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Abstract

H∞ control is one of the most effective methodologies in robust control, and much attention

has been paid to it in recent years. So far, the H∞ controller has been given with a dynamical

order that is equivalent to the sum of the orders of a plant and weighting functions. However it

is frequently too high to use in practice. Under these circumstances, this thesis considers the

problem of designing low-order H∞ controllers. It considers two kinds of approaches: a direct

one in which a low-order controller is derived directly in the process of the controller design,

and an indirect one in which a high-order controller is designed first and then approximated

to a lower-order one.

First, this thesis starts with non-standard H∞ control problems, which have certain key

structures for reducing the dynamical order of the controllers. A class of low-order controllers

for the non-standard H∞ problems is derived directly based on an algebraic operation in a

class of full-order controllers. This derivation indicates that it is possible to design low-order

controllers for problems that are reducible to one of the non-standard H∞ problems. So far,

people have usually avoided treating the non-standard H∞ problems and they have been

solved after being transformed into standard one. This study is a new attempt to utilize the

non-standard H∞ problems.

Second, this thesis also shows that some representative control system design problems

are reducible to the non-standard problems, and proposes new formulations for solving these

problems. It then proposes methods of designing low-order controllers for two kinds of prob-

lems: robust servo controller design and two-degree-of-freedom controller design. It is found

that the low-order controllers can be designed based on the new formulations. Besides being

used to design low-order controllers, the new formulations make it easier to design controllers

than formulations based on the standard H∞ problems.

Lastly, this thesis also considers an indirect approach that treats a specialized solution

of the numerically solved H∞ controller, which is represented by a linear fractional trans-

formation of an optimized Youla parameter. In many cases the numerical approach yields

an extremely high-order Youla parameter and the H∞ controller becomes high order. We

propose reducing the order of the H∞ controller by reducing the order of the Youla parame-

ter. One of advantages of the reduction method is that the resultant reduced-order controller

satisfies closed loop properties: internal stability and closed loop pole specification.
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Notation

Z set of integers
R set of real numbers
C set of complex numbers
F

m×n set of m× n matrices on F, where F might be Z or R or C.
Re(c) real part of c ∈ C

Im(c) imaginary part of c ∈ C

In n× n identity matrix
O zero matrix
diag(a1, . . . , an) an n× n diagonal matrix with ai as its i-th diagonal element
MT transpose of a matrix M ∈ R

m×n

M † pseudo inverse matrix of M

M⊥ orthogonal complement of M

ker M {x ∈ R
n | Mx = 0}

range M {y ∈ R
m | y = Mx,x ∈ R

n}
λi(A) an eigenvalue of a square matrix A ∈ R

n×n, where i = [1, 2, · · · , n]
λmax(A) the largest eigenvalue of a matrix A

λmin(A) the smallest eigenvalue of a matrix A

ρ(A) spectral radius of a matrix A

σmax(A) the largest singular value of a matrix A

traceA trace of a matrix A

∼ equivalent under nonsingular transformations
RH∞ set of proper stable real rational transfer functions
‖G(s)‖∞ H∞ norm of a transfer function G(s) ∈ RH∞
BH∞ set of bounded transfer functions in RH∞
, defined as[

A B

C D

] 


a system described with the state space equation

{
ẋ = Ax + Bu

y = Cx + Du

a system descrived with the transfer function D + C(sI −A)−1B

Dom(C) {s ∈ C | |s + α| = β,Re(s) < 0}
Dom(D) {s ∈ C | |s + α| < β,Re(s) < 0}
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Some of transformations that will be used in this thesis are defined as follows.

For a matrix partitioned as

G =
[

G11 G12

G21 G22

]
,

we define a linear fractinal transformation (LFT), a homographic transformation (HMT),

and a dual homographic transformation (DHM) as follows.

• If det(I −G22Q) 6= 0, then the LFT is defined and is denoted as

Fl (G,Q) = G11 + G12Q(I −G22Q)−1G21.

• If det(G21Q + G22) 6= 0, then the HMT is defined and is denoted as

HM (G,Q) = (G11Q + G12)(G21Q + G22)−1.

• If det(G11 + QG21) 6= 0, then the DHM is defined and is denoted as

DHM (G,Q) = (G11 + QG21)−1(G12 + QG22).

Those transformations are related with each other by an equation:

Fl (G,Q) = HM
([

G12 −G11G
−1
21 G22 G11G

−1
21

−G−1
21 G22 G−1

21

]
, Q

)

= DHM
([

G−1
12 G−1

12 G11

−G22G
−1
12 G21 −G22G

−1
12 G11

]
, Q

)
.
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Chapter 1

Introduction

1.1 Overview of the thesis

With the advances in technology, the role of control systems has become more important and

they are required to act more precise and to perform robust in the presence of uncertain-

ties of plants. In recent years, a robust control theory has developed and high-performance

controllers have become easy to design. On the other hand, the resultant controllers are

derived with high order [55], and they are sometimes hard to implement [1]. Thus, design-

ing a low-order controller is an important problem that must be settled [1]. Although the

designing of low-order robust controllers has been the subject of many studies, it is still an

unsettled problem. In this thesis, we are devoted to the issue of designing the low-order

robust controllers.

In the first place, this thesis focuses on a non-standard H∞ control problem that is a key

to the low-order robust controller design. In the non-standard problem, a class of plants for

which we consider the controller design includes plants that can be stabilized with minimal-

order-observer-based feedback controllers [41, 42, 30]. Hence, it is hoped that approaching

the non-standard problem from the viewpoint of the minimal-order-observer-design enables

us to develop a method for a wider class of low-order robust controller designs. Thus, the

main result of this thesis provides a complete characterization of low-order H∞ controllers

for the non-standard problem.

Although, in this thesis, the non-standard problem is a fundamental topic to give methods

for designing the low-order robust controllers, it is too abstract to make the most of practically.

Hence, a question “What sorts of practical problems of robust controller design reduce to the

non-standard H∞ problem ? ” may arise. To answer this question, the class of the practical

problems that are reducible to the non-standard problem should be clarified. This thesis

investigates the problems of an integral-type robust controller design and a two-degree-of-

freedom (TDF) controller design. It then proposes methods for designing the low-order H∞
controllers in those two kinds of problems.

This thesis also considers an indirect approach, in which a model approximation method

1



2 INTRODUCTION

is used to reduce the order of the controller. In the studies of control application, there are

many cases that have adopted the indirect approach. Nevertheless, there are few theoretical

results about the reduction of the robust controller. Hence, there is no choice but to rely

on the rule of trial and error for reducing the controller. In this thesis, we shall focus on a

numerical solution of the H∞ controller that is derived with the so-called Youla-parameter

approach [69, 3, 43], where it is known that a resultant H∞ controller becomes high-order.

However, there is no theoretical result for reducing the order of such a controller. Under

the circumstance, this thesis proposes a way to reduce the order of the controller and gives

a sufficient condition for the approximated controller satisfies the closed loop properties:

internal stability and some closed loop pole specification.

1.2 Studies of the low-order controller design

A problem of designing the low-order controller has been an interest of many researchers

for long time, however it is still an open problem. As stated in an earlier monograph [1],

there are two approaches to designing low-order controllers for high-order plants. One is a

direct approach, in which the parameters of the low-order controller are computed by some

optimization procedure [2, 33]. The other is an indirect approach, in which a high-order

controller is designed first and then the dynamical order of the controller is reduced by using

some model approximation method [52, 18, 56].

Designing low-order controllers with the direct approach [2, 28, 57, 8, 9, 46] is a difficult

problem. However, in recent years, a numerical method [3, 16, 32] for control system design

has provided a new way for designing low-order controllers directly, and in this way the

condition for existence of a fixed-order controller is expressed with an LMI (Linear Matrix

Inequality) with a constraint of matrix rank [33, 63, 31]. Nevertheless, it is still difficult

to solve the inequality numerically because solving the inequality reduces to a non-convex

feasibility problem. Hence the approach via the numerical method requires further studies of

the numerical algorithm [57, 8, 4, 46], and it is still important that the way to derive directly

the low-order robust controller be studied from another point of view. On the other hand, the

present study slightly differs from the earlier studies. It first clarifies a class of problems for

which the low-order controllers can be designed and then analyzes some synthesis problems

that are reducible to that class.

Essentially, the controller design with evaluation of the closed loop performances and the

controller reduction with evaluation of the input-output properties of the controller itself

are independent problems [1]. Hence, it is not always true that the good approximation

of the controller in a sense of input-output properties means the good approximation of

the closed loop properties. Although many model reduction methods [1, 52, 72, 73, 62, 63]

are available, there are difficulties in preserving the closed loop performances of an original

controller. In recent years, Goddard [20] proposed a method for the controller approximation
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with preserving closed loop performances. This thesis also considers an indirect approach to

designing the low-order controller, and it treats the controller order reduction in such a way

that the required closed loop performances are assured.

1.3 The non-standard H∞ problems

This section briefly introduces the non-standard H∞ problems, which give a key to the

designing of the low-order robust controllers, and refers to past studies concerned with the

non-standard H∞ problems.

1.3.1 Problem description

This thesis treats the following linear, time-invariant, finite dimensional system:


ẋ(t) = Ax(t) + B1w(t) + B2u(t)
z(t) = C1x(t) + D12u(t)
y(t) = C2x(t) + D21w(t)

, (1.1)

where x(t) ∈ R
n is the state variable, z(t) ∈ R

p1 is the controlled output, y(t) ∈ R
p2 is

the measurement output, w(t) ∈ R
m1 is the exogenous (disturbance) input and u(t) ∈ R

m2

is the control input. The matrices A,B1, B2, C1, C2,D12,D21 are real, constant and of the

appropriate dimensions. The system in (1.1) is called a generalized plant, and the system is

represented as follows.

G(s) =
[

G11(s) G12(s)
G21(s) G22(s)

]
=


 A B1 B2

C1 O D12

C2 D21 O


 (1.2)

The purpose of control is to design a controller K(s) that is connected with the generalized

plant as

u = K(s)y.

A closed loop system composed of the generalized plant and the controller is illustrated in

Figure 1.1. Then, the transfer function of the closed loop system is represented as

G(s)

K(s)

wz

uy

Figure 1.1: A closed loop system

Tzw(s) , Fl (G(s),K(s)) .
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Remark 1.3.1 The components of w(t) are all the exogenous inputs: references, distur-

bances, sensor noise, and so on. The components of z(t) are all the signals we wish to

control: tracking errors between reference signals and plant outputs, actuator signals whose

values must be kept between certain limits, and so on. The vector y(t) contains the outputs

of all sensors. Finally u(t) contains all controlled inputs to the generalized plant.

The H∞ control problem is stated as follows.

Definition 1.3.1 (The H∞ control problem) Determine whether or not there exists a con-

troller K(s) such that the closed loop system is internally stable and satisfies

‖Tzw(s)‖∞ < 1,

where the H∞ norm of a transfer function F (s) ∈ RH∞ is defined as

‖F‖∞ , sup
Re(s)>0

σmax [F (s)] = sup
ω∈R

σmax [F (jω)] .

Parametrize all such controllers when one exists.

Remark 1.3.2 Many of the synthesis problems in the control engineering can be reduced

to the H∞ control problem [10, 12]. For example, problems of designing controllers which

provides robust stability, robust performances, low-sensitivity, and so on are all reducible to

the H∞ problem.

1.3.2 Assumptions

In earlier papers [11, 19], the H∞ problem is considered under the following assumptions with

regard to the system (1.1).

A1

1) (A,B2) is stabilizable.

2) (A,C2) is detectable.

A2

1) rank(D12) = m2. (D12 is of full column rank.)

2) rank(D21) = p2. (D21 is of full row rank.)

A3

1) the system G12(s) has no invariant zeros on the imaginary axis.

2) the system G21(s) has no invariant zeros on the imaginary axis.
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Assumption A1 concerns the existence of a stabilizing controller for the system (1.1). The

two parts of assumption A2 mean that there are no inputs in u which have the same effect

on the output, that the exogenous signals in w affect the states, and that the true states are

not directly measurable. Under the assumptions of A2, the assumption A3-1) is equivalent

to the condition such that

rank
([

A− jωI B2

C1 D12

])
= n + m2, ∀ω ∈ R,

and the assumption A3-2) is equivalent to the condition such that

rank
([

A− jωI B1

C2 D21

])
= n + p2, ∀ω ∈ R.

(See appendix A.1.)

The system (1.1) satisfying these assumptions is called the standard generalized plant

and the corresponding H∞ problem is called the standard H∞ problem. If one of these

assumptions is not satisfied, the system (1.1) is called the non-standard generalized plant

and the corresponding H∞ problem is called the non-standard H∞ problem.

1.3.3 Past studies on the non-standard H∞ problems

Many studies of the H∞ control treat the standard H∞ problem [11, 19], however we are

sometimes faced with the non-standard problems in which the generalized plant does not

satisfy one of the assumptions: A1, A2 and A3. This thesis especially treats the non-

standard H∞ control problem where the assumption A2 is not satisfied, that is, the rank

conditions of the direct feed-through terms of the subsystems G12(s) and G21(s) are not

satisfied.

The non-standard problems are treated in several papers [35, 51, 60, 50, 64, 65]. Stoor-

vogel [65] and Sampei et al. [60] studied the non-standard H∞ control problems by using

the Riccati inequalities, and they derived an H∞ controller of McMillan degree n which is

identical with that of the generalized plant. Kimura et al. [35] treated the non-standard H∞
control problems by using the concept of J-lossless, and they derived the H∞ controller which

is represented with a free parameter. Furthermore, the LMI approach [16, 32, 31] enabled us

to solve the controller design problems without being conscious of almost all the assumptions.

The correspondence between the non-standard H∞ problem and the low-order controller

design was first pointed out by Zhang and Hosoe [71], and Stoorvogel, Sabeli and Chen [65]

respectively. Zhang et al. derived a low-order controller for the H∞ problem where the

partial states of the real plant are measurable without noise. The discussion in their article

is, however, restricted to the plant in which partial states are measurable without noise and

is fairly difficult. On the other hand, Stoorvogel et al. derived a low-order controller for

the non-standard H∞ problem. Their discussion bases a matrix inequality approach and

the minimal-order observer design, however, the resultant controller is not parametrized.
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Recently, Xin et al. [68] studied the designing of the low-order controller for continuous and

discrete time singular H∞ control problem based on LMI. However, the controller is not

parametrized with free parameters and its structure is unclear.

Besides the problem of designing the low-order controller, problems in utilizing the non-

standard H∞ control for practical problems have not been tackled in any study, so far. In the

application of the standard H∞ problem, it is known what kind of the control problems is

reducible to the standard problem. On the other hand, the problem in the application of the

non-standard H∞ control is an open problem. Thus, first, this thesis aims at constructing

a general way of designing the low-order H∞ controller for the problem of the non-standard

H∞ control, second, it aims at clarifying what kind of practical control problems is reducible

to the non-standard problem, then a method of designing the low-order robust controller is

to be shown.

1.4 Related issue to the non-standard problem

This section looks into the non-standard H∞ problem from the viewpoint of the low-order

controller design and its applications. It will give us understanding of backgrounds of discus-

sions in later sections.

1.4.1 Fundamental non-standard solution via reduced-order observer de-
sign

Consider a generalized plant that is simplified as




[
ẋ1

ẋ2

]
=
[

A11 A12

A21 A22

] [
x1

x2

]
+
[

B11

B12

]
w +

[
B21

B22

]
u

z = C1

[
x1

x2

]
+ D12u[

y1

y2

]
=
[

Ip2−m1 O
O C22

] [
x1

x2

]
+
[

O
Im1

]
w

, (1.3)

where it is assumed that the triple
([

A11 A12

A21 A22

]
,

[
B21

B22

]
,

[
Ip2−m1 O

O C22

])
is stabiliz-

able and detectable. Here, it should be noted that the matrix
[

O
Im1

]
is of full column rank,

hence the system is a generalized plant of the non-standard problem where the assumption

A2-2) is not satisfied. Although this system seems like a special case of the non-standard

generalized plant, it can be given by an equivalent transformation of the generalized plant

(1.1). In this system, it should be noted that a partial state variable x1 ∈ R
p2−m1 is directly

observed through the observation of a measurement output y1. In order to use information

of each state variable, there is therefore no need to estimate the partial state variable x1 and

the dynamics of the observer can be reduced. Actually, since the state variable x1 and the
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input u are available, we can describe the system in the following form.
 ẋ2 = A22x2 + B12w +

[
A21 B22

] [ y1

u

]
y2 = C22x2 + Im1w

(1.4)

This system represents a dynamical system of the state variable x2. The detectability of the

pair
([

A11 A12

A21 A22

]
,

[
Ip2−m1 O

O C22

])
means that the pair (A22, C22) is detectable. Hence,

all the state variables in the system (1.3) can be estimated by using a reduced-order observer

of the form: 


˙̂x2 = (A22 −HC22) x̂2 +
[

A21 H
] [ y1

y2

]
+ B22u

x̂ =
[

O
I

]
x̂2 +

[
I O
O O

] [
y1

y2

] , (1.5)

where the matrix A22 −HC22 is stable. On the other hand, from the stabilizability assumed

above, if all the states of the system (1.3) are estimated, the system is stabilized with a state

feedback controller of the form:

u =
[

F1 F2

]
x̂,

where x̂ is an estimate of the state and the feedback gain
[

F1 F2

]
stabilizes the matrix[

A11 + B21F1 A12 + B21F2

A21 + B22F1 A22 + B22F2

]
. From these, it can be verified that a reduced-order-observer-

u

y1

y2

F1

x1

x2

x2
^

Plant

Controller

w

x1

F2

Figure 1.2: A closed loop system

based output feedback controller:


˙̂x2 = (A22 −HC22) x̂2 +
[

A21 H
] [ y1

y2

]
+ B22u

u = F2x̂2 +
[

F1 O
] [ y1

y2

] (1.6)



8 INTRODUCTION

stabilizes the system (1.3), because the A-matrix of the closed loop system composed of (1.3)

and (1.6) is represented as
 A11 + B21F1 A12 B21F2

A21 + B22F1 A22 B22F2

A21 + B22F1 HC22 A22 −HC22 + B22F2




∼


 A11 + B21F1 A12 + B21F2 B21F2

A21 + B22F1 A22 + B22F2 B22F2

O O A22 −HC22


 ,

and is verified to be stable. By using the observer design, we can obtain an H∞ controller [15].

The closed loop system is illustrated in Figure 1.2.

Thus, the non-standard problem corresponds to a problem of the minimal-order-observer-

based controller design and is a key problem in designing a low-order robust controller. It is

well known that the standard H∞ controller can be given with an LFT (Linear Fractional

Transformation) of a central solution and a free parameter, and that the McMillan degree of

the solution is more than that of the generalized plant [11]. A recent paper [65] pointed out

that McMillan degree of the non-standard H∞ controller can be reduced to an order lower

than that of the standard controller, and that paper derived a reduced-order H∞ controller by

using Riccati inequality approach. This thesis aims at deriving the class of the reduced-order

H∞ controllers by way of Riccati equation approach.

1.4.2 Integral-type low-order robust controller design

In the controller design, there are many cases where the controller is required to contain

integrators. The integral-type robust controller design is indispensable for a synthesis of the

robust servo system. However, in general, the framework of the H∞ control doesn’t produce

the integral-type controller. The problem of designing the integral-type robust controller has

been studied by many researchers and many approaches based on the standard H∞ control

have been proposed. On the other hand, approaches based on the non-standard H∞ control

have not been studied well even though the problem naturally reduces to some non-standard

H∞ problems. One of reasons why the approach based on the non-standard H∞ control is

unpopular is that the solution is complicated compared with the approach of the standard

H∞ control.

Let us consider an SISO system in Figure 1.3, where P (s) is a plant assumed to have

neither poles nor zeros on the imaginary axis. This assumption is relaxed in a later chapter.

Consider a simple reference tracking problem, where reference signal r is supposed to be the

step-formed input. To let the output y track the reference signal r, we require the controller

K(s) to contain an integrator. One of the effective ways to meet this requirement is to

introduce the integrator into the weight Ws(s) and to let the transfer function Tzr(s) ∈ RH∞.

This is done by letting Tzr(s) satisfy the following inequality:

‖Tzr(s)‖∞ < γ, (1.7)
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z

yP(s)
u+

−
K(s)

Ws(s)

r

K(s)

r (= w)z

u

G(s)

(r - y) = y1

Figure 1.3: A closed loop system

where γ is a positive real number given beforehand. Thus we consider the H∞ problem

stated as: find internally stabilizing controller K(s) such that inequality (1.7) is satisfied.

Since no states of the weight Ws(s) are observed by K(s), the generalized plant in Figure 1.3

doesn’t satisfy the assumptions A1-2) nor A3-2), and the problem is thus a non-standard

H∞ problem. For the problems of this type, many approaches based on the conversion to the

standard H∞ problem have been proposed. The book of Zhou, Doyle and Glover [73] lists

two types of approaches.

One is based on factorization of the weight Ws(s) into the parts of integrators and another.

The factorization makes the problem the standard one. This approach derives an integral-

type controller by a series of process: (1) factorizing the weight, (2) solving a problem of the

standard H∞ control, and (3) modifying a controller derived from the problem to an integral

type. Thus, this approach requires one to follow several steps. The other is an approximative

one, in which the weight Ws(s) is approximated in such a way that the integral part of Ws(s)

is replaced as follows:

1
s + ε

← 1
s
,

where ε is a small positive real number. By the replacement of the integrator in Ws(s), the

generalized plant in Figure 1.3 satisfies the assumptions A1-2) and A3-2), and the problem

reduces to the standard H∞ problem. This approach has convenience, on the other hand,

it derives an incomplete integral-type controller. The other famous one is an approach that

uses the generalized H∞ control [39, 40, 49, 47], where it is required to derive a pseudo-

stabilizing solution of ARE. Thus, there are many approaches to solve the problem, however,
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the solutions are complex or incomplete. This is because the solutions are restricted by the

standard problem.

On the other hand, we treat the problem of the integral-type robust controller design as

the non-standard H∞ problem for the generalized plant described in Figure 1.4, where the

output from Ws(s) is measured by K(s). In the generalized plant, while the assumptions A1-

yP(s)
u

z

+

−
K(s)

Ws(s)

r y1

y2

KΙ (s)

K(s)

r = (w)z

u
y1

y2

G(s)

Figure 1.4: An alternative generalized plant

2) and A3-2) are satisfied, the assumption A2-2) is not satisfied because the dimension of

the measurement output is greater than that of the external input. Thus the H∞ problem for

the system in Figure 1.4 is the non-standard problem where the matrix D21 is of full column

rank, and the problem can be solved by using the solution of the non-standard problem we

focus on. Although we can solve the problem of integral-type robust controller design, there

is another problem; that is, the resultant integral-type controller KI(s) becomes high-order

than the system G(s) by the dimension of Ws(s). For this problem, we show that our study

on the designing of the reduced-order H∞ controller contributes. Compared with previous

works, while the problem description is essentially identical to the description in the works

of Zhang, et al. [71] and Hozumi et al. [26], our study takes a different approach to solving

the problem of the integral-type H∞ controller design, and enables us to extend the result

for TDF control system design to be stated below.
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1.4.3 Low-order TDF controller design

TDF control is one effective way to attain feedback performances and tracking performance

simultaneously. Figure 1.5 illustrates the TDF control system where K(s) is a feedback

controller and F (s) is a feedforward controller. A past study [66, 44] on the TDF control

u

K(s)

F(s)
−

+ yr
P(s)

Figure 1.5: TDF control system

has shown a property such that the feedback and tracking performances are determined in-

dependently by the feedback and feedforward controllers. Based on the property, the TDF

controller is frequently designed in two steps: the feedback controller design and the feedfor-

ward controller design. Here, suppose that the output feedback controller is designed in the

first step. Then the feedforward controller is designed such that it satisfies the specification:

‖Wρ(s) (M(s)− Tyr(s))‖∞ < γ,

where M(s) is a model of the tracking signal, Wρ(s) is a weight, and Tyr(s) is the closed loop

transfer function from the signal r to y. This specification is illustrated in Figure 1.6. In

F(s)

rz

r

G(s)

u~

~

P(s)

K(s)

F(s)
−

+

y

r

M(s)

Wρ(s)
+

−
z

u~

Figure 1.6: A feedforward controller design in the second step

this design, it should be noted that the order of F (s) becomes no less than twice the order of

P (s). Hence, the order of the TDF controller becomes not less than 3 times as much as that
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of the plant model. That is, the two-step design of the TDF controller results in a high-order

controller. In the previous studies [17, 5, 6, 24], in order to design a reduced-order TDF

controller, the dynamics of the feedback controller which is designed beforehand is used as

the dynamics in the feedforward controller.

However, in these studies, it isn’t noted that the above property is guaranteed in the

only case where the controllers are independently designed. Specifically, the low-order TDF

controller design inevitably causes any correlation in the structures of the feedback controller

and the feedforward controller. Hence, it is important to analyze the trade-off between these

performances of the TDF control system in which the controllers have any correlation. This

thesis first analyzes the trade-off between these performances of the low-order TDF control

system, in which the controllers share the same dynamics, and shows that the independence

of the performances is not maintained in this case.

G(s)

F(s)

K(s)

rz

y1

y2

u

+

−
K∞(s)

Figure 1.7: Simultaneous design of TDF controller

From the above reason, designing of the TDF controller is considered with a simultaneous

approach rather than the two-step approach. Figure 1.7 illustrates a generalized plant for the

simultaneous design of the TDF controller. In this formulation, the feedback controller and

the feedforward controller are designed simultaneously. It should be noted that the resultant

controllers share the common dynamics, and the degree of the controller is not increased

unnecessarily. On the other hand, it is interesting to note that the system in Figure 1.7 is

the non-standard generalized plant discussed in the previous sections. Hence, it is expected

that the order of the controller can be further reduced.

1.5 H∞ controller reduction

There are many model reduction methods that are applicable for the controller order reduc-

tion. However it is difficult to reduce the order of the controller with preserving the closed

loop performances of the H∞ controller. Let us consider the closed loop system illustrated

in Figure 1.1, where the controller stabilizes the system and satisfies the constraint such that

‖Fl (G(s),K(s))‖∞ < 1. (1.8)
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Then we reduce the order of the controller with some model reduction method, if the order

of the controller is too high to implement in practical use. However, neither the constraint

of (1.8) nor the stability of closed loop system is necessarily satisfied even if the reduction

error of the controller is small. This indicates that good approximation in the sense of open

loop property doesn’t mean good approximation in the sense of closed loop property. Hence,

when we evaluate the properties of closed loop systems, the controller approximation should

be considered. On the other hand, it is hard to evaluate the degradations in the closed loop

properties when we approximate the controller.

G(s)

Q(s)

wz
uy

M(s) K(s)

Figure 1.8: Closed loop system

In this thesis, we consider the method for the H∞ controller reduction by way of the

reduction of the Youla parameter Q(s) that is designed such that the closed loop performances

are satisfied. We focus on the H∞ controller that is designed based on a numerical approach

where the Youla parameter is optimized under some specification. The closed loop system is

illustrated in Figure 1.8. It should be noted that the controller is represented as

K(s) = Fl (M(s),Q(s)) ,

where the system M(s) is given a priori. It should also be noted that the closed loop transfer

function Tzw(s) can be represented as

Tzw(s) = T1 − T2(s)Q(s)T3(s),

where T1(s), T2(s) and T3(s) are stable transfer functions which depend on factorization of

the plant and control specifications. This representation is useful for evaluating the closed

loop performances.

Let us define the optimal Youla parameter as

Q∗(s) , arg min
Q(s)∈RH∞

‖Tzw(s)‖∞.

If we approximate Q∗(s) with Qr(s), an inequality:

min ‖Tzw(s)‖∞ = ‖T1 − T2Q
∗(s)T3(s)‖∞

≤ ‖T1 − T2Qr(s)T3(s)‖∞ + ‖T2‖∞‖T3‖∞‖Q∗(s)−Qr(s)‖∞
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holds. Letting closed loop transfer functions as

T ∗
zw(s) , T1 − T2Q

∗(s)T3(s)

T̃zw(s) , T1 − T2Qr(s)T3(s)

γ , ‖T2‖∞‖T3‖∞‖Q∗(s)−Qr(s)‖∞

the inequality is written

‖T ∗
zw(s)‖∞ ≤ ‖T̃zw(s)‖∞ + γ. (1.9)

As shown in Figure 1.9, the inequality (1.9) indicates that at every frequency, the graph of

Tzw(jω)

T*zw(jω)

~

γ

Figure 1.9: An interpretation of inequality 1.9

T ∗
zw(jω) lies in a disk of center T̃zw(jω), radius γ. From the inequality, it can be seen that good

approximation of Q∗(s) with Qr(s) suppresses the degradation in the closed loop performance.

Furthermore, it should be noted that the approximation Qr(s) ∈ RH∞ guarantees the closed

loop stability; moreover, the closed loop poles depend directly on the poles of Qr(s). Hence,

if we could obtain an approximation method that preserves the region in which poles of the

system are located, we can propose an approximation method of the controller that satisfies

a constraint of closed loop pole position.

These observations motivate to approximate the parameter Q(s) in order to approximate

the H∞ controller. Thus, we propose a method of H∞ controller reduction based on the

approximation of the Youla parameter.

1.6 Contribution

The new results and the original points of this thesis are listed as follows.

1. The reduced-order H∞ controllers are derived in the non-standard H∞ problems. The

class of the reduced-order controllers belongs to a generalized class of the minimal order

observer based output feedback controllers. Derivation of the reduced-order controllers

is based on an algebraic operation; that is, it is based on the selection of the free

parameters in the general representation of the non-standard solutions.
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2. As an application of the non-standard problems, a method for designing an integral-type

robust controller is proposed. This method makes it possible to design the low-order

integral-type robust controller easily and is also applicable to a low-order TDF controller

design.

3. In the analysis of the low-order TDF control system, we point out a necessity to con-

sider the trade-off between the feedback performances and the tracking performance.

Specifically, in the case of the low-order TDF controller, in which controllers share com-

mon dynamics, it is clarified that the independent property among those performances

is not maintained.

4. Based on the above analysis, it is pointed out that the low-order TDF controller design

problem should be treated as a simultaneous optimization problem. In the synthesis

of the low-order TDF control system, an approach based on the non-standard H∞
problem is proposed. Specifically, the result of the reduced-order H∞ controller design

is applicable to this approach and a method for designing some kind of low-order TDF

controller is proposed.

5. An H∞ controller reduction method based on the reduction of the high-order Youla

parameter is proposed. This method makes it easy to take closed loop specifications

into account. That is, the reduced-order controller guarantees the closed loop properties

such as internal stability and closed loop pole specification, and the degradation in the

closed loop performance: the H∞ norm of the closed loop transfer function can be

evaluated.

1.7 Organization

The organization of this thesis is as follows. Chapter 2 gives two-types of reduced-order con-

trollers of the non-standard H∞ problem. The results given in this chapter are fundamental

to chapters of 3, 4 and 5. Chapter 3 considers a synthesis of the low-order robust servo con-

trol. It treats the problem as the non-standard H∞ problem and derives the integral-type H∞
controller. Chapters 4 and 5 consider the problem of the low-order Two-Degree-of-Freedom

controller design. Chapter 4 analyzes the low-order TDF control system and shows that there

is a trade-off between the feedback performance and the tracking performance. Based on the

analysis, the chapter discusses the formulations of the low-order TDF controller. Chapter

5 proposes a method for designing the low-order TDF controller. It is based on the non-

standard H∞ control. Chapter 6 considers the method for reducing the order of the H∞
controller, which is a special solution of a numerical approach. Chapter 7 is the conclusion.

The structure of the thesis is illustrated in Figure 1.10, where a symbol C indicates a chapter.
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C 1

C 2
C 3

C 4 C 5

C 6

C 7

Figure 1.10: Organization of the thesis



Chapter 2

Reduced-order non-standard H∞
controller design

2.1 Introduction

This chapter treats a fundamental issue to give a reduced-order H∞ controller. In partic-

ular, problems that are focused on are the non-standard H∞ control problems, where the

dimensions of the control inputs are greater than those of the controlled outputs, and the

dimensions of the measurement outputs are greater than those of the disturbance inputs.

As a special case, those types of the non-standard H∞ problems include the H∞ problems

of systems with partial state feedback [71] and redundant inputs [59]. It is known that the

dynamical order of the observer-based feedback controller for a plant whose partial state

variables are measured without noise can be reduced by the number of the partial state vari-

ables [30, 64, 65, 68, 70]. We thus hope that we can derive the reduced-order controller in

the non-standard H∞ problems.

Thus, this chapter aims to generalize the reduced-order controller design based on the

non-standard H∞ control problems. It starts from deriving the class of full-order H∞ con-

trollers [45, 51], in which the controllers are parametrized with free parameters. The remark-

able difference between the classes of the H∞ controllers in the non-standard problem and

in the standard problem lies in the parametrization of these controllers. The H∞ controllers

of the non-standard problems are represented with larger number of free parameters than

that of the standard problem. The difference in the structure of H∞ problems reflects the

difference in the parametrizations of these controllers. Hence, the free parameters in the H∞
controllers of the non-standard problems are keys to derive the reduced-order H∞ controller.

In fact, the approach taken here is based on the selection of the free parameters in the

full-order H∞ controllers. The results given in this chapter are stated as follows. Two types

of reduced-order H∞ controllers are derived. One of the controllers is the minimal order

observer type, where the order of the controller is less than that of the generalized plant

by the number of the disturbance-free outputs. The other one is the dual version of the

17
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aforementioned case, where the order of the controller is less than that of the generalized

plant by the number of the redundant inputs. Results given in this chapter will be utilized

in the later chapters.

2.2 Formulation

Let us consider the generalized plant described in (1.1) or (1.2). This section considers the

class of non-standard H∞ control problems where the following assumptions are satisfied.

A1 1) (A,B2) is stabilizable, and 2) (A,C2) is detectable.

A2’ One of the following cases is satisfied.

Case 1 D12 and D21 are of full row rank.

Case 2 D12 and D21 are of full column rank.

Case 3 D12 is of full row rank and D21 is of full column rank.

A3’ ∀ω ∈ R;
[

A− jωI B2

C1 D12

]
and

[
A− jωI B1

C2 D21

]
are of full rank.

In this thesis, we call the H∞ problem, where the assumptions A1, A2’-Case i and A3’

hold, the non-standard H∞ problem of case i.

In the H∞ problems of case 1 and case 3, we put the assumption such that the matrix[
B2

D12

]
is of full column rank. In these cases, B2 and D12 are supposed to be of the form:

[
B2

D12

]
=
[

B21 B22

O Ip1

]
, B22 ∈ R

n×p1, (2.1)

where B21 is of full column rank.

In the problems of case 2 and case 3, we put the assumption such that the matrix[
C2 D21

]
is of full row rank. In these cases, C2 and D21 are supposed to be of the

form:

[
C2 D21

]
=
[

C21 O
C22 Im1

]
, C22 ∈ R

m1×n, (2.2)

where C21 is of full row rank.

These assumptions imposed on the system don’t lose the generality in the system (1.1),

because an equivalent transformation on the output variable: ȳ = My, |M | 6= 0, and an

input transformation on the input variable: ū = N−1u, |N | 6= 0 in the system (1.1) yield the

matrices in the equations (2.1) and (2.2). In this case, if a control low ū = K(s)ȳ is obtained,

the real control law is reconstructed as u = NK(s)My.
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2.3 Preliminaries

2.3.1 Pseudo inverse matrix and orthogonal complement matrix

For a singular and full-rank matrix, a pseudo inverse matrix and an orthogonal complement

matrix are defined as follows.

1. Let D be of full column rank, the matrices D† and D⊥ are defined according to the

following equalities:

[
D†

D⊥

] [
D

(
D⊥)T ]

= I,

DD† +
(
D⊥
)T

D⊥ = I.

2. Let D be of full row rank, the matrices D† and D⊥ are defined according to the following

equalities:

[
D(

D⊥)T
] [

D† D⊥ ]
= I,

D†D + D⊥
(
D⊥
)T

= I.

We call the matrix D† pseudo inverse matrix of D, and call the matrix D⊥ orthogonal

complement matrix.

2.3.2 Invariant zeros

Let us consider the system

T (s) =
[

A B

C D

]
,

where the matrix D is nonsingular and is of full rank. Then the invariant zeros of T (s) are

characterized as follows.

Lemma 2.3.1 1. Let D be of full column rank, then the invariant zeros of T (s) are the

unobservable modes of the pair (A−BD†C,D⊥C).

2. Let D be of full row rank, then the invariant zeros of T (s) are the uncontrollable modes

of the pair (A−BD†C,BD⊥).

Proof. See section A.1.
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2.3.3 Canonical transformation of the generalized plant

Our subsequent analysis is greatly simplified if the generalized plant is transformed so that

the invariant zeros are explicitly represented. Therefore, the generalized plant is transformed

to a canonical form:

G(s) =


T−1AT T−1B1 T−1B2

C1T O D12

C2T D21 O


 ,

where the matrix T is supposed to be nonsingular. Then, the following lemma holds.

Lemma 2.3.2 (1) Assume the generalized plant of case 1 or case 3, i.e., D12 is of full

row rank, let the stable and unstable zero modes of the subsystem G12(s) be A− and

A+ ∈ R
r×r. Then the following transformation is possible

[
T−1(A−B2D

†
12C1)T T−1B2D

⊥
12 T−1B2D

†
12

]

=




A11 A12 A21 A22 Im2−p1 B22uu

A13 A14 A23 A24 O B22ul

O O A− O O B22lu

O O O A+ O B22ll


 , (2.3)

where λi(A14) < 0, both of the pairs (A11, Im2−p1) and (A+, B22ll) are controllable, and

A+ has no jω eigenvalues.

(2) Assume the generalized plant of case 2 or case 3, i.e., D21 is of full column rank, let the

stable and unstable zero modes of the subsystem G21(s) be Ā− and Ā+ ∈ R
l×l. Then

the following transformation is possible


 T̄−1(A−B1D

†
21C2)T̄

D⊥
21C2T̄

D†
21C2T̄


 =




Ā11 Ā12 O O
Ā13 Ā14 O O
Ā31 Ā32 Ā− O
Ā33 Ā34 O Ā+

Ip2−m1 O O O
C̄22ll C̄22lr C̄22rl C̄22rr




, (2.4)

where λi(Ā14) < 0, both of the pairs (Ā11, Ip2−m1) and (Ā+, C̄22rr) are observable, and

Ā+ has no jω eigenvalues.

Proof. (1) Choose a basis V for the controllable subspace of (A − B2D
†
12C1, B2D

⊥
12). Fur-

thermore, choose a basis U such that the transformation matrix

M ,
[

V U
]



2.3. PRELIMINARIES 21

is nonsingular. Then the following transformation is possible

M−1(A−B2D
†
12C1)M =

[
A1 A2

O A4

]

M−1B2D
⊥
12 =

[
B̂21u

O

]

M−1B2D
†
12 =

[
B̂22u

B̂22l

]
,

where (A1, B̂21u) is controllable and (A4, B̂22l) is stabilizable.

By the previous assumption, B̂21u is of full column rank and we put B̂21u as

B̂21u =
[

Im2−p1

O

]
.

Let us define a nonsingular transformation matrix J :

J ,
[

J1 O
O J2

]
∈ R

n×n.

Then J1 and J2 are nonsingular and the following equation holds:

J−1M−1(A−B2D
†
12C1)MJ =

[
J−1

1 A1J1 J−1
1 A2J2

O J−1
2 A4J2

]

Putting J1 and A1 as

J1 =
[

I X
O I

]
, A1 =

[
A111 A112

A121 A122

]

and substituting these into J−1
1 A1J1, the following equation is obtained

J−1
1 A1J1 =

[
A111 −XA121 A111X −XA121X + A112 −XA122

A121 A121X + A122

]
,

where (A122, A121) is controllable, since (A1, B̂21u) is controllable. Hence the arbitrary eigen-

values of A121X + A122 can be specified. Choose matrix X such that all the eigenvalues of

A121X + A122 lie in the left half plane and define the stable matrix A14 as follows.

A121X + A122 , A14

From this definition J−1
1 A1J1 can be represented as

J−1
1 A1J1 =

[
A11 A12

A13 A14

]
.

On the other hand, choosing a matrix J2 that does permutation and diagonalization, J−1
2 A4J2

becomes

J−1
2 A4J2 =

[
A− O
O A+

]
,
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where the matrix A− is a stable zero-mode of G12(s) and the matrix A+ is an unstable

zero-mode of G12(s). Hence by putting J−1
1 A2J2 as

J−1
1 A2J2 =

[
A21 A22

A23 A24

]
,

the following equations are obtained

J−1M−1(A−B2D
†
12C1)MJ =




A11 A12 A21 A22

A13 A14 A23 A24

O O A− O
O O O A+




J−1
1 B̂21u =

[
Im2−p1

O

]
.

Partitioning J−1M−1B2D
†
12 as

J−1M−1B2D
†
12 =

[
J−1

1 O

O J−1
2

] [
B̂22u

B̂22l

]
=
[

J−1
1 B̂22u

J−1
2 B̂22l

]
=




B̂22uu

B̂22ul

B̂22lu

B̂22ll


 ,

and putting

MJ , T

follow the results in equation (2.4).

(2) This result follows by applying the dual argument of the proof (1).

2.4 The non-standard H∞ problem of case 2

This section derives full-order and reduced-order controllers of the non-standard H∞ problem

of case 2. That is, we consider the H∞ problem for a generalized plant:

G(s) =




A B1 B2

C1 O D12

C21 O O
C22 Im1 O


 ,

where the assumptions A1, A2’-case 2 and A3’ are satisfied. We put variables as follows.

[
C2 D21

]
=
[

C21 O
C22 Im1

]

2.4.1 Characterization of zeros in G21(s)

Let us consider the non-standard problem of case 2. Since D21 is of full column rank, it is

assumed that the generalized plant has been put into a basis corresponding to the canoni-

cal form in equation (2.4). Hence, the following equations can be assumed without loss of
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generality

A−B1D
†
21C2 =




A11 A12 O O
A13 A14 O O
A31 A32 A− O
A33 A34 O A+


 , A11 ∈ R

(p2−m1)×(p2−m1)

D⊥
21C2 =

[
Ip2−m1 O O O

]
D†

21C2 =
[

C22ll C22lr C22rl C22rr

]
,
[

C22ll C22r

]
, C22ll ∈ R

p2×(p2−m1)

, (2.5)

where λi(A14) < 0, both of the pairs (A11, Ip2−m1) and (A+, C22rr) are observable, and

A+ ∈ R
l×l has no jω eigenvalues. We call A− the stable zero mode of G21(s) and A+ the

unstable zero mode of G21(s).

For notational ease, let us partition the following matrices.

B1 =
[

B1u

B1l

]
, B1u ∈ R

(p2−m1)×m1

B2 =
[

B2u

B2l

]
, B2u ∈ R

(p2−m1)×m2

C1 =
[

C1ll C1lr C1rl C1rr

]
,
[

C1ll C1r

]
, C1ll ∈ R

p1×(p2−m1)

(2.6)

Under the above preparations, let us choose LH such that the observable subspace of the

pair (A−B1D
†
21C2,D

⊥
21C2) is stabilized, and put LH as follows

LH ,




LH1

−A13

−A31

LH33


 ∈ R

n×(p2−m1), (2.7)

where LH1 ∈ R
(p2−m1)×(p2−m1) is chosen such that A11 +LF1 is stable, and LH33 ∈ R

l×(p2−m1)

is an arbitrary matrix. Then we define AZH as follows:

AZH = A−B1D
†
21C2 + LHD⊥

21C2 =




A11 + LH1 A12 O O
O A14 O O
O A32 A− O

A33 + LH33 A34 O A+


 ,

where the (1,1)-block of the matrix AZH is stable.

Next, let us choose EH such that the unstable zero-mode of G21(s) is stabilized without

effecting the stable mode of AZH . This implies that EH is chosen such that a matrix AH ,
AZH + EHD†

21C2 is stable under the following constraint:

UEH = O, (2.8)

where U is a row-basis of the stable subspace in AZH , that is, U satisfies

UAZH = ΛU,

where Λ is a stable mode of AZH .
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Hence, temporarily, we choose EH as

EH ,




O
O
O

EH22


 . (2.9)

Then AH is represented as follows

AH = AZH + EHD†
21C2

=




A11 + LH1 A12 O O
O A14 O O
O A32 A− O

A33 + LH33 + EH22C22ll A34 + EH22C22lr EH22C22rl A+ + EH22C22rr


 ,

(2.10)

where EH22 can be chosen such that A+ + EH22C22rr is stable, because the pair (A+, C22rr)

is observable. Then the matrix AH is stable.

2.4.2 A necessary condition for the solvability

First, we introduce Full Control problem, which will be used to derive a necessary condition

for the solvability in the non-standard H∞ problem of case 2.

Definition 2.4.1 Let us consider the generalized plant (1.1), where the assumption A1 is

satisfied. Suppose that the matrices B2 and D12 are defined as follows

B2 =
[

In O
]
, D12 =

[
O Ip1

]
. (2.11)

Then the H∞ problem for a generalized plant

GFC(s) =


 A B1 In O

C1 O O Ip1

C2 D21 O O


 ,

is called FC (Full Control) problem.

The following lemma is useful for solving the non-standard H∞ problems.

Lemma 2.4.1 Suppose that the H∞ problem with the assumption A1 is solvable. Then it is

necessary that the FC problem is solvable.

Proof. If the output feedback controller of u = K(s)y solves the H∞ problem, it is necessary

that the controller of the form: [
u1

u2

]
=
[

B2

D12

]
K(s)y
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solves the FC problem.

From Lemma 2.4.1, it is necessary that the non-standard H∞ problem for G(s) where

B2 and D12 are supposed to hold (2.11) is solvable. Hence we consider the non-standard

problem for the generalized plant GFC(s) where the assumptions A1, A2’-case 2 and A3’

are satisfied.

If we choose an observer gain H and a feedback gain F such that

H , −B1D
†
21 + LHD⊥

21 + EHD†
21

F ,
[

HC2

−C1

]
,

then A + HC2 = A + B2F = AH is stable. From Lemma A.2.1, the stabilizing controllers

K(s) for G22(s) are parametrized with a free parameter Q(s) ∈ RH∞, and the closed loop

transfer function Gzw = Fl (GFC(s),K(s)) is represented as follows.

Gzw(s) = Fl (M2(s),−QD21) , Q(s) ∈ RH∞

M2(s) =


 AH EH O

C1 O D12

D†
21C2 I O




From the above discussion, it can be seen that the H∞ problem for GFC(s) is solvable,

if and only if the H∞ problem for M2(s) is solvable. Hence we consider the H∞ problem for

M2(s).

Lemma 2.4.2 Suppose that the matrices LH and EH are selected as in (2.7) and (2.9) such

that AH is stable. Then, if the non-standard H∞ problem of case 2 is solvable, it is necessary

that the ARE

Y AT
ZH + AZHY + Y

{
CT

1 C1 −
(
D†

21C2

)T
D†

21C2

}
Y = O, (2.12)

where

AZH , A−B1D
†
21C2 + LHD⊥

21C2

has a stabilizing solution Y ≥ O, which stabilizes a matrix

AY , AZH + Y

{
CT

1 C1 −
(
D†

21C2

)T
D†

21C2

}
. (2.13)

Proof. Consider the H∞ problem for the generalized plant M2(s) where AH is stable.

Seeing the matrix D12 given in (2.11), it can be verified that M2(s) holds the assumptions

A1, A2 and A3, hence the H∞ problem for M2(s) is the standard problem. The solvability

condition for the standard problem reduces to the condition such that the ARE in (2.12) has

a nonnegative definite stabilizing solution Y .
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Theorem 2.4.1 Suppose that the matrices LH and EH are selected as in (2.7) and (2.9)

such that AH is stable, and that there exists a stabilizing solution Y ≥ O in the ARE (2.12).

Then the solution Y can be represented as follows:

Y =
[

O O
O Yr

]
∈ R

n×n, (2.14)

where Yr ∈ R
l×l is a nonnegative definite stabilizing solution of reduced-order ARE:

YrA
T
+ + A+Yr + Yr

(
CT

1rrC1rr − CT
22rrC22rr

)
Yr = O. (2.15)

Proof. (Necessity:) Suppose that there exists a stabilizing solution Y ≥ O in the ARE

(2.12). The ARE can be represented as follows.

Y AT
ZH + AY Y = O (2.16)

Let U be a row-basis of the stable subspace of the matrix AZH . Then the basis U satisfies

the following equation:

UAZH = ΛU, (2.17)

where

Λ =


 A11 + LH1 A12 O

O A14 O
O A32 A−


 . (2.18)

After post-multiplication by UT , the equation (2.16) becomes

Y AT
ZHUT + AY Y UT =

(
Y UT

)
ΛT + AY

(
Y UT

)
= O.

Since both Λ and AY are stable matrices, one can apply Lemma A.3.1 to this equation and

deduce that

Y UT = O. (2.19)

Since Y is a symmetric matrix, it must be of the form in (2.14). By substituting this Y into

the ARE (2.12), the reduced-order ARE (2.15) can be deduced. Hence it is necessary that

the ARE has a nonnegative definite stabilizing solution Yr.

(Sufficiency:) Suppose that there exists a stabilizing solution Yr ≥ O in the reduced-

order ARE (2.15). Then the matrix

AYr , A+ + Yr

(
CT

1rrC1rr − CT
22rrC22rr

)
is stable. If we select Y as in (2.14), it can be verified that

AY = AZH + Y

{
CT

1 C1 −
(
D†

21C2

)T
D†

21C2

}

=




A11 + LH1 A12 O O
O A14 O O
O A32 A− O

Ã33 Ã34 Ã43 AYr


 , (2.20)



2.4. THE NON-STANDARD H∞ PROBLEM OF CASE 2 27

where

Ã33 = A33 + LH33 + Yr

(
CT

1rrC1ll − CT
22rrC22ll

)
Ã34 = A34 + Yr

(
CT

1rrC1lr − CT
22rrC22lr

)
Ã43 = Yr

(
CT

1rrC1rl − CT
22rrC22rl

)
is a stable matrix, and that the matrix Y satisfies the ARE in (2.12). Hence the ARE has a

nonnegative definite stabilizing solution Y .

2.4.3 Lossless factorization of G(s)

Up to this part, the matrix EH is fixed as in (2.9). Again, let us choose EH as follows:

EH = −Y
(
D†

21C2

)T
. (2.21)

Since UY = O, EH satisfies (2.8). Then the following lemma is stated.

Lemma 2.4.3 Suppose that the ARE in (2.12) has a nonnegative definite stabilizing solution

Y . Then the following statements are equivalent.

1. A controller K(s) stabilizes a closed loop system (G(s),K(s)), and satisfies

‖Fl (G(s),K(s)) ‖∞ < 1.

2. A controller K(s) stabilizes a closed loop system (Gtmp(s),K(s)), and satisfies

‖Fl (Gtmp(s),K(s)) ‖∞ < 1,

where Gtmp(s) is represented as follows:

Gtmp(s) =


 Â B1 − EH B̂2

C1 O D12

C2 D21 O


 (2.22)

and Â and B̂2 are

Â = A + Y CT
1 C1

B̂2 = B2 + Y CT
1 D12.

Proof. We can factorize G(s) as follows:

G(s) = Θ(s) ? Gtmp(s),

where ? is star-product which is defined in section A.4, and Θ(s) is represented as follows

Θ(s) =
[

Θ11(s) Θ12(s)
Θ21(s) Θ22(s)

]
=


 A∞ EH −Y CT

1

C1 O I

D†
21C2 I O


 ∈ RH∞,
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Θ

Gtmp

K

wz

vr

yu

G

|| || ∞< 1

⇔
Gtmp

K

vr

yu

|| || < 1∞

Figure 2.1: Lossless factorization

where

A∞ = A + H∞C2

H∞ = −B1D
†
21 + EHD†

21 + LHD⊥
21. (2.23)

Since the ARE in (2.12) has a nonnegative definite stabilizing solution Y , it can be verified

that the following equations hold.


Y AT∞ + A∞Y + BΘBT
Θ = O

Y CT
Θ + BΘDT

Θ = O
DΘDT

Θ = I

Where BΘ, CΘ and DΘ are defined as follows:

BΘ =
[

EH −Y CT
1

]
, CΘ =

[
C1

D†
21C2

]
,DΘ =

[
O I
I O

]
.

From the above fact and Lemma A.5.1, we can verify that ΘT (s) is inner function. Further-

more, it can be verified that Θ−1
12 (s) ∈ RH∞ and Θ22(∞) = O, hence the system ΘT (s) is

lossless, where lossless-ness of a system is listed in section A.6.

Denote the system Gzw as

Gzw = Fl (Θ,Fl (Gtmp,K)) .

From the definition of the H∞-norm, it is verified that

‖Gzw‖∞ < 1 ⇔
∥∥GT

zw

∥∥
∞ < 1. (2.24)

On the other hand, ‖GT
zw‖∞ satisfies∥∥GT

zw

∥∥
∞ =

∥∥∥Fl (Θ,Fl (Gtmp,K))T
∥∥∥
∞

=
∥∥∥Fl

(
ΘT ,Fl (Gtmp,K)T

)∥∥∥
∞

.

Since ΘT is lossless, from Lemma A.6.1 the following equivalence is verified.∥∥GT
zw

∥∥
∞ < 1 ⇔

∥∥∥Fl (Gtmp,K)T
∥∥∥
∞

< 1 ⇔ ‖Fl (Gtmp,K)‖∞ < 1 (2.25)

Hence, from (2.24) and (2.25) it is shown that the statements 1 and 2 are equivalent.
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2.4.4 Parametrization of full-order H∞ controller

Under the necessary condition such that the ARE in (2.12) has a nonnegative definite sta-

bilizing solution Y , the H∞ problem for G(s) is reduced to the H∞ problem for Gtmp(s).

Hence, in this section, we consider the H∞ problem for Gtmp(s). First, let us parametrize

the stabilizing controllers for Gtmp(s).

Suppose that (Â, B̂2) is stabilizable. Then we can choose a feedback gain F such that

AF , Â + B̂2F

is stable, and let us choose an observer gain H∞ as in (2.23), then

AH , Â + H∞C2 = AY

is stable. From Lemma A.2.1, the class of stabilizing controllers is represented as follows.

K(s) = Fl




 AY + B̂2F −H∞ −B̂2

F O −I
−C2 I O


 , Q(s)


 , Q(s) ∈ RH∞ (2.26)

Then the closed loop transfer function is represented as follows

Fl (Gtmp(s),K(s)) = Fl

(
M̃2(s),−Q(s)D21

)
,

where

M̃2(s) =


 Â + B̂2F B1 − EH B̂2

C1 + D12F O D12

O I O


 . (2.27)

From (2.27), the solvability conditions of the H∞ problems for Gtmp(s) and for M̃2(s) are

equivalent, hence we consider the H∞ problem for M̃2(s).

Theorem 2.4.2 The non-standard H∞ problem for the generalized plant which satisfies as-

sumptions A1, A2’-case 2 and A3’ is solvable if and only if an ARE:

X
(
A−B2D

†
12C1

)
+
(
A−B2D

†
12C1

)T
X

+X

{
B1B

T
1 −B2D

†
12

(
B2D

†
12

)T
}

X +
(
D⊥

12C1

)T
D⊥

12C1 = O (2.28)

and an ARE in (2.15) have stabilizing solutions X ≥ O and Yr ≥ O which satisfy ρ (XY ) < 1,

where

Y =
[

O O
O Yr

]
.

Under such conditions, the class of the H∞ controllers is represented as:

K2
∞ =

{
K2

∞(s) : N(s) ∈ BH∞,W (s) ∈ RH∞
}

,
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where N(s) and W (s) are free parameters, and K2∞(s) is represented as follows

K2
∞(s) = Fl






AY + B̂2F∞ H∞ −B̂2Σ
−F∞ O Σ

D†
21Ĉ2Z D†

21 O
D⊥

21C2 D⊥
21 O


 ,
[

N(s) W (s)
]

 (2.29)

and

AY = A + Y CT
1 C1 + H∞C2

B̂2 = B2 + Y CT
1 D12

Ĉ2 = D21B
T
1 X + C2

F∞ =
{
−D†

12C1 −D†
12

(
B2D

†
12

)T
X

}
Z

H∞ = −B1D
†
21 − Y

(
D†

21C2

)T
D†

21 + LHD⊥
21

Z = (I − Y X)−1

Σ =
(
DT

12D12

)− 1
2 .

Proof. The H∞ problem for M̃2(s) in (2.27) is DF (Disturbance Feedforward) problem. In

appendix A.7 the solution for the DF problem is listed. By using the solution, we derive the

solution for the non-standard H∞ problem of case 2.

(Solvability condition:) The solvability condition for the DF problem is such that

ARE:

SΨ + ΨT S + SΥS +
(
D⊥

12C1

)T
D⊥

12C1 = O,

where

Ψ , Â− B̂2D
†
12C1

Υ , (B1 − EH) (B1 − EH)T − B̂2D
†
12

(
B̂2D

†
12

)T

has a nonnegative definite stabilizing solution S. By using a definition in appendix A.8, we

represent the solvability condition such that{
HS ∈ Dom (Ric)
S = Ric (HS) ≥ O

, (2.30)

where

HS ,
[

Ψ Υ
−
(
D⊥

12C1

)T
D⊥

12C1 −ΨT

]
.

Since HS satisfies

HX

[
I Y
O I

]
=
[

I Y
O I

]
HS,
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where Y ≥ O is a stabilizing solution of the ARE in (2.12), and HX is defined as follows:

HX ,


 A−B2D

†
12C1 B1B

T
1 −B2D

†
12

(
B2D

†
12

)T

−
(
D⊥

12C1

)T
D⊥

12C1 −
(
A−B2D

†
12C1

)T


 ,

the solvability condition (2.30) is equivalent to


HX ∈ Dom (Ric)
X = Ric (HX) ≥ O
ρ(XY ) < 1

, (2.31)

where Y ≥ O is a stabilizing solution of the ARE in (2.12). The solvability condition (2.31)

implies that the ARE (2.28) has a nonnegative definite stabilizing solution X, and which

satisfies ρ(XY ) < 1, where Y =
[

O O
O Yr

]
, and Yr is a nonnegative definite stabilizing

solution of ARE (2.15).

Conversely if the solvability condition (2.31) is satisfied, HS ∈ Dom (Ric). Then it can

be verified that the matrix

Ψ− B̂2D
†
12

(
B̂2D

†
12

)T
S = Â + B̂2

{
−D†

12C1 −D†
12

(
B2D

†
12

)T
S

}

is stable, and (Â, B̂2) is stabilizable.

(Derivation of the controller:) Suppose that the solvability condition (2.31) is satis-

fied. In the beginning of this subsection, the feedback gain F can be selected from arbitrary

matrix which stabilizes AF = Â + B̂2F . Since the condition (2.31) satisfies, we select F such

that

F = F∞ , −D†
12C1 −D†

12

(
B̂2D

†
12

)T
S,

where

S = XZ

Z = (I − Y X)−1 .

By using the formula in Lemma A.7, we can derive the controller

−Q(s)D21 = Fl




 Â + B̂2F∞ − (B1 − EH) −B̂2Σ

O O Σ
(B1 − EH)T S I O


 , N(s)


 , (2.32)

where N(s) ∈ BH∞, and Σ =
(
DT

12D12

)− 1
2 . The equation (2.32) can be represented as

follows:

−Q(s)D21 = ΣN(s) (I −M22(s)N(s))−1 M21(s), (2.33)
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where

M21(s) = I − Φ(s) (B1 − EH)

M22(s) = −Φ(s)B̂2Σ

Φ(s) = (B1 − EH)T S
(
sI − Â− B̂2F∞

)−1
.

In the equation (2.33) D21 is of full column rank, hence the solution of Q(s) is represented

as follows:

Q(s) = −ΣN (s) (I −M22(s)N(s))−1 M21(s)D
†
21 + Ŵ (s)D⊥

21,

where Ŵ (s) ∈ RHm2×(p2−m1)
∞ . Since (I −M22(s)N(s))−1 ∈ RH∞, we can replace Ŵ (s) such

that

Ŵ (s) = −Σ (I −N(s)M22(s))
−1 (W (s) + N(s)Φ(s)LH) , W (s) ∈ RHm2×(p2−m1)

∞ .

Then the solution Q(s) is given as

Q(s) = −Σ (I −N(s)M22(s))
−1
{

N(s)
(
D†

21 + Φ(s)H∞
)

+ W (s)D⊥
21

}

= Fl






Â + B̂2F∞ H∞ −B̂2Σ
O O −Σ

(B1 − EH)T S D†
21 O

O D⊥
21 O


 ,
[

N(s) W (s)
]

 , (2.34)

where N(s) ∈ BH∞,W (s) ∈ RHm2×(p2−m1)
∞ . By applying this Q(s) into (2.26), we can derive

the H∞ controller in (2.29).

Remark 2.4.1

1. The class of H∞ controllers is represented with two free parameters, where one of them

is a free parameter in BH∞ and the other one is a free parameter in RH∞. On the

other hand, in the standard H∞ problem, the class of H∞ controller is represented with

only a free parameter in BH∞. One of differences between the standard problem and

the non-standard problem appears in this point.

2. The dynamical order of the central solution equals the dynamical order of the generalized

plant, where we call the H∞ controller, whose free parameters are fixed to zero, a central

solution.

3. By using the free parameter, we can improve any performance of the central solution.
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2.4.5 Derivation of reduced-order H∞ controller

This subsection derives reduced-order non-standard H∞ controller. First, let us represent

the full-order H∞ controller with DHMT as follows:

K2
∞(s) = DHM






AY B̂2 H∞
−Σ−1F∞ Σ−1 O

D†
21Ĉ2Z O D†

21

D⊥
21C2 O D⊥

21


 ,
[

N(s) W (s)
]



=
[

AY B̂2

CK(s) Σ−1

]−1 [
AY H∞

CK(s) N(s)D†
21 + W (s)D⊥

21

]
, (2.35)

where CK(s) is defined as follows.

CK(s) , −Σ−1F∞ + N(s)D†
21Ĉ2Z + W (s)D⊥

21C2. (2.36)

The matrix AY is written in the equation (2.20), where LH33 ∈ R
l×(p2−m1) is an arbitrary

matrix. We can choose LH33 such that Ã33 = O holds. Hence, by letting LH33 as

LH33 = −A33 − Yr

(
CT

1rrC1ll − CT
22rrC22ll

)
, (2.37)

the matrix AY is represented as

AY =




A11 + LH1 A12 O O
O A14 O O
O A32 A− O

O Ã34 Ã43 AYr


 .

Then the matrix AY satisfies

AY VY = VY (A11 + LH1) ,

where VY =
[

Ip2−m1

O

]
∈ R

n×(p2−m1) is of full column rank. Hence, if CK(s) satisfies

CK(s)VY = O, (2.38)

the pair (AY , CK(s)) is not observable, hence the dynamical order of the controller K2∞(s) is

reduced by the number of p2 −m1.

From equation (2.36), the matrix CK(s) is represented with the free parameter W (s) ∈
RHm2×(p2−m1)

∞ , and is spanned by the row-basis of D⊥
21C2. Since D⊥

21C2VY = Ip2−m1 holds,

if we choose the free parameter W (s) as

W (s) = −
(
−Σ−1F∞ + N(s)D†

21Ĉ2Z
)

VY , (2.39)

the matrix VY satisfies (2.38). Thus we can derive a reduced-order H∞ controller.
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Theorem 2.4.3 Under the same solvability condition as in Theorem 2.4.2, the class of

reduced-order H∞ controllers is represented as:

Kr2∞ = {Kr2∞(s) : N(s) ∈ BH∞} ,

where N(s) is a free parameter, and Kr2∞(s) is represented as follows

Kr2∞(s) = DHM




 ÃY B̃2 H̃∞
−Σ−1F∞2 Σ−1 Σ−1F∞1D

⊥
21

CD2 O D†
21 − CD1D

⊥
21


 , N(s)


 , (2.40)

and

AY =




A11 + LH1 A12 O O
O
O
O

ÃY


 ∈ R

n×n, ÃY ∈ R
(n−(p2−m1))×(n−(p2−m1))

B̂2 =
[

B2u

B̃2

]
∈ R

n×m2, B̃2 ∈ R
(n−(p2−m1))×m2

H∞ =
[
−B1uD†

21 + LH1D
⊥
21

H̃∞

]
∈ R

n×p2, H̃∞ ∈ R
(n−(p2−m1))×p2

F∞ =
[

F∞1 F∞2

]
, F∞1 ∈ R

m2×(p2−m1), F∞2 ∈ R
m2×(n−(p2−m1))

D†
21Ĉ2Z =

[
CD1 CD2

]
, CD1 ∈ R

m1×(p2−m1), CD2 ∈ R
m1×(n−(p2−m1)).

Proof. From the previous argument, the reduced order controller is derived by substituting

LH33 in (2.37) and W (s) in (2.39) into K2∞(s) in (2.35). Since Kr2∞ is a subset of K2∞, the

reduced order controller is an H∞ controller.

Remark 2.4.2 The dynamical order of the central solution in Kr2∞ is n − (p2 −m1), which

is lower than that of the central solution in K2∞ by the number of p2 − m1. The controller

order reduction is analogous to the order reduction in observer-based controllers, where the

order of an observer is reduced by the number of independent outputs that are not corrupted

by disturbances.

Remark 2.4.3 The controller parameters are also represented as follows:

ÃY = Ãr + Ỹr

(
CT

1rC1r − CT
22rC22r

)
B̃2 = B2l + ỸrC

T
1rD12

H̃∞ = −B1lD
†
21 − ỸrC

T
22rD

†
21 + LH2D

⊥
21

F∞1 = −D†
12

{
C1llZ11 + C1rZ21 +

(
D†

12

)T (
BT

2uS11 + BT
2lS21

)}

F∞2 = −D†
12

{
C1llZ12 + C1rZ22 +

(
D†

12

)T (
BT

2uS12 + BT
2lS22

)}
BC1 = BT

1uS11 + BT
1lS21 + C22llZ11 + C22rZ21

BC2 = BT
1uS12 + BT

1lS22 + C22llZ12 + C22rZ22,
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where

Ãr =


 A14 O O

A32 A− O
A34 O A+


 , Ỹr =


 O O O

O O O
O O Yr


 ∈ R

(n−(p2−m1))×(n−(p2−m1))

S = XZ =
[

S11 S12

S21 S22

]
, Z =

[
Z11 Z12

Z21 Z22

]
, LH =

[
LH1

LH2

]
,

and X ≥ O is a stabilizing solution of ARE in (2.52) and Yr ≥ O is a stabilizing solution of

ARE in (2.15).

2.4.6 The controller structure

This subsection reviews the full-order controller and the reduced-order controller from the

viewpoint of the observer based output controller. The central solution in the class of full-

order H∞ controller in (2.29) is represented as{ ˙̂x = AY x̂ + B̂2u−H∞y
u = F∞x̂

, (2.41)

where x̂ is a state variable of the controller. If we assume an orthogonal condition: CT
1 D12 =

O, these equations can be written as{ ˙̂x = Ax̂ + B2u + H∞ (C2x̂− y) + Y CT
1 C1x̂

u = F∞x̂
. (2.42)

From these equations, it can be seen that the controller has the structure of an observer-based

controller. In order to interpret the structure of the controller, let us consider the system:
 ẋ = Ax + B1w + B2u + Y

{
CT

1 C1x +
(
D†

21C2

)T
w

}
y = C2x + D21w

. (2.43)

By letting the error between the states of the systems in (2.42) and (2.43) as

e , x− x̂,

the dynamical equation of the error can be given as follows.

ė = AY e (2.44)

Since all of the eigenvalues in the matrix

AY = A + Y CT
1 C1 + H∞C2

have negative real parts, as the time intends to ∞, from any initial values of e(0) the error

e(t) converges to zero. Thus, the controller in (2.41) consists of an observer for the system in

(2.43) and a state feedback controller. Figure 2.2 illustrates the structure of the closed loop

system that is constructed with the central controller.
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B2

B1 D21

C2

H∞

yx

w

u

F∞

A

YC1 C1
T

B2 C2
xu

A

++
++

+

+
+

+

+ +

−

K∞(s)

^

∫

∫

Figure 2.2: The structure of the closed loop system

By representing the class of the H∞ controllers with the equation (2.35), the structure of

the observer can also be seen explicitly in the H∞ controller which is represented with free

parameters. Figure 2.3 illustrates the H∞ controller with the observer-based representation

where the dynamical equation of the observer is expressed explicitly. The size of the matrix

AY equals the dynamical order of a full-order observer. Since CK(s) is a function of the free

parameters, the selection in the free parameters reduces to yield the unobservable subspace

in the pair (AY , CK(s)), and the order of the controller can be reduced by the number of

the degrees of the subspace. Hence, this type of the reduced-order H∞ controller can be

interpreted as a minimal-order-observer-type H∞ controller.

2.5 The non-standard H∞ problem of case 1

This section derives full-order and reduced-order controllers of the non-standard H∞ problem

in case 1. Since the problem of case 1 is the dual problem of case 2, discussions of this section

are dual of the previous section, hence details of the procedure in the derivation of the full-

order controller are omitted. In this case, we treat a generalized plant:

G(s) =


 A B1 B21 B22

C1 O O Ip1

C2 D21 O O


 ,
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B2

H∞

ux

AY

+
+

−

+

+
∫ CK(s)

N(s)D21 + W(s)D21
y

^
^

Σ
+

+ ⊥

Figure 2.3: The structure of K2∞(s)

where the assumptions A1, A2’-case1 and A3’ are satisfied. We put variables as follows.

[
B2

D12

]
=
[

B21 B22

O Ip1

]

2.5.1 Characterization of zeros in G12(s)

Let us consider the non-standard problem of case 1. Since D12 is of full row rank, it is assumed

that the generalized plant has been put into a basis corresponding to the canonical form in

equation (2.3). Hence the following equations can be assumed without loss of generality

A−B2D
†
12C1 =




A11 A12 A21 A22

A13 A14 A23 A24

O O A− O
O O O A+


 , A11 ∈ R

(m2−p1)×(m2−p1)

B2D
⊥
12 =




Im2−p1

O
O
O




B2D
†
12 =




B22uu

B22ul

B22lu

B22ll


 ,

[
B22uu

B22l

]
, B22uu ∈ R

(m2−p1)×m2

, (2.45)

where λi(A14) < 0, both of the pairs (A11, Im2−p1) and (A+, B22ll) are controllable, and A+

has no jω eigenvalues. We call A− the stable zero mode of G12(s) and A+ unstable zero

mode of G12(s).
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For notational ease, let us partition the following matrices.

B1 =




B1uu

B1ul

B1lu

B1ll


 ,

[
B1uu

B1l

]
, B1uu ∈ R

(m2−p1)×m1

C1 =
[

C1l C1r

]
∈ R

p1×n, C1l ∈ R
p1×(m2−p1)

C2 =
[

C2l C2r

]
∈ R

p2×n, C2l ∈ R
p2×(m2−p1).

Under the above preparations, let us choose LF such that the controllable subspace of

the pair (A−B2D
†
12C1, B2D

⊥
12) is stabilized, and put LF as follows

LF ,
[

LF1 −A12 −A21 LF22

]
∈ R

(m2−p1)×n, (2.46)

where LF1 ∈ R
(m2−p1)×(m2−p1) is chosen such that A11 +LF1 is stable, and LF22 ∈ R

(m2−p1)×r

is an arbitrary matrix. Then AZF is defined as follows:

AZF , A−B2D
†
12C1 + B2D

⊥
12LF =




A11 + LF1 O O A22 + LF22

A13 A14 A23 A24

O O A− O
O O O A+


 ,

where the (1,1)-block of AZF is a stable.

Next, let us choose EF such that the unstable zero-mode of G12(s) is stabilized without

effecting the stable mode of AZF . This implies that EF is chosen such that the following

constraint:

EF V = O, (2.47)

where V is a basis of the stable subspace in AZF , that is, V satisfies

AZF V = V Λ,

where Λ is a stable mode of AZF .

Hence, temporarily, we choose EF as

EF ,
[

O O O EF22

]
. (2.48)

Then AF is represented as follows

AF = AZF + B2D
†
12EF

=




A11 + LF1 O O A22 + LF22 + B22uuEF22

A13 A14 A23 A24 + B22ulEF22

O O A− B22luEF22

O O O A+ + B22llEF22


 , (2.49)

where EF22 can be chosen such that A+ + B22llEF22 is stable, because the pair (A+, B22ll) is

controllable. Then the matrix AF is stable.
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2.5.2 A necessary condition for the solvability

First, we introduce Full Information problem, which will be used to derive a necessary con-

dition for the solvability in the non-standard H∞ problem of case 1.

Definition 2.5.1 Let us consider the generalized plant (1.1), where the assumption A1 is

satisfied. Suppose that the matrices C2 and D21 are defined as follows

C2 =
[

In

O

]
, D21 =

[
O

Im1

]
. (2.50)

Then the H∞ problem for a generalized plant

GFI(s) =




A B1 B2

C1 O D12

In O O
O Im1 O


 ,

is called FI (Full Information) problem.

The following lemma is useful for solving the non-standard H∞ problems.

Lemma 2.5.1 Suppose that the H∞ problem with the assumption A1 is solvable. Then it is

necessary that the FI problem is solvable.

Proof. Omitted.

From Lemma 2.5.1, it is necessary that the non-standard H∞ problem where C2 and D21

are supposed to hold (2.50) is solvable. Hence we consider the non-standard problem for the

generalized plant GFI(s) where the assumptions A1, A2’-case 1 and A3’ are satisfied.

If we choose a feedback gain F and an observer gain H such that

F , −D†
12C1 + D⊥

12LF + D†
12EF (2.51)

H ,
[

B2F −B1

]
,

then A + B2F = A + HC2 = AF is stable. From Lemma A.2.1, the stabilizing controllers

K(s) for G22(s) are parametrized with a free parameter Q(s) ∈ RH∞, and the closed loop

transfer function Gzw = Fl (GFI(s),K(s)) is represented as follows.

Gzw(s) = Fl (M1(s),−D12Q) , Q(s) ∈ RH∞

M1(s) =


 AF B1 B2D

†
12

EF O I
O D21 O




From the above discussion, the H∞ problem for GFI(s) is solvable, if and only if the H∞
problem for M1(s) is solvable. Hence we consider the H∞ problem for M1(s).
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Lemma 2.5.2 Suppose that the matrices LF and EF are selected as in (2.46) and (2.48)

such that AF is stable. Then, if the non-standard H∞ problem of case 1 is solvable, it is

necessary that the ARE

XAZF + AT
ZF X + X

{
B1B

T
1 −B2D

†
12

(
B2D

†
12

)T
}

X = O, (2.52)

where

AZF , A−B2D
†
12C1 + B2D

⊥
12LF

has a stabilizing solution X ≥ O, which stabilizes a matrix

AX , AZF +
{

B1B
T
1 −B2D

†
12

(
B2D

†
12

)T
}

X. (2.53)

Proof. Omitted.

Theorem 2.5.1 Suppose that the matrices LF and EF are selected as in (2.46) and (2.48)

such that AF is stable, and that there exists a stabilizing solution X ≥ O in the ARE (2.52).

Then the solution X can be represented as follows:

X =
[

O O
O Xr

]
∈ R

n×n, (2.54)

where Xr ∈ R
r×r is a nonnegative definite stabilizing solution of reduced-order ARE:

XrA+ + AT
+Xr + Xr

(
B1llB

T
1ll −B22llB

T
22ll

)
Xr = O. (2.55)

Proof. Omitted.

By using X in (2.54), the matrix AX is represented as follows:

AX = AZF +
{

B1B
T
1 −B2D

†
12

(
B2D

†
12

)T
}

X

=




A11 + LF1 O O Ã22

A13 A14 A23 Ã24

O O A− Ã42

O O O AXr


 , (2.56)

where

Ã22 = A22 + LF22 +
(
B1uuBT

1ll −B22uuBT
22ll

)
Xr

Ã24 = A24 +
(
B1ulB

T
1ll −B22ulB

T
22ll

)
Xr

Ã42 =
(
B1luBT

1ll −B22luBT
22ll

)
AXr = A+ +

(
B1llB

T
1ll −B22llB

T
22ll

)
.

From Theorem 2.5.1, since the matrix AXr is stable, the matrix AX is also stable.
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2.5.3 Parametrization of full-order H∞ controller

Theorem 2.5.2 The non-standard H∞ problem for the generalized plant which satisfies as-

sumptions A1, A2’-case 1 and A3’ is solvable if and only if an ARE in (2.55) has a stabilizing

solution X+ ≥ O, and an ARE:

Y
(
A−B1D

†
21C2

)T
+
(
A−B1D

†
21C2

)
Y

+Y

{
CT

1 C1 −
(
C2D

†
21

)T
C2D

†
21

}
Y + B1D

⊥
21

(
B1D

⊥
21

)T
= O (2.57)

has a stabilizing solution Y ≥ O which satisfy ρ (XY ) < 1, where

X =
[

O O
O Xr

]
.

Under such conditions, the class of the H∞ controllers is represented as:

K1
∞ =

{
K1

∞(s) : N(s) ∈ BH∞,W (s) ∈ RH∞
}

,

where N(s) and W (s) are free parameters, and K1∞(s) is represented as follows

K1
∞(s) = Fl




 AX + H∞Ĉ2 −H∞ ZB̂2D

†
12 B2D

⊥
12

F∞ O D†
12 D⊥

12

−ΣĈ2 Σ O O


 ,

[
N(s)
W (s)

] (2.58)

and

AX = A + B1B
T
1 X + B2F∞

B̂2 = B2 + Y CT
1 D12

Ĉ2 = D21B
T
1 X + C2

F∞ = −D†
12C1 + D⊥

12LF −D†
12

(
B2D

†
12

)T
X

H∞ = Z

{
−B1D

†
21 − Y

(
D†

21C2

)T
D†

21

}
Z = (I − Y X)−1

Σ =
(
D21D

T
21

)− 1
2 .

Proof. Omitted.

Remark 2.5.1

1. By comparing the controllers of case 1 and case 2, it can be verified that each controller

has dual structure of another controller.

2. The dynamical order of the central solution equals the dynamical order of the generalized

plant, where we call the H∞ controller, whose free parameters are fixed to zero, a central

solution.

3. By using the free parameter, we can improve any performance of the central solution.
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2.5.4 Derivation of reduced-order H∞ controller

By using the free parameter in K1∞, we derive the reduced-order H∞ controller. First, let us

represent the full-order H∞ controller with a homogeneous transformation as follows:

K1
∞(s) = HM




 AX ZB̂2D

†
12 B2D

⊥
12 −H∞Σ−1

F∞ D†
12 D⊥

12 O

Ĉ2 O O Σ−1


 ,

[
N(s)
W (s)

]

=
[

AX BK(s)
F∞ D†

12N(s) + D⊥
12W (s)

] [
AX BK(s)
Ĉ2 Σ−1

]−1

, (2.59)

where BK(s) is defined as

BK(s) , ZB̂2D
†
12N(s) + B2D

⊥
12W (s)−H∞Σ−1. (2.60)

In the equation (2.56), since the matrix LF22 ∈ R
(m2−p1)×r is arbitrary, we can choose

LF22 such that Ã22 = O holds. Hence let us choose LF22

LF22 = −A22 −
(
B1uuBT

1ll −B22uuBT
22ll

)
Xr (2.61)

then the matrix AX is represented as

AX =




A11 + LF1 O O O

A13 A14 A23 Ã24

O O A− Ã42

O O O AXr


 .

The matrix AX satisfies

UXAX = (A11 + LF1)UX ,

where UX =
[

Im2−p1 O
]
∈ R

(m2−p1)×n. Hence, if BK(s) satisfies

UXBK(s) = O, (2.62)

the pair (AX , BK(s)) has an uncontrollable subspace, hence the order of the controller in K1∞
is reduced by the number of m2 − p1.

From equation (2.60), the matrix BK(s) is represented with the free parameter W (s) ∈
RH∞, and is spanned by the basis of B2D

⊥
12. Since UXB2D

⊥
12 = Im2−p1 holds, if we choose

the free parameter W (s) as

W (s) = −UX

(
ZB̂2D

†
12N(s)−H∞Σ−1

)
, (2.63)

the matrix UX satisfies (2.62). Thus we can derive a reduced-order H∞ controller.
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Theorem 2.5.3 Under the same solvability condition as in Theorem 2.5.2, the class of

reduced-order H∞ controllers is represented as:

Kr1∞ = {Kr1∞(s) : N(s) ∈ BH∞} ,

where N(s) is a free parameter, and Kr1∞(s) is represented as follows

Kr1∞(s) = HM




 ÃX BD2 −H∞2Σ

−1

F̃∞ D†
12 −D⊥

12BD1 D⊥
12H∞1Σ

−1

C̃2 O Σ−1


 , N(s)


 , (2.64)

and

AX =




A11 + LF1 O O O
A13

O
O

ÃX


 ∈ R

n×n, ÃX ∈ R
(n−(m2−p1))×(n−(m2−p1))

ZB̂2D
†
12 =

[
BD1

BD2

]
, BD1 ∈ R

(m2−p1)×p1, BD2 ∈ R
(n−(m2−p1))×p1

H∞ =
[

H∞1

H∞2

]
, H∞1 ∈ R

(m2−p1)×p2,H∞2 ∈ R
(n−(m2−p1))×p2

F∞ =
[
−D†

12C1l + D⊥
12LF1 F̃∞

]
∈ R

m2×n, F̃∞ ∈ R
m2×(n−(m2−p1))

Ĉ2 =
[

C2l C̃2

]
∈ R

p2×n, C̃2 ∈ R
p2×(n−(m2−p1)).

Proof. From the previous argument, the reduced order controller is derived by substituting

LF22 in (2.61) and W (s) in (2.63) into K1∞(s) in (2.59). Since Kr1∞ is a subset of K1∞, the

reduced order controller is an H∞ controller.

Remark 2.5.2 The dynamical order of the central solution in Kr1∞ is n − (m2 − p1), which

is lower than that of the central solution in K1∞ by the number of m2 − p1. The controller

order reduction is analogous to the order reduction in dual-observer-based controllers, where

the order of the controller is reduced by the number of redundant inputs.

Remark 2.5.3 The controller parameters are also represented as follows:

ÃX = Ãr +
(
B1lB

T
1l −B22lB

T
22l

)
X̃r

C̃2 = C2r + D21B
T
1lX̃r

F̃∞ = −D†
12C1r + D⊥

12LF2 −D†
12B

T
22lX̃r

H∞1 = −
{

Z11B1uu + Z12B1l +
(
S11C

T
2l + S12C

T
2r

) (
D†

21

)T
}

D†
21

H∞2 = −
{

Z21B1uu + Z22B1l +
(
S21C

T
2l + S22C

T
2r

) (
D†

21

)T
}

D†
21

BD1 = Z11B22uu + Z12B22l + S11C
T
1l + S12C

T
1r

BD2 = Z21B22uu + Z22B22l + S21C
T
1l + S22C

T
1r,
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where

Ãr =


 A14 A23 Ã24

O A− Ã42

O O AXr


 , X̃r =


 O O O

O O O
O O Xr


 ∈ R

(n−(m2−p1))×(n−(m2−p1))

S = ZY =
[

S11 S12

S21 S22

]
, Z =

[
Z11 Z12

Z21 Z22

]
, LF =

[
LF1

LF2

]
,

and Xr ≥ O is a stabilizing solution of ARE in (2.55) and Y ≥ O is a stabilizing solution of

ARE in (2.57).

2.5.5 The controller structure

This subsection reviews the full-order controller and the reduced-order controller from the

viewpoint of the dual-observer based output controller. The central solution in the class of

full-order H∞ controller in (2.58) is represented as{
˙̂x =

(
AX + H∞Ĉ2

)
x̂ + H∞y

u = −F∞x̂
,

where x̂ is a state variable of the controller. If we assume a orthogonal condition: D21B
T
1 = O,

these equations can be written as 


˙̂x = AX x̂ + v
u = −F∞x̂
υ = H∞ν
ν = y + C2x̂

. (2.65)

From these equations, it can be seen that the controller has the structure of a dual-observer-

based controller. In order to interpret the structure of the controller, let us consider the

system: 
 ẋ = Ax + ZB1w + B2u +

{
B1B

T
1 Xx + ZY

(
D†

21C2

)T
w

}
y = C2x + D21w

. (2.66)

Then let us construct a composite system from the systems (2.66) and (2.65). By letting a

new state variable of the composite system as

η = x + x̂,

the dynamical equation of the composite system is given as follows:


[
η̇
˙̂x

]
=
[

A + B1B
T
1 X O

O AX

] [
η
x̂

]
+


 Z

{
B1 + Y

(
D†

21C2

)T
}

O


w +

[
I
I

]
υ

ν =
[

C2 O
] [ η

x̂

]
+ D21w

,
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C2
νηυ

A

++
++

+
∫

B1B1 XT

Z {B1  + Y (D21 C2 ) }+ T

B2F∞

A
+

+

+
+

x̂
∫

B1B1 XT

w

D21

Figure 2.4: The composite system

where it should be noted that v ∈ R
n, and that the subsystem of the state variable x̂ is

unobservable. The composite system is illustrated in Figure 2.4. Hence, the composite

system of the state variable η is stabilizable with an output feedback controller, if the pair(
A + B1B

T
1 X,C2

)
is observable. In fact, the output feedback controller:

υ = H∞ν

stabilizes the system as follows:

η̇ = AXη,

where AX is a stable matrix. The size of the matrix AX equals the dynamical order of a

full-order observer.

By representing the class of the H∞ controllers with the equation (2.64), the structure

of the dual-observer can also be seen explicitly in the H∞ controller which is represented

with free parameters. Figure 2.5 illustrates the H∞ controller with the dual-observer-based

representation where the dynamical equation of the dual-observer is expressed explicitly. The

size of the matrix AX equals the dynamical order of a full-order dual-observer. Since BK(s)

is a function of the free parameters, the selection in the free parameters reduces to yield

the uncontrollable subspace in the pair (AX , BK(s)), and the order of the controller can be
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F∞

u

−
C2
^Σ

AX

+

x̂
BK(s)

+

+

++y

D12 N(s) + D12 W(s)+ ⊥

∫

Figure 2.5: The structure of K1∞(s)

reduced by the number of the degrees of the subspace. Hence, this type of the reduced-order

H∞ controller can be interpreted as a minimal-order dual-observer-type H∞ controller.

2.6 The non-standard H∞ problem of case 3

This section derives full-order and reduced-order controllers in the non-standard H∞ problem

of case 3. Since the problem of case 3 combines problems of cases 1 and 2, the procedure

in the derivation of full-order controller is similar to the derivations in the problems of cases

1 and 2. However the reduced-order controller is slightly different from the reduced-order

controllers in the problems of cases 1 and 2. Hence, details of the procedure in the derivation

of the full-order controller are omitted, and almost all of discussions are devoted for the

derivation of the reduced-order controller.

We treat a generalized plant:

G(s) =




A B1 B21 B22

C1 O O Ip1

C21 O O O
C22 Im1 O O


 ,

where the assumptions A1, A2’-case 3 and A3’ are satisfied. We put variables as follows.

[
C2 D21

]
=
[

C21 O
C22 Im1

]
,

[
B2

D12

]
=
[

B21 B22

O Ip1

]

2.6.1 Parametrization of full-order H∞ controller

Since the matrix D21 is of full column rank, we can derive a necessary condition for the

solvability in the problem of case 3 in the same manner that is used in the problem of case

2. Thus we deduce the necessary condition by using the result of the FC problem.

As is seen in the problem of case 2, we can choose a matrix LH such that the matrix

AZH = A−B1D
†
21C2 + LHD⊥

21C2
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satisfies {
UAZH = ΛU, λi (Λ) < O,∀i
ker U ⊂ ker Uo

,

where U is a row-basis of the stable subspace in AZH , and Uo is a row-basis of observable

subspace of the pair
(
A−B1D

†
21C2,D

⊥
21C2

)
. Also, we can choose a matrix EH such that

the matrices AH = AZH + EHD†
21C2 and EH satisfy

λi (AH) < 0,∀i

UEH = O. (2.67)

Lemma 2.6.1 Suppose that the matrices LH and EH are chosen such that the matrix AH

is stable. Then, if the non-standard H∞ problem of case 3 is solvable, it is necessary that the

ARE in (2.12) has a stabilizing solution Y ≥ O.

Proof. From Lemma 2.4.1, in this case, it is also necessary that the FC problem for G(s)

where B21 = In, B22 = O is solvable. The solvability condition is equivalent to the condition

such that the H∞ problem for M2(s) is solvable. Hence, as is in the problem of case 2, it is

necessary that the ARE in (2.12) has a stabilizing solution Y ≥ O.

Suppose that the ARE in (2.12) has a stabilizing solution Y ≥ O. Then we can choose a

matrix EH as

EH = −Y
(
D†

21C2

)T
. (2.68)

The matrix EH satisfies (2.67), and stabilizes the matrix AH . Hence, let us choose EH as

in (2.68). Then, as is in the problem of case 2, Lemma 2.4.3 holds. Under the necessary

condition such that the ARE in (2.12) has a nonnegative definite stabilizing solution Y , the

H∞ problem for G(s) is reduced to the H∞ problem for Gtmp(s):

Gtmp(s) =


 Â B1 − EH B̂2

C1 O D12

C2 D21 O


 ,

where D12 is of full row rank, and

Â = A + Y CT
1 C1

B̂2 = B2 + Y CT
1 D12.

Hence, we consider the H∞ problem for Gtmp(s). As is in the problem of case 2, let us

parametrize the stabilizing controllers for Gtmp(s).

Suppose that (Â, B̂2) is stabilizable. Then we can choose a feedback gain F such that

AF , Â + B̂2F
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is stable. Here, since D12 is of full row rank, as is in the problem of case 1, we choose F as

F = −D†
12C1 + D⊥

12LF + D†
12EF .

Then the matrix AF is represented as

AF = AZF + B̂2D
†
12EF ,

AZF = A−B2D
†
12C1 + B2D

⊥
12LF ,

where EF is an arbitrary matrix which satisfies a constraint:

EF V = O,

where V is a basis of the stable subspace in AZF , and LF is chosen such that the controllable

subspace of the pair
(
A−B2D

†
12C1, B2D

⊥
12

)
is stabilized.

Next, let us choose an observer gain H∞ as in (2.23), then

AH , Â + H∞C2 = AY

is stable. From Lemma A.2.1, the class of stabilizing controllers is represented as follows.

K(s) = Fl




 AY + B̂2F −H∞ −B̂2

F O −I
−C2 I O


 , Q(s)


 , Q(s) ∈ RH∞ (2.69)

Then the closed loop transfer function is represented as follows

Fl (Gtmp(s),K(s)) = Fl (M3(s),−D12Q(s)D21) , (2.70)

where

M3(s) =


 Â + B̂2F B1 − EH B̂2D

†
12

EF O I
O I O


 . (2.71)

From (2.70), the solvability conditions of the H∞ problems for Gtmp(s) and for M3(s) are

equivalent, hence we consider the H∞ problem for M3(s).

Theorem 2.6.1 The non-standard H∞ problem for the generalized plant which satisfies as-

sumptions A1, A2’-case 3 and A3’ is solvable if and only if an AREs in (2.52) and (2.12)

have stabilizing solutions X ≥ 0 and Y ≥ O which satisfy ρ (XY ) < 1. Under the conditions,

the class of the H∞ controllers is represented as:

K∞ = {K∞(s) : N(s) ∈ BH∞,Wi(s) ∈ RH∞, i = 1, 2, 3} ,
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where N(s) and Wi(s),∀i are free parameters, and K∞(s) is represented as follows

K∞(s) = Fl






Â + B̂2F∞ + H∞C2 H∞ −B̂2D
†
12 −B2D

⊥
12

−F∞ O D†
12 D⊥

12

D†
21Ĉ2Z D†

21 O O

D⊥
21Ĉ2 D⊥

21 O O


 ,

[
N(s) W1(s)
W2(s) W3(s)

]
(2.72)

and

Â = A + Y CT
1 C1

B̂2 = B2 + Y CT
1 D12

Ĉ2 = D21B
T
1 X + C2

F∞ =
{
−D†

12C1 −D†
12

(
B2D

†
12

)T
X

}
Z + D⊥

12LF

H∞ = −B1D
†
21 − Y

(
D†

21C2

)T
D†

21 + LHD⊥
21

Z = (I − Y X)−1 .

Proof. The H∞ problem for M3(s) in (2.71) is DF (Disturbance Feedforward) problem. In

appendix A.7 the solution for the DF problem is listed. By using the result from Lemma

A.7.1, we derive the solution for the non-standard H∞ problem of case 3.

(Solvability condition:) The solvability condition for the DF problem is such that

ARE:

S̃AZF + AT
ZF S̃ + S̃ΥS̃ = O, (2.73)

where

Υ , (B1 − EH) (B1 −EH)T − B̂2D
†
12

(
B̂2D

†
12

)T

has a nonnegative definite stabilizing solution S̃. By using a definition in appendix A.8, we

represent the solvability condition such that{
HS̃ ∈ Dom (Ric)
S̃ = Ric

(
HS̃

)
≥ O

, (2.74)

where

HS̃ ,
[

AZF Υ
O −AT

ZF

]
.

HS̃ satisfies

[
I Y
O I

]
HS̃ =

[
AZF B1B

T
1 −B2D

†
12

(
B2D

†
12

)T
+ δ

O −AT
ZF

] [
I Y
O I

]
,
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where Y ≥ O is a stabilizing solution of the ARE in (2.12), and δ is defined as

δ =
(
LHD⊥

21C2 −B2D
†
12LF

)
Y + Y

(
LHD⊥

21C2 −B2D
†
12LF

)T
.

Since a matrix Uo, which is a row-basis of observable subspace of the pair
(
A−B1D

†
21C2,D

⊥
21C2

)
,

satisfies UoY = O, the matrix D⊥
21C2 satisfies

D⊥
21C2Y = O.

Hence, the solvability condition (2.74) is equivalent to


H̃X ∈ Dom (Ric)
X = Ric

(
H̃X

)
≥ O

ρ(XY ) < 1

, (2.75)

where H̃X is defined as follows:

HX ,


 AZF B1B

T
1 −B2D

†
12

(
B2D

†
12

)T
−
{

B2D
†
12LF Y + Y

(
B2D

†
12LF

)T
}

O −AT
ZF


 ,

and Y ≥ O is a stabilizing solution of the ARE in (2.12). The solvability condition (2.75)

implies that the ARE:

XAZF + AT
ZF X + X

{
B1B

T
1 −B2D

†
12

(
B2D

†
12

)T
}

X

−X

{
B2D

⊥
12LF Y + Y

(
B2D

⊥
12LF

)T
}

X = O (2.76)

has a nonnegative definite stabilizing solution X, and which satisfies ρ(XY ) < 1.

On the other hand, from the solvability condition in (2.74), it can be verified that the

matrix S̃ = Ric
(
HS̃

)
satisfies

S̃B2D
⊥
12 = O,

hence

X = Ric (HX)

=
(
I + S̃Y

)−1
S̃

satisfies

XB2D
⊥
12 = O. (2.77)

From the equation in (2.77), the ARE in (2.76) is reduced to the ARE in (2.52). Thus, the

solvability condition (2.74) is equivalent to the condition:


HX ∈ Dom (Ric)
X = Ric (HX) ≥ O
ρ(XY ) < 1

,
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where HX is given as follows

HX ,
[

AZF B1B
T
1 −B2D

†
12

(
B2D

†
12

)T

O −AT
ZF

]
.

This implies that the ARE in (2.52) has a stabilizing solution X ≥ O where X satisfies

ρ (XY ) < 1.

Conversely if the solvability condition (2.75) is satisfied, it can be verified that HS̃ ∈
Dom (Ric). Hence, the matrix

AZF − B̂2D
†
12

(
B̂2D

†
12

)T
S̃ = Â + B̂2

{
−D†

12C1 + D⊥
12LF −D†

12

(
B2D

†
12

)T
S̃

}

is stable, hence (Â, B̂2) is stabilizable.

(Derivation of the controller:) In the beginning of this subsection, the feedback gain

F is selected such that AF = Â + B̂2F is stable. Here, we choose F based on the solution of

the ARE in (2.52). Suppose that the solvability condition (2.31) is satisfied. Now, we select

F such that

F = F∞ , −D†
12C1 + D⊥

12LF −D†
12

(
B̂2D

†
12

)T
S̃,

where

S̃ = XZ

Z = (I − Y X)−1 .

Then AF = Â + B̂2F∞ is stable. By using the formula in Lemma A.7 we can derive the

controller

−D12Q(s)D21 = Fl




 Â + B̂2F∞ − (B1 − EH) −B̂2D

†
12

O O I

(B1 − EH)T S̃ I O


 , N(s)


 , (2.78)

where N(s) ∈ BH∞. The equation (2.78) can be represented as follows:

−D12Q(s)D21 = (I −N(s)M22(s))
−1 N(s)M21(s), (2.79)

where

M21(s) = I − Φ(s) (B1 − EH)

M22(s) = −Φ(s)B̂2D
†
12

Φ(s) = (B1 − EH)T S̃
(
sI − Â− B̂2F∞

)−1
.

In the equation (2.79), D12 is of full row rank and D21 is of full column rank, hence the

solution of Q(s) is derived as follows:

Q(s) = −
[

D†
12 D⊥

12

] [ (I −N(s)M22(s))−1 N(s)M21(s) Ŵ1(s)
Ŵ2(s) Ŵ3(s)

] [
D†

21

D⊥
21

]
,
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where Ŵi(s) ∈ RH∞. Since (I −M22(s)N(s))−1 ∈ RH∞, we can replace Ŵi(s) as

Ŵ1(s) = (I −N(s)M22(s))
−1 (W1(s) + N(s)Φ(s)LH)

Ŵ2(s) = W2(s)
{

I + M22(s) (I −N(s)M22(s))
−1 N(s)

}
M21(s)

Ŵ3(s) = W1(s)M22(s) (I −N(s)M22(s))
−1 (W1(s) + N(s)Φ(s)LH)

+W3(s) + W1(s)Φ(s)LH ,

where Wi(s) ∈ RH∞ are free parameters. Then the solution Q(s) is represented as follows:

Q(s) = −
[

D†
12 D⊥

12

]{
I −

[
N(s) W1(s)
W2(s) W3(s)

] [
M22(s) −Φ(s)B̂2D

⊥
12

O O

]}−1

[
N(s) W1(s)
W2(s) W3(s)

] [
D†

21 + Φ(s)H∞
D⊥

21

]

= Fl






Â + B̂2F∞ −H∞ −B̂2D
†
12 −B̂2D

⊥
12

O O D†
12 D⊥

12

(B1 − EH)T S̃ −D†
21 O O

O −D⊥
21 O O


 ,

[
N(s) W1(s)
W2(s) W3(s)

]

 ,

(2.80)

where N(s) ∈ BH∞,Wi(s) ∈ RH∞. By applying this Q(s) into (2.69), we can derive the

H∞ controller in (2.72).

2.6.2 Derivation of reduced-order H∞ controllers based on characterization
of zeros in G21(s)

This subsection derives the reduced-order non-standard H∞ controller. Since D21 is of full

column rank, it is assumed that the generalized plant has been put into a basis corresponding

to the canonical form in equation (2.4). Hence the following equations can be assumed without

loss of generality

A−B1D
†
21C2 =




A11 A12 O O
A13 A14 O O
A31 A32 A− O
A33 A34 O A+


 , A11 ∈ R

(p2−m1)×(p2−m1)

D⊥
21C2 =

[
Ip2−m1 O O O

]
D†

21C2 =
[

C22ll C22lr C22rl C22rr

]
,
[

C22ll C22r

]
, C22ll ∈ R

p2×(p2−m1)

,

where λi(A14) < 0, both of the pairs (A11, Ip2−m1) and (A+, C22rr) are observable, and

A+ ∈ R
l×l has no jω eigenvalues. We call A− the stable zero mode of G21(s) and A+ the

unstable zero mode of G21(s).

For notational ease, let us partition the following matrices.

B1 =
[

B1u

B1l

]
, B1u ∈ R

(p2−m1)×m1

B2 =
[

B2u

B2l

]
, B2u ∈ R

(p2−m1)×m2

C1 =
[

C1ll C1lr C1rl C1rr

]
,
[

C1ll C1r

]
, C1ll ∈ R

p1×(p2−m1)
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Under the above preparation, let us represent the full-order H∞ controller in (2.72) with

the dual homogeneous transformation as follows:

K∞(s) = DHM







AY B̂2 H∞

−
[

D12(
D⊥

12

)T
]

F∞
D12(
D⊥

12

)T O
O

D†
21Ĉ2Z

D⊥
21C2

O
O

D†
21

D⊥
21


 ,

[
N(s) W1(s)
W2(s) W3(s)

]



=


 AY B̂2

CK(s)
D12(
D⊥

12

)T


−1 
 AY H∞

CK(s)
[

N(s) W1(s)
W2(s) W3(s)

] [
D†

21

D⊥
21

]  , (2.81)

where CK(s) is defined as follows.

CK(s) , −
[

D12(
D⊥

12

)T
]

F∞ +
[

N(s)
W2(s)

]
D†

21Ĉ2Z +
[

W1(s)
W3(s)

]
D⊥

21C2. (2.82)

In the equation (2.20), since the matrix LH33 ∈ R
l×(p2−m1) is arbitrary, we can choose

LH33 such that Ã33 = O holds. Hence let us choose LH33

LH33 = −A33 − Yr

(
CT

1rrC1ll − CT
22rrC22ll

)
, (2.83)

then the matrix AY is represented as

AY =




A11 + LH1 A12 O O
O A14 O O
O A32 A− O

O Ã34 Ã43 AYr


 .

The matrix AY satisfies

AY VY = VY (A11 + LH1) ,

where VY =
[

Ip2−m1

O

]
∈ R

n×(p2−m1). Hence, if CK(s) satisfies

CK(s)VY = O, (2.84)

the pair (AY , CK(s)) is not observable, hence the order of the controller K∞(s) is reduced

by the number of p2 −m1.

From equation (2.82), the matrix CK(s) is represented with the free parameter Wi(s) ∈
RH∞, and is spanned by the row-basis of D⊥

21C2. Since D⊥
21C2V = Ip2−m1 holds, if we choose

the free parameters W1(s) and W3(s) as

[
W1(s)
W3(s)

]
= −

(
−
[

D12(
D⊥

12

)T
]

F∞ +
[

N(s)
W2(s)

]
D†

21Ĉ2Z

)
VY , (2.85)

the matrix VY satisfies (2.84). Thus we can derive a reduced-order H∞ controller.
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Theorem 2.6.2 Under the same solvability condition as in Theorem 2.6.1, the class of

reduced-order H∞ controllers is represented as:

Kr32∞ = {Kr32∞ (s) : N(s) ∈ BH∞,W2(s) ∈ RH∞} ,

where N(s) is a free parameter, and Kr32∞ (s) is represented as follows

Kr32∞ (s) = DHM
(

M r32∞ (s),
[

N(s)
W2(s)

])
, (2.86)

and

M r32∞ (s) =




ÃY B̃2 H̃∞

−
[

D12(
D⊥

12

)T
]

F∞2

D12(
D⊥

12

)T
[

D12(
D⊥

12

)T
]

F∞1D
⊥
21

CD2 O D†
21 − CD1D

⊥
21




AY =




A11 + LH1 A12 O O
O
O
O

ÃY


 ∈ R

n×n, ÃY ∈ R
(n−(p2−m1))×(n−(p2−m1))

B̂2 =
[

B2u

B̃2

]
∈ R

n×m2, B̃2 ∈ R
(n−(p2−m1))×m2

H∞ =
[
−B1uD†

21 + LH1D
⊥
21

H̃∞

]
∈ R

n×p2, H̃∞ ∈ R
(n−(p2−m1))×p2

F∞ =
[

F∞1 F∞2

]
, F∞1 ∈ R

m2×(p2−m1), F∞2 ∈ R
m2×(n−(p2−m1))

D†
21Ĉ2Z =

[
CD1 CD2

]
, CD1 ∈ R

m1×(p2−m1), CD2 ∈ R
m1×(n−(p2−m1)).

Proof. From the previous argument, the reduced order controller is derived by substituting

LH33 in (2.83) and W1(s) and W3(s) in (2.85) into K∞(s) in (2.81). Since Kr32∞ is a subset of

K∞, the reduced order controller is an H∞ controller.

Remark 2.6.1 The dynamical order of the central solution in Kr32∞ is n− (p2 −m1), which

is lower than that of the central solution in K∞ by the number of p2 − m1. The controller

order reduction is analogous to the order reduction in observer-based controllers, where the

order of the controller is reduced by the number of independent outputs that are not corrupted

by disturbances.

2.6.3 Derivation of reduced-order H∞ controllers based on characterization
of zeros in G12(s)

This subsection derives the reduced-order non-standard H∞ controller.

Corollary 2.6.1 Under the same condition in Theorem 2.6.1, the class of the H∞ controllers

is also represented as follows:

K∞ = {K∞(s) : N(s) ∈ BH∞,Wi(s) ∈ RH∞, i = 1, 2, 3} ,
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where N(s) and Wi(s),∀i are free parameters, and K∞(s) is represented as follows

K∞(s) = Fl

(
M1

∞(s),
[

N(s) W1(s)
W2(s) W3(s)

])
(2.87)

and

M1
∞(s) =




Â + B2F∞ + H∞Ĉ2 −H∞ ZB̂2D
†
12 B2D

⊥
12

F∞ O D†
12 D⊥

12

−D†
21Ĉ2 D†

21 O O

−D⊥
21Ĉ2 D⊥

21 O O




Â = A + B1B
T
1 X

B̂2 = B2 + Y CT
1 D12

Ĉ2 = D21B
T
1 X + C2

F∞ = −D†
12C1 + D⊥

12LF −D†
12

(
B2D

†
12

)T
X

H∞ = Z

{
−B1D

†
21 − Y

(
D†

21C2

)T
D†

21

}
+ LHD⊥

21

Z = (I − Y X)−1 .

Proof. Omitted.

Since D12 is of full row rank, it is assumed that the generalized plant has been put into

a basis corresponding to the canonical form in equation (2.3). Hence the following equations

can be assumed without loss of generality

A−B2D
†
12C1 =




A11 A12 A21 A22

A13 A14 A23 A24

O O A− O
O O O A+


 , A11 ∈ R

(m2−p1)×(m2−p1)

B2D
⊥
12 =




Im2−p1

O
O
O




B2D
†
12 =




B22uu

B22ul

B22lu

B22ll


 ,

[
B22uu

B22l

]
, B22uu ∈ R

(m2−p1)×m2

,

where λi(A14) < 0, both of the pairs (A11, Im2−p1) and (A+, B22ll) are controllable, and A+

has no jω eigenvalues. We call A− the stable zero mode of G12(s) and A+ unstable zero

mode of G12(s).
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For notational ease, let us partition the following matrices.

B1 =




B1uu

B1ul

B1lu

B1ll


 ,

[
B1uu

B1l

]
, B1uu ∈ R

(m2−p1)×m1

C1 =
[

C1l C1r

]
∈ R

p1×n, C1l ∈ R
p1×(m2−p1)

C2 =
[

C2l C2r

]
∈ R

p2×n, C2 ∈ R
p2×(m2−p1).

Under the above preparations, let us represent the full-order H∞ controller in (2.87) with

the homogeneous transformation as follows:

K∞(s) = HM
(

M̃1
∞(s),

[
N(s) W1(s)
W2(s) W3(s)

])

=


 AX BK(s)

F∞
[

D†
12 D⊥

12

] [ N(s) W1(s)
W2(s) W3(s)

] 
[

AX BK(s)

Ĉ2

[
D21

(
D⊥

21

)T ] ]−1

,

(2.88)

where M̃1∞(s) and BK(s) are defined as

M̃1
∞(s) ,


 AX ZB̂2D

†
12 B2D

⊥
12 −H∞D21 −H∞

(
D⊥

21

)T
F∞ D†

12 D⊥
12 O O

Ĉ2 O O D21

(
D⊥

21

)T



BK(s) , ZB̂2D
†
12

[
N(s) W1(s)

]
+B2D

⊥
12

[
W2(s) W3(s)

]
−H∞

[
D21

(
D⊥

21

)T ]
. (2.89)

In the equation (2.56), since the matrix LF22 ∈ R
(m2−p1)×r is arbitrary, we can choose

LF22 such that Ã22 = O holds. Hence let us choose LF22

LF22 = −A22 −
(
B1uuBT

1ll −B22uuBT
22ll

)
Xr (2.90)

then the matrix AX is represented as

AX =




A11 + LF1 O O O

A13 A14 A23 Ã24

O O A− Ã42

O O O AXr


 .

The matrix AX satisfies

UXAX = (A11 + LF1)UX ,

where UX =
[

Im2−p1 O
]
∈ R

(m2−p1)×n. Hence, if BK(s) satisfies

UXBK(s) = O, (2.91)
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the pair (AX , BK(s)) is not controllable, hence the order of the controller in K∞ is reduced

by the number of m2 − p1.

From equation (2.89), the matrix BK(s) is represented with the free parameter Wi(s) ∈
RH∞, and is spanned by the basis of B2D

⊥
12. Since UXB2D

⊥
12 = Im2−p1 holds, if we choose

the free parameters W2(s) and W3(s) as

[
W2(s) W3(s)

]
= −UX

(
ZB̂2D

†
12

[
N(s) W1(s)

]
−H∞

[
D21

(
D⊥

21

)T ])
, (2.92)

the matrix UX satisfies (2.91). Thus we can derive a reduced-order H∞ controller.

Theorem 2.6.3 Under the same solvability condition as in Theorem 2.6.1, the class of

reduced-order H∞ controllers is represented as:

Kr31∞ = {Kr31∞ (s) : N(s) ∈ BH∞,W1(s) ∈ RH∞} ,

where N(s) is a free parameter, and Kr31∞ (s) is represented as follows

Kr31∞ (s) = HM
(
M r31∞ (s),

[
N(s) W1(s)

])
, (2.93)

and

M r31∞ (s) =




ÃX BD2 −H∞2

[
D21

(
D⊥

21

)T ]
F̃∞ D†

12 −D⊥
12BD1 D⊥

12H∞1

[
D21

(
D⊥

21

)T ]
C̃2 O

[
D21

(
D⊥

21

)T ]



AX =




A11 + LF1 O O O
A13

O
O

ÃX


 ∈ R

n×n, ÃX ∈ R
(n−(m2−p1))×(n−(m2−p1))

ZB̂2D
†
12 =

[
BD1

BD2

]
, BD1 ∈ R

(m2−p1)×p1, BD2 ∈ R
(n−(m2−p1))×p1

H∞ =
[

H∞1

H∞2

]
, H∞1 ∈ R

(m2−p1)×p2,H∞2 ∈ R
(n−(m2−p1))×p2

F∞ =
[
−D†

12C1l + D⊥
12LF1 F̃∞

]
∈ R

m2×n, F̃∞ ∈ R
m2×(n−(m2−p1))

Ĉ2 =
[

C2l C̃2

]
∈ R

p2×n, C̃2 ∈ R
p2×(n−(m2−p1)).

Proof. From the previous argument, the reduced order controller is derived by substituting

LF22 in (2.90) and W2(s) and W3(s) in (2.92) into K∞(s) in (2.88). Since Kr31∞ is a subset of

K∞, the reduced order controller is an H∞ controller.

Remark 2.6.2 The dynamical order of the central solution in Kr31∞ is n− (m2 − p1), which

is lower than that of the central solution in K∞ by the number of m2 − p1. The controller

order reduction is analogous to the order reduction in dual-observer-based controllers, where

the order of the controller is reduced by the number of redundant inputs.
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Figure 2.6: The magnetic levitation system

2.7 A numerical example and discussions

2.7.1 Magnetic levitation system

In this thesis, we use a model of a magnetic levitation system to examine the effectiveness of

proposed methods by numerical examples. Let us consider the magnetic levitation system[34]

shown in the Figure 2.6, where the vertical position xm[m] of a steel ball is controlled by

operating the terminal voltage of an electromagnet e[V]. R[Ω] is a resistance of the exci-

tation circuit and L[H] is an inductance of the coil and i[A] is an excitation current of the

electromagnet. M [kg] is mass of the steel ball. Let us assume that the movement of the ball

is restricted to the vertical axis, then we can describe the equation of the motion




M
d2xm

dt2
= Mg +

1
2
i2

∂L

∂xm

e = Ri +
d

dt
(Li)

.

Also, let us assume that the inductance L satisfies the equation

L(xm) =
Q

X + xm
+ L0,

where Q,X,L0 are some parameters.

The state variables are defined as follows

x ,
[

x1 x2 x3

]T =
[

i ẋm xm

]T
and the input variable u and the output variable y are defined as follows.

u = e, y = xm
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Then the state space equation of the magnetic levitation system is written as follows.




ẋ =




{Qx2−(X+x3)2R}x1

Q(X+x3)+L0(X+x3)2

g − Qx2
1

2M(X+x3)2

x2


+




X+x3
L0(X+x3)+Q

0
0


u

y =
[

0 0 1
]
x

Thus, the system is represented as a nonlinear state space equation. By expanding the

nonlinear equation into Taylor series around an equilibrium point

xeq =
[

x0
1 0 x0

3

]T
, ueq,

and by approximating high-order terms, a linear approximation form can be given as follows

{
˙̄x = Ax̄ + Bū
ȳ =

[
0 0 1

]
x̄

, (2.94)

where A and B are defined as

A ,




−XcR
Q+L0Xc

x0
3Q

(Q+L0Xc)Xc
0

−Qx0
3

MX2
c

0 Qx0
3
2

MX3
c

0 1 0


 =


 a11 a12 0

a21 0 a23

0 1 0




B ,


 Xc

Q+L0Xc

0
0


 =


 b1

0
0


 ,

and Xc, x̄, ū, ȳ are defined as follows

Xc , X + x0
1

x̄ , x− xeq

ū , u− ueq

ȳ , y − yeq.

By using the Laplace transformation for the equation (2.94), we can obtain a set of transfer

functions from the input ū to the output ȳ:

P(s;M,R,Q,L0,X) ,
[

0 0 1
]
(sI −A)−1B.

By substituting the values of the parameters in Table 2.1 into the above equation, we can

obtain a transfer function, which we call a nominal model, as follows

P (s) =
−67.03

(s− 47.8)(s + 46.3)(s + 14.9)
. (2.95)
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Table 2.1: The values of parameters

M R Q L0 X x0
1 x0

3

0.54 11.6 8.513× 10−4 0.789 0.0043 1.144 0.006

2.7.2 An uncertain plant with partial state measurement

For the linear model of the magnetic levitation system, in this chapter we assume that some of

the sates are measured without disturbances, and the other states are measured with being

effected by disturbances. Thus the model P̃ (s) which we assume here can be written as

follows

P̃ (s) :




ẋ = Ax + Bu
y1 = x1

y2 = x2

y3 = x3 + w

where, w indicates an input of the disturbance that is caused by the approximation error or

measurement noise. The variables x =
[

x1 x2 x3

]T and u correspond to each variable

with upper ver in the equation (2.94).

∆(s)
w

u y3

y2

y1

x2

x1

++x3

P(s)
~

Figure 2.7: The plant model

We assume that the dynamical equation of the disturbance w can be written as follows

∆(s)P (s) :
{

ẋ = Ax + Bu
w = Cwx + dwu

,

where, ∆(s) indicates a model of a perturbation that causes the disturbance. Here, it should

be noted that both states in the plant and the perturbation are common. Then the whole

plant model is illustrated in Figure 2.7. In this chapter, we assume that a transfer function

of the error system between the nominal model P (s) and the perturbed model:


ẋ = Ax + Bu
y3 = x3 + w
w = Cwx + dwu



2.7. A NUMERICAL EXAMPLE AND DISCUSSIONS 61

10
-5

10
0

10
5

10
-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

Frequency

G
ai

n

green line : perturbation bound

red line : real perturbation

Figure 2.8: Gain plots of the perturbation and its boundary

has already been identified, and is plotted in Figure 2.8 with red line.

For the error system, we set a boundary of the perturbation such that a partial system

from the input u to the output y3 varies in a set

P = {(1 + ∆(s)) P (s) : |∆(jω)| ≤ |WT (jω)| ,∀ω} , (2.96)

where WT (s) is a function of the relative error bound between the perturbed model and P (s).

In this thesis, by trial and error, we select WT (s) as

WT (s) = 0.2× 10−8(5.0s3 + 2.0× 104s2 + 1.0× 106s + 10),

such that the plant set P includes the perturbed plant. Figure 2.8 plots the gain of the

weighting function WT (s)P (s) with green line.

2.7.3 Low order robust controller design

We construct a generalized plant G(s) for the robust controller design as shown in Fig-

ure 2.9. Then, by solving the problem of finding a stabilizing controller K(s) such that

‖Fl (G(s),K(s)) ‖∞ < 1, we can obtain a robust controller. Thus we have reduced the robust

controller design problem as an H∞ problem. By setting the realization of WS(s) as

WS(s) ,
[

AS BS

CS 0

]
,
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K(s)

WT(s)
w z1

u

y

-

++

G(s)

P(s)
̃

x1

x2

x3

WS(s)
z2

Figure 2.9: The generalized plant

the generalized plant G(s) can be written as follows

G(s) =




a11 a12 0 O 0 −b1

a21 0 a23 O 0 0
0 1 0 O 0 0
O O BS AS BS O

cw1 cw2 cw3 O 0 −dw

0 0 0 CS 0 0
1 0 0 O 0 0
0 1 0 O 0 0
0 0 1 O 1 0




,

where, Cw is partitioned as

Cw =
[

cw1 cw2 cw3

]
.

By substituting each parameter into G(s) and applying an equivalent transformation by

T =




1 0 0 0
0 1 0 0
1 1 1 0
0 0 0 1


, we can derive the generalized plant as

G(s) =




−13 12 0 0 0 −3.4
2400 2500 2500 0 0 0
−2400 −2500 −2500 0 0 3.4

1.0 1.0 1.0 −1.0× 10−5 1.0 0
0.098 0.10 0.099 0 0 6.7× 10−7

0 0 0 0.50 0 0
1.0 0 0 0 0 0
0 1.0 0 0 0 0

1.0 1.0 1.0 0 1.0 0




, (2.97)
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where the weighting function WS(s) is put as

WS(s) =
0.5

s + 0.00001
.

It can easily be verified that G(s) satisfies the assumptions A1, A2’-Case2 and A3’, hence

the H∞ problem is the non-standard H∞ problem of case 2. Thus, by following the results

given in section 2.4 we can derive the low-order H∞ controller whose order is two. Here, it

should be also noted that G(s) in (2.97) satisfies the assumption in (2.5). Thus, by using the

result of Theorem 2.4.3, a reduced order H∞ controller can be given as

K(s) =


 −7.9× 105 −2.6× 106 −7.8× 105 −8.0× 105 0

0 −1.0× 10−5 0 0 1.0
−2.3× 105 −7.5× 105 −2.3× 105 −2.3× 105 0


 .

The order of the controller is two, and is lower than that of G(s) by second order, which is

equal to the dimension of the state measurable without noise.

∆(s)

w

u y3

x3

x2

x1

++

Pi (s)

K(s)

-

Figure 2.10: The closed loop system
In this figure, Pi(s) indicates a perturbed plant: (1 + ∆(s))P (s).

In order to examine the performance of the controller, free responses from an initial state

x0 =
[

0 0 1.0× 10−3
]T are simulated in the closed loop system of Figure 2.10. Figure

2.7.3 illustrates the plots of the free responses, where Figure 2.7.3-(a) is the response of the

nominal closed loop system, and Figure 2.7.3-(b) is the response of the perturbed closed

loop system. It can be verified that both of the closed loop systems are stable, and that

the controller is certainly the robust controller. Thus, we have designed a low-order robust

controller by using the method proposed in this chapter.

2.7.4 Discussion

From the example it is verified that the low-order H∞ controller is certainly derived for the

partial state feedback system, where the partial states are measured without disturbances.
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(a) Free response from an initial state: [0 0 0.001], a case of nominal plant
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(b) Free response from an initial state: [0 0 0.001], a case of perturbed plant

Figure 2.11: The closed loop responses

(a) is an initial response in the closed loop system where the nominal plant P (s) is used. (b)
is an initial response in the closed loop system where a perturbed plant (1 + ∆(s))P (s) is
used.

Correctness of the theoretical result that is derived in this chapter is also verified. Although,

for the system of the partial state feedback, it is known that a low-order controller which bases

its structure on a reduced-order observer can stabilize the system, the method of designing

the low-order H∞ controller, which is derived with so-called ARE approach [11, 47], has not

been known except the study of Zhang and Hosoe [71]. On the other hand, as compared with

the study of them, our result is more general in the point that we can treat all of the cases

of the non-standard problems.

The above numerical example is merely one of instances in which the theoretical result

given in this chapter is applicable. There must exist other examples in which the result is also

applicable. However, it is hard to find out a non-trivial example that is applicable the result.

Hence, it is useful to clarify the class of the applicable problems. The following chapters will

make it clear to utilize the result given in this chapter.
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2.8 Summary

By using the free parameters in the class of the full order controllers, this chapter has given

the reduced-order controllers of the non-standard H∞ control problems where D12 is of full

row rank and D21 is of full column rank. The controllers are also represented with free

parameters; hence, the classes of the reduced-order controllers are derived. The classes are

divided into two types: reduced-order observer type and reduced-order dual observer type.

The orders of the controllers are listed in Table 2.2. Since the classes of the reduced-order

controllers are subclass of the non-standard controllers, the reduced-order controllers satisfy

the same H∞ norm specifications that the full order controllers satisfy. Thus, we have given

a fundamental result for designing a low order H∞ controller, and have clarified one of merits

formulating as the non-standard problems. The effectiveness of this method for designing the

reduced-order H∞ controller will be shown with practical problems in later chapters.

Table 2.2: Order of each controller
In this table, n is the order of the generalized plant, p1 is the number of the controlled
outputs, p2 is the number of the measurement outputs, m1 is the number of the disturbance
inputs and m2 is the number of the control inputs.

Cases of problems deg (K)
Case 1 n− (m2 − p1)
Case 2 n− (p2 −m1)

Case 3
{

n− (m2 − p1)
n− (p2 −m1)





Chapter 3

A synthesis of low-order
integral-type controller

3.1 Introduction

This chapter considers a synthesis problem of a robust servo control system [14] where it is

required that controlled outputs track step-formed references in the presence of uncertainties

in a plant. It is known that in the case where the references are assumed to be of the step-

formed signals, the robust servo controller requires to include integrators in its structure.

Hence the problem is formulated as an integral-type H∞ controller design. This problem

naturally reduces to some of the non-standard H∞ problems in which the non-standard H∞
problem of case 2 is included.

Up to now, there are many studies concerned about the integral-type H∞ controller

design [23, 27, 26, 25, 49, 47, 39, 40, 73]. In these studies the problem is often solved under

a transformation to the standard H∞ problem. One well known approach is based on an

approximation of the integrator with a stable first-order transfer function [73]. This approach

enables the H∞ controller to be designed easily but the controller becomes an approximated

integral-type controller. Mita et al. [49, 47] and Liu et al. [39, 40] proposed the concept of

pseudo-stabilization of the ARE and solved the problem based on the standard H∞ control.

Hara et al. [23, 27, 26, 25] proposed a method based on the transformation of the generalized

plant and the re-construction of the controller. Mita, et al. also proposed a method [48]

to solve the problem where the plant has poles on the jω-axis, and that method requires to

factorize the plant into a part having the jω-poles and another part. Other interesting results

for the robust servo controller design include the results by Zhang et al. [71] and Hozumi et

al. [26] where the problem is treated as some of the non-standard H∞ problems.

In this study, we treat the integral-type H∞ controller design as the non-standard H∞
problem where a direct feed-through term of the subsystem from the external input to the

measurement output (i.e., D21) is column full rank. Although, solving the non-standard H∞
problem has some advantages, a defect such that the resultant controller becomes high-order

67
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ypP(s)
u+

−
K(s)

r y

Figure 3.1: A closed loop system

arises. Furthermore, in the case where a plant has the jω-poles, a solution to the problem

becomes more complex. This chapter treats the problem as the non-standard H∞ problem in

both of the cases where the plant has no integrators and the plant has the jω-poles. Thus the

main topic of this study is the derivation of the low-order controller for the problem of the

integral-type H∞ controller design. Another topic is the treatment of the both of the cases

where the plant has no integrators and the plant has integrators in a less complex manner.

3.2 Robust servo controller design

3.2.1 Specifications

Consider a feedback system shown in Figure 3.1, where K(s) is a controller and P (s) is a

plant which satisfies the following assumptions:

• P (s) ∈ C
p×m has no jω-invariant zeros,

• m ≥ p.

These assumptions are fundamental for the robust servo system design[14]. In Figure 3.1,

r ∈ R
p represents the reference signal, u ∈ R

m is the signal of control input, yp ∈ R
p is the

output from the plant and y ∈ R
p which represents the error is the input to the controller.

We denote the closed loop system in Figure 3.1 as (P (s),K(s)). Specifications of the robust

servo system design are

S1 stabilize the closed loop system (P (s),K(s)),

S2 let the H∞ norm of closed loop transfer functions be less than γ, where γ ∈ R is a positive

number fixed a priori,

S3 in the presence of the modeling error in P (s) and step-shaped disturbances, let the

control outputs asymptotically track the reference inputs which are restricted to the

step-shaped signals.

The specification S1 is necessary for the closed loop system to be internally stable. Besides

improving the transient responses of the outputs in the closed loop system, the specification
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S2 assures the robust stability of the closed loop system in the presence of additive or multi-

plicative uncertainty in the plant. The specification S3 is the requirement for the system to

hold a performance of the robust tracking.

3.2.2 Formulation with the mixed sensitivity problem

In the early many studies, for the above specifications the H∞ control problem with the

generalized plant described in Figure 3.2 is solved. In this figure WT (s) and WS(s) represent

the weighting functions. This is the generalized plant of the well-known mixed sensitivity

problem. Thus, by solving the H∞ control problem which is formulated as∣∣∣∣
∣∣∣∣ Tz1w(s)

Tz2w(s)

∣∣∣∣
∣∣∣∣
∞

< γ,

where Tziw(s) denotes a transfer function from the signal w to the signal zi, the specifications

S1 and S2 are satisfied. In order to satisfy the specification S3, integrators are introduced

into the weighting function WS(s). This is because if a condition

Tz1w(s) ∈ RH∞ (3.1)

is satisfied for the weight WS(s) such that

WS(s) =
W̃S(s)

s
, W̃S(s) ∈ RH∞, W̃S(0) 6= 0, (3.2)

then the H∞ controller includes an integrator in the case where P (s) has no integrators,

hence in this case the specification S3 is satisfied. Thus, by solving the mixed sensitivity

problem with the weighting function in (3.2), the robust servo controller can be designed in

the case where P (s) has no integrators. If we give minimal state space representations of

P (s), WS(s) and WT (s) as

P (s) ,
[

AP BP

CP O

]
, AP ∈ R

np×np (3.3)

WS(s) ,
[

AW BW

CW O

]
, AW ∈ R

nw×nw (3.4)

WT (s)P (s) ,
[

AP BP

CT Im

]
, (3.5)

the state space representation of the generalized plant in Figure 3.2 is written as follows:

Gms(s) =




AW −BW CP BW O
O AP O BP

CW O O O
O CT O Im

O −CP Ip O




=


 A B1 B2

C1 O D12

C̃2 D̃21 O


 =

[
G11(s) G12(s)
G̃21(s) G̃22(s)

]
. (3.6)
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P(s)

WT(s) WS(s)

u

z1z2 w

y+

−

Gms(s)

Figure 3.2: The generalized plant for mixed sensitivity problem

However, it should be noted that there are difficulties in solving the mixed sensitivity

problem form two points. The first point is that the mixed sensitivity problem with the

weight WS(s) in (3.2) is the non-standard problem where the assumptions A1-2) and A3-2)

are not satisfied. This is easily verified from the generalized plant in (3.6). Especially a

deviation from the assumption A1-2) makes the problem hard to solve. The other point is

that the above formulation is not complete in the case where P (s) has integrators. In this

case, the condition (3.1) is satisfied regardless whether the controller has integrators or not,

hence there is a possibility such that the solution derives an H∞ controller which has no

integrators. The control system, where the controller has no model of the reference input

or the disturbance input, is not robust in the presence of the uncertainty of the plant. This

leads to a new formulation for the integral-type H∞ controller design, where the problem is

considered in the two cases where 1) P (s) has no jω-poles, and 2) P (s) has jω-poles.

3.3 In the case P (s) has no jω-poles

3.3.1 Formulation

In this section, it is assumed that the original plant of P (s) has no poles on the jω-axis. In

the first place, let us review the generalized plant of Figure 3.2. In the generalized plant, the

state of the weighting function WS(s), which is unstable transfer function, is not measurable

from the output y, hence the system is not detectable and the assumption A1-2) is not

satisfied. Also in this generalized plant, since the dimensions of the signals w and y are

equal, the invariant zeros of the system from w to y include the mode of WS(s) (See appendix

A.1.), hence the assumption A3-2) is also not satisfied. Therefore, the H∞ control problem

for the generalized plant of Figure 3.2 is the non-standard H∞ control problem where the

assumptions A1-2) and A3-2) are not satisfied.

On the other hand, let us consider a generalized plant in Figure 3.3. In the generalized

plant the weighting function WS(s) is also selected such that (3.2) is satisfied. A difference in

the generalized plants of Figure 3.2 and Figure 3.3 is that the observed outputs have increased

in the case of Figure 3.3, where we assume that the state of WS(s) is observed from an output
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y2

y1

P(s)

WT(s)

u

z1z2 w

WI(s)
+

−

WS(s)
̃

WS(s)

y

G(s)

Figure 3.3: The generalized plant for mixed sensitivity problem formulated as the non-
standard problem

y1. Assume that P (s),WS(s) and WT (s) have the same state space representations in (3.3)

to (3.5), and that WI(s) has the following stabilizable and detectable state space realization

WI(s) ,
[

AW BW

Inw O

]
, (3.7)

where WI(s) is a strictly proper rational transfer function such that the poles are located

only on the domain {s : Re(s) ≤ 0}. For simplicity W̃s(s) ∈ RH∞ is selected as a constant

CW . Then the state space realization of the generalized plant G(s) is represented as follows

G(s) =




AW −BW CP BW O
O AP O BP

CW O O O
O CT O Im

Inw O O O
O −CP Ip O




=


 A B1 B2

C1 O D12

C2 D21 O


 =

[
G11(s) G12(s)
G21(s) G22(s)

]
. (3.8)

In this generalized plant, since D21 is a matrix of full column rank, the assumption A2-2) is

not satisfied. On the other hand, the assumption A1-2), i.e., the detectability condition of

the pair (A,C2) is satisfied since the sates of WS(s) are measurable through the output y1.

Furthermore, since D21 is of full column rank, the invariant zeros of G21(s) are unobservable

poles of the pair (A − B1D
†
21C2,D

⊥
21C2), which include the unobservable poles of the pair

(A,C2).∗ All the modes of WS(s) are included in the observable subspace of the pair (A,C2),

hence the unstable modes of WS(s) are not included in the invariant zeros of G21(s). In fact,

from the expression such that

[
A−B1D

†
21C2

D⊥
21C2

]
=


 AW O

O AP

Inw O


 (3.9)

∗If λi is an unobservable pole of the pair (A,C2), ∃vi 6= O; Avi = λivi, C2vi = O. Then λi and vi satisfy�
A − B1D

†
21C2

�
vi = λivi, D

⊥
21C2vi = O. Thus λi is an unobservable pole of the pair (A−B1D

†
21C2, D

⊥
21C2).
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Figure 3.4: The generalized plant and the integral-type H∞ controller

it is apparently verified that the observable mode of the pair (A − B1D
†
21C2,D

⊥
21C2) is the

mode of WS(s). On the other hand, it is also verified that the unobservable mode of the pair

(A−B1D
†
21C2,D

⊥
21C2) is the mode of P (s). From the assumption such that P (s) has no jω

poles, the assumption A3-2) is satisfied. Thus, the H∞ control problem for the generalized

plant of Figure 3.4 is the non-standard H∞ problem where the assumption A2-2) is not

satisfied.

3.3.2 A high-order controller design

Thus the problem of the robust servo system design is reduced to the non-standard H∞
problem of case 2. Hence, by following its solution which has already been given in chapter

2, we can obtain an H∞ controller K∞(s). Then as shown in Figure 3.4, by combining a

part of the weight WS(s) and K∞(s), an integral-type H∞ controller K̂I(s) is constructed as

follows.

K̂I(s) = K∞(s)
[

WI(s)
Ip

]
(3.10)

Certainly, K̂I(s) is a controller which satisfies specifications S1, S2 and S3. However, it should

be noted that the order of the controller is higher than that of the generalized plant G(s) by

the order of WI(s). Thus, this approach yields a high-order controller, and this is a defect of

this approach.
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3.3.3 A low-order controller design

This section aims at deriving the integral-type H∞ controller of low order. This section first

derives the controller K∞(s) which is the H∞ controller of the non-standard H∞ control

problem for G(s) in (3.8). Since G(s) fits the generalized plant of the non-standard H∞
problem of case 2, whose solution has already been discussed in the previous section 2.4. By

using the solution we can solve the problem as follows.

Let us define LH such that the observable mode of the pair (A − B1D
†
21C2,D

⊥
21C2) is

stabilized with LH , that is,

LH ,
[

LH1

O

]
∈ R

(nw+np)×nw , ∀LH1 ∈ {LH1 : Re(λi(AW + LH1)) < 0,∀i}.

Also, let us define AZH as follows

AZH = A−B1D
†
21C2 + LHD⊥

21C2. (3.11)

Lemma 3.3.1 If the AREs:

X
(
A−B2D

†
12C1

)
+
(
A−B2D

†
12C1

)T
X

+X

{
B1B

T
1 −B2D

†
12

(
B2D

†
12

)T
}

X +
(
D⊥

12C1

)T
D⊥

12C1 = O (3.12)

and

Y AT
ZH + AZHY + Y

{
CT

1 C1 −
(
D†

21C2

)T
D†

21C2

}
Y = O (3.13)

have stabilizing solutions X ≥ O and Y ≥ O which satisfy ρ (XY ) < 1, the class of the H∞
controllers for G(s) in (3.8) is represented as:

K∞ = {K∞(s) : N(s) ∈ BH∞,W (s) ∈ RH∞} ,

where N(s) and W (s) are free parameters, and K∞(s) is represented as follows

K∞(s) = Fl






AY + B̂2F∞ H∞ −B̂2

−F∞ O Im

D†
21Ĉ2Z D†

21 O
D⊥

21C2 D⊥
21 O


 ,
[

N(s) W (s)
]

 , (3.14)

where

AY = A + Y CT
1 C1 + H∞C2

B̂2 = B2 + Y CT
1 D12

Ĉ2 = D21B
T
1 X + C2

F∞ =
{
−D†

12C1 −D†
12

(
B2D

†
12

)T
X

}
Z

H∞ = −B1D
†
21 − Y

(
D†

21C2

)T
D†

21 + LHD⊥
21

Z = (I − Y X)−1 .
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Proof. From Theorem 2.4.2, the result is immediately derived.

As we have considered in chapter 2, it is possible to reduce the order of the H∞ controller

derived above. Thus we derive the reduced-order H∞ controller and obtain the integral-type,

reduced-order H∞ controller. The following lemma is useful for the derivation.

Lemma 3.3.2 Assume that the ARE in (3.13) has a positive semi-definite stabilizing solu-

tion. Then the stabilizing solution of the ARE can be represented as follows:

Y =
[

O O
O Yr

]
∈ R

(np+nw)×(np+nw), (3.15)

where Yr ≥ O is a stabilizing solution of the reduced-order ARE:

YrA
T
P + AP Yr + Yr

(
CT

T CT − CT
P CP

)
Yr = O. (3.16)

Proof. The ARE in (3.13) can be represented as follows

Y AT
Y + AZHY = O, (3.17)

where AY is denoted as

AY = AZH + Y

{
CT

1 C1 −
(
D†

21C2

)T
D†

21C2

}

and is a stable matrix. Let U be a row-basis of the stable subspace of AZH . Then the matrix

U can be selected as U =
[

Inw O
]
. Then the matrix U satisfies the following equation:

UAZH = (AW + LH1) U.

Pre-multiplying the equation (3.17) by U , the following equation is obtained

(UY )AT
Y + (AW + LH1) (UY ) = O.

Since Re (λi(AY )) < 0 and Re (λi (AW + LH1)) < 0 hold, the solution Y satisfies UY = O

(See appendix A.3.1) and Y must be in the form (3.15). By substituting Y ≥ O in (3.15)

into the ARE in (3.13), Yr ≥ O must be a solution of the reduced-order ARE in (3.16).

In the second place, let us represent the full-order H∞ controller given in (3.14) with

DHMT as follows:

K∞(s) = DHM






AY B̂2 H∞
−F∞ Im O

D†
21Ĉ2Z O D†

21

D⊥
21C2 O D⊥

21


 ,
[

N(s) W (s)
]



=
[

AY B̂2

CK(s) Im

]−1 [
AY H∞

CK(s) N(s)D†
21 + W (s)D⊥

21

]
,

where CK(s) is defined as follows.

CK(s) , −F∞ + N(s)D†
21Ĉ2Z + W (s)D⊥

21C2. (3.18)



3.3. IN THE CASE P (S) HAS NO Jω-POLES 75

By using the result of Lemma 3.3.2 the matrix AY can be represented as follows

AY =
[

AW + LH1 O
O AP + Yr

(
CT

T CT − CT
P CP

) ] ,

where Yr ≥ O is a stabilizing solution of the reduced-order ARE in (3.16). In the equation

(3.18), CK(s) is explicitly represented with the free parameter W (s) ∈ RH∞. Hence an

adequate selection of the free-parameter W (s) yields pole-zero cancellations in the controller,

and the order of the controller can be reduced.

Theorem 3.3.1 Under the same solvability condition as in Lemma 3.3.1, the class of reduced

order H∞ controllers is parametrized as follows:

Kr
∞(s) = DHM




 ÃY B̂P H∞2

−F∞2 Im F̂∞1D
⊥
21

CD2 O D†
21 − ĈD1D

⊥
21


 , N(s)


 , (3.19)

where N(s) ∈ BH∞ is a free parameter, and ÃY , B̂P ,H∞2, F̂∞1 , F∞2 , ĈD1 , CD2 are defined

as follows:

ÃY = AP + Yr

(
CT

T CT −CT
P CP

)
B̂P = BP + YrC

T
T

H∞2 =
[

O YrC
T
P

]
F∞ =

[
F∞1 F∞2

]
, F∞1 ∈ R

m×nw , F∞2 ∈ R
m×np

D†
21Ĉ2Z =

[
CD1 CD2

]
, CD1 ∈ R

nw×nw , CD2 ∈ R
nw×np .

Proof. By setting the free parameter as

W (s) = −
(
F∞ + N(s)D†

21Ĉ2Z
)

V,

where V is a full column rank matrix defined as

V ,
[

Inw

O

]
∈ R

(nw+np)×nw ,

the matrices AY and CK(s) satisfy{
AY V = V (AW + LH1)
CK(s)V = O

.

Hence the pair (AY , CK(s)) is unobservable, and the order of the controller is reduced by the

dimension of rank (V ) = nw. Then the reduced order H∞ controller is derived.

Remark 3.3.1 The McMillan degree of the central solution of the H∞ controller in (3.14)

is reduced by the dimension of rank (V ) = nw, and is equal to np.
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y2

y1

P(s)

WT(s)

u

z1

z2

w

WI(s)

+
-

WS(s)
̃

WS(s)

y

G(s)

K∞   (s)int,r

K∞(s)r

Figure 3.5: The generalized plant and the integral-type, reduced-order H∞ controller

Remark 3.3.2 It should be also noted that the class of the reduced-order H∞ controllers is

represented with free parameter N(s) ∈ BH∞.

Remark 3.3.3 In this theorem the reduced order TDF controller is represented with DHMT,

and this implies that the controller is in a form of coprime factorization over RH∞. This

form is useful for reducing the order of the controller by approximation, because it is hard to

apply approximation methods for unstable systems.

From the above theorem, a reduced-order controller Kr∞(s) is derived. Then as shown in

Figure 3.5, by combining a part of the weight WS(s) and Kr∞(s), an integral-type, reduced-

order H∞ controller is constructed as follows.

Kint,r
∞ (s) = Kr

∞(s)
[

WI(s)
Ip

]
(3.20)

From Figure 3.5, it can be verified that the controller Kint,r∞ (s) satisfies the specifications S1,

S2 and S3. The controller is parametrized with a free parameter N(s) ∈ BH∞. The order

of the central solution is nw + np, which is lower than that of the controller K̂I(s) in (3.10).

Thus we can derive an integral-type, reduced-order H∞ controller by way of reconstruction

of the controller.

3.3.4 A direct derivation of an integral-type H∞ controller

In the previous section, the integral-type, reduced-order H∞ controller is derived indirectly.

This section aims at deriving the integral-type, reduced-order H∞ controller directly. Firstly,
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we investigate modes of the full-order H∞ controller in (3.14). The following definition is

useful for the investigation.

Definition 3.3.1 (Reduction mode of ARE) Assume that the ARE in (3.13) has a posi-

tive semi-definite stabilizing solution Y . If there exists a full row rank matrix U which satisfies

the equations:

UAZH = ΛU (3.21)

UY = O, (3.22)

then we call the matrix Λ reduction mode of the ARE and U eigen-subspace of the mode.

Remark 3.3.4 In the standard H∞ problem, where D21 is of full row rank, the solution is

given by solving an ARE:

Y
(
A−B1D

†
21C2

)T
+
(
A−B1D

†
21C2

)
Y

+ Y

{
CT

1 C1 −
(
D†

21C2

)T
D†

21C2

}
Y + B1D

⊥
21

(
B1D

⊥
21

)T
= O. (3.23)

In this case, the reduction mode of the ARE in (3.23) is restricted to the mode of the stable

invariant zeros of G21(s), that is, it is restricted to the stable uncontrollable mode of the

pair (A − B1D
†
21C2, B1D

⊥
21). This is stated in Lemma A.10.1. On the other hand, in the

non-standard H∞ problem of case 2, not only the mode of the stable invariant zeros of G21(s)

but also the stable mode which is obtained by stabilizing the observable mode of the pair

(A − B1D
†
21C2,D

⊥
21C2) are included in the reduction mode of the ARE. This can be verified

from the discussion in section 2.4: for a full row rank matrix U the equations (2.17) and (2.19)

hold, where the stable matrix Λ in (2.18) includes the stabilized mode and the stable zero mode.

In the case of the non-standard H∞ problem for the generalized plant in (3.8), the observable

mode of the pair (A − B1D
†
21C2,D

⊥
21C2) is stabilized with LH1 such that Λ1 , AW + LH1 is

stable, and Λ1 is included in the reduction mode of the ARE in addition to the mode of the

stable invariant zeros of G21(s).

The following lemma clarifies the relationship between the reduction mode of the ARE

and the structure of the non-standard H∞ controller.

Lemma 3.3.3 Assume that the non-standard H∞ controller K∞(s) ∈ K∞ in (3.14) is min-

imal realized. Then if the full row rank matrix U , which is an eigen-subspace of the reduction

mode of the ARE in (3.13), satisfies

UB2 = O, (3.24)

the eigenvalues of Λ1 = AW + LH1 are included in K∞(s) ∈ K∞2 as its real modes.
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Proof. Since a full row rank matrix U ,
[

Inw O
]

satisfies the equations (3.21) and

(3.22) for Λ = Λ1, the matrix U holds the equation:

UAY = Λ1U,

where AY is represented as

AY = AZH + Y

{
CT

1 C1 −
(
D†

21C2

)T
D†

21C2

}
, (3.25)

hence Λ1 is a mode of AY . If the matrix U satisfies (3.24), the so-called A-matrix of the H∞
controller in (3.14)

AK∞ , AY +
(
B2 + Y CT

1 D12

)
F∞

satisfies

UAK∞ = Λ1U,

where U is a matrix of full row rank. Hence, if K∞(s) is a minimal form, Λ is a real mode of

K∞(s). This implies that the eigenvalues of Λ1 are included as the poles of the H∞ controller.

Remark 3.3.5 Since in the generalized plant G(s) in (3.8) the matrix U satisfies (3.24),

from the Lemma 3.3.3 it follows that if AW is a stable matrix, that is, WS(s) is a stable

transfer function, LH1 can be selected as zero and the mode of WS(s) is included in the modes

of the controller. Hence the eigenvalues of WS(s) are included in K∞(s) as its eigenvalues

if we choose WS(s) as a stable transfer function, or WS(s) is regarded as a stable transfer

function.

Based on the above idea, we intend to introduce the jω-eigenvalues of WS(s) into the

controller. For this purpose the concept of pseudo-stabilization is adopted. The concept is

firstly proposed [49] in the problem of the standard H∞ control.

This study extends the pseudo-stabilizing solution of the ARE in the case of non-standard

H∞ problem of case 2.

Definition 3.3.2 A pseudo-stabilizing solution of the ARE in (3.13) is defined as a solution

that satisfies both of the following items.

1. for a full row rank matrix U , the following equations are satisfied

UAZH = ΛU, Re (λi(Λ)) ≤ 0,∀i

UY = O,

where AZH is the matrix which is defined in (3.11) and Y is a positive semi-definite

solution of the ARE in (3.13).
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2. real parts of all the eigen values of AY in (3.25) are negative except the eigenvalues of

Λ

Remark 3.3.6 In the standard H∞ problem, the pseudo-stabilizing solution of ARE is inter-

preted as the stabilizing solution of the ARE where jω-invariant zeros of G21(s) are regarded

as stable zeros. On the other hand, in the non-standard H∞ problem of case 2, the pseudo-

stabilizing solution of ARE is interpreted as the stabilizing solution of the ARE where not

only the jω-invariant zeros of G21(s) but also jω-mode which is included in the observable

mode of the pair (A−B1D
†
21C2,D

⊥
21C2) are regarded as stable modes.

The following theorem enables us to give a pseudo-stabilizing solution of the ARE in

(3.13) with solving the stabilizing solution of the ARE.

Theorem 3.3.2 Let us consider the ARE in (3.13). The stabilizing solution Y ≥ O, which

is obtained with the observable mode of the pair (A − B1D
†
21C2,D

⊥
21C2) is stabilized, equals

the pseudo-stabilizing solution Ỹ ≥ O which is obtained by letting LH = O.

Proof. From (3.9), the full row rank matrix U can be chosen as

U =
[

Inw O
]
. (3.26)

The stabilizing solution Y ≥ O and the pseudo stabilizing solution Ỹ ≥ O of the ARE in

(3.13) are the symmetric matrices, and they satisfy UY = O and UỸ = O, hence both of the

solutions must be of the form:

Y =
[

O O
O Yr

]
, (3.27)

Ỹ =
[

O O

O Ỹr

]
. (3.28)

Substituting the candidate of the stabilizing solution Y in (3.27) into the ARE in (3.13), a

reduced-order ARE :

YrA
T
P + AP Yr + Yr

(
CT

T CT − CT
P CP

)
Yr = O, (3.29)

is derived where Yr ≥ O needs to be a stabilizing solution of the reduced-order ARE. On the

other hand, substituting the candidate of the pseudo-stabilizing solution Ỹ in (3.28) into the

ARE in (3.13), a reduced-order ARE :

ỸrA
T
P + AP Ỹr + Ỹr

(
CT

T CT − CT
P CP

)
Ỹr = O (3.30)

is derived. From the statement in Definition 3.3.2, it is verified that Ỹr ≥ O needs to be a

stabilizing solution of the reduced-order ARE. Thus, it is shown that Yr = Ỹr and that the

stabilizing solution Y in (3.27) equals the pseudo-stabilizing solution Ỹ in (3.28).
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Remark 3.3.7 The above theorem also states that the pseudo-stabilizing solution of the ARE

in (3.13) can be given by solving the stabilizing solution of the reduced-order ARE in (3.30).

The next theorem shows that by using the pseudo-stabilizing solution, a solution to the

non-standard H∞ problem is given.

Theorem 3.3.3 Assume that the ARE in (3.12) has a stabilizing solution X ≥ O and that

the ARE in (3.13) has a pseudo-stabilizing solution Y ≥ O and they satisfy an inequality

ρ(XY ) < 1. (3.31)

Then, the class of the controllers {K∞(s) : N(s) ∈ BH∞}:

K∞(s) = Fl






AK∞ H∞ −B̂2

−F∞ O Im

D†
21Ĉ2Z D†

21 O
D⊥

21C2 D⊥
21 O


 ,
[

N(s) 0
]

 , (3.32)

where N(s) ∈ BH∞ is a free parameter and the other parameters are defined as

AK∞ = A + Y CT
1 C1 + B̂2F∞ + H∞C2

B̂2 = Y CT
1 D12 + B2

Ĉ2 = C2 + D21B
T
1 X

F∞ =
(
−D†

12C1 −D†
12

(
B2D

†
12

)T
X

)
Z

H∞ = −B1D
†
21 + LHD⊥

21 − Y
(
D†

21C2

)T
D†

21

Z = (I − Y X)−1 ,

give a subclass of the H∞ controllers for G(s) in (3.8).

Proof. We show that the controller given by the equation (3.14), where X ≥ O is the

stabilizing solution for ARE in (3.12) and Y ≥ O is the pseudo-stabilizing solution for ARE

(3.13), is the H∞ controller when W (s) = 0. As shown in Figure 3.6 the controller in (3.14)

has a double-input/single-output structure and this can be represented as follows

K∞(s) =
[

K1(s) K2(s)
]
,K1(s) ∈ C

m×nw ,K2(s) ∈ C
m×p. (3.33)

Then the control input u is represented as

u =
[

K1(s) K2(s)
] [ y1

y2

]
,

where, y1 is an input signal to the controller and this is yielded from WS(s), which is a mode

of the observable subspace of the pair (A − B1D
†
21C2,D

⊥
21C2). By letting LH1 = O, the

following equation

H∞
[

Inw

O

]
= O (3.34)
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K∞(s)
+

+

G(s)

Figure 3.6: Closed loop system

holds. Let us denote the controller in (3.14) as

K∞(s) = Fl

([
K11(s) K12(s)
K21(s) K22(s)

]
,
[

N(s) W (s)
])

,

where N(s) ∈ BH∞ and W (s) ∈ RH∞ are free parameters. Then the equations

K11(s)
[

Inw

O

]
= 0, K21(s)

[
Inw

O

]
=
[

O
Inw

]
(3.35)

are satisfied. Therefore, the controller K1(s) can be represented as follows

K1(s) = K∞(s)
[

Inw

O

]

= Fl






AK∞ O −B̂2

−F∞ O Im

D†
21Ĉ2Z O O

D⊥
21C2 Inw O


 ,
[

N(s) W (s)
]



Hence by letting W (s) = 0, K1(s) becomes K1(s) = 0. Then, K2(s) becomes

K2(s) = K∞(s)
[

O
Ip

]

= Fl




 AK∞ HO∞ −B̂2

−F∞ O Im

D̃†
21C̃2Z Ip O


 , N(s)




= Fl




 ÂK∞ ZH0∞ −ZB̂2

−F 0∞ O Im

D̃†
21C̃2 Ip O


 , N(s)


 , (3.36)
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where

ÂK∞ = A + B1B
T
1 X + B2F

0
∞ + ZH0

∞C̃2

F 0
∞ = −D†

12C1 −BT
2 X

H0
∞ = −B1 − Y

(
D̃†

21C̃2

)T

On the other hand, by using Lemma A.11.2, it can be verified that the controller in (3.36)

equals the H∞ controller of the standard H∞ problem for Gms(s) in (3.6).

Remark 3.3.8 The order of the H∞ controller in (3.36) equals the order of the generalized

plant. It is lower than the order of the H∞ controller in (3.10).

Thus, a design step of the robust servo controller has been given.

Proposition 3.3.1 Assume that P (s) has no integrators. The following Design Procedure

1 yields an integral-type H∞ controller which includes the same number of integrators which

are included in WS(s) and the controller satisfies the specifications S1, S2 and S3.

Design Procedure 1

STEP 1 Introduce integrators into WS(s) as follows:

WS(s) =
W̃S(s)

sn
, W̃S(s) ∈ RH∞, W̃S(0) 6= 0,

where n is the number of integrators which are needed to be included in the con-

troller.

STEP 2 Select an LH such that LH1 ∈ {LH1 : Re(λi(AW + LH1)) < 0} and obtain

the positive semi-definite stabilizing solutions of the AREs in (3.12) and (3.13).

Then, verify the inequality (3.31).

STEP 3 If the inequality is satisfied, set LH1 = O and the controller (3.32) is a

solution.

Proof. Since it is apparent that the resultant controller is the H∞ controller from the above

discussion, it suffice to show that the controller has integrators. The full row rank matrix U ,

which satisfies (3.21) and (3.22), can be given as (3.26), hence, from the generalized plant

G(s) represented in (3.8), it can be verified that U satisfies (3.24). Using the result of Lemma

3.3.3, it is shown that the controller (3.32) has the integrators, the number of which is same

as the number of jω-eigenvalues of Λ = AW .

Remark 3.3.9 It should be noted that, in Design Procedure 1, it is not needed to solve the

pseudo-stabilizing solution of the ARE in (3.13).

Remark 3.3.10 The order of the resultant controller is equal to that of the generalized plant.

Thus, as compared with the controller in (3.10), the order of the controller is reduced by the

order of WS(s).
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3.4 In the case P (s) has jω-poles

3.4.1 The jω invariant zeros of G21(s)

Let us consider the problem of the robust servo controller design where P (s) has poles on

the jω-axis. We first show that the jω-poles of P (s) appear as the invariant zeros of the

subsystem from the external input to the measurement output in the generalized plants of

Figures 3.2 and 3.3.

First, let us review the generalized plant Gms(s) in Figure 3.2. Since the invariant zeros

of G̃21(s) are all the poles of the matrix

A−B1D̃
−1
21 C̃2 =

[
AW O
O AP

]

, uncontrollable poles of the pair (A,B1), i. e., all the modes of P (s) in which the mode on

the jω-axis is included, are included in the zeros of G̃21(s), hence, in this case, the generalized

plant Gms(s) doesn’t satisfy the assumption A3-2).

In the case of the generalized plant G(s) in Figure 3.3, since the invariant zeros of G21(s)

are included in the unobservable mode of the pair (A−B1D
†
21C2,D

⊥
21C2), from the equation

(3.9), it is apparently verified that the jω-poles of P (s) are included in the zeros of G21(s).

Hence, in the case of the generalized plant of G(s), the assumption A3-2) is not satisfied.

3.4.2 Design

Thus, in the case where P (s) has jω-poles, the H∞ control problems for both of the gener-

alized plants Gms(s) and G(s) are the non-standard H∞ problems in which the assumption

A3-2) is not satisfied. For the generalized plant of Gms(s), a solution to the H∞ problem

is proposed in a paper [48], where the non-standard H∞ problem for the generalized plant

Gms(s) is transformed to a standard H∞ problem by separating a jω part from P (s). Hence

the solution needs a transformation in the generalized plant.

The present study proposes a direct solution to the non-standard H∞ problem for the

generalized plant of Gms(s), and generalizes the solution to the non-standard H∞ problem

for the generalized plant of G(s). Firstly, the following lemma gives a direct solution to the

non-standard H∞ problem for the generalized plant of Gms(s) where P (s) has jω-poles.

Lemma 3.4.1 It is assumed that the strictly proper transfer function P (s), which has jω-

poles can be factorized as follows

P (s) = P̂ (s)a(s), (3.37)

where

P̂ (jω) <∞,∀ω ∈ R, a−1(s) ∈ RH∞.
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Figure 3.7: A transformation in the closed loop

In the generalized plant of Figure 3.2, let us select WS(s) as follows

WS(s) = a(s)Ŵs(s), (3.38)

where

Ŵ (∞) = 0, Ŵ (s) <∞,∀s ∈ {s : Re(s) > 0} .

Then, if the ARE in (3.12) has a stabilizing solution X ≥ O, the ARE in (3.13), where

C̃2 and D̃21
† are substituted for C2 and D21, has a pseudo-stabilizing solution Y ≥ O and

they satisfy the inequality in (3.31), then by using the solutions X and Y the H∞ controller

for the generalized plant of Gms(s) is given with the expression (A.11) which is a solution of

the standard H∞ problem.

Proof. In the early paper [48], the H∞ controller for Gms(s) is indirectly given by converting

an H∞ controller for Ĝms(s) which is obtained through a factorization in the closed loop of

Gms(s). (See Figure 3.7.) Here, it is shown that the H∞ controller given by the method

coincides with the controller which is directly given by using this theorem. Outline of the

proof is as follows.

1. Construct the generalized plant Ĝms(s).

2. It is shown that the solutions of the AREs for Ĝms(s) coincide with the solutions of the

AREs for Gms(s).

3. It is shown that the controller Kms(s) which is given by using the theorem equals an H∞
controller a−1(s)K̂ms(s) which is derived through K̂ms(s) which is an H∞ controller for

Ĝms(s).
†Since D̃21 = I , D̃†

21 = I and D̃⊥
21 = O.
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Concrete calculations are shown as follows.

1. Let us represent P (s) as follows:

P (s) = P1(s)P2(s) =


 AP2 O BP2

BP1CP2 AP1 O

DP1CP2 CP1 O


 ,

[
AP BP

CP O

]
,

where P1(s) and P2(s) are defined as

P1(s) =
[

AP1 BP1

CP1 DP1

]
, Re (λi(AP1)) 6= 0,∀i,

P2(s) =
[

AP2 BP2

CP2 O

]
, Re (λi(AP2)) = 0,∀i.

Then by letting the factor a(s) as

a(s) =
[

AP2 BP2

Ca I

]
, Re (λi(AP2 −BP2Ca)) < 0,∀i,

P̂ (s) can be represented as follows

P̂ (s) = P (s)a−1(s) =


AP2 −BP2Ca O BP2

BP1CP2 AP1 O

DP1CP2 CP1 O


 =

[
AP̂ BP

CP O

]
. (3.39)

Also, by letting CT =
[
CT1 CT2

]
, WT (s)P̂ (s) is expressed as follows

WT (s)P̂ (s) =
[

AP̂ BP

CT̂ I

]
, CT̂ =

[
CT1 − Ca CT2

]
.

For the above plant P̂ (s), the generalized plant for the mixed sensitivity problem is

represented as follows

Ĝms(s) =




AW −BW CP BW O
O AP̂ O BP

CW O O O
O CT̂ O I
O −CP I O




,


 Ã B1 B2

C̃1 O D12

C̃2 D̃21 O


 . (3.40)

2. For the generalized plant Ĝms(s), an ARE

XÂZF + ÂT
ZF X + XR̂X +

(
D⊥

12C̃1

)T
D⊥

12C̃1 = O,

where

ÂZF , Ã−B2D
†
12C̃1 = AZF

R̂ , B1B
T
1 −B2D

†
12

(
B2D

†
12

)T
= R(

D⊥
12C̃1

)T
D⊥

12C̃1 =
(
D⊥

12C1

)T
D⊥

12C1,
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coincides with the ARE in (3.12) which is needed to be solved in the mixed sensitivity

problem for Gms(s). Hence, the solutions for each AREs coincide with each other if

they are solvable.

On the other hand, if an ARE for Ĝms(s)

Y ÂT
ZH + ÂZHY + Y Q̂Y = O, (3.41)

where

ÂZH , Ã−B1D̃
†
21C̃2

Q̂ , C̃T
1 C̃1 −

(
D̃†

21C̃2

)T
D̃†

21C̃2,

has a pseudo-stabilizing solution Y , there exists a full row rank matrix U such that

UÂZH = ΛU, Λ =
[

AW O
O AP2 −BP2Ca

]
UY = O.

Hence, by applying the equivalent transformation for (3.41)[
U(

U⊥)T
](

Y ÂT
ZH + ÂZHY + Y Q̂Y

)[ U(
U⊥)T

]T

= O (3.42)

It appears that the pseudo-stabilizing solution of the ARE in (3.41) is expressed as

Y =


 O O O

O O O
O O Yl


 , (3.43)

where Yl ≥ O is a stabilizing solution of a reduced-order ARE

YlA
T
P1

+ AP1Yl + Yl

(
CT

T2
CT2 − CT

P1
CP1

)
Yl = O.

For Gms(s), in a similar way if an ARE

Y AT
ZH + AZHY + Y QY = O, (3.44)

where

AZH , A−B1D̃
†
21C̃2

Q , CT
1 C1 −

(
D̃†

21C̃2

)T
D̃†

21C̃2,

has a pseudo-stabilizing solution Y , for Y there exists a full row rank matrix U such

that

UAZH = ΛU, Λ =
[

AW O
O AP2

]
UY = O.

Hence, by applying the same equivalent transformation as in (3.42) for (3.44), it appears

that the pseudo-stabilizing solution of the ARE in (3.44) is also represented as (3.43).
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3. By using the parameters of the H∞ controller for Gms(s) (See appendix A.11), the H∞
controller for Ĝms(s) can be represented as follows

K̂ms(s) = Fl




 Â −ZH∞ ZB̂2

F̃∞ O I

−Ĉ2 I O


 , N(s)


 , (3.45)

where

F̃∞ , F∞ +
[

O Ca O
]
.

By calculating a−1(s)K̂ms(s) and transforming its state with a non-singular matrix

T =




I O −I O
O I O O
O O I O
O O O I


 ,

it is shown the following equation holds.

a−1(s)K̂ms(s) = Kms(s) (3.46)

Remark 3.4.1 From the above proof, it is seen that in the mixed sensitivity problem where

P (s) has jω-poles, the poles appear as jω-invariant zeros of the controller. Since the invariant

zeros of the controller are canceled out by the jω-poles of P (s), the internal stability of the

system is not satisfied. In order to avoid the cancellation, the weighting function WS(s) is

selected as in (3.38).

The following theorem generalizes the result of Lemma 3.4.1, and gives a direct solution

to the non-standard H∞ problem for the generalized plant of G(s) where P (s) has jω-poles.

Theorem 3.4.1 It is assumed that the strictly proper transfer function P (s), which has jω-

poles, can be factorized as (3.37). In the generalized plant of Figure 3.3, let us select WS(s)

as (3.38). Then, if the ARE in (3.12) has a stabilizing solution X ≥ O, the ARE in (3.13)

has a pseudo-stabilizing solution Y ≥ O and they satisfy the inequality in (3.31), then using

the solutions X and Y , the controller in (3.14) with W (s) = 0 is the H∞ controller for the

generalized plant of G(s).

Proof. In the AREs of the non-standard H∞ problem for G(s), (3.12) coincides with one of

the AREs of the standard H∞ problem for Gms(s), and by letting LH1 = O, (3.13) coincides

with the other ARE of the standard H∞ problem for Gms(s). Hence, from the result of

Lemma 3.4.1, using the stabilizing solution for the ARE (3.12) and the pseudo-stabilizing
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Figure 3.8: A sketch in the proof

solution for the ARE (3.13) with LH1 = O, the H∞ controller for Gms(s), where P (s) has

jω-poles, is given by (A.11).

On the other hand, from the proof of Theorem 3.3.3, it is shown that by letting W (s) = 0,

the (1,2)-entry of the controller K∞(s) in (3.14) coincides with the controller given by (A.11)

and the (1,1)-entry of the controller K∞(s) is zero. From these, it is apparent that the

controller K∞(s) in (3.14) with W (s) = 0 is the H∞ controller for the generalized plant of

G(s). This is sketched in Figure 3.8.

Thus, in the case where P (s) has jω-poles, a design procedure of the robust servo con-

troller is given.

Proposition 3.4.1 Let NP be the number of integrators included in P (s), and let NW be the

number of integrators included in WS(s). The following procedure yields an integral-type H∞
controller which includes NW −NP integrators and the controller satisfies the specifications

S1, S2 and S3.

Design Procedure 2

STEP 1 Introduce integrators into WS(s) as follows:

WS(s) =
W̃S(s)

sn
, W̃S(s) ∈ RH∞, W̃S(0) 6= 0,

where n = NW is the sum of the number of integrators which are needed to be

included in the controller and the number of integrators which are included in

P (s).

STEP 2 Select an LH such that LH1 ∈ {LH1 : Re (λi(AW + LH1)) < 0} holds. Then,

obtain the positive semi-definite stabilizing solution of the ARE in (3.12) and the
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positive semi-definite pseudo-stabilizing solution of the ARE in (3.13). Then, ver-

ify the inequality (3.31).

STEP 3 If the inequality (3.31) is satisfied, set LH1 = O and W (s) = 0, then the

controller (3.32) is a solution.

Proof. Since it is apparent that the resultant controller is the H∞ controller from the above

discussion, it suffice to show that the controller has integrators. The full row rank matrix U ,

which satisfies (3.21) and (3.22), can be given as (3.26), hence, from the generalized plant

G(s) represented in (3.8), it can be verified that U satisfies (3.24). Using the result of Lemma

3.3.3, it is shown that the controller (3.32) has integrators, the number of which is same as

the number of 0-eigenvalues of Λ = AW . However, form the relation in (3.46), some of the

integrators in the controller are canceled out by zeros on the origin of a−1(s).

Remark 3.4.2 In the above procedure, although, in the case P (s) has jω-poles, it is still

necessary to obtain the pseudo-stabilizing solution of the ARE, it is not necessary to separate

the jω part from P (s).

Remark 3.4.3 The order of the resultant controller is equal to that of the generalized plant.

Thus, as compared with the controller in (3.10), the order of the controller is reduced by the

order of WS(s).

3.5 Numerical examples

This subsection illustrates numerical examples of the robust servo control with simple models.

3.5.1 P (s) has no jω-poles

Let us consider the following system

P (s) =
1

s + 1
=
[
−1 1
1 0

]
.

In order to introduce an integrator into the controller, WS(s) is selected as follows

WS(s) =
1/γ

s
=
[

0 1
1/γ 0

]
.

Let us adopt WT (s) as

WT (s)P (s) =
s + 0.5
s + 1

=
[
−1 1
−0.5 1

]
.

Then the problem is solvable if γ satisfies γ ≥ 1.2. Hence, we set γ = 1.2. In this case, a

stabilizing solution of the ARE in (3.12) is given as

X =
[

25.5 −25.5
−25.5 26.0

]
.
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By setting LH1 as LH1 = −α,α > 0, the ARE in (3.13) is represented as follows

Y AT
ZH + AZHY + Y QY = O,

where

AZH =
[
−α 0
0 −1

]
, Q =

[
1/γ2 0

0 −0.75

]
.

Apparently the stabilizing solution of the ARE is Y = O. By letting LH1 = O, a central

controller is derived from (3.32) as

K∞(s) =
[

0 25.5 s+1
s(s+26.5)

]
.

It can be verified that the controller includes an integrator.

3.5.2 P (s) has jω-poles

Let us consider the following system

P (s) =
1
s

=
[

0 1
1 0

]
,

which includes an jω-pole in ω = 0.

In order to introduce an integrator into the controller WS(s) is selected as follows

WS(s) =
1/γ

s2
=


 0 0 1

1 0 0
0 1/γ 0


 .

Let us adopt WT (s) as

WT (s)P (s) =
s + 0.5

s
=
[

0 1
0.5 1

]
.

Then the problem is solvable if γ satisfies γ ≥ 3.6. Hence, γ = 3.6 is adopted. By obtaining

a stabilizing solution of an ARE in (3.12) and obtaining a pseudo stabilizing solution of the

ARE in (3.13), an H∞ controller (a central solution) is derived from (3.32).

K∞(s) =
[

0 265.3 s+0.322
s(s+266.3)

]
It can also be verified that the controller includes an integrator.

3.6 Summary

In this chapter, we have considered a synthesis of the low-order integral-type H∞ control

system, where two types of plants: integral-type and non-integral-type, are treated. The syn-

thesis problem is formulated as the non-standard H∞ problem, where a direct feed-through
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term of the subsystem from the external input to the measurement output is of full column

rank. Although the formulation resembles the results by Zhang et al. [71] and Hozumi et

al. [26], the solutions are distinctive. This approach to the integral-type robust controller

design is based on the non-standard H∞ control problem. The controller is given with low

order by using the solutions of the AREs. In the case where the plant has no integrators, it is

not necessary to solve the so-called pseudo stabilizing solution of the ARE. We have extended

the result to the case where the plant has the integrators. In this case, although it is still

necessary to solve the pseudo stabilizing solution of the ARE, there is no necessity for trans-

forming the non-standard problem to the standard problem and separating the integrators

from the plant. Moreover, the results given in this chapter can be extended to the two-

degree-of-freedom controller design problem which can also be reduced to the non-standard

H∞ control problem. This problem will be treated in the following chapter.





Chapter 4

Trade-off analysis of a low-order
TDF control system

4.1 Introduction

Closed loop stabilization, disturbance elimination, and reference tracking in the presence of

uncertainties of a model – these are the main goals of a robust control system design, and TDF

control is one of the most effective ways to reach all these goals simultaneously [44, 22, 13, 29].

In recent years, there has been many studies concerned about application of H∞ and H2

control theory in the designing of TDF control systems [17, 38, 7, 4, 27]. Most of these

studies focused on transformation of the TDF control problems to the standard H∞ or H2

control problems. This has resulted in high-performance TDF controllers, but excessive

transformation sometimes results in controllers of unacceptably high order. That is, the

McMillan degree of the H∞ controller is no less than that of the generalized plant, especially

in the TDF case, it becomes no less than three times as high as that of the plant. Therefore,

it is required to study the low-order TDF controller design.

On the basis of such a background, some earlier studies have tackled the problem of

designing low-order controllers [5, 6, 24, 7, 38, 17]. These studies are based on the idea of

using the same dynamics in both of the feedback controller and the feedforward controller,

where some of these studies [5, 6, 24, 17] have adopted a sequential design in which the

feedback controller and the feedforward controller are designed separately. In this approach,

a low-order TDF controller can be designed. A key feature of the approach is that the zeros

and the gain of the feedforward controller are optimized in the second step, which is preceded

by designing of the feedback controller. Therefore, it should be noted that, in this approach,

the resultant feedforward controller has the same pole position as the feedback controller

has, and it is not necessarily optimal for tracking performance. In general, it is well known

that the feedback performance and the tracking performance are independently specified in

the TDF control system [66, 44], but it is not known whether this is true in the case of the

same-dynamic TDF control system. Since the answer to this question affects the optimality

93
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Figure 4.1: Basic structure of TDF control system

in the low-order TDF controller design, the question must be investigated.

Thus, prior to considering the synthesis of the low-order TDF controller, this chapter is

devoted to clarifying the relationship between the feedback performance and the feedforward

performance in the case where the TDF controller is low order, especially, the feedback

controller and the feedforward controller share the common dynamics. Thus, this chapter

analyzes the trade-off of the low-order TDF control system. It is shown that the independence

of the feedback performance and the tracking performance is not maintained in this case, and

that the low-order TDF controller should therefore be constructed with a simultaneous design

of the feedback controller and the feedforward controller.

4.2 Basic analysis and design of the TDF control system

In this section, we analyze the feedback properties and the feedforward properties in the TDF

control system by representing the class of transfer functions of the TDF control system.

Based on the analysis we introduce a basic design of the TDF control system by using the

H∞ control. Then, we evaluate the order of the resultant TDF controller.

4.2.1 Basic analysis of the TDF control system

Consider the TDF control system shown in Figure 4.1. P (s) represents a plant model. K(s) is

the feedback controller and F (s) is the feedforward controller. Where, r ∈ R
p is the reference

input, u ∈ R
m is the control input, y ∈ R

p is the measurement output and d, n ∈ R
p

respectively represent disturbance input and observation noise.

Then the feedback performance of the closed loop system is characterized with the transfer

functions from d to y and n to y, denoted respectively Tyd(s) and Tyn(s).

Tyd(s) = (I + P (s)K(s))−1 = S(s) (4.1)

Tyn(s) = −(I + P (s)K(s))−1P (s)K(s) = −T (s) (4.2)

Where, the transfer functions S(s) and T (s) are known as the sensitivity function and the
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complementary sensitivity function, which are defined as follows

S(s) , (I + P (s)K(s))−1

T (s) , (I + P (s)K(s))−1P (s)K(s).

The tracking performance is characterized with the transfer function

Tyr(s) = (I + P (s)K(s))−1P (s)F (s). (4.3)

Now let us represent P (s),K(s) and F (s) as the coprime factorization [67, 44] over RH∞,

i.e.,

P (s) = N(s)M−1(s) = M̃−1(s)Ñ (s) (4.4)

K(s) = NK(s)M−1
K (s) = M̃−1

K (s)ÑK(s) (4.5)

F (s) = NF (s)M−1
F (s) = M̃−1

F (s)ÑF (s) (4.6)

where all of the factors are the elements of RH∞ and coprime. Then it is known that the

internal stability condition of the system in the Figure 4.1 is given as follows.

Lemma 4.2.1 Let (4.4), (4.5) and (4.6) be coprime factorization over RH∞, then the TDF

control system in figure 4.1 is internal stable iff{
K(s) ∈ K
M̃K(s)F (s) ∈ RH∞

.

Here, K is the class of the feedback controllers achieving the internal stability, i.e.,

K =
{(

Y (s)−Q(s)Ñ(s)
)−1 (

X(s) + Q(s)M̃(s)
)
| ∀Q(s) ∈ RH∞

}

=
{(

X̃(s) + M(s)Q(s)
)(

Ỹ (s)−N(s)Q(s)
)−1

| ∀Q(s) ∈ RH∞
}

,

where, X(s), Y (s), X̃(s), Ỹ (s) are the solutions of the Bezout identity

[
X(s) Y (s)
−M̃(s) Ñ(s)

] [
N(s) −Ỹ (s)
M(s) X̃(s)

]
= I.

Proof. See reference [66].

From Lemma 4.2.1, the class of internally stabilizing controllers K(s), F (s) are represented

with free-parameters Q(s), R(s) ∈ RH∞.

K =
{(

Y (s)−Q(s)Ñ(s)
)−1 (

X(s) + Q(s)M̃ (s)
)
| ∀Q(s) ∈ RH∞

}

F =
{(

Y (s)−Q(s)Ñ(s)
)−1

R(s) | ∀R(s) ∈ RH∞
}



96 TRADE-OFF ANALYSIS OF A LOW-ORDER TDF CONTROL SYSTEM

P(s)

WT(s) WS(s)

u

z1z2 w

y+

−

Gms(s)

K(s)

Figure 4.2: Feedback controller design

By substituting controllers K(s) ∈ K and F (s) ∈ F into (4.1), (4.2) and (4.3), the class

of transfer functions Tyd(s), Tyn(s) and Tyr(s) which are achievable in the TDF system are

represented as

Tyd =
{(

Ỹ (s)−N(s)Q(s)
)

M̃(s) | ∀Q(s) ∈ RH∞
}

Tyn =
{
N(s)

(
X(s) + Q(s)M̃(s)

)
| ∀Q(s) ∈ RH∞

}
Tyr = {N(s)R(s) | ∀R(s) ∈ RH∞} . (4.7)

Note that Q(s) and R(s) are the independent free-parameters of K and F . It can be seen that

there doesn’t exist any trade-off between the feedback performances and the tracking per-

formance, hence these performances are independently specified with those free-parameters.

This property affects the way of TDF controller construction, that is, since the TDF perfor-

mances are optimized with a series of sequential optimization of the feedback controller and

the feedforward controller, the TDF controller is frequently designed through two steps: a

feedback controller design and a feedforward controller design.

4.2.2 A basic design of the TDF controller

We show a basic approach to designing the TDF control system. This approach of the design

is a natural way that can be occurred immediately from the previous analysis. That is, a

sequential design of the feedback controller and the feedforward controller can satisfy each of

the performances in the TDF control system.

Thus, first of all, let’s design the feedback controller by way of solving the mixed sensitivity

problem. The generalized plant of the problem is written in Figure 4.2 where the meanings

of symbols are identical to that in Figure 3.2. Here, the H∞ problem of the generalized plant

Gms(s) is solved. Since the order of the resultant controller is no less than that of Gms(s), if

we denote the order of each system in boxes as deg (•), this design derives H∞ controllers of
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Figure 4.3: Feedforward controller design

order

deg (K(s)) ≥ deg (P (s)) + deg (WS(s)) + deg (WT (s)) .

In the second step, let’s design the feedforward controller by way of solving the model

matching problem. The generalized plant of the problem is written in Figure 4.3 where

WM (s) is a transfer function of an ideal tracking performance, Wρ(s) is a weighting function

of the tracking error. Here, the H∞ problem of the generalized plant Gmmp(s) is solved.

Thus, the design derives H∞ controllers of order

deg (F (s)) ≥ deg (K(s)) + deg (P (s)) + deg (WM (s)) + deg (Wρ(s))

= 2deg (P (s)) + deg (WS(s)) + deg (WT (s))

+deg (WM (s)) + deg (Wρ(s)) .

In order to evaluate the order of the TDF controller, let us represent the state-space

equations of the feedback controller and the feedforward controller as follows.

F :
{

ẋf = AF xf + BF r
uf = CF xf + DF r

K :
{

ẋk = AKxk + BK ỹ
uk = CKxk + DK ỹ

Then the dynamics of the TDF controller is composed of both of the dynamics of the con-

trollers. 


[
ẋf

ẋk

]
=
[

AF O
O AK

] [
xf

xk

]
+
[

BF

O

]
r +

[
O

BK

]
ỹ

u =
[

CF CK

] [ xf

xk

]
+ DF r + DK ỹ

(4.8)

As shown in (4.8), the McMillan degree of the TDF controller is the sum of the degrees of

these controllers. Thus the TDF controller (F (s),K(s)) of order

deg (F (s),K(s)) ≥ 3deg (P (s)) + 2deg (WS(s)) + 2deg (WT (s))

+ deg (WM (s)) + deg (Wρ(s)) .
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can be constructed. From this fact, the natural design of the TDF controller yields high-order

controller. This is a basic motivation for the low-order TDF controller design.

4.3 An idea of sharing common dynamics

As shown in the previous section, the McMillan degree of the TDF controller that is designed

in the natural way becomes very high. Sometimes we are faced with the situation such that

the degree of the TDF controller is too high to implement it as hardware. So it is important

to consider designing of the low-order TDF controller. One of the effective ways to design the

low-order TDF controller is to share common dynamics between these controllers[5, 6, 24].

In this section we define the share of common dynamics in the TDF controller, and show a

basic design method of the low-order TDF controller.

4.3.1 Sharing common dynamics between K(s) and F (s)

Here, let us define a low-order TDF controller in which the feedback controller and the

feedforward controller share common dynamics.

Definition 4.3.1 The TDF controller which shares common dynamics between K(s) and

F (s) is defined as follows.

[
Fs(s) Ks(s)

]
=
[

A BF BK

C DF DK

]
, (4.9)

where both of the pairs (A,BK) and (A,BF ) are controllable, and the pair (A,C) is observable.

In the above description, the subscript “s” means “share”.

It can be seen that the order of the TDF controller (Fs(s),Ks(s)) is

deg (Fs(s),Ks(s)) = deg (Fs(s)) = deg (Ks(s)) ,

hence by sharing common dynamics between the feedback controller and the feedforward

controller, the order of the TDF controller can be reduced.

In the TDF control system in which the controllers share common dynamics, the internal

stability is satisfied if Ks(s) satisfies the internally stability of the feedback loop.

Lemma 4.3.1 Let us suppose Ks(s) ∈ K, then the TDF controller given as (4.9) satisfies

the stability of the TDF control system.

Proof. Let us give a coprime factorization of Ks(s) over RH∞ as

Ks(s) = M̃−1
K (s)ÑK(s)

M̃K(s) =
[

A + HC H

C I

]
(4.10)

ÑK(s) =
[

A + HC BK + HDK

C DK

]
, (4.11)
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Figure 4.4: A generalized plant for a TDF controller design

where M̃K(s) ∈ RH∞ and ÑK(s) ∈ RH∞ are left coprime, and Re(λi(A + HC)) < 0,∀i is

satisfied. Then Fs(s) can be also factorized over RH∞ as follows

Fs(s) = M̃−1
K (s)ÑF (s) (4.12)

ÑF (s) =
[

A + HC BF + HDF

C DF

]
,

where M̃K(s) ∈ RH∞ and ÑK(s) ∈ RH∞ are left coprime. The equation (4.12) implies

M̃K(s)Fs(s) = ÑF (s) ∈ RH∞,

hence from Lemma 4.2.1 the TDF system is internally stable.

From Lemma 4.3.1, in order to satisfy the internal stability of the TDF control system in

which the controllers share the common dynamics, it is only needed to consider the internal

stability of the feedback controller.

4.3.2 A basic design of a low-order TDF controller

Here, we show a basic method for designing the low-order TDF controller where one dynamics

is shared by the feedback controller and the feedforward controller. Firstly, let it be designed

a feedback controller of the form:

Ks(s) =
[

AK BK

CK DK

]
. (4.13)

Then, construct a generalized plant as in Figure 4.4, where Gmmp(s) is the generalized plant

of the model matching problem and Gtdf (s) is the generalized plant for the TDF controller

design. The meaning of each subsystem is same as that in Figure 4.3. The generalized plant
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Gtdf (s) can be represented as follows:

Gtdf (s) =




A B1 B2

C1 D11 D12

C2v O O
O I O


 . (4.14)

Since the feedback controller has already been designed, the state-space parameters in (4.13)

are fixed. In order to design the feedforward controller which shares the same dynamics with

Ks(s) in (4.13), we put the state-space data of the feedforward controller as follows:

Fs(s) =
[

AK BF

CK DF

]
, (4.15)

where BF and DF are the parameters which are to be designed.

By using those state-space representations in (4.13), (4.14) and (4.15), the state-space

data of the closed loop system Tzw(s) is represented as follows:

Tzw(s) = Fl

(
Gtdf (s),

[
Fs(s) Ks(s)

])
=

[
Acl Bcl

Ccl Dcl

]
,

where

Acl =
[

A + B2DKC2v B2CK

BKC2v AK

]

Bcl =
[

B1 + B2DF

BF

]
= E + JR

Ccl =
[

C1 + D12DKC2v D12CK

]
Dcl = D11 + D12DF = H + LR.

Here, it can be seen that the matrices Acl and Ccl are composed of the fixed parameters,

and both of Bcl and Dcl include design parameters BF and DF . Hence, we put the variable

composed of BF and DF as

R ,
[

BF

DF

]
,

and the other fixed parameters are defined as follows:

E ,
[

B1

O

]
, J =

[
O B2

I O

]
,H , D11, L ,

[
O D12

]
.

Under the above preparation, the following result is obtained.

Theorem 4.3.1 In the TDF control system of Figure 4.4, the closed loop system is stable

and it satisfies a condition such that

‖Tzw(s)‖∞ < γ,
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if and only if there exists a positive definite matrix X which satisfies the following inequality:
 XAT

cl + AclX E + JR XCT
cl

(E + JR)T −γI (H + LR)T

CclX H + LR −γI


 < 0. (4.16)

Proof. By using the bounded real lemma, it can be immediately deduced.

Remark 4.3.1 The matrix inequality in (4.16) is a Linear Matrix Inequality, hence by using

some convex programming method we can solve the inequality.

4.4 Trade-off analysis in the low-order TDF control system

In the previous section, a method of the low-order TDF controller is introduced. However,

it is unclear whether sharing dynamics between F (s) and K(s) causes a conflict in the TDF

performances or not. If the answer to the question is “yes”, the trade-off in the performances

must be considered in the design of the low-order TDF controller. The two step design is not

adequate for balancing the trade-off in the designing of the low-order TDF controller.

4.4.1 Trade-off between the feedback performance and the feedforward
performance

In the above section, the TDF controller in which F (s) and K(s) share common dynamics

is defined and it is represented in the state-space formula. Then, this section evaluates

degradation in the performance of the feedforward controller when the performance of the

feedback controller is specified first.

Lemma 4.4.1 Let us represent Ks(s) ∈ K as a right coprime factorization over RH∞.

Ks(s) = (Y (s)−Q(s)Ñ(s))−1(X(s) + Q(s)M̃(s))

Y (s)−Q(s)Ñ(s) , M̃K(s), X(s) + Q(s)M̃ (s) , ÑK (4.17)

Then all the class of Fs(s) ∈ F which shares a dynamics with Ks(s) is given by

Fs(s) =
{

M̃−1
K (s)R̃(s) | ∀Q(s) ∈ RH∞,∀BR ∈ R

n×p,∀DR ∈ R
m×p

}
, (4.18)

where R̃(s) is represented as follows

R̃(s) =
[

A + HC BR

C DR

]

and M̃K(s) and R̃(s) are left coprime.

Proof.(necessity: ) Let us represent K(s) ∈ K and F (s) ∈ F with coprime factorizations as

follows

K(s) = M̃−1
K (s)ÑK(s) (4.19)

F (s) = M̃−1
K (s)R(s), R(s) ∈ RH∞.
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If R(s) is denoted as R(s) =
[

AR BR

CR DR

]
, then by using (4.10), F (s) can be represented as

follows

F (s) =


 A HCR HDR

O AR BR

−C CR DR




=


 A A + HCR −AR HDR −BR

O AR BR

−C −C + CR DR


 . (4.20)

From the equation (4.20), in order to share common dynamics between F (s) and K(s), it is

necessary to satisfy AR = A + HC,CR = C. Hence the feedforward controller and feedback

controller share common dynamics only if F (s) is given as follows

F (s) = M̃−1
K (s)R̃(s). (4.21)

(sufficiency: ) It is easily verified that F in (4.21) has the same dynamics of Ks(s) and

satisfies the internal stability of TDF system from Lemma 4.3.1.

From the above result it is possible to show the class of the transfer functions which can

be attained with the TDF controller in (4.9).

Theorem 4.4.1 (The class of tracking performance) With the TDF controller, which shares

the same dynamics, any tracking performance that belongs to the class:

T̃yr =
{
N(s)R̃(s) | ∀BR ∈ R

n×p,∀DR ∈ R
m×p

}
(4.22)

can be attained.

Proof. Substituting (4.18) into (4.3) leads the class.

From equations (4.10), (4.11) and (4.17), it is apparent that the pair (A+HC,C) depends

on the parameter Q(s) ∈ RH∞. Hence the class of R̃(s):

R̃ ,
{
R̃(s) | ∀BR ∈ R

n×p,∀DR ∈ R
m×p

}
also depends on Q(s) and the inclusion

R̃ ⊂ RH∞

holds. By comparing (4.7) and (4.22), it is verified that the tracking performance is restricted

by the feedback controller design if the TDF controller share the same dynamics.

Let us define the transfer function of the requiring tracking performance as Myr(s) and

let Tyr(R(s)) , N(s)R(s) be the tracking performance, then an objective function for the

evaluation of the tracking performance can be selected as follows

f (R(s)) , Myr(s)− Tyr (R(s)) .
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Then the class R̃ is restricted by the design of the feedback controller. Hence the following

inequality

min
R(s)∈RH∞

‖f (R(s))‖ ≤ min
R̃(s)∈R̃

∥∥∥f (R̃(s)
)∥∥∥ ,

where ‖ • ‖ indicates any norm of a transfer function, holds. The above inequality indicates

that if the feedback performance is specified in the first time, the tracking performance may

be sacrificed.

4.5 Summary

In this chapter, based on the basic analysis and synthesis of the TDF control system, we have

motivated to design the low-order TDF controller. Then, we have introduced designing of a

low-order TDF controller where a feedback controller and a feedforward controller share com-

mon dynamics. Then, we have analyzed the trade-off of the low-order TDF control system.

From the analysis it is shown that the independent property of the feedback performance

and the feedforward performance in the basic TDF control system is not maintained in the

low-order TDF control system. Then, it is pointed out that the low-order TDF controller

should be constructed with a simultaneous design of the feedback controller and the feedfor-

ward controller. In the next chapter we will introduce the simultaneous design method of the

low-order TDF controller.





Chapter 5

A synthesis of low-order TDF
controller

5.1 Introduction

The previous chapter has analyzed the trade-off between the feedback performance and the

tracking performance in a low-order TDF control system where the controllers share common

dynamics. It is clarified that there exists a conflict between those performances, and that the

independence in the properties of the feedback controller and the feedforward controller is

not maintained in the low-order TDF control system. It is difficult to consider the trade-off in

a sequential approach, where a feedback controller and a feedforward controller are designed

separately, the low-order TDF controller should be designed with a simultaneous approach,

where the feedback controller and the feedforward controller are designed simultaneously.

Based on the analysis, the present chapter proposes a method for designing the low-

order TDF controller in a simultaneous approach. Remarkable point of this chapter is the

reduction of the low-order TDF control problem to the non-standard H∞ problem of case 2.

This formulation enables the TDF controller to be derived simultaneously. As a result, the

feedforward controller and the feedback controller are designed such that the order is lower

than that of the controller designed with the sequential approach based on the standard H∞
problem. Furthermore, a reduced-order controller, which has dynamics of lower-order than

the dynamics of a generalized plant, is derived by an algebraic operation using free parameters

of the general solution.

5.2 Problem descriptions and comparison

This section describes some problems for the low-order TDF controller design and compares

the properties of the problems with each other.

Consider a system shown in Figure 5.1, which is a generalized plant for the TDF control

system design. Where P (s) is a plant, K(s) is a feedback controller and F (s) is a feedforward

controller. The signal d ∈ R
p indicates a disturbance input, uf ∈ R

m, uk ∈ R
m are the

105
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Figure 5.1: A generalized plant

outputs from the feedforward and feedback controllers, and r ∈ R
p, y ∈ R

p respectively

indicate a reference input and control output. The signals zi, i = 1, 2, 3 are used to evaluate

the control performances of the TDF control system. Concretely, z1 ∈ R
p is a index of the

tracking performance, z2 ∈ R
p and z3 ∈ R

p are the indices of the feedback performances.

WM (s),Wρ(s),WT (s) and WS(s) are the weighting functions for each specification. The

generalized plant is arranged and replaced with Figure 5.2.

G(s)
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z2

r

K(s)

F(s)

y

z3d

uf

uk

Figure 5.2: A generalized plant

5.2.1 Two-step design

First of all, as seen in the basic TDF controller design, the two-step design is one of the most

popular ways to construct the TDF control system.

Problem 5.2.1 (Two-step design I) Firstly, let’s obtain a feedback controller

K∗(s) =
[

AK∗ BK∗

CK∗ DK∗

]
∈ K, AK∗ ∈ R

nk×nk
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which satisfies an inequality for the feedback performances∥∥∥T z2
z3

d (K(s))
∥∥∥
∞

< γ, (5.1)

where K denotes the class of the internally stabilizing feedback controllers, T z2
z3

d (K(s)) denotes

a transfer function matrix:

T z2
z3

d (K(s)) ,
[

Tz2d (K(s))
Tz3d (K(s))

]
,

and Tab(s) denotes a transfer function from the signal b to a.

Then, find the feedforward controller F (s) which is the solution of the minimization prob-

lem described as follows

minimize
F (s)∈F

‖Tz1r (F (s),K∗(s))‖∞ ,

where F indicates the class of the stabilizing feedforward controllers.

Remark 5.2.1 Assume that the order of F (s) is nf , then the maximum order of the TDF

controller is nk +nf . As seen in chapter 4, solving Problem 5.2.1 derives a high-performance

but high-order TDF controller.

In the next problem, we intend to derive a low-order TDF controller.

Problem 5.2.2 (Two-step design II) Let’s obtain a feedback controller

K∗(s) =
[

AK∗ BK∗

CK∗ DK∗

]
∈ K, AK∗ ∈ R

nk×nk

which satisfies an inequality in (5.1).

Then, find the feedforward controller F (s) which is the solution of the minimization prob-

lem described as follows

minimize
F (s)∈F(K∗(s))

‖Tz1r (F (s),K∗(s))‖∞ , (5.2)

where the class F (K∗(s)) indicates

F (K∗(s)) ,
{[

A∗
K BF

C∗
K DF

]
|BF ∈ R

nk×p,DF ∈ R
m×p

}
⊂ F . (5.3)

Remark 5.2.2 The TDF controller that is derived by solving Problem 5.2.2 shares common

dynamics between the feedback controller and the feedforward controller. Thus the order of

the TDF controller is nk, which is lower than that of the TDF controller derived by solving

Problem 5.2.1.

Lemma 5.2.1 The optimal values of Problem 5.2.1 and Problem 5.2.2 satisfy

min
F (s)∈F

‖Tz1r (F (s),K∗(s))‖∞ ≤ min
F (s)∈F(K∗(s))

‖Tz1r (F (s),K∗(s))‖∞ .
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Proof. From the inclusion in (5.3), the above inequality is immediately verified.

Remark 5.2.3 By solving Problem 5.2.2, it is possible to design the low-order controller in

which common dynamics is shared between K(s) and F (s). From (5.2) and (5.3) it is seen

that AK∗andCK∗, which are designed in the first step, are the fixed parameters of F (s) ∈
F (K∗(s)). Thus, the freedom in the designing parameters of F (s) is restricted by designing of

the feedback controller, hence the selection of the feedback controller may affect the minimum

value of the objective function in (5.2) if the feedback controller which satisfies the restriction

(5.1) is not unique. This also holds when the feedforward controller is designed in the first

step. Hence, essentially it is important to make a compromise between those performances

simultaneously.

5.2.2 Simultaneous design

Based on the discussion in the above section, this section considers a simultaneous TDF

controller design where the feedback controller and the feedforward controller are designed at

the same time. In the H∞ control, it is possible to design the multi-input and multi-output

controller, hence the problem of the simultaneous TDF controller design can be formulated

as a double-input and single-output controller design. Then, in the resultant TDF controller

the feedback controller and the feedforward controller share common dynamics. Hence the

designing parameters of F (s) come to be restricted by the parameters of K(s). Firstly, let’s

consider the following problem.

Problem 5.2.3 (Constrained optimization problem) Find F (s) ∈ F and K(s) ∈ K
which achieve the specifications such that

minimize
F (s)∈F ,K(s)∈K

‖Tz1r (F (s),K(s))‖∞

subject to
∥∥∥T z2

z3
d (K(s))

∥∥∥
∞

< γ.

Remark 5.2.4 Problem 5.2.3 is a minimization problem with a constraint. In the problem,

the feedforward controller and the feedback controller which satisfy the optimal tracking per-

formance subject to the constraint of the feedback performance are simultaneously designed.

Thus, in this problem the controllers are designed in a single step, hence the order of the

resultant TDF controller isn’t so high as the TDF controller obtained in the two-step design

of Problem 5.2.1.

Our interest in this formulation is the improvement of the tracking performance in com-

parison with the design via Problem 5.2.2.

Lemma 5.2.2 Let us denote the solutions of each problem F ∗
i (s) and K∗

i (s), where subscript

i indicates the number of Problem 5.2.i. Then the following inequality holds.

‖Tz1r (F ∗
3 (s),K∗

3 (s))‖∞ ≤ ‖Tz1r (F ∗
2 (s),K∗

2 (s))‖∞ (5.4)
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Proof. (F ∗
i (s),K∗

i (s)) , i = 2, 3 are represented as follows

(F ∗
2 (s),K∗

2 (s)) = argmin
(F (s),K∗(s))∈Ω̃

‖Tz1r (F (s),K∗(s))‖∞

(F ∗
3 (s),K∗

3 (s)) = argmin
(F (s),K(s))∈Ω

‖Tz1r (F (s),K∗(s))‖∞ ,

where classes of Ω̃ and Ω are defined as

Ω̃ , {(F (s),K∗(s)) |F (s) ∈ F (K∗(s)) ,K∗(s) : fixed}

Ω ,
{
(F (s),K(s)) |F (s) ∈ F ,K(s) ∈ K,

∥∥∥T z2
z3

d (K(s))
∥∥∥
∞

< γ
}

.

It can be easily verified that the inclusion:

Ω̃ ⊂ Ω

holds, hence it is also verified that the inequality (5.4) holds.

In the H∞ problem, it is hard to solve Problem 5.2.3 directly. Hence we solve the following

problem instead of solving Problem 5.2.3.

Problem 5.2.4 (Satisficsing problem) Let us give parameters γ1 and γ2 a priori. Find

F (s) ∈ F and K(s) ∈ K which satisfy

‖Tz1r (F (s),K(s))‖∞ < γ1∥∥∥T z2
z3

d (K(s))
∥∥∥
∞

< γ2.

Remark 5.2.5 Problem 5.2.4 is a satisficsing problem and this problem reduces to Problem

5.2.3 if the parameter γ1 is minimized. In this formulation, by adjusting the parameters γ1

and γ2, the trade-off between the feedback performances and the feedforward performance can

be taken into account.

Remark 5.2.6 Problem 5.2.4 is hard to solve directly. Hence we consider solving the stabi-

lizing controller (F (s),K(s)) that satisfies∥∥∥∥∥
γ
γ1

Tz1r (F (s),K(s))
γ
γ2

T z2
z3

d (K(s))

∥∥∥∥∥
∞

< γ.

If the controller to this problem is obtained, then it is assured that the controller is a solution

for Problem 5.2.4.

Thus Problem 5.2.2, Problem 5.2.3 and Problem 5.2.4 aim at deriving the low-order TDF

controller in the sense of sharing common dynamics. In these problems, the objective function

‖Tz1r (F (s),K(s))‖∞ is minimized with the constraint such that F (s) and K(s) have common

A-matrix.
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On the other hand, as seen in chapter 4, if the constraint is not imposed on the controllers,

the objective function can be represented as

Tz1r (F (s),K(s)) = Wρ(s) (WM (s)− Tyr (F (s),K(s)))

= Wρ(s) (WM (s)−N(s)R(s)) , (5.5)

where N(s) ∈ RH∞ is a coprime factor in the coprime factorization of P (s) = N(s)M−1(s),

and R(s) ∈ RH∞ is a free parameter. Then, it can be seen that Tz1r (F (s),K(s)) is a

function of R(s), which is a design parameter of F (s). This indicates that the constraint

which is related to the feedback performances doesn’t affect the objective function (5.5) if

the controllers F (s) and K(s) are not correlated with each other. Hence, solving Problem

5.2.1 accomplishes the derivation of the highest performance-TDF controller at the sacrifice

of simplicity of the controller.

5.3 Low-order TDF controller design

In order to design the low-order controller that holds better performances, we must take into

account the selection of the problem formulation. It is the point of the discussion in the

previous section. In this section, we focus on a point such that ” How to obtain the low-order

solution to the problem which we have selected ”.

5.3.1 Control specification and construction of the generalized plant

Firstly, we describe the specifications of the TDF control system. The feedback performances

are specified with making the norms of the sensitivity function and the co-sensitivity function

small. The tracking performance is specified with making the norm of the error between

the control output and a desirable response of the TDF system small. Let us consider

the generalized plant shown in Figure 5.3, where WS(s),WT (s) and ρ, η are the weighting

functions. In order to evaluate the feedback performances, the controlled variables z1 and z2

are selected as follows

z1 = WS(s)S̃(s)w

z2 = WT (s)T̃ (s)w,

where S̃(s) and T̃ (s) are defined as:

S̃(s) , S(s) (I + P (s) (K(s)− F (s)))

T̃ (s) , T (s)K−1(s)F (s),

and S(s) and T (s) are represented as follows

S(s) = (I + P (s)K(s))−1

T (s) = (I + P (s)K(s))−1 P (s)K(s).
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Figure 5.3: A generalized plant

Here it should be noted that S̃(s) and T̃ (s) satisfy the equation

S̃(jω) + T̃ (jω) = I, ∀ω,

hence their norm cannot be reduced in the same frequency range. By introducing the weights

WS(s) and WT (s) into the controlled variable as (5.6) and (5.6) the trade-off between S(s)

and T (s) is taken into account.

On the other hand, the controlled variables z3 and z4 are represented as follows

z3 = ρ
(
WM (s)− T̃ (s)

)
w

z4 = ηŜ(s)F (s)w,

where

Ŝ(s) , (I + K(s)P (s))−1

and WM (s) is a transfer function of an ideal tracking performance. These are adopted to

specify the tracking performance such that the controlled output y tracks the filtered reference

input, which is a desirable and feasible closed loop response under the restriction of control

input energy.

In order to introduce integrators into the controller the weighting function WS(s) is chosen

to have the integrators. Since all the modes of weighting function WS(s) are unobservable

from the measured output y, and the assumption A1-2) is not satisfied in the generalized

plant described in Figure 5.3. As we have discussed in chapter 3, the states of the weighting

function are supposed to be observed to satisfy the assumption A1-2). This means that

the controller includes the observed mode of the weighting function. Thus, the generalized
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Figure 5.4: A generalized plant

plant described in Figure 5.4 is constructed and the controlled variables zi, (i = 1, 2, 3, 4) are

evaluated simultaneously. By tuning the weighting functions it is possible to consider the

trade-off between those specifications. In the generalized plant the H∞ control problem is

formulated such that: find all the internally stabilizing controllers that satisfy

‖WS(s)S̃(s)‖∞ < 1
‖WT (s)T̃ (s)‖∞ < 1
‖ρ
(
WM (s)− T̃ (s)

)
‖∞ < 1

‖ηŜ(s)F (s)‖∞ < 1




(5.6)

simultaneously. However, this problem is difficult to solve directly, hence let us consider the

following criterion alternatively.

∥∥∥∥∥∥∥∥∥

WS(s)S̃(s)
WT (s)T̃ (s)

ρ
(
WM (s)− T̃ (s)

)
ηŜ(s)F (s)

∥∥∥∥∥∥∥∥∥
∞

< 1 (5.7)

If the inequality in (5.7) is satisfied then all the conditions in (5.6) is satisfied.

5.3.2 State-space representation of the generalized plant

Now, let us define the state-space realizations of transfer functions in Figure 5.4, and represent

the generalized plant with the state-space form.
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The real plant P (s) is assumed to be a system of np-dimensional, m-input and p-output

system, and is represented as follows:

P (s) ,
[

AP BP

CP O

]
, AP ∈ R

np×np , BP ∈ R
np×m, CP ∈ R

p×np, (5.8)

where we assume without loss of generality that the p outputs of the system are linearly

independent – or equivalently that the matrix CP is of full row rank, and that (AP , BP , CP )

is controllable and observable.

The realizations of weighting functions are represented as follows:

[
WS(s)
W̃S(s)

]
,


 AW BW

CW O
αInw O


 , AW ∈ R

nw×nw

WM (s) ,
[

AM BM

CM O

]
, AM ∈ R

nm×nm

WT (s)P (s) ,
[

AP BP

CT DT

]
,

where the parameter α is defined as follows:

α ,
{

1, ∃i ∈ Z, Re(λi(AW )) = 0
0, ∀i ∈ Z, Re(λi(AW )) < 0

.

Then the generalized plant G(s) can be represented as follows.

G(s) =


 A B1 B2

C1 O D12

C2 D21 O


 =




AW −BW CP O BW O
O AP O O BP

O O AM BM O

CW O O O O
O CT O O DT

O −ρCP ρCM O O
O O O O ηIm

αInw O O O O
O CP O O O
O O O Ip O




(5.9)

The criterion in inequality (5.7) is equal to the following inequality:

‖Fl (G(s),K∞(s))‖∞ < 1. (5.10)

Since, in this generalized plant G(s), D21 is column full rank and the assumptions A1 and A3

are satisfied, on the other hand, the assumption A2-2) is not satisfied, the problem of finding

the internally stabilizing controller which satisfies the inequality (5.10) is the aforementioned

non-standard H∞ control problem of case 2.
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5.3.3 Parametrization of all H∞ controllers

Firstly, let us introduce a change of the coordinates in the system P (s) represented with

the realization in (5.8). Since CP is assumed to be a matrix of full row rank, by using a

nonsingular matrix:

T ,
[

CP(
C⊥

P

) ]

the coordinates can be transformed, and then the state-space realization of P (s) is represented

as follows: [
ĀP B̄P

C̄P O

]
,

[
TĀP T−1 TB̄P

C̄P T−1 O

]

=


 A11 A12 BP1

A21 A22 BP2

Ip O O


 .

Hence, we assume without generality that the parameters AP and CP are in the form

[
AP

CP

]
=


 A11 A12

A21 A22

Ip O


 , A11 ∈ R

p×p, A22 ∈ R
(np−p)×(np−p), (5.11)

where it is well known that (A22, A12) is observable [42].

Lemma 5.3.1 In (5.11), it is assumed without loss of generality that real parts of all the

eigenvalues of A22 are negative.

Proof. Since (A22, A12) is observable, there exists a nonsingular matrix:

J =
[

Ip O
L I(np−p)

]

such that J satisfies[
J−1AP J

CP J

]
=


 A11 + A12L A12

−LA11 − LA12L + A21 + A22L −LA12 + A22

Ip O


 ,

where Re (λi(−LA12 + A22)) < 0,∀i = 1, 2, . . . , np − p. Hence, in the form of (5.11), it is

assumed that real parts of all the eigenvalues of A22 are negative.

From the definition in section 2.3, D†
21,D

⊥
21 can be given as follows.

D†
21 =

[
O O Ip

]
,D⊥

21 =
[

Inw O O
O Ip O

]

Then, A−B1D
†
21C2 and D⊥

21C2 can be represented as follows.

[
A−B1D

†
21C2

D⊥
21C2

]
=




AW −BW CP O
O AP O
O O AM

αInw O O
O CP O



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Let us select LH such that the observable subspace of the pair (A − B1D
†
21C2,D

⊥
21C2) is

stabilized by D⊥
21C2, i. e., let us select LH :

LH =




h1 BW

O h2

O −A21

l1 l2




such that

Re(λi(AW + αh1)) < 0,∀i = 1, 2, . . . , nw, Re(λi(A11 + h2)) < 0, ∀i = 1, 2, . . . , p (5.12)

are satisfied, and l1 ∈ R
nm×nw , l2 ∈ R

nw×p are arbitrary matrices.

Then, AZH is represented as follows

AZH = A−B1D
†
21C2 + LHD⊥

21C2

=




AW + αh1 O O O
O A11 + h2 A12 O
O O A22 O
αl1 l2 O AM


 , (5.13)

where Re (λi(A22)) < 0,∀i = 1, 2, . . . , np − p.

Based on the above preparation, the H∞ controller for the generalized plant (5.9) can be

obtained from the following lemma.

Lemma 5.3.2 The H∞ problem for G(s) in (5.9) is solvable if and only if both of the AREs:

XAZF + AT
ZF X + XRX + (D⊥

12C1)T D⊥
12C1 = O (5.14)

Y AT
ZH + AZHY + Y

{
CT

1 C1 − (D†
21C2)T D†

21C2

}
Y = O, (5.15)

where AZF and R are defined as :

AZF , A−B2D
†
12C1

R , B1B
T
1 −B2D

†
12(B2D

†
12)

T ,

and AZH is represented in (5.13), have stabilizing solutions X ≥ O and Y ≥ O, and which

satisfy ρ (XY ) < 1. If the solvability condition is satisfied, the class of the H∞ controllers

are parametrized as follows:

K∞(s) = Fl






AY + B̂2F∞ H∞ −B̂2Σ
−F∞ O Σ

D†
21Ĉ2Z D†

21 O
D⊥

21C2 D⊥
21 O


 ,
[

N(s) W (s)
]

 , (5.16)
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where

AY = A + Y CT
1 C1 + H∞C2

B̂2 = B2 + Y CT
1 D12

Ĉ2 = D21B
T
1 X + C2

F∞ =
{
−D†

12C1 −D†
12

(
B2D

†
12

)T
X

}
Z

H∞ = −B1D
†
21 − Y

(
D†

21C2

)T
D†

21 + LHD⊥
21

Z = (I − Y X)−1

Σ =
(
DT

12D12

)− 1
2 ,

and N(s) ∈ BH∞ and W (s) ∈ RH∞ are the free parameters.

Proof. By applying the result of Theorem 2.4.2 for G(s) in (5.9), the result is immediately

obtained.

Remark 5.3.1 The McMillan degree of the central solution, which is a controller given with

the free parameters are set to zero, is equal to the degree of the generalized plant, and is

n = nw + np + nm.

Remark 5.3.2 It should be also noted that the class of the non-standard H∞ controllers is

represented with two free parameters N(s) ∈ BH∞ and W (s) ∈ RH∞.

Continuously, we review the H∞ controller given in Lemma 5.3.2 as an integral-type

TDF controller. In this paragraph it is assumed that the H∞ controller implies the central

solution. From Figure 5.4, let us extract the closed loop system composed of P (s),K∞(s)

and W̃S(s). The closed loop system is described in Figure 5.5. Here, it is assumed that

W̃S(s) has integrators, hence the parameter α is set to 1. If we denote K∞(s) according to

the dimensions of y0, y1 and y2 as

K∞(s) =
[

K1(s) K2(s) K3(s)
]

the control input variable u can be represented as follows

u = K∞(s)


 y0

y1

y2




=
[

K1(s) K2(s) K3(s)
]  W̃S(s) (r − y)

y
r




=
[

F (s) K(s)
] [ r

y

]
,
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Figure 5.5: Interpretation of the closed loop system as a TDF control system

where F (s) and K(s) are defined as follows

F (s) , K1(s)W̃S(s) + K3(s)

K(s) , K2(s)−K1(s)W̃S(s).

Thus the TDF controller which satisfies prescribed H∞ performances can be represented. It

should be noted that the TDF controller is integral-type. It can be seen that the McMillan

degree of the TDF controller is

deg (F (s),K(s)) = 2nw + np + nm. (5.17)

Compared with the order of the TDF controller evaluated in section 4.2.2, in this synthesis

the TDF controller which is also an integral-type can be designed with lower order.

5.3.4 Reduced-order TDF controller design

As we have considered in chapter 2, it is possible to derive the reduced-order H∞ controller in

the non-standard problem, where the dimension of the observed output is greater than that

of the disturbance input. This subsection derives the reduced-order TDF controller based on

the way that we presented in chapter 2.

The following lemma is useful for later discussion.

Lemma 5.3.3 Assume that the ARE in (5.15) has a positive semi-definite stabilizing solu-

tion. Then the stabilizing solution of the ARE can be represented as follows:

Y =




O O O O
O O O O
O O O O
O O O Yr


 ∈ R

(np+nw+nm)×(np+nw+nm), (5.18)



118 A SYNTHESIS OF LOW-ORDER TDF CONTROLLER

where Yr ≥ O is a stabilizing solution of the reduced-order ARE:

YrA
T
M + AMYr + ρ2YrC

T
MCMYr = O. (5.19)

Proof. The ARE in (5.15) can be represented as follows

Y AT
Y + AZHY = O, (5.20)

where

AY = AZH + Y

{
CT

1 C1 −
(
D†

21C2

)T
D†

21C2

}
∈ R

is a stable matrix. Let U be a row-basis of the stable subspace of AZH . Then the matrix U

can be selected as

U =


 Inw O O O

O Ip O O
O O Inp−p O


 .

Then the matrix U satisfies the following equation:

UAZH = ΛU,

where

Λ ,


 AW + αh1 O O

O A11 + h2 A12

O O A22


 ∈ R

(nw+np)×(nw+np)

is a stable matrix. Pre-multiplying the equation (5.20) by U , the following equation is

obtained

(UY ) AT
Y + Λ(UY ) = O.

Since Re (λi(Λ)) < 0 and Re (λi(AY )) < 0 hold, the solution Y ≥ O satisfies UY = O and Y

must be in the form (5.18). By substituting Y ≥ O in (5.18) into the ARE in (5.15), Yr ≥ O

must be a solution of the reduced-order ARE in (5.19).

Let us represent the controller given in (5.16) with DHMT as follows

K∞(s) = DHM






AY −B̂2 −H∞
Σ−1F∞ Σ−1 O

−D†
21Ĉ2Z O D†

21

−D⊥
21C2 O D⊥

21


 ,
[

N(s) W (s)
]



=
[

AY −B̂2

CK(s) Σ−1

]−1 [
AY −H∞

CK(s) N(s)D†
21 + W (s)D⊥

21

]
,

where CK(s) is given as follows

CK(s) , Σ−1F∞ −N(s)D†
21Ĉ2Z −W (s)D⊥

21C2. (5.21)
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By using the result of Lemma 5.3.3 the matrix AY can be represented as follows

AY =




AW + αh1 O O O
O A11 + h2 A12 O
O O A22 O
αl1 l2 − ρ2YrC

T
M O AM + ρ2YrC

T
MCM


 , (5.22)

where Yr ≥ O is a stabilizing solution of the reduced-order ARE in (5.19), and l1 ∈ R
nm×nw

and l2 ∈ R
nw×p are free parameters. In the equation (5.21), CK(s) is explicitly represented

with the free parameter W (s) ∈ RH∞. Hence an adequate selection of the free-parameters of

l1, l2 and W (s) yields pole-zero cancellations in the controller, and the order of the controller

can be reduced.

Theorem 5.3.1 Under the same solvability condition as in Lemma 5.3.2, the class of reduced

order H∞ controllers is parametrized as follows:

Kr
∞(s) = DHM




 ÃY −B̂P2 −H∞2

Σ−1F∞2 Σ−1 Σ−1F̂∞1D
⊥
21

−CD2 O D†
21 − ĈD1D

⊥
21


 , N(s)


 , (5.23)

where N(s) ∈ BH∞ is a free parameter, and ÃY , B̂P2 ,H∞2, F̂∞1 , F∞2 , ĈD1 , CD2 are defined

as follows:

ÃY =
[

A22 O
O AM + ρ2YrC

T
MCM

]
∈ R

(n−(nw+p))×(n−(nw+p))

B̂P2 =
[

BP2

O

]
∈ R

(n−(nw+p))×m

H∞2 =
[

O −A21 O
O ρ2YrC

T
M −BM

]

F̂∞1 = F∞


 α−1Inw O

O Ip

O O




F∞2 = F∞
[

O
In−(nw+p)

]

ĈD1 = D†
21Ĉ2Z


 α−1Inw O

O Ip

O O




CD2 = D†
21Ĉ2Z

[
O

In−(nw+p)

]
.

Proof. By setting the free parameters as


l1 = O
l2 = ρ2YrC

T
M

W (s) =
(
Σ−1F∞ −N(s)D†

21Ĉ2Z
)

V
,
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where V is a full column rank matrix defined as

V ,




α−1Inw O
O Ip

O O
O O


 ∈ R

(np+nw+nm)×(nw+p),

the matrices AY and CK(s) satisfy
 AY V = V

[
AW + αh1 O

O A11 + h2

]
CK(s)V = O

.

Hence the pair (AY , CK(s)) is unobservable, and the order of the controller is reduced by the

dimension of rank (V ) = nw + p. Then the reduced order H∞ controller is derived.

Remark 5.3.3 The McMillan degree of the central solution of the H∞ controller in (5.16)

is reduced by the dimension of rank (V ) = nw + p, and is equal to np − p + nm.

Remark 5.3.4 It should be also noted that the class of the reduced-order H∞ controllers is

represented with free parameter N(s) ∈ BH∞.

Remark 5.3.5 In this theorem the reduced order TDF controller is represented with DHMT,

and this implies that the controller is in a form of coprime factorization over RH∞. This

form is useful for reducing the order of the controller by approximation, because no model

approximation methods can be used directly for unstable system.

We review the reduced-order H∞ controller given in Theorem 5.3.1 as an integral-type

TDF controller. In this paragraph it is assumed that the H∞ controller implies the central

solution. As we have discussed in the previous section, let us extract the closed loop system

composed of P (s),Kr∞(s) and W̃S(s). The closed loop system is shown in Figure 5.6. If we

denote Kr∞(s) according to the dimensions of y0, y1 and y2 as

Kr
∞(s) =

[
Kr

1(s) Kr
2(s) Kr

3(s)
]

the control input variable u can be represented as follows

u = Kr
∞(s)


 y0

y1

y2




=
[

Kr
1(s) Kr

2(s) Kr
3(s)

]  W̃S(s) (r − y)
y
r




=
[

F r(s) Kr(s)
] [ r

y

]
,
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Figure 5.6: Interpretation of the closed loop system as a TDF control system

where F r(s) and Kr(s) are defined as follows

F r(s) , Kr
1(s)W̃S(s) + Kr

3(s)

Kr(s) , Kr
2(s)−Kr

1(s)W̃S(s).

Thus the reduced-order TDF controller which satisfies prescribed H∞ performances can be

represented. It should be noted that the reduced-order TDF controller is integral-type. It

can be seen that the McMillan degree of the reduced-order TDF controller is

deg (F r(s),Kr(s)) = nw + np + nm − p. (5.24)

Compared with the order of the TDF controller evaluated in section 4.2.2, in this synthesis

the TDF controller which is also integral type can be designed with further lower order. It

is also apparent that

deg (F (s),K(s))− deg (F r(s),Kr(s)) = nw + p

holds. This order reduction is a benefit which is yielded by the formulation of the non-

standard H∞ control.

5.4 A numerical example

5.4.1 Magnetic levitation system

This section examines the effectiveness of the proposed method by numerical examples. We

use the model of the magnetic levitation system that we have used in chapter 2. Let us

consider the system shown in the Figure 2.6. The purpose of controlling the magnetic levita-

tion system in this chapter is to stabilize the system regardless of variation of the mass, and
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M0.6M
1.7M

Figure 5.7: Steel balls

besides, to obtain a good tracking property with an integral-type TDF controller. The order

of the controller should be obtained with lower order.

5.4.2 Description of perturbed models

In the linear model of equation (2.94), three types of steel balls are assumed. Mass of each

steel ball is set as

M1 = 0.6M, M, M2 = 1.7M.

Then the transfer function of each model is obtained as

P1(s) =
−111.71

(s− 61.6)(s + 14.8)(s + 60.1)
, where mass is M1;

P (s) =
−67.03

(s− 47.8)(s + 46.3)(s + 14.9)
, where mass is M ;

P2(s) =
−39.4

(s− 36.8)(s + 15.0)(s + 35.1)
, where mass is M2.

We call P (s) nominal model, P1(s) and P2(s) perturbed models.

Our purpose of controlling the magnetic levitation system is to stabilize the system re-

gardless of variation of mass with one controller. For this purpose we consider to design a

robust controller which stabilizes any system in

Preal , {P (s;αM) | α = [0.6,1.7]} . (5.25)

For this system we set a boundary of the perturbation such that a partial system from the

input u to the output y3 varies in a set

P = {(1 + ∆(s)) P (s) : |∆(jω)| ≤ |WT (jω)| ,∀ω} , (5.26)

where WT (s) is a function of the relative error bound between the perturbed model and P (s).

In this thesis, by trial and error, we select WT (s) as

WT (s) = 0.6× 10−10(10−2s3 + s2 + 108s + 1),

such that the plant set P includes set of perturbed plants Preal. Figure 5.8 plots the gain of

the weighting function WT (s)P (s) with violet line, variations of the models P1(s) and P2(s)

from the nominal model P (s) with lines of blue and red. Here, it can be verified that the

gain of the boundary is not less than that of any variation.
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Figure 5.8: Gain plots of perturbations and weighting function

5.4.3 Designing of low-order integral-type TDF controller

We design an integral-type TDF controller based on the method that is proposed in section

5.3. The generalized plant of equation (5.9) is made by using the weighting functions:

WS(s) =
32700

s(s + 1000)
(5.27)

WT (s) = 0.6× 10−10(10−2s3 + s2 + 108s + 1) (5.28)

WM (s) =
1302

s2 + 247s + 1302
(5.29)

η = 1.5× 10−4 (5.30)

ρ = 0.2. (5.31)

Then 7th order generalized plant is obtained. For the generalized plant, we first obtained a

7th order H∞ controller whose order is same as that of the generalized plant. By selecting

an adequate free parameter W (s) we obtained a 4th order H∞ controller, and converted the

controller into an integral-type. Then we got an integral-type TDF controller of order 6. The

frequency response of the TDF controller is shown in Figure 5.9-(a). From the figure it can

be seen that the feedback controller and the feedforward controller share common dynamics

and they include an integrator. The frequency responses of sensitivity function S(s) and co-

sensitivity function T (s) are shown in Figure 5.9-(b). It can be seen that the reduced-order

controller satisfies the feedback performances such that

{
‖WS(s)S(s)‖∞ < 1
‖WT (s)T (s)‖∞ < 1

.
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Figure 5.9: Frequency responses of (a) 6th order TDF controller, and (b) closed loop transfer
functions.
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Figure 5.10: Step responses of (a) a feedback control system composed of the nominal plant
and the 6th order feedback controller, and (b) a TDF control system composed of the nominal
plant and the 6th order TDF controller.
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(b) plant : perturbed model P(s;0.6*M)
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(c) plant : perturbed model P(s;1.7*M)

Figure 5.11: Step responses of the perturbed systems

Figure 5.10 illustrates step responses of closed loop systems: (a) a feedback control system

composed of the nominal plant and the 6th order feedback controller, (b) a TDF control

system composed of the nominal plant and the 6th order TDF controller. From this figure,

it can be seen that the tracking performance can be improved by adding the feedforward

controller to the feedback control system. In order to verify the robustness of the TDF

system, step responses of the closed loop systems, in which the perturbed plants are used,

are illustrated in Figure 5.11; in (a) the nominal model is used, in (b) a perturbed model

P1(s) is used, in (c) a perturbed model P2(s) is used. It can be seen that the closed loop

system holds stability within the prescribed variation of the plant.

5.4.4 Comparison with another method

To evaluate the performances of the TDF controller that is obtained with the proposed

method, other TDF controllers are also designed with the other method, which is an inde-

pendent sequential approach in which the feedback controller and the feedforward controller

are respectively designed with the standard H∞ control. First, a feedback controller is ob-
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tained by solving the mixed sensitivity problem. The generalized plant of the problem is

illustrated in Figure 3.2. Two types of sensitivity weighting functions are adopted. One

of the sensitivity functions is type of non-optimal sensitivity function, where the gain of the

weight WS(s) is not so high that there is room for improving the robustness. Here, the weight

is used as the following one.

WS1(s) =
4110

s(s + 1000)

We call a mixed sensitivity problem in which WS1(s) is adopted type1 problem. The other

type of the problem is with sensitivity function of maximal gain. The weight is used as

WS2(s) =
482

s(s + 1.0)
,

which has higher gain than WS1(s) has in low frequency range. We call this type of problem

type 2 problem. On the other hand, the weighting function WT (s) is used the same one that

is used in equation (5.28) in each type problem. Since the order of each generalized plant

is five, the order of each resultant feedback controller is also five. The feedback properties:

frequency responses of the sensitivity function and co-sensitivity function, which are obtained

in those types of problems, are illustrated in Figure 5.12. In (a), the result of the type 1

problem is plotted, in (b) the result of the type 2 problem is plotted.

Second, using each feedback controller, a feedforward controller is designed by solving the

model matching problem whose generalized plant is illustrated in Figure 5.13. The weighting

functions that are used in the generalized plant are as follows

WM (s) =
1302

s2 + 247s + 1302

Wρ(s) =
2.0
s

η = 4.0× 10−5.

Since the order of the generalized plant is 11, an 11th order feedforward controller is

obtained in each type of problem. Hence, each resultant TDF controller is 16th order, which

is higher by 10th order than that of the TDF controller designed with the proposed method.

Then, by using the balanced truncation method [1, 52], each 16th order controller is approxi-

mated with lower order TDF controllers. Here, in order to preserve the steady-state property

of the feedforward controller F (s), the truncated feedforward controller F̃r(s) is scaled as

follows.

Fr(s) = F̃r(s)×
F (0)
F̃r(0)

The approximated TDF controllers have variation according to the combination of orders of

feedback controller and feedforward controller.
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Figure 5.12: The feedback properties of the controllers obtained by solving the problems: (a)
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Figure 5.13: The generalized plant of the model matching problem
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Figure 5.14: The step responses

Step response of each closed loop system, which is composed of the nominal plant and each
controller derived from the type 1 problem, are plotted. In (a), a 16th order TDF controller
is used. In (b), a 6th order TDF controller, which is given with a first order reduced order
feedforward controller and a 5th order feedback controller, is used. In (c), a 6th order TDF
controller, which is given with a second order reduced order feedforward controller and a 4th
order reduced order feedback controller, is used. In (d), a 6th order TDF controller, which
is given with a 3rd order reduced order feedforward controller and a 3rd order reduced order
feedback controller, is used.
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Figure 5.15: The step responses

Step response of each closed loop system, which is composed of the nominal plant and each
controller derived from the type 2 problem, are plotted. In (a), a 16th order TDF controller
is used. In (b), a 6th order TDF controller, which is given with a first order reduced order
feedforward controller and a 5th order feedback controller, is used. In (c), a 6th order TDF
controller, which is given with a second order reduced order feedforward controller and a 4th
order reduced order feedback controller, is used. In (d), a 7th order TDF controller, which
is given with a second order reduced order feedforward controller and a 5th order reduced
order feedback controller, is used.
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Figure 5.14 plots step responses of closed loop systems in which 16th order TDF controller

and its reduced order controllers derived from the type 1 problem are adopted. Figure 5.15

plots step responses of closed loop systems in which 16th order TDF controller and its reduced

order controllers derived from the type 2 problem are adopted. From these figures, it can

be seen that each 16th order TDF controller has better tracking property than that of the

6th order TDF controller that is obtained with the proposed method. It is pretty natural

that a higher order controller performs better than a lower order controller. On the other

hand, compared with the 6th order controller obtained with the proposed method, none of

the reduced order controllers perform better.

5.5 Summary

In this chapter, we have considered designing a low-order TDF controller. Based on the

analysis in the previous chapter, formulations of designing the low-order TDF controller are

compared with each other. The result of the comparison has suggested that a method of

simultaneously designing the feedback controller and the feedforward controller is the best

way to derive the low-order TDF controller. Then we have chosen the way of simultaneous

approach. Another reason why we have adopted the simultaneous approach is that the

formulation of the simultaneous approach reduces to the non-standard H∞ problem, where

the way of designing the reduced-order controller has just been clarified. Thus we have

proposed a method of designing the low-order TDF controller based on the H∞ control.

In this method, we can design the TDF controller whose order is lower than the order of

the generalized plant by the sum of the dimensions of the measurement output of the real

plant and the order of the weighting function of the sensitivity function. In this method,

the TDF controller can be designed with the integral-type by using the result of chapter 3.

Effectiveness of the proposed method is verified with a numerical example of controlling the

magnetic levitation system.



Chapter 6

H∞ controller approximation

6.1 Introduction

In the previous chapters, we have considered the direct approach to deriving the low-order

H∞ controller. On the other hand, in this chapter we consider the indirect approach where

an approximation method is used for reducing the order of an H∞ controller.

In this chapter, we treat a specialized solution of the numerically solved H∞ controller,

which is represented by the linear fractional transformation of an optimized Youla parame-

ter [69] in RH∞. The numerical approach [3, 43, 54] is useful for solving the H∞ problem

with a constraint of specifying the closed loop poles. In many cases, the numerical approach

derives an extremely high-order Youla parameter and the resultant H∞ controller becomes

high order. However, it is unknown how to reduce the order of the H∞ controller without

deviating the constraint. In this chapter, we consider the possibility of reducing the order of

the H∞ controller by approximating the Youla parameter.

When reducing the order of the high-order H∞ controller which satisfies the constraint

of the closed loop pole location, it is required to reduce the order of the controller such that

the specified closed-loop property is preserved. For this requirement, in this study we firstly

propose a model approximation method for a system whose poles are located in a specified

domain. Since this approximation method assures that the poles of the approximated system

locate in the domain in which the poles of the original system locate, it is useful to apply this

method for the H∞ controller reduction problem which we consider in this chapter. Thus we

consider the problem of reducing the order of the H∞ controller based on the approximation.

One of advantages of this reduction method is that the reduced-order controller maintains

the closed-loop properties of the original controller, such as internal stability and closed-loop

pole specification. A sufficient condition for the closed loop transfer function satisfies the

constraint of the H∞ norm is derived. The effectiveness of this H∞ controller reduction

method is verified with a numerical example.

131
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G
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z w

y u

Figure 6.1: Closed loop system

6.2 A numerical approach to H∞ controller design

6.2.1 Youla parametrization

Consider the following generalized plant G(s) which is a transfer function matrix from

(wT , uT )T to (zT , yT )T , where vectors w , u, z and y represent the exogenous signals such

as perturbation and disturbances, the control input signals from actuators or controllers, the

controlled output signals to be evaluated and the measured output signals, respectively.

G(s) =
[

G11(s) G12(s)
G21(s) G22(s)

]

The generalized plant G(s) is composed of the plant and all weighting functions which specify

the robustness and the other closed loop specifications. When the controller K(s) is connected

between y and u, the closed loop transfer function from w to z is represented by the following

equation.

Tzw(s) = Fl (G(s),K(s))

The block diagram of the closed loop system is shown in Figure 6.1.

It is known that if one controller Knom(s) which stabilizes the closed loop system is given,

all the controllers which stabilize the closed loop system can be represented by using a stable

and proper transfer function Q(s). Assume that a plant P (s) is a minimal scalar system, and

is represented with realization

P (s) =
[

A B

C D

]
.

If we select a feedback gain F and an observer gain H such that matrices AF , A + BF and

AH , A + HC are stable, then all of the controllers which stabilize P (s) can be represented

as follows:

K(s) =
X(s) + Q(s)M(s)
Y (s)−Q(s)N(s)

, (6.1)
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where Q(s) ∈ RH∞ is a free parameter, and transfer functions N(s),M(s),X(s) and Y (s)

are represented as follows

[
N(s)
M(s)

]
=


 AF B

C + DF D
F 1




[
X(s) Y (s)

]
=
[

AH H −B −HD

F 0 1

]
.

This representation of the stabilizing controllers is called Youla parametrization. It should

be noted that K(s) in (6.1) stabilizes the closed loop system composed of P (s) and K(s), if

and only if Q(s) ∈ RH∞.

In general, it is known that by using the Youla parametrization, arbitrary closed loop

transfer function Tzw(s) can be represented with the following affine combination of stable

transfer functions:

Tzw(s) = T1(s)− T2(s)Q(s)T3(s) , Faffine (Q(s)) , (6.2)

where T1(s), T2(s) and T3(s) are certain stable transfer functions related to the plant, the

weighting function and the stabilizing controller, and Q(s) represents a free parameter. The

closed loop system is stable, if and only if we choose Q(s) from the set of all real rational

stable functions.

For example, let’s consider a problem of sensitivity minimization. In this problem the

transfer function is selected as

Tzw(s) = WS(s)
1

1 + P (s)K(s)
,

where WS(s) ∈ RH∞ is a weighting function. If we note the fact that equations:

P (s) =
N(s)
M(s)

, X(s)N(s) + Y (s)M(s) = 1

hold, it is verified that the transfer function Tzw(s) can be represented as follows

Tzw(s) = T1(s)− T2(s)Q(s)T3(s),

where

T1(s) , WS(s)M(s)Y (s)

T2(s) , WS(s)M(s)N(s)

T3(s) , 1.

The representation of the closed loop system in (6.2) is useful for designing an H∞ con-

troller which specifies the location of the closed loop poles. Let us denote RHD
∞ as a class

of stable proper transfer functions whose poles lie in the disk domain Dom(D). Figure 6.2
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Figure 6.2: Disk domain

illustrates Dom(D). The set of closed loop poles is the union of the poles of the transfer

functions T1(s), T2(s), T3(s) and Q(s). Since the poles of transfer functions T1(s), T2(s) and

T3(s) can be selected from arbitrary complex numbers on the left half plane by the selection of

F,H and weighting functions, adding a constraint such that Q(s) ∈ RHD
∞, the H∞ controller

which locates closed loop poles in a specified domain Dom(D) can be obtained. We call the

problem of finding Q(s) ∈ RHD
∞ which satisfies the constraint of H∞-norm the H∞ problem

with pole specification. The problem is formulated as follows.

Problem 6.2.1 The H∞ problem with pole specification

Suppose that the transfer functions Ti(s) ∈ RHD
∞ are given. Then, find a stable system Q(s)

that achieves

‖T1(s)− T2(s)Q(s)T3(s)‖∞ < 1

such that

Q(s) ∈ RHD
∞.

If such a Q(s) is obtained, the controller in a request is given by substituting Q(s) into

the equation in (6.1).

6.2.2 A numerical approach to controller design

In order to solve the problem stated above numerically, we must search a solution over an

infinite-dimensional function space RH∞. Then, we focus on an approximation stated as

follows.
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Let us define a sequence of transfer functions Qk(s) ∈ RH∞, k = 1, 2, . . . ,N , and let us

denote transfer functions as follows

R0 , T1(s)

Rk , T2(s)Qk(s)T3(s).

Then, restricting the closed loop transfer function Tzw(s) to a finite-dimensional function

space as

HN (x) , R0 +
N∑

k=1

xkRk, xk ∈ R,

we optimize a function

φ(x) , φ (HN(x)) ,

where φ is a function which specifies some performance of the control system. This restriction

is called Ritz Approximation. In this approximation, it is assured that φ(x) converges to an

optimal value as N →∞ [3, 54]. To each x ∈ R
N there corresponds the controller

K(x) = Fl

(
K0(s),

N∑
k=1

xkQk(s)

)

that achieves the closed loop specification φ (HN (x)) < γ.

Now, in order to solve Problem 6.2.1, we put the free parameter Q(s) as

Q(s) =
N∑

k=1

xkQk(s) ,
N∑

k=1

xk

(
α

s + α

)k

, (6.3)

where α > 0 is chosen such that Qk(s) satisfies Qk(s) ∈ RHD
∞ and xk, (k = 1, 2, . . . ,N) are

finite-dimensional parameters. In this problem the function φ indicates the H∞-norm. Since

the function of the H∞-norm satisfies

‖βHa + (1− β)Hb‖∞ ≤ β‖Ha‖∞ + (1− β)‖Hb‖∞, ∀β ∈ [0, 1] ,

where Ha and Hb are arbitrary transfer functions in RH∞, it is apparent that φ is a convex

function. Hence, if we put the free parameter Q(s) as (6.3), Problem 6.2.1 can be reduced to

a finite-dimensional convex optimization problem.

6.2.3 A defect of the numerical approach

Thus, Problem 6.2.1 can be solved by using a convex optimization method such as ellipsoid

algorithm [3]. However, sometimes the order of the free parameter becomes very high, causing

the controller also high order. In order to understand this mechanism, let us represent the

controller in (6.1) as

K(s) = Fl (K0(s),Q(s)) ,
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where K0(s) is defined as

K0(s) ,
[

X(s)Y −1(s) M(s) + X(s)Y −1(s)N(s)
Y −1(s) Y −1(s)N(s)

]
,

and let us introduce the state-space form of K0(s) and Q(s) as follows

K0(s) =


 Ak Bk1 Bk2

Ck1 Dk11 Dk12

Ck2 Dk21 Dk22




Q(s) =
[

Aq Bq

Cq Dq

]
.

Then the state-space form of the controller K(s) = Fl (K0(s),Q(s)) can be represented as

follows.

K(s) =


 Ak + Bk2DqECk2 Bk2(I + DqEDK22)Cq Bk1 + Bk2DqEDk21

BqECk2 Aq + BqEDk22Cq BqEDk21

Ck1 + Dk12DqECk2 Dk12(I + DqEDk22)Cq Dk11 + Dk12DqEDk21


 , (6.4)

where E = (I −Dk22Dq)
−1 and K0(s). From this representation of K(s) it can be seen that

the McMillan degree of K(s) can be estimated as follows

deg (K(s)) ≤ deg (K0(s)) + deg (Q(s)) . (6.5)

In the above relation, the inequality holds when pole-zero cancellations occur between K0(s)

and Q(s). In such a case, the order of the controller is reduced to some degree. However,

it is not always expected that the pole-zero cancellation reduces the order of the controller

to some required order, rather it is ordinary that the pole-zero cancellation doesn’t occur.

Thus, in this numerical approach the increase in the order of the resultant controller is one

of difficulties, hence the controller order reduction is required.

6.3 The controller reduction by the approximation of Q(s)

The relation in (6.5) informs us an upper bound of the order of the resultant controller. In

this study we consider to reduce the order of the upper bound in order to reduce deg (K(s)).

In this context, it is useful to reduce the order of Q(s). When approximating Q(s), it is

important to consider the preservation of the closed loop specifications such as the closed

loop stability, the designation of closed loop pole position and the H∞ norm constraint.

Suppose that Q(s) is approximated by Qr(s). The conditions of the stability and the pole

position are satisfied if Qr(s) ∈ RHD
∞. Then we have only to consider the constraint on the

norm in order to derive the low-order H∞ controller which satisfies the pole specification.

Now, it is required to consider a model approximation method which is closed on RHD
∞.
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6.3.1 Balanced truncation

Now, let us introduce one of the most useful model approximation method. Balanced trun-

cation [52, 56, 43] is one of the most effective model approximation methods for reducing the

order of stable systems. We consider to approximate the system Q(s) based on the Balanced

truncation. Consider a linear time invariant stable system Q(s) described by

Q(s) =
[

A B

C D

]
,

where it is assumed that the McMillan degree of Q(s) is n, and the pairs (A,B), (A,C) are

controllable and observable. The controllability Gramian of Q(s) is defined as

Σc ,
∫ ∞

0
eAtBBT eAT tdt,

and is given by the unique positive definite solution to the Lyapunov equation

ΣcA
T + AΣc + BBT = O.

The observability Gramian of G(s) is defined as

Σo ,
∫ ∞

0
eAT tCT CeAtdt,

and is given by the unique positive definite solution to the Lyapunov equation

ΣoA + AT Σo + CT C = O.

Positive square roots of eigenvalues of ΣoΣc are called Hankel singular values of Q(s), and they

are invariant under a nonsingular state transformation of Q(s). Let σ1 ≥ σ2 ≥ · · · ≥ σn > 0

be the Hankel singular values of Q(s). The system is said to be internally balanced if the

Gramians satisfy the equation

Σc = Σo = Σ,

where Σ = diag (σ1, σ2, · · · , σn). Let us partition Σ accordingly into

Σ =
[

Σa O
O Σb

]
,

where Σa = diag (σ1, σ2, · · · , σr) and Σb = diag (σr+1, σr+2, · · · , σn).

Suppose that Q(s) is internally balanced. Let us partition A,B,C conformably with the

partitions of Σ.

Q(s) =


A11 A12 B1

A21 A22 B2

C1 C2 D


 , A11 ∈ R

r×r, A22 ∈ R
(n−r)×(n−r)

Then an approximated system of Q(s) is given by an r-state reduced-order system:

Qr(s) =
[

A11 B1

C1 D

]
.

Concerned about the approximation the following lemma is known [53].
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Lemma 6.3.1 Let Q(s) be stable and minimal system with n states. Let r < n and let Qr(s)

be a reduced-order system obtained by approximating Q(s) with Balanced truncation. Then

the following items hold.

1) Qr(s) is stable and minimal system.

2) ‖Q(s)−Qr(s)‖∞ ≤ 2traceΣb.

Remark 6.3.1 Balanced truncation is a method to approximate a system in RH∞ with a

reduced-order system in RH∞. If Q(s) ∈ RHD
∞ is approximated by Qr(s), it is only assured

that Qr(s) ∈ RH∞. Hence the reduced-order system may not satisfy the pole specification of

the original system.

In the following section we will consider a model reduction method which preserves the

specified domain in which the poles locate.

6.3.2 Model approximation with constraint of pole position

Besides the internal stability, the closed loop pole specification to a specified domain is

important in controller design [21]. The domain is specified to the left hand side divided by

the dashed lines which is shown in Figure 6.2. If the closed loop poles are confined to this

domain, then the system modes damp asymptotically at desired rates. However, it is difficult

to address this domain directly. Hence, we approximate this domain by Dom(D).

This section proposes a model approximation method that preserves the domain in which

the poles locate. Here, the domain is limited to a disk domain. Outline of our idea concerned

with the approximation method is listed as follows.

1. The coordinate of the original system is transformed using an affine transformation

and a bilinear transformation. Then the disk domain on the complex left half plane

is transformed to the complex left half plane of the changed coordinate. Poles of the

original system are mapped into the left half plane in the new coordinate.

2. The original system in the new coordinate is approximated to a low-order one using

Balanced truncation. Then it should be noted that the poles of the reduced-order

system in the new coordinate still locate in the left half plane.

3. Again the reduced-order system is transformed using the inverse of the affine transfor-

mation and the bilinear transformation. Then the poles of the reduced-order system in

the original coordinate locate in the specified disk on the complex left half plane.

Thus, we can approximate a system, which has poles on a specified domain with a reduced-

order system, which still has poles on a specified domain. Now let us move on to details.
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Figure 6.3: s-plane and s̃-plane

Firstly, let us introduce some important transformations. The affine transformation is defined

as

s + α

β
,

where α and β are some real numbers. This transforms Dom(D) to the domain within the

unit disk on the complex plane. The bilinear transformation is defined as

s̃ =
υ − 1
υ + 1

.

This transforms the domain within the unit disk on the complex plane to the complex left

half plane. The mixed transformation which transforms Dom(D) to the complex left half

plane is described by

s̃ =
s + α− β

s + α + β
, (6.6)

where α > β 6= 0. This transformation is called a Linear Fractional Transformation (LFT),

and is a one-to-one mapping of S2 onto S2. LFT has a lot of attractive properties, one of

which is given by the following lemma.

Lemma 6.3.2 Let Q(s) be analytic outside Dom(D). Let the function with the coordinate

transformed by LFT be defined as

R(s̃) , Q

(
(−α− β)s̃ + α− β

s̃− 1

)
.

Then R(s̃) is analytic in the complex right half plane.

Proof. The reader may refer to the Riemann mapping theorem [58].

Thus, by transforming the coordinate of Q(s) ∈ RHD
∞ with LFT in (6.6) we can obtain

another system R(s̃) ∈ RH∞. In the later discussion, for notational ease R(s̃) is denoted by

R(s).
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Then we approximate R(s) by a reduced-order system Rr(s). Assume that R(s) is a

stable n-th order system. Using Balanced truncation, we can obtain an r-the order reduced-

order system. Let Rr(s) be the reduced-order system obtained by Balanced truncation. From

Lemma 6.3.1 Rr(s) ∈ RH∞, hence Rr(s) is analytic in the complex right half plane.

Then transform the coordinate of Rr(s) by the inverse of the LFT:

s =
(−α− β)s̃ + α− β

s̃− 1
. (6.7)

Let the transformed system be Qr(s). Then the r-the order reduced-order system Qr(s) is

analytic outside Dom(D), i. e., Qr(s) ∈ RHD
∞. Here, we obtain the following theorem.

Theorem 6.3.1 Let Q(s) be analytic outside Dom(D). Then the reduced-order system Qr(s)

is analytic outside Dom(D).

Proof. The system R(s) is analytic in the complex right half plane. The reduced-order

system Rr(s) which is obtained by Balanced truncation is also analytic in the complex right

half plane. Therefore Qr(s) obtained by the inverse transformation of LFT in (6.6) is ana-

lytic outside Dom(D), because the inverse transformation is also LFT, that is, a one-to-one

mapping of S2 onto S2.

Thus the procedure to approximate Q(s) is listed as follows.

Procedure 6.3.1 Assume that an original system Q(s) ∈ RHD
∞ is obtained. Then the

following procedure derives an approximated system Qr(s) ∈ RHD
∞.

step 1: Transform Q(s) ∈ RHD
∞ to R(s̃) ∈ RH∞ with LFT in (6.6).

step 2: Approximate R(s̃) ∈ RH∞ by Rr(s̃) ∈ RH∞ with Balanced truncation.

step 3: Transform Rr(s̃) ∈ RH∞ to Qr(s) ∈ RHD
∞ with LFT in (6.7).

Thus, we can reduce the dynamical order of Q(s) ∈ RHD
∞ with preserving the specified

domain in which poles locate.

In the second place, we look into the error of the approximation discussed in the above.

The following theorem gives an upper bound for the approximation error.

Theorem 6.3.2 Assume that the H∞ norm error bound of R(s) − Rr(s) is known to be γ,

i.e. the following inequality holds.

‖R(s)−Rr(s)‖∞ < γ (6.8)

Then the error bound of Q(s)−Qr(s) is evaluated with the following inequality.

‖Q(s)−Qr(s)‖∞ < γ (6.9)
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Proof. Define ER(s), EQ(s) as follows.

ER(s) , R(s)−Rr(s)

EQ(s) , Q(s)−Qr(s)

The systems Q(s) and Qr(s) are analytic outside Dom(D), hence EQ(s) is also analytic

outside Dom(D). By the maximum modulus principle [58] of the analytical functions we

obtain an inequality

sup
Dom(C)

{EQ(s)} > sup
ω
{EQ(jω)} . (6.10)

The LFT in (6.6) transforms the value of the function EQ(s) on Dom(C) to the value of the

function ER(jω) on the imaginary axis. Hence the following equation is obtained.

sup
ω
{ER(jω)} = sup

Dom(C)
{EQ(s)} . (6.11)

Since R(s) ∈ RH∞ and Rr(s) ∈ RH∞ are analytic in the complex right half plane, ER(s)

is also analytic in the complex right half plane. The H∞ norm of the function ER(s) equals

the maximal value of the function ER(jω) on the imaginary axis.

‖ER(s)‖∞ = sup
ω
{ER(jω)} (6.12)

From equations. (6.11) and (6.12), the following equation is obtained

‖ER(s)‖∞ = sup
Dom(C)

{EQ(s)} . (6.13)

If the following inequality

‖ER(s)‖∞ < γ

holds, then from equation (6.13), the inequality is obtained

sup
Dom(C)

{EQ(s)} < γ. (6.14)

Then from the inequalities (6.10) and (6.14), the following inequality

sup
ω
{EQ(jω)} = ‖EQ(s)‖∞ < γ

holds.

Remark 6.3.2 From Lemma 6.3.1, an upper bound of the reduction error ER(s) is given by

the following inequality.

‖ER(s)‖∞ ≤ 2trace,Σ2
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where Σ2 is defined as

Σ2 , diag (σr+1, σr+2, · · · , σn)

and σi, (1 ≤ i ≤ n) are the Hankel singular values of R(s). Hence, using the result of

Theorem 6.3.2, the error bound of EQ(s) is evaluated using the Hankel singular values of

R(s) as follows

‖EQ(s)‖∞ < 2traceΣ2.

6.3.3 The H∞ controller reduction

In this section, by using the approximation method proposed in the previous section we

consider to reduce the order of the H∞ controller which is represented by LFT with a high-

order Youla parameter. In order to reduce the order of the H∞ controller, it is useful to

reduce the order of the Youla parameter when it is high order. We apply the approximation

method proposed in the above section to reduce the order of the Youla parameter.

Suppose that Q∗(s) ∈ RHD
∞, which is an n-th order solution to Problem 6.2.1 is given,

and define the value of the objective function

λ∗ , ‖T1(s)− T2(s)Q∗(s)T3(s)‖∞ < 1.

We approximate Q∗(s) with r-th order system Qr(s) ∈ RHD
∞ by Procedure 6.3.1, then define

the value of the objective function

λr , ‖T1(s)− T2(s)Qr(s)T3(s)‖∞.

Then the following lemma holds.

Lemma 6.3.3 The inequality holds.

λr − λ∗ ≤ ‖T2(s)‖∞ · ‖Q∗(s)−Qr(s)‖∞ · ‖T3(s)‖∞ (6.15)

Proof. It can immediately verified by the following inequality.

λr = ‖T1(s)− T2(s)Q∗(s)T3(s) + T2(s) (Q∗(s)−Qr(s)) T3(s)‖∞
≤ ‖T1(s)− T2(s)Q∗(s)T3(s)‖∞ + ‖T2(s) (Q∗(s)−Qr(s)) T3(s)‖∞
≤ λ∗ + ‖T2(s)‖∞ · ‖Q∗(s)−Qr(s)‖∞ · ‖T3(s)‖∞

By using the above lemma, we can derive the next result.

Theorem 6.3.3 Let us denote the Hankel singular values of R(s) as σR
i , i = 1, 2, · · · , n. If

an inequality

λ∗ + 2 ‖T2(s)‖∞ · trace ΣR
2 · ‖T3(s)‖∞ ≤ 1, (6.16)
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where ΣR
2 implies

ΣR
2 , diag

(
σR

r+1, σ
R
r+2, · · · , σR

n

)
,

holds, then Qr(s) is a solution to Problem 6.2.1.

Proof. From Lemma 6.3.1, an inequality

‖R(s)−Rr(s)‖∞ ≤ 2 trace ΣR2

holds, hence from Theorem 6.3.2 an inequality

‖Q(s)−Qr(s)‖∞ < 2 trace ΣR2 (6.17)

holds. Then, from Lemma 6.3.3 and (6.17),

λr < λ∗ + 2 ‖T2(s)‖∞ · trace ΣR2 · ‖T3(s)‖∞

holds. Hence, if the inequality (6.16) holds, λr < 1 is satisfied. Then, Qr(s) ∈ RHD
∞ is a

solution to Problem 6.2.1.

Substituting Qr(s) into the representation of the controller in (6.1) derives an approxi-

mated controller. Then it is assured that the approximated controller satisfies the constraint

of the pole position in the closed loop. A sufficient condition for the approximated controller

satisfies the constraint of the H∞-norm is given in Theorem 6.3.3. Then we have to consider

next is to ascertain whether the order of the approximated controller is really reduced or

not. In the state space representations of the H∞ controller in (6.4), if Q(s) is replaced with

Q∗(s), the resultant controller is not necessarily minimal, hence the McMillan degree of the

controllers may reduce to some order:

deg (Fl (K(s),Q∗(s))) ≤ deg (K0(s)) + deg (Q∗(s)) .

Hence the pole-zero cancellation [61, 36] may cause a case such that the order of the approx-

imated controller is higher than that of the original controller.

In order to avoid such a situation, we look into the pole-zero cancellation. Let us denote

the controller K0(s) as

K0(s) =
[

K11(s) K12(s)
K21(s) K22(s)

]
.

Then it is known the property concerned about the pole-zero cancellation.

Lemma 6.3.4 Every mode of the unobservable subspace in Fl (K0(s),Q(s)) is the invariant

zero of K12(s). Every mode of the uncontrollable subspace in Fl (K0(s),Q(s)) is the invariant

zero of K21(s).
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Proof. See reference [37, 36].

By using the above lemma, we obtain the following result.

Theorem 6.3.4 Suppose that sum of the numbers of the invariant zeros of K12(s) and K21(s)

is TZ > 0. Then, if the inequality

deg (Q∗(s))− deg (Qr(s)) > TZ

holds, the following inequality holds.

deg (Fl (K0(s),Q∗(s))) > deg (Fl (K0(s),Qr(s))) (6.18)

holds.

Proof. Suppose that the inequality

deg (Q∗(s))− deg (Qr(s)) > TZ (6.19)

holds. From Lemma 6.3.4, the pole-zero cancellations in Fl (K0(s),Q∗(s)) may happen within

its unobservable mode and uncontrollable mode. Hence, an inequality

deg (Fl (K0(s),Q∗(s))) ≥ deg (K0(s)) + deg (Q∗(s))− TZ (6.20)

holds. From (6.19) and (6.20), the following inequality holds.

deg (Fl (K0(s),Q∗(s))) > deg (K0(s)) + deg (Qr(s)) (6.21)

On the other hand, deg (Fl (K0(s),Qr(s))) satisfies

deg (Fl (K0(s),Qr(s))) ≤ deg (K0(s)) + deg (Qr(s)) . (6.22)

Hence, from (6.21) and (6.22), (6.18) holds.

6.4 A numerical example

Consider the following 17-th order system Q∗(s) which is obtained as a solution to Problem

6.2.1. The pole positions of Q∗(s) are illustrated in Figure 6.4. Let the domain in which

the poles are located be denoted Dom(D) with center -100 + j0 and radius 99.5 on the

complex plane, hence the parameters α and β are set as α = 100, β = 99.5. The 12-th order

reduced-order system which is obtained by the proposed approximation method is denoted

by Q12prop(s) and the 12-th order reduced-order system obtained by Balanced truncation is

denoted by Q12BT (s). The pole positions of these systems are illustrated in Figure 6.5 and

Figure 6.6, respectively. From these figures, it is apparent that all the poles of Q12prop(s)

are located within Dom(D), while some poles of Q12BT (s) are located outside Dom(D). The

poles of the closed loop transfer functions Faffine (Q12prop(s)) and Faffine (Q12BT (s)) are
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Figure 6.4: Pole position of Q∗(s)

illustrated in Figure 6.7 and Figure 6.8, respectively. It is also apparent that the closed loop

pole specification is satisfied by using the proposed model reduction method, on the other

hand, the specification is not satisfied by using Balanced truncation only. The H∞ norm of

the approximated closed loop transfer function is evaluated by using the following inequality.

‖Faffine (Q12prop(s))‖∞ = ‖T1(s)− T2(s)Q(s)T3(s) + T2(s) (Q(s)−Q12prop(s)) T3(s)‖∞
≤ ‖T1(s)− T2(s)Q(s)T3(s)‖∞ + ‖T2(s) (Q(s)−Q12prop(s)) T3(s)‖∞
≤ ‖Faffine (Q(s))‖∞ + ‖T2(s)‖∞ · ‖T3(s)‖∞ · ‖Q(s)−Q12prop(s)‖∞

(6.23)

We can check the H∞ norm condition by using the above inequality and the result of

Theorem 6.3.2. In fact, the H∞ norm of the approximated closed loop transfer function is

evaluated as

‖Faffine (Q12prop(s))‖∞ < 0.965. (6.24)

Hence, the reduced-order H∞ controller Fl (K0(s), (Q12prop(s)) which satisfies the pole spec-

ification can be obtained.

6.5 Summary and discussion

In this chapter we have proposed a controller reduction method for a H∞ controller which

is designed with the numerical approach based on the optimization of the Youla parameter.

This method is based on the approximation of the Youla parameter that is designed to

satisfy the constraints of the closed loop system. Thus the parameter holds information of
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Figure 6.5: Pole position of Q12prop(s)

Table 6.1: A summary of deg (Qr), λ∗+2‖T2‖∞ ·traceΣR
2 ·‖T3‖∞, λ and the McMillan degrees

of the controllers

deg(Qr) λ∗ + 2‖T2‖∞ · traceΣR
2 · ‖T3‖∞ λ deg (Fl (K0, Qr))

17 – 0.802 20 (19)
16 0.803 0.802 20 (18)
15 0.805 0.802 19 (17)
14 0.814 0.802 18 (16)
13 0.839 0.804 17 (15)
12 0.965 0.807 16 (14)
11 1.21 0.826 15 (13)
10 2.47 1.09 13 (12)

the constraints of the closed loop system, hence it is natural to approximate the parameter

without losing the information of the constraints. However there was a difficulty in reducing

the order of the controller. Since this method approximates the Youla parameter, the order

of the controller is not necessary reduced sufficiently if the order of the parameter is reduced.

In order to avoid this situation we have given a sufficient condition for the order of the

approximated controller is really reduced.

Thus we have given a H∞ controller reduction method. The advantages of the method are

that the approximated controller certainly satisfies the internal stability and the constraint

of the pole position in the closed loop. For the constraint of the H∞-norm, a sufficient

condition for satisfying the constraint is given. The effectiveness of this result was verified

with a numerical example.
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Figure 6.6: Pole position of Q12BT (s)
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Figure 6.7: Pole position of Faffine (Q12prop(s))
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Figure 6.8: Pole position of Faffine (Q12BT (s))



Chapter 7

Conclusion

In general, as the structure of a design problem becomes more complex, the number of

choices of formulations to solve the problem increases. As we have seen in chapters 4 and

5, the complexity and the optimality of the solution depend on the formulation chosen. In

the designing of robust controllers based on the H∞ problem, there are many approaches

to solving the design problems. However, these problems are usually formulated as the

standard H∞ problem and their solutions sometimes become complex and result in high-order

controllers. It is therefore important, not only to solve a problem formulated beforehand but

also to consider a new formulation.

This thesis has considered the formulation of the H∞ control problem in the designing of

low-order controllers from several viewpoints. Two types of approaches to the problem are

considered: a direct approach based on the derivation of the reduced-order H∞ controllers,

and an indirect approach based on the approximation of a high-order controller. For each

approach, some methods for designing low-order controllers have been proposed.

1. In the direct approach, by getting a hint to reduce the dynamical order of a controller

from the minimal-order-observer design, we have treated the non-standard H∞ control

problems, where the dimensions of the control inputs are greater than those of the con-

trolled outputs, or the dimensions of the measurement outputs are greater than those

of the disturbance inputs. As a result, generalized classes of the reduced-order H∞ con-

trollers are expressed with free parameters. The reduced-order controllers are classified

into two types: a minimal-order-observer-type and a dual type of the minimal order

observer. Thus, this study has shown that the low-order controllers can be obtained

by reducing some controller design problem to the non-standard H∞ problem. While

the formulation of non-standard H∞ problem has been avoided in previous studies, it

is expected that the non-standard H∞ problem is positively utilized in the controller

designs. This thesis has, in fact, clarified the controller design problems that can be

formulated as the non-standard problems and has shown the advantages of formulating

them in this way.

149
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This thesis has gone on to clarify some classes of the problems that are reducible to the

non-standard H∞ problem and has proposed methods for deriving robust controllers.

• Based on the non-standard H∞ problem, a new formulation for designing an

integral-type H∞ controller is proposed, and new method for deriving the low-

order controller is shown. The advantages of this formulation are due to the sim-

plicity of the derivation. If the plant doesn’t include integrators, it is not necessary

to solve the so-called pseudo stabilizing solution of the ARE. On the other hand, if

the plant includes the integrators, although it is still necessary to solve the pseudo

stabilizing solution, it is not necessary to transform the non-standard problem to

the standard problem and to separate the integrators from the plant. Moreover,

the results can be extended to TDF controller design which is also reducible to

the non-standard H∞ control problem.

• A TDF robust controller design problem is reduced to the non-standard H∞ prob-

lem, and a new method for designing a low-order TDF controller is proposed. This

method has many advantages over conventional design methods of TDF controller.

One is that the method makes it possible to design both the feedback controller

and the feedforward controller simultaneously, hence the trade-off between the

performances of the controllers can be considered. In this thesis, it is pointed

out that there exists trade-off between the performances of the controllers if those

dynamics are common. The other is that the order of the TDF controller can be

reduced to the order which is lower than that of the generalized plant.

2. With regard to the indirect approach, this thesis has treated a specialized solution of

the H∞ controller, which is represented with an optimized Youla parameter. Since the

order of the parameter is extremely high, the order of the controller is also high. In

this thesis, we have proposed a model approximation method for a linear time invariant

stable system whose poles are located in a specified disk on the left half plane. This

method preserves the domain in which the poles of the original system are located. An

upper bound of the model approximation error was evaluated using the Hankel singular

values of the original system. By using the approximation method for reducing the order

of the Youla parameter, a method for reducing the order of the H∞ controller, which

satisfies a constraint of the closed loop pole position, is proposed.
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Appendix A

Preliminary results

A.1 Invariant zeros

The invariant zeros are characterized by the following lemma.

Lemma A.1.1 (Invariant zeros) Let us consider the system

T (s) =
[

A B

C D

]
,

and define a system matrix as follows

Q(s) ,
[

A− sI B

C D

]
.

A complex number z0 ∈ C is called an invariant zero of T (s) if it satisfies

rank (Q(z0)) < normal rank (Q(s)) ,

where the normal rank of Q(s) means the maximally possible rank of Q(s), s ∈ C.

If D is a matrix of full rank, the invariant zeros are defined by the following three cases.

(i) When D is full column rank, the invariant zeros of the system T (s) are the unobservable

modes of the pair (A−BD†C,D⊥C).

(ii) When D is full row rank, the invariant zeros of the system T (s) are the uncontrollable

modes of the pair (A−BD†C,BD⊥).

(iii) When D is a square matrix, the invariant zeros of the system T (s) are the eigenvalues

of the matrix A−BD−1C.

A.2 Parametrization of stabilizing controllers

Let us consider the system

G(s) =
[

G11(s) G12(s)
G21(s) G22(s)

]
=


 A B1 B2

C1 O D12

C2 D21 O


 , (A.1)
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where (A,B2) is stabilizable and (A,C2) is detectable.

Lemma A.2.1 Choose the matrices F and H such that the matrices

AF = A + B2F

AH = A + HC2

are both stable. Then the class of all the stabilizing controllers for G22(s) is represented as

follows:

K(s) = Fl




 A + B2F + HC2 −H −B2

F O −I
−C2 I O


 , Q(s)


 , Q(s) ∈ RH∞. (A.2)

The class of closed loop transfer functions Gzw(s) = Fl (G(s),K(s)) is represented as follows:

Gzw(s) = Fl






AF −B2F B1 B2

O AH BH O

CF −D12F O D12

O C2 D21 O


 ,−Q(s)


 , Q(s) ∈ RH∞, (A.3)

where BH and CF are defined as follows.

BH = B1 + HD21

CF = C1 + D12F

A.3 A matrix equation

Let us define the matrix equation as follows

PA1 + A2P = B, (A.4)

where A1 ∈ R
n×n and A2 ∈ R

m×m are square matrices.

Lemma A.3.1 If A1 and A2 satisfy

λi(A1) + λj(A2) 6= 0, ∀i ∈ [1, 2, . . . , n] ,∀j ∈ [1, 2, . . . ,m] (A.5)

the matrix equation in (A.4) has a unique solution. Specifically in the case B = O, the unique

solution is P = O.

A.4 Star product

Let us consider the systems:

G(s) =


 A B1 B2

C1 D11 D12

C2 D21 D22


 , K(s) =


 AK BK1 BK2

CK1 DK11 DK12

CK2 DK21 DK22


 .
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Then the star product of G(s) and K(s) are defined as

G(s) ? K(s) =
[

Ā B̄

C̄ D̄

]
,

where

Ā =
[

A + B2R̃
−1DK11C2 B2R̃

−1CK1

BK1R
−1C2 AK + BK1R

−1D22CK1

]

B̄ =
[

B1 + B2R̃
−1DK11D21 B2R̃

−1DK12

BK1R
−1D21 BK2 + BK1R−1D22DK12

]

C̄ =
[

C1 + D12DK11R
−1C2 D12R̃

−1CK1

DK21R
−1C2 CK2 + DK21R

−1D22CK1

]

D̄ =
[

D11 + D12DK11R
−1D21 D12R̃

−1DK12

DK21R
−1D21 DK22 + DK21R

−1D22DK12

]
R = I −D22DK11, R̃ = I −DK11D22.

A.5 Inner function

A transfer function N(s) is inner if N ∈ RH∞ and NT (−s)N(s) = I.

Lemma A.5.1 Let us consider the system N(s) as follows:

N(s) =
[

A B

C D

]
.

Suppose that D is of full column rank, (A,C) is detectable. Then N(s) is inner if there

exists P ≥ O such that 


PA + AT P + CT C = O
DT C + BT P = O
DT D = I

. (A.6)

A.6 Lossless system

Let us consider the stable system

Ξ(s) =
[

Ξ11(s) Ξ12(s)
Ξ21(s) Ξ22(s)

]
∈ RHm×p

∞ , m ≥ p.

Suppose that Ξ(s) satisfies 


ΞT (−s)Ξ(s) = I
Ξ22(∞) = O
det (Ξ21(jω)) 6= 0;∀ω

(A.7)

then the system Ξ(s) is called lossless.



160 PRELIMINARY RESULTS

Lemma A.6.1 Suppose that the system Ξ(s) is lossless, and that the system Q(s) is proper.

Then the following items are equivalent.

1. A closed loop system (Ξ(s),Q(s)) is internally stable and Q(s) satisfies

‖Fl (Ξ(s),Q(s)) ‖∞ < 1.

2. Q(s) satisfies

‖Q(s)‖∞ < 1.

A.7 Disturbance feedforward problem

Let us consider the standard H∞ problem for

G(s) =


 A B1 B2

C1 O D12

C2 D21 O


 , (A.8)

where the assumptions A1, A2 and A3 are satisfied. If the matrix D21 is nonsingular and

the matrix A−B1D
†
21C2 is stable, the H∞ problem is called DF (Disturbance Feedforward)

problem. The solution of DF problem is listed in the following lemma.

Lemma A.7.1 The DF problem is solvable if and only if an ARE:

X
(
A−B2D

†
12C1

)
+
(
A−B2D

†
12C1

)T
X

+X

{
B1B

T
1 −B2D

†
12

(
B2D

†
12

)T
}

X +
(
D⊥

12C1

)T
D⊥

12C1 = O

has a nonnegative definite stabilizing solution X. If the condition is satisfied, the H∞ con-

troller is represented as follows:

K(s) = Fl




 A−B1D

−1
21 C2 + B2F∞ B1D

−1
21 B2Σ

F∞ O Σ
−
(
D−1

21 C2 + BT
1 X
)

D−1
21 O


 , N(s)


 , (A.9)

where N(s) ∈ BH∞, and F∞ and Σ are defined as

F∞ = −D†
12C1 −D†

12

(
B2D

†
12

)T
X

Σ =
(
DT

12D12

)− 1
2 .

A.8 ARE (Algebraic Riccati Equation)

Let a matrix A ∈ R
n×n and a symmetric matrices R ∈ R

n×n and Q ∈ R
n×n be given. If a

solution of the following ARE:

XA + AT X + XRX + Q = O (A.10)
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stabilizes the matrix

AX = A + RX,

then the solution X is called a stabilizing solution of the ARE (A.10).

Definition A.8.1 Associated with the ARE (A.10), let us define a Hamiltonian matrix:

HX ,
[

A R
−Q −AT

]
∈ R

2n×2n. (A.11)

Lemma A.8.1 If HX doesn’t have poles on the imaginary axis, then HX has n stable eigen-

values and n unstable eigenvalues.

Suppose that HX doesn’t have poles on the imaginary axis. Then let Λ− ∈ R
n×n be a

matrix whose eigenvalues are all of stable eigenvalues of HX . A full column rank matrix of

V =
[

X1

X2

]
satisfies

HXV = V Λ−, (A.12)

where V is a basis of the mode Λ−. Then if det (X1) 6= 0, we denote

HX ∈ Dom (Ric) (A.13)

Ric (HX) = X2X
−1
1 . (A.14)

Lemma A.8.2 The stabilizing solution of the ARE (A.10) is given by X = Ric (HX).

A.9 Solution to Full control problem

Lemma A.9.1 In order that the FC problem is solvable, it is necessary that the following

ARE:

Y
(
A−B1D

†
21C2

)T
+
(
A−B1D

†
21C2

)
Y

+Y

{
CT

1 C1 −
(
D†

21C2

)T
D†

21C2

}
Y + B1D

⊥
21

(
B1D

⊥
21

)T
= O (A.15)

has a nonnegative definite stabilizing solution Y . By stabilizing, we mean that the following

matrix is stable.

AY , A−B1D
†
21C2 + Y

{
CT

1 C1 −
(
D†

21C2

)T
D†

21C2

}

Proof. See the paper [11].
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A.10 Reduction mode of an ARE for the standard problem

Let us consider an ARE:

Y
(
A−B1D

†
21C2

)T
+
(
A−B1D

†
21C2

)
Y

+ Y

{
CT

1 C1 −
(
D†

21C2

)T
D†

21C2

}
Y + B1D

⊥
21

(
B1D

⊥
21

)T
= O, (A.16)

which is required to be solved in the standard H∞ problem. For this ARE, the following

lemma holds.

Lemma A.10.1 Assume that the ARE in (A.16) has a positive definite stabilizing solution

Y , i.e., there exists a solution Y > O for the ARE and the solution stabilizes the matrix:

AYs , A−B1D
†
21C2 + Y

{
CT

1 C1 −
(
D†

21C2

)T
D†

21C2

}
.

Then it is shown that

∀U,det
(
UUT

)
6= 0;

{
U
(
A−B1D

†
21C2

)
= Λ−U, λi (Λ−) < 0,∀i

UB1D
⊥
21 = O

ker
(
Y T
)

= range
(
UT
)
.

Proof. Let U be a full row rank matrix which satisfies UY = O. Pre-multiplying by U and

post-multiplying by UT , the ARE is written as

UY AT
Y UT + U

(
A−B1D

†
21C2

)
Y UT + UB1D

⊥
21

(
UB1D

⊥
21

)T
= O,

hence U satisfies

UB1D
⊥
21 = O.

Again, pre-multiplying the ARE by U , it can be seen that U satisfies

U
(
A−B1D

†
21C2

)
Y = O,

hence U
(
A−B1D

†
21C2

)
can be represented as

U
(
A−B1D

†
21C2

)
= ΛsU,

where Λs is an appropriate nonsingular matrix. Then, for the stable matrix AY the matrix

U satisfies

UAY = ΛsU.

From this equation, it can be seen that the matrix Λs is a stable matrix because the matrix

U is of full row rank. Thus, the lemma has been proved.
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A.11 Solutions to the mixed-sensitivity problem

The solutions to the mixed-sensitivity problems, which are the H∞ control problems for

the generalized plant Gms(s) in (3.6) described in Figure 3.2, are listed according to some

conditions.

Lemma A.11.1 (A case where Ws(s) ∈ RH∞ and P (s) includes no jω-poles) Assume

that Ws(s) ∈ RH∞ and P (jω) 6=∞,∀ω ∈ R hold. If the AREs:

X
(
A−B2D

†
12C1

)
+
(
A−B2D

†
12C1

)T
X

+ X

{
B1B

T
1 −B2D

†
12

(
B2D

†
12

)T
}

X +
(
D⊥

12C1

)T
D⊥

12C1 = O (A.17)

Y
(
A−B1D̃

†
21C̃2

)T
+
(
A−B1D̃

†
21C̃2

)
Y

+ Y

{
CT

1 C1 −
(
D̃†

21C̃2

)T
D̃†

21C̃2

}
Y + B1D̃

⊥
21

(
B1D̃

⊥
21

)T
= O (A.18)

have the stabilizing solutions X ≥ O and Y ≥ O and they satisfy an inequality ρ (XY ) < 1,

then the class of the H∞ controllers is given as follows.

Kms(s) = Fl






Â −ZH∞ ZB̂2

(
DT

12D12

)− 1
2

F∞ O
(
DT

12D12

)− 1
2

−
(
D̃21D̃

T
21

)− 1
2
Ĉ2

(
D̃21D̃

T
21

)− 1
2

O


 , N


 , (A.19)

where N(s) ∈ BH∞ is a free parameter, and the other parameters are defined as

Â = A + B1B
T
1 X + B2F∞ + ZH∞Ĉ2

B̂2 = B2 + Y CT
1 D12

Ĉ2 = C̃2 + D̃21B
T
1 X

F∞ = −D†
12C1 −D†

12

(
B2D

†
12

)T
X

H∞ = −B1D̃
†
21 − Y

(
D̃†

21C̃2

)T
D̃†

21

Z = (I − Y X)−1.

Lemma A.11.2 (A case where Ws(s) includes jω-poles and P (s) includes no jω-poles)

[49] If the ARE in (A.17) has a stabilizing solution X ≥ O, the ARE in (A.18) has a pseudo-

stabilizing solution Y ≥ O and they satisfy the inequality ρ (XY ) < 1, then by using these

solutions X and Y the class of the H∞ controllers is given with the expression in (A.19).

Lemma A.11.3 (A case where P (s) includes jω-poles) [48] Assume that P (s) has jω-

poles, and can be factorized as follows

P (s) = P̂ (s)a(s),
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where

P̂ (jω) <∞,∀ω ∈ R, a−1(s) ∈ RH∞.

In Figure 3.2, let us select Ws(s) as follows

WS(s) = a(s)Ŵs(s),

where Ŵ (s) has jω-poles which are needed to be included in the controller, and satisfies

Ŵ (∞) = 0, Ŵ (s) <∞,∀s ∈ {s : Re(s) > 0} .

Then, by factorizing P (s) as in Figure 3.7 let us construct the generalized plant Ĝms(s).

If there exists K̂ms(s) which is an H∞ controller for Ĝms(s), the H∞ controller for the

original plant Gms(s) exists and is given by a−1(s)K̂ms(s).
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