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Chapter 1

Abstract

The characteristics of spontaneous speech are very different from read speech and recog-
nition accuracy of conventional recognition systems drastically decreases for spontaneous
speech. Since most of our speech is spontaneous, it is strongly desirable to improve

recognition technique for spontaneous speech.

This study began with building a recognition system that was based on the Japanese
spontaneous speech corpus CSJ. Experimental results show that acoustic and language
modeling based on an actual spontaneous speech corpus is far more effective than conven-
tional modeling based on read speech. However, recognition accuracy for spontaneous

speech is still low, and a large number of research issues remain unresolved.

To understand problems of spontaneous speech recognition, various analyses were
conducted. These analyses include correlation and regression analyses for individual
differences in recognition performance, data-mining using decision trees, and comparison
with performances by human listeners. As a result, a restricted set of attributes that

are closely related to the recognition errors were identified.

One conclusion of the analyses was that difficulty of recognizing a word largely de-
pendé on the length and frequency of the word. Based on this observation, a new lexicon
optimization method has been proposed. The proposed method optimizes the lexicon by
making compound words or phrases step by step based on a word correctness probabil-

ity model so as to improve the estimated recognition rate of the system. Experimental

1



Abstract

results showed that the language model using the optimized lexicon improved the recog-
nition rate. To cope with the degradation of recognition accuracy due to speaking rate
fluctuation, a new acoustic model has been proposed. The proposed model has a hidden
variable representing variation of the “mode” of the speaking rate and its value controls
the parameters of the underlying HMM. In the experiments using the Bayesian network
framework, the proposed model indicated consistently higher performance than con-
ventional HMMs. To deal with utterances with various characteristics, the Massively
Parallel Decoder (MPD) has been proposed. The MPD works with a cluster speech
model that covers diversity of spontaneous utterances. In the experiment, MPDs with
up to 400 decoding units were constructed on a GRID system. It was confirmed that

the MPD were effective in improving recognition accuracy.



Chapter 2

Introduction

Read speech and similar types of speech, e.g. that from reading newspapers or from
news broadcasts, can be recognized with accuracy higher than 90% using state-of-the-
art speech recognition technology. However, recognition accuracy drastically decreases
for spontaneous speech. This decrease is due to the fact that acoustic and linguistic
models used have generally been built using written language or speech from written
language whereas spontaneous speech is very different both acoustically and linguis-
tically. Spontaneous speech includes many phenomena such as vague pronunciations,
repetitions, and filled pauses. These phenomena make spontaneous speech recognition
inherently difficult.

Since spontaneous speech comprises the major vehicle of human communication,
broadening the application of speech recognition crucially depends on raising the recog-
nition performance for spontaneous speech. Currently, our knowledge about the struc-
ture of spontaneous speech is inadequate to achieve necessary breakthroughs. Modeling

of speech disfluencies is only just the beginning.

2.1 Research purpose

The purpose of this study is to improve recognition performance for spontaneous speech.
This is the first study that tackles spontaneous speech recognition using a large scale

Japanese spontaneous speech corpus. Since there is little knowledge about spontaneous

3



Introduction

speech recognition, analysis of spontaneous speech from an engineering point of view
and proposal of new techniques based on the analysis are two inseparable parts of this

study.

2.2 Overview of this thesis

This thesis is organized as follows. Chapter 3 describes the conventidnal automatic
speech recognition system and Chapter 4 describes human auditory system.

Analyses on spontaneous sounds are conducted in the following four chapters. In
Chapter 5, various initial investigations on recognizing spontaneous presentation speech
in connection with the “Spontaneous Speech” national project started in 1999 are re-
ported. Chapter 6 reports an analysis of individual differences in spontaneous presen-
tation speech recognition performances. Chapter 7 proposes the use of decision trees
for analyzing errors in spontaneous presentation speech recognition. In Chapter 8, an
automatic speech recognizer is evaluated in comparison with performances by human
listeners to investigate problems of spontaneous speech recognition using N-grams and
HMMs and estimates the room for improvement in the recognition rate.

Based on the analysis results in the previdus chapters, three new method are pro-
posed in the following three chapters. One observation obtained through the analyses is
that difficulty of recognizing a word largely depends on the length and frequency of the
word. A lexicon optimization method to improve recognition rate of large scale spon-
taneous speech recognition is proposed in Chapter 9. To cope with the degradation of
recognition accuracy due to speaking rate fluctuation within an utterance, a new acous-
tic model for adjusting mixture weights and transition probabilities of the HMM for
each frame according to the local speaking rate is proposed in Chapter 10. To achieve
high recognition performance using cluster speech models, Massively Parallel Decoder
(MPD) is proposed in Chapter 11. The MPD consists of a large number of decoding
units and an integrator. It runs on a parallel computer and can process speech utterance

with almost the same turnaround time as conventional decoders. Finally in Chapter 12,

4



2.2. OVERVIEW OF THIS THESIS

conclusion and future works are presented.






Chapter 3

Automatic Speech Recognition

3.1 Mechanism

Speech recognition is a technique that transforms speech signals to a textual message.
The most popular approach is to view speech as a signal that can be modeled as a
stochastic process. In this approach, speech recognition problems can be mathematically

described by equation (3.1).

W = argmax P (W|X), (3.1)
w

where W is a word sequence and X is an acoustic signal. Because directly modeling the
conditional probability of W given X is difficult, the equation is transformed as shown
in equation (3.2) using Bayes’ theorem. In the argmax operator, P (X) is constant for

W and the term is simplified as shown in equation (3.3).

. P (X|W)P (W)

W = argvrvnax P (X) (3.2)
= argvrvnaxP(XIW)P(W). (3.3)

The likelihood of P (X |W) is estimated using an acoustic model and P (W) is obtained
using a language model. The role of a decoder is to search for the W that gives the
highest total likelihood using the acoustic and language model. For large vocabulary
continuous speech recognition, HMMs and Ngrams are commonly used as acoustic and

language models, respectively.



Automatic Speech Recognition

3.2 Acoustic analysis

The input analogue speech signal is first sampled for digital processing. For speech
recognition, 16000Hz is high enough for the sampling frequency. The digitized signal is
then transformed into feature vectors that can be analyzed by the decoder. One of the
most commonly used methods for analyzing digital speech signals is Mel-frequency cep-
stral coefficient (MFCC) analysis. In the MFCC analysis, the speech data is transformed
using a Fourier transform and the magnitude is taken. The magnitude coefficients are
then binned by accumulating its their values multiplied by the corresponding triangular
filter gain. Thus, each bin holds the weighted sum representing the spectral magnitude
in that filter-bank channel. The filters are equally spaced along the mel-scale which is

defined by

Mel (f) = 2595 log (1 + %) . (3.4)

MFCCs are calculated from the log filterbank amplitudes m; using the Discrete

Cosine Transform

c; = \/%gmjcos (W;Z (- 0.5)) , (3.5)

where N is the number of filterbank channels. MFCCs are the parameterization of
choice for many speech recognition applications. They give good discrimination and

lend themselves to a number of manipulations.

In human speech perception, it was shown that dynamic features of the spectrum
plays an important role. To use these features, the delta cepstrum was developed [1].
The delta cepstrum is defined as shown in equation (3.6),

e . L ]
gy = 2=t Cors — o) (3.6)
23 e

where d; is a delta coefficient at time ¢ computed in terms of the corresponding static

coeflicients cqy; to ci_;.



3.3. HIDDEN MARKOV MODELS

3.3 Hidden Markov models

An HMM can be characterized by a set of parameters

A={S,0,A,B,ILF}. (3.7)
S: A set of states? S={s1-sn}-
O: A set of output symbols.

A: A set of states transition probabilities. a;; represents transition probability from

state s; to state s;.
B: A set of output distribution functions.
II: A set of initial state probabilities.

F: A set of final states.

The output distribution function of a state can be either discrete or continuous. In
the discrete case, the distribution function is a set of symbols in which each has an
associated probability specifying the likelihood that the symbol will be observed in that
state. In the continuous case, a mixture of Gaussian functions are widely used as the

output distribution.
3.4 Ngram models
The language model P (W) for word sequences W
W = wwy - wg, (3.8)
can be decomposed as follows by using the chain rule.

k
P(W) =[] P (wilwiwz---wi1). (3.9)
i=1

Usually an N-gram approximation is applied to make it feasible to estimate the param-

eters from limited amounts of training data. An N-gram model approximates the word

9



Automatic Speech Recognition

sequence probability P (W) as follows:

k
Py (W) =] P wilwi-ns1 - wiowiy). (3.10)

i=1
The conditional probabilities P (w;|wiws---wi;—nN4+1) can be estimated by using the

relative frequencies of the word sequences.

F(wywi—1 - wi—Nt+1)
F(wiiwi—2 - wi—ny1)’

P (wi|luvnws - - win41) = (3.11)

where F is the number of occurrences of word sequences in the training corpus. Usually,
a bigram in which N = 2 or a trigram in which N = 3 is used. To compensate for prob-
abilities of word sequences that do not occur in the training corpus, back-off smoothing

is widely used.
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Chapter 4

Human Auditory System

Sound waves are captured by the auricle and lead into the external auditory meatus.
The waves are then sent to oeil-de-boeuf of the cochlea via impedance matching by
the auditory ossicle in the middle ear. Transformation from the sound waves to nerve
impulses is conducted by the cochlea. The cochlea is a snail-shaped fistulous organ.
The tube inside the cochlea is filled with liquid and separated into three rooms by the

basilar membrane and the Reissner’s membrane along its long direction.

On the basilar membrane, there is one line of inner hair cells and three lines of
outer hair cells. Because of the mechanical structure of the cochlea, waves of different
frequencies cause different segments of the membrane to vibrate. Each inner hair cell
detects the vibration according to its position, which corresponds to a specific frequency,
and outer hair cell adjusts its sensitivity. There are about 15000 hair cells in a human
cochlea and they are connected to about 30000 spiral ganglion nerves by synapses. More
than 90% of the synapses are for the inner hair cells. One inner hair cell is connected
to about 20 nerves while approximately 20 outer hair cells are connected to one neuron.
The hair cells have efferent synapses in addition to afferent synapses. The axons of the

efferent synapses come from cells in the olivary complex.

The nerve fibers from the spiral ganglion go into the brainstem as cochlear nerves
and terminate in dorsal and ventral cochlear nuclei. The nerve fibers from the cochlear

nuclei go to nuclei of inferior colliculus by way of the trapezoid nucleus, superior olivary

11



Human Auditory System

© Auditory area

t

O Medial geniculate body

Q Nuciei of inferior colliculus

Q Nucleus of lateral lemniscus

O Superior olivary nucleus

O —_— O Trapezoid nucleus
Cochlear nuclei
B\
Y S O

Spiral ganglion
Auditory ossicle Cochlea

Auricle

Figure 4.1: Human auditory system.

nucleus, and nucleus of lateral lemniscus. The nerve fibers from the inferior colliculus
terminate in medial geniculate body. Right and Left relay nuclei of auditory pathway
are connected by commissural neurofibers in every level. Gradually complex processes

are applied by the relay nuclei such as depressing and accommodation.

The nerve fibers from the medial geniculate body terminate at the auditory area
(Broadmann’s Area 41, 42) in the temporal lobe of the cerebral cortex. Primary auditory
area is a center of the sense of hearing and is situated at the top (Area 41) of the superior
temporal gyrus. Secondary auditory area is around the primary auditory area and
recognizes the meaning of the sound. Lesion in secondary auditory area causes sensory
aphasia.v Recently, fMRI has been used to observe activity of the cerebral cortex. It has

been observed that noisy sound activates more areas than clean sounds [2].

Human cerebral cortex is made up of about 14 billion nerve cells. The whole central

nervous system is estimated to consist of 100 to 200 billion nerve cells. The computa-

12



Human Auditory System

tional performance of a brain is roughly estimated using this equation

p=fxsxmn, (4.1)

where f is a frequency of nerve impulse, s is the number of synapses per nerve cell, and
n is the number of nerve cells in a brain. By assuming that f = 100, s = 10000, and n =
100000000000, the performance of a human brain is estimated to 1000006000000000000 =
100 Peta Flops. Supposing that the nerve cells related to auditory processing is 1% of
the cells in the central nerve system, one Peta Flops machine is required to emulate the

human auditory system which is 25 times faster than the earth simulator [3].






Chapter 5

Initial Results Using Corpus of
Spontaneous Japanese |

5.1 Introduction

Applying acoustic and language models based on written language to spontaneous
speech results in poor recognition accuracy due to acoustic and linguistic mismatch.
To improve technologies for spontaneous speech, a large scale spontaneous speech cor-
pus is indispensable. However, until recently there was not such a Japanese corpus.

To build models and technology for spontaneous speech recognition, the Science
and Technology Agency Priority Program (Organized Research Combination System)
entitled “Spontaneous Speech: Corpus and Processing Technology” was started in 1999
under the supervision of Furui [4]. The project is being conducted over a 5-year period

in pursuit of the following three major goals:

1. Building a large-scale spontaneous speech corpus consisting of approximately 7M.
words with a total speech length of 700 hours. The majority of the recordings
will be monologues such as lectures, presentations, and news commentaries. They
will be manually given orthographic and phonetic transcription. Since there is
no clear definition of words in Japanese and no spacing between words in writ-
ten Japanese sentences, a morphological analysis program will be used to split

transcribed sentences into morphemes.

15



Initial Results Using Corpus of Spontaneous Japanese

2. Acoustic and linguistic modeling for spontaneous speech understanding and sum-

marization using linguistic as well as para-linguistic information.
3. Constructing a prototype of a spontaneous speech summarization system.

This chapter reports results of preliminary recognition experiments utilizing the cor-
pus. Section 5.2 describes the task and experimental conditions. Section 5.3 describes
acoustic and language models for recognition. Recognition results are presented in Sec-
tion 5.4, and Section 5.5 gives some analysis on individual variations of recognition
results. Section 5.6 reports the improvement by unsupervised speaker adaptation. Fi-

nally, some conclusions are given in Section 5.7.

5.2 Recognition task and experimental conditions

5.2.1 Recognition task

Presentation speech uttered by 10 male speakers was used as a test set of speech recog-
nition. Table 5.1 shows an outline of the test set. The top four presentations in the
table were on the subject of speech.

Morphemes (which will be called “words” hereafter in this chapter) were used as units
for statistical language modeling. For all the following recognition performances, word-
based performance is measured. Fillers are counted as words and taken into account in

calculating the accuracy.

5.2.2 Experimental conditions

Sounds were digitized with 16kHz sampling and 16bit quantization. They were seg-
mented into utterances using silence periods longer than 500ms. Feature vectors had
25 elements consisting of 12 MFCC, their delta, and delta log energy. CMS (cepstral
mean subtraction) was applied to each utterance. HTK v2.2 [5] was utilized for acoustic
modeling and speaker adaptation. Language models were made by the use of CMU SLM

Tool Kit v2.05. The Julius v3.1 decoder [6] was used for speech recognition.
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5.3. LANGUAGE AND ACOUSTIC MODELING

Table 5.1: Recognition test set of presentations

ID Conference name Length [min]
A22 Acoust. Soc. Jap. 28
A23 Acoust. Soc. Jap. 30
A97 Acoust. Soc. Jap. 12
P25 Phonetics Soc. Jap. 27
Jo1 Soc. Jap. Linguistics 57
K05 National Lang. Res. Inst. 42
NO7 | Assoc. Natural Lang. Proc. 15
S05 Assoc. Socioling. Sciences 23
Y01 | Spont. Speech Corpus Meeting 14
Y05 | Spont. Speech Corpus Meeting 15

5.3 Language and acoustic modeling

5.3.1 Corpora

The following two corpora were used for training.

e Spontaneous Speech Corpus (CSJ): A part of the corpus completed by the end
of December 2000, consisting of approximately 1.5M words of transcriptions, was
used. The training set consisted of 610 presentations; 274 academic conference
presentations and 336 simulated presentations. The simulated presentations were
specially recorded for the project and consisted of a wide variety of topics including

subjects’ talking about experiences in their daily lives.

e Web corpus: Transcribed presentations having roughly 76k sentences with 2M
words were collected from the World Wide Web. Spontaneous speech usually in-
cludes various filled pauses but they were not included in this presentation corpus.
An effort was thus made to add filled pauses to the presentation corpus based on
statistical characteristics of the filled pauses. Their topics covered wide domains

including social issues and memoirs.
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5.3.2 Language modeling

The following three language models were built. Each model consisted of bigrams and

reverse trigrams with backing-off. Their vocabulary sizes were all 30k.

SpnL: Made using 610 presentations in the CSJ. The speakers had no overlap with
those of the test set. Since there were no punctuation marks in the transcription,

commas were inserted at silences of 200ms or longer duration.
WebL: Made using the text of our Web corpus.

WebSpL: Made by adding whole the text of a textbook on speech processing authored
by Furui to the Web corpus with equal weighting for task adaptation. The text-

book contains about 63k words.
Table 5.2 shows an outline of the language models.

Table 5.2: Corpus size for training each language model

Language model | Corpus size [words]
SpnL 1.5 M
WebL 2M
WSpL 240.06 M

5.3.3 Acoustic modeling

The following two tied-state triphone HMMs were made. Both models have 2k states

and 16 Gaussian mixtures in each state.

SpnA: Using 338 presentations in the CSJ uttered by male speakers (approximately

59 hours). The speakers had no overlap with those in the test set.

RdA: The acoustic model made by the Information-technology Promotion Agency
(IPA) and contained in the CD-ROM “Japanese Dictation Toolkit 99”. Approxi-

mately 40-hours of read speech uttered by many speakers was used.
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Figure 5.1: Test-set perplexity and OOV rate for the three language models.

5.4 Experimental results

5.4.1 Test-set perplexity and OOV rate

Figure 5.1 presents test-set perplexity of tri-grams and out-of- vocabulary (OOV) rate
for each language model. The perplexity of SpnL made from the CSJ is clearly better
than that of other models. WebL indicates high perplexity and OOV rate. This is
because WebL is edited as a text and the topics are general. The OOV rate of WSpL
is smaller than that of WebL for the four left-hand-side speeches. This shows that task
adaptation by adding the textbook worked well. SpnL is superior to WSpL also in terms

of the OOV rate.
5.4.2 Effects of language modeling

Figure 5.2 shows recognition results for the three language models when SpnA is used as
the acoustic model. SpnL achieves the best results. WSpL achieves better results than
WeblL, especially for test sets A22, A23, A97 and P25, reflecting the test-set perplexity

and OOV rate reduction. Mean accuracies are 64.3%, 54.9% and 57.1% for SpnL, WebL
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Figure 5.2: Word accuracy for the three language models.

and WSpL, respectively. A supplementary experiment was performed to analyze the
effects of OOV rate and test set perplexity to the accuracy. In this experiment, OOV
words were added to the language models as “unknown” class words; 489 words and 710
words were added to SpnL and WSpL, respectively. Resulting mean word accuracies
using SpnL and WSpL were 65.8% and 59.9%, respectively. These results indicate that

OOV is an equally important problem as an aspect of test-set perplexity in these models.

5.4.3 Effects of acoustic modeling

The recognition results for SpnA and RdA when SpnL is used as the language model
are shown in Fig. 5.3. Mean accuracies are 64.3% and 53.0% for SpnA and RdA,
respectively. SpnA made from the CSJ achieves much better results than RdA made
from read speech. This is probably because SpnA has better coverage of triphones and

better matching of acoustic characteristics corresponding to the speaking style.
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Figure 5.3: Word accuracy for the two acoustic models.

5.5 Individual differences

As shown in Figures 5.2 and 5.3, word accuracy varies largely from speaker to speaker.
There exist many factors that affect the accuracy of spontaneous speech recognition.
These factors include individual voice characteristics and speaking manner, including
noises like coughing. Although all utterances were recorded using the same close-talking

microphones, acoustic conditions still varied according to the recording environment.

Figure 5.4 presents relationship between speaking rate and word accuracy when SpnL
and SpnA were used as language and acoustic models. The speaking rate was calculated
using actual speech periods after removing pauses. 10 dots in the figure correspond to
individual speakers. A MMSE line fitted to those dots is also shown in the figure. The

correlation coefficient is -0.58. Faster speech generally produces more errors.

Figures 5.5 and 5.6 respectively show the effects of frequencies of fillers and repairs
on word accuracy. The recognition conditions were the same as those for Fig. 5.4. There

is a general tendency that the more frequently the filler and/or the repair occurs, the
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Figure 5.4: Speaking rate vs. word accuracy.

more recognition errors occur.

5.6 Unsupervised adaptation

A batch-type unsupervised adaptation method was incorporated to cope with speech
variation due to speakers and recording environment. The MLLR method using a binary
regression class tree to transform Gaussian mean vectors was applied to the HMM. The
regression class tree was made using a centroid-splitting algorithm. The actual classes
used for transformation were determined on run time according to the amount of data

assigned to each class.

The following steps were carried out. The adaptation was performed based on recog-
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nition results and no confidence measure was applied.

1. Making a regression class tree having 64 leaf nodes for the SpnA phone model.

2. Recognizing the test-set utterances using the SpnA as a speaker independent

model.

3. Applying the MLLR adaptation based on the recognition result for each utterance

to make a speaker adaptive model.
4. Re-recognizing the test-set utterances using the speaker adaptive model.

5. Iterating the adaptation process using the resulting transcription.

Figure 5.7 presents the effect of the adaptation when SpnL was used as the language
model. “SpnA” indicates the baseline condition. “mllr” indicates the result without
iterations and “mllr-i” indicates the results after one iteration of adaptation. The single

step of MLLR improved word accuracy by 2 to 6 %, and the second adaptation step
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further improved accuracy by 1% on average. By applying the two steps of MLLR, the

error rate was reduced by 15% relative to the speaker independent case.

5.7 Conclusions

This chapter reported experimental results for recognizing spontaneous presentation
speech. Language models based on a spontaneous speech corpus and Web corpus were
compared in terms of test-set perplexity, OOV rate, and word (morpheme) accuracy.
Two acoustic models made by spontaneous speech and read speech were also compared.
Both comparisons showed that models made from spontaneous speech were much su-
perior to models based on read speech. It was revealed that recognition accuracy had
a wide speaker-to-speaker variability. Correlation between word accuracy and speaking
rate, filler and repair frequency was observed. When linguistic and acoustic models made
form spontaneous speech were used, an average word recognition accuracy of 64.3% was
achieved. This performance improved to 69.8% with the help of unsupervised MLLR

adaptation for the acoustic model.
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Figure 5.7: Results of unsupervised adaptation.

Although word accuracy was improved by using the spontaneous speech corpus,
it is still not sufficient for building application systems. To understand problems in
spontaneous speech recognition and improve recognition performance, further analysis

of spontaneous speech is necessary.
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Chapter 6

Analysis on Individual
Differences

6.1 Introduction

In the previous chapter, it was shown that acoustic and language models made using the
CSJ were significantly superior to conventional read-speech-based models when applied
to spontaneous speech recognition [7]. However, recognition accuracy is still rather low,
and there presumably exist many factors that affect recognition performance acoustically

as well as linguistically.

It is presumable that variation of speaking style is larger in spontaneous speech than
in read speech according to the degree of speaker’s freedom. And so does the word
accuracy of recognition systems. Knowing the structure of speaking style differences
among individuals and the influence on word accuracy it exerts is very important to
improve spontaneous speech recognition systems. This chapter reveals the structure
of individual differences in word accuracy based on recognition results in presentation

speech uttered by 50 male speakers processed by a state-of-the-art recognition system.

Section 6.2 describes the task and experimental set up. Experimental results and

analyses are presented in Section 6.3. Finally, some conclusions are given in Section 6.7.
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Analysis on Individual Differences

6.2 Recognition task and experimental set up

6.2.1 Recognition task

For the analysis of speaker variation, monologue presentation speech uttered by 50
different male speakers was used as a test set. Speakers in the test set had no overlap
with those in the training set. The first 10 minutes of each presentation were used for

analysis. Table 6.1 shows the details of the test set.

Table 6.1: Test set

Conference No. presentations
Jap. Soc. Al 32
Acoust. Soc. Jap. 12
Others 6

6.2.2 Speaker attributes

Seven kinds of speaker attributes were considered in the analysis. They were word accu-
racy (Acc), averaged acoustic frame likelihood (AL), speaking rate (SR), word perplexity

(PP), out of vocabulary rate (OR), filled pause rate (FR) and repair rate (RR).

The speaking rate which was defined as the number of phonemes per second and
the averaged acoustic frame likelihood were calculated using the result of forced align-
ment of the reference tri-phone label after removing pause periods. Word perplexity
was calculated using tri-grams, in which prediction of out of vocabulary words was not
included. The filled pause rate and the repair rate were the percentage of filled pauses
and repairs in total words, respectively. Tag information included in CSJ transcription
was used to determine whether a word was a filled pause/repair or not. In CSJ, re-
pairs are defined only for word fragments, and a whole word which is rephrased is not
marked as a repair. The calculations of word accuracy, out of vocabulary rate and word

perplexity were based on the reference sentence after excluding repairs.
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6.2. RECOGNITION TASK AND EXPERIMENTAL SET UP

6.2.3 Experimental conditions

Speech signals were digitized with 16kHz sampling and 16bit quantization. Feature
vectors have 25 elements consisting of 12 MFCC, their delta and the delta log energy.
The CMS (cepstral mean subtraction) was applied to each utterance. HTK v2.2 was
used for acoustic modeling and adaptation. Language models were made by using the
CMU SLM Tool Kit v2.05. Morphemes (which will be called “words” hereafter in this
chapter) were used as units for statistical language modeling. The J ulius v3.1 decoder

[6] was used for speech recognition.

6.2.4 Language and acoustic modeling

A part of the CSJ, having approximately 1.5M words, was used as a training set. The
training set consisted of 610 presentations; 274 academic conference presentations and
336 simulated presentations.

The language model used in the recognition consisted of bi-grams and reverse tri-
grams with backing-off. It was made using the whole training set. The vocabulary size
was 30k. Filled pauses were treated as words in modeling. Repairs were deleted from
the training text and were not modeled. This is because modeling repairs effectively
by N-gram is difficult due to a large amount of variations and few occurrences of each
fragment.

A speaker independent (SI) acoustic model was made using 338 presentations uttered
by male speakers (approximately 59 hours). It was a tied-state tri-phone HMM having
2k states and 16 Gaussian mixtures in each state. Each tri-phone HMM had three states
with the left-to-right structure.

In addition, A batch-type unsupervised speaker adaptation was incorporated to see
the effect on the individual differences. The MLLR method was applied to the speaker
independent HMM in which a regression class tree having 64 leaves was made using a
centroid-splitting algorithm. The resulting set of speaker adaptive HMMs for the 50

test set speakers is denoted as SA HMMs.
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Table 6.2: Mean and standard deviation for each attribute

Acc(ST) | Acc(SA) | AL(SI) | AL(SA) | SR | PP | OR | FR | RR
Mean 64.2 68.6 | -55.4 | -53.1 | 150|224 |2.09|8.50 | 1.56
Standard deviation | 7.4 7.5 2.3 22 | 12161 |1.18(367|0.72

Table 6.3: Correlation coefficient matrix: the lower triangular matrix shows the cor-
relation coefficients and the upper triangular matrix shows the p-value, that is, the
significance level. Bold face indicates a significant value with the significant level of 5%

Acc(ST) [ Acc(SA) [ AL(ST) [AL(SA)| SR| PP| OR] FR]| RR
Acc(ST) 1 5.4% —[0.1% | 05%| 0.0% | 0.6%| 22%
Acc(SA) - | 24%| 0.0%| 1.6%| 0.0%| 0.6% | 2.4%
AL(SI) 0.27 - —| 0.0% | 65.1% | 12.5% | 6.9% | 46.9%
AL(SA) - 0.32 - 0.0% | 52.3% | 8.6% | 7.0% | 34.7%
SR -0.47| -0.49| -0.59| -0.64 65.1% | 1.2% | 0.0% | 34.0%
PP -0.39| -0.34| -007| -0.09| 0.07 0.0% | 18.0% | 44.8%
OR -0.54| -0.51| -022| -0.25| 0.35| 0.53 0.3% | 67.9%
FR 0.38 0.38| 0.26 0.26 | -0.51 | -0.19 | -0.41 32.9%
RR -0.32| -0.32| -010| -014| 0.14| 011] -0.06| 0.14

6.3 Basic characteristics of the speaker attributes

Table 6.2 shows the mean and standard deviation over the 50 speakers for the word
accuracy and other six kinds of speaker attributes. The calculation of the speaking rate
is based on the ST HMM. The mean word accuracy of the 50 speakers is 64.2% and
68.6% for the SI and SA conditions, respectively. The standard deviation is 7.4% for
the ST and 7.5% for the SA condition. As shown by the standard deviation, recognition
accuracy largely varies from speaker to speaker. Correlation and regression analysis are

discussed in 6.4 and in 6.5, respectively.

6.4 Correlation analysis

Table 6.3 shows the correlation matrix of speaker attributes. In the table, the lower
triangular matrix shows the correlation coefficients and the upper triangular matrix

shows the observed significance levels (p-values). The correlation coefficients written in
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Figure 6.1: Speaking rate vs. acoustic likelihood.
bold face indicate significant values at 5% significance level (p-value < 0.05).

6.4.1 Correlation between acoustic likelihood and speaking rate

The correlation coefficient between acoustic likelihood and speaking rate is -0.59 for the
SI acoustic model. Figure 6.1 shows the relationship between the speaking rate and the
averaged frame likelihood. There is a tendency that the higher the speaking rate is, the
lower the acoustic likelihood becomes. On the other hand, even very slow speaking rate
does not cause a decrease of the acoustic likelihood. The Akaike Information Criterion
(AIC) [9] also indicates that the first order regression model is better than the second
order model for regressing the acoustic likelihood on the speaking rate. This indicate
that there is a linear relationship between the speaking rate and the acoustic likelihood
averaged over presentations. A stronger articulation effect in faster speakers is probably
a cause of the decrease of likelihood.

The unsupervised adaptation increases the acoustic likelihood but leave the relation-

ship between the speaking rate and the acoustic likelihood with only a slight increase
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Figure 6.2: OOV vs. word perplexity.

in the correlation coefficient.

6.4.2 Correlation between word perplexity and several linguistic
attributes

There exists significant correlation between word perplexity and out of vocabulary rate
with a correlation coefficient of 0.53. Figure 6.2 shows the relationship between word
perplexity and out of vocabulary rate. There is a tendency that presentations having a

higher out of vocabulary rate show a higher perplexity.

The correlation coefficient of the filled pause frequency and the perplexity is -0.19
indicating that they are almost uncorrelated. The repair frequency and the perplexity
have a correlation coefficient of 0.11. Since the perplexity was calculated after removing
repairs, this result shows that the linguistic difficulty excluding repairs has almost no

correlation with the repair rate.
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6.4.3 Correlation between word accuracy and several attributes

The correlation coefficient between the word accuracy (SI) and the speaking rate is -
0.47. Figure 6.3 shows the relationship between the word accuracy and the speaking
rate. The relationship seems monotonic and even very slow speaking rate does not
decrease the accuracy, which is similar to the result for the acoustic likelihood shown in
Figure 6.1. The AIC also indicates that the first order model is superior to the second
order model for regressing the word accuracy on the speaking rate.

Correlation between the word acémacy and the acoustic likelihood is not statistically
significant, when the SI acoustic model is used. Their partial correlation coefficient
adjusted for the speaking rate is -0.005.- A partial correlation coefficient between the
word accuracy and the speaking rate adjusted for the acoustic likelihood is -0.40, which
is significant at a 1% significance level, and the partial correlation coefficient between the
acoustic likelihood and the speaking rate adjusted for the word accuracy is -0.54, which
is significant at a 1% significance level. This means that the correlation between the
word accuracy and the acoustic likelihood is spurious. In other words, a fast speaking
rate decreases the word accuracy and the acoustic likelihood independently. Similar
results are obtained for SA conditions.

The correlation coefficient between the word accuracy and the repair frequency is
-0.32. Figure 6.4 shows the scattergram of the word accuracy and the repair rate when
the SI acoustic model is used.

There is a weak positive correlation of 0.38 between the word éccuracy and the filled
pause frequency, but this is also a spurious correlation, since the partial correlation
coefficient adjusted for the speaking rate is 0.18.

Figure 6.5 shows the scattergram for word accuracy (SI) and out of vocabulary rate.
The correlation coefficient between the word accuracy and the out of vocabulary rate is
-0.54.

There is a weak negative correlation of -0.39 between the word accuracy (SI) and the

perplexity, but this is also spurious; the partial correlation between the word accuracy
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Figure 6.3: Speaking rate vs. word accuracy.
and the perplexity adjusted for the out of vocabulary rate is -0.14.

6.5 Regression analysis

The following equations (6.1) and (6.2) show linear regression models of the word ac-
curacy with the six presentation attributes when the SI and SA acoustic model are

respectively used for speech recognition.

Accs; = -—0.061ALs; —1.4SRs; — 0.014PP
—2.30R+0.28FR—-3.3RR+ 92 (6.1)
Accsa = -—0.061ALss — 1.6SRg; —0.010PP

—2.10R + 0.30FR — 3.3RR + 98 (6.2)

In equation (6.1), the regression coefficient for the repair rate is -3.3 and the coeffi-

cient for the out of vocabulary rate is -2.3. This means that a 1% increase of the repair
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Figure 6.4: Repair frequency vs. word accuracy (SI).

rate or the out of vocabulary rate, respectively, corresponds to 3.3% or 2.3% decrease of
the word accuracy. This is probably because a single recognition error caused by a repair
or an out of vocabulary word triggers secondary errors due to linguistic constraints. Re-
gression coefficients before and after speaker adaptation are almost the same excepting
the constant term. The coefficient of determination for the multiple linear regression
(6.1) is 0.50 and that for (6.2) is 0.47, both are significant at a 1% level. This means

that about a half of the variance of the word accuracy is explained by the model.

Table 6.4: Standardized regression analysis results, showing standardized regression
coefficient (Coeff), p-value and 95% confidence interval (95% CI).

Coefi(SI) | P 95% CI Coeff(SA) | P 95% CI
AL(ST) | -0.02 |0.885](-0.29,0.25) | AL(SA) | -0.02 |0.904 | (-0-31,0.28)
SR(SI) | -0.23 |0.149 | (-0.55,0.09) || SR(SI) | -0.26 |0.135 | (-0.60, 0.08)
PP 0.12 |0.374](-0.38,0.15) | PP -0.08 | 0.549 | (-0.36, 0.19)
OR -0.36 | 0.015 | (-0.65,-0.07) || OR -0.33 | 0.028 | (-0.63,-0.04)
FR 0.14 |0.305|(-0.13,041) || FR 0.15 | 0.301 | (-0.14, 0.43)
RR 0.32 |0.008|(-0.55-0.09) | RR 0.32 | 0.010 | (-0.55,-0.08)
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Figure 6.5: OOV rate vs. word accuracy (SI).

Table 6.4 shows standardized representation of the regression analysis with the equa-
tions (6.1) and (6.2), in which the variables are standardized before the analysis in order
to show the effects of explaining variables on word accuracy. The table shows the stan-
dardized regression coefficient, the p-value and the 95% conﬁdence interval. The stan-
dardized regression coefficients of the acoustic likelihood, the perplexity and the filled
pause rate are relatively small for both the SI and SA regression models. Although most
of these variables have statistically significant correlation with the word accuracy, these

correlations are spurious as indicated in Section 6.4.

6.6 Discussion

As a supplementary experiment, a backward elimination procedure was employed to
identify relatively important predictors of the word accuracy. The backward elimination
process started with all of the six predictors in the model, a.nd the model was refitted
to the data after removing a variable with the largest p-value. The refitting process was

iterated removing the least significant variable in the model until all remaining variables
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had p-values smaller than 0.05. The important predictors identified were the speaking
rate, the out of vocabulary rate and the repair rate, which correspond to the attributes
showing relatively large coefficients in Table 6.4. Coeflicients of determination of the
regression models on these three attributes are 0.48 and 0.46 for speaker independent
and adaptive cases, which are almost the same as that of the models for all attributes.
It can be concluded that the main factors of individual differences in word accuracy are

the speaking rate, the out of vocabulary rate and the repair rate.

6.7 Conclusion

In this chapter, the individual differences in spontaneous presentation speech recognition
have been investigated. It was shown that the speaking rate, the out of vocabulary rate
and the repair rate have relatively large effects on the individual differences of the
word accuracy among a set of presentation/speaker attributes. It have found that the
averaged acoustic likelihood of reference phoneme sequences and the test set perplexity
are relatively minor factors in individual differences in word accuracy for the 50 male
speakers in the test set.

Unsupervised MLLR speaker adaptation works well for improving the word accuracy
but does not change the structure of the individual differences including the effects of
the speaking rate. A special method for addressing speaking rate is crucial.

Approximately half of the variance of the word accuracy is explained by the regres-
sion model using the six explaining variables. The regression model with the three most
important attributes also displays a similar prediction power.

To improve recognition performance, investigation into efficient methods for reducing

the effects of the major attributes on the recognition accuracy is important.
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Chapter 7

Analysis on Recognition
Errors

7.1 Introduction

This chapter proposes an application of decision trees to analyze recognition errors.
Words/phonemes contained in speech have many attributes, and the choice of a given
word/phoneme by the speech recognition is either true (correct) or false (incorrect). To
map the attributes to a true/false class, decision trees can be employed. It is expected
the prediction capacity of a tree to be related to the explanation capability of the set
of attributes used in this tree. In addition, it is investigated how these attributes cause

recognition errors by analyzing the trees.
(=]

A “case” is defined as a set of attributes and a class. A decision tree is trained by
using a set of cases. The performance of the tree is measured by applying the tree to a

set of test cases and calculating what percentage of the classes are correctly predicted.

This chapter is organized as follows. Speech recognition task and an experimental
set up of presentation speech are shown in section 7.2. In section 7.3, the principle of
constructing decision trees is first reviewed, and then the construction and evaluation
set up of the trees are shown. In sections 7.4 and 7.5, recognition performance and the
experimental results of decision trees are shown. Finally in section 7.6, some conclusions

are given.
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7.2 Recognition task and experimental set up

7.2.1 Recognition task

Presentation speech uttered by 10 male speakers was used as a test set for speech

recognition. Table 7.1 shows the contents of the test set.

Table 7.1: Recognition test set of presentations

ID Conference name Length [min]
A22 Acoust. Soc. Jap. 28
A23 Acoust. Soc. Jap. 30
A97 Acoust. Soc. Jap. 12
P25 Phonetics Soc. Jap. 27
Jo1 Soc. Jap. Linguistics 57
K05 National Lang. Res. Inst. 42
NO7 | Assoc. Natural Lang. Proc. 15
S05 Assoc. Socioling. Sciences 23
Y01 | Spont. Speech Corpus Meeting 14
Y05 | Spont. Speech Corpus Meeting 15

7.2.2 Experimental conditions

Speech signals were digitized with 16kHz sampling and 16bit quantization. Feature
vectors had 25 elements consisting of 12 MFCC, their delta and the delta log eﬁergy.
The CMS (cepstral mean subtraction) was applied to each utterance. HTK v2.2 was
used for acoustic modeling. The language models were made by using the CMU SLM
Tool Kit v2.05. Morphemes (which will be called “words” hereafter) were used as
units for statistical language modeling. The Julius v3.1 decoder [6] was used for speech
recognition. Filled pauses and repairs were taken into account as words in calculating

the recognition accuracy.

7.2.3 Language and acoustic modeling

A part of the CSJ, having approximately 1.5M words, was used as a training set. Speak-
ers had no overlap with those of the test set. The training set consisted of 610 presen-

tations; 274 academic conference presentations and 336 simulated presentations. The
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simulated presentations were specially recorded for the project and covered a wide va-
riety of topics including the subjects talking about experiences in their daily lives.
The language model used in the recognition consisted of bigrams and reverse trigrams
with backing-off. It was made using the whole training set. The vocabulary size was
30k. The acoustic model was made using 338 presentations uttered by male speakers
(approximately 59 hours). It was a tied-state tri-phone HMM having 2k states and 16

Gaussian mixtures in each state.

7.3 Training and testing decision trees

7.3.1 Tree construction

The decision trees were made using a data-mining tool C4.5R8 {8]. In C4.5, trees are
derived by a two-path strategy. First, questions about attributes are chosen step by
step under a predefined criterion. Training cases are split by the question accordingly.
This partitioning continues to subdivide the set of training cases until each subset in the
partition contains cases of a single class, or until no question yields any improvement.
Next, to correct over-training and make the tree robust against unseen data, the tree is
pruned.

In this experiment, gain-ratio was employed for the question choosing criteria. Ques-
tions that maximize the gain-ratio were selected. Equation (7.1) shows the definition of

the gain-ratio.

H(Y) - H(Y|X)
H(X) ’

gainratio = (7.1)

where X is a random variable defined for each question, whose value is its answer.
H (X) denotes the entropy for the distribution of X. H (Y") denotes the entropy for the
distribution of a class. H (Y|X) is the conditional entropy of the distribution of a class
given an answer to the question. Entropy is calculated based on the distribution of the

training cases for each tree node.
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7.3.2 Decision trees for words

Decision trees for words were constructed by defining a case as a set of attributes of a
reference word and the correctness of its recognition hypothesis. The correctness was
determined by matching the reference word sequence and recognition hypothesis. Only
substitution and deletion errors were analyzed; insertion errors were not considered in
this study since inserted words do not have corresponding reference words. Compound
words were not considered in the matching process, and errors included the cases where
only word segmentation boundaries were different. Decision trees were pruned by error-
based pruning. The threshold was set to 10 based on a preliminary study.

Table 7.2 shows the attributes in consideration. They are either discrete or continu-
ous. In the table, “D” or “C” indicates that the attribute is treated in C4.5 as discrete
or continuous, respectively. The JTAG3.03 morphological analysis program was used
to obtain part of speech information. For the judgment of filled pauses and repairs,
annotated information in the CSJ transcription was used. The speaking rate and frame
likelihood attributes were calculated by using the result of phoneme alignment to the
reference sentence. The first 2320 cases were used for each presentation in order to
unify the condition in terms ef the amount of data. Trees were created and tested using
a cross validation method; the data set made of all selected cases was divided into 10

subsets and one of them was used for testing.

7.3.3 Decision trees for phonemes

Decision trees for phonemes are built in the same way using phonemes as units instead of
words. Like for the word analysis, Only substitution and deletion errors were considered,
and insertion errors were neglected. The pruning threshold was set to 10 based on a
preliminary experiments.

Table 7.3 shows the phoneme attributes used in the experiments. Frame-by-frame
information such as likelihood and power is averaged over the period of each reference

phoneme obtained by the phoneme alignment. The likelihood value for each HMM state
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Table 7.2: Word attributes

Number of phonemes in the word
Word duration (number of frames)
Speaking rate (number of phonemes/number of frames)
Averaged acoustic frame likelihood
Ratio of a certain phoneme class such as vowel or nasal
Part of speech (noun, verb, etc.)
Filled pause or not
Repair or not
Quotation or not
Loanword or not
Word frequency in the training set
Bigram score
Trigram score
Back off class
Word order in the sentence from either beginning or end
Part of speech of the left/right context word
Left/Right context word is filled pause or not
Left /Right context word is repair or not
Left/Right context word is quotation or not
Left/Right context word is loanword or not

wllv/lv/iviviio]lv/lo|[ellellviivivivivislele [oe!

does not include transitional probability. Whether or not a phoneme is uttered in a filled
pause or repair is determined according to the annotation of the CSJ. Trees are created
and tested using a cross validation method, dividing the data into 5 subsets. The first

8600 cases per presentation were used to equalize the amount of data.

7.4 Recognition results of the task

Figure 7.1 presents test-set perplexity and out-of-vocabulary (OOV) rate of the task
using the trigram language model. Figure 7.2 shows word and phoneme recognition
accuracies. In the phoneme recognition, no linguistic constraint was used. The results

show that the accuracies vary greatly from speaker to speaker.
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Table 7.3: Phoneme attributes

Kind of phoneme (a, u:, sh, etc.)
Left/Right phoneme kind context
Phoneme class (voiced, nasal, etc)
Left/Right phoneme class context
Filled pause or not
Repair or not
Left/Right context is filled pause or not
Left/Right context is repair or not
Max frame likelihood over all states
Minimum frame likelihood over all states
Average frame likelihood over all states
Number of states whose frame likelihood is greater than frame max minus delta
Frame likelihood variance over all states
Phoneme duration
Frame energy
Delta frame energy
Mono-phone frequency in the corpus
Tri-phone frequency in the corpus

eollo/lollollelleolleollellelleliv/iv]iv/iviviviv] lw

7.5 Error analysis using decision trees

7.5.1 Decision trees for words

A set of decision trees for words was made using all the attributes listed in Table 7.2.
Figure 7.3 shows prediction correctness of the trees. For comparison, word (recognition)
correctness (WCorr) is also shown in the figure. TSpk denotes prediction correctness
when trees are built for each speaker. TAll is also prediction correctness but when trees
are built using the training data by all the 10 speakers.

The word correctness corresponds to the prediction correctness of a tree having only
the root node. As can be seen, prediction correctness is higher than word correctness.
This difference is believed to result from recognition errors caused by the attributes
found in the tree.

Questions assigned near the root of the trees are the repair, the word occurrence
frequency, the ratio of voiced phonemes, the ratio of long (double) consonants, etc.

TAll indicates better prediction correctness than TSpk. This means that the amount
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Figure 7.1: Test-set perplexity and OOV rate of the task.
of data is more significant than speaker-specific variations in this analysis.

7.5.2 Error factor analysis of word recognition

To analyze what attributes have strong correlation with recognition errors, various sub-
sets of attributes were selected and the performance of trees were measured. As a
result, it turned out that just considering three attributes produced almost the same
performance as considering all the attributes in Table 7.2. The three attributes are the
number of phonemes in a word, the speaking rate, and the frequency of word occurrence.
Word recognition error tends to be higher if the word has a relatively small number of
phonemes, is spoken fast, and is observed less frequently in the language-model training
corpus. But strictly speaking, the relationships are not monotonic. For example, a very
slow speaking rate also tends to increase errors. The other attributes are either less
informative about word error or the information they provide is already included in the

three major attributes.
Figure 7.4 shows the prediction correctness of the trees for subsets of attributes. The
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Figure 7.2: Word/phoneme recognition accuracy.

trees were built using training data by 10 speakers. AllAtt indicates the correctness of
trees using all attributes. P, R and W indicate the number of phonemes in the word,
the speaking rate and the word frequency, respectively. It can be seen that omitting
any one of them degrades the prediction correctness.

In order to analyze the sources of word recognition accuracy variation among speak-
ers, the success rate of recognition was estimated using the decision tree with the three
most significant attributes. predicted success rate (PSR) was defined for each utterance

as follows.
T

PSR=m,

(7.2)

where T indicates the number of test cases in the utterance that are predicted to be
true (correctly recognized) by the tree, and F indicates those predicted to be false
(incorrectly recognized). Figure 7.5 shows the relationship between PSR and the actual
recognition correctness for the 10 speakers in the test set. The correlation coefficient for
this result is 0.87, meaning that differences in the three attributes are highly related to

variation in recognition accuracy.
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Figure 7.3: Recognition and prediction correctness.

7.5.3 Decision trees for phonemes

Figure 7.6 shows the prediction correctness of the trees for phonemes that are made
using all the attributes in Table 7.3. TSpk denotes the tree made for each speaker. TAll
denotes the tree made by using all the training data from the 10 presentations. For
comparison, results of phoneme correctness (PCorr) are also shown.

The prediction correctness of TAll is higher than that of TSpk. This suggests that

the factors contributing to recognition errors are similar among speakers.

7.5.4 Error factor analysis of phoneme recognition

Various subsets of attributes were selected and the performances of the trees were com-
pared. It was found that a subset of attributes that indicates almost the same prediction
correctness as all attributes in the Table 3 consisted of the frame-max and frame vari-
ance (F), the phoneme class and phoneme class context (P), the phoneme duration (D),
and the mono-phone frequency in the training data (M). Figure 7.7 shows the prediction

correctness for several attribute sets. Among these attributes, the phoneme duration
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Figure 7.4: Analysis of word attributes.

seems to contribute the most to the correct recognition of phonemes.

7.6 Conclusion

In this chapter, the use of a decision tree for analyzing recognition errors was proposed.
To what extent the recognition error can be explained by a set of attributes was quan-
titatively analyzed. In word recognition, it was found that the number of phonemes
in the word, the speaking rate and the word frequency in the training data are highly
related to the recognition rate. In phoneme recognition, a set of attributes consisting
of the frame-max, the frame variance, the phoneme class, the phoneme class context,
the phoneme duration and the mono-phone occurrence count has been found to have
the same prediction power as all the attributes used in the experiment. To increase the
recognition accuracy, the following issues are important: designing words considering
the number of included phonemes; modeling the effects of speaking rate; and, prop-
erly increasing the training data. It might also be useful to use the decision-tree-based

framework for estimating the confidence measure for recognition.
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Chapter 8

Comparison of Human and
Automatic Recognition
Performance

8.1 Introduction

There is a large variation of difficulties for recognizing words in spontaneous speech;
while some words are easy, others require specific knowledge or longer context. Some
words are impossible to recognize even for humans. Recognition methods need to be
improved in different ways for each class of words according to the variation of the dif-
ficulties. However, it still remains unclear as to what are the most important problems
and to what extent they are significant. In order to investigate the possibility of im-
provement, recognition performance of an automatic speech recognizer is evaluated in
comparison with human recognition performance.

Several comparisons have been conducted evaluating the difference in recognition
performances between computers (decoders) and humans. For speech reading text,
an order of magnitude higher word error rate was reported when comparing decoders
with human listeners using sentences extracted from CSR’94 spoke 10 and CSR’95 Hub3
database under various SNR. and microphone conditions [10]. Another experiment using
sentences extracted from the Wall Street Journal database indicated roughly a five times

higher error rate for a decoder [11]. For spontaneous speech, an order of magnitude
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higher word error rate for a decoder was reported for the Switchboard task [12].

This chapter explores the possibilit}} of improvement in spontaneous speech recog-
nition by searching for conditions where the prescription would be relatively easy. For
this purpose, decoder and human performances are compared in the same condition.
Recognition results from the decoder and listeners are compared word by word and

reasons for the errors by the decoder are analyzed.

8.2 Experimental set up

8.2.1 Recognition task

Recognition results were evaluated using the same recognition task performed by an
automatic speech recognizer and human listeners. The task was to recognize a word
in an excerpted period of utterance including a 4+ one word context. Both the decoder
and human listeners chose the most likely words from the same vocabulary set, which
consisted of the most frequent 25k words occurring in 455 academic presentations in the
Corpus of Spontaneous Japanese (CSJ) [4]. The presentations in the corpus were given
spontaneously and recorded using close-talking microphones.

Five hundred test utterances were randomly chosen from seven academic presenta-
tions in the CSJ given by different male speakers. Table 8.1 shows the contents of the
test set presentations. Each test utterance was a three-word sequence excerpted from
the presentations by forced alignment of an HMM sequence corresponding to the true
word sequence. Since there is no spacing between words in Japanese sentences and even
no clear definition of words, the JTAG morphological analysis program was used to de-
fine words. JTAG was also used to annotate pronunciations of the words. The resulting
pronunciations were manually checked so that errors would not affect the segmentation
accuracy. Utterances with severe errors were eliminated after the random selection of
the test set. Approximately one percent of the center words of the 500 test utterances,
target words to recognize, were not included in the vocabulary. In the evaluation pro-

cess, recognition results were manually checked and simple transcription variations were
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Table 8.1: Test set presentations

Presentation ID | Conference

A01MO0035 Acoust. Soc. Jap
A01MO0007 Acoust. Soc. Jap
A01MO0074 Acoust. Soc. Jap
A02MO0117 Soc. Jap. Linguistics
A03MO0100 Assoc. Natural Lang. Proc.
A05M0031 Phonetics Soc. Jap.
A06M0134 Assoc. Socioling. Sciences

normalized. The major reason why the + one word context was given, instead of the
previous two words, was to avoid explicitly determining word boundaries of the center

word in the wave form which is sometimes difficult to do due to coarticulation effects.

8.2.2 Recognition by decoder

For recognition by the decoder, a word network, as shown in Figure 8.1, was prepared
for each test utterance. Finding the most likely path in the network corresponds to
choosing the center word given the + one word context. Note that in the decoding
process, the optimum word boundary may be different from path to path. A language

probability was assigned to each center word in the network as shown in equation (8.1).

P (wc|wy,wp) (8.1)

_ _P(wy) P(welwy) - P (wp|wy, we)
Yo P (wy) - P (wlwy) - P (wplwy, w)’

(8.2)

Here w, is a center word, and wy and wy are the front and back context words, re-
spectively. The conditional probability of equation (8.1) was calculated using a trigram
language model as shown in the equation (8.2).

The language model was trained using a corpus with 2.9M words consisting of 1289
academic and non-academic presentations given by both male and female speakers.
Acoustic feature vectors had 25 elements consisting of 12 MFCC, their delta and the
delta log energy. The CMS (cepstral mean subtraction) was applied to the sentence

utterance including each three-word length test utterance. A tied state triphone model
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Figure 8.1: Word network for the decoder.

consisting of 2k states and 16 Gaussian mixtures in each state was used as a speaker
independent (SI) acoustic model. The model was trained using 455 academic presen-
tations in the CSJ given by male speakers, which had a total length of 94 hours. In
addition to the SI model, speaker adaptive (SA) acoustic models were also constructed
using an unsupervised adaptation method. The SI model was adapted for each speaker
with the MLLR technique using the entire presentation. There was no overlap between
the speakers in the training set and those in the test set.

The HTK was used for decoding. A language weight of 10 was determined by
preliminary experiments. A relatively light pruning level that was also determined by

preliminary experiments was used so as not to affect the recognition rate.

8.2.3 Recognition by humans

Human listeners were given the capability of playing back the test utterances and choos-
ing words from the vocabulary using a GUI-based system. They could listen to the same

utterance as many times as they liked to make a decision. However, once they made
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a decision, they could not repeat the same task. Since the utterances were randomly
selected from presentations, it was impossible for the human listeners to use a longer
context beyond =+ one word. They were informed that target words in the test utter-
ances might not be in the vocabulary, and instructed to select the closest word even
when they did not find the exact word. To facilitate finding the words from the large
vocabulary, the GUI was equipped with a dictionary search using regular expressions.

Fifteen listeners, consisting of 14 male and one female, were divided into five groups,
each having three listeners. They were students and staff of our laboratory. The 500
test utterances were partitioned into five blocks and each block was assigned to one
of the groups. The same utterance was recognized by three different listeners in each
group to mitigate the effects of careless mistakes and individual variations due to differ-
ences in familiarity with presented topics. An upper limit of human recognition ability
was estimated by determining the selected word based on a majority rule among the
three listeners. The estimated upper limit was used for comparison with results by the
decoder. If there was no overlap between the words given by the three listeners, an
answer by the listener having overall the best performance among the three listeners
was adopted.

The listeners practiced the task using 10 examples before performing for the test
utterances. Experiments were conducted in an office using a headphone. It took about

one to two hours for the listeners to process the 100 test utterances.

8.3 Experimental results

8.3.1 Human recognition results

Figure 8.2 shows the recognition performance of individual listeners and that by the
majority rule. Unknown words were not counted in the recognition rate. There were no
insertion or deletion errors because of the experimental settings. The variation in score
from listener to listener was mostly due to a difference in familiarity with the academic

presentations. Averaged recognition rate of the majority-rule based result is 95.3%.
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Figure 8.2: Human recognition rates.

8.3.2 Comparison between decoder and human

Comparison of the recognition rates by human listeners and the decoder is shown in
Figure 8.3. The majority-rule based result is used as the human recognition rate. The
averaged recognition rate of the decoder is 88.7% when the SI model is used, and 91.3%
when the SA models are used. The human recognition rate is superior to that of the
decoder under the same conditions defined for the context. The recognition error rate
for human listeners is roughly half of that for the decoder. The differences of the
recognition/error rate between humans and the decoder are significant at a 1% level for

the SI results, and at a 5% level for the SA results.

8.3.3 Analysis of decoding errors

Table 8.2 shows the classification of the experimental results using the SI acoustic model.
The results based on the majority rule were used in the case of human experiments.
There exist twelve words that were successfully recognized by the decoder but not by

human listeners. The reasons for the errors made by the humans include vague pronun-
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Figure 8.3: Human and decoder recognition rates.

ciations which made the recognition difficult and caused the same inattention errors by

two or more listeners at the same time.

Table 8.2: Classification of recognition results

ASR
Correct | False
HSR | Correct 426 45
False 12 11

UNK: 6

There were 45 words that could be correctly recognized by humans but not by

the decoder. Among these 45 words, 33 words were correctly recognized by all three

listeners. If the decoder is improved so that these words can be correctly recognized,

a 6% improvement in the accuracy can be expected. In order to investigate why the

decoder failed to recognize these words, acoustic and linguistic likelihood values of the

true words and the outputs of the decoder were compared. The result is shown in Figure

8.4. The acoustic likelihood was calculated including the + one word context, and the
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language weight was incorporated into the language likelihood.
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Figure 8.4: Comparison of likelihood values.

There are 13 samples in which the acoustic likelihood of the incorrect hypothesis
word is lower but the language likelihood is higher than the true word. The inversion
of the language likelihood is due to either an excessive likelihood assignment to the
incorrect hypotheses or an unusual occurrence of the correct three word sequences; both
are almost equally observed. The excessive likelihood seems to be caused by a backing
off applied because of the sparsity of the training data. To recognize unusual true word

sequences, improvement of the acoustic model is also required.

On the other hand, there are nine samples in which the language likelihood of the
misrecognized word is lower but the acoustic likelihood is higher than the true word.
Among these samples, one of them was totally unvoiced and another was contaminated
with a low noise. The other seven samples have no problem as long as the three-word
sequences are listened to. But when the center words are listened to in isolation, roughly

half of the seven samples sound somewhat different from the correct word.
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8.3.4 Relationship with continuous speech recognition

Word recognition rates of individual word recognition, given the + one word context,
conducted in the above experiments were compared to recognition rates using whole
sentence continuous speech using various acoustic and language models which have
different modeling accuracy. The results are shown in Figure 8.5. In this experiment,
3000 words and 280 sentences in the test set presentations listed in Table 8.1 are used.
The recognition rate of this result is slightly lower than that of the task in subsection

8.3.2 even when the same model is used, since the results are not manually normalized.

c 100——————————
o ; _

S 90} f(x)=1.72x -76.6 —
S 5 801 A
8§70;

O 5 601 )

Q § 50

S T40 o

A

60 65 70 75 80 85 90 95100
Word recognition

Figure 8.5: Word vs. sentence recognition rates.

The relationship between the recognition rates can be approximated by a straight line
with a gradient of 1.72, that passes through the point of (100%, 96%). If the individual
word recognition performance can improve by 6% as stated in the previous subsection, a
10% improvement in the continuous speech recognition is expected. However, to achieve

word accuracy of 90% or more, the 10% improvement is not enough and wider context
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information should be incorporated.

8.4 Conclusion

Recognition performance of an automatic speech recognizer has been evaluated in com-
parison with human recognition performance in spontaneous presentation recognition.
The recognition error rate of human listeners was roughly half of that of the decoder.
There existed roughly 6% of words that were easy for the humans to recognize but dif-
ficult for the decoder. Causes of the recognition errors by the decoder include problems
of model accuracy and lack of robustness against vague and variable pronunciations. If
the decoder could be improved to overcome these problems and the 6% of words could
be correctly recognized, approximately a 10% improvement could be expected in contin-
uous speech recognition without using contexts longer than trigrams. To achieve word

accuracy of 90% or more, however, wider context information should be incorporated.
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Chapter 9

Lexicon Optimization

9.1 Introduction

In this chapter, a new statistical lexicon optimization method for speech recognition
based on both linguistic and acoustic features of words is proposed. This study was
motivated by the observation described in (Z:hapter 7 that less frequent and shorter
words are generally difficult to recognize [21].

Language models based on words or morphemes are widely used for large-vocabulary
continuous-speech recognition (LVCSR). For languages like English, words are well de-
fined since they are separated by space symbols in the written text. Other languages
like Japanese have no spacing between words and even no clear definition of words.
Therefore, for these languages, it is common to preprocess text with a morphological
analysis program to automatically split sentences into morphemes to make language
models. In all languages including English and Japanese, it is not clear whether these
conventional words or morphemes are optimal units for speech recognition.

From this point of view, several studies have been conducted to optimize the lexicon
for improving the performance of language models(13, 14, 15, 16, 17, 18, 19, 20]. Some
ideas presented in these works include a) automatically building a lexicon based on
some criteria/rules for languages having no clear word definition, b) concatenating word
pairs to model longer context by N-grams without increasing N so as not to increase

the parameter dimension and data sparsity, and c¢) concatenating words to balance
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the occurrence of all the word units. In these methods, basic units are concatenated
based on evaluation functions such as unit pair frequency and mutual information. In
[13, 14, 15, 16, 17, 19], performance was evaluated in terms of the recognition accuracy
as well as the test-set perplexity. In [14], it was reported that certain word phrases were
very frequent in dialogs of a limited domain. A phrase finding algorithm based on the
-mutual information criterion was found to improve the accuracy of a recognition system
using a bigram language model. Paper [17] reported a mutual information based method
using a large newspaper corpus with no improvement being achieved in the recognition
accuracy. Paper [19] reported that a word pair frequency based method improved the

recognition accuracy by 0.2% using a language model trained on WSJ.

One of the problems of these methods is that they are based only on a linguistic
aspect and no acoustic characteristics have been considered. Although perplexity is
a useful measure, decrease in perplexity does not necessarily guarantee improvement
in the recognition rate. In the method proposed in this chapter, a word correctness
probability model is estimated and used to directly estimate the recognition correctness
of a system. A process of choosing and concatenating a word pair which maximizes the

estimated word correctness is iterated.

This chapter is organized as follows. In Section .9.2, an experimental set up is
described. In Section 9.3, the relationship between word frequency, word length and
recognition correctness is analyzed and modeled. The proposed optimization method
is described in Section 9.4. The proposed method is applied to a large scale Japanese
spontaneous speech corpus in Section 9.5. It is shown that the method improves the
recognition rate. Experimental results are discussed in Section 9.6. Finally in Section

9.7, the chapter is summarized and concluded.
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9.2 Experimental set up

9.2.1 Baseline recognition system

Language models were trained using transcriptions of 610 academic and non-academic
lectures from the large-scale Japanese spontaneous speech corpus (CSJ){4]. JTAG mor-
phological analysis program was used to convert Japanese text into morpheme sequences.
The training set turned out to have approximately 1.5M morphemes (morpheme will be
called “word” hereafter in this chapter). The most frequent 30k words were selected as
the vocabulary for recognition and a trigram language model was made.

An acoustic model was made using 338 CSJ lectures presented by male speakers.
The total length was approximately 59 hours. The Julius 3.1 decoder was used for

speech recognition.

9.2.2 Recognition task

Two kinds of utterance sets were used, both of which consisted of academic lectures

presented by male speakers in the CSJ.

Table 9.1: Development set

Conference name No.lecture
Jap. Soc. Artif. Intell. 32

Acoust. Soc. Jap. 9
Soc. Jap. Linguistics 3

Table 9.2: Evaluation set

Lecture Conference Length
ID name [min]
A22 Acoust. Soc. Jap. 28
A23 Acoust. Soc. Jap. 30
A97 Acoust. Soc. Jap. 12
Jo1 Soc. Jap. Linguistics 57
K05 National Lang. Res. Inst. 42
NO7 Assoc. Natural Lang. Proc. 15
P25 Phonetics Soc. Jap. 27
S05 Assoc. Socioling. Sciences 23
Y01 Spont. Speech Corpus Meeting 14
Y05 Spont. Speech Corpus Meeting 15
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A development set, consisting of 44 lectures, was used for analyzing and modeling
the word correctness probability. Table 9.1 shows the content, in which the first 10
minutes of each lecture was used.

An evaluation set was used for evaluating the proposed method. This consisted of
10 lectures having no overlap with those in the development set. Table 9.2 shows its
content, in which the entire length of each lecture was used. The OOV rate was 1.3%
excluding word fragments.

All the speakers in these sets had no overlap with those in the training set for building

acoustic and basic language models.

9.3 Relationship between word occurrence count, word
length and recognition correctness

There exist many factors that affect the difficulty of recognizing each word. Among
them, it has been shown in Chapter 7 that the number of occurrences of a word in
the language model training set, as well as its length have a strong relationship with
its correctness [21]. Generally speaking, less frequent and shorter words are harder to
recognize. This is probably because the N-gram probability of a less frequent word is
more difficult to model correctly and because shorter words are acoustically more easily
confused in the decoding process.

To investigate these relationships, word attributes were defined and calculated as

follows.

Cor: Word correctness (%). (0 or 100).

WF': Number of occurrences of a word in the language model training set.
LF: Logarithmic value of the WF: log,o(WF + 10~5).

NP: Number of phonemes in the word.

Coris a binary attribute, taking 100 if the word was recognized correctly and 0 if it was
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LENGTH AND RECOGNITION CORRECTNESS

miss-recognized by the decoder. Insertion errors were not considered since they do not
have corresponding reference words.

These attributes were computed for each word in the development set. The dotted
lines in Figure 9.1 show the relationship between the number of occurrence of words
and the recognition correctness where words were classified according to the number of
phonemes they contain. The correctness was averaged over the group of words having
the same range of NP and shown in the figure at each value of LF. Similarly, Figure 9.2

shows the relationship between the number of phonemes and the recognition correctness.

100
80F .
__ B0} |
&2
8
40} .
1<=NP<3
= 3<=NP<5
207 + B5<=NP<7
»  7<=NP<9
e o 9<=NP<11
% T 2 3 4

Figure 9.1: Log word occurrence count and recognition correctness.

From the Figures 9.1 and 9.2, it can be seen that the averaged word correctness
changes largely according to the number of occurrences and the length of the word. The
results are approximately continuous and monotonous.

The averaged word correctness can be regarded as an expected probability that
a word is successfully recognized as a function of the attributes. The probability was
modeled by a logit model having the logarithmic occurrence count (LF) and the number

of phonemes (NP) as explanation variables. Second order terms of the attributes were
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100
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Figure 9.2: Word length and recognition correctness.

also incorporated to improve the modeling accuracy. Equation (9.1) shows the obtained

model in which parameters were estimated by the maximum likelihood method.

P(Cor =100|NP,LF)
= A (0.70NP ~ 0.03NP? + 1.60LF — 0.12LF? — 5.17) 9.1)

where A is a logistic function. A is expressed as follows.

el'
T 14er

A(z) (9.2)

Solid lines in the Figures 9.1 and 9.2 indicate the probability estimated by the
logit model (9.1), which show that the logit model successfully indicates the global

characteristics of the correctness.
9.4 Lexicon optimization method

In the previous section, it was shown that the word correctness probability was effectively

modeled by the logit model as a function of the word occurrence count and the word
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length. In this section, a new recognition lexicon optimization method based on the
logit model is proposed, in which the lexicon is optimized by concatenating basic words
iteratively.

The occurrence of words in the parent set of the recognition task is apf;roximated by
using the occurrence of words in the training set for building the language model. By
using this assumption and the word correctness probability model, a recognition rate of
the system can be estimated as an expected value of word correctness as formulated in

equation(9.3), in which a (w) is a “recognition rate normalization factor”.

>, P(Cor =100|NP (w),LF (w)) - WF (w) - & (w)
Lo WF (w) & (w) '

E[Cor] (9.3)

The recognition rate normalization factor is introduced to impartially compare recog-
nition systems having different recognition units. Suppose there are two recognition
systems, one has “ice” and “cream” as separate words and the other has “ice+cream”
as a single word for recognition. If “peach ice cream” is spoken and recognized as “beach
ice cream” and “beach ice+cream” by the two systems, these two results are basically
the same but their correctness values are 2/3 and 1/2, respectively.

This inconsistency can be alleviated using either recognition rate based on the initial
word unit or the character recognition rate for the comparison. The character recog-
nition rate has been sometimes used in speech recognition evaluation for the languages
using Chinese characters, such as Japanese and Chinese. To approximate these recogni-
tion rates, the number of initial words before concatenation or the number of characters
in the word can be assignment to o (w). The former assignment corresponds to using the
word recognition rate based on the initial words and the latter assignment corresponds
to using the character recognition rate.

Let’s consider selecting a word pair {(wy,w2) and concatenating all the sequence of
these words in this order to create a new word w; 7 in the language model training set.

New attributes after the operation can be expressed as follows.

e NP (wl,z) =NP (wl) + NP (’LUQ)
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o WF (w;2) = The number of sequences “w; ws” in the original training set.
The attributes of w; and w2 also need to be updated as follows.

e NP (w;) = NP (w;)

o« WF (w) = WF (w;) — WF (w;2)

where w; denotes the w; (i = 1 or 2) after the operation. Note that by definition
af{wi2) = a(w) + a(ws).

A delta() evaluation function of a word pair concatenation is defined as the difference
of the estimated correctness of the recognition system before and after the operation as

shown in equation (9.4).
A (wl,wg) = Eafter [CO?"] - Ebefore [CO’I‘] . (94)

A word pair is selected among all possible word combinations which maximizes the
evaluation function and concatenate those word sequences in the training set. The
process is iterated by choosing a new word pair step by step. The optimization process

is summarized by optlexicon() as shown below.

procedure optlexicon() {
for i = 1:maxiter {
select word pair <wil,w2>
which maximizes delta(wl,w2);
break if delta(wl,w2) < 0;
merge (wl,w2);
}
}

9.5 Experimental results

9.5.1 Application to the training set

The optimization method was applied to the training set of the baseline language model.
The initial vocabulary size, meaning the number of different words, in the training set
was 34,895. o(w) was initialized as the number of characters in each word. After

iterating the concatenation process for 500 times, the training set which had 1.5M words
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at the beginning was reduced to 1.3M words. The estimated a-weighted correctness gain
was 1.39%, which means that using the new language model trained using the optimized
training set ideally improves the character correctness by 1.39% in the absolute value.
Figure 9.3 shows the concatenation evaluation score and its accumulated value. The
evaluation score decreases exponentially as a function of the number of iterations.
Table 9.3 shows the mean and standard deviation of the attributes calculated for

the training set before and after the optimization. The averaged number of phonemes

increases and the averaged word frequency decreases as the result of the optimization.

10 PR RS R R R R R
| — delta<wi,w2>
o [z cumulative score
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©10 'k
o
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10° 10’ 10° 10°

Number of iteration

Figure 9.3: Changes of the evaluation and accumulated values in 500 iterations.

Table 9.3: Mean and standard deviation of word attributes before (base) and after (opt)
the optimization

NP WF | LF

Mean(base) 3.79 | 13541 | 3.23
Standard deviation(base) | 2.14 | 19510 | 1.20
Mean(opt) 4.39 | 7829 | 2.94

Standard deviation{opt) | 2.51 | 13637 | 1.13
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9.5.2 Reéognition results

A trigram language model having 30k words was trained using the optimized training
set and used for speech recognition. Other conditions were the same as the baseline
system. Recognition performance for the evaluation set using the new language model
was compared with the baseline system. The performance measured by the character

correctness and accuracy is shown in Figure 9.4.

'The figure shows that correctness and accuracy were improved for nine and eight
lectures, respectively, out of 10 lectures. Averaged improvements were 0.48% and 0.33%
in the absolute values for the correctness and accuracy, respectively. As a supplementary
experiment, lexicon optimization based on word pair frequency criterion was also tried
for comparison. The improvement in averaged accuracy was 0.11%, which was 1/3 of

the improvement of the proposed method.

90
. Cor(base)

85 Cor(opt)
. Acc(base)
= 80-
‘[,’80 D Acc(opt)
<
3757
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o
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AN O M~ 5 Lt03
d d2SE
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Figure 9.4: Character correctness and accuracy before (base) and after (opt) the opti-
mization.

70



9.6. DISCUSSION

9.6 Discussion

The proposed method improved the recognition rate, but the improvement of 0.48%
character correctness was much smaller than the estimated improvement of 1.39%.
This may be due to the estimation error by the word correctness probability rﬁodel (9.1).

It was assumed that the model parameters are fixed during the optimization steps. If
the word correctness probability changes in the iteration, it may cause errors and the
errors may increase as the iteration proceeds. The problem could be reduced by re-
estimating the model parameters at some intervals. Another reason may be the fact
that only two word attributes, the word frequency and the length, have been consid-
ered in the model. Other important attributes which could contribute to improve the
performance may exist. Another possible reason is that insertion errors were ignored in
the analysis. Considering the insertion error in the method could possibly also improve

the recognition rate.

9.7 Conclusion

This chapter first investigated the relationship between the difficulty of word recogni-
tion and two word attributes, that is the number of occurrences of each word in the
language model training set and the number of phonemes in the word, using a large scale
Japanese spontaneous speech corpus. It was shown that the probability of successfully
recognizing each word largely varies depending on the two attributes. The relationship
was then modeled using the logit model, and the model was used to build a new lexi-
con optimization method. The proposed method is novel in the sense that it optimizes
the lexicon considering both linguistic and acoustic features of words. Recognition re-
sults showed that the trigram language model using the optimized lexicon improved the

recognition rate.
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Chapter 10

Speaking Rate Modeling

10.1 Introduction

One of the main factors which creates difficulty in recognition of spontaneous utter-
ances is the large variation of the speaking rate as indicated in Chapter 5,6,7 and in
papers [7, 21, 22, 23]. This chapter explores several ways to extend the HMM to ex-
plicitly model the effects of the speaking rate variation. These models are realized by
using the dynamic Bayesian network framework which has the ability to model complex
probabilistic dependencies.

The reasons for the adverse effect of speaking rate fluctuation include spectral modi-
fication, and more directly, the deviation of the phone state duration which then causes
a mismatch in transition probabilities modeled by the HMM.

A possible strategy to manage this problem is to first estimate the speaking rate
and then adjust a recognizer based on the speaking rate. Sentence level acoustic model
selection has been described in [24]. The fastest sentences are selected based on the
speaking rate calculated by using the 1st pass recognition results, and re-recognized
using an acoustic model adapted to those fastest sentences. In [25], frame level regulation
using regression HMMSs has been proposed. A way of modifying pronunciation and
acoustic likelihood using a hidden mode variable was shown in [26]. This modification
of pronunciations based on the hidden variable was implemented in [27]. Modification

of the acoustic likelihood has been conducted in [28] where speaking rate information is

73



Speaking Rate Modeling

used for each frame.

Since the standard HMM is not powerful enough to model complex dependencies,
several extensions have been made. However, such kind of extensions often require large
efforts for their realization and many other possible extensions are then left untouched.
For example, there are many possibilities for how to use the hidden mode variable. The
Bayesian network is a flexible statistical framework on which such novel probabilistic
models can be rapidly employed (29, 30, 31, 32]. In [29], the idea of using a Bayesian
network for compensating for a changing speaking rate is also suggested, but exper-
iments using the network were not conducted. This chapter explores possibilities of
several Bayesian network based acoustic models that have a hidden mode variable to
deal with speaking rate variation. These models extend a conventional HMM by modi-
fying the parameters of Gaussian mixtures and/or transition probabilities according to
the speaking rate frame by frame. These models are evaluated using utterances from
meetings and lectures as test sets by rescoring N-best lists which are generated by a
Bigram decoder with a 30k vocabulary size.

This chapter is organized as follows. In Section 10.2, the conventional and proposed
models are formulated as a Bayesian network. In Section 10.3, several techniques for
measuring speaking rate are reviewed. Experimental results are described and discussed
in Section 10.4. It is shown that the proposed models using a hidden mode variable are
more effective in improving the recognition rate than a regression HMM using the same
speaking rate information. Especially, a hidden mode HMM that adjusts both mixture
weights and transition probabilities depending on the speaking rate is the most effective.

Finally, the chapter is concluded in Section 10.5.

10.2 DBN based acoustic modeling

In this section, a way of formulating the HMM as a Bayesian network is reviewed and a
baseline network for encoding the HMM is defined. Then, several models that extend the

HMM are described. Since model complexity and estimation accuracy of the parameters
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from a training set always pose a trade-off, the number of parameters of the models are

given special attention.
10.2.1 Bayesian network

Bayesian networks are directed graphs in which nodes represent random variables, and
edges represent probabilistic dependency relations. A Bayesian network is defined by
the graph structure and the Conditional Probability Distribution (CPD) at each node.
There are several ways in which the CPDs can be defined. For example, if the variable
of the node and those of its parents are both discrete, the CPD can be represented as
a Conditional Probability Table (CPT), which lists the probability that the node takes
on each of its different values for each combination of values éf its parents. When the
variable of the node is continuous and the parents are discrete-valued, a set of Gaussian
mixtures can be used where each element corresponds to a combination of values of its
parents [33].

Since speech recognition is a process of time series of feature vectors, Dynamic
Bayesian Networks (DBN) [34] are ideally suited for this purpose. DBNs are Bayesian
networks that have directed edges pointing in the direction of time. DBNs have a

repeating topology of a common core structure, and its CPDs do not change with time.
10.2.2 Baseline model

Figure 10.1 shows an example of a phone HMM set modeling phones /a/ and /b/. Each
phone model consists of three states with a left-to-right topology. Figure 10.2 shows
the DBN structure that models the phone HMM sequence for model training and N-
best rescoring [29], where the discrete variable Phone-Counter indicates position in
the phone sequence and its value is incremented when binary random variable Phone-
Transition shows it is phone transition. The node End-of-utterance is necessary
to ensure that the process ends with a transition out of the last phone. In the figure,
observed variables are indicated by shading their nodes. Also, continuous nodes are

denoted by circles while discrete nodes are expressed by squares.
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In the phone HMM set, a probability distribution for acoustic feature vectors is
specified by a phone index and the state index of the phone. The Bayesian network
has a node Phone that represents a phone index and Phone-State that represents
the state index of the phone. As abbreviated in Figure 10.3, the node Observation
which corresponds to acoustic observation, has incoming arrows from the nodes Phone
and Phone-State. This means that the probability the value of Observation takes is
dependent on these values since each node in a Bayesian network represents a random
variable. Similarly, a phone state transition probability to the next HMM state is mod-
eled by a node Phone-State-Transition that has incoming arrows from Phone and
Phone-State, indicating probabilistic dependency on these variables. Equation (10.1)
and Equation (10.2) show these dependencies of the acoustic observation and the tran-

sition probabilities, respectively.

P(OIP,S), (10.1)

P(T|P,S). (10.2)

In the equations, O is a single-letter abbreviation of the Observation variable for refer-
ential convenience, P is Phone, S is Phone-State, and T is Phone-State-Transition.

The node Phone-State-Transition represents a binary random variable that indi-
cates either staying at the HMM state or moving to the next state, since the HMM has
a left-to-right topology. In this example, cardinalities of the discrete random variables
Phone and Phone-State are two and three, respectively, corresponding to the number
of phones and the maximum number of states for each phone. rI:he acoustic observation
is a vector of real numbers and Observation is a continuous random variable.

A Bayesian network used as a baseline acoustic model has the same structure but a
larger cardinality for Phone. The CPD of the observation node Observation is defined
using a set of diagonal covariance Gaussian mixtures. Parameters of the network are
trained using the EM/GEM algorithm on a Bayesian network. Decoding is performed

by assigning values for all the hidden variables so as to maximize the joint probability
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of the entire network. Hereafter, the baseline network is referred to as BASE.

Figure 10.1: A phone HMM set consisting of two phones. Each phone is modeled by a
three-state left-to-right HMM.

Frame T
B End-of-utterance=1

Frame 2 Frame 3

i Phone-Counter

H
{ Phone-Transition

i Phone

H
i Phone-State-Transition

§ Phone-State

i Observation

Figure 10.2: DBN representation of the phone HMM sequence. Circles denote
continuous-value nodes, squares denote discrete nodes, clear means hidden, and shaded
symbols indicate observed nodes. '

10.2.3 Regression HMM

One possible way of controlling acoustic observation probability density is to use re-
gression models, in which mean values of the Gaussian components are modeled by
linear combination of explanation variables. A multiple-regression HMM has been pro-
posed in [35] where F0 information was used as an auxiliary feature for the explanation

variables. The mean vector p of each Gaussian component is expressed as,

po= R-&+po, (10.3)
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/a/, /b/
Phone (P)
0,1,2

Phone-State (S)

0,1

Phone-State-Transition(T)

Observation (0)

Figure 10.3: A portion of a time slice of the DBN in Figure 10.2 that encodes the
conventional HMM. (BASE)

where R is the regression coefficient matrix, yg is the constant term, and ¢ is the auxiliary
vector. Similar models have been proposed and implemented as DBNs in [36, 25] in

which FO and speaking rate are used as auxiliary information.

In this chapter, a DBN version of the multiple-regression HMM is evaluated using
a speaking rate and the second and third order terms as explanation variables. The
parameters added to the BASE model are regression coefficient matrix components
that have the same row dimension as the mean vectors and a column dimension of
three. The matrices are tied among Gaussian mixture components in each phone to
reduce the number of parameters required to define the model. The Bayesian network
representation of this model is shown in Figure 10.4 where there is an additional node
Speaking-Rate that represents the speaking rate compared to BASE. An arrow di-
rectly connecting Speaking-Rate and Observation expresses the dependency between
Observation and Speaking-Rate. The acoustic observation probability is expressed
as shown in Equation (10.4), where O is the Observation variable, P is Phone, S is

Phone-State and R is Speaking-Rate. This model is hereafter called REG.

P(O|P,S,R) | (10.4)
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Phone (P)
Phone-State (S)

Speaking-Rate (R)

@\ [JPhone-State~Transition

O Observation (0O)

Figure 10.4: Regression model. (REG)

10.2.4 Hidden mode mixture weight model

Figure 10.5 shows a Bayesian network of a proposed model in which the acoustic ob-
servation node Observation has different probability density according to a “mode”
of the speaking rate. In this network, two nodes are added to BASE; Mode and
Speaking-Rate. Mode is a discrete hidden random variable that represents a “mode”
of the speaking rate. As indicated by a dotted line in the figure, Mode depends on
its counterpart of the previous time slice. This dependence is introduced based on an
assumption that the speaking rate changes continuously. A CPT is used at this node.
Speaking-Rate is a one-dimensional continuous random variable of the speaking rate

and a set of Gaussian distributions are used for CPD at this node.

In this configuration, both the acoustic observation node Observation and the
speaking rate observation node Speaking-Rate have the node Mode as their par-
ent. According to this network, the joint observation probability of Observation and
Speaking-Rate given Phone, Phone-State, and Mode is factorized, as shown in
Equation (10.6), using the local Markov property that a node is independent of all
its nondescendants given its parents. In the equation, O is the Observation vari-
able, R is Speaking-Rate, P is Phone, S is Phone-State, and M is Mode. Equa-
tion (10.5) is obtained by applying the chain rule to the joint probability. Equation (10.6)
is derived by using the conditional independence relationships of P (O, R|P,S,M) =
P(O|P,S,M) P (R|P,S,M) and P (R, P,S|M) = P (R|M) P (PS|M).
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P(O,R|P,S, M)
P(O|P,S,M,R) P (R|P,S, M) (10.5)
P(O|P,S, M) P (R|M). (10.6)

The CPD at node Observation has a different Gaussian mixture for each combi-
nation of the values of Phone, Phone-State, and Mode. This means that the CPD
has |Mode| times more Gaussian mixtures than BASE, where |Mode| is the cardinality
of the Mode variable. Usually, Gaussian mixtures dominate the number of parameters
of an HMM. To reduce the number of parameters for accurate model estimation, the
Gaussian components are tied for the different values of Mode. That is, different values

of Mode specify different Gaussian mixture weights for the same Gaussian component.

Speaking-Rate has different distributions of the speaking rate depending on Mode,
and this is used to detect a mode of the speaking rate. The Gaussian mixtures of
Observation are modified based on a value of Mode by choosing different Gaussian
mixture weights, and this is how compensation for spectral change is accomplished. Note
that the speaking rate mode of each frame is not completely determined simply by the
speaking rate but by considering the entire likelihood of the network using an inference
algorithm on a Bayesian network. Hereafter, this model adjusting the mixture weights

for each time frame by using the hidden mode variable is referred to as HM-MW.

Newly introduced parameters in addition to those used in BASE are: a CPT of size
|Mode| x |Mode| at Mode, a one-dimensional Gaussian distribution for each value of
Mode for CPD at Speaking-Rate, and |Mode| — 1 mixture weight vectors for each
combination of the values of Phone and Phone-State at Observation. Note that
this configuration is applicable not only to the speaking rate but also to any temporal

fluctuation that affects speech features.
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Phone (P)
Phone-State (3)

[ JPhone-State-Transition

Speaking-Rate (R) G Observation (0)

Figure 10.5: Hidden mode mixture weight model. The dotted link represents an edge
from the previous time frame. (HM-MW)

10.2.5 Hidden mode transition probability model

In the model described in the previous subsection, observation probabilities of an un-
derlying HMM are controlled by a hidden mode variable. It is also possible to control
transition probabilities by using the hidden mode variable as shown in Figure 10.6. The
parameterization for the variables Mode and Speaking-Rate are the same as HM-
MW. Mode is a discrete hidden random variable used to represent the speéking rate
mode and Speaking-Rate is a one-dimensional continuous random variable modeling
the speaking rate. The joint probability of Phone-State-Transition and Speaking-
Rate given Phone, Phone-State, and Mode is factorized as shown in Equation (10.7)
based on conditional independence assumptions encoded in the network. In the equa-
tion, T is the Phone-State-Transition variable, R is Speaking-Rate, P is Phone,

S is Phone-State, and M is Mode.

Phone (P)

Mode (M) Phone-State (S)

.....

[ JPhone-State-Transition(T)

Speaking-Rate (R) @ Observation
Figure 10.6: Hidden mode transition probability model. (HM-TRP)

Additional parameters to those used in BASE are: a CPT of size |Mode| x |Mode|
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P(T,R|P,S,M) = P(T|P,S,M)P(RIM). (10.7)

at Mode, a one-dimensional Gaussian distribution for each value of Mode for CPD at
Speaking-Rate, and |SRmode| — 1 transition probabilities for each combination of the
values of Phone and Phone-State at Observation. Since the number of parameters
required for modeling transition probabilities are fewer than for the Gaussian mixtures,
they are separately modeled for each value of Mode. This model is hereafter called

HM-TRP.

10.2.6 Hidden mode HMM

The controls of the mixture weights and the transition probabilities can be combined
as shown in Figure 10.7. The variables introduced to control the underlying HMM pa-
rameters are Mode and Speaking-Rate. Mode is a discrete hidden random variable
to represent the speaking rate mode and Speaking-Rate is a one-dimensional contin-
uous random variable to model the speaking rate, as already explained in the previous
subsections. The joint probability of Observation, Phone-State-Transition, and
Speaking-Rate given Phone, Phone-State, and Mode is factorized as shown in
Equation (10.8), based on conditional independence assumptions encoded in the net-
work. In the equation, O is the Observation variable, T is Phone-State-Transition,

R is Speaking-Rate, P is Phone, S is Phone-State, and M is Mode.

P(O,T,R|P,S, M)
= P(O|P,S,M)P(T|P,S,M)P (R|M). (10.8)

Additional parameters to those used in BASE are a union of the additional pa-
rameters of HM-MW and HM-TRP, that is, a CPT of size |Mode| x |Mode| at
Mode, a one-dimensional Gaussian distribution for each value of Mode for CPD at

Speaking-Rate, and |Mode| — 1 mixture weight vectors and transition probabilities
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for each combination of the values of Phone and Phone-State at Observt;ltion. This
model is hereafter called HM-HMM.

Phone (P)

Mode (M) Phone—-State (S)

_____

[ JPhone~State-Transition(T)

Speaking—-Rate (R) ®crservation (0)

Figure 10.7: Hidden mode HMM. (HM-HMM)

10.3 Measurement of speaking rate

Many approaches have been reported for calculating/defining the speaking rate. They
can be roughly divided into two categories, that is, lexical measures and signal based
measures.

Lexical measures count units such as words or phones in a certain period. When cor-
rect transcription is available, these measures can be calculated by the forced alignment
technique. When the correct transcription is not available, a recognition hypothesis can
be used instead. A disadvantage of this method is that the hypothesis is not always
correct and the errors degrade the reliability of the estimated speaking rate. Thus, when
the estimated speaking rate is used to control the recognition system, it is possible that
the estimate is less accurate for speech segments where the control by speaking rate is
more important.

The signal based measures directly estimate speaking rate without relying on the
transcription and thus can avoid the problem of the lexical measures. Enrate, proposed
in {37], is one such measures. This is defined as the first spectral moment for the
wideband energy envelope of the speech signal. The spectral range is approximately
restricted between 1 and 16Hz. The concept of the Enrate is based on the fact that the

energy envelope of speech rapidly changes when the speaking rate is high. The Enrate
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can be considered as a conversion of the TEMAX-gram [38], which was developed to
observe the speaking rate as a spectrogram, into a scalar value. Although the correlation
between the Enrate and the phone or syllable rate is not high, it has been shown in [37]
that the Enrate is a good predictor of recognition errors.

To improve the correlation with lexical measures, Mrate was proposed in [39]. This
is a linear combination of the Enrate and peak-counting estimators. The correlation
between the syllable rate and the Mrate is over 0.6, whereas correlation with the Enrate
is approximately 0.4 for manually transcribed Switchboard data.

In [40], another way of estimating the speaking rate by detecting vowels has been
shown. Modified loudness defined as a difference of higher frequency band loudness
and lower frequency band loudness is calculated for every frame. The main part of the
energy of a vowel concentrates on lower frequencies, whereas that for most consonants
is located at higher frequencies. Therefore, vowels make peaks in the modified loudness
and they can be thus detected by finding maxima of the modified loudness. Speaking
rate is obtained by taking an inverse of the vowel frequency.

In the following experiments, lexical measures derived from correct and hypothe-
sized transcriptions and the Enrate signal based measure are used. These measures are
calculated for each frame of acoustic observation features using significantly overlapped

analysis windows.

10.4 Experiments

10.4.1 Corpora and tasks

Two spontaneous speech corpora were used to .train and evaluate the DBN based acous-
tic models. One was a corpus of the Meeting Recorder Project [41] and the other was
the Corpus of Spontaneous Japanese (CSJ) [4]. Utterances gathered by the Meeting
Recorder Project are recorded from meetings in natural settings, and contain back-
ground noises and speech overlaps by other speakers. CSJ consists of Japanese academic

lecture speech and extemporaneous public speech. Speaker dependent experiments were
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Table 10.1: Characteristic of the acoustic models of the tasks

Task ICSI meetings (CSJ lectures
Language English Japanese
Model type Speaker dependent | Speaker independent
Feature kind MFCCO0D_A MFCCED.N_Z
Feature dimension 39 25
Window width 25ms 25ms
Frame shift 10ms 10ms
# of phones 45 42
# of mixtures per state 64 28

conducted for the meeting data and speaker independent systems were evaluated using
the lecture data. For both of the experiments, utterances recorded using close talking
microphones were used.

Speaker dependent models were made using the utterances produced by one male
speaker extracted from the meeting corpus. Utterances at nine meetings were used for
training, and one meeting was used for testing. Lengths of the utterances for training and
testing were 97 and 10 minutes, respectively. Experiments for the speaker independent
condition was conducted using academic lectures given by male speakers from the CSJ.
Ten lectures were selected as a training set and five lectures were used for testing. These
lectures are part of the official test sets of the CSJ. The length of the training set was

116 minutes and the test set was 16 minutes. Table 10.1 shows these conditions.

10.4.2 Model training

First a monophone HMM set was made using the training set and HTK. The parameters
of the DBN based acoustic models were initialized with the HMM. Then they were
trained by the EM/GEM algorithms using GMTK [42] with 10 iterations.

Each phone of the monophone set was modeled by a three state HMM with a left-to-
right topology. The number of Gaussian mixtures per monophone state was determined
so as to maximize the recognition rate of the task by preliminary experiments; 64 for
the meetings and 28 for the lectures. Table 10.1 shows the characteristic of the acoustic

models.
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Since the parameters of Mode and Speaking-Rate do not have corresponding
values in the HMM, they were initialized with arbitrary values. For HM-MW and
HM-HMM, the mixture weights were initialized by copying the mixture weights of the
monophone HMM. Similarly, for HM-TRP and HM-HMM, the transition probabil-
ities were initialized by copying those of the monophone HMM. Regression coefficient
matrices for REG were initialized by giving zeros to all the elements.

After the initialization, most of the trainable parameters, including that of the
Mode, Speaking-Rate, and the regression coefficient matrices, were trained. Only
the variances of the Gaussian components in the acoustic observation nodes Observa-
tion of the networks used for the meeting task were kept constant. This is because the
number of mixtures is large in contrast with the amount of the training data. For these
DBN acoustic models other than BASE, speaking rate information was also used in
addition to the normal acoustic features. For REG, the speaking rate was normalized
so that the mean value became zero for the training set. This made it reasonable to

initialize the Gaussian components of the model using those of the monophone HMM..
10.4.3 Experiments using oracle speaking rate

To investigate the effect and limit of the acoustic models, speaking rate information
derived from forced alignment of correct phone state sequences with the utterances were
used for both training and testing the acoustic models. The speaking rate was defined
as an inverse value of the state holding time. The observed values were smoothed using -
Equation (10.9), where SRy (t) and SRg () indicate time series of the speaking rate

before and after smoothing.

20
SRs(t) = Y. SRi(t+s)-(20—]s). (10.9)

§=-20

The DBN based acoustic models were evaluated by rescoring N-best lists using
GMTK with a single pass of max-product inference. The N-best lists were gener-
ated using the monophone HMM that was used to initialize the DBN models and a

Bigram language model. The Bigram model used for the meeting task was trained on
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the HUBSE and the one used for the lecture task was trained on 6.7 million words of
transcriptions from the CSJ. Their vocabulary sizes were both 30k. The number of
hypotheses generated for each utterance was 50 and 100 for the meeting and the lecture
tasks, respectively. The cardinality of the hidden discrete variable Mode was set to

four.

Figure 10.8 shows the recognition results of the meeting task. The word accuracy
of the baseline model BASE was 52.7%, and the absolute improvement of the word
accuracy by REG and HM-MW compared to BASE was 0.4% and 1.7%, respectively.
By controlling the transition probabilities, HM-TRP improved the accuracy by 1.7%.
The most effective model was HM-HMM combining HM-MW and HM-TRP. This
model improved the accuracy by 3.2% for the absolute value by controlling both the
mixture weights and the transition probabilities. Similar results were obtained for the
lecture task as shown in Figure 10.9. The improvement by HM-HMM was 2.1% in

this case.

Although both REG and HM-MW models modify Gaussian mixtures based on the
speaking rate, HM-MW achieved higher improvement than REG. One disadvantage
of REG might be that it deterministically changes the mean values of the Gaussian
components according to the speaking rate. Even if the true speaking rate information
is used, it is possible that at some time frame a given speaking rate does not match
the local effects of the speaking rate in terms of the changes of the acoustic character-
istics, since it has been smoothed as mentioned above. Moreover, it is possible that the
relationship between the speaking rate and the change of speech spectra is essentially
probabilistic. HM-MW, on the other hand, probabilistically chooses a speaking rate
mode considering the entire likelihood of the network and therefore it has the capability
to select a mode that does not directly match the speaking rate. This feature was ob-
tained by introducing the hidden variable Mode for representing the mode of speaking

rate.

Mean deletion and substitution error rates with BASE and HM-HMM for different
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speaking rates are shown in Figure 10.10 for the meeting task. The speaking rate was
classified into four classes; SRO is the slowest and SR3 is the fastest. The speaking rate
was calculated for each correct word by averaging phone rates using correct transerip-
tion. Therefore, insertion errors were not counted. As can be seen in the figure, both
the deletion and substitution errors increase for BASE as the speaking rate increases.
Reduction of the deletion errors by HM-HMM is higher at faster speaking rates. For
substitution errors, HM-HMM has a relatively uniform effect across different speaking
rates. Similar error tendencies are observed for the lecture task, though the result is
not shown in the figure.

The proposed models, HM-MW, HM-TRP, and HM-HMM have a discrete hid-
den variable Mode that represents a speaking rate mode as explained in Section 10.2.
Although the cardinality of the variable is specified beforehand, the correspondence be-
tween the value of the variable and the speaking rate is obtained through a training
process using a set of Gaussian distributions at Speaking-Rate. The distributions are
estimated so as to maximize the entire likelihood of the network taking the dependen-
cies on mixture weight and/or transition probability into account. Figure 10.11 shows
the four one-dimensional Gaussian distributions of HM-HMM corresponding to each
value of the Mode estimated using the ICSI meetings. As can be seen in the figure,

different values of the Mode have different features of the speaking rate.

10.4.4 Experiments without using oracle speaking rate

Rescoring experiments without relying on the true transeription were conducted using
two different speaking rate measures for REG and HM-HMM. One measure was
HYP, which was similar to the one used in the oracle experiments with the exception
that H'YP uses the one-best hypothesis in the N-best list as an approximation of the true
transcription. For the rescoring, the same acoustic models as the previous experiments
were used. The other was ENRATE which was the Enrate measure. Window width

for the Enrate calculation was set at 400ms based on preliminary experiments. When

88



10.5. CONCLUSIONS

rescoring, acoustic models trained with Enrate were used.

Tables 10.2 and 10.3 show the results for the meeting and lecture tasks, respectively.
In the table, the results by the baseline model without using the speaking rate infor-
mation indicated by BASE and those by using the speaking rate calculated from true
transcription indicated by ORACLE are also shown. The cardinality of Mlode was set
to three and four.

As can be seen in Table 10.2, no improvement was obtained by the regression model
REG for the meeting task regardless of using HYP or ENRATE measures. This is
probably because the regression model is vulnerable to the decrease of the quality of the
speaking rate. Because the one-best hypothesis includes recognition errors, HYP is not
an accurate approximation of the oracle speaking rate. Although ENRATE is free from
the recognition errors, it seems to be less effective in explaining the change of acoustic
features compared to the oracle speaking rate. HM-HMM succeeded in exploiting
the speaking rate information to improve the word accuracy. When the cardinality of
Mode was set to three, an absolute improvement of 0.7% and 0.8% was obtained for
HYP and ENRATE, respectively. For the lecture task, as Table 10.3 indicates, the
highest improvement of 1.3% was found for HM-HMM with a HYP measure, where
the cardinality of Mode was set to four. The optimal cardinality of Mode probably
depends on the underlying HMM complexity such as number of mixtures, amount of

training data, and estimation accuracy of the speaking rate.

10.5 Conclusions

This chapter explored several dynamic Bayesian network based acoustic models for im-
proving recognition accuracy of spontaneous speech using an ekplicitly modeled effect
of the speaking rate. Although the DBN based recognition system is slower than con-
ventional systems that are highly tuned for the speech recognition domain, it provides a
flexible framework and is well suited for analyzing underlying principles and prototyping.

When speaking rate information obtained from the true transcription was given,
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Table 10.2: Word accuracy of the meeting task

REG HM-HMM | HM-HMM
[Mode|=3 Mode|=4
BASE 52.7
HYP 52.4 53.4 53.0
ENRATE | 52.5 53.5 53.1
ORACLE | 531 55.3 55.9

Table 10.3: Word accuracy of the lecture task
rReGg | HM-HMM | HM-HMM

‘ |Mode|=3 |Mode|=4
BASE 48.5
HYP 49.0 49.3 49.7
ENRATE | 48.6 48.8 48.7
ORACLE | 49.3 50.0 50.5

the proposed models, HM-MW, HM-TRP, and HM-HMM indicated higher per-
formances than BASE which encodes conventional HMM, and REG which encodes
regression HMM using the same speaking rate information. The absolute improvement
achieved by using HM-HMM was 3.2% and 2.1% for the meeting and lecture tasks,
respectively. These DBN based acoustic models were also evaluated using speaking rate
measures without using true transcriptions. Two measures were used for this purpose,
best hypothesis-based speaking rate and Enrate. Although the regression model REG
sometimes failed in making use of these speaking rates, HM-HMM showed improve-
ment over the conventional models for both tasks. In the best condition, HM-HMM
improved word accuracy by 0.8% for a meeting task and 1.3% for a lecture task. For
both of the experiments with and without oracle speaking rate, the proposed models in-
dicated consistently higher performance than conventional HMMs and regression HMMSs

using the same speaking rate information.
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Chapter 11

Massively Parallel Decoder

11.1 Introduction

Recently, several large scale spontaneous speech corpora have become available and
recognition performance for spontaneous speech has been greatly improved by using a
large amount of spontaneous data to make speech models. However, recognition rates
are still not adequate to satisfy the demands of most applications. This is because
spontaneous speech has many variations between speakersv and can vary greatly even in
different utterances of one speaker. These speaker and utterance specific characteristics
can not be modeled by a speaker independent or general model since they are averaged
in the process. One solution is to model speech sounds as a set of speech models that
will include a suitable model for every specific input utterance.

In [43], speaker cluster based HMMs were used to process broadcast news speeches
where the speakers change frequently. The recognition system selects one of the HMMs
for each utterance. In [44], sentence level mixture Ngrams were investigated to cap-
ture topic related dependencies. The component Ngrams are based on article clusters
and they are mixed at sentence level instead of choosing the component. Since it is
computationally expensive to search for hypothesis calculating the maximum or sum
of the likelihood of all the component models, some approximation has been required
such as using GMMs to choose a component HMM and rescoring N-best lists generated

by using a speaker independent model. However, to choose an HMM by using GMMs,
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GMM likelihood must be calculated before the selection and the recognition process can
not be started until a certain period passes after an utterance begins. Moreover, the
selection might not be optimal since GMM is not an accurate model. When a cluster
model is used to rescore N-best lists, the improvement in recognition accuracy is limited
by the restricted search space.

In order to take advantage of the modeling strategy to its fullest extent, this chapter
proposes a Massively Paralle] Decoder (MPD). MPD consists of a large number of
decoding units and an integrator. It runs on a parallel computer and can process speech
utterances with almost the same turnaround time as conventional decoders.

This chapter is organized as follows. Architecture and processing time of the MPD
are described in Section 11.2. Experimental conditions are described in Section 11.3
and the results are presented in Section 11.4. Finally, some conclusions are given in

Section 11.5.

11.2 Massively Parallel Decoder

The Massively Parallel Decoder (MPD) is a decoder that runs using an cluster speech
model. Figure 11.1 shows its architecture. It consists of a set of decoding units (DUs)
and an integrator. Each DU is just a conventional decoder that uses one of the element
speech models in the cluster model. An input speech utterance is sent to all the DUs and
each DU processes the signal independently based on its speech model. The recognition
hypotheses of the DUs are gathered to the integrator and a final output is synthesized.
While there are many ways to integrate the hypotheses from the DUs [45], a maxi-
mum likelihood criteria is used in the following experiments. The integrator selects the
hypothesis with the highest likelihood.

MPD can work efficiently on parallel computers such as Grid {46], MPP and SCM [47].
Grid and MPP connects many computers or processors to form a parallel computer. The
SCM integrates many processing units in a single chip. Although Grid and MPP cur-

rently require much power and space, they will be realized as a System on Package
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Figure 11.1: Architecture of the Massively Parallel Decoder.

(SOP) and will become easy to use.

In any case, parallel computers will become popular in the near feature because they
solve critical problems of single processor systems such as line delay. To take advantage
of parallel computers, parallel algorithms are crucial. In this aspect, MPD is well suited

to parallel computers since it has highly parallelized structure.

Figure 11.2 shows the processing time of a MPD running on a parallel computer.
By assigning each DU to a different processing unit (PU), the turnaround time T of
the MPD becomes constant to the number of DUs as shown in equaéion (11.1). In the
equation, ¢t and (3 represent processing time of the DU and the integrator, respectively.
Since the processing time of the integrator is negligible compé.red to that of the decoding
unit, equation (11.1) can be approximated as equation (11.2). Thus, the turnaround
time of MPD is about the same as conventional decoders using single acoustic and

language models.
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Figure 11.2: Processing time of MPD

T = t+p (11.1)

x ot (11.2)

11.3 Experimental conditions

11.3.1 Recognition task

The recognition task was the test-set 1 of the Corpus of Spontaneous Japanese (CSJ).
The test set consisted of ten academic lectures given by different male speakers. In
the experiment, utterances were extracted based on silence periods longer than 500ms
and five minutes of utterances were excerpted from each lecture. Figure 11.1 shows the

lecture IDs and number of utterances in the five minute sets.
11.3.2 Acoustic models

The training set for acoustic models was the CSJ academic presentations given by male

speakers. It includes 787 lectures and amounts to 186 hours. Feature vectors had 38
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Table 11.1: Test-set
Conference name | # of utterances used
AQ1IMO0097 58
A04MO0051 77
A04M0121 73
AQ3MO0156 88
. A03MO0112 43
AQIMO110 65
A05M0011 31
A0Q3MO0106 27
AQ1IMO0137 45
A0Q4MO0123 23

elements consisting of 12 MFCC, their delta, delta delta, delta log energy and delta
delta log energy. The CMS (cepstral mean subtraction) was applied to each utterance.
HTK [5] was utilized for model training and adaptation.

For a baseline system,'a speaker independent triphone HMM was made that had 3k
states and 16 Gaussian mixtures in each state. A regression class tree with 64 leaves was
associated with the HMM that classified Gaussian mixtures for MLLR adaptation. This
baseline HMM is hereafter denoted as SIAM (Speaker Independent Acoustic Model).

Two types of cluster acoustic models were made. One was made by adapting the
speaker independent triphone HMM to 400 different male speakers in the training set
using the MAP adaptation method. This model is denoted as SCAM (Speaker Cluster
Acoustic Model). The other was based on utterance clustering. The clustering was

conducted as follows using the whole training set for acoustic models.

1. Randomly distributes utterances to N clusters so that all the clusters have the
same number of utterances. N is the number of clusters desired. Makes HMMs

for each cluster by adapting the speaker independent HMM.
2. Calculates the likelihood for all the utterances for all the clusters.

3. For each cluster, selects an utterance with the highest likelihood by rotation until
all the utterances are classified. This ensures that all the clusters have the same

number of utterances.
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4. Makes HMMs for each cluster by adapting the HMMs made in the previous stage.

5. Goes to step 2 or ends after sufficient iteration. The iteration number of ten was

chosen in the following experiments.

Based on the obtained definitions of the utterance clusters, cluster acoustic models were
made by adapting the speaker independent HMM using the MAP adaptation method.
These models are denoted as UCAM(N) (Utterance Cluster Acoustic Model with N

clusters), where N is the number of element models.
11.3.3 Language models

The training set used for language models included academic and extemporaneous lec-
tures. It consists of 2485 CSJ lectures and contains 6.1 million words. The baseline
language model was a word trigram interpolated with a word class trigram which was
based on 100 word classes. The vocabulary size of the baseline model was 30k. Inter-
polation weights of 0.7 and 0.3 were used for word and class models, respectively. The
word class definition was trained using the incremental greedy merging algorithm [48].
This model is denoted as SILM (Speaker Independent Language Model).

Similar to the cluster acoustic models, two types of cluster language models were
made. One was made by training a set of speaker dependent models. The speaker
dependent models were made by weighting the transcriptions of the speaker. The tar-
get speakers were the same as those selected for the cluster acoustic models. For the
weighting, the transcription was multiplied so that the cumulative number is about 5%
for the entire training set. This model is hefeafter denoted as SCLM (Speaker Cluster
Language Model).

The other cluster model was based on utterance clusters. The clusters were trained
using the same algorithm as for the utterance cluster acoustic models but using perplex-
ity instead of acoustic likelihood. The whole training set for language models was used
for the training. In the iteration process of the algorithm, the cluster based models were

made by adapting models in the previous stage by duplicating the utterances belonging
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to the cluster. Based on the obtained definition of the utterance clusters, word trigrams
were made from the transcriptions in which corresponding utterances were duplicated.
The final utterance cluster models were made by interpolating the word trigrams with
the word class trigram using the fixed interpolation weights of 0.7 and 0.3. These models
are denoted as UCLM(N) (Utterance Cluster Language Model with N clusters), where

N is the number of element models.
11.3.4 Recognition Systems

The Julius decoder [6] was used both as a baseline recognition system and for decoding
units of MPDs. A Grid system was used for the MPDs. The baseline decoding system
used the speaker independent acoustic model (SIAM) and the language model (SILM).
The MPDs use the cluster acoustic model and/or cluster language model. To specify
which models are used, the recognition systems using MPD are denoted as MPD(AM,
LM), where AM is the acoustic model and LM is the language model. For example, a
MPD based recognition system using UCAM(40) in combination with SILM is denoted

as MPD(UCAM(40), SILM).
11.3.5 Unsupervised adaptation

For some applications, response time is not an issue and recognition can be performed
off-line. In such cases, batch-type unsupervised adaptation is a useful way to improve
the recognition rate. Unsupervised acoustic and language model adaptations were ap-
plied to the speaker independent model and the cluster models. The adaptations were
conducted for each lecture using the recognition results of the baseline or the MPD
based recognition systems.

For the baseline system, unsupervised MLLR acoustic model adaptation and lan-
guage model adaptation using word class [49, 50] are applied at the same time based
on the recognition results using the speaker independent models. The word class based
language model adaptation method updates word probability given word class by maxi-

munn likelihood criteria using the recognition hypotheses. The adaptation for the cluster
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models are conducted in a similar way by adapting all the element models using recog-

nition results given by the MPD.

11.4 Experimental results

Table 11.2 shows the results using MPDs with the cluster acoustic models and the
speaker independent language model. As can be seen, all the results using MPDs in-
dicated lower word error rate than the baseline system using the speaker independent
acoustic and language models. Among the utterance cluster based cluster models with
different number of elements, UCAM(10) showed the lowest word error rate. The error
rate of UCAM(10) was even lower than the speaker based cluster model SCAM(400)
that has a 40 times larger number of clusters. Table 11.3 shows the results using the
MPDs with the cluster language models. UCLM{(20) indicated the lowest word error

rate among them.

Table 11.2: Recognition results of the MPDs using the cluster acoustic models.

Recognition system Word error rate
BASE 24.9
MPD(UCAM(6),SILM) 23.6
MPD(UCAM(10),SILM) 23.1
MPD(UCAM(20),SILM) 23.3
MPD(SCAM(400),SILM) 23.5

Table 11.3: Recognition results of the MPDs using the cluster language models.

Recognition system Word error rate
BASE 24.9
MPD(SIAM, UCLM(6)) 23.7
MPD(SIAM, UCLM(10)) 23.6
MPD(SIAM, UCLM(20)) 23.3
MPD(SIAM, UCLM(40)) 23.7
MPD(SIAM, SCLM(400)) 23.9

Figure 11.3 shows the results of the MPD(UCAM(10), UCLM(10)) that combines
the utterance cluster acoustic model UCAM(10) and the utterance cluster language

model UCLM(10). The MPD has 100 decoding units according to the number of
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combinations of the element acoustic and language models. The word error rate us-
ing MPD(UCAM(10), UCLM(10)) is 22.3% and the relative reduction compared to
the baseline system is 10.5%. By combining the cluster models, MPD(UCAM(10),
UCLM(10)) indicated lower error rate than MPD(UCAM(10), SILM) and MPD(SIAM,
UCLM(10)). Figure 11.4 compares lecture word error rate using the baseline system
and MPD(UCAM(10), UCLM(10)). As can be seen, error rates were reduced for all the

test set lectures.
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Recognition systems

Figure 11.3: Word error rate. BASE denotes results of the baseline sys-
tem. MPD(10,1), MPD(1,10), and MPD(10,10) denote results using the mas-
sively parallel decoder of MPD(UCAM(10),SILM), MPD(SIAM,UCLM(10)), and
MPD(UCAM(10),UCLM(10)),respectively.

Figure 11.5 shows results when unsupervised acoustic model and language model
adaptation were applied for the baseline system and MPD based system. The MPD
based system was MPD(UCAM(10), UCLM(10)). By combining the MPD and the

unsupervised adaptation, a word error rate of 20.4% was obtained.
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Figure 11.4: Word error rate of each test set lecture.
11.5 Conclusion

This chapter has proposed the Massively Parallel Decoder which consists of a large
number of decoding units and an integrator. The MPD runs using cluster acoustic
and/or langﬁage models. By using parallel computers, there is almost no increase of
the turnaround time compared to conventional decoders which use single acoustic and
language models. A relative error rate reduction of 10.5% was obtained by using MPD
compared to the baseline system using speaker independent speech models. It was also
confirmed that MPD is effective for off-line decoding with unsupervised acoustic and

language model adaptation.
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Figure 11.5: Word error rate when combined with unsupervised acoustic model and

language model adaptation. BASE+adapt and MPD+adapt denotes results when the
adaptation is conducted.
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Chapter 12

Conclusion

12.1 Summary of accomplishments

The characteristics of spontaneous speech are very different from read speech and recog-
nition accuracy of technological systems drastically decreases for spontaneous speech.
It is now crucial to improve recognition techniques for spontaneous speech.

The study began with building a recognition system that was based on the Japanese
spontaneous speech corpus CSJ. It is the first system that was based on the CSJ and
various initial investigations on recognizing spontaneous presentation speech have been
reported in Chapter 5. Presentation speech uttered by 10 male speakers of approxi-
mately 4.5 hours duration was recognized. Experimental results show that acoustic and
language modeling based on an actual spontaneous speech corpus is far more effective
than conventional modeling based on read speech. Recognition accuracy has a wide
speaker-to-speaker variability according to the speaking rate, the number of fillers, the
number of repairs, etc. It was confirmed that unsupervised speaker adaptation of acous-
tic models was effective for improving the recognition accuracy. It was also shown that
the recognition accuracy for spontaneous speech is, however, still rather low, and there
remain a large number of research issues.

To understand problems of spontaneous speech recognition, various analyses were
conducted in Chapter 6, 7, and 8. In Chapter 6, an analysis of individual differences in

spontaneous presentation speech recognition performances was presented. Ten minutes

105



Conclusion

from each presentation given by 50 male speakers, for a total of 500 minutes, was
automatically recognized for the analysis. Correlation and regression analyses were
applied to the word recognition accuracy and various speaker attributes. A restricted
set of speaker attributes comprising the speaking rate, the out of vocabulary rate and the
repair rate was found to be most significant in yielding individual differences in the word
accuracy. Unsupervised MLLR speaker adaptation worked well for improving the word
accuracy but did not change the structure of the individual differences. Approximately
half of the variance in the word accuracy was explained by a regression model using a

limited set of the three attributes.

Chapter 7 proposed the use of decision trees for analyzing errors in spontaneous
presentation speech recognition. The trees were designed to predict whether a word
or a phoneme can be correctly recognized or not, using word or phoneme attributes as
inputs. The trees were constructed using training “cases” by choosing questions about
attributes step by step according to the gain ratio criterion. The errors in recognizing
spontaneous presentations given by 10 male speakers were analyzed, and the explanation
capability of attributes for recognition errors was quantitatively evaluated. A restricted
set of attributes closely related to the recognition errors were identified for both words

and phonemes.

In Chapter 8, an automatic speech recognizer was évaluated in comparison with
performances by human listeners to investigate problems of spontaneous speech recog-
nition using N-grams and HMMs and to estimate potential gains for improvement in
recognition rate. The evaluation task was to recognize spontaneous speech presenta-
tions from the Corpus of Spontaneous Japanese. Both the automatic recognizer and
human listeners were requested to choose the most likely word from a dictionary, given
a speech signal of three words in length including + one word context extracted from a
presentation. Recognition performances were compared using the same criteria for both
experiments. The results showed that the recognition error rate by human listeners is

roughly half of that by the recognizer. By examining words that were easy for humans
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but difficult for the recognizer, it was found that causes of the recognition errors by the
decoder included insufficiency of model accuracy and lack of robustness against vague
and variable pronunciations. While there is room for improvement even in conditions
that do not use contexts longer than trigrams, wider context information should be

incorporated to achieve high word accuracy.

One conclusion of the analyses was that the difficulty of recognizing a word largely
depends on the length and frequency of the word. Based on this observation, a new
lexicon optimization method to improve recognition rate of large scale spontaneous
speech recognition has been proposed in Chapter 9. First, a word correctness probability
mode] was made to model correlation between the difficulty of recognizing a word and
the attributes of the word. The proposed method optimizes the lexicon by making
compound words or phrases step by step based on the word correctness probability model
so as to improve the estimated recognition rate of the system. The optimization method
was applied to a large scale Japanese spontaneous speech corpus. Experimental results
showed that the language model using the optimized lexicon improved the recognition

rate.

To cope with degradation of recognition accuracy due to speaking rate fluctuation
within an utterance, which is one of the most significant problems in spontaneous speech
recognition, a new acoustic model for adjusting mixture weights and transition probabil-
ities of the HMM for each frame according to the local speaking rate has been proposed
in Chapter 10. The proposed model was implemented along with variants and con-
ventional models using the Bayesian network framework. The proposed model has a
hidden variable representing variation of the “mode” of the speaking rate and its value
controls the parameters of the underlying HMM. Model training and maximum prob-
ability assignment of the variables were conducted using the EM/GEM and inference
algorithms for the Bayesian networks. Utterances from meetings and lectures were used
for evaluation where the Bayesian network-based acoustic models were used to rescore

the likelihood of the N-best lists. In the experiments, the proposed model indicated
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consistently higher performance than conventional HMMs and regression HMMs using
the same speaking rate information.

To deal with spontaneous utterances that include many variations, the Massively
Parallel Decoder (MPD) has been proposed in Chapter 11. MPD consists of a large
number of decoding units and an integrator. MPD recognizes utterances using a speech
cluster model. Each decoding unit of MPD uses one of the element models in the clus-
ter. By using a parallel computer, the processing time of MPD is almost the same as
conventional decoders which use single model and processor. Experiments were con-
ducted using MPDs that have up to 400 decoding units. By running a MPD with an
utterance cluster HMM and an utterance cluster Trigram, 11% reduction in word error
rate was obtained. By combining MPD with an unsupervised MLLR adaptation and a
class model based Ngram adaptation, an averaged word accuracy of 80% was obtained

for the CSJ test-set lectures.

12.2 Future work

Three new techniques were proposed in this study: the lexicon optimization method,
the hidden mode HMM, and the Massively Parallel Decoder (MPD). For the lexicon
optimization method, further progress is expected by improving the word correctness
- probability model and the concatenation algorithm. Currently, the word correctness
probability model does not take account insertion errors. Also, it uses only two kinds
of word attributes. The problem of the concatenation algorithm is that it were the hy-
pothesis that the relationship between the word attributes and the recognition difficulty
is fixed during the optimization steps.

Future works for the hidden mode HMM include investigating more efficient ways of
utilizing speaking rate information, finding better methods for speaking rate estimation,
incorporating other spontaneous speech features to further improve the recognition ac-
curacy, and implementing computationally-efficient systems that can work with more

general LVCSR conditions for promising probabilistic models which can be found by
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using flexible DBN toolkits.

For the MPD, some prior probabilities can be introduced for selecting an element
speech model given a history of the previous choices. Also, some improvement is ex-
pected by investigating integration methods for the integrator and clustering techniques
for cluster speech models.

Apart from these proposed methods, problems which have been left untouched are
the out of vocabulary and repair words. Also, a modeling method for inter and intra
acoustic fluctuation should be further improved. Since in spontaneous speech recog-
nition, local acoustic and linguistic clues are not always enough to recognize words,

utilizing wider context, domain knowledge, and semantic factoring is also important.
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