > O which is obtained by letting Ly = O.

Proof. From (3.9), the full row rank matrix U can be chosen as
U=[1. 0]. (3.26)

The stabilizing solution ¥ > O and the pseudo stabilizing solution ¥ > O of the ARE in
(3.13) are the symmetric matrices, and they satisfy UY = O and UY = O, hence both of the

solutions must be of the form:

Y:[g 8] (3.27)
Y:[g 3] (3.28)

Substituting the candidate of the stabilizing solution Y in (3.27) into the ARE in (3.13), a
reduced-order ARE :

Y, Ap + ApY, + Y, (C1Cr — C}Cp) Y, = O, (3.29)

is derived where Y, > O needs to be a stabilizing solution of the reduced-order ARE. On the
other hand, substituting the candidate of the pseudo-stabilizing solution Y in (3.28) into the
ARE in (3.13), a reduced-order ARE :

Y, AL + ApY, +Y, (C}FCr — CECP) Y, = O (3.30)

is derived. From the statement in Definition 3.3.2, it is verified that ¥, > O needs to be a
stabilizing solution of the reduced-order ARE. Thus, it is shown that Y, = ¥, and that the
stabilizing solution Y in (3.27) equals the pseudo-stabilizing solution Y in (3.28). ]
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Remark 3.3.7 The above theorem also states that the pseudo-stabilizing solution of the ARE
in (3.138) can be given by solving the stabilizing solution of the reduced-order ARE in (3.30).

The next theorem shows that by using the pseudo-stabilizing solution, a solution to the

non-standard H,, problem is given.

Theorem 3.3.3 Assume that the ARE in (3.12) has a stabilizing solution X > O and that
the ARE in (3.13) has a pseudo-stabilizing solution Y > O and they satisfy an inequality

p(XY) < 1. (3.31)

Then, the class of the controllers {Koo(s) : N(s) € BHoo}:

Ak, |Hs —B»
—Fy | O 1 Iy

Ka(s) =7 | |- -9 T NG 0], 3.32
O =7 | praz o ar| [V o] (3:32)

where N(s) € BHs is a free parameter and the other parameters are defined as
A, =A+YCTC + ByFsy + HyoCo
By, =YCIDyy + By
Cy=Cy+ Dy BT X
Fo = <—D{201 — D}, (BQDIQ)TX> Z

f 1 t o\ pi
Hy = —BiD}, + LyDh — Y (Dmcg) D},
Z=(1-YX)",
give a subclass of the Ho, controllers for G(s) in (3.8).

Proof. We show that the controller given by the equation (3.14), where X > O is the
stabilizing solution for ARE in (3.12) and Y > O is the pseudo-stabilizing solution for ARE
(3.13), is the Hy controller when W (s) = 0. As shown in Figure 3.6 the controller in (3.14)

has a double-input/single-output structure and this can be represented as follows
Keo(s) = [ Ki(s) Ka(s) |, Ki(s) € C"™™ Ky(s) € C"™*P. (3.33)

Then the control input u is represented as

u=[ ) Kl ]| 2]

Y2

where, y; is an input signal to the controller and this is yielded from Wg(s), which is a mode
of the observable subspace of the pair (A — Bngng,Dng). By letting Ly, = O, the

following equation

Ha [ In, } _0 (3.34)
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Figure 3.6: Closed loop system

holds. Let us denote the controller in (3.14) as

K= (| 50 K20 | v we ).

where N (s) € BHoo and W (s) € RH are free parameters. Then the equations

K11 (s) [ I ] —0, Kols) [ e } - [ Ifw ] (3.35)

are satisfied. Therefore, the controller K (s) can be represented as follows

ki) = Kalo)| |

S
N
Q

Ko(s) = Kao(s) [ o }

[ Ak, |HY -B»
j:l _Foo ‘ O Im

| Di,Cyz | I, O
[ Ax, | ZHS, —ZBs

= F —FY [0 I, ,N(s) |, (3.36)
| DI,Cy | I, O
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where
A, = A+ BiBIX + BoFY + ZH Cy
F) =-pl,c; —BIX
PN
HY =B -Y (D2102)
On the other hand, by using Lemma A.11.2, it can be verified that the controller in (3.36)
equals the Hy, controller of the standard Ho, problem for G,,s(s) in (3.6). ]

Remark 3.3.8 The order of the Hy, controller in (3.36) equals the order of the generalized
plant. It is lower than the order of the Ho, controller in (3.10).

Thus, a design step of the robust servo controller has been given.

Proposition 3.3.1 Assume that P(s) has no integrators. The following Design Procedure
1 yields an integral-type Hyo controller which includes the same number of integrators which
are included in Wg(s) and the controller satisfies the specifications S1, S2 and S3.

Design Procedure 1

STEP 1 Introduce integrators into Ws(s) as follows:

Wes) = V3 4irc(s) € R, Ws(0) £ 0,

sn
where n is the number of integrators which are needed to be included in the con-

troller.

STEP 2 Select an Ly such that Ly, € {Lu, : Re(Ni(Aw + Lp,)) < 0} and obtain
the positive semi-definite stabilizing solutions of the AREs in (3.12) and (3.13).
Then, verify the inequality (3.31).

STEP 3 If the inequality is satisfied, set Ly, = O and the controller (3.32) is a

solution.

Proof. Since it is apparent that the resultant controller is the H, controller from the above
discussion, it suffice to show that the controller has integrators. The full row rank matrix U,
which satisfies (3.21) and (3.22), can be given as (3.26), hence, from the generalized plant
G(s) represented in (3.8), it can be verified that U satisfies (3.24). Using the result of Lemma
3.3.3, it is shown that the controller (3.32) has the integrators, the number of which is same

as the number of jw-eigenvalues of A = Ayy. [ |

Remark 3.3.9 It should be noted that, in Design Procedure 1, it is not needed to solve the
pseudo-stabilizing solution of the ARE in (3.13).

Remark 3.3.10 The order of the resultant controller is equal to that of the generalized plant.
Thus, as compared with the controller in (3.10), the order of the controller is reduced by the
order of Ws(s).
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3.4 In the case P(s) has jw-poles
3.4.1 The jw invariant zeros of Gy (s)

Let us consider the problem of the robust servo controller design where P(s) has poles on
the jw-axis. We first show that the jw-poles of P(s) appear as the invariant zeros of the
subsystem from the external input to the measurement output in the generalized plants of
Figures 3.2 and 3.3.

First, let us review the generalized plant G,,s(s) in Figure 3.2. Since the invariant zeros

of Go1(s) are all the poles of the matrix

dmiies g4
, uncontrollable poles of the pair (A, By), i. e., all the modes of P(s) in which the mode on
the jw-axis is included, are included in the zeros of Gor (s), hence, in this case, the generalized
plant Gy,s(s) doesn’t satisfy the assumption A3-2).

In the case of the generalized plant G(s) in Figure 3.3, since the invariant zeros of G (s)
are included in the unobservable mode of the pair (A — Bngng, Dzﬁ C3), from the equation
(3.9), it is apparently verified that the jw-poles of P(s) are included in the zeros of Go1(s).
Hence, in the case of the generalized plant of G(s), the assumption A3-2) is not satisfied.

3.4.2 Design

Thus, in the case where P(s) has jw-poles, the H, control problems for both of the gener-
alized plants Gp,s(s) and G(s) are the non-standard H, problems in which the assumption
A3-2) is not satisfied. For the generalized plant of Gy,s(s), a solution to the Hy, problem
is proposed in a paper [48], where the non-standard H, problem for the generalized plant
Gms($) is transformed to a standard Ho, problem by separating a jw part from P(s). Hence
the solution needs a transformation in the generalized plant.

The present study proposes a direct solution to the non-standard H., problem for the
generalized plant of G,,s(s), and generalizes the solution to the non-standard H., problem
for the generalized plant of G(s). Firstly, the following lemma gives a direct solution to the

non-standard H,, problem for the generalized plant of G,,s(s) where P(s) has jw-poles.

Lemma 3.4.1 [t is assumed that the strictly proper transfer function P(s), which has jw-

poles can be factorized as follows
P(s) = P(s)a(s), (3.37)

where
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Gms(S)
u > F/)\(S)
--------------------------- Kms(S)
Kms(S) = a(s) +1Kms(s)|«
Figure 3.7: A transformation in the closed loop
In the generalized plant of Figure 3.2, let us select Wg(s) as follows
Ws(s) = a(s)Ws(s), (3.38)

where
W(oo) =0, Wi(s)<oo,Vse {s:Re(s)>0}.

Then, if the ARE in (3.12) has a stabilizing solution X > O, the ARE in (3.13), where
C’g and [?ng are substituted for Cy and Doy, has a pseudo-stabilizing solution Y > O and
they satisfy the inequality in (3.31), then by using the solutions X and Y the Ho, controller
for the generalized plant of Gs(S) is given with the expression (A.11) which is a solution of
the standard Ho, problem.

Proof. In the early paper [48], the H, controller for G,,,s(s) is indirectly given by converting
an H, controller for Gms(s) which is obtained through a factorization in the closed loop of
Gms(s). (See Figure 3.7.) Here, it is shown that the H,, controller given by the method
coincides with the controller which is directly given by using this theorem. Outline of the

proof is as follows.

1. Construct the generalized plant Giys(s).

2. Tt is shown that the solutions of the AREs for G,s(s) coincide with the solutions of the
AREs for Gp,s(s).

3. It is shown that the controller K, (s) which is given by using the theorem equals an Ho,

controller a=1(s) Ky (s) which is derived through Kjs(s) which is an Hs controller for

~

Gms($).

tSince [)21 =1, D;l =] and [)QLI = 0.
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Concrete calculations are shown as follows.

1. Let us represent P(s) as follows:

Ap, O
P(S) = Pl(S)P2(S) = BP1CP2 AP1
DpCp, Cp | O

where P;(s) and Ps(s) are defined as

Then by letting the factor a(s) as

a<s>:[“(‘f B;’Q], Re (\(Ap, — BpyCa) < 0.V,

N

P(s) can be represented as follows
A Ap, — Bp,C, O
P(S) = P(S)ail(s) = Bp,Cp, Ap,
DPlcPQ CPI ‘ o

Bp,

o | = [‘éllz BOP} . (3.39)

Also, by letting Cr = [Cr, Cp, |, Wr(s)P(s) is expressed as follows

Ap Bp

Wr()P() = |51

},CTA:[CTl—Ca .

For the above plant P(s), the generalized plant for the mixed sensitivity problem is

represented as follows

[Aw —BwCp| Bw A O
. O A]g O EBP
@) Cs O I
O —Cp I 70
[A| Bi By
£ |C1| O Diof. (3.40)
| Cy | Doy O ]

2. For the generalized plant G,,s(s), an ARE
~ AT o 1A T 1A
XAgr + AL X + XRX + (DmCl) D56 = 0,
where

Agp 2 A - BzDIZCH = Azr
~ T
R 2 B,BT - B,D, (BQDL) =R

(DiCh) DG = (DCh) DG,
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coincides with the ARE in (3.12) which is needed to be solved in the mixed sensitivity
problem for G,,s(s). Hence, the solutions for each AREs coincide with each other if

they are solvable.

On the other hand, if an ARE for G,s(s)
VAL, + AzpyY +YQY =0, (3.41)
where
Azg 2 A— B D}, Cy
Q2070 — (D}yCo) Dy,
has a pseudo-stabilizing solution Y, there exists a full row rank matrix U such that

i | Aw @

Uy =0.

Hence, by applying the equivalent transformation for (3.41)

T
U R . R U
Y ALy + AgnY +YQY) ) 3.42
(UJ_)T ( ZH+ ZHY + Q (UJ_)T ( )
It appears that the pseudo-stabilizing solution of the ARE in (3.41) is expressed as
O O O
Y=|0 O O |, (3.43)
O 0O Y
where Y; > O is a stabilizing solution of a reduced-order ARE
YiAp, + ApYi+ Y (CL,Cr, — CE Cp,) Yy = O,
For Gps(s), in a similar way if an ARE
YALy + AzpyY +YQY =0, (3.44)

where

Azn 2 A— B D}, Gy

Q2crco - (D;@)TD;@,
has a pseudo-stabilizing solution Y, for Y there exists a full row rank matrix U such
that

B [Aw O
UAzy = AU, A_[ o APJ

Uy =0.

Hence, by applying the same equivalent transformation as in (3.42) for (3.44), it appears
that the pseudo-stabilizing solution of the ARE in (3.44) is also represented as (3.43).
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3. By using the parameters of the Ho, controller for G,,s(s) (See appendix A.11), the Hy,

controller for Gps(s) can be represented as follows

A | -ZH. ZBs
Kps(s) = F F ) I |,N(s)|, (3.45)

where
Fx2Fo+[0 C, O].

By calculating a=*(s)K,s(s) and transforming its state with a non-singular matrix

I O -1 O
T_ O I O O
O O I O]’
O 0 O I
it is shown the following equation holds.
a"H(8) Kns(s) = Kpms(s) (3.46)

Remark 3.4.1 From the above proof, it is seen that in the mized sensitivity problem where
P(s) has jw-poles, the poles appear as jw-invariant zeros of the controller. Since the invariant
zeros of the controller are canceled out by the jw-poles of P(s), the internal stability of the
system is not satisfied. In order to avoid the cancellation, the weighting function Wg(s) is
selected as in (3.38).

The following theorem generalizes the result of Lemma 3.4.1, and gives a direct solution

to the non-standard H, problem for the generalized plant of G(s) where P(s) has jw-poles.

Theorem 3.4.1 [t is assumed that the strictly proper transfer function P(s), which has jw-
poles, can be factorized as (3.37). In the generalized plant of Figure 3.3, let us select Wg(s)
as (3.38). Then, if the ARE in (3.12) has a stabilizing solution X > O, the ARE in (3.13)
has a pseudo-stabilizing solution Y > O and they satisfy the inequality in (3.31), then using
the solutions X and Y, the controller in (3.14) with W (s) = 0 is the Ho controller for the
generalized plant of G(s).

Proof. In the AREs of the non-standard H., problem for G(s), (3.12) coincides with one of
the AREs of the standard Hs, problem for G,,s(s), and by letting Ly, = O, (3.13) coincides
with the other ARE of the standard H., problem for G,,s(s). Hence, from the result of
Lemma 3.4.1, using the stabilizing solution for the ARE (3.12) and the pseudo-stabilizing
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y2) W Z
() va(s) Wo(s W)
Wi(s)
u - P(S) ~ "\+ I
Y1
Y2

Figure 3.8: A sketch in the proof

solution for the ARE (3.13) with Ly, = O, the Hy, controller for G,,s(s), where P(s) has
jw-poles, is given by (A.11).

On the other hand, from the proof of Theorem 3.3.3, it is shown that by letting W (s) = 0,
the (1,2)-entry of the controller K. (s) in (3.14) coincides with the controller given by (A.11)
and the (1,1)-entry of the controller K (s) is zero. From these, it is apparent that the
controller K (s) in (3.14) with W (s) = 0 is the H, controller for the generalized plant of
G(s). This is sketched in Figure 3.8. ]

Thus, in the case where P(s) has jw-poles, a design procedure of the robust servo con-

troller is given.

Proposition 3.4.1 Let Np be the number of integrators included in P(s), and let Ny be the
number of integrators included in Wg(s). The following procedure yields an integral-type H oo

controller which includes Ny — Np integrators and the controller satisfies the specifications
S1, S2 and S8.

Design Procedure 2

STEP 1 Introduce integrators into Ws(s) as follows:

w. - -
Ws) = 5 () € R Ws(0) 20,
where n = Ny is the sum of the number of integrators which are needed to be

included in the controller and the number of integrators which are included in

P(s).

STEP 2 Select an Ly such that Ly, € {Lpg, : Re (\i(Aw + Lu,)) <0} holds. Then,
obtain the positive semi-definite stabilizing solution of the ARE in (3.12) and the
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positive semi-definite pseudo-stabilizing solution of the ARE in (3.13). Then, ver-
ify the inequality (3.51).

STEP 3 If the inequality (3.31) is satisfied, set Ly, = O and W (s) = 0, then the

controller (3.32) is a solution.

Proof. Since it is apparent that the resultant controller is the H,, controller from the above
discussion, it suffice to show that the controller has integrators. The full row rank matrix U,
which satisfies (3.21) and (3.22), can be given as (3.26), hence, from the generalized plant
G(s) represented in (3.8), it can be verified that U satisfies (3.24). Using the result of Lemma
3.3.3, it is shown that the controller (3.32) has integrators, the number of which is same as
the number of 0-eigenvalues of A = Ay. However, form the relation in (3.46), some of the

integrators in the controller are canceled out by zeros on the origin of a=!(s). [ |

Remark 3.4.2 In the above procedure, although, in the case P(s) has jw-poles, it is still
necessary to obtain the pseudo-stabilizing solution of the ARE, it is not necessary to separate
the jw part from P(s).

Remark 3.4.3 The order of the resultant controller is equal to that of the generalized plant.
Thus, as compared with the controller in (3.10), the order of the controller is reduced by the
order of Wg(s).

3.5 Numerical examples
This subsection illustrates numerical examples of the robust servo control with simple models.

3.5.1 P(s) has no jw-poles

Let us consider the following system

P = 1= [T1e].

In order to introduce an integrator into the controller, Wg(s) is selected as follows
1/~ 0 |1
Wsls) === HM i)

s+05 [ -1]1
s+1  [-05]|1]"

Let us adopt Wrp(s) as

Wr(s)P(s) =

Then the problem is solvable if v satisfies v > 1.2. Hence, we set v = 1.2. In this case, a
stabilizing solution of the ARE in (3.12) is given as

25.5 —25.5
X = [ ~25.5  26.0 } '
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By setting Ly, as Ly, = —a, > 0, the ARE in (3.13) is represented as follows
YALy + AzunY +YQY = O,

where

[ —a 0 1420
AZH_[ 0 —1}’ Q‘[ 0 —0.75]

Apparently the stabilizing solution of the ARE is Y = O. By letting Ly, = O, a central

controller is derived from (3.32) as
Kools) = [ 0 25555355 |
It can be verified that the controller includes an integrator.

3.5.2 P(s) has jw-poles

Let us consider the following system

which includes an jw-pole in w = 0.

In order to introduce an integrator into the controller Wg(s) is selected as follows

Let us adopt Wr(s) as

Then the problem is solvable if v satisfies v > 3.6. Hence, v = 3.6 is adopted. By obtaining
a stabilizing solution of an ARE in (3.12) and obtaining a pseudo stabilizing solution of the
ARE in (3.13), an H, controller (a central solution) is derived from (3.32).

0.322
Koo(s) = [ 0 265'35(2_:—266.3) ]

It can also be verified that the controller includes an integrator.

3.6 Summary

In this chapter, we have considered a synthesis of the low-order integral-type H., control
system, where two types of plants: integral-type and non-integral-type, are treated. The syn-

thesis problem is formulated as the non-standard H,, problem, where a direct feed-through
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term of the subsystem from the external input to the measurement output is of full column
rank. Although the formulation resembles the results by Zhang et al. [71] and Hozumi et
al. [26], the solutions are distinctive. This approach to the integral-type robust controller
design is based on the non-standard H., control problem. The controller is given with low
order by using the solutions of the AREs. In the case where the plant has no integrators, it is
not necessary to solve the so-called pseudo stabilizing solution of the ARE. We have extended
the result to the case where the plant has the integrators. In this case, although it is still
necessary to solve the pseudo stabilizing solution of the ARE, there is no necessity for trans-
forming the non-standard problem to the standard problem and separating the integrators
from the plant. Moreover, the results given in this chapter can be extended to the two-
degree-of-freedom controller design problem which can also be reduced to the non-standard

H control problem. This problem will be treated in the following chapter.






Chapter 4

Trade-off analysis of a low-order
TDF control system

4.1 Introduction

Closed loop stabilization, disturbance elimination, and reference tracking in the presence of
uncertainties of a model — these are the main goals of a robust control system design, and TDF
control is one of the most effective ways to reach all these goals simultaneously [44, 22, 13, 29].
In recent years, there has been many studies concerned about application of H,, and Hs
control theory in the designing of TDF control systems [17, 38, 7, 4, 27]. Most of these
studies focused on transformation of the TDF control problems to the standard H,, or Hs
control problems. This has resulted in high-performance TDF controllers, but excessive
transformation sometimes results in controllers of unacceptably high order. That is, the
McMillan degree of the H, controller is no less than that of the generalized plant, especially
in the TDF case, it becomes no less than three times as high as that of the plant. Therefore,

it is required to study the low-order TDF controller design.

On the basis of such a background, some earlier studies have tackled the problem of
designing low-order controllers [5, 6, 24, 7, 38, 17]. These studies are based on the idea of
using the same dynamics in both of the feedback controller and the feedforward controller,
where some of these studies [5, 6, 24, 17| have adopted a sequential design in which the
feedback controller and the feedforward controller are designed separately. In this approach,
a low-order TDF controller can be designed. A key feature of the approach is that the zeros
and the gain of the feedforward controller are optimized in the second step, which is preceded
by designing of the feedback controller. Therefore, it should be noted that, in this approach,
the resultant feedforward controller has the same pole position as the feedback controller
has, and it is not necessarily optimal for tracking performance. In general, it is well known
that the feedback performance and the tracking performance are independently specified in
the TDF control system [66, 44], but it is not known whether this is true in the case of the

same-dynamic TDF control system. Since the answer to this question affects the optimality

93
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y K(s) = P(s)

Figure 4.1: Basic structure of TDF control system

in the low-order TDF controller design, the question must be investigated.

Thus, prior to considering the synthesis of the low-order TDF controller, this chapter is
devoted to clarifying the relationship between the feedback performance and the feedforward
performance in the case where the TDF controller is low order, especially, the feedback
controller and the feedforward controller share the common dynamics. Thus, this chapter
analyzes the trade-off of the low-order TDF control system. It is shown that the independence
of the feedback performance and the tracking performance is not maintained in this case, and
that the low-order TDF controller should therefore be constructed with a simultaneous design

of the feedback controller and the feedforward controller.

4.2 Basic analysis and design of the TDF control system

In this section, we analyze the feedback properties and the feedforward properties in the TDF
control system by representing the class of transfer functions of the TDF control system.
Based on the analysis we introduce a basic design of the TDF control system by using the

H, control. Then, we evaluate the order of the resultant TDF controller.

4.2.1 Basic analysis of the TDF control system

Consider the TDF control system shown in Figure 4.1. P(s) represents a plant model. K (s) is
the feedback controller and F'(s) is the feedforward controller. Where, r € R? is the reference
input, v € R™ is the control input, y € R? is the measurement output and d,n € RP
respectively represent disturbance input and observation noise.

Then the feedback performance of the closed loop system is characterized with the transfer

functions from d to y and n to y, denoted respectively Tyq(s) and Ty (s).

Tyals) = (I+P(s)K(s) ™ = S(s) (4.1)
Tyn(s) = —(I+ P(s)K(s))_lP(s)K(s) =-T(s) (4.2)

Where, the transfer functions S(s) and 7T'(s) are known as the sensitivity function and the
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complementary sensitivity function, which are defined as follows

n
—
V)
S—

(>

(I+ P(s)K(s)~"
(I + P(S)K(s))_lP(s)K(s).

S
—~
VAl
~—

(1>

The tracking performance is characterized with the transfer function
Tyr(s) = (I + P(s)K(s)) "' P(s)F(s). (4.3)

Now let us represent P(s), K(s) and F(s) as the coprime factorization [67, 44] over RH o,

P(s) = N(s)M~'(s) = M (s)N(s) (4.4)
K(s) = N(s)Mg'(s) = M () Nie(s) (45)
F(s) = Np(s)Mg'(s) = M7 (s)Np(s) (4.6)

where all of the factors are the elements of RH, and coprime. Then it is known that the

internal stability condition of the system in the Figure 4.1 is given as follows.

Lemma 4.2.1 Let (4.4), (4.5) and (4.6) be coprime factorization over RHoo, then the TDF

control system in figure 4.1 is internal stable iff

{ K(s) e K
MK(S)F(S) S RHOO

Here, K is the class of the feedback controllers achieving the internal stability, i.e.,

K = {(Y(S)—Q(S)N(S))l (X()+QE)M(5)) | VQs) € RMHu

= (0 + 4610) (T - Nea) | Q) € R .
where, X(s),Y (s),X(s),Y(s) are the solutions of the Bezout identity

_}}(8) =7
M(s) X(s o
Proof. See reference [66]. [ ]
From Lemma 4.2.1, the class of internally stabilizing controllers K (s), F'(s) are represented
with free-parameters Q(s), R(s) € RHco-

K = {(Y<s>—Q<s>N<s>) (X(5) + Q) | VQ(S)GRHOO}

F o= {(Y(s)—Q(s)N(s)) R(s) | VR(s)eRHOO}
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K(S) [=

Figure 4.2: Feedback controller design

By substituting controllers K(s) € K and F(s) € F into (4.1), (4.2) and (4.3), the class
of transfer functions Tyq(s), Tyn(s) and T,(s) which are achievable in the TDF system are

represented as

T = {(Y(5) = N(5)Q)) M(s) | ¥Q(s) € RHo |

T = {N@) (X&) +QM(E) | VQs) € RHo )
Ty = {N(s)R(s) | VR(s) € RHuo}. (4.7)

Note that Q(s) and R(s) are the independent free-parameters of K and F. It can be seen that
there doesn’t exist any trade-off between the feedback performances and the tracking per-
formance, hence these performances are independently specified with those free-parameters.
This property affects the way of TDF controller construction, that is, since the TDF perfor-
mances are optimized with a series of sequential optimization of the feedback controller and
the feedforward controller, the TDF controller is frequently designed through two steps: a

feedback controller design and a feedforward controller design.

4.2.2 A basic design of the TDF controller

We show a basic approach to designing the TDF control system. This approach of the design
is a natural way that can be occurred immediately from the previous analysis. That is, a
sequential design of the feedback controller and the feedforward controller can satisfy each of
the performances in the TDF control system.

Thus, first of all, let’s design the feedback controller by way of solving the mixed sensitivity
problem. The generalized plant of the problem is written in Figure 4.2 where the meanings
of symbols are identical to that in Figure 3.2. Here, the H,, problem of the generalized plant
Gms(s) is solved. Since the order of the resultant controller is no less than that of G,s(s), if

we denote the order of each system in boxes as deg (e), this design derives Hy, controllers of
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rood + z
— = W(9 ~O—{ Wo(9|——
Y| K© =0~ PO
k A4
T R N Gmre(S) |
~ F(s) U

Figure 4.3: Feedforward controller design

order
deg (K(s)) = deg (P(s)) + deg (Ws(s)) + deg (Wr(s)) .

In the second step, let’s design the feedforward controller by way of solving the model
matching problem. The generalized plant of the problem is written in Figure 4.3 where
W (s) is a transfer function of an ideal tracking performance, W)(s) is a weighting function
of the tracking error. Here, the H,, problem of the generalized plant Gp,mp(s) is solved.

Thus, the design derives H,, controllers of order
deg (F(s)) > deg(K(s))+ deg(P(s)) + deg (Wa(s)) + deg (Wy(s))
= 2deg (P(s)) + deg (Ws(s)) + deg (Wr(s))
+deg (W (s)) + deg (W (s)) -

In order to evaluate the order of the TDF controller, let us represent the state-space

equations of the feedback controller and the feedforward controller as follows.

F- i?f:AFxf—l—BFT K- i = Az + By
"\ uy =Cpxs+ Dpr | w = Ckay + Dky

Then the dynamics of the TDF controller is composed of both of the dynamics of the con-

HE RN EAL

[ Cr Ok ] [ii ] + Dpr+ Dij

trollers.

(4.8)

As shown in (4.8), the McMillan degree of the TDF controller is the sum of the degrees of
these controllers. Thus the TDF controller (F(s), K(s)) of order

deg (F(s),K(s)) = 3deg(P(s))+ 2deg(Ws(s)) + 2deg (Wr(s))
+ deg (War(s)) + deg (Wy(s)) .
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can be constructed. From this fact, the natural design of the TDF controller yields high-order

controller. This is a basic motivation for the low-order TDF controller design.

4.3 An idea of sharing common dynamics

As shown in the previous section, the McMillan degree of the TDF controller that is designed
in the natural way becomes very high. Sometimes we are faced with the situation such that
the degree of the TDF controller is too high to implement it as hardware. So it is important
to consider designing of the low-order TDF controller. One of the effective ways to design the
low-order TDF controller is to share common dynamics between these controllers[5, 6, 24].
In this section we define the share of common dynamics in the TDF controller, and show a

basic design method of the low-order TDF controller.

4.3.1 Sharing common dynamics between K(s) and F(s)

Here, let us define a low-order TDF controller in which the feedback controller and the

feedforward controller share common dynamics.

Definition 4.3.1 The TDF controller which shares common dynamics between K(s) and
F(s) is defined as follows.

A|Br B ] , (4.9)

[ FS(S) : KS(S) ] - |: C | Dr Dg

where both of the pairs (A, Bx) and (A, Br) are controllable, and the pair (A, C) is observable.

WL

In the above description, the subscript “s” means “share”.
It can be seen that the order of the TDF controller (Fy(s), Ks(s)) is
deg (Fs(s), Ks(s)) = deg (Fs(s)) = deg (Ks(s)) ,

hence by sharing common dynamics between the feedback controller and the feedforward
controller, the order of the TDF controller can be reduced.

In the TDF control system in which the controllers share common dynamics, the internal
stability is satisfied if K(s) satisfies the internally stability of the feedback loop.

Lemma 4.3.1 Let us suppose K¢(s) € K, then the TDF controller given as (4.9) satisfies
the stability of the TDF control system.

Proof. Let us give a coprime factorization of K(s) over RH oo as

Ki(s) = Mg (s)N(s)

Mi(s) = [LCHC%] (4.10)
o - [ A panng ) w
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Gtdf(S)
w T /T + z
= Whv(s) Wo(s) ———
= P(s)
K(S) =
() _________________________ Grre(s) |

F(9) =—w

Figure 4.4: A generalized plant for a TDF controller design

where M (s) € RHoo and Ni(s) € RHoo are left coprime, and Re(A\i(A 4+ HC)) < 0,Vi is

satisfied. Then F(s) can be also factorized over RH o, as follows

Fy(s) = Mg'(s)Np(s) (4.12)
- A+ HC |Brp+HD
Ne(s) = [P ],

where Mg (s) € RHoo and Ng(s) € RHo are left coprime. The equation (4.12) implies
MK(S)FS(S) = NF(S) € RHxo,

hence from Lemma 4.2.1 the TDF system is internally stable. [ |

From Lemma 4.3.1, in order to satisfy the internal stability of the TDF control system in
which the controllers share the common dynamics, it is only needed to consider the internal
stability of the feedback controller.

4.3.2 A basic design of a low-order TDF controller

Here, we show a basic method for designing the low-order TDF controller where one dynamics
is shared by the feedback controller and the feedforward controller. Firstly, let it be designed

a feedback controller of the form:

Ko(s) = {g—g%} . (4.13)

Then, construct a generalized plant as in Figure 4.4, where G,,mp(s) is the generalized plant
of the model matching problem and G4 (s) is the generalized plant for the TDF controller

design. The meaning of each subsystem is same as that in Figure 4.3. The generalized plant
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Gaf(s) can be represented as follows:

A | B B
Cy | Dy D
Gars)= |- TG 70| (4.14)
v |
O|11'0

Since the feedback controller has already been designed, the state-space parameters in (4.13)
are fixed. In order to design the feedforward controller which shares the same dynamics with

Ks(s) in (4.13), we put the state-space data of the feedforward controller as follows:

Fy(s) = {é—f%] : (4.15)

where Br and Dy are the parameters which are to be designed.
By using those state-space representations in (4.13), (4.14) and (4.15), the state-space

data of the closed loop system T, (s) is represented as follows:

Tzw(s) = -7:l (thf(s)a [ FS(S) KS(S) ])

Acl Bcl
Ccl Dcl

where

A |: A+ ByDgCy, ByCk :|
c =

BrCyy Ak
By = [ h +B§2DF ] =E+JR
Ce = [ Ci+ D12DKCoy D12Ck |
Dy =D+ DioDp=H+ LR.

Here, it can be seen that the matrices A, and C,; are composed of the fixed parameters,
and both of By and D, include design parameters Br and Dr. Hence, we put the variable

composed of Br and Dp as

and the other fixed parameters are defined as follows:

Eé[%},!]:[? %],HéDH,Lé[O Dis |.

Under the above preparation, the following result is obtained.

Theorem 4.3.1 In the TDF control system of Figure 4.4, the closed loop system is stable

and it satisfies a condition such that

1Tew ()00 <75
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if and only if there exists a positive definite matriz X which satisfies the following inequality:

XAT + AuX E+JR xXcy

(E+JR)T —vI  (H+LR)T | <o0. (4.16)
CaX H+ LR —~I1
Proof. By using the bounded real lemma, it can be immediately deduced. [ |

Remark 4.3.1 The matriz inequality in (4.16) is a Linear Matriz Inequality, hence by using

some convex programming method we can solve the inequality.

4.4 'Trade-off analysis in the low-order TDF control system

In the previous section, a method of the low-order TDF controller is introduced. However,
it is unclear whether sharing dynamics between F'(s) and K (s) causes a conflict in the TDF
performances or not. If the answer to the question is “yes”, the trade-off in the performances
must be considered in the design of the low-order TDF controller. The two step design is not

adequate for balancing the trade-off in the designing of the low-order TDF controller.

4.4.1 Trade-off between the feedback performance and the feedforward
performance

In the above section, the TDF controller in which F(s) and K(s) share common dynamics
is defined and it is represented in the state-space formula. Then, this section evaluates
degradation in the performance of the feedforward controller when the performance of the

feedback controller is specified first.

Lemma 4.4.1 Let us represent K(s) € K as a right coprime factorization over RHeso.

Ki(s) = (Y(s) — Q)N () (X(5) + Qs)M(5))
Y(s) = Q)N (s) 2 Mic(s),  X(s) +Q(s)M(s) 2 Nic (4.17)

Then all the class of Fs(s) € F which shares a dynamics with Ks(s) is given by

Fs(s) = {M;(s)é(s) | VQ(s) € RHoo, VB € R™P VD, € me} , (4.18)

where R(s) is represented as follows

A(s) = [ A+CHC } gZ ]

and Mg (s) and R(s) are left coprime.

Proof.(necessity: ) Let us represent K(s) € K and F(s) € F with coprime factorizations as

follows

K(s) = Mg'(s)Ng(s) (4.19)
M (s)R(s), R(s) € RHoo.

I
—
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If R(s) is denoted as R(s) = { éR gR }, then by using (4.10), F'(s) can be represented as
R | VR
follows
A HCr| HDg
F(S) = O AR BR
| -C  Cr | Dg
A A+ HCr—Ar|HDgr— Bpr
= O Apg Bpr . (4.20)
| —C —C+Cpg ‘ Dpr

From the equation (4.20), in order to share common dynamics between F'(s) and K (s), it is
necessary to satisfy Ag = A+ HC,Cgr = C. Hence the feedforward controller and feedback

controller share common dynamics only if F(s) is given as follows
F(s) = Mgl(s)ﬁ(s). (4.21)

(sufficiency: ) It is easily verified that F' in (4.21) has the same dynamics of K,(s) and
satisfies the internal stability of TDF system from Lemma 4.3.1. [ |

From the above result it is possible to show the class of the transfer functions which can
be attained with the TDF controller in (4.9).

Theorem 4.4.1 (The class of tracking performance) With the TDF controller, which shares

the same dynamics, any tracking performance that belongs to the class:
Ty = {N(s)ﬁa(s) | VBr € R™P,YDp € Rmxp} (4.22)
can be attained.

Proof. Substituting (4.18) into (4.3) leads the class. ]
From equations (4.10), (4.11) and (4.17), it is apparent that the pair (A+HC, C) depends
on the parameter Q(s) € RHoo. Hence the class of R(s):

R2 {R(s) | ¥BreR™P YDp e me}
also depends on Q(s) and the inclusion
R C RHo

holds. By comparing (4.7) and (4.22), it is verified that the tracking performance is restricted
by the feedback controller design if the TDF controller share the same dynamics.
Let us define the transfer function of the requiring tracking performance as My, (s) and
A

let T, (R(s)) = N(s)R(s) be the tracking performance, then an objective function for the

evaluation of the tracking performance can be selected as follows
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Then the class R is restricted by the design of the feedback controller. Hence the following
inequality

min || (R(s))|| < min Hf<R(3))H’

R(s)ERHoo R(s)ER

where || o || indicates any norm of a transfer function, holds. The above inequality indicates
that if the feedback performance is specified in the first time, the tracking performance may

be sacrificed.

4.5 Summary

In this chapter, based on the basic analysis and synthesis of the TDF control system, we have
motivated to design the low-order TDF controller. Then, we have introduced designing of a
low-order TDF controller where a feedback controller and a feedforward controller share com-
mon dynamics. Then, we have analyzed the trade-off of the low-order TDF control system.
From the analysis it is shown that the independent property of the feedback performance
and the feedforward performance in the basic TDF control system is not maintained in the
low-order TDF control system. Then, it is pointed out that the low-order TDF controller
should be constructed with a simultaneous design of the feedback controller and the feedfor-
ward controller. In the next chapter we will introduce the simultaneous design method of the

low-order TDF controller.






Chapter 5

A synthesis of low-order TDF
controller

5.1 Introduction

The previous chapter has analyzed the trade-off between the feedback performance and the
tracking performance in a low-order TDF control system where the controllers share common
dynamics. It is clarified that there exists a conflict between those performances, and that the
independence in the properties of the feedback controller and the feedforward controller is
not maintained in the low-order TDF control system. It is difficult to consider the trade-off in
a sequential approach, where a feedback controller and a feedforward controller are designed
separately, the low-order TDF controller should be designed with a simultaneous approach,
where the feedback controller and the feedforward controller are designed simultaneously.
Based on the analysis, the present chapter proposes a method for designing the low-
order TDF controller in a simultaneous approach. Remarkable point of this chapter is the
reduction of the low-order TDF control problem to the non-standard H., problem of case 2.
This formulation enables the TDF controller to be derived simultaneously. As a result, the
feedforward controller and the feedback controller are designed such that the order is lower
than that of the controller designed with the sequential approach based on the standard Ho
problem. Furthermore, a reduced-order controller, which has dynamics of lower-order than
the dynamics of a generalized plant, is derived by an algebraic operation using free parameters

of the general solution.

5.2 Problem descriptions and comparison

This section describes some problems for the low-order TDF controller design and compares
the properties of the problems with each other.

Consider a system shown in Figure 5.1, which is a generalized plant for the TDF control
system design. Where P(s) is a plant, K (s) is a feedback controller and F'(s) is a feedforward

controller. The signal d € RP indicates a disturbance input, uy € R™,u; € R™ are the

105
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- Wi(9) ~\/ | Wo(S) —=21
q i
r—eo—» F(9 | U
+ +
Uk u
-~ K(9) P(9) —9— y
> Wi(S) ——>2

+=O—> WS(S) 2

Figure 5.1: A generalized plant

outputs from the feedforward and feedback controllers, and r € RP,y € RP respectively
indicate a reference input and control output. The signals z;,7 = 1,2,3 are used to evaluate
the control performances of the TDF control system. Concretely, z; € RP is a index of the
tracking performance, zo € RP and 23 € RP are the indices of the feedback performances.
Wi (s), Wy(s), Wr(s) and Wg(s) are the weighting functions for each specification. The

generalized plant is arranged and replaced with Figure 5.2.

[ — 71
d— z
G(S) w73
: : r
u — F( [~
5 k() fo-—

Figure 5.2: A generalized plant

5.2.1 Two-step design

First of all, as seen in the basic TDF controller design, the two-step design is one of the most

popular ways to construct the TDF control system.

Problem 5.2.1 (Two-step design I) Firstly, let’s obtain a feedback controller

* _ . Mg XN
K(S)_[CK* DK*:|€K:7AK eR
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which satisfies an inequality for the feedback performances
HT% H <, (5.1)

where IC denotes the class of the internally stabilizing feedback controllers, T= 4 (K (s)) denotes
Z3

a transfer function matrix:

o [ Toa (K(s))
ngd(K(S)) - |: ngj (K(s)) :| ’

and Top(s) denotes a transfer function from the signal b to a.
Then, find the feedforward controller F(s) which is the solution of the minimization prob-

lem described as follows

.« . . TZT, F ’K* ,
minimize [Tz, (F(s), K7(5))lloo

where F indicates the class of the stabilizing feedforward controllers.

Remark 5.2.1 Assume that the order of F(s) is ng, then the mazimum order of the TDF
controller is ny+mny. As seen in chapter 4, solving Problem 5.2.1 derives a high-performance
but high-order TDF controller.

In the next problem, we intend to derive a low-order TDF controller.

Problem 5.2.2 (Two-step design II) Let’s obtain a feedback controller
AK* BK*
* = . N Xng
K (8) [ Cror | D ] e, A~ €R
which satisfies an inequality in (5.1).
Then, find the feedforward controller F(s) which is the solution of the minimization prob-
lem described as follows

minimize | T.r (F(s), K*(s))]

(5.2)
F(s)€F (K*(s))

‘oo7

where the class F (K*(s)) indicates

F(K*(s)) = {[g—z’—] |Bp € R™*P Dp € Rm”’} C F. (5.3)

Remark 5.2.2 The TDF controller that is derived by solving Problem 5.2.2 shares common
dynamics between the feedback controller and the feedforward controller. Thus the order of
the TDF controller is ny, which is lower than that of the TDF controller derived by solving
Problem 5.2.1.

Lemma 5.2.1 The optimal values of Problem 5.2.1 and Problem 5.2.2 satisfy

i T, .(F(s), K* < i T, (F(s), K* .
Fr(r;;g}_ H ) ( (S) (S))Hoo F(s)er?:l(Ill(*(s)) || 1 ( (S) (S))Hoo
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Proof. From the inclusion in (5.3), the above inequality is immediately verified. [ |

Remark 5.2.3 By solving Problem 5.2.2, it is possible to design the low-order controller in
which common dynamics is shared between K(s) and F(s). From (5.2) and (5.3) it is seen
that Ag=andCp~, which are designed in the first step, are the fized parameters of F(s) €
F (K*(s)). Thus, the freedom in the designing parameters of F'(s) is restricted by designing of
the feedback controller, hence the selection of the feedback controller may affect the minimum
value of the objective function in (5.2) if the feedback controller which satisfies the restriction
(5.1) is not unique. This also holds when the feedforward controller is designed in the first
step. Hence, essentially it is important to make a compromise between those performances

simultaneously.

5.2.2 Simultaneous design

Based on the discussion in the above section, this section considers a simultaneous TDF
controller design where the feedback controller and the feedforward controller are designed at
the same time. In the H,, control, it is possible to design the multi-input and multi-output
controller, hence the problem of the simultaneous TDF controller design can be formulated
as a double-input and single-output controller design. Then, in the resultant TDF controller
the feedback controller and the feedforward controller share common dynamics. Hence the
designing parameters of F'(s) come to be restricted by the parameters of K (s). Firstly, let’s

consider the following problem.

Problem 5.2.3 (Constrained optimization problem) Find F(s) € F and K(s) € K
which achieve the specifications such that
inimi T, (F(s), K
pSiimize [T (F(5), K(5))lloo

subject to Hngd(K(s))H <.
Z3

o0
Remark 5.2.4 Problem 5.2.3 is a minimization problem with a constraint. In the problem,
the feedforward controller and the feedback controller which satisfy the optimal tracking per-
formance subject to the constraint of the feedback performance are simultaneously designed.
Thus, in this problem the controllers are designed in a single step, hence the order of the
resultant TDF controller isn’t so high as the TDF controller obtained in the two-step design
of Problem 5.2.1.

Our interest in this formulation is the improvement of the tracking performance in com-

parison with the design via Problem 5.2.2.

Lemma 5.2.2 Let us denote the solutions of each problem F}(s) and K} (s), where subscript

1 indicates the number of Problem 5.2.1. Then the following inequality holds.

[ Terr (F5(5), K3 () oo < T2 (F2 (5), K2 ()l (5:4)
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Proof. (F}(s), K/(s)),i= 2,3 are represented as follows

(F5(s), K3(s)) = argmin _[[T.,, (F(s), K*(s))|
(F(s),K*(s))€Q

(F5(s), K3(s)) = argmin T, (F(s), K" (s))]|
(F(s),K(s))eQ

o0

o0 )

where classes of Q and  are defined as

= {(F(s), K7 (5)) |F(s) € F (K"(s)) , K™ (s) : fized}
{(F(s). K(5)|F(s) € FK(s) € K. | T2a (K(s)||_ <}

(1>

2 D

It can be easily verified that the inclusion:

Qc

holds, hence it is also verified that the inequality (5.4) holds. ]
In the Hy, problem, it is hard to solve Problem 5.2.3 directly. Hence we solve the following
problem instead of solving Problem 5.2.3.

Problem 5.2.4 (Satisficsing problem) Let us give parameters 1 and ~y, a priori. Find
F(s) € F and K(s) € K which satisfy

[Tz1r (F (), K(8)lloo <M
HTjgd(K(S))HOO <72-

Remark 5.2.5 Problem 5.2.4 is a satisficsing problem and this problem reduces to Problem
5.2.8 if the parameter ~1 is minimized. In this formulation, by adjusting the parameters vy
and o, the trade-off between the feedback performances and the feedforward performance can

be taken into account.

Remark 5.2.6 Problem 5.2.4 is hard to solve directly. Hence we consider solving the stabi-
lizing controller (F(s), K(s)) that satisfies

If the controller to this problem is obtained, then it is assured that the controller is a solution
for Problem 5.2.4.

LT, (F(s), K(s))

At

2Ty (K(s) =
3

[e.9]

Thus Problem 5.2.2, Problem 5.2.3 and Problem 5.2.4 aim at deriving the low-order TDF
controller in the sense of sharing common dynamics. In these problems, the objective function
1Tz (F(s), K(s))

A-matrix.

||  is minimized with the constraint such that F'(s) and K (s) have common
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On the other hand, as seen in chapter 4, if the constraint is not imposed on the controllers,

the objective function can be represented as

Tor (F(s), K(5)) = Wy(s) Wa(s) = Ty, (F(s), K(5)))
= Wy(s) W (s) = N(s)R(s)) , (5:5)

where N(s) € RHoo is a coprime factor in the coprime factorization of P(s) = N(s)M~1(s),
and R(s) € RHs is a free parameter. Then, it can be seen that 7%, (F(s),K(s)) is a
function of R(s), which is a design parameter of F(s). This indicates that the constraint
which is related to the feedback performances doesn’t affect the objective function (5.5) if
the controllers F'(s) and K(s) are not correlated with each other. Hence, solving Problem
5.2.1 accomplishes the derivation of the highest performance-TDF controller at the sacrifice

of simplicity of the controller.

5.3 Low-order TDF controller design

In order to design the low-order controller that holds better performances, we must take into
account the selection of the problem formulation. It is the point of the discussion in the
previous section. In this section, we focus on a point such that ” How to obtain the low-order

solution to the problem which we have selected ”.

5.3.1 Control specification and construction of the generalized plant

Firstly, we describe the specifications of the TDF control system. The feedback performances
are specified with making the norms of the sensitivity function and the co-sensitivity function
small. The tracking performance is specified with making the norm of the error between
the control output and a desirable response of the TDF system small. Let us consider
the generalized plant shown in Figure 5.3, where Wg(s), Wr(s) and p,n are the weighting
functions. In order to evaluate the feedback performances, the controlled variables z; and 29

are selected as follows

where S(s) and T(s) are defined as:

U

(s) = S(s)(I+P(s) (K(s) = F(5)))
T(s) £ T(s)K '(s)F(s),

and S(s) and T'(s) are represented as follows

S(s) = (I + P(s)K(s)) ™"
T(s) = (I+ P(s)K(s)) ' P(s)K(s).
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Figure 5.3: A generalized plant

Here it should be noted that S(s) and T'(s) satisfy the equation
S(jw) +T(jw) =1, Vw,

hence their norm cannot be reduced in the same frequency range. By introducing the weights
Ws(s) and Wr(s) into the controlled variable as (5.6) and (5.6) the trade-off between S(s)
and T'(s) is taken into account.

On the other hand, the controlled variables z3 and z4 are represented as follows

z3 = p(WM(s)—T(s)>w
2z = nS(s)F(s)w,

where
$(s) 2 (I + K(s)P(s))™"

and Wys(s) is a transfer function of an ideal tracking performance. These are adopted to
specify the tracking performance such that the controlled output y tracks the filtered reference
input, which is a desirable and feasible closed loop response under the restriction of control
input energy.

In order to introduce integrators into the controller the weighting function Wg(s) is chosen
to have the integrators. Since all the modes of weighting function Wg(s) are unobservable
from the measured output y, and the assumption A1-2) is not satisfied in the generalized
plant described in Figure 5.3. As we have discussed in chapter 3, the states of the weighting
function are supposed to be observed to satisfy the assumption A1-2). This means that

the controller includes the observed mode of the weighting function. Thus, the generalized
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--------------------------------------------------------------------------------------
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Ko -
© .
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Figure 5.4: A generalized plant

plant described in Figure 5.4 is constructed and the controlled variables z;, (i = 1,2, 3,4) are
evaluated simultaneously. By tuning the weighting functions it is possible to consider the
trade-off between those specifications. In the generalized plant the H,, control problem is

formulated such that: find all the internally stabilizing controllers that satisfy

[Ws(s)S(s)lloo <1
Wr(s)T(s)]loo <1

Il (War(s) = 7(s)) lloo < 1
InS(s)F(s)lloe < 1

s)S
s)T
(5.6)

simultaneously. However, this problem is difficult to solve directly, hence let us consider the

following criterion alternatively.

[e.e]

If the inequality in (5.7) is satisfied then all the conditions in (5.6) is satisfied.

5.3.2 State-space representation of the generalized plant

Now, let us define the state-space realizations of transfer functions in Figure 5.4, and represent

the generalized plant with the state-space form.
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The real plant P(s) is assumed to be a system of n,-dimensional, m-input and p-output
system, and is represented as follows:

Ap | B
P(s) £ [Ci OP] ,Ap € R"*™ Bp € R™*™ Cp € RPX™, (5.8)

where we assume without loss of generality that the p outputs of the system are linearly
independent — or equivalently that the matrix Cp is of full row rank, and that (Ap, Bp,Cp)

is controllable and observable.

The realizations of weighting functions are represented as follows:

where the parameter « is defined as follows:

s [ 1, 3ieZ Re(\(Aw)) =0
- 0, VieZ, Re(/\Z(Aw)) <0 -

Then the generalized plant G(s) can be represented as follows.

Ay —BwCp O |Bwi O 7
O Ap (0] O | Bp
O O Ay | By ' 0]
snony (4 g S[90
_ _ T T
G(s) = gl DO 17012 =l 0 —scr 0| OO (5.9)
s o O___0_ |0 nln
aly, @) ) O 1 0O
O Cp o|o, o
. O O 0 L, O ]
The criterion in inequality (5.7) is equal to the following inequality:
171 (G(s), Koo (8))] oo < 1. (5.10)

Since, in this generalized plant G(s), Do; is column full rank and the assumptions Al and A3
are satisfied, on the other hand, the assumption A2-2) is not satisfied, the problem of finding
the internally stabilizing controller which satisfies the inequality (5.10) is the aforementioned

non-standard H., control problem of case 2.



114 A SYNTHESIS OF LOW-ORDER TDF CONTROLLER

5.3.3 Parametrization of all H,, controllers

Firstly, let us introduce a change of the coordinates in the system P(s) represented with
the realization in (5.8). Since Cp is assumed to be a matrix of full row rank, by using a

nonsingular matrix:

2| Cp
2|
the coordinates can be transformed, and then the state-space realization of P(s) is represented
as follows:
AP BP N T'AA]DT*1 ‘ TBP
C’P 0] - C’]DT*1 ‘ 0]
Apr A | Bp
= A1 A | Bp,
I, O] O
Hence, we assume without generality that the parameters Ap and Cp are in the form
4 A Ap
|: i :| = Aoy ' Aoy J A ERpo,AQQ ER(npip)X(npip), (511)
Cr I, O

where it is well known that (Agg, Aj2) is observable [42].

Lemma 5.3.1 In (5.11), it is assumed without loss of generality that real parts of all the

eigenvalues of Ass are negative.

Proof. Since (Agz, A12) is observable, there exists a nonsingular matrix:

I 10
=17 e
L Ig,-p)

such that J satisfies

T ApT A1+ AL Aqg
—————— = | =LAy — LApL + Ay + Apsl —LApp + Ao |
CpJ | |--F-=--Togo T e e T
I, O
where Re (A\j(—LAi2 + A)) < 0,Vi = 1,2,... ,n, —p. Hence, in the form of (5.11), it is
assumed that real parts of all the eigenvalues of A, are negative. [ |

From the definition in section 2.3, D;l, D%‘l can be given as follows.

T _ 1 Inw O O
D21—[OOIp]aD21—[O IPO]
Then, A — Bngng and D2L1 (5 can be represented as follows.

Aw —-BwCp O
O Ap O
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Let us select Ly such that the observable subspace of the pair (A — Bngng,Dleg) is
stabilized by Dzﬁ Cy, 1. e., let us select Ly:

hy Bw
o
Ln = O —Axn
l1 Iy

such that
Re(/\Z(AW + Oéhl)) <0,Vi=1,2,... Ny, Re()\i(An + hg)) <0, Vi=1,2,...,p (5.12)

are satisfied, and [; € R"m*"w [, € R™*P are arbitrary matrices.

Then, Azpy is represented as follows

Azg = A-— Bnglcz + LHDQLIC’Q

_ ) VAjg+hy A! O
S0 i 0 _amio | 519
Oéll : lg O !AM

where Re (\;(A22)) <0,Vi=1,2,... ,n, — p.
Based on the above preparation, the H, controller for the generalized plant (5.9) can be

obtained from the following lemma.
Lemma 5.3.2 The Hy, problem for G(s) in (5.9) is solvable if and only if both of the AREs:

XAzp + AL X + XRX + (D1,0) D50, = 0 (5.14)
Y ALy + AgnY +Y {CTC = (DLG)TDL Gy} Y = 0, (5.15)

where Azp and R are defined as :

Azp 2 A— B,DLCy
R2 B BT - BQDIQ(B2DJ1F2)T7

and Azp is represented in (5.13), have stabilizing solutions X > O and' Y > O, and which
satisfy p(XY) < 1. If the solvability condition is satisfied, the class of the Hy, controllers

are parametrized as follows:

Ay + ByFo | Hiy | —Bo¥
Kls) = 7| |- 9 2 INw we |, e
D,,CyZ Dy,

Dy;Cy D3
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where

Ay = A+YCLC, + H Oy
By =By +YCI Dy
Cy = Dy BT X + ¢y
t i i \7
Foo = {—1)1201 - D, (B2Dls) X} Z

i t o\ ptf 1
Hy=-BiD}, -V (Dmcg) D}, + LyD¥
Z=(1I-YX)™"
Y = (DfD12) 2,

NI

and N(s) € BHs and W (s) € RHs are the free parameters.

Proof. By applying the result of Theorem 2.4.2 for G(s) in (5.9), the result is immediately
obtained. -

Remark 5.3.1 The McMillan degree of the central solution, which is a controller given with
the free parameters are set to zero, is equal to the degree of the generalized plant, and is

N =Ny + Np + N

Remark 5.3.2 [t should be also noted that the class of the non-standard Hy, controllers is
represented with two free parameters N(s) € BHoo and W (s) € RH .

Continuously, we review the H., controller given in Lemma 5.3.2 as an integral-type
TDF controller. In this paragraph it is assumed that the H,, controller implies the central
solution. From Figure 5.4, let us extract the closed loop system composed of P(s), K (s)
and Ws(s). The closed loop system is described in Figure 5.5. Here, it is assumed that
Ws(s) has integrators, hence the parameter « is set to 1. If we denote Ko (s) according to

the dimensions of yg,y1 and yo as
KOO(S) = [ Kl(s) KQ(S) Kg(s) ]

the control input variable u can be represented as follows

Yo
u = Ky(s)| n
Y2
Ws(s) (r —y)
= [Kl(s) Ks(s) Kg(S)] Y
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integral-type TDF controller

WA(s)

\

....................................

...........................................

______________________________________________________________

Figure 5.5: Interpretation of the closed loop system as a TDF control system

where F(s) and K(s) are defined as follows

F(s) £ Ki(s)Ws(s) + K3(s)
K(s) 2 Ky(s) — K1(s)Ws(s).
Thus the TDF controller which satisfies prescribed H., performances can be represented. It

should be noted that the TDF controller is integral-type. It can be seen that the McMillan
degree of the TDF controller is

deg (F'(s), K(s)) = 2ny + np + .. (5.17)

Compared with the order of the TDF controller evaluated in section 4.2.2, in this synthesis

the TDF controller which is also an integral-type can be designed with lower order.

5.3.4 Reduced-order TDF controller design

As we have considered in chapter 2, it is possible to derive the reduced-order H,, controller in
the non-standard problem, where the dimension of the observed output is greater than that
of the disturbance input. This subsection derives the reduced-order TDF controller based on
the way that we presented in chapter 2.

The following lemma is useful for later discussion.
Lemma 5.3.3 Assume that the ARE in (5.15) has a positive semi-definite stabilizing solu-
tion. Then the stabilizing solution of the ARE can be represented as follows:

@)

c R(anranrnm)X(anr”er”M)’ (518)

h<

Il
QO
QO
QO

o Ne)
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where Y, > O is a stabilizing solution of the reduced-order ARE:
YAl + AuYr + p°Y,CHCuMY, = O. (5.19)
Proof. The ARE in (5.15) can be represented as follows
YAL + Aypy =0, (5.20)
where
T Ii o
Ay =Azg +Y {Cl Ci — (DQICQ) D21CQ} eR

is a stable matrix. Let U be a row-basis of the stable subspace of Azy. Then the matrix U

can be selected as

Then the matrix U satisfies the following equation:

UAzg = AU,
where
Ay +ahy O O
A2 0 : A+ hy A | € R(w+np) X (nw+ny)
O 1 0 Ay

is a stable matrix. Pre-multiplying the equation (5.20) by U, the following equation is

obtained
(UY)AL + A(UY) = 0.

Since Re (\;(A)) < 0 and Re (A\;(Ay)) < 0 hold, the solution Y > O satisfies UY = O and Y’

must be in the form (5.18). By substituting Y > O in (5.18) into the ARE in (5.15), ¥, > O

must be a solution of the reduced-order ARE in (5.19). ]
Let us represent the controller given in (5.16) with DHMT as follows

Ay | -By —Hy
> lE, [ 271 O
Ks(s) = D g R R . I N(s) W
(s) HM 2 R [ N(s) W(s) ]
D$iCy | O ' Dy
B [ Ay —Bg]l[ Ay —Hy
Ck(s) | T Cx(s) | N(s)D}, + W (s)Dg; |’

where Ck(s) is given as follows

Ck(s) 2 S Fy — N(s)D},Co Z — W (s) D3y Cs. (5.21)
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By using the result of Lemma 5.3.3 the matrix Ay can be represented as follows

Aw + ahy O O O
_ O A +hey A O
Ay = o o W o , (5.22)

aly Iy — pzyrczj\;[ O Apy—+ pQYTCZI\;[CM

where Y, > O is a stabilizing solution of the reduced-order ARE in (5.19), and [; € R"m*"w
and [y € R™*P are free parameters. In the equation (5.21), C'x(s) is explicitly represented
with the free parameter W (s) € RHo. Hence an adequate selection of the free-parameters of
l1,1le and W (s) yields pole-zero cancellations in the controller, and the order of the controller

can be reduced.

Theorem 5.3.1 Under the same solvability condition as in Lemma 5.5.2, the class of reduced

order Hy, controllers is parametrized as follows:

Ay | -Bp, —Hy,
K (s) = DHM Y., | ¥V 2TUE Dy | N(s) |, (5.23)
O DI, —Cp DL

where N(s) € BH is a free parameter, and fly,f?pmHooQ,Fool,FOOQ,C’D“CDQ are defined

as follows:

i | Ax 0 (n—(nw+p)) X (n—(nw+p))
Ay = [ O Au+p?Y,CT.Cyr } €R
Bp, = [ 30132 } € R (nwtp))xm
g _[0 —4x 0
2~ | O p2}/7’C]’1\—‘4 —Buy
a 'L, O
Foo, = Foo o I,
o O
men 0]
I"*(”wJFp)
R ) a 'r,, O
Cp,=DyLCoz| O 1
o O

p

I

A O
Cp, = D},CoZ { ]
”_(nw+17)

Proof. By setting the free parameters as

=0
ly = p*Y,CY;
W(s) = (zleoo - N(s)DLC@Z) v

)
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where V is a full column rank matrix defined as

a lr,, O
= 8 Iop € Rmwtnutnm)x(nwtp)
O O

the matrices Ay and Ck(s) satisfy

Aw + ahy O

AyV =V
Y @) A1+ he

Ck(s)V =0

Hence the pair (Ay, Ck(s)) is unobservable, and the order of the controller is reduced by the

dimension of rank (V') = n,, + p. Then the reduced order H, controller is derived. ]

Remark 5.3.3 The McMillan degree of the central solution of the Hoo controller in (5.16)

is reduced by the dimension of rank (V) = n,, + p, and is equal to ny, — p + ngy,.

Remark 5.3.4 [t should be also noted that the class of the reduced-order Hy, controllers is
represented with free parameter N(s) € BHxo.

Remark 5.3.5 In this theorem the reduced order TDF controller is represented with DHMT,
and this implies that the controller is in a form of coprime factorization over RHso. This
form is useful for reducing the order of the controller by approrimation, because mo model

approrimation methods can be used directly for unstable system.

We review the reduced-order H, controller given in Theorem 5.3.1 as an integral-type
TDF controller. In this paragraph it is assumed that the H,, controller implies the central
solution. As we have discussed in the previous section, let us extract the closed loop system
composed of P(s), K”_(s) and Wg(s). The closed loop system is shown in Figure 5.6. If we

denote K_(s) according to the dimensions of yy,y; and ys as
KL (s) = [ Ki(s) Ki(s) K§(s) ]

the control input variable w can be represented as follows

Yo
u = KL(s)| n
Y2
Wi(s) (r — y)
= [ Ki(s) Kj(s) Ki(s)] y

- [re w07,
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integral-type, reduced-order TDF controller

~ W)

P(s)

L

....................................

............................................................

Figure 5.6: Interpretation of the closed loop system as a TDF control system

where F"(s) and K" (s) are defined as follows

Thus the reduced-order TDF controller which satisfies prescribed H,, performances can be
represented. It should be noted that the reduced-order TDF controller is integral-type. It
can be seen that the McMillan degree of the reduced-order TDF controller is

deg (F"(s), K"(s)) = ny + np + npy, — . (5.24)

Compared with the order of the TDF controller evaluated in section 4.2.2, in this synthesis
the TDF controller which is also integral type can be designed with further lower order. It

is also apparent that
deg (F(s), K (s)) — deg (F"(s), K (s)) = nu + p

holds. This order reduction is a benefit which is yielded by the formulation of the non-

standard H,, control.

5.4 A numerical example
5.4.1 Magnetic levitation system

This section examines the effectiveness of the proposed method by numerical examples. We
use the model of the magnetic levitation system that we have used in chapter 2. Let us
consider the system shown in the Figure 2.6. The purpose of controlling the magnetic levita-

tion system in this chapter is to stabilize the system regardless of variation of the mass, and
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Figure 5.7: Steel balls

besides, to obtain a good tracking property with an integral-type TDF controller. The order

of the controller should be obtained with lower order.

5.4.2 Description of perturbed models

In the linear model of equation (2.94), three types of steel balls are assumed. Mass of each

steel ball is set as
My =0.6M, M, M,=1.7M.

Then the transfer function of each model is obtained as

—111.71

P = h 1 M .

1(s) (5 — 61.6)(s + 14.8)(s 1 60.1) " ¢ Hass 15 M

—67.03

P = h 1 M.

(s) (5 — 47.8)(s + 46.3)(s + 14.9)7 ¢ MASIS AL
~39.4 .

Py(s) = where mass is Ms.

(s —36.8)(s + 15.0)(s + 35.1)’
We call P(s) nominal model, P;(s) and P»(s) perturbed models.
Our purpose of controlling the magnetic levitation system is to stabilize the system re-
gardless of variation of mass with one controller. For this purpose we consider to design a

robust controller which stabilizes any system in
Preat 2 {P(s;aM) | a =[0.6,1.7]}. (5.25)

For this system we set a boundary of the perturbation such that a partial system from the

input u to the output y3 varies in a set
P ={(1+A(s)) P(s) : |A(jw)| < [Wr(jw)|,Vw}, (5.26)

where Wr(s) is a function of the relative error bound between the perturbed model and P(s).

In this thesis, by trial and error, we select Wr(s) as
Wr(s) = 0.6 x 1071010725 + 52 + 1085 + 1),

such that the plant set P includes set of perturbed plants P,... Figure 5.8 plots the gain of
the weighting function Wr(s)P(s) with violet line, variations of the models P;(s) and Ps(s)
from the nominal model P(s) with lines of blue and red. Here, it can be verified that the

gain of the boundary is not less than that of any variation.
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10°

Wr(je)P(w)|

10" F

10° b

IP(jw) - P2(jo)|
IP() - Pi(jo)|

Gan

107

107 b

10° n 2 3
10 10 10 10

Freguency

Figure 5.8: Gain plots of perturbations and weighting function

5.4.3 Designing of low-order integral-type TDF controller

We design an integral-type TDF controller based on the method that is proposed in section
5.3. The generalized plant of equation (5.9) is made by using the weighting functions:

32700
W, = — 5.27
5(s) s(s + 1000) (5:27)
Wr(s) = 0.6x1071(1072s% 4 s> + 1085 + 1) (5.28)

1302

W = 5.29
w(s) 52+ 2475 + 1302 (5.29)
n = 15x107% (5.30)
p = 0.2 (5.31)

Then 7th order generalized plant is obtained. For the generalized plant, we first obtained a
7th order H, controller whose order is same as that of the generalized plant. By selecting
an adequate free parameter W (s) we obtained a 4th order Ho, controller, and converted the
controller into an integral-type. Then we got an integral-type TDF controller of order 6. The
frequency response of the TDF controller is shown in Figure 5.9-(a). From the figure it can
be seen that the feedback controller and the feedforward controller share common dynamics
and they include an integrator. The frequency responses of sensitivity function S(s) and co-
sensitivity function 7T'(s) are shown in Figure 5.9-(b). It can be seen that the reduced-order

controller satisfies the feedback performances such that

{ Ws(5)S(s)]loo <1
Wr(s)T(s)]oo <1
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(a) Frequency response of TDF controller
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Figure 5.9: Frequency responses of (a) 6th order TDF controller, and (b) closed loop transfer

functions.
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Figure 5.10: Step responses of (a) a feedback control system composed of the nominal plant
and the 6th order feedback controller, and (b) a TDF control system composed of the nominal
plant and the 6th order TDF controller.



5.4. A NUMERICAL EXAMPLE 125

(a) plant : nominal model P(s) (b) plant : perturbed model P(s;0.6*M)

2 2
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Figure 5.11: Step responses of the perturbed systems

Figure 5.10 illustrates step responses of closed loop systems: (a) a feedback control system
composed of the nominal plant and the 6th order feedback controller, (b) a TDF control
system composed of the nominal plant and the 6th order TDF controller. From this figure,
it can be seen that the tracking performance can be improved by adding the feedforward
controller to the feedback control system. In order to verify the robustness of the TDF
system, step responses of the closed loop systems, in which the perturbed plants are used,
are illustrated in Figure 5.11; in (a) the nominal model is used, in (b) a perturbed model
Py (s) is used, in (c) a perturbed model Py(s) is used. It can be seen that the closed loop
system holds stability within the prescribed variation of the plant.

5.4.4 Comparison with another method

To evaluate the performances of the TDF controller that is obtained with the proposed
method, other TDF controllers are also designed with the other method, which is an inde-
pendent sequential approach in which the feedback controller and the feedforward controller

are respectively designed with the standard H., control. First, a feedback controller is ob-
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tained by solving the mixed sensitivity problem. The generalized plant of the problem is
illustrated in Figure 3.2. Two types of sensitivity weighting functions are adopted. One
of the sensitivity functions is type of non-optimal sensitivity function, where the gain of the
weight Wg(s) is not so high that there is room for improving the robustness. Here, the weight
is used as the following one.

4110
W, (s) = ———
(%) = S5 1000)

We call a mixed sensitivity problem in which Wg, (s) is adopted typel problem. The other
type of the problem is with sensitivity function of maximal gain. The weight is used as

482
Ws,(s) = m7

which has higher gain than Wg, (s) has in low frequency range. We call this type of problem
type 2 problem. On the other hand, the weighting function Wrp(s) is used the same one that
is used in equation (5.28) in each type problem. Since the order of each generalized plant
is five, the order of each resultant feedback controller is also five. The feedback properties:
frequency responses of the sensitivity function and co-sensitivity function, which are obtained
in those types of problems, are illustrated in Figure 5.12. In (a), the result of the type 1
problem is plotted, in (b) the result of the type 2 problem is plotted.

Second, using each feedback controller, a feedforward controller is designed by solving the
model matching problem whose generalized plant is illustrated in Figure 5.13. The weighting

functions that are used in the generalized plant are as follows

1302
52 + 2475 + 1302
2.0
s
n = 4.0x107°.

Since the order of the generalized plant is 11, an 11th order feedforward controller is
obtained in each type of problem. Hence, each resultant TDF controller is 16th order, which
is higher by 10th order than that of the TDF controller designed with the proposed method.
Then, by using the balanced truncation method [1, 52], each 16th order controller is approxi-
mated with lower order TDF controllers. Here, in order to preserve the steady-state property
of the feedforward controller F(s), the truncated feedforward controller F,(s) is scaled as
follows.
£(0)

E.(0

F,(s) = Fp(s) x

~—

The approximated TDF controllers have variation according to the combination of orders of

feedback controller and feedforward controller.
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10! (a) Feedback Properties (Type1 problem)
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10" (b) Feedback Properties (Type2 problem)
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Figure 5.12: The feedback properties of the controllers obtained by solving the problems: (a)

Type 1 problem, (b) Type 2 problem. Green line : |S(jw)|; Blue line : |T'(jw)|; Red x :
W3 (jw)]; Magenta + : |[Wr ! (jw)|.
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y’—> Shm o

=~ F(9) U

Figure 5.13: The generalized plant of the model matching problem
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5 Full Order controller (16) 5 Reduced Order controller (6=1+5)
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Figure 5.14: The step responses

Step response of each closed loop system, which is composed of the nominal plant and each
controller derived from the type 1 problem, are plotted. In (a), a 16th order TDF controller
is used. In (b), a 6th order TDF controller, which is given with a first order reduced order
feedforward controller and a 5th order feedback controller, is used. In (c), a 6th order TDF
controller, which is given with a second order reduced order feedforward controller and a 4th
order reduced order feedback controller, is used. In (d), a 6th order TDF controller, which

is given with a 3rd order reduced order feedforward controller and a 3rd order reduced order
feedback controller, is used.
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Figure 5.15: The step responses
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Step response of each closed loop system, which is composed of the nominal plant and each
controller derived from the type 2 problem, are plotted. In (a), a 16th order TDF controller
is used. In (b), a 6th order TDF controller, which is given with a first order reduced order
feedforward controller and a 5th order feedback controller, is used. In (c), a 6th order TDF
controller, which is given with a second order reduced order feedforward controller and a 4th
order reduced order feedback controller, is used. In (d), a 7th order TDF controller, which
is given with a second order reduced order feedforward controller and a 5th order reduced

order feedback controller, is used.
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Figure 5.14 plots step responses of closed loop systems in which 16th order TDF controller
and its reduced order controllers derived from the type 1 problem are adopted. Figure 5.15
plots step responses of closed loop systems in which 16th order TDF controller and its reduced
order controllers derived from the type 2 problem are adopted. From these figures, it can
be seen that each 16th order TDF controller has better tracking property than that of the
6th order TDF controller that is obtained with the proposed method. It is pretty natural
that a higher order controller performs better than a lower order controller. On the other
hand, compared with the 6th order controller obtained with the proposed method, none of

the reduced order controllers perform better.

5.5 Summary

In this chapter, we have considered designing a low-order TDF controller. Based on the
analysis in the previous chapter, formulations of designing the low-order TDF controller are
compared with each other. The result of the comparison has suggested that a method of
simultaneously designing the feedback controller and the feedforward controller is the best
way to derive the low-order TDF controller. Then we have chosen the way of simultaneous
approach. Another reason why we have adopted the simultaneous approach is that the
formulation of the simultaneous approach reduces to the non-standard H., problem, where
the way of designing the reduced-order controller has just been clarified. Thus we have
proposed a method of designing the low-order TDF controller based on the H,, control.
In this method, we can design the TDF controller whose order is lower than the order of
the generalized plant by the sum of the dimensions of the measurement output of the real
plant and the order of the weighting function of the sensitivity function. In this method,
the TDF controller can be designed with the integral-type by using the result of chapter 3.
Effectiveness of the proposed method is verified with a numerical example of controlling the

magnetic levitation system.



Chapter 6

H~, controller approximation

6.1 Introduction

In the previous chapters, we have considered the direct approach to deriving the low-order
H, controller. On the other hand, in this chapter we consider the indirect approach where

an approximation method is used for reducing the order of an H, controller.

In this chapter, we treat a specialized solution of the numerically solved H,, controller,
which is represented by the linear fractional transformation of an optimized Youla parame-
ter [69] in RH~. The numerical approach [3, 43, 54] is useful for solving the Ho, problem
with a constraint of specifying the closed loop poles. In many cases, the numerical approach
derives an extremely high-order Youla parameter and the resultant H, controller becomes
high order. However, it is unknown how to reduce the order of the H,, controller without
deviating the constraint. In this chapter, we consider the possibility of reducing the order of

the H,, controller by approximating the Youla parameter.

When reducing the order of the high-order H, controller which satisfies the constraint
of the closed loop pole location, it is required to reduce the order of the controller such that
the specified closed-loop property is preserved. For this requirement, in this study we firstly
propose a model approximation method for a system whose poles are located in a specified
domain. Since this approximation method assures that the poles of the approximated system
locate in the domain in which the poles of the original system locate, it is useful to apply this
method for the H, controller reduction problem which we consider in this chapter. Thus we
consider the problem of reducing the order of the H., controller based on the approximation.
One of advantages of this reduction method is that the reduced-order controller maintains
the closed-loop properties of the original controller, such as internal stability and closed-loop
pole specification. A sufficient condition for the closed loop transfer function satisfies the
constraint of the H,, norm is derived. The effectiveness of this H,, controller reduction

method is verified with a numerical example.

131
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G

A

K

Figure 6.1: Closed loop system

6.2 A numerical approach to H,, controller design
6.2.1 Youla parametrization

Consider the following generalized plant G(s) which is a transfer function matrix from
(w”, uT)T to (27, yT)T, where vectors w, u,z and y represent the exogenous signals such
as perturbation and disturbances, the control input signals from actuators or controllers, the

controlled output signals to be evaluated and the measured output signals, respectively.

_ | Gu(s) Gra(s)
G(S)_[Gzl(s) G22(S):|

The generalized plant G(s) is composed of the plant and all weighting functions which specify
the robustness and the other closed loop specifications. When the controller K (s) is connected
between y and u, the closed loop transfer function from w to z is represented by the following

equation.
Tzw(s) =F (G(S)v K(S))

The block diagram of the closed loop system is shown in Figure 6.1.
It is known that if one controller K, (s) which stabilizes the closed loop system is given,
all the controllers which stabilize the closed loop system can be represented by using a stable

and proper transfer function Q(s). Assume that a plant P(s) is a minimal scalar system, and

- [445]

If we select a feedback gain F and an observer gain H such that matrices Ap £ A+ BF and
Apg & A+ HC are stable, then all of the controllers which stabilize P(s) can be represented

is represented with realization

as follows:

_ X(s) + QUs)M(s)
Y(s)~ Qs)N(s)"

K(s) (6.1)
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where Q(s) € RH« is a free parameter, and transfer functions N(s), M (s), X(s) and Y (s)

are represented as follows

This representation of the stabilizing controllers is called Youla parametrization. It should
be noted that K (s) in (6.1) stabilizes the closed loop system composed of P(s) and K(s), if
and only if Q(s) € RHuo.

In general, it is known that by using the Youla parametrization, arbitrary closed loop
transfer function T, (s) can be represented with the following affine combination of stable

transfer functions:

Tow(s) = Ti(s) = Ta(s)Q(s)T5(s) £ Fugfine (Q(s)), (6.2)

where Ti(s), To(s) and T3(s) are certain stable transfer functions related to the plant, the
weighting function and the stabilizing controller, and Q(s) represents a free parameter. The
closed loop system is stable, if and only if we choose Q(s) from the set of all real rational
stable functions.

For example, let’s consider a problem of sensitivity minimization. In this problem the
transfer function is selected as

1

T. =W —_—
() = Ws(s) T T PR ()
where Wg(s) € RH is a weighting function. If we note the fact that equations:

Pls) = % X (s)N(s) + Y (5)M(s) = 1

hold, it is verified that the transfer function 7%, (s) can be represented as follows

T.w(s) =T1(s) — Ta(s)Q(s)Ts(s),

where
Ti(s) & Ws(s)M(s)Y (s)
Ty(s) = Ws(s)M(s)N(s)
Tg(s) = 1.

The representation of the closed loop system in (6.2) is useful for designing an H, con-
troller which specifies the location of the closed loop poles. Let us denote RHODO as a class

of stable proper transfer functions whose poles lie in the disk domain Dom(D). Figure 6.2
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Alm

Figure 6.2: Disk domain

illustrates Dom(D). The set of closed loop poles is the union of the poles of the transfer
functions T1(s), Ta(s), T3(s) and Q(s). Since the poles of transfer functions 77 (s), Ta(s) and
T3(s) can be selected from arbitrary complex numbers on the left half plane by the selection of
F, H and weighting functions, adding a constraint such that Q(s) € RH%, the H,, controller
which locates closed loop poles in a specified domain Dom(D) can be obtained. We call the
problem of finding Q(s) € RHE which satisfies the constraint of Hy,-norm the Hy, problem

with pole specification. The problem is formulated as follows.

Problem 6.2.1 The H,, problem with pole specification
Suppose that the transfer functions Ty(s) € RHEL are given. Then, find a stable system Q(s)

that achieves
1T1(s) — Ta(s)Q(s)T5(s)[[o0 < 1
such that

Q(s) e RHE.

If such a Q(s) is obtained, the controller in a request is given by substituting Q(s) into

the equation in (6.1).

6.2.2 A numerical approach to controller design

In order to solve the problem stated above numerically, we must search a solution over an
infinite-dimensional function space RHo,. Then, we focus on an approximation stated as

follows.
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Let us define a sequence of transfer functions Q(s) € RHoo, k = 1,2,... , N, and let us

denote transfer functions as follows

=
=
||>

= To(s)Qr(s)T5(s).

Then, restricting the closed loop transfer function 7, (s) to a finite-dimensional function
space as

N
HN(ac) éRO‘i‘Zkak’ xr € R,
k=1

we optimize a function

p(x) £ ¢ (Hy(x)),

where ¢ is a function which specifies some performance of the control system. This restriction
is called Ritz Approximation. In this approximation, it is assured that ¢(z) converges to an

optimal value as N — oo [3, 54]. To each = € RY there corresponds the controller

N
K(z)=F (Ko(s), ZCUka(S))
k=1

that achieves the closed loop specification ¢ (Hy(z)) < 7.

Now, in order to solve Problem 6.2.1, we put the free parameter Q(s) as

N N k
Q)= Qi) =D = a ) (6.3)

k=1

where o > 0 is chosen such that Q(s) satisfies Qi (s) € RHE and zy, (k= 1,2,... ,N) are
finite-dimensional parameters. In this problem the function ¢ indicates the Hoo-norm. Since

the function of the H,,-norm satisfies

[6Ha + (1 = B)H|loo < Bl|Halloo + (1 = B) [ Hplloo, VB € [0,1],

where H, and Hj are arbitrary transfer functions in R'H, it is apparent that ¢ is a convex
function. Hence, if we put the free parameter Q(s) as (6.3), Problem 6.2.1 can be reduced to

a finite-dimensional convex optimization problem.

6.2.3 A defect of the numerical approach

Thus, Problem 6.2.1 can be solved by using a convex optimization method such as ellipsoid
algorithm [3]. However, sometimes the order of the free parameter becomes very high, causing
the controller also high order. In order to understand this mechanism, let us represent the

controller in (6.1) as

K(s) = F1 (Ko(s), Q(s))
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where Ky(s) is defined as

X(s)Y"(s) M(s)+ X(s)Y ' (s)N(s)

Kolo) = | "y YN )

and let us introduce the state-space form of Ky(s) and Q(s) as follows

Ap | By, B,
KO(S) - Ck1 Dkn Dk12
Ck2 D/<J21 Dk22

Then the state-space form of the controller K(s) = F; (Ko(s),Q(s)) can be represented as
follows.
Ak+Bk2DqECk2 Bkz(I+DqEDK22)Cq By, + Biy DgE Dy,

K(s) = B,EC}, Ay + B,EDy,,Cy B,E Dy,
Chy + Dy, Dy ECy, Dk12(I+ DqEka)Cq ‘ Dyyy + Diyy Dy E Dy,

. (64)

where E = (I — Dy,,D,)”" and Ky(s). From this representation of K (s) it can be seen that
the McMillan degree of K (s) can be estimated as follows

deg (K (s)) < deg (Ko(s)) + deg (Q(s)) - (6.5)

In the above relation, the inequality holds when pole-zero cancellations occur between Ky(s)
and Q(s). In such a case, the order of the controller is reduced to some degree. However,
it is not always expected that the pole-zero cancellation reduces the order of the controller
to some required order, rather it is ordinary that the pole-zero cancellation doesn’t occur.
Thus, in this numerical approach the increase in the order of the resultant controller is one

of difficulties, hence the controller order reduction is required.

6.3 The controller reduction by the approximation of Q(s)

The relation in (6.5) informs us an upper bound of the order of the resultant controller. In
this study we consider to reduce the order of the upper bound in order to reduce deg (K (s)).
In this context, it is useful to reduce the order of Q(s). When approximating Q(s), it is
important to consider the preservation of the closed loop specifications such as the closed
loop stability, the designation of closed loop pole position and the H,, norm constraint.
Suppose that Q(s) is approximated by @,(s). The conditions of the stability and the pole
position are satisfied if Q,(s) € RHC%. Then we have only to consider the constraint on the
norm in order to derive the low-order H., controller which satisfies the pole specification.

Now, it is required to consider a model approximation method which is closed on RHODO.
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6.3.1 Balanced truncation

Now, let us introduce one of the most useful model approximation method. Balanced trun-
cation [52, 56, 43] is one of the most effective model approximation methods for reducing the
order of stable systems. We consider to approximate the system @(s) based on the Balanced

truncation. Consider a linear time invariant stable system Q(s) described by

Qls) = [%}%] ,

where it is assumed that the McMillan degree of Q(s) is n, and the pairs (A, B), (A,C) are

controllable and observable. The controllability Gramian of Q(s) is defined as
¥, 2 /0 - At BBTeA dt,

and is given by the unique positive definite solution to the Lyapunov equation
2. AT + AS. + BBT = 0.

The observability Gramian of G(s) is defined as
¥, 2 /0 - ATt OT Cetat,

and is given by the unique positive definite solution to the Lyapunov equation
YA+ ATS, +CTC = 0.

Positive square roots of eigenvalues of ¥.,3. are called Hankel singular values of Q(s), and they
are invariant under a nonsingular state transformation of Q(s). Let o1 > 09 > -+ >0, >0
be the Hankel singular values of Q(s). The system is said to be internally balanced if the

Gramians satisfy the equation

Ye=X,=2,
where ¥ = diag (01,09, -+ ,0,). Let us partition ¥ accordingly into
| 3. O
=15 n)
where ¥, = diag (01,02, -+ ,0,) and 3, = diag (0,41, 0r12, - ,0p).

Suppose that Q(s) is internally balanced. Let us partition A, B, C conformably with the

partitions of X.

All c RTXT”A22 c R(n—r)x(n—r)

Then an approximated system of Q(s) is given by an r-state reduced-order system:

Qu(s) = [ATT%} -

Concerned about the approximation the following lemma is known [53].
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Lemma 6.3.1 Let Q(s) be stable and minimal system with n states. Let r < n and let Q,(s)
be a reduced-order system obtained by approzimating Q(s) with Balanced truncation. Then

the following items hold.

1) Q,(s) is stable and minimal system.
2) |Q(s) — @r(5)]|oc < 2tracedly.

Remark 6.3.1 Balanced truncation is a method to approximate a system in RHo with a
reduced-order system in RHoo. If Q(s) € RHODO is approrimated by Q. (s), it is only assured
that Q,(s) € RHa. Hence the reduced-order system may not satisfy the pole specification of

the original system.

In the following section we will consider a model reduction method which preserves the

specified domain in which the poles locate.

6.3.2 Model approximation with constraint of pole position

Besides the internal stability, the closed loop pole specification to a specified domain is
important in controller design [21]. The domain is specified to the left hand side divided by
the dashed lines which is shown in Figure 6.2. If the closed loop poles are confined to this
domain, then the system modes damp asymptotically at desired rates. However, it is difficult
to address this domain directly. Hence, we approximate this domain by Dom(D).

This section proposes a model approximation method that preserves the domain in which
the poles locate. Here, the domain is limited to a disk domain. Outline of our idea concerned

with the approximation method is listed as follows.

1. The coordinate of the original system is transformed using an affine transformation
and a bilinear transformation. Then the disk domain on the complex left half plane
is transformed to the complex left half plane of the changed coordinate. Poles of the

original system are mapped into the left half plane in the new coordinate.

2. The original system in the new coordinate is approximated to a low-order one using
Balanced truncation. Then it should be noted that the poles of the reduced-order

system in the new coordinate still locate in the left half plane.

3. Again the reduced-order system is transformed using the inverse of the affine transfor-
mation and the bilinear transformation. Then the poles of the reduced-order system in

the original coordinate locate in the specified disk on the complex left half plane.

Thus, we can approximate a system, which has poles on a specified domain with a reduced-

order system, which still has poles on a specified domain. Now let us move on to details.
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Figure 6.3: s-plane and s-plane

Firstly, let us introduce some important transformations. The affine transformation is defined
as
s+«
3

where o and 3 are some real numbers. This transforms Dom/(D) to the domain within the

unit disk on the complex plane. The bilinear transformation is defined as
v—1
v+1

§:

This transforms the domain within the unit disk on the complex plane to the complex left
half plane. The mixed transformation which transforms Dom(D) to the complex left half
plane is described by

sta—p0
s+a+p’

5=

(6.6)

where a > (3 # 0. This transformation is called a Linear Fractional Transformation (LFT),
and is a one-to-one mapping of S% onto S?. LFT has a lot of attractive properties, one of

which is given by the following lemma.

Lemma 6.3.2 Let Q(s) be analytic outside Dom(D). Let the function with the coordinate
transformed by LFT be defined as

R(g)éQ((—a—ﬁ)Ha—ﬁ)

s—1

Then R(8) is analytic in the complex right half plane.

Proof. The reader may refer to the Riemann mapping theorem [58]. ]

Thus, by transforming the coordinate of Q(s) € RHL with LFT in (6.6) we can obtain
another system R(5) € RH. In the later discussion, for notational ease R(S) is denoted by
R(s).
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Then we approximate R(s) by a reduced-order system R,(s). Assume that R(s) is a
stable n-th order system. Using Balanced truncation, we can obtain an r-the order reduced-
order system. Let R, (s) be the reduced-order system obtained by Balanced truncation. From
Lemma 6.3.1 R,(s) € RHoo, hence R,(s) is analytic in the complex right half plane.

Then transform the coordinate of R, (s) by the inverse of the LFT:

(—a-Bita-p

s = ] . (6.7)

Let the transformed system be @,(s). Then the r-the order reduced-order system Q,(s) is
analytic outside Dom(D), i. e., Q,(s) € RHL. Here, we obtain the following theorem.

Theorem 6.3.1 Let Q(s) be analytic outside Dom(D). Then the reduced-order system Q,(s)

is analytic outside Dom(D).

Proof. The system R(s) is analytic in the complex right half plane. The reduced-order
system R, (s) which is obtained by Balanced truncation is also analytic in the complex right
half plane. Therefore Q,(s) obtained by the inverse transformation of LFT in (6.6) is ana-
lytic outside Dom/(D), because the inverse transformation is also LFT, that is, a one-to-one
mapping of S? onto S2. [ |

Thus the procedure to approximate Q(s) is listed as follows.

Procedure 6.3.1 Assume that an original system Q(s) € RHE is obtained. Then the

following procedure derives an approzimated system Q,(s) € RHODO.

step 1: Transform Q(s) € RHL to R(3) € RHo with LET in (6.6).

step 2: Approzimate R(3) € RHoo by R, (8) € RHo with Balanced truncation.
step 3: Transform R,(3) € RHoo to Q,(s) € RHE with LFT in (6.7).

Thus, we can reduce the dynamical order of Q(s) € RHZ with preserving the specified
domain in which poles locate.
In the second place, we look into the error of the approximation discussed in the above.

The following theorem gives an upper bound for the approximation error.

Theorem 6.3.2 Assume that the Hy, norm error bound of R(s) — R,(s) is known to be 7,
i.e. the following inequality holds.

[R(s) = Br(s)ll oo <7 (6.8)
Then the error bound of Q(s) — Q,(s) is evaluated with the following inequality.

1Q(s) = @r(s)lloo < (6.9)
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Proof. Define ER(s), Eg(s) as follows.

Er(s) = R(s)— R.(s)
Eq(s) £ Q(s) = Qu(s)
The systems Q(s) and Q,(s) are analytic outside Dom(D), hence Eg(s) is also analytic

outside Dom(D). By the maximum modulus principle [58] of the analytical functions we

obtain an inequality

sup {Eq(s)} > sup{Eq(jw)} . (6.10)
Dom(C) w

The LFT in (6.6) transforms the value of the function Eg(s) on Dom(C') to the value of the

function Er(jw) on the imaginary axis. Hence the following equation is obtained.

sup {ER(jw)} = sup {Eq(s)}. (6.11)
w Dom(C)

Since R(s) € RHoo and R,(s) € RHo are analytic in the complex right half plane, Er(s)
is also analytic in the complex right half plane. The Ho, norm of the function Fr(s) equals

the maximal value of the function Er(jw) on the imaginary axis.
IER(5)]l o = sup {ERr(jw)} (6.12)
w

From equations. (6.11) and (6.12), the following equation is obtained

IEr(s)lloo = sup {Eq(s)}. (6.13)
Dom(C)
If the following inequality
I1ER(s)lloe <

holds, then from equation (6.13), the inequality is obtained

sup {Eq(s)} <. (6.14)
Dom(C)

Then from the inequalities (6.10) and (6.14), the following inequality
sup {EQ(jw)} = 1EQ(s)llo <7
w
holds. [

Remark 6.3.2 From Lemma 6.3.1, an upper bound of the reduction error Er(s) is given by

the following inequality.

|IERr(s)|l,, < 2trace, X9
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where Yo is defined as
o £ diag (O'r+1, Opg2,: " aan)

and 0;,(1 < i < n) are the Hankel singular values of R(s). Hence, using the result of
Theorem 6.3.2, the error bound of Eq(s) is evaluated using the Hankel singular values of
R(s) as follows

I1EQ(s)|loc < 2traceXs.

6.3.3 The H, controller reduction

In this section, by using the approximation method proposed in the previous section we
consider to reduce the order of the H,, controller which is represented by LFT with a high-
order Youla parameter. In order to reduce the order of the H., controller, it is useful to
reduce the order of the Youla parameter when it is high order. We apply the approximation
method proposed in the above section to reduce the order of the Youla parameter.

Suppose that Q*(s) € RHEZ

s Which is an n-th order solution to Problem 6.2.1 is given,

and define the value of the objective function
X2 | Ti(s) = Ta(s)Q (5)T3(s)lloo < 1.

We approximate Q*(s) with r-th order system Q,(s) € RHODO by Procedure 6.3.1, then define

the value of the objective function
A £ | T1(s) = To(5)Qr (5) T3 (5) oo
Then the following lemma holds.

Lemma 6.3.3 The inequality holds.
Ar = A" < [ Ta(s) oo - [1Q7(5) = @r(8)lloo - 1T3(8)[loo (6.15)

Proof. It can immediately verified by the following inequality.

A= Ta(s) = Ta(s)@Q7(s)T3(s) + Ta(s) (Q7(s) — @r(s)) T3(s)l o
< ITis) = Ta(s)Q7(8)T3(5) oo + 1T2(5) (@7 (5) — @r(5)) Ta(s) o
< A HTa(8)lloo - 1Q7(5) = Qr(8)ll oo - T5(8) oo

By using the above lemma, we can derive the next result.

Theorem 6.3.3 Let us denote the Hankel singular values of R(s) as oF,i = 1,2,--- ,n. If

70

an inequality

N+ 2| Ta(s)||, - trace Z5 - || T3(s)|| o, < 1, (6.16)
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where X5 implies

R A 3 R R R
35" = diag (JTH,JTH,--- o ),

holds, then Q. (s) is a solution to Problem 6.2.1.

Proof. From Lemma 6.3.1, an inequality
|R(s) — Rr(s)|l <2 trace Xpo
holds, hence from Theorem 6.3.2 an inequality

1Q(s) = Qr(8)llo < 2 trace Spo (6.17)

holds. Then, from Lemma 6.3.3 and (6.17),
A < X+ 2|[To(s)]] - trace S - | Ta(s)]

holds. Hence, if the inequality (6.16) holds, A, < 1 is satisfied. Then, Q,(s) € RHZ is a
solution to Problem 6.2.1. [ |

Substituting @, (s) into the representation of the controller in (6.1) derives an approxi-
mated controller. Then it is assured that the approximated controller satisfies the constraint
of the pole position in the closed loop. A sufficient condition for the approximated controller
satisfies the constraint of the H,,-norm is given in Theorem 6.3.3. Then we have to consider
next is to ascertain whether the order of the approximated controller is really reduced or
not. In the state space representations of the Ho, controller in (6.4), if Q(s) is replaced with
Q*(s), the resultant controller is not necessarily minimal, hence the McMillan degree of the

controllers may reduce to some order:

deg (F1 (K(s), Q7(s))) < deg (Ko(s)) + deg (Q(s)) -

Hence the pole-zero cancellation [61, 36] may cause a case such that the order of the approx-
imated controller is higher than that of the original controller.
In order to avoid such a situation, we look into the pole-zero cancellation. Let us denote

the controller Ky(s) as

_ | Ku(s) Kiafs)

Bolo) =1 kyi(s) Kam(s)

Then it is known the property concerned about the pole-zero cancellation.

Lemma 6.3.4 Every mode of the unobservable subspace in F; (Ko(s),Q(s)) is the invariant
zero of K12(s). Every mode of the uncontrollable subspace in F; (Ko(s), Q(s)) is the invariant
zero of Ko1(s).
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Proof. See reference [37, 36].
By using the above lemma, we obtain the following result.

Theorem 6.3.4 Suppose that sum of the numbers of the invariant zeros of K12(s) and K (s)
is TZ > 0. Then, if the inequality

deg (Q"(s)) — deg (Qr(s)) > TZ

holds, the following inequality holds.

deg (7 (Ko(s),Q"(s))) > deg (F1 (Ko(s), @r(s))) (6.18)
holds.

Proof. Suppose that the inequality

deg (Q"(s)) — deg (Qr(s)) > TZ (6.19)

holds. From Lemma 6.3.4, the pole-zero cancellations in F; (Ky(s), @*(s)) may happen within

its unobservable mode and uncontrollable mode. Hence, an inequality

deg (F1 (Ko(s), Q*(s))) = deg (Ko(s)) + deg (Q"(s)) = TZ (6.20)

holds. From (6.19) and (6.20), the following inequality holds.

deg (7 (Ko(s), Q%(s))) > deg (Ko(s)) + deg (Qr(s)) (6.21)

On the other hand, deg (F; (Ko(s), @r(s))) satisfies

deg (F; (Ko(s), Qr(s))) < deg (Ko(s)) + deg (Qr(s)) - (6.22)

Hence, from (6.21) and (6.22), (6.18) holds. ]

6.4 A numerical example

Consider the following 17-th order system Q*(s) which is obtained as a solution to Problem
6.2.1. The pole positions of Q*(s) are illustrated in Figure 6.4. Let the domain in which
the poles are located be denoted Dom(D) with center -100 4+ jO and radius 99.5 on the
complex plane, hence the parameters a and 3 are set as o = 100, 3 = 99.5. The 12-th order
reduced-order system which is obtained by the proposed approximation method is denoted
by Qi2prop(s) and the 12-th order reduced-order system obtained by Balanced truncation is
denoted by Qi2p7(s). The pole positions of these systems are illustrated in Figure 6.5 and
Figure 6.6, respectively. From these figures, it is apparent that all the poles of Qi2prop(s)
are located within Dom(D), while some poles of Q12p7(s) are located outside Dom/(D). The
poles of the closed loop transfer functions Fg¢fine (Q12prop(s)) and Fogtine (Qr2pr(s)) are
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Figure 6.4: Pole position of Q*(s)

illustrated in Figure 6.7 and Figure 6.8, respectively. It is also apparent that the closed loop
pole specification is satisfied by using the proposed model reduction method, on the other
hand, the specification is not satisfied by using Balanced truncation only. The H,, norm of

the approximated closed loop transfer function is evaluated by using the following inequality.

IT1(s) — Ta(s)Q(s)T3(s) + Ta(s) (Q(s) — Quaprop(s)) T3(s)l

IT1(s) — Ta(s)Q(8)T3(5) |l + [[T2(s) (Q(s) = Qu2prop(s)) T3(5) |

[ Eagfine (Q(8)l o + 1T2(8) oo - 1T3(8) o - 1Q(8) = Qu2prop(s)ll oo
(6.23)

||Faffine (QlQPTOP(S)) Hoo

IN

IN

We can check the H,, norm condition by using the above inequality and the result of
Theorem 6.3.2. In fact, the H, norm of the approximated closed loop transfer function is

evaluated as

| Faf fine (Qi2prop(s))ll,, < 0.965. (6.24)

Hence, the reduced-order Ho, controller F; (Ko(s), (Q12prop(s)) which satisfies the pole spec-

ification can be obtained.

6.5 Summary and discussion

In this chapter we have proposed a controller reduction method for a H,, controller which
is designed with the numerical approach based on the optimization of the Youla parameter.
This method is based on the approximation of the Youla parameter that is designed to

satisfy the constraints of the closed loop system. Thus the parameter holds information of
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Figure 6.5: Pole position of Q12prop(s)

Table 6.1: A summary of deg (Q,.), \* +2||T3 || oo - traceX5 - || T3 oo, A and the McMillan degrees
of the controllers

deg(Q,) | A* + 2[|Ta|oo - traceXs - || T3] 0o A deg (F; (Ko, Qr))
17 - 0.802 20 (19)
16 0.803 0.802 20 (18)
15 0.805 0.802 19 (17)
14 0.814 0.802 18 (16)
13 0.839 0.804 17 (15)
12 0.965 0.807 16 (14)
11 1.21 0.826 15 (13)
10 2.47 1.09 13 (12)

the constraints of the closed loop system, hence it is natural to approximate the parameter
without losing the information of the constraints. However there was a difficulty in reducing
the order of the controller. Since this method approximates the Youla parameter, the order
of the controller is not necessary reduced sufficiently if the order of the parameter is reduced.
In order to avoid this situation we have given a sufficient condition for the order of the
approximated controller is really reduced.

Thus we have given a H, controller reduction method. The advantages of the method are
that the approximated controller certainly satisfies the internal stability and the constraint
of the pole position in the closed loop. For the constraint of the Hy,-norm, a sufficient
condition for satisfying the constraint is given. The effectiveness of this result was verified

with a numerical example.
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Chapter 7

Conclusion

In general, as the structure of a design problem becomes more complex, the number of
choices of formulations to solve the problem increases. As we have seen in chapters 4 and
5, the complexity and the optimality of the solution depend on the formulation chosen. In
the designing of robust controllers based on the H., problem, there are many approaches
to solving the design problems. However, these problems are usually formulated as the
standard H, problem and their solutions sometimes become complex and result in high-order
controllers. It is therefore important, not only to solve a problem formulated beforehand but
also to consider a new formulation.

This thesis has considered the formulation of the H,, control problem in the designing of
low-order controllers from several viewpoints. Two types of approaches to the problem are
considered: a direct approach based on the derivation of the reduced-order H,, controllers,
and an indirect approach based on the approximation of a high-order controller. For each

approach, some methods for designing low-order controllers have been proposed.

1. In the direct approach, by getting a hint to reduce the dynamical order of a controller
from the minimal-order-observer design, we have treated the non-standard H., control
problems, where the dimensions of the control inputs are greater than those of the con-
trolled outputs, or the dimensions of the measurement outputs are greater than those
of the disturbance inputs. As a result, generalized classes of the reduced-order H., con-
trollers are expressed with free parameters. The reduced-order controllers are classified
into two types: a minimal-order-observer-type and a dual type of the minimal order
observer. Thus, this study has shown that the low-order controllers can be obtained
by reducing some controller design problem to the non-standard H., problem. While
the formulation of non-standard H,, problem has been avoided in previous studies, it
is expected that the non-standard H,, problem is positively utilized in the controller
designs. This thesis has, in fact, clarified the controller design problems that can be
formulated as the non-standard problems and has shown the advantages of formulating

them in this way.
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This thesis has gone on to clarify some classes of the problems that are reducible to the

non-standard H,, problem and has proposed methods for deriving robust controllers.

e Based on the non-standard Hy, problem, a new formulation for designing an
integral-type H, controller is proposed, and new method for deriving the low-
order controller is shown. The advantages of this formulation are due to the sim-
plicity of the derivation. If the plant doesn’t include integrators, it is not necessary
to solve the so-called pseudo stabilizing solution of the ARE. On the other hand, if
the plant includes the integrators, although it is still necessary to solve the pseudo
stabilizing solution, it is not necessary to transform the non-standard problem to
the standard problem and to separate the integrators from the plant. Moreover,
the results can be extended to TDF controller design which is also reducible to

the non-standard H., control problem.

e A TDF robust controller design problem is reduced to the non-standard H, prob-
lem, and a new method for designing a low-order TDF controller is proposed. This
method has many advantages over conventional design methods of TDF controller.
One is that the method makes it possible to design both the feedback controller
and the feedforward controller simultaneously, hence the trade-off between the
performances of the controllers can be considered. In this thesis, it is pointed
out that there exists trade-off between the performances of the controllers if those
dynamics are common. The other is that the order of the TDF controller can be

reduced to the order which is lower than that of the generalized plant.

2. With regard to the indirect approach, this thesis has treated a specialized solution of
the H, controller, which is represented with an optimized Youla parameter. Since the
order of the parameter is extremely high, the order of the controller is also high. In
this thesis, we have proposed a model approximation method for a linear time invariant
stable system whose poles are located in a specified disk on the left half plane. This
method preserves the domain in which the poles of the original system are located. An
upper bound of the model approximation error was evaluated using the Hankel singular
values of the original system. By using the approximation method for reducing the order
of the Youla parameter, a method for reducing the order of the H., controller, which

satisfies a constraint of the closed loop pole position, is proposed.
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Appendix A

Preliminary results

A.1 Invariant zeros

The invariant zeros are characterized by the following lemma.

Lemma A.1.1 (Invariant zeros) Let us consider the system

- (23]

and define a system matriz as follows

Ols) & [A;s[ g}

A complex number zy € C is called an invariant zero of T (s) if it satisfies

rank (Q(zp)) < normal rank (Q(s)),

where the normal rank of Q(s) means the mazimally possible rank of Q(s),s € C.

If D is a matriz of full rank, the invariant zeros are defined by the following three cases.

(i) When D is full column rank, the invariant zeros of the system T(s) are the unobservable
modes of the pair (A — BD'C, D+C).

(i) When D is full row rank, the invariant zeros of the system T'(s) are the uncontrollable

modes of the pair (A — BD'C, BDV).

(i1i) When D is a square matriz, the invariant zeros of the system T(s) are the eigenvalues
of the matrix A — BD~'C.

A.2 Parametrization of stabilizing controllers

Let us consider the system

A| B B
_ | Gu(s) Gua(s) | _
Gls) = Ga1(s) Gaa(s) } - g; D021 D012 ’ (A1)
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where (A, Bs) is stabilizable and (A, Cy) is detectable.

Lemma A.2.1 Choose the matrices F' and H such that the matrices

Ap = A+ ByF
Ay =A+ HCy

are both stable. Then the class of all the stabilizing controllers for Gaa(s) is represented as
follows:
A+ ByF + HCy | -H —By

K(s)=F F ‘ O -1 |,Q()], Q(s)€RHw. (A.2)
—Cy I @)

The class of closed loop transfer functions G, (s) = F; (G(s), K(s)) is represented as follows:

Ap —BoF | By By
O Ay | By O
Cr —DnF| 0 Dy | 9@
O C |Dy O

G.w(s) = Fi Q(s) € RHoo, (A.3)

where By and Cp are defined as follows.
By = B1 + HDy
Crp =Ci1+ DioF
A.3 A matrix equation
Let us define the matrix equation as follows
PA; + AP =B, (A.4)
where A1 € R™"™ and Ay € R™*™ are square matrices.
Lemma A.3.1 If A1 and As satisfy
Ni(A1) + Xj(A2) #0, Vie [1,2,...,n],Vj€[1,2,... ,m] (A.5)

the matriz equation in (A.4) has a unique solution. Specifically in the case B = O, the unique

solution is P = O.

A.4 Star product

Let us consider the systems:

A| Bi B Ak | Bki  Bgo
G(s)=| Ci| D1 D2 |, K(s)=| Cki|Dgn Dri2
Co | Da1 Do Ck2 | Dk21 Dk22
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Then the star product of G(s) and K(s) are defined as

159

Gls) x K (s) = [ é‘_, = ] ,
where
i [ A+ ByR™'Dp11Co ByR™'Ciy
I Bg1R71Ch Ak + BgiR™' DyyCiy
B— [ By + BoR™ ' D11 Doy ByR ' Dpeig }
i Bg1R™'Dyy Bgo+ Bg1R_1D22 D12
O — [ C1 + D12Dg11 R71Cy DR 'Ciy ]
i DgarR71Cy Cka+ Dgo1 R D2 Ciy
P— [ D11 + D12Dg11 R 1Dy D12R™'Dpc1a ]
i Dgo1 R™1Dyy Dgoo + Dio1 R Dao Do
R=1—DyDk11, R=1I—Dgi1Das.

A.5 Inner function

A transfer function N(s) is inner if N € RHo, and N7 (—s)N(s) = 1.

Lemma A.5.1 Let us consider the system N(s) as follows:

o [48]

Suppose that D is of full column rank, (A,C) is detectable. Then N(s) is inner if there

exists P > O such that

PA+ATP+CTC =0
DTC+BTP=0
DTD =1

A.6 Lossless system

Let us consider the stable system

= Enils) Eia(s) mx
2E(s)=| = - € RHI”P,
(s) Eo1(s) Eaa(s o
Suppose that Z(s) satisfies
Bl (—5)Z(s) =1

then the system =(s) is called lossless.

(A.6)

(A7)
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Lemma A.6.1 Suppose that the system =(s) is lossless, and that the system Q(s) is proper.

Then the following items are equivalent.

1. A closed loop system (Z(s),Q(s)) is internally stable and Q(s) satisfies
171 (E(s), Q(5)) [loo < 1.
2. Q(s) satisfies
1Q(s)]lo0 < 1.

A.7 Disturbance feedforward problem

Let us consider the standard H,, problem for

A| Bl B
G(S) = Cl 0] Dlg s (AS)
CQ Doy 0O

where the assumptions A1, A2 and A3 are satisfied. If the matrix Dy is nonsingular and
the matrix A — Bngng is stable, the Hy, problem is called DF (Disturbance Feedforward)

problem. The solution of DF problem is listed in the following lemma.

Lemma A.7.1 The DF problem is solvable if and only if an ARE:
X (A - ByDl,C A-B,Dheh) x
201,01 | + 21201
T T
+X {BlBlT — B,DI, (BQDIQ) } X + (Dlgcl) DLCy =0

has a nonnegative definite stabilizing solution X . If the condition is satisfied, the Hy, con-
troller is represented as follows:
A—B1D;'Cy+ BoFy | BiDy' BoY%

K(s)=F Foo 19) > | ,N(s) |, (A.9)
— (Dy'C2 + BT X) Dy} 0]

where N(s) € BHso, and Fso and X are defined as

f f T
Fy = —DI,C1 — DI, (BQDIQ) X

1
2

Y = (DfyD1»)

A.8 ARE (Algebraic Riccati Equation)

Let a matrix A € R™*™ and a symmetric matrices R € R™*" and @) € R™ " be given. If a

solution of the following ARE:

XA+ ATX +XRX+Q =0 (A.10)
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stabilizes the matrix
A X = A+ RX ,
then the solution X is called a stabilizing solution of the ARE (A.10).

Definition A.8.1 Associated with the ARE (A.10), let us define a Hamiltonian matriz:

A R

A 2nx2n

Lemma A.8.1 If Hx doesn’t have poles on the imaginary axis, then Hx has n stable eigen-

values and n unstable eigenvalues.

Suppose that Hx doesn’t have poles on the imaginary axis. Then let A_ € R™ "™ be a

matrix whose eigenvalues are all of stable eigenvalues of Hx. A full column rank matrix of

[ x .
V= [ X, ] satisfies
HxV =VA_, (A.12)
where V' is a basis of the mode A_. Then if det (X;) # 0, we denote

Hx € Dom (Ric) (A.13)
Ric (Hx) = Xo X7 L. (A.14)

Lemma A.8.2 The stabilizing solution of the ARE (A.10) is given by X = Ric (Hx).

A.9 Solution to Full control problem

Lemma A.9.1 In order that the FC problem is solvable, it is necessary that the following
ARE:

v (4- BlD;CQ)T +(A-BDLG) Y
+Y {cchl - (Dglcz)T D;cQ} Y + B, D4 (Blpjl)T ~0 (A.15)

has a nonnegative definite stabilizing solution Y. By stabilizing, we mean that the following

matrixz is stable.
T
Ay 2 A—BiD}Cy+Y {C1T01 - (D$1C2) D£102}

Proof. See the paper [11]. ]
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A.10 Reduction mode of an ARE for the standard problem
Let us consider an ARE:
Y (A - BpoICQ)T + (A - 31D;102> Y
+Y {Cchl - (D;CQ)T D;@} Y + B\D% (Blz);l)T —0,  (A.16)

which is required to be solved in the standard H., problem. For this ARE, the following

lemma holds.

Lemma A.10.1 Assume that the ARE in (A.16) has a positive definite stabilizing solution
Y, i.e., there exists a solution Y > O for the ARE and the solution stabilizes the matrix:

T
Ay, 2 A— B D},Co+Y {cchl - (DglcQ) DglcQ} .

Then it is shown that

U (A — BlD;cQ) —A_U,N(A_) <0,Vi
UB1Dj; = O

ker (YT) = range (UT) .

YU, det (UUT) # 0; {

Proof. Let U be a full row rank matrix which satisfies UY = O. Pre-multiplying by U and
post-multiplying by UT, the ARE is written as

Uy ALUT + U (A ~ Blz);l@) yUT + UB, D4 (UBlpjl)T ~ 0,
hence U satisfies
UB,Dy; = O.
Again, pre-multiplying the ARE by U, it can be seen that U satisfies
U (A - BlD;cQ) Y =0,
hence U (A — Bngng) can be represented as

U (A - BlpglcQ) = AU,

where Ag is an appropriate nonsingular matrix. Then, for the stable matrix Ay the matrix
U satisfies

UAy = AU.

From this equation, it can be seen that the matrix A is a stable matrix because the matrix

U is of full row rank. Thus, the lemma has been proved. [ |
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A.11 Solutions to the mixed-sensitivity problem

The solutions to the mixed-sensitivity problems, which are the H,, control problems for
the generalized plant G,,s(s) in (3.6) described in Figure 3.2, are listed according to some

conditions.

Lemma A.11.1 (A case where W(s) € RHy and P(s) includes no jw-poles) Assume
that Ws(s) € RHoo and P(jw) # oo,Yw € R hold. If the AREs:

X (A ~ BaD}yCh ) + (A - BQDIQCl)T X
'S {BlBlT — ByDi, (BQD;)T} X+ (Dlgcl)T DLCL=0 (A7)
~ ~\T ~ ~
Y (A - BlpglcQ) + (A - 3117;102> Y
Ly {Cchl — (Dcs)" 155102} v+ 5D (BD5) —0 (A1)

have the stabilizing solutions X > O and Y > O and they satisfy an inequality p (XY) < 1,

then the class of the Hy controllers is given as follows.

~ ~ _1
A \ ~ZHy 7By (D{yD13) 2
_1
Kins(s) = Fi Feo ) (D’{QDIQ) 2 N1, (A.19)
_1 N !
—(DuD5) * Gy | (DuDF) 0

where N(s) € BHoo is a free parameter, and the other parameters are defined as

A=A+ B BI'X + ByFy + ZH, Cy

By =By +YCIDyy

C’Q = C’Q + [)QlB?X

Fo = —D},0y - D, (BoD,) X

oS 12+1 12 \ 2212
At At e p

Heo = -BiD}, — v (D},Cy) D

Z=(I-YX)™L
Lemma A.11.2 (A case where W(s) includes jw-poles and P(s) includes no jw-poles)
[49] If the ARE in (A.17) has a stabilizing solution X > O, the ARE in (A.18) has a pseudo-
stabilizing solution Y > O and they satisfy the inequality p(XY) < 1, then by using these

solutions X and Y the class of the Hy, controllers is given with the expression in (A.19).

Lemma A.11.3 (A case where P(s) includes jw-poles) [4/8] Assume that P(s) has jw-

poles, and can be factorized as follows

P(s) = P(s)a(s),
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where

~

P(jw) <oo,Vw € R, a (s) € RHeo.

In Figure 3.2, let us select Wy(s) as follows

W(o0) =0, Wi(s) < oc,Vs e {s:Re(s) >0}.

Then, by factorizing P(s) as in Figure 3.7 let us construct the generalized plant Gms(S).
If there exists Kms(s) which is an Ho, controller for Gms(s), the Ho, controller for the

original plant Gs(s) exists and is given by a1 (s)Kpns(s).
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