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A TURNING POINT PROBLEM OF AN n-TH ORDER
DIFFERENTIAL EQUATION OF
HYDRODYNAMIC TYPE

By Tosmiiko NISHIMOTO

§1. Introduction.

In this paper, we propose to study a linear ordinary differential equation of the
n-th order of the form:

1.1) en_an(y)_I_Lm(y):O:

where n—2=m=0 and

7n—1

Lo(y)=—y™++ X lRm(x, )y,

v=m

Ly)= 2 (Posa()+-eRopal, ™.

Here ¢ is a small positive parameter,  is a complex independent variable, ¥ is an
unknown function of =, R(z,¢) are asymptotic power series of ¢ with coefficients
holomorphic in # in the domain

1. 2) 0<e=e, lz|=co<T,

and P,(z) are holomorphic functions in x, in particular, Pn,:(z) has a zero of order
¢ at the origin. Thus we can consider that the equation (1. 1) has a turning point
of order ¢ at the origin, and our purpose is to give complete informations about
the asymptotic behavior of the solutions of (1. 1) in the neighborhood of the origin
when e tends to zero. Our method is based on the matching method which was
used for the first time by Wasow [10] with the rigorous mathematical justification
in the case of an almost diagonal second order system; and thereafter has been
generalized by Wasow [11] and Nishimoto [5] to the n-th order equation with #=0.
Introductory descriptions of this method are seen in Friedrichs [1] and Wasow [13].

When n=4, m=2 and ¢=1, the equation (1. 1) is equivalent to the well-known
Orr-Sommerfeld equation which plays a fundamental role in the theory of stability
of incompressible fluid dynamics. There are many investigations about this equation,
for example, by Wasow [9], and by Lin and Labenstein [4]. They used the method
of comparison equations to attempt to find a transformation which reduces the
given equation to a simpler equation, and to attempt to solve the simplified equation
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DIFFERENTIAL EQUATION OF HYDRODYNAMIC TYPE 219

by some explicit technique, for example, by Laplaces integral. In fact, the Orr-
Sommerfeld equation was essentially solved by this procedure. To generalize this
method to other cases, there are two approaches: one is to enlarge the class of
differential equations which can be solved by some technique and are available for
our purpose, and the other is to construct a nonsingular transformation which makes
the given equation as simple as possible. About the second problem, Sibuya [6, 7]
succeeded in obtaining a certain transformation for the equation (1. 1) with #—2=m,
and ¢g=1, and some of the simplified equuations can be solved by the Laplace
integral but there remain the equations which are unresolved, moreover when ¢>1
we can no longer construct such a transformation. On the first problem, our data
of the equations whose behavior are already known can not almost be seen other
than Sibuya [6], Wasow [11] and Nishimoto [5] in the general theory, and so this
paper is devoted to this problem of the equation of the form (L.1). Thus we may
consider that the equation (1. 1) is already simplified by some transformation. Our
method based on the matching method, in spite of rather complexity of the actual
caleulations of the solutions, enables us to understand the asymptotic natures of
the solutions of (1. 1) in the full neighborhood of the origin under fairly reasonable
assumptions. This method may also be applicable to the problem of the stability
of boundary layers in a compressible gas (Lees and Lin [3]) which is not yet
completely solved. \

In §2, we give notations, a preliminary transformation which makes further
treatment simpler, and assumptions on the coefficients of (1. 1), one of which is so-
called one segment condition and dominates all of the studies in this paper. In §3,
we construct the formal outer solution, and in §4, §5 obtain the outer domain D,
where there exists the actual solution of (2. 1) whose asymptotic expansion coincides
with the formal outer solution. The domain D, does not contain the turning point
itself and then to understand the asymptotic behavior of the one outer solution at
the turning point or beyond the boundary lines of Di is just the turning point
problem. Therefore to solve this problem, it needs to construct an inner soluion
in a direct neighborhood of the turning point itself. In §6 and §7, it is calculated
the formal inner solution by introducing the stretching variable, and prove the
existence of actual solutions in the inner domain D. in §8. The domain D,, in
general, shrinks to the origin when ¢ tends to zero, but it is easily seen that D, and
D, overlap with each other for an arbitrarily small e. From this fact, we can match
the two types of solution, and then in §9 it is given an asymptotic expansion of
the matching matrix between them, from which we can understand the asymptotic
behavior of the one outer solution in the complete neighborhood of the turning point.

The author expresses his heartiest thanks to Prof. Y. Hirasawa for his valuable
advices and his kind encouragements in preparing this paper.

§2. Notations and assumptions.

1. For the subsequent study, it is convenient to write the equation (1.1) by
the vector form, that is, by the usual transformation
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y=v1, ¥P=yyy (=0,1,-,m), eyP=yi: (F=m+1, -, n—1),

the equation (1.1) becomes

f—yl =N 0 e : O - —-yl ~—
o e
. . Ym O ’ 0 ' e Ym
@1y ¢ P e et reeatan
: 0 1
Ym 41 O ) ., Ym 41
: 1
L¥n_J U P1+€R1, Tty Pm‘{‘ERm Pm-x-1+5Rm+ly en—m~1Rm+2, ey SRn__J LY |

To simplify the descriptions of further calculations we write the above equation as

U'=AU+BY,
2.1
eV'=CU+DYV,
where
[ 0 Ym41 ' 01 O
u=| - |,  v= .| A= .. B= ,
. . 0o .11
LYm Ya 0 L0, 0
0 0 L0
C: DI ) ) . . ' ) * L
, » 0 C
_P1“|‘€R1, ) Rn+5Rm Pm+1‘l’ 5Rm-|—1, en_m_lRm-|-2, tty ellm

2. A following transformation of ¥V and z into ¥ and # makes it possible to
assume from the outset that P, ,«(x)=2? (for details, see Wasow [12]).

V=diag (1, o(z), -+, w(zy" ™ W,  t=#a),

where

w(x)== %, Hx) :[S:Pm+1($)1/(""m)dx

](n—m)/(n—qu)
Clearly, the functions #x) and w(x) are holomorphic in z, and can be written
Hx)=ax+0(z?) (ax0), o(z)=a-+0(x).

Since it is easily verified that this transformation does not make any essential
change in the subsequent analyses, we assume that pp,(z)=2? already in the equa-
tion (2. 1).

3. Next, we write here the fundamental assumption which states that the
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characteristic polygon associated with (2. 1) consists of only one segment. Now let
each of the elements of coefficient matrices C and D has the asymptotic expansion
of the form

Px)+eR iz, €)= iﬂ (f}opjv,,x”>e” (G=1,2, -, m1),
Z\Z
@ 2)

SR, ) D, <m0pj.,,,x”>e” (j=mt2, -, m).

y=n—jf+1 \p=

In the (X, V) plane, we plot the points Py, for which the coefficients p;,, of the
above expansions are not zeros, of the coordinates

_(meitly ok ) 19, 1y p=0,1, -
PJWI'—( n__]_i_l b} %—j—|—1 (]-‘1: 2: ,7’1’Z‘| 1! /1“0; 1’ ):

(v e e 0L, o
Py=( 5 2T (G=mt, oy 5 p=0,1, -2,

and the point R==(+1, —1). The one segment condition means that all of the
points P, are on or above the segment Lo which combines the point R and
Pui1,0.4=(0, g/n—m), or equivalently for nonzero coefficients p;, the indices must
satisfy the following inequality:

@ 3) pb 21— (G20 (=1,2, -, met ).

n—m

Here it is noticed that from the inequality (2.3) we can easily see that when ¢
tends to zero in the equation (1.1), the reduced equation:

@ 4) 37 Py (@)™ =0
p=0

has a regular singular point at the origin. About this equation, we make an as-
sumption to avoid complexity that the difference of any two characteristic roots of
(2. 4) is not an integer.

§3. Formal outer solution.
4. At first, if we transform the equation (2. 1) by the relations
3. 1) U= :(x) U, V=20:(x) V1, t=ex" (a=(n—m+q)/(n—mn)),
where
O\(x)=diag [z™, £™*, -+, ], 2.(z)=diag [1, 2@ @™ ... gle-m-b/E-m]

then after a short calulation we have
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Jb“dUl =A1U1—|‘B1V1,
dz
3. 2)
tx dVl =C1U1+D1‘V1
dx
with
r-m 1 0]
A= —m+1l Bk Bl:li O l
O ' ._1 1) 0" )0

Cl=’_ O

L™ ™(PyteRy), -+, a1 mH=H(PybeR)), -, x“"“(Pm—I—eRm)]

i 0 1 0
o 0 .. .0 a0
1— .
1 n—m O
| ™" R yr), ()" ™ Rinyey o0, (2)* TR, oo, tx R n—m—1_

Now we prove the following lemma.

Levmma 3. 1. Each element in the matrices C, and Dy can be expanded asymp-
totically in powey series of 1 whose coefficients are holomorphic functions of xV/(*™)
in the domain (1. 2).

Proof. From (2.2) we have for j=1,2, -, m-+1,

)
-”_q+7n+1—j(Pj—|—€Rj)E Z: Oj)jv/lxlt—q+m+1—jev

v=1 p=

© o
F—qtmtl—g-(n—m+a)v/ (n—m) ¥
=D 21 Dju ! ’ .

©
il
=3
i
=3

If we consider the assumption (2. 3), the above expression can be written

= 3 ),

v=0

where f,(x) are power series of z/® ™, TFor the elements (tzx)y* MR, it is the
same as above, and the lemma is proved.

5. From the above lemma, we can write the matrices C; and D; by
(3.3) Ci= 3 Gt Dy= 3 Di(x)t”
v=0 »=0

with



DIFFERENTIAL EQUATION OF HYDRODYNAMIC TYPE 223

Cm(:c)z[ O }, C11(%)=[ O }

c1o(), +++, Crom(z) c1(®), -+, cum(®)
01 0
L. 1
Dy=| ¢ - i Du(x)= O . n_qm O - O 1OV @),
Lo, -0 duims1, 0,044, 0 n—m—1

where the constants c10;(0) and ¢11;(0) are the quantities pjo,, and pj,, respectively
in the expression (2.2) for which p-+m+1—(g+)+av=0 (v=0,1), and diim1 is
Pmir,. for which p—g+n—m-+g)/(n—m)=0. '

To solve the equation (3. 2) by formal power series of £, it is conventient to
make the principal parts of the coefficient matrices of (3. 2) diagonal and this is
accomplished by the following lemma.

LeMMA 3.2. We can construct a nonsingular linear transformation of the form
U =Q1(x) Uz HQP(2)t+ QP ()} Vs,
Vi ={QP(2)+ QP (x)t} Us QP (2) +QP(w)t} Ve,

3.4

where Q¥(x) are holomorphic functions of xV ™™™, and the equation (3. 2) is reduced
by this transformation to

d[@ dIG

(3. 5) © =AU+ BV, t =CoUp+-D: Vs,
dx dx

where the coefficient malrices have asymptotic expansions in power series of t such
that

AzE Z Azu(l‘)tv, Bzg Z;BZ;;(SC)F,
p=0 ye=
3. 6)
CzE Z CZu(x)tv, Dz':_-" Z .Dzu(.’l'))iv
v=2

=0
in the domain
3.7 0<e=e, |z| =¢y, [t =ce

For sufficiently small positive number e, ¢, and cs. Here Asx(x) is diagonal matrix,
holomorphic in =, and the difference of any two diagonal elements at =0 is not an
integer, Dyl(z) is a constant diagonal matrix, and D.(x) is a diagonal holomorphic
matrix function of z¥ ™,

Proof. Tirstly, if the equation (3. 2) is transformed by
(3. 8) U=U4tQV,,  Vi=RU,+-V,,
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(here the symbol R is different from the one in the definition of equation (1. 1)
then we have

2 oy [{A1+B1R - Q(CH—DlR—m -‘@) }ﬁ
dx dx
+ {tAlQJr Bi—x %2— —(cl.Q+D1)} 172],
3.9
ot W :(In_m_zze@)—l[{tR(AmLBIR)—<CI+DIR~¢;C-£’£> }[7
dx dz
—F{ z‘R<i'A1Q+ Bl—m%> . (tle+D1>} 17]

where 7, denotes the 7-dim unit matrix. Here we choose the matrices @ and R by
the form

Q=0y, R=Ry(z)+- Rix)t

with
QoD10— B1=0, Clo($)+D10Ro(%‘):0,
(3. 10)
dRo(x)
DroR(@) - D) Ro(@)+Cus(w)— Ro(@) Art Bi o)) — === =0.
Then it is easily verified that
dtQ
tAQ-- Bl_x‘% =QUC,Q+D)+0@),
dR
C1—|—D1R~—L‘xﬁ ZtR(Al—I—B]R)“I-O(L‘Z),
which imply that (3. 9) can be Writtéﬁ
i N
e = (A1 BLRAONWU 2OV,
(3. 11) o
tx ”?;2 =0 34 (tC1Q4-D1+-0E) V..
Here it is noted that from (3. 3) and (3. 10) we have
—__m 1 . O
At BiR=| () ~On=D)" - F o,

—cro1(®), v, ’_“Clom(x).—l

Dl +/C1Q:D10‘|‘(D11(x)+clo(x)Q)t+O(f2)
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The assumption imposed on the coefficients of the reduced equation (2.4) implies
that the difference of any two characteristic roots of the matrix A;+BiR at =0
is not an integer, and from this and from the form of Di, we can easily verified
by the usual method that there exists a non-singular transformation of the form

(3.12) 0h=0u@) U,  Vo={09x)+0P()t} Va

" which makes A,+BiR and Dio+(Dul(z)+Cu(x)Qt diagonal. I we combine the
transformations (3. 8) and (3. 12), the lemma is proved.

6. Now we are ready to construct a fundamental system of formal solutions
of the equation (3.5) by the form

(3. 13) W:{i W](x)t"} exp SE(x N
with
Aso(2)] 0 Wi(zy W)
] R
0 [D20~|—D21(m)t]/tx WZI(JI') WZZ((L')

where W, W2, W2t and W2 are mXm, mX(n—m), (n—m)Xm and (n—m) X (n—m)
matrices respectively, and the integral in (3.13) is to be determined such that the
constant term is zero. If we substitute (3.13) into (3.5), replace the matrices
As, Bs, Cs and D by their asymptotic power series (3. 6) and compare the coefficients
of t* (#=0,1,2, ) of the left and right hand sides, then we obtain the recursion
formulas for W.(z),

3. 14),

0 0 Ay O AW,y As i1 Baia
WA 0 _l_ foﬂ—l _I_ x 7é— - (Z(/l—l) W{—l == Z W/j,
L ;

20 2 iti=p Cz.z' Dz,i

where W_,=0 and Wy=I, (n-dim unit matrix). From this equation, we can de-
termine all of the matrices Wy(z) by the following way. For p=1 (3. 14) becomes

’ 0, 0 0, 0 0, WD 0 0
(3. 14)1 T/Vl(x) = W1((1?), or :I= },
0; DZO Oy D20 O, W%ZDzo D20 W?I, Dzo W?Z

from which we can conclude by using the facts that the matrix Dy, is nonsingular
and any of the two diagondl elements does not coincide that W= W#=0, and if
each element of the matrix Wim (/,m=1,2) is denoted by wi%, then we have
w,=0 for jxk. Clearly we can not determine the matrix Wi' and the elements
w?; from (3. 14),, and these elements will be obtained from the equation (3. 14) with
p=2;

KATE] 997430
KU 297438
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[O, WézDzoil {W%lAzo, WiZDu] d {Wil, Wiz} [W{l, wi
' -+ +r—=— —a
0, WpDwl WidAsm, WeDal —9=lwp, wel Lws, W}
(3. 14),
0, 0 AZO ily leO.[/I/i2 AZl; BZI
= + + .

D20 ngy DZO W%Z D21 ngy DZI sz C22; DZZ
Firstly, since the elements W and W% are known, W} and W% are determined
uniquely, and also since w¥; (jack) are known and the matrix D,; is diagonal, then

we can obtain the elements w#; (jxk). Next the elements w?; will be determined.
From (3. 14), w?; satisfies the differential equation

awty;
=quw “|“d22, j
dz 137 Jir

where dys;; is the j—j element of the matrix Ds. Since dapy; is a holomorphic
function of 2™, the above equation has a solution of the form

wibj= fi(x)+-fo(x) log =,

where fi(x) and fi(x) are holomorphic functions of zV™ ™ and f,(0)=0. At last,
we will determine W1, The equation for which wi}; must satisfy are from (3. 14),,

dw} .
—2";5"’—={a+azoj(x>—a20k<x>}wi;-k+a21jk(x> Gk,
dwll . i

—?i.;i]- =aw}}j+a21jj(x)

where aq;(z) is the j-th diagonal element of Aso(x) and asiz(x) is the j—k element
Of A21(m).
Here we assume for simplifications of further calculations of formal solution that
(3. 15) none of the quantities (W—m) {@s0,(0)az06(0)}
(j) k:]-: 2; e, M, ]#k) is int6g€7.
This assumption also simplifies descriptions of Proposition 6.1, Lemma 7. 2 and the
proof of Theorem 9.1 (see Remark of §9).

Now since aa1(x) is a holomorphic function of x¥“ ™ the above equations
can be solved by the forms

win@)=fulz) (),
wil()= folw)-+Fo(z) log =,

where fi(x), fo(2) and f3(z) are some holomorphic functions of z¥®™ and f3(0)=0.
Therefore from the equation (3. 14),;, we can obtain the elements W3, w¥,;, Wik, Wit
and w¥ (j=k) and undetermined elements are Wit and wjj; which will be obtained
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from the equation (3. 14); by the same method as for Wit and wij;.
By repeating the above procedure, we can determine all of the coefficient
matrices W,(x) and then the formal solution (3. 13). Here we summarize the results:

PrOPOSITION, 3. 1. The differential equation (3.5) has « fundamental system
of formal solutions of the form

(3. 16) Ww{i WL(x)t”}F(t, x),

where the matrices W,(x) are bounded in |x|=c, and are polynomials of logx of
degree al most v with holomorbhic coefficients of ™™, in particular Wolz)=1,
and F{, z) is diagonal and can be written

x/lzoco)’ 0

3. 17) re, &)= 0, eXP{ D;O }'xDﬂ“” !
“

Ienceforth we denote for convenience the diagonal elements of Aa(0), D and
D,1(0) by the letters

dlag Aa(0)= {as, -, @m},

. D 1 2k —m—1);
(3.18)  diag = ={duuss, -, doal,  dov=" €xD {L#

—m

+ zm} (i=~/-1),

dlag Dz](O) = {d1m+1, Yy dln}

§4. Existence theorem of outer solution (1).

7. In this section we prove that for each formal solution there exists an actual
solution whose asymptotic expansion coincides with it. The domain of existence
D, is maximal in the sense of the angle of sector, and this fact is sometimes
useful, for example, when we apply the results to the boundary value problems.

Our argument is given for the equation (3. 5), and rewrite this by the form

dw

4.1 tx wrae G, x)W,

Uz tAz, lle
v z[ } 6t .@:[ }
Vz ’ Cz, Dz

The equation (4.1) has a fundamental system of formal solution (3. 15).
Let » be a positive integer, and define the matrix functions W (¢, ) and
Gt x) by

where

P+l
W t, )= { > Wu(x)t”}F(t, o),
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AW D¢, z)

() —
Gt x)=tx du

W (L, 2)
Clearly W(¢, z) is a fundamental solution of the differential equation
tx a4 =GN, )W
dz

and G(¢, x) satisfies

4.2 G, 2)— GO, x)=0@"*).
We write (4. 1) in the form
1.3 62 (GO, D)6 )-GO W,

then by the method of variation of constants, any solution of the integral equation

r

@4 W =W, x)-I—S (‘)(TE)”W""(Z‘, )Wz, &G (r, §)— G (e, Oy Wz, £)dé

is a solution of (4.1). Here I'(&) denotes a set of paths of integration 2;u(x)
(7, k=1,2,--,7) in the & plane which are chosen appropriately for each pair of (7, &),
and r=e&%

If we put

W(t, 2)=W (&, 2)F (¢, ),
4. 5) N
WD (L, 5)=W O, 2)F (1, ),
then (4. 4) becomes
4.6 W, n=mo, x>+S (c&)IF (4, &)F ~Y(z, W O(t, 2) Wz, &)
r@)

X{G—GDYW (¢, &)F(z, &)F (I, x)~'dE.

From (3.16) and (4. 2), the integral term of the above equation can be written for
each j, %,

EFH'lS 5"‘1(T+])_1(m/€)aj_aijk[07?(1-: E)]dé (]: k:]‘J Y m):
ij

$~a<r+1)~1(x/$)“1‘dlk {exp e“ldolc(fa—xa)}Lm[W(T’ )lde
V (]:1; sy M, k:m+1’ Y 77')’
E-OTID (g 8y I~% {exp e dy (2% —EN) L W (z, £)]dE
_ (F=m+1, -, k=1, -, m),
&

67’+1

4.7

o7t

"
ij
| erecr =i afeyinron foxp eyt~ Ll (e, 812
% (]: k=m+1» ) %),
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where ij[W] is a lincar form of the w-components in the k-th column of w.
From (4. 2) and the form of W(t, ), the coefficients of this linear form are bounded
if £, %, v and & are bounded.

Here we define a sector S®. Let k=1,2, -+, m and chose arbitrarily one of the
arguments of do; (j=m+1, -, n), denote it by d,, and reorder the remainder
arguments of dy; such that

arg dou, <arg dog, <. <arg do,,<arg dop, +2n(B=n—m).

Then the sector S® is of the central angle less than (n—m+2)z/(n—m+q) of the
form '

S —M—{ — irc—arg dopy + r}g arg x =-

n—m { 3
n—m+q 2 n—m-q

—2—7r—~arg dol‘ﬁ_r}l

where 7 is a sufficiently small positive constant.
Next let k=m+1, -, n, and order the arguments of —do, doj—dos (F=m+1, -,
#, j¥ k) by

O=arg do,, <arg doy, <+ <arg do,<arg Aoy H2n(f=n—m+1),

and define the sector S

aw. BT {
5 2

3 n—m |3
i —— ——n—argdo,,l—l—r}éargxé {

m 771‘—‘ arg do,,ﬂ—)’}.

The central angle of this S{® is less than either (n—m-+Drf(n—m-tq) or
2n—m—+1)rj(n—m-+q) according to the selection of do,,.
In the next section we will prove a following proposition.

ProposiTioN 4. 1. For each k (B=1,2,---,n), there exists a region D® which
contains a domain D defined by

D®: arg xzeS®, 0<e=ey, G l=r=c

such that for all z¢ Do we can construct paths of integration Aj(w) which are
contained in D® except of its end point and for & on Aulx), we have

@ 8) S E]-r-1|de| =K ||,
24w

(4.9) the exponential factors in the integrands of (4. 7) are bounded for arbitrarily
small e.

Here e, ¢1 and & are sufficiently small positive constants, and K is some positive
number independent of x.

. If it is assumed that the above proposition is true, we can estimate that the
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every integral in (4.7) is of the order O@+') and so we can show that there exists
a solution of the integral equation (4. 6) by a standard method of successive approxi-
mation or a fixed point theorem, and therefore exists a corresponding solution of
the differential equation (4. 1) in the domain D%®. Furthermore we can prove that
the actual solution thus obtained does not depend on # and has an asymptotic
expansion which coincides with the formal solution. The details of this procedure
are here omitted and are rendered to the previous paper [5]. From the above
descriptions we obtain immediately an existence theorem of fundamental system of
solutions.

Let us draw (n—m)(n—m--1) vectors dyj, —do; and do;—dos (j, k= m-t+1, n,i%k)
from the origin in the complex plane, select arbitrarily one of them and denote it
d: and then order counterclockwise the remainder vectors such that

arg di<arg dy<-+- {arg dp<arg di-+2n(B=(n—m)n—m--1)),
and we define the sector S; in the z-plane by

n—m
n—m-q

n—m
—m+q

I {—%n—argd1}<argx< { 8 T—arg d,;}

Now we have a following theorem:

THEOREM 4. 1. Let
W~{ )3 W,(x)-ﬁ}F(t, )
v=0

be a formal solution of (4.1) defined in Proposition 3.1. Then there exists a
Jundamental system of actual solutions of (4. 1) of the form
W, =W, 2)F({, ), |
and for every positive integer r, there exists a domczz'n'Dl of x,¢ plane defined by
Dy arg xeS,, 0<e=e, |lz| =cy, [t = ¢,

(er, 1 and o are certain constants independent of ¢) in which it holds
W, 2)— 33 Wizl =Ey(t, )t
r=0

where E.(L, ) is a matrix function bounded in the domain D;.

The k-th colnmn vector of the fundamental system of the solutions is called
the solution of the k-th asymptotic type, and in particular the balanced solution
it £=1,2,---,m, and the dominant-recessive solution if k=m-+1, m+2, -, n re-
spectively.
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§5. Proof of Proposition 4. 1.

8. In this section we prove the Proposition 4. 1, that is, we show the existence
of the domain D% and the paths of integration 2;x(x) satisfying the condition (4. 8)
and (4. 9), by using the method in Iwano [2] without any essential modifications.
Note at first that

8 _
sw= A n—m {

3
N —g—argdy,triSarg a=
ik 7 n—arg do, r}_algar;w

n—m {3
2

g |2 8 b }
and since the central angle of S is larger than (w—m)z/(n—m--q) for sufficiently

small 7, it contains at least one singular direction: Re dy, 2“=0 (Re z denotes the
real part of z), or more precisely

. _ n—m 1
l}, arg .77:0}’: n_—m_k—q—{gﬂ—argdo”},
G L
. e RB—m
lj, argx—0j=m<{—§n—argdo,lj}

for each j=1,2, -+, B), but no more than two singular directions. It is apparent that
in the region 07 <arg <0, we have Red,,z*>0. Here we denote for simplicity
the angles of boundary lines of S by

5.2) O — n-—1 {_3 n—m

3
[ PP, o [ —_
" z 5 T arg do,,l—}—r]», = " p {—I— 5 narg doup r}.

Now we divide the integrals in (4. 7) into four classes of the indices j for each
fixed % such that :

Ju the integral whose integrand does not carry the exponential factor,
Ja: the sector S contains only the singular direction /f,

Js: the sector S contains only the singular direction /7,

Ji the sector S® contains both the singular directions 7 and /5.

or 6- or I o- o L - 6~
7 £

‘jﬁj_'z jels jeli
Fig. 1
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The shadow regions in the above figure mean that Re douyz“z0, and note that
0 —07=r/a.

Denote by |x|e? and by |€|¢# the polar coordinates of the points = and &, and
define the angles 0F (i=2,8,4), 0, (j=1,2,---,7) and the initial point 20 of the
integral path 2,,z) (j=1,2, ---,n) by

(5.3) @;erl’é‘lr? 0%, 67 :r}é?}iX 07 (1=2,3,4),
6- for jefs, -
6~ for jeJs,

®. 4) Oso=+ g+ for jefs
@—;@—; for je/y,

450 .
|@j0]=ci expS cot D(p)de,
. dly

where ¢f is a certain constants, ¢, is an arbitrary constant zf\ngle in [@-,6*] and
@(p) is to be determined as a piecewise continuous function in the interval [6-, 6]
satisfying the inequality

65 - @=0(g)=r—ad <a:;_>

for sufficiently small positive constant . Then, the path of integration 2, (x)
combining the initial point z; to 2 consists in general of a curvilinear part A7 ():

14
ls|=ra:|exp<g Cot(P(¢)dso> for Op=p=0 if €Ty Ju
¢
(5. 6) .
£4
|5|:|»’0|9XP<S Cotd)(ga)dg0> for 0=p=0; if jeJs, Ju,
a

and of a rectilinear part M)
940 250
(5.7) jatexp (| “eot D)) =lél <cf exp (§, cototerae), =0
0 00
If we define the region D% as a.set of points x=|x|e satisfying the inequalities

a a4
(5. 8) et exp <S cot @(go)dgo) =lz]=clexp <S cot ql(ga)dgo), O~ =0=0" 0<c=¢!
0y ) Oy
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for suitably chosen positive constant ¢4, then every point x in D@ can be reached
from the initial point z;o along 2, (x) contained in D{® (Fig. 2).

xio(jefs)

P jeli, Jo

Fig. 2

Now we will show that the condition (4.8) and (4.9) are satisfied on the
integral path 2,(z) defined as above if we choose the function @(p) appropriately.
Suppose at first that @(¢) was determined so that it satisfies (5. 5), and if we notice
that the line element ds is expressed by

ds=—d|§] on i),

' Kl ) . N
(5. 9) ds—md(p on Z,Cj(x) for Op=p=0 (jeJuJ. or Jo),

_ €]

_ ’ f ) icT.
Sy dp on A, (x) for 0=¢=0; (jeJs or Ju),

then we have

[ lerretat =l ereas+
Aug(@) Ap (2

|&]-re=1ds
@)

’

24y

1
7a

-
=

040
||~ exp {——7’48 cot (Z)(So)dgp} + ||
0

SZjOT}])(gpf{eXIJ S: —ayr cot q)(gb)dg[)}dgo |

and this proves the condition (4. 8).

In order to prove the condition (4. 9) it is sufficient to show that the quantity
—Re d,,£* is monotonically increasing along the integral path 2,,(»), because then
we have

Re do,a®—Re do,£*=0,

and apparently this is valid on the rectilinear part 2(z). Therefore we want only
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" to show that there exists a piecewise continuous function @(p) on the interval
[6-, 6] satisfying (5. 5) and at the same time —Re d,,£* is monotonically increasing
along the curvilinear part 2, Ax), that is,

 —dRe dy, £

(5. 10) s

=0 on A (x).

‘After a short calculation we have from (5. 9)

dg _ d v dy i

T =k forloot Op)i) sin 0p) == £ o

&l

according as #;,,=¢=0 or 0=p=0;, and hence

d “ dé
— g Re du g1 =—Regodo £ 41

=TFRe {adoﬂjfa‘ll—gl— e“’(“’)}
=—T—|ad0,,j]-|€!“‘lcos Rip)

according sa #,0=¢=0 or §=p=0;, where

(5. 11) Rip)y=arg do, A+ ap+D(p).

Then, in order to obtain (5. 10), R;(p) must satisfy

=R 1(90)<in for 0;=p=6,

ro| A

(5.12)

lIiA

fOI‘ 0§90§0j0.

L\‘Jlklv

5= Rip)=

From (5. 1), (5. 5), (5. 11) and (5. 12), @(p) must satisfies the inequalities

max {07 —go)—[—n,a(3}<([)(go)<m1n{a(0j ©)+r, r—ad} for 0=p=0,.

JeJzsy

max {07 — o), ad} = 0(p)=min {a(0} — ), r—ad} for 0=¢p=0;.
. J&J3,J4

J€JT3,J3

Hence the function @(p) satisfying the above inequalities will exist if we have

max [max {a(07 o)+ =, all0y — @)}, 05J =min [min {a(0F —@)+m, alli — @)}, m— aﬁ}
Jh KA

@—]—@

for — - =p=0" (7€ Js, [y, and hefy),
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max [max (05— ), @l — o)+ 7, aa] émin[min (05— ), a0F — o)+, n—aa]
Jh Jh

g@g@_ (je]3y]4y and h’ejz)'

e +6;
for —

By using the notation (5. 3), these inequalities are reduced to

max [a {max (@H— %, 671 %, @;) ——go}, mi—l

(5.13) <min [cz{min <@J+ o+, @;)—go},n—aa]
for it =p=06",
2
max [a {max (@;—I— %, o5, @;) ——go}, aﬁ]
(5. 14) <min [a {min (@H % ot @:) —go}, ﬂ-—aa]
for @I'—Iz-@f =Zp=6"

Since we can easily prove the following inequalities

0;<@~<0;<o;<og<@+<oz+§ for jeJ, and kel

O~ <05 <07 <OE <O+ 05 <0+ % for jeJs and kef,
we have
max <@;+ %, or+ %, @;> =07+ %,
min (642,614, 6r ) =min 65+, 6r),
a a a
(5. 15)

max <@;+ %, 6y, @;) =max <@; + %, @;),

min (672,65, @r) =6y,
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and

(5. 16) @+<@;+—§, 07 <0}, . 8y<6-, -@;—§<@-.

Hence (5. 13) and (5. 14) become

max [(z <@;—I— % — (/)>, ab‘]§ min [a {min <@Z+—i— %, @;) — ga}, n—aﬁ]

(5.17)
for _@szﬂ =p=67,
max [(z {max (@;+ %, @;) —50}, mﬂé min [(z <64+~ (/)>, n—aﬁ]
(. 18) )

for w =p=0,

But a simple calculation shows that the above inequalities are satisfied respectively
in the intervals ‘ ‘

G.19) 65 +-5=p=min <@;+ z @;) —5
and
(5. 20) max (@.;, o5 — %) o= p=6F—0.

If 6 is sufficiently small the interval (5.19) contains the interval [(OF--6;)/2, O]
and the interval (5. 20) contains the interval [6-, (OF +67)/2].
Then if we put, for example

Lo
max [cz {max <@;—|— %, @;) —go}, (15] for O =p= 04__;@4_,
D)=
LA
min [cz {min <@;—|— %, @;) —go}, r— aﬁ] for ‘—@dz——@‘i— =p=6",

we can define the desired function ®(p) and so the pathes of integration.

Now in the definition (5.8) of the domain D%, the constants cl, ¢f~t and &
must be taken so small that the integral equation (4. 6) has a solution and also it
contains a domain of annulus D@® for appropriately chosen constants ¢, & and ey,
and this is clearly possible, Thus we have proved Proposition 4. 1.
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§6. TFormal inner solution.

9. At first we transform the equation (2. 1) by the stretching and shearing
transformations:

x:pn—ms’ e=p"_7"'+q,

Y=0(o"™U, Z=2""™V,

where the diagonal matrices 2,(z) and 2(z) are defined in (3. 1), then we have a
differential system of the form

6. 1) —‘ZE _avrny, Y _curny,
S ds

where A;=A, Bi=0B and

Cils, )= 120" ™) C , ") = 0 ,
' L 611(3, 10)7 Clz(s! P); "ty Clm(s, P) N
; "0 1 O .
Di(s, p)=p~12:(0"™ D (, e)2s(0™™)= O e b
Ld1m+1(s’ p)7 d1m+2(3, 10)7 R d1n(S, 40) 1

6. 2)

Here and in below we use symbols Ai, By, -+, cii(s, p), difs, ), -+ which are different
from those in §3. Now the functions ci4(s, p) and di(s, o) satisfy the relations

< (e}
C1_1(S, p):p(n—m)(m+1—j~q)(Pj_|_eRj)§ ZO Z:OpjuIlsll‘o(n—m)(lh“nH—l—fI—_7')~i-(n~m+fl)‘J
v=0 p=

(.7:1’ 2,y m),

(6_ 3) d1m+1(3, p):p~(n—m)!1<xfl_|_€Rm+l)f:t__S(I+ Z Zpju#s!lp(n—m)(#—Q)+(n4m+q)”’
0

y=1 p=

(2] [ee]
dlj(s, p):p—Q(n—J+1)(€n—j-!-1Rj)Ep(n—m) (n—j+1) Z Z pjuﬂsllp(n~m)ll+(n—'m.-l-(I)"
v=0 p=0

(j=m+-2, -, m).

From the one segment condition, all of the powers of p in the above expressions
are nonnegative, then the matrix functions Ci(s, p) and Di(s, p) can be expanded in
power series of o whose coefficients are polynomials of s.

Now let the equation (6.1) be written by the combined form such as
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6. 4) =ce.om  w=[ ],

aw
ds 14

where

A, By
G(s, o) =[ }
' C1(S, P) .D1(S, P)

and let the asymptotic expansion of G(s, p) be
G(s, p) = ZE)GV(S)p”

where G,(s) are polynomials of s, in particular

A]. Bl . 1
(6. 5) [j J: .......................... O
Cio(s)  Dig(s) 1 )

: 1
‘Cll(sy O), 012(3’ 0)7 bty E dl'IVH—l(s) 0); 0’ tty O_J _

Here we want to construct a formal solution of (6. 4) by the form

W 32 W),

v=0
then each of the matrices W,(s) satisfies

AW(s)

(6. 6) L

*GO(S) W(S)+ Z: Gp(s) W—/l (U:O, 1: 2’ "')-
10. Firstly we analyze the above equation for v=0

6.7

dW(s)
ds

=G S) W(s>:[ U(S)]

Vst

Clearly there exists a fundamental solution of (6.7) in the arbitrary nelghbmhood
of the origin, then the problem is to discuss the asymptotic behavior of W(s) in
the neighborhood of s=co, To do this, we transform the equation (6. 7) by
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E=s"a=n—m-+t-qQ(n—m)),

(6. 8)
sm
".S : O Uw
W=02E) W= 1
SQ/(n—m)
0 - Ve
| gta=m—1>an—m)
then it becomes
6o I _gewo=Levemnlomcs e - oS e,
From (6. 5) and (6. 8), él(é) can be written
A B -m 1,
Gi(e)= , A= aig —(m=1); 01 :
@ Due) 0 1
(6. 10) Bt 0 Cye)= L 0 ,
aé a
1 . 511(5); Y Elm(é) _
1 0
Beo=+| 0 | O o | 0
" 1 m—mtaE| () ’
ézlm+1(§)y 0 (n—m--1)
where
51j(§):S(m—l-l—j—-(l)/aclj(s’ 0) (j=1, 2, oy m),

(6. 11)

Jlm-pl(é) = Eﬁq/adlm-l-l(sy O)

Now from the asymptotic expansions (6. 3) of c1,(s, o) and dim+1(s, p), the polynomials
c15(5,0) and dim+a(s, 0) have the forms

C1j(S, 0): % vgopj"ﬂsﬂ (j:l, 2: Yy 7%))
Aima(S, 0)=5%4 2 }:‘xlpm+1vys#,
‘Il =

where for nonzero coefficients pj,, following felations must be satisfied
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(n—m)pt-mA-1—g—p+m—m+ap=0  (j=1,2,, m+1).
Then the drder p of nonzero terms s* of (6.12) must_satisﬁes
p=g+i—(m+D—av  (v=0,1,-),
and so the functions (6. 11) can be written

CO=T brnf™  (G=1,2, 0 m),
(6.12) 3 _
dlm-l-l(E) =1 +§1ﬁm-l-lwtu§-p:

where the summations are taken for a finite terms of v for which p,=g+j—On+1)
—av. )

Thus the matrix function G.(&) is a polynomial of &' and if we write it by
the form

1v
GO= 3 Gue=73" £,

then from (6. 10) and (6. 12) we have

] N [0 1
[0 o !
Gro= with 61.0: l O , ﬁ]oz l O ’ Q R
& B a @ 1
| 10 il €101y =y Crom 1.1, 0, -, 0
~ _ﬁll B’llh 1 —m 1 O 1
(6.13) Cu=| _ with  Ap==- , Bu=-- 0 |
Gu Dy —U 1
' [0
51 0 ot 0 |« |1 O
Cu=— ) Dy= —_— . )
a a n—m-+tq O ..
C11y Crazy vy C1am A1im41, 0-4-0 L n—m—1

where the constants i, ¢11y and dum.: are equal to the numbers pjoug, Piipp and
D, 1 i (6. 3) respectively provided the indices of these numbers satisfy the
relations p,=g+j—@m+1)—av (b=0,1,7=1,2, .-, m-+1). Here we remark that if we
compare the above coefﬁment matnces with those of (3.2) and (3. 3), then it is
found that Au— i/a, Bn~Bl/a, Clo—Cm(O)/(z, Dm—Dm/a and Dn—Du(O)/a

For the differential system (6. 9), we prove a following lemma which is analo-
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gous to the lemma 3.2. In order to calculate the connection matrix between the
inner solution and the outer solution in the last section, we must take always the
relation between the coefficient matrices in (3. 4), (3.5) and those in the following
lemma into our considerations.

LeMMA 6. 1. There exists a linear nonsingular transformation

U“)—Q“’)U(”—I—{Q(’) 1+Q~§§)§—2} AN
(6. 14) . - J
Vo =(G9-+0pe U HOP+pe Ve

where Q% ave some constant matrices, and this transformation changes (6.9) into

au® — UL B, 7®, ave

oy —C oo
I @ CoUP+D, V™,

(6. 15)

where the coefficient matrices are convergent powey Series of &' such that

Aoz P Aok, Bo= 2 But,
= =2
(6. 16)
é’ :ZCIZVE v’ ﬁz:zﬁ%s—
p=2 v=0

If we compare the coefficient matrices of (6.14) and (6.16) with those of (3.4)
and (3.5) we have ,

J9=0u0), JE=Q20), (P=020), {L=RRO)
6. 17) o o ~
Agi= Aala, Dsyy=Dy/a, D= Ds:(0)/a.
Proof. At first we transform the equation (6. 9) by
U(l):ﬁ(l)_}_@lE—IV(l)’ U(l):(ﬁo_l_ﬁls—l)ﬁ(l)_]_V(l),

where the matrices 01, £, and B: are determined by the equations

QNIELO"“B’H:O, 'Cvlo+ﬁ10ﬁ0=0,
(6. 18) N oox o NN sy NN
Cu+D11Ro+D10R1—R0A11—R0311Ro=0-

Then after a little calculations as used in the proof of Lemma 3. 2, it becomes

agw

e —{((AnBuBerroE o 1oEio,
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dy®
dé

= Do+ D+ Cro e 02T 4oE o,

and furthermore if we diagonalize the principal parts of the above equation, we
have a differential system which has a form (6.15) with (6.16). The relations
(6. 17) can be easily verified by a careful comparison of each step of transformation
of the above procedure with the one in the proof of Lemma 3.2. This completes
the proof.

Now we proceed to construct an asymptotic solution of the system (6. 15), but
since this is easily realized by the usual methods, we give only the results in thc
following proposition.

Prorosition 6. 1. The differential equation (6.15) has a fundamental system
of formal solutions of the form

(6. 19) W<2>~{ 5" WS”E‘"}ﬁ(S),
v=0

wheve the matvices W® are constant, in particular WP =I, (n-dim #nnit matrix),
and

. ELl, 0 1
F@:[ . } (e=s=7).
0, {exp Dy} 602

Corresponding to this formal solution, there exists a fundamental system of actual
solutions W®(E) which has it as the asymptotic expansion in the domain:

Dy 1e1>6, argée§,

where & is some positive constant, and the sector § is defined below.
~ T T
(6. 20) ot — o tatr=argés o ba—y,

where v is positive and arbitvary, and azarg (doj, —dos, dog—dox) (7, k=m+1,-+, n, j5: k).

A connection formula between the convergent solution of the differential equa-
tion (6.7) in the neighborhood of s=0 and the asymptotic solution of it in the
neighborhood of s=co which is described in the above proposition can be determined
by the method of convergent matching because the asymptotic solution of (6. 9)
has a convergent expression by a factorial series from a theorem of Turritten [8].

ProrosiTioN 6. 2. Let a be any angle for which

a3 +arg (doj, —dayg, doj—dor) (7, k=m~+1, -, n,jxk).
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Then there exists j)ositibe numbers wo=1 and & such that for w=w, the differential
equation (6. 15) possesses in the half plane

(6. 21) Re (G >«
« fundamental solution W (E) of the form

W)= w5 N E),

oo

Cr,ij
szc(f):ﬁjk"Fgo [Ee~ia/w].[g@~i“/a)+]1]---[Se"i“/err] '

The series converges in the half-plane (6.21). Moreover W®(&) can also be re-
presented asymptotically by the formal series (6.19) in the domain D.

In the above definition of the sector S, we assume that y is sufficiently small
and take the angle « so that the boundary lines of S do not coincide with any
singular direction

Re (dOj)SZO: Re (dojﬁdok)ézos jy k:m+1: ] %,ji:k,

and contain them in the interior §. Furthermore when we calculate a matching
matrix between the outer and the inner solutions in §9, the sector S defined by

n—m

T n—m |«
n—_m{“ o +a—|—r}§a1g s= _—_{7 JF“—Y}

n—m-tq

is assumed to be contained in the sector S: defined in Theorem 4. 1.

§7. Solution of nonhomogeneous equations.

11. In this section we consider the nonhomogeneous equation (6. 6) for vz=1,

aw,
ds

=Go(S)V17u+H'(S)
(7. 1)
H(s)= Z G o(5) Wiei(5)

At first we examine the asymptotic behavior of solutions when s tends to infinity.
The solution of (7. 1) is represented by

.2 W”(S)ZS,« Wils) W) H(2)dr

under the assumption that W, (p=0,1,--,v—1) are already known, where Wy(s) is
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the fundamental solution of the homogeneous equation (6. 7) constructed in §6, and
I" denotes a set of paths of integratiNons for each function in the integrand.
Let us define matrix functions G,(s), Wo(s) and W .(s) by the relations

G u(8)= ()G () 2s) ™,
(7. 3) Wo(s)= (W o(s)F (5),
Wi(s)= (W ($)F (5),

where (s) is defined in (6. 8) and F(s)=F(©) (6=5%. Then the integral (7. 2)
becomes

(7. 4) WX@:SPW«QF@MNﬂ”WA@*ﬁ&ﬂNﬂF@YWE
where

ﬁ@:é&@me.

Now we prove a few lemmas in the sequel,

LemMma 7. 1. The growth order of the matrix 5,,(3) (w=1) when s grows into
infinity is s¥YO/mm - apd G(s) is @ polynomial of sY ™ gud sV m-m,

Proof. From (6. 3) and the definitions of G,(s) and (N},,(s), this is obvious.

Here we assume for the moment that H(s) has the growth  order of s® when
|s| is large, that is, we can write that ﬁv(s):s”H *(s) with bounded matrix H*(s),
and assume that A*(s) has an asymptotic expansion in power series of s—V/¢w—m
whose coefficients are polynomials of log s in the neighborhood of s=oco, From the
proposition 6. 1, W(s) and W(s)~* are bounded and nonsingular in the neighborhood
of s=oco and have asymptotic power series of &1=s"% when é—oco in the sector S.

If we replace the matrix H(s) by s“H *(s) and change the variables s and = by

E-_—SO" 77:1_(1/

then the integral (7. 4) becomes

.5 W=

"W FeF o W mrFolepevamog,
m-tq r

Since the matrix function W()~1& *(p) is bounded and has an asymptotic expansion
in power series of # V"m0 and from the definition of the matrix (), the above
integral for each component of integrand has a form
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(8 : .
S <?> By Oy (G, R, 2, e, R,
2%

g E :'fj—iua ,
S <_> {exp (—don)E— Y gulgyyt e~ @=ms Oy
A% i
(G=1, -, m, h=m1, -+, ),

. E ilj_gllc -
@0 (5)" e @ dwe—nibatip e ivd,
JE )
(J, k=m+1, -, m, i3 h),

* g\ dig-ap
S ) (%_) {eXp (701(5_7])} //lec(v)nb/u—qmn—mm dﬁ
Jk

(]:m+17 N, /";:1’ Y 7”),

S /ij(Y])??b/a_{U("—WHq) (h] (]: k — 1, 2’ T, %)
454

where d;, do, and du; are diagonal elements of the matrices Auw, Dw and Da
respectively. Here /() is a bounded function and has an asymptotic power series
of y~/@-mt® ipn the sense that

(7.7 h)= 33 llog ™/ @m0 ol v 0)
v=0

for all positive integers #, where A4.,(z) are polynomiials of z and in particular /(2)
is constant.

Now under the assumption that none of the quantities (m—m) {a;—ax}
(G, k=1,2, -, m,jxk) are integers, we can prove a following lemma.

LEMMA 7. 2. By choosing an appropriate path of inlegration or by taking an
appropriate indefinite integral for each integral of (7.6), we have

W (5)=sH W (s),

where W(s) is bounded and has an asymptotic power series of s™/"™ in the same
sense as (1.7) when s—co in the sector S

n—m

T - Nt LI A
m{—g‘]—éﬂ‘?"§alg3§ {.2 +a T}-

n—m-+q

Proof. Case 1. k,jzi, 9, -, m ik Let G;j—dy=2A+ip (A, p real) and let the
integrand divide into three parts such that

(7. 8) Iy =y Cam2m gy~ D = oy () Foa) A+ Pea (),
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where
[N ] . rit+m—m)b—q
/ AT /’L,, lo =Y+ (n—-m)d—a1/ (n—m+q) witl —_—A— T3
)=y 3, hilog 1y s N R
/lz('/}):ﬂ_x_iyhr (Iog 7/)”(—1'2+ (R—=m)yb—-q}/ (n—m+4¢) with —A— WM =—1
. R n—m-+q ’

/23(77) :7]—1—-il‘hjk(y)))?b/u—q/(n—mﬁ-{l) _hl(ﬂ) __hz(y]).
Here we remark that the imaginary part of d;—dy is not zero if ()0 from the

assumption made above the Lemma 7. 2.
Now if we define the integral of (7. 8) by

é § 3
.9 \ mtoir+ | mpant§ nepay

then we can easily_ see that the statements of the lemma hold.
Case 2. j=1,2,--,m, k=m+1, -, n. From the shape of the sector S in the #-
plane there exists a vector /;; in § which satisfies
cos (arg dos+arg ;) <0,
. then as the paths of integration 2;6(§), we choose the line parallel to L, starting

from & and extending to infinity in S, Clearly for all 5 on this path of integration,
there exists a positive constant d;; such that

(7. 10) Re {—dwE—n}=—d6—7.

Since we have from the integration by parts

Swea”"”v"’ (log 9)Pdy= L £*(log &)ﬂe”i“"e_g o %oy Ha(log )P+ (log 7)Yy

¢ dOk & dOlc

for all number ¢ and g>0, then if we substitute the asymptotic expression (7. 7)
of /i;5(y) into the integran_d of (7. 6) and write it by

g (d'j—ilk) .
<;> {eXp —a'()k(f—ﬂ)}hjk(v)nb/a—(l/(n—mi-(n

(7. 11)

E (aj“illc) " oo v
= ()7 texp—dute—m) 3 hullog gy,

where 7, may be negative integer such that bla—qgl(n—m--q)=—ry/(n—m-+q), then
we have by repeated integrations by parts,
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/& & j-dip> .
L(E) exp —duste it e ody

7.12)
— 2 h(log gy~ @m0 |- R,

where

-~ [ é’: (ij—illg) o .
f‘:S <?> {exp —dose—)} iy a(log )y +D emmi Dy,
§

Now we estimate the remainder therm R,. Let

p—E=fet*  (a=arg ),

()

'//l;»’H(

then from (7. 10) we have

oo (& j—d - @+ 1)/ (n—-m+0)
0

]R7l = |é‘:l—(w,H)/(vL—WLJr(I)/L:_Jrl(|10g §|)S

[J)eia
3

log 14

>(3‘ﬁjlc/’d[j
éKilHl(IlOg E]))&|- b/ mmt e,

where /,1(2) and A!44(2) are polynomials of z, and K is some positive constant.
This inequality implies that the integral of (7.11) along 2;x(¢) can be represented
by an asymptotic expansion in power series of »~® ™D in the sense of (7.7) and
in particular has a growth order of ge-#/@—mt®H—gh=l/®=m g5 £—oo in the sector
S, and then in this case we proved the desired properties.

For other cases of 7, %, we can prove by the same method as in the case 1 or
case 2 that the integrals (7. 6) have properties stated in the Lemma 6. 2. Thus we
have the Lemma 7. 2.

LeMmMa 7.8. The nonhomogeneous diffevential equation (7.1) possesses o
particular solution such that

(7.13) m(s):s""Q(s)Wﬁ‘(s)F(s).
Herve the matrix (s) is defined in (6. 8), the matrices F (S)Eﬁ &) and the mairix

WH(s) is bounded at s=oo and has an asymplotic expansion in power Sseries of
s~V@-m) yhen s—oo in the sector S. Here the number e denotes

(7. 14) o=t 4y
n—m
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Proof. TFor v=0, the equahon (7. 1) becomes homogeneous equation (6. 7), then
the statements of the lemma is satisfied from the Proposition 6. 1. Assume it to
be true for v<7. Then by using the Lemma 7.1 the - -th term of the summation
in (7.1) has a form

Gul8) Wr-n(8)=L)G )V () F(s)
=57 QS)GHE) W (s)F (s),

where 53*(3) and W;’?_,,(s) are bounded, and

; _ q—n _

S, m= p—— “Fe(r—p).

The exponent f(r, p1) is the largest for p=1, and then if we apply the Lemma 7. 2
to the integral (7. 5) with b=f(z, 1), we have the Lemma 7. 3.

12. Now we want to determine the values of the solutions W,(s) of (6. 6) in
the neighborhood of s=0. This is essential to solve the connection problems, that
is to understand an asymptotic behavior of an outer solution at the turning point
itself. For »=0, we have already stated at the last of §6 that the value at s—0
of the asymptotic solution 2(s)7®(&) of (6. 7) whose existence was proved in Pro-
position 6.1 can be obtained by the method of convergent matching. Then we
consider here the equation (7. 1).

Let Wi(s) be a fundamental solution of the homogeneous equation (6.7) in the
neighborhood of s=0, and assume that the solutions Wu(s) (u<v) of (6.6) are
determined in the neighborhood af s=0, then the solution W,(s) can be written as

(7.15) W.(s)= SS Wol(s) Wo(r) " H (z)dr 4 We(s)C

where H(r) is an entire function whose asymtotic behavior in some neighborhood
of s=co is known. The problem is to determine the constant matrix C= (¢x).

The values of the matrix W,(s) in the neighborhood of s=co are determined
by taking some special integrals of the integrand of (7. 15) as stated in the Lemma
7.2, and then corresponding to those, the matrix C must be determined as follow.

Case L. j,k=1,2,--,m(jxk).

1 0 1 )
epe=— oty £\ oy == vy~ et 1 —nsnan
Case 2. j=1,2, .-, m, k=m+1, ..l’ ”n

o . . :
ler,:S p*Imk{exp doghlr(nn Y O dy,
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The definite integrals which define c¢;; are clearly exist from the natures of the
integrand and the choice of the paths of integrations. For other cases of j, & we
can determine ¢y by the same method as above.

Here we summarize the results of §6 and §7 in the following proposition.

ProrositioN 7.1.  The differential equation (6.4) has a fundamental system
of formal solutions in power servies of p such.tlmt if |s|=s, for some positive
constant So, :

. 16) W STWUS)  if s|=s0
v=0

where WLS) are holomorphic in the domain |s|=s., and if |s|>s. and arg seS,

(7.17) W~.Q(s){ EWf(s)[scp]"}F(s) (e— t1 |-1>.

=0 T n—m

Here the sector S is defined in the Lemma 7.2, the malriz $2(s) is in (6. 8), the
matrix F(s) is of the form

st

.s“m O <(l_ "//lﬁﬁ’l‘{“q >

E(s)=
(exp do7n+18u)8d‘7’l'“ n—m

Kexp dons®)sthn

and the matrices W*(s) are bounded and have asymptotic expansions such that
(7.18) Wis)= 3 Wiudlog s)s=-m,
#=0

where W, (log s) are polynomials of logs of degree at most v.

§8. Existence theorem of inner solution.

13. In the older treatments of a turning point problem, the existence domain
of an inner solution is limited only in the neighborhood of the origin and then the
existence domains of an outer and an inner solution do not overlap for small ¢
which makes it impossible to calculate a connection matrix between the inner and
the outer solutions. The consideration of an asymptotic nature of the inner solution
at s=oo is due originally to Wasow [11].

Corresponding to the formal solution of the Proposition 7.1 we have a following
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existence theorem.

THEOREM 8. 1. Let 7 be any positive integer. Then there exists an aclucl
solution W (s, p) of (6.4) and a domain D, of s, p-plane defined by

8. 1) Dy arg seS, 0<0=p, [s°pl=cs

(p2 and ¢ ave some constants independent of o) such that for s and p in Dy it
holds that

W, p>—§ WAs)o' = Braa(s, )™ for |s|=su
8. 2)
W(s, 00— 96 E WG PO =) Erals, A0 F () for [s]>sm

where E,.(s, p) is bounded.

Proof. This is almost the same as that of, for example, the Theorem 5.1 in
Nishimoto [b], and then is omitted.

§9Y. Matching matrix.

14. If we rewrite the domain D, in terms of z,e-plane, it becomes
DZ: arg .Z‘ES, 0<€§62, leécéel/a—ll(n~m+0)6.

Then the domain D, defined in Theorem 4.1 and the above domain D, are over-
lapped for all sufficiently small parameter e. From this fact we want to identify
two solutions at some suitable point belonging to both domains D, and D,, and for
such a point we choose the most symmetrically located point a, such that

(9 l) x’l:n(n—m)p(n—n)—llze’ s”:W(n—m)p—I/Zc

and then

m;/(n—m) :mo(ﬂ—l)/d, tv — 7/—(n—m+I1)p(n—71L-l-fl)/6’

.2

=1/ (n—m) ——y—1,1/3 € eln—m) ,1/2
S7 Y=gt spp=yt e,

where d=2e(n—m) and 5 is a parameter such that argz*™eS.

Since the value of s, becomes infinite when p—0 for any fixed 7, we use the
asymptotic representation of the inner solution for |s|>s, in D.. The outer solution
Yi(z,¢) of the differential equation has from (3. 1), Lemma 3. 2 and Theorem 5. 1
an asymptotic representation in D; of the form



z™ T
xm—l O
' x . [o]

9.3) Yi(a, )= ) - S Wio)t

0 J/.fl /(n—m)

ma(n—m—l)/(n—m)

- -
~

; “ztm 0

O (€xXP dom 1 [£) s ’
L .'(exp donf)ztn

where W,(x) are polynomials of logz of degree at most » whose coefficients are
holomorphic in &V ™, in particular W,(0) is nonsingular. And the inner solution
Ya(s, p) in D; and |s|>so can be written from Theorem 8.1 such that

r( pn—ms?m !
| (-ms) 0 ..
9.4)  Yis, 0= 1 ZOW;*‘(s)[s"ﬂ]"

O (pn—ms)fl/(n—m) v

L : (pn—ms)l](n—m—l)/(n—m) ]

oo
som

(exp dom18™)stmr ’
L .(exp donsS®)stn

where W¥*(s) are bounded for [s|>s, and have asymptotic expansions in power series
of s~@-m whose coefficients are polynomials of logs, in particular Wi(s) is
nonsingular and from Lemma 3.2 and (6. 17) we have :

©. 5) A Wi(0)=W#0).
Now let the connection matrix C(p) between Yi(w,¢) and Yis, p) be such that

(9. 6) Yi(z, €)= Ya(s, p)C(p),
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and let

Vi, )= 3, Wila)t,

Yils, )= LWHSIs“L"
If we substitute (9. 1) for # and s in (9. 6), then we have from (9. 3) and (9. 4)

9.7 Co)=F ()7 'Y o(s,y 0) 'V sy, &)F (3, 1,).

Now from the asymptotic natures of Yi(@,2) and Y., p), we have following
lemmas. :

Lrvma 9. 1.
Yi(w,, &)= ;}) Y (pe)ps (0—0),

Yy, p)= Wy (0),

Y, 0)= 1 T (log o=y,
7

where the summation with respect to 1 consists of a finite number of terms for
which p=—v (modd) and Y(2) are polynomials of z.

LEmmMA 9. 2.

o

Yols 0)72 3, 79, p)p*? (o—0),

v=0
Y© 0, 0)=W#0),

Y, 0)= 582 (log o)y,

where the summation with vespect 1o p is taken over a finite number of integers
such that p=—v(modd) and V $2(=) are polynomials of z.

LemMA 9. 3. From above two lemimas we have

Valsw oy Faly, )= B A0, 0™ (p-0),
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A, p)=1I (unit matrix),
A, o)=L 4(y, o),

where AP(p, ) are polynomiols of log 7p®=0" and log ™% The summation with
respect to p is»over a finite number of integers for which p=—y (mod 0).

Proof. We give a proof only for Lemma O. 1, and for others it is almost

obvious. If we replaced x and ¢ by ®, and #, in the asymptotic expansion of ¥,(x, 2),
we have formally a series '

oo o
}71(‘%, )~ Z Z Wf,”) (log 77‘0(5—1)/E)v#—(n—m—(b"p((n-m+q)”+(6—1)/‘)/6
v=0 p=0

where Wf,"’(z) are polynonials of z. If we rearrange this series formally by col-
lecting all the terms of same power of o, we have

9.8 Yi(wy, &)~ Y0, 0)p"",
=0
where
TG p=, % W@ (a=log g,

(m—=mAQv-+(6—1)p=2r

in particular we have

Yy, p)= Wy(0).
We remark here that for every 7, Y™y, p) contains oily a finite number of terms
W2yt for which A= —r(mods). Next let us examine the asymptotic property of

9.8). From Theorem 5.1 and the properties of W,(xz) we can write for every
positive integer 7,

ECADEDNCONENND WIS AT RNy

»>1r/(n—m+q) v=r/(n—m+q)

- W ti=ol .
> {r—(n—m+q)v}/(a—1)

This proves our lemma.

We denote the each element of the connection matrix C(p) by cm(p). Then
from (9.7) and Lemma 9.3 c;u(p) can be written as
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Cﬂc(P) gyl(n—m) (ak—a])p(n-m) laj+6—1)ag)/s ; Cﬁ)(% p)p“/ﬁ
(4, k=1,2, -, m),
lec(,o) ~ {eXp _dojsél}”(n—m) (lllc—dlj) p(n—m) tdyj+(—-1)agi/s i C?}g(’?, p)p”/d
v=0

(]:m_l_]-) e, k:]-; "ty m))
9.9 '

o0
Cj]g(p);. {CXp (ZOIGS;J-}y}(n—m) ((lllc—llj)p(n—m)(aj-l-(ﬁ—l)dlkl/ﬁ Z(:] Cg‘;g(??, p)p”/ﬁ
. v
(]:1’ ey M, k:m—[—l’ e, n)’
Car(p) Z{exD (do—day)s7 "= m W= per=motsjt G=baas 2, ciRCr, pp*”?
P

(j: k:m_]"l; R %),
where ¢$2(y, p) are of the same forms as the elements of A, and then we have

THEOREM 9. 1. Let S be a sector of central angle less than (n—m)nj(n—m-+q)
which was defined in Proposition 6. 1, and let Yi(x,¢) and Yis, 0) be fundamental
systems of outer solutions and inner solutions which are defined in D: and D,
respectively under the assumptions (2.3), (2.5) end (3. 15).  Then the conmnection
matrix Clp) between them has a form

C(p)E{ ¥ G }e"’ﬂ 7=0),

V=7ro

where C, ave diagonal constant matrices, in particulay Co=1I (unit matrix) and

Proof. Since the elements ¢;u(0) do not depend on 7, s0 must be the right
hand terms of relations (9. 9). Let 7 or % or both 7 and % be larger than m. Then
the representations of c;x(p) for jk carry the exponential factors which imply that
¢ix(p) must be identically zero, otherwise ci(p) must depend on 7 For c¢;;(0)
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(j=m+1, ---, %), it does not depend on 7 if and only if all of the coefficients ¢, o)
are constants, but from the structures of them it is possible if and only if v=0
(mod d). Then we have

cji(p)=p" M4 2;; 3o’ (j=m+1, -, n).

For the case of j, k=12, ---,m, since (n—m)a;—ay) (j,k=1,2,m,ixk) is not an
integer the same reasons as stated as above insure us that the statements of the
theorem are satisfied and this completes our proof of the theorem.

ReEMARK 2. If the assumption (3.15) is not satisfied, that is, if we have
(n—m)(a;—ay)=integer for some j, k (4, k=1, -, m,jxk) our theory is also true
without any essential changes. In this case it may occur in the Theorem 9.1 that
some elements ¢;x(0) of the connection matrix C(p) are not always identically zero
for §,k=1,2, -, m,jxk We need a little more careful constructions of the inner
and outer formal solutions and comparison of the coefficients of them than that of
§3, §6 and §9 to obtain the exact informations about ¢j(e) in this case.
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