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PREFACE

Ample vector bundles are playing important roles in the field of algebraic geometry. For
example, we point out Mori’s solution of the Hartshorne conjecture:

Theorem ([Mo]). Let X be an n-dimensional smooth projective variety. If X has ample
tangent bundle Tx, then X ~ P™.

This theorem is a piece of evidence that ample vector bundles impose restrictions on
their base spaces. Recently Lanteri and Maeda have obtained the following

Theorem ([LMa}). Let X be an n-dimensional compact complex manifold and € an ample
vector bundle of rank r > 2 on X with the property that

(%) there exists a section s € H°(X, £) whose zero locus Z := (s)o is a smooth sub-
manifold of X of the expected dimension n — r.

IfZ ~P" "(n—r >1), then (X, &) is one of the following:

(P1) (P™,0p(1)®");

(P2) (B", 0p(2) & Op(1)~2); -

(P3) (Q", Og(1)®~1Y), where Q™ is a smooth hyperquadric in P**!;

(P4) X = Pp:(F) for some vector bundle F of rank n on P}, and £ = ea;’;ll(H (F) +
7*Op1 (b;)), where H(F) stands for the tautological bundle and m : X — P! is the
projection.

IfZ ~ Q" "(n—r2>2), then (X, £) is one of the following:

(QL) (P, Op(2) © Op(1)®(—1));

(Q2) (Q",0q(1)®");

(Q3) X = Pp(F) and £ = ®]-F(H(F) + 7" Op1(b;)), where F is the same as that in
(P4).

Here we remark that

(1) if € is spanned (by global sections), then £ satisfies the condition (x);
(2) when r = n, we have Z ~ P*~" if and only if ¢,(£) = 1, and Z ~ Q™" if and only
i en(€) = 2
(3) when r = n and £ is spanned, Wisniewski [W] has shown that ¢,(£) = 1 if and
only if (X,€) ~ (P",Op(1)®"), and Noma [N] has obtained a classification of £
with ¢, (€) = 2. '

In the thesis we consider ample vector bundles of rank two on Hirzebruch surfaces, and
on Del Pezzo surfaces. Without spannedness, we classify these bundles by using their
Chern numbers c¢? and c;. As a corollary we obtain a classification of these bundles with
small c;.

Typeset by ApS-TEX



Further we present two articles as the addenda to the thesis. Both of them treat ample
line bundles of sectional genus three. The former gives partial classification of the line
bundles; the latter gives almost complete classification of the line bundles under the con-
dition that they are spanned.

The auther would like to express his deepest gratitude to Professor Takao Fujita whose
consistent advices and warm encouragement are invaluable to him.
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RANK TWO AMPLE VECTOR BUNDLES
ON SOME SMOOTH RATIONAL SURFACES

HIRONOBU ISHIHARA

Department of Mathematics, Tokyo Institute of Technology,
Ohfokayama, Meguro-ku, Tokyo 152, Japan
- e-mail: ishihara@math.titech.ac.jp

ABSTRACT. Several classification results for ample vector bundles of rank two on Hirzebruch
surfaces, and on Del Pezzo surfaces, are obtained. In particular, we classify rank two ample
vector bundles with ¢z less than seven on Hirzebruch surfaces, and with ¢ less than four on
Del Pezzo surfaces.

Introduction.

In recent years ample and spanned vector bundles with small Chern numbers have been
studied by several authors. Among them, Lanteri-Sommese [12] proved that (S,€) ~
(P2, 0(1)®2%) when S is a normal surface and £ is an ample and spanned rank two vector
bundle with c3(€) = 1 on S. Ballico-Lanteri [2] and Noma [15] classified ample and
spanned rank two vector bundles with ¢y = 2 on smooth surfaces. Noma [16] extended the
classification to the case of normal Gorenstein surfaces.

Motivated by the results above, we attempt to classify ample vector bundles with small
co on surfaces without spannedness. As the first step, we consider rank two ample vector
~bundles on Hirzebruch surfaces, and on Del Pezzo surfaces, in the present paper. We
obtain classification results for rank two ample vector bundles with cs less than seven on
Hirzebruch surfaces, and with ¢, less than four on Del Pezzo surfaces. Note that we do
not treat all smooth rational surfaces because of technical difficulty.

This paper is organized as follows. In Sec. 1 we collect some preliminary results. In
Sec. 2 we study ample vector bundles £ of rank two on e-th Hirzebruch surfaces. We see
that c2(€) > e+ 2, and classification results for £ with e+ 2 < ¢3(€) < e+ 6 are given. As
a corollary, we obtain a classification of £ with ca(€) < 6. In Sec. 3 we study ample vector
bundles € of rank two on Del Pezzo surfaces of degree d < 7. We see that c3(€) > d, and
classification results for £ with ¢y(€) = d, d + 1 are given. A partial classification result
for £ with c3(€) = d + 2 is also given. As a corollary, we obtain a classification of £ with
c2(€) < 3. In Sec. 4 we study ample vector bundles £ of rank two on P% We see that

1991 Mathematics Subject Classification. Prima.ry 14J60; Secondary 14F05, 14J26.
Key words and phrases. Ample vector bundles, Chern classes, Hirzebruch surfaces, Del Pezzo surfaces.
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2 . HIRONOBU ISHIHARA

c2(€) > c1(€) — 1, and classification results for £ with ¢;(€) — 1 < ¢3(€) < e1(€) + 2 are
given. Then, using the classification of £ with ¢;(£) < 3, we obtain a classification of £
with c2(€) < 6. '

Acknowledgments.

The author would like to express his gratitude to Professor Takao Fujita who gave him
useful suggestions and valuable comments. He is grateful to Professor Antonio Lanteri
who informed him of some errors in the draft and of related topics. Thanks are also due
to the referee whose comments made this paper clearer.

Notation and Terminology.

Basically we follow the notation and terminology of Hartshorne’s text [8]. We work
over the complex number field. Vector bundles are identified with the locally free sheaves
of their sections, and line bundles are also identified with the linear equivalence classes of
Cartier divisors. The tensor products of line bundles are usually denoted additively, while
we use multiplicative notation for intersection products. The linear equivalence classes are
often denoted by [ ]. We use = (resp. =) for linear (resp. numerical) equivalence.

A line bundle L on a variety X is called nef if LC > 0 for every irreducible curve C in
X. For a morphism f : Y —+ X, we often denote f*L by Ly, or sometimes by L, when
there is no fear of confusion. For a vector bundle £ on X, we denote by P(£) the associated
projective space bundle and by H (&) the tautological line bundle on P(£) in the sense of
[7]. We say that & is ample if H(€) is ample. The determinant det £ of £ and the first
Chern class ¢;(€) of £ are used interchangeably. The canonical bundle of a smooth surface
S is denoted by Ks. For an ample line bundle A on S, the sectional genus g(S, A) (or
g(A) for short) of the pair (S, A) is given by the formula 2g(S,A) — 2 = (Ks + A)A. For
a closed subscheme Z of S with the ideal sheaf Tz, we set deg Z := length(Os/Zz).

1. Preliminaries.
In this section we collect some preliminary results that will be used frequently.

Theorem 1.1 (Lanteri-Palleschi [11, Remark 1.3]). Let A be an ample line bundle on a
smooth surface S. If Kg + A is not nef, then (S, A) is one of the following:
(1) (S, 4) = (P?,0(1)) or (P?,0(2)); |
(2) S is a Pl-bundle over a smooth curve and Ap = Opi(1) for every fiber F' of the
ruling.

For the proof of this theorem, Mori’s cone theorem [14, Theorem (1.4)] and the classi-
fication theorem of extremal rational curves [14, Theorem (2.1)] are essential.

Using these two theorems, we obtain a generalization of (1.1).

Proposition 1.2. Let £ be an ample vector bundle of rank r > 2 on a smooth surface S.
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If rKg + c1(€) is not nef, then we have one of the following:
(1) S~P? and c1(§) =0(a) (r<a < 3r);
(2) S is a P -bundle over a smooth curve and r < c((€) - F < 2r.

Proof. Suppose that rKg+c1(€) is not nef. By the cone theorem, there exists an extremal
rational curve C on S such that (rKg + ¢1(€)) - C < 0. By the classification theorem of
extremal rational curves, we have one of the following:
(i) S~ P? and C is a line;
(ii) S is a P'-bundle over a smooth curve and C is one of its fibers;
(iii) C is a (—1)-curve on S. ,
Then the case (iii) is excluded and the assertion follows by the next lemma. O

Lemma 1.3 (see, e.g., [6, (1.3)]). Let S and £ be as above. Then c1(€) - C > r for every
rational curve C on S.

Theorem 1.4 (Kleiman [9 Theorem 3]). Let £ be an ample vector bundle of rank r > 2
on a smooth surface. Then we have 0 < c3(€) < 2 (€).

Theorem 1.5 (Ballico [1, Theorem 0.1]). Let £ be an ample vector bundle of rank two on
a smooth surface. Then we have ¢3(€) < (c2(€) +1)2.

Remark 1.6. In fact, Ballico obtamed the inequality in a general settmg, though (1.5) is
enough for our use.

The following theorem is essential for the proof of (1.5).

Theorem 1.7 (Bogomolov [3], see also [17, Theorem 1]). Let £ be a vector bundle of
rank two on a smooth surface S. Then c3(€) > 4ea(€) if and only if there exists an ezact

sequence
0—-L—>E—-I70 M —0,

with L and M line bundles on S, and Z o zero-dimensional subscheme of S- wzth sheaf of
ideals Tz, such that:

(i) (L—M)?>4degZ;
(ii) (L —M)-A>0 for every ample line bundle A on S.

Remark 1.8. If £ is ample in (1.7), then we see that M is ample in (1.7).

Indeed, the assertion is clear in case Z = ). Incase Z # @, let m : S’ — S be the blowing-
up of S with respect to Zz. We denote by E the exceptional divisor corresponding to the
inverse image ideal sheaf 71T, - Os:. Then we have deg Z = —E? and an exact sequence

0= [m*L+El > r* = [n*M—-FE]—0
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that is induced by the exact sequence in (1.7). For each irreducible curve C on S, we
denote by C’ the strict transform of C under w. Then we have

M-C=(@M)-C'>(r*M-E)-C'">0

since 7*M — E is a quotient bundle of #*£. We have also M2 > deg Z > 0 since (7*M —
E)? > 0. Thus we conclude that M is ample.
Remark 1.9. Using (1.8), we consider the equality condition in (15)
Suppose that c2(€) = (ca(€) + 1)? in (1.5). If c2(€) < 4ca(€), then we get cp(€) = 1
and c2(€) = 4. If c2(£) > 4ca(€), then we get an exact sequence
0>L—=E—-Iz0M—0
as in (1.7). Note that ¢1(€) = L+ M and c3(€) = LM + deg Z. We have

(1.9.1)
0 = (c2(€) +1)* = ci(€)
= (LM)? — L*M? + (L* — (deg Z + 1))(M? — (deg Z + 1)) + (L + M)? - (deg Z).
Since £ is ample, ¢;(£) is also ample and then 0 < (L — M) - c;(€) = L? — M?. Since M

is ample by (1.8), we get L2M? < (LM)? from the Hodge index theorem. We get also
M? > deg Z from the argument in (1.8). Thus from (1.9.1) we infer that

(LM)? = L*M?, M? =degZ + 1, and deg Z = 0.

It follows that M? =1 and then L = tM for some integer t > 2.
On Hirzebruch surfaces and on Del Pezzo surfaces, we get the eqality condition precisely
(see (2.12), (3.15), and (4.8)).

2. On Hirzebruch surfaces.

Definition 2.1. A smooth surface S is said to be an e-th Hirzebruch surfaceif S ~ X, :=
P(Op: ® Opr(—e)) for some non-negative integer e.

In this section we denote by S an e-th Hirzebruch surface, by H the tautological line
bundle H(Op: & Opi(—e)) on S, and by F a fiber of the ruling p: § — P!

Let £ be an ample vector bundle of rank two on S. Since PicS ~ Z-H® Z- F,
we set ¢;1(€) = aH + bF for some integers a and b. We have a = ¢1(€) - F > 2 and
b—ae=ci(€) - H > 2 because of (1.3).

First we consider the relation between c}(£) and e.
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Lemma 2.2. Let S and £ be as above. Then —Kg . c1(€) > 2e + 8.
Proof. Since Kg = —2H — (e + 2)F, we have

~Kg-ci(€) = (2H + (e + 2)F)(aH + bF)
=2(b—ae)+ (e + 2)a
>2.2+ (e+2)-2
=2e+8 [

Proposition 2.3. Let S and € be as above. If 2K s + c1(€) is nef, then c2(€) > 8e + 24.
Proof. Suppose that 2K + ¢;(€) is nef. Since £ is ample, c;(€) is also ample and hence
(2Kg + c1(€))c1(€) = 0. Since 2Ks + ¢1(€) = (a —4)H + (b — 2e — 4)F, we have a > 4
and then

—Kg-c1(E) =2(b—ae)+(e+2)a>2-2+(e+2)-4=4e+12.
Thus we get c2(£) > —2Kg -c1(€) > 8e+24. O
Proposition 2.4. Let S and & be as above. If 2Ks+c1(€) is not nef, then ¢i(€) > 4e+8.

Proof. Suppose that 2Kg + ¢1(€) is not nef. From (1.2) we obtain ¢1(€) - F = 2 or 3.

In case ¢, (€)-F = 2, we have £|p ~ Op(1)®? since £ is ample. Then (£Q[-H])r =~ 02,
Hence G := p,(€ ® [-H]) is a locally free sheaf of rank two on P! and p*G ~ € ® [-H].
We can set G = O(t1) ® O(t2) for some integers ¢1 and ¢3 (1 < t3). Then & ~ [H + 1 F|®
[H + toF). Note that t; > e and {3 > e since £ is ample. We have

() = (2H + bF)? = —de + b > —de + 4(2e +2) = de + 8.

In case c1(€)-F = 3, we have (E®[-2H]|)r ~ Op®Op(—1). Hence G := p.(ER[-2H])
is an invertible sheaf on P! and the morphism p*G — £ ® [~2H] is injective. We have

Coker(p*G — £ @ [-2H]) = det(€ ® [-2H]) — p*G = —H + (b —t)F,
where t := degG. Then we get an exact sequence
0— [2H+’tF] —~E—[H+(b-t)F] = 0.
Note that b — ¢ > e since £ is ample. We have

2(E) = (BH +bF)? = —9e + 6b > —9¢ + 6(3¢ + 2) = 9e + 12 > de + 8. O
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Theorem 2.5. Let S be an e-th Hirzebruch surface and £ an ample vector bundle of rank
two on S. Then c(£) > 4e + 8, and equality holds if and only if € ~ [H + (e + 1) F]®?
where H s the tautological line bundle on S and F' is a fiber of the ruling.

Furthermore, if 4e +9 < c?(€) < 8¢+ 12, then € ~ [H + t1 F| @ [H + t2F), where t;,
ty €Z,e+1<t; <ty, and ty +tas < 3e+ 3.

Proof. From (2.3) and (2.4) we obtain c2(€) > 4e + 8 immediately. Suppose that ¢3(£) <
8¢+ 12. Then 2K g + ¢1(€) is not nef by (2.3). In view of the argument in (2.4), there are
the following two possibilities:
(1) 61(6) F =2 €~ [H+t1F] 5] [H—I—tgF] (tl < tg), t1 > e, t3 > e, and C%(g) =
—4e + 4(t1 -+ tz);
(i) c1(§) - F=3,0 > 2H +tF] - & = [H+ (b—t)F] — 0 is exact, b — 3e > 2,
b—t>e,and c2(£) = —9e + 6b.
In the case (i) we see that ¢; +t2 < 3e + 3 since c}(£) < 8e + 12.

In the case (ii) we see that e = 0 since 9e + 12 < c¢#(£) < 8e + 12. Then we have

= 2 and ¢;(€) = 3H + 2F. Note that the condition ¢;(£) = 3H + 2F is equivalent to
the condition ¢;(€) = 2H + 3F. Hence we infer that £ ~ [H + F| @ [H + 2F] from the
argument above. [

Using this theorem, we can classify rank two ample vector bundles with small ¢ on
Hirzebruch surfaces. :

Corollary 2.6. Let S be an e-th Hirzebruch surface. Then rank two ample vector bundles
E with c2(€) < 16 on S are the following:
(i) c2(€)=8,e=0, and £ ~ [H + F|®2;
(ii) c2(€)=12,e=0, and € ~ [H + F| & [H + 2F;
(iii) c2(£) =12, e=1, and £ = [H + 2F]%%;
(iv) c2(€) =16,e=0, and £ ~ [H + F| & [H + 3F];
(v) c2(£) =16, e=0, and £ ~ [H + 2F]%%;
(vi) 2(€)=16,e=1, and £ ~ [H + 2F]| & [H + 3F);
(vii) c2(€) =16, e =2, and £ ~ [H + 3F]|®2,

Proof. Suppose that c2(€) < 16. From (2.5) we get e < 2; moreover, £ is a vector bundle
of the type (vii) in case e = 2, and £ is of the type (iii) or (vi) in case e = 1.

In case e = 0, £ is of the type (i) or (ii) if ¢2(£) < 12. In case e = 0 and 13 < c2(€) < 16,
2K g + ¢1(€) is not nef by (2.3). From the proof of (2.4), we infer that £ is of the type (iv)
or (v). O

Next we consider the relation between c2(€) and e.

Proposition 2.7. Let S be an e-th Hirzebruch surface and £ an ample vector bundle of
rank two on S. If c2(€) > 4cy(€), then c2(€) > e + 4.
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Proof. Suppose that c3(£) > 4cy(€). From (1.7) we obtain an exact sequence
0=2L—>€E2TIz20M —0,

where L,M € PicS and Zz is the ideal sheaf of a zero-dimensional subscheme Z of S.
Note that M is ample (see (1.8)).

(2.7.1) If K + M is nef, we have (—Kg) - M < M? < LM since (Kg + M)M > 0 and
(L — M)M > 0. We have also (—Kg) L < LM since (Kg+ M)L = (K¢ + M)(L —~ M)+
(Ks + M)M > 0. Hence we obtain :

2¢e+8 < (—Kg) c1(6) =(—Ks) - L+ (=Ks) - M <2LM < 2¢5()

by (2.2). It follows that co(€) > e + 4.

(2.7.2) If Kg + M is not nef, we infer that M F = 1 from (1.1) since M is ample. Then
we can set M = H +tF and L = (a — 1)H + (b — t)F for integers a, b, and t. Note that
t > e since M is ample. We have

—(e+48)=(a-1D)H+O-t)F)(H+tF)—(e+4)=(b—ae—2)+(a—2)t —2.

Hence we see that LM >e+4ifa >3 and t > 2.

In case a = 2, we have L — M = (b — 2¢)F and hence b > 2t + 1 > 2e + 3. Thus we
see that LM > e+ 4 unless b = 2e + 3. If b = 2e + 3, then ¢ = e + 1 and we find that
c2(€) = e+ 3+ degZ and ci(£) = 4e + 12. This is a contradiction to the assumption
c%(f) > 402(8).

In case t = 1, we have e = 0, and then LM — (e +4) = a + b — 6. This is non-negative

because
0 < (&) — 4ca(€) = 2(a —2)(b— 2) — 4deg Z.

As aresult, we have LM > e+4 if Kg+ M is not nef. It follows that co(€) > e+4. O

Theorem 2.8. Let S be an e-th Hirzebruch surface and € an ample vector bundle of rank
two on S. Then ca(E) > e+ 2, and equality holds if and only if € ~ [H + (e + 1)F]%2,
where H is the tautological line bundle on S, and F is a fiber of the ruling.

Furthermore, co(§) = e+ 3 if and only if E ~ [H + (e + 1)F| @ [H + (e + 2) F].

Proof. Assume that ¢2(£) < e + 3. From (2.7) we obtain ¢?(€) < 4ez(€) < 4e + 12, and
hence 2Ks + ¢1(£) is not nef by (2.3). In view of the argument in (2.4), there are the
following two possibilities:
(1) C]_(g) F =2 €~ {H-f—tlF] ©® [H+t2F] (tl < tg), ty > e, tg > e, and 62(5) =
tl + tz — €5
(i) c1(€)-F=3,0 > 2H+tF] - & - [H+ (b—t)F] — 0 is exact, b — 3e > 2,
b—t>e, and ca(€) = 2b —t — 2e.



8 1 HIRONOBU ISHIHARA

In the case (i) we see that (¢1,¢2) = (e+1,e+1) or (e+1,e+2). Hence we have either
E~H+ (e+1)F]® and c3(€) = e+2,0r E ~ [H+ (e+ 1)F] & [H + (e + 2)F] and
c2(€) = e + 3. In the case (ii) we see that

e+3>cl)=20-t—-2e>b—e>2e+2,
and hence e = 0, c2(€) = 3, b =2, and ¢ = 1. Then we get an exact sequence
0>2H+F]—>&—[H+F]—>0.

Since Ext'([H + FJ,[2H + F]) ~ HY(S,H) = 0, we have £ ~ [2H + F| @ [H + F]. Hence
we obtain that £ ~ [H + F|® [H + 2F]. O

Theorem 2.9. Let S, £, H, and F' be as in (2.8).

(I) c2(€) = e+ 4 if and only if £ is one of the following:
() E~[H+ (e+1)F|@® [H + (e + 3)F] or [H + (e + 2)F]®2;
(Lii) e =0 and € ~ [H + F| @ [2H + 2F);
(I-ii) e=1 and € ~[H + 2F]| @ [2H + 3F].
(IT) c2(€) = e+ 5 if and only if € is one of the following:
(II) Ex~[H+(e+1)F|@®[H+ (e+4)F] or [H+ (e+2)F]| @ [H + (e + 3)F|;
(IIii) e =0 and £ ~ [H + F| @ [2H + 3F); '
(II-ii) e =0 and £ ~ [H + 2F| @ [2H + F];
(II-iv) e=1 and £ ~ [H + 2F] @ [2H + 4F);
(II-v) e =1 and there exists a non-split ezact sequence
0—[2H+2F]— & — [H+3F]— 0
(IL-vi) e =2 and £ ~ [H + 3F| @ [2H + 5F).
(IIT) ¢co(€) = e + 6 if and only if € is one of the following: :
(III-i) E~[H+ (e+1)F|®[H+ (e+5)F] or [H+ (e+2)F| @ [H + (e + 4)F|
or [H + (e + 3)F]®Z;
(ITI-ii) e=0 and € ~ [H + F| ® [2H + 4F);
(III-iii) e = 0 and € ~ [H + 2F) & [2H + 2F);
(Ill-iv) e =0 and £ ~ [H + F] @ [3H + 3F);
(III-v) e =0 and there exists a non-split ezact sequence
0—[2H] > & — [H+3F] — 0;
(IlI-vi) e =1 and € ~ [H + 2F| @ [2H + 5F);
(Ill-vii) e=1 and £ ~ [H + 3F| ® [2H + 3F};
)
)

l

(III-viii) e =1 and £ ~ [H + 2F| @ [3H + 4F);
(I1I-ix) e =1 and there exists a non-split exact sequence
0—>[2H+F)|—=&— [H+4F] = 0;
(Ill-x) e=2 and € ~ [H + 3F) @ [2H + 6F);
(III-xi) e =2 and there exists a non-split ezxact sequence
0—[2H+4F) > € — [H+4F] — 0;
(IlI-xii) e =3 and £ ~ [H + 4F)| ® [2H + TF].
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Proof. Suppose that e +4 < ¢3(€) < e + 6. The proof is divided into two parts.
(2.9.1) If 2K 5 + c1(€) is nef, then we get “

cHE) > —2Kg - c1(E) > 8e + 24 > 4cy(€)

from the proof of (2.3). In case c¢?(€) = 4cy(£), we have e = 0 and c2(€) = —2Ks-¢1(€) =
24. Then we get (2Kg + c1(€))ci(€) = 0, and hence ¢,(£) = —2Ks. It follows that
c3(€) = 4K % = 32, which is a contradiction. Thus we obtain c?(£) > 4cy(£). We argue as
in the proof of (2.7).

First we get the same exact sequence
O0—>L—=+E—-Iz0M —0
as that in (2.7). If Ks 4+ M is nef, then we have
de+12< —Kg-c1(€) < 2¢2(€) < 2e + 12,

a contradiction. Hence Kg -+ M is not nef. Then we can set M = H+tF and L =
(a—1)H+ (b—t)F (a,b,t € Z). We have t > e and

0<LM-(e+4)=(b—ae—2)+ (a—2)t - 2.

Note that a > 4, otherwise we have (2K + ¢1(€)) - F < 0.

In case LM = e+ 4, we have a = 4, ¢t = 1, e = 0, and b = 2. Then c2(€) =
(4H + 2F)? = 16, a contradiction to ¢}(€) > 8¢ + 24 = 24. In case LM = e + 5, we

have t = 1, e = 0, and (a,b) = (4,3) or (5,2). Then c?(£) = 24 or 20, a contradiction to
c2(€) > —2Kg - c1(€) = 28.

Thus we obtain LM = ¢3(€) = e + 6 and deg Z = 0 since c2(€) < e + 6. Then we have
t<2. Ift=1, thene=0and a = b =4 since 2Kg + ¢1(€) is nef. Hence we get an exact

sequence
0—-B8H+3F]—-&—[H+F]—=0.

Since Ext([H + F),[3H + 3F]) ~ H'(S,2H + 2F) = 0, we have £ ~ [H + F|® [3H + 3F].
This is the case (IIl-iv). If ¢t = 2, thena =4, b =4e+ 2, and e < 1. We find that e = 1
from 8e + 24 < () = (4H + (4de + 2)F)? = 16e + 16. Hence we get an exact sequence

0—[3H+4F]—- & = [H+2F])— 0.

Since Ext'([H +2F], [3H +4F)) ~ H'(S,2H +2F) = 0, we have £ ~ [H +2F]® [3H +4F).
This is the case (III-viii). :

(2.9.2) If 2K 5 +¢1(£) is not nef, we argue as in the proof of (2.8). We have ¢ (€)-F = 2
or 3. If ¢;(€)-F = 2, then we obtain & ~ [H + t;F] & [H + toF|, where t1,t2 € Z,

[/
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e+1<t; <tg,and 2e+4 <ty +t2 < 2e+ 6 since e +4 < ¢2(€) < e+ 6. These are the
cases (I-i), (II-i), and (III-i).

If ¢ (€) - F = 3, then there exists an exact sequence
0> 2H+tF| 5 E—-[H+(b-t)F] =0
with the property that
e+6>cy()=2b—t—2e>b—e>2e+2.

Hence we have e < 3. In case e = 3, we have ¢c2(§) =9, b =11, and ¢ = 7. Then we get

an exact sequence
0—[2H +TF] = & = [H +4F] — 0.

Since Ext ([H +4F),[2H +7F)) ~ H'(S,H +3F) = 0, we have £ ~ [H +4F]® [2H + 7F].
This is the case (III-xii).

In case e = 2, we have b —8or9. Ifb= 9, then ¢9(€) = 8 and t = 6. Hence we get an

exact sequence
0—[2H +6F)— & —[H+3F]—0.

Since Ext' ([H + 3F], [2H +6F]) ~ H'(S, H+3F) = 0, we have £ ~ [H +3F|®[2H +6F).
This is the case (III-x). If b = 8, then (c2(€),t) = (7,5) or (8,4). In the former case we
obtain £ ~ [H + 3F| ® [2H + 5F], which is the case (II-vi). In the latter case we obtain

an exact sequence
0— [2H +4F]) —» £ — [H + 4F] — 0,

which is non-split because 2H + 4F is not ample. This is the case (III-xi).

In case e = 1, we have 5 < b < 7. If b = 7, then ¢3(§) = 7 and ¢t = 5. We obtain
& ~ [H + 2F) & [2H + 5F], which is the case (III-vi). If b = 6, then (co(€),t) = (6,4) or
(7,3). In the former case we obtain £ ~ [H + 2F| @ [2H +4F], which is the case (II-iv). In
the latter case we obtain £ ~ [H +3F|®[2H +3F], which is the case (IIl-vii). If b = 5, then
(e2(€),t) = (5,3), (6,2), or (7,1). In the first case we obtain £ ~ [H + 2F| @ [2H + 3F],
which is the case (I-ii). In the second case we obtain an exact sequence .

0—[2H +2F)— & [H+3F]—0,

which is non-split because 2H + 2F is not ample. This is the case (II-v).  In the last case
we obtain an exact sequence

0 [2H + F] = & = [H +4F] —» 0,

which is non-split. This is the case (III-ix).

In case e = 0, we have 2 < b < 5. If b = 5, then ¢3(£) = 6 and ¢t = 4. We obtain
£ ~ [H + F| @ [2H + 4F], which is the case (III-ii). If b = 4, then (c2(€),t) = (5,3) or
(6,2). In the former case we obtain € ~ [H + F| @ [2H + 3F], which is the case (II-ii). In

[2
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the latter case we obtain £ ~ [H + 2F| @ [2H + 2F, which is the case (III-iii). If b = 3,
then (c2(€),t) = (4,2), (5,1), or (6,0). In the first case we obtain £ ~ [H + F|®[2H +2F],
which is the case (I-ii). In the second case we obtain £ ~ [H + 2F] & [2H + F], which is
the case (II-iii). In the last case we obtain a non-split exact sequence

0—[2H]— & - [H+3F] — 0,

which is the case (IIl-v). If b = 2, then ¢;(£) = 3H + 2F. Note that the condition
c1(€) = 3H + 2F is equivalent to the condition ¢;(€) = 2H + 3F. Hence we have already
treated this case. [

Remark 2.10. The existence of £ in the cases (II-v) and (III-xi) is shown by Fujisawa
[5, Example 3.7]. The existence of £ in the case (III-v) can be shown similarly.

The existence of £ in the case (III-ix) is shown as follows. Let Cj be the minimal section
of p: Xy — P1. We fix a non-split exact sequence

(2.10.1) 0 = Ogy(—=1) = O, (1)®? = O, (3) = 0
on Cy. Since Ext*([Co + 4F],[2C, + F]) ~ HY(Z1,Co — 3F) and
h%(%y, (Co — 3F) — Cy) = h*(Z1, —3F) = h%(Z1, —2C,) =0,
we have a non-trivial extension
0 = [2Co + F] = € — [Co + 4F] = 0

whose restriction to Cp is (2.10.1). Then we see that c3(£) = 21 and c2(€) = 7.

We show that the tautological line bundle H(£) on P(€) is ample. Note that H(£)® =
c3(€) — c2(€) = 14. The surjection € — [Co + 4F] above determines a section Z of the
projection p : P(£) = S. Then Z € |H(E) —p*(2Co + F)| and H(E)|z ~ Cp+4F is ample.
In addition, H(E)|,-1(c,) is ample since £|¢, = O¢, (1)®?

Let W be an arbitrary irreducible surface in P(£) with the property that W # Z and
W # p~(Cp). Then we infer that |H(E)|w| = |[Z]w + [p*(2Co + F)]w/| has a non-zero
member for some F. Let C be an arbitrary irreducible curve in P(€) with the property
that C ¢ Z Up~1(Cp). Then we see that H(£)-C =2 -C +p*(2Co + F)-C > 0.

We thus conclude that £ is ample in view of the Nakai criterion.

Using the results above, we can classify rank two ample vector bundles with small ¢y
on Hirzebruch surfaces.

Corollary 2.11. Let S be an e-th Hirzebruch surface. Then rank two ample vector bundles
E with c3(€) < 6 on S are the following:

(1) ca(€) =2,e=0, and £ ~ [H + F|%%;

[3
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(2) c2(€)=3,e=0, and £ ~
(3) ca(6)=3,e=1,and £ ~
(4) c2(6)=4,e=0, and £ ~
(5) c2(£) =4,e=0, and £ ~
(6) c2(€) =4, e =0, and £ ~ [H + F| @ [2H + 2F);
(7) c2(€) =4,e=1, and £ ~ [H 4+ 2F| @ [H + 3F|;

%H+F]ea H + 2F);
[
[
o
(8) 02(5)=4,6=2 and € ~ [H + 3F]®?;
[
[
[
[
[
[
{

H+ 2F]@2[
H+ F|®[H + 3F);
H + 2F)%2;

[

(9) c2(€) =5,e=0, and £ ~ [H + F| @ [H + 4F];
(10) co(€) =5,e=0, and £ ~ [H + 2F] @ [H + 3F);

(11) c2(€) =5,e=0, and £ ~ [H + F| @ [2H + 3F];
(12) c2(€) =5, e = 0, and € = [H + 2F) @ [2H + F;
(13) ce(€)=5,e=1, and € ~ [H + 2F| @ [H + 4F};
(14) c3(€) =5,e=1, and & ~ [H + 3F]|®?;

(15) ca(€) =5,e=1, and £ ~[H + 2F| & [2H + 3F|;
(16) ca(€) =5, e = 2, and € ~ [H + 3F] ® [H + 4F);
(17) co(€) =5, e =3, and € ~ [H + 4F]®?;

[
(18) c2(€) =6,e=0, and € ~ [H + F| & [H + 5F};
(19) c2(€) =6,e=0, and € ~ [H + 2F| @ [H + 4F};
(20) c2(E) =6, e =0, and £ ~ [H + 3F]%9%;
[
[

(21) c2(€) =6, e=0, and £ ~ [H + F| @& [2H + 4F);

(22) c2(E) =6,e=0, and € ~ [H + 2F| @ [2H + 2F];

(23) ca(€) =6,e=0, and £ ~ [H + F] & [3H + 3F];

(24) c2(€) =6, e =0, and there exists a non-split ezact sequence

0—[2H|—» €& —[H+3F]—0;

(25) c2(E)=6,e=1, and £ ~ [H +2F| @ [H + 5F);

(26) ca(€)=6,e=1, and & ~ [H + 3F| @ [H + 4F];

(27) ca(E) =6,e=1, and € ~ [H -+ 2F) @ [2H + 4F);

(28) co(€) =6, e =1, and there exists a non-split exact sequence
0—)[2H+2F]-—>8—>[H+3F]—>0;

(29) c2(E)=6,e=2, and € ~ [H + 3F| @ [H + 5F];

(30) co(€) =6, e =2, and € ~ [H + 4F]|®?;

(31) c2(E) =6,e=3, and € ~[H +4F| @ [H + 5F);

(32) c3(€) =6, e=4, and £ ~ [H + 5F|®2,

Proof. Suppose that c2(€) < 6. Then e+ 2 < c3(€) < e+ 6 by (2.8).

In case c3(€) = e+ 2, we have 0 < e < 4 and £ is a vector bundle of the type (1), (3),
(8), (17), or (32) by (2.8).

In case cy(€) = e+ 3, we have 0 < e < 3 and € is of the type (2), (7), (16), or (31) b
(2.8).

In case c3(€) = e+ 4, we have 0 < e < 2 and € is of the type (4), (5), (6), (13), (14),
(15), (29), or (30) by (2.9).
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In case c3(€) = e+ 5, we have 0 < e < 1 and € is of the type (9), (10), (11), (12), (25),
(26), (27), or (28) by (2.9).

In case c2(€) = e+ 6, we have e = 0 and £ is of the type (18), (19), (20), (21), (22),
(23), or (24) by (2.9). O

Remark 2.12. We easily see that there are no ample line bundles M with M? = 1
on Hirzebruch surfaces ¥.. Hence, on X, equality does not hold in (1.5) because of
(1.9) and (2.11). Furthermore, by an argument similar to that in (1.9), we obtain that
c2(€) = (c2(€) +1)2 ~ 1 if and only if e = 0 and € =~ [H + F]®? for ample vector bundles
€ of rank two on .

3. On Del Pezzo surfaces (of degree less than eight).

Definition 3.1. A smooth surface S is said to be a Del Pezzo surface of degree d if —Kg
is ample and d = (—Kg)?.

Proposition 3.2 (see, e.g., [4, p. 27, Théoréme 1]). A Del Pezzo surface S of degree d is
one of the following:

(i) d=9 and S = P?;
(i) d=8 and S ~ Z‘o or Xy;
(iil)) 1 <d <7 andS is isomorphic to the blowing-up of 1P’2 at 9 — d points, no three of
which lie on a line, no siz of which lie on a conic, and for d = 1 all eight do not
lie on a cubic that is singular at one of them.

Conversely, every surface satzsfymg the condition (i), (ii), or (iii) s a Del Pezzo surface
of the corresponding degree. :

In this section we denote by S a Del Pezzo surface of degree d < 7 and by £ an ample
vector bundle of rank two on S. Note that we have already studied rank two ample vector
bundles on Xy or X in §2. Rank two ample vector bundles on P? are studied in §4.

Sometimes we specify a blowing-up p: § — P? at 9 — d points z1,...,z9_q and denote
by E4,...,FEg_4 the exceptional curves of p. Then PicS ~Z - HOZ -E1@---BZ- Eg_y4.

First we consider the relation between c2(€) and d.

Proposition 3.3. Let S be a Del Pezzo surface of degree d < 7 and € an ample vector
bundle of rank two on S. Then 2Kg + c1(€) is nef.

Proof. This assertion follows from (1.2). O
Corollary 3.4. Let S and € be as above. Then —Kg - ¢1(€) > 2d.

Proof. Since —K is ample, we get (2K5 +¢1(€))(—Kg) > 0 by (3.3). Then the assertion
easily follows. [J

/5
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Corollary 3.5. Let S and € be as above. Then c3(£) > 4d.

Proof. Since c;(£) is ample, we get (2K + ¢1(€))c1(€) > 0 by (3.3). Then we obtain
() > —2Ks-c1(€) > 4d by (3.4). O

The following proposition will be used later.

Proposition 3.6. Let S be a Del Pezzo surface of degree d < 7 and £ an ample vector
bundle of rank two on S. If c2(€) < 4d + 8, then we have one of the following:

(i) e1(€) = —2Ks;
(ii) d =1 and ¢1(€) = —3Kg;
(iii) ¢1(€) = —~2Ks + C, where C is a 0-curve (i.e., C =~ P! and C* =0).

Proof. Suppose that ¢?(€) < 4d + 8. From (3.5) we get
4d < —2Kg-c1(E) < () < 4d + 8,

and hence 2d < —Kg-c1(€) < 2d+4. Note that Kg-c1(€) + c2(€) = 2g(det £) — 2 is even,
where g(det £) is the sectional genus of (S, det ).

If —Kg-ci1(€) = 2d, then (2Kg + ¢1(€))(—Kg) = 0. Hence we get ¢1(£) = —2Ks by
(3.3).

If —Ks - c1(€) = 2d + 4, then ¢}(£) = 4d + 8 and (2Ks + c1(€))e1(€) = 0. Hence we
have c;(€) = —2Kg and then c?(€) = 4d, which is a contradiction.

If ~Ks-c1() = 2d + 3, then c2(€) = 4d + 7. We have (2Ks + c1(£))? = -5, a
contradiction to (3.3). ‘

If —Kg-c1(€) =2d+1, then c2(€) = 4d + 3, 4d + 5, or 4d + 7. In case c3(£) = 4d + 3,
we have (2K + ¢1(€))? = —1, a contradiction. In case c?(€) = 4d + 5 or 4d + 7, we note -
that ((2d 4+ 1)Kg +d - c1(€))(—Kgs) = 0. By the Hodge index theorem, we get

0> ((2d+1)Ks+d-ci(€))2=d(d- () — (2d +1)?).

It follows that c2(€) = 4d + 5 and d = 1. Then we have (3Ks + c1(£))(—Ks) = 0 and
(3Ks + c1(€))? = 0. Hence we obtain ¢;(€) = —3K3. ‘

If —Ks-c1(€) =2d + 2, then c2(€) = 4d + 4, 4d + 6, or 4d + 8. In case ¢3(€) = 4d + 4
or 4d + 6, we have (2Kg + ¢1(€))? < 0, a contradiction. Hence we get c¢3(£) = 4d + 8 and
(2Ks + c1(€))? = 0. Note that (2Kg + c1(€)) — K5 is ample by (3.3) and (3.1). By the
base point free theorem, there exists a fibration ¢ : S — W such that 2K +¢1() = ¢*4
for some ample line bundle 4 on W (see [7, (0.4.15)]). From (2Kg + ¢1(£))? = 0 and
(2Ks + c1(€))Kg = —2, we infer that dim W =1, deg A = 1, and a general fiber C of ¢
is a 0-curve. Hence we obtain ¢; () = -2Kg+ C. O
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Remark 3.7. We make some comments on (3.6).
In the case of (i): if d = 1, by Fujita [6, (2.8)], c2(§) = L and € ~ [~ K 5]®2%, or ca(€) = 3
and there exists a non-split exact sequence

0— OSI(F) — € —-)7T*(—2Ks) — OSI(F) — 0,

where 7 : S — S is the blowing-up at (possibly infinitely near) three points y1, ¥, ys and
F is the sum of exceptional curves over {y;}3_,. Moreover, the existence of £ has been
proved with {y;};_, in a generic position.

If d = 2 and £ is ample and spanned, by Lanteri-Maeda [10, 8§5], c2(§) = 2 and
£ ~[-Kg]®?, or ca(€) = 4 and € ~ p*F ® [-K|, where p: § — P2 is a blowing-up of P2
at seven points and F is the cokernel of a bundle monomorphism

Opz (—1)%2 — (25, ® Op2(1))®?
(.Q]%,2 is the cotangent bundle of P?). Moreover, an example for £ of the above type is given
in [10, §6].

The case d > 3 is yet to be studied. It is clear that £ := [~ Kg]®? gives an example for
each d. ' :

In the case of (ii) and (iii), we obtain classification results if c2(€) < d+ 2 (see (3.9),
(3.11), and (3.13)).

In the case of (iii), we find that C' € |H — E;] for some blowing-up p : S — P2. Indeed,
each singular fiber of ¢ in the proof of (3.6) is the union of two (—1)-curves that intersect
at one point. By contracting one (—1)-curve in a singular fiber, we get a Del Pezzo surface
of degree d + 1 and C is still a O-curve on it. Thus we may consider only the case d =7,
and then the assertion is clear.

Next we consider the relation between co(€) and d.

Proposition 3.8. Let S be a Del Pezzo surface of degree d < 7 and € an ample vector
bundle of rank two on S. If c2(£) > 4ca(E), then ca(€) > d.

Proof. Suppose that c2(€) > 4cy(€). From (1.7) and (1.8), we obtain an exact sequence
0=-L—>E8—-I70M —0,

where L, M € PicS, M is ample, and Iz is the ideal sheaf of a zero-dimensional subscheme
Z of S.

Then Kg + M is nef by (1.1). Hence we obtain
d=(-Kg)? < (~Ks) M < M? < LM < c3(€)

by the fact that (Kg + M)(—Ks) > 0, (Ks + M)M >0, and (L — M)M > 0. O
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Theorem 3.9. Let S be a Del Pezzo surface of degree d < 7 and £ an ample vector bundle
of rank two on S. Then c2(€) > d, and equality holds if and only if € ~ [—Kg]®2.

For a proof of this theorem, we need the following lemma.

Lemma 3.10. Let S be as above and let A be the union of all (—1)-curves on S. If d < 6,
then A is connected and a member of | — myKg|, where

my = 240, me =28, m3 =9, my =4, ms =2, and mg = 1.

If d =17, then A is connected and a member of |H|, where H is the pullback of Opz(1) by
the blowing-up p: S — P2,

Proof. We fix a blowing-up p : S — P? and denote by {Ei}?"d the exceptional curves of

p. The number of (—1)-curves on S are listed in Table 1 (cf., e.g., [4, p. 35, Table 3]).

Table 1
type \ d 1 2 |3 |4 |5 1|6]|7
(0;—1) |8 |7 65 |4]3]2
(1;17) | 28 |21 |15 [10 |6 |3 |1
(215 [56 |21 6 |1 [0 |00
(3;2,1%) {56 |7 |0 [0 |0 |Oo]O
(4;25,15) |56 [0 [0 |0 |0 |00
(5;2%,1) [ 28 [0 {0 |Oo |0 [0 O
(6;3,27) 8 [0]0 |0 [0 ]0]O
{ total’ 240 {56 |27 |16 |10 |6 |3

There a (—1)-curve C is said to be of the type (ap;a7*,a3’,...) if C € |aoH -
221:1 alEik — 7=21 a,gEj, - l ({E'ik’Ejt yous }k,l,... are all diStinCt).

Then the assertion can be shown by simple computation. I
Proof of Theorem 3.9. We may assume c2(€) < 4cz(€) because of (3.8). Then we obtain

c2(€) > d by (3.5). Suppose that ca(€) = Then we have c?(£) = 4d, and hence
c1(€) = —2K3s by (3.6).

Using the Riemann-Roch theorem, we get x(€ ® Ks) = 2. We have H2(£ ® Kg) =0
since £ is ample. Thus there exists a non-zero section s € H%(€ ® Kg).

Let (s)o be the scheme of zeros of s. In case dim(s)y < 0, we have (s)o = 0 since
c2(€ ® Kg) = 0. Then the section s induces an exact sequence

0—)05—.'1-)S®K5—>det(8®K5)—->0.

Since Ext'(det(£ ® Ks),0s) ~ H(S,05) = 0, we obtain £ ~ [-Kg]®2.

We will show that the case dim(s)g = 1 cannot occur.

s
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In case dim(s)g = 1, we denote by Z the one-dimensional part of (s)o as a cycle. For
every (—1)-curve C, we have C' C Supp Z or C N Supp Z = 0 since [ ® Ks|c ~ 0% If
d < 6, then the union A of all (—1)-curves on S is an ample connected divisor by (3.10).
Since AZ > 0, we see that A C Supp Z. Then the section s determines a non-zero section
s' € H(£ ® Ks @ [—A]). Hence HY(P(£),H(E) + p*[(mq + 1)Ks]) # 0, where p is the
projection P(£) — S. Since £ is ample, we have

0 < H(E) (H(E)+p"[(ma+1)Ks]) = ¢1(E) —ca(€) +e1(€) -[(ma+1)Ks] = (1-2ma)d < 0,

a contradiction.

In case dim(s)o =1 and d = 7, let p: S — P? be the blowing-up of P? at two points z;
and xy. Setting H := p*Op2(1) and E; := p~1(z;) 1 = 1,2), wehave A= E; + E;+Cy2 €
|H|, where Ci2 is the strict transform of the line in P% passing through z; and z2. Note
that A C Supp Z or ANSupp Z = () since A is connected. If ANSupp Z = 0, then F1Z = 0,
EsZ =0,and HZ = AZ = 0. This is a contradiction since PicS ~Z -H®Z -E, ®Z- Es.
Hence A C Supp Z and then s determines a non-zero section s’ € H°(£ ® Ks ® [—A4)).
Since HO(P(£), H(E) + p*[Ks — H]) # 0 and

H(E)*(H(E) +p"[Ks — H]) = () — c2(€) + ca1(€) - [Ks —H] =d -6 =1,

every member D of |H(E) + p*[Kg — H]| is irreducible and reduced. Since p(D) = S, we
see that dim(s")p < 0. Furthermore, we find that ca(€ ® [Ks — H]) = 1 and hence (s')g is
" one reduced point z,.

Let w: S’ — S be the blowing-up of S at z¢ and denote by Ey the exceptional curve of
w. Then 7*s’ determines a non-zero section s” € H°(S',7*(€ ® [Ks — H|) ® [—Eo]) such
that (s")o = 0. Hence we get an exact sequence

0= O s 7*(£® [Ks — H]) ® [~Eo] — det(r* (€ @ [K — H]) ® [~ Eo]) = 0,

and then the exact sequence
0— ’n'*(—KS + H) + OSI(E()) =71 — TF*(—-KS - H) - OS'(EO) -0

is induced.

Let C1, be the strict transform of Cy, by . Since 7|¢1, : C13 — Ci is an isomorphism,
we see that [7*E]cs, is ample, and hence [1*(—Ks — H) — Og:(Ey)]c;, is ample. But we
have o ,

(m*(=Ks — H) — 0g/(E())C1g = (—Kg — H)C12 — Ey - C1, < 0,

a contradiction. Thus the case dim(s)o = 1 does not occur. [J
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Theorem 3.11. Let S be a Del Pezzo surface of degree d < 7 and € be an ample vector
bundle of rank two on S. If c2(€) = d + 1, then we have either

(i) d=1and € ~ [-Ks|®[-2Kg], or
(if) 2 £ d <7 and there exists a non-split ezact sequence

0— ’n'*(—Ks) + Og: (Eo) —S ¥ — W*(—Ks) — Qg (Eo) — 0,

where m: 8" — S is the blowing-up of S at one point zy and Eg := m~(zq).

Proof. Suppose that c2(€) = d + 1. If ¢2(£) > 4ca(€), then as in the proof of (3.8), we
obtain an exact sequence 0 - L - - T, @ M — 0 and

d=(-Ks)> < (~Kg) M < M? < LM < ¢3(€) =d + 1.

From this inequality we get degZ = 0 and M = —Kjg since Kg + M is nef. Then
L =(—Ks)+ (2Ks + c1(£)) is ample and £ ~ [-K5] ® L by Ext*(—Kg, L) = 0. We find
that c2(£) = L? + 3d + 2. Then we have L? > d + 3 since c3(€) > 4ca(€). Thus

d(d+3) < (-Ks)’L? < (-KsL)* = (d + 1)2,

and then d = 1 and ¢y(€) = 2. Hence we obtain L = —2Kg and £ ~ [~ K| ® [-2K5].

If c2(€) < 4ea(€), then we have ¢3(€) < 4d+4. From (3.6) we obtain that ¢; () = —2Ks.
Then we get x(€ ® Kg) = 1 from ¢3(£) = d + 1. We get also h2(€ ® K5) = 0, and hence
‘there exists a non-zero section s € H(£® Kg). Then we have HO(P(€), H(£)+p*Ks) # 0

nd
: 0< H(8)2(H(8) +p*Kg) =c3(€) —ca(€) +c1(E) - Ks =d — 1.

We infer that dim(s)g < 0 as in the proof of (3.9). Since c2(€ ® Kg) = 1, we see that
(s)o is one reduced point zo. Let m : S’ — S be the blowing-up of S at zo and denote by
Ey the exceptional curve of m. Then we obtain an exact sequence

0— ’n'*(——Ks) + 051 (Eo) - 7€ = W*(—Ks) — 05! (Eo) —0

by an argument similar to that in (3.9). This exact sequence is non-split, otherwise we
have

O = [1*E]g, = [1*(~Ks) + Os: (Bo) 5, ® [ (—Ks) — Os:(Eo)m, =~ Oy (—1) © Oy (1),
a contradiction. We have thus proved the theorem. O

Remark 3.12. The existence of £ in the case (i) of (3.11) is shown by Fujisawa [5,
Example (3.11)].
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Proposition 3.13. Let S be a Del Pezzo surface of degree d < 7 and € be an ample vector
bundle of rank two on S. If c2(€) = d + 2, then we have one of the following:

(i) c1(€) = —2Kg (see (3.7));
(i) € ~[-Ks]®[-Ks + C|], where C is a 0-curve;
(iii) d=1 and € ~ [—KS] [-2Kg + C], where C is a (—1)-curve;
(iv) d=1 and £ ~[-Ks| ® [-3Ks];
(v) d=2 and £ ~ [-Kgs] ® [-2K5].

Proof. Suppose that c3(£) = d + 2. We argue as in the proof of (3.11).
(3.13.1) If c§(€) > 4cz(€), we get an exact sequence 0 + L — & -+ Iz ® M — 0 and

d<(—Kg) M <M?*<LM<cy(E) =d+2.

Then we have deg Z < 1 and (—Kg) - M = M? since Kg - M + M? = 2g(M) — 2 is even.
It follows that M = —Ks. If deg Z = 1, then ¢3(£) = L2+ 3d + 2 and L? > d + 7 since
c(€) > 4cy(€). It follows that d(d + 7) < dL? < (d+ 1)?, a contradiction. Hence we have
degZ = 0. Then c?(£) = L? + 3d + 4 and L? > d + 5 since c(€) > 4cz(€). Note that
L? — d = 2g(L) is even. Thus we get d(d + 6) < dL? < (d + 2)?, and then d < 2.

In case d = 2, we have L? = 8. From K2L? = (KgL)? = 16, we obtain L = —2Kj, and
hence € ~ [— Ks] & [-2Kg]. This is the case (v). :

In case d = 1, we have L2 = T or 9. If L? = 9, then K2L? = (KsL)? = 9. Hence
we obtain L = —3Kg and £ ~ [—-Kg] ® [-3Kg]. This is the case (iv). If L? = 7,
we set D := L + 2Kg. We find x(Og(D)) = 1, and we get h2%(S,D) = h%(S,Kgs — D)
by the Serre duality. If h°(S,Kgs — D) > 0, then the divisor Kg — D is effective and
hence 0 < (—Kg)(Ks — D) = —2, a contradiction. Thus we have h%(S, D) = 0, hence
hO(S, D) > 1. Since (—Kg)-D = 1, every member C of |D| is an irreducible reduced curve.
Furthermore, C is a (—1)-curve because C? = —1. Thus we obtain L = —2Ks + C, and
hence € ~ [-K5] ® [-2Ks + C]. This is the case (iii).

(3.13.2) If c2(€) < 4ca(€), then we have ¢2(€) < 4d + 8. Because of (3.6), there are the
following three posibilities: ¢;(£) = —2Kg; d =1 and ¢1(€) = —-3Kg; c1(€) = —-2Ks + C,
where C is a 0-curve.

The second case leads to a contradiction as below. Assume that d = 1 and ¢;(€) =
~3Kg. We get x(€ ®[2Ks]) = 1 by Riemann-Roch. We get also h2(€ ® [2Ks]) = h%(EV ®
[-Ks]) = h°(€ ® [2K5]) by Serre duality and the fact that £ ~ £V @ det £. (The symbol v
stands for the dual.) Thus we have h?(E®[2Ks]) > 0, and then h®(P(£), H(E)+p*[2Ks]) >
0, where p : P(£) — S is the projection. Since £ is ample, we have

0 < H(€)*(H(E) +p*[2K5s]) = ¢(€) — c2(€) + e1(€) - (2Ks) =

a contradiction.
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In case ¢1(€) = —2K5+ C (C is a O-curve), we will show that £ ~ [-Ks|®[-Ks + C].
Since x(€ ® Ks) = 3 and h*(£ ® Kg) = 0, there exists a non-zero section s € H'(£ ® K3).
If dim(s)o < 0, since c2(€ ® Kg) = 0, we get an exact sequence

0+ 05— EQKg — det(E® Ks) = 0,
and then the exact sequence
0> [-Kg] €& —=[-Ks+C]—=0

is induced. We have Ext'([~Kg + C],[-Ks]) ~ H'(S, —C) and we find x(Os(-C)) = 0.
We have also h%(S,—C) = 0 and h?(S,—C) = h%(S,Kg + C) = 0 since —Kj is ample.
Hence we obtain h'(S, —C) = 0, and then ¢, (€) ~ [-Ks] ® [-Ks + C).

If dim(s)g = 1, then we denote by Z the one-dimensional part of (s)q as a cycle. We fix
a blowing-up p : S —+ P? for which C € |H — Ey| (see (3.7)).

Claim. Z € [t(H — E;)| for some positive integer t.

Proof. Let j be an integer such that 2 < j < 9 —d. We denote by Cy; the (—1)-curve
obtained by the strict transform of the line in P? passing through z; and z;. Since
Ci; € |H — E; — E;| and ¢;(€) - C1; = 2, we have [€ ® Kglg,; ~ Oc,;, and hence
C1;NSupp Z = or Cy; C Supp Z. We have also [ ® Ks|p; ~ O, since ¢1(£) - E; = 2.
Hence there are the following two possibilities:

(a) E; NSupp Z = ( for every j;

(b) E; C Supp Z for some j.

In the case (a), each irreducible component Z; of Z can be written as [Z;] = uH + vE;
for some non-negative integers v and v. Since F; N Cy; # 0, we have Cy; ¢ Supp Z, and
hence Cy; N Supp Z = §. It follows that 0 = Cq; - Z1 = u + v and then Zy € [u(H — Ey)|.
Thus we obtain Z € |[t(H — Ey)| for some positive integer ¢.

In the case (b), we infer that Ci; C SuppZ from the argument above. Note that
E; + Cij € |H — Eq|. Let t; be the largest integer with the property that the divisor
Z — t;(E; + Cy;) is effective. If E; C Supp(Z — t;j(E; + C1;)), then we have Cy; C
Supp(Z — t;(E; + C1;) — E;). This contradicts the definition of ¢;, and hence we see that
E; ¢ Supp(Z —t;(E;+Ch;)) for every j. Thus we obtain that E; NSupp(Z — St (B +
Cir)) = 0 for every j. Then the claim follows from an argument similar to that in the case
(a). O

Proof of Proposition 3.13, continued. From the claim we infer that s determines a non-zero
section s’ € HY(£ ® [Kg — t(H — E4))]) satisfying dim(s")o < 0. Since c3(€ ® [Ks — t(H —

E1)]) = 0, we get an exact sequence

005 L ER[Ks —t(H — Ey)] — det(€ ® [Ks — t(H — E1)]) — 0,

22
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and then the exact sequence - }
0= [-Ks+t(H—-E)]>E&—[-Ks+(Q1—-t)(H-E)]—0
is induced. Since £ is ample, —Kg + (1 — t)(H — E;) is also ample, and hence ¢t = 1. Then
we see that
0—>[-Ks+H—-FE)]|—>€&—[-Ks]—=0
is exact and Ext'([~Ks],[~Ks + H — Ey]) = 0. Hence we obtain £ ~ [-Kg] & [-Kg +
H-E)] O

Using the results above, we can classify rank two ample vector bundles with small ¢,
on Del Pezzo surfaces.

Corollary 3.14. Let S be a Del Pezzo surface of degree d < 7. Then rank two ample
vector bundles € with c2(€) < 3 on S are the following:
(1) c2(§)=1,d=1, and £ ~ [-K;5]|%?;
(2) e2(€)=2,d=1, and £ ~ [-Kg|® [-2Kg];
(3) c2(€) =2,d=2, and £ ~ [-K3]|®?;
(4) ¢2(€) =3, d =1, and there exists a non-split ezact sequence
0 — Ogi (F)— 1*€ - n*(—2Ks) — Os:(F) = 0 as in (3.7);
(5) c2(€)=3,d=1, and £ ~[-Kg5]® [-Kg + C] where C is a 0-curve;
(6) c2(€) =3,d=1, and £ ~ [-Kg]|® [-2Kg + C], where C is a (—1)-curve;
(7) c2(€)=3,d=1, and £ ~ [-Kg]|® [-3Ks];
(8) ¢o(€) = 3, d =2, and there exists a non-split exact sequence
0 — 7*(—Ks) + Og/(Ey) = 7€ = n*(—Kg) — Og/(Eg) — 0 as in (3.11);
(9) c2(€) =3,d=3, and £ ~ [~ K5|®2.

Proof. Suppose that c2(€) < 3. Then d < ¢2(€) < d+ 2 by (3.9).

In case c2(€) = d, we have d < 3 and £ is a vector bundle of the type (1), (3), or (9) by
(3.9).

In case c2(€) = d+ 1, we have d < 2 and & is of the type (2) or (8) by (3.11).
(

)
In case c3(€) = d + 2, we have d = 1. By (3.13) £ is of the type (5), (6), or (7) unless
c1(€) = —2Kg; if ¢1(€) = —2Kg, then € is of the type (4) in view of (3.7).

O

Remark 3.15. On Del Pezzo surfaces S of degree d < 7, equality holds in (1.5) if and
only if d = 1 and € ~ [-Kg] @ [-tKs] for some positive integer t. In view of (1.9) and
(3.14), the assertion follows by an argument similar to that in the proof of (3.11).

4. On P2.

In this section we consider rank two ample vector bundles £ on P2. We always denote
Op: by O for simplicity. Since PicP? ~ Z - O(1), we regard c;(£) as an integer. We have
c1(€) > 2 because of (1.3). '

The following theorem is essentially due to Van de Ven [19].
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Theorem 4.1 (cf. [19]). Let £ be an ample vector bundle of rank two on P2. If c;(€) < 3,
then £ is one of the following:
(i) c1(€) =2 and € ~ O(1)®2;
(i) e1(€) =3 and € ~ O(1) ® O(2);
(iii) ¢1(€) = 3 and € ~ Tpz, where Tpz is the tangent bundle of P2.

Proof. We have ¢1(€) > 2. If ¢1(€) = 2 (resp. 3), then &|p ~ O (1)®2 (resp. Op(1) ®
Or(2)) for every line L in P2, Hence £ is a uniform vector bundle if ¢;(€) < 3, and then
the assertion follows by [19]. O

Remark 4.2. Note that £ is not necessarily a uniform vector bundle if ¢;(£) > 4. In case
c1(€) = 4, we have 1 < ¢3(€) < 15 because of (1.4), and we obtain classification results if
c2(€) < 6 (see (4.7)).

By definition, & is said to be stable (resp. semistable) if ¢1(€) > 2t (resp. c1(€) > 2t)
for every invertible subsheaf O(t) of £.

Ample and stable vector bundles on P? are studied by Le Potier [13]. In particular,
these bundles with ¢; = 4 and ¢, = 7,8 are studied in detail. ‘

Next we consider the relation between c; (£) and cz(€).

Theorem 4.3. Let £ be an ample vector bundle of rank two on P2. Then c2(€) > c1(€)-1,
and equality holds if and only if € ~ O(1) @ O(t) for some positive integer t. '

Proof. From (1.5) we obtain ¢3(€) > ¢1(£)—1 immediately. Suppose that c2(€) = ¢1(€)—1.

Then we obtain c?(£) > 4c2(€). H c2(€) = 4ca(€), we get ¢1(€) = 2, and hence £ ~ O(1)®?
by (4.1). If ¢2(€) > 4ca(€), then from (1.7) we obtain an exact sequence

0—-0() =& —Iz(m)—0,

where I,m € Z and Iz is the ideal sheaf of a zero-dimensional subscheme Z of P2. Note |
that [ > m > 0. We have :

0=c(€) = (c1() —1) = (1~ 1)(m — 1) + deg Z,
and hence m = 1 and deg Z = 0. Then we get an exact sequence
0—0O(l) = &— 0O(1) =0,

which splits. Hence we obtain £ ~ O(1) @ O(l). Conversely, for every positive integer ¢,
we easily see that £ := O(1) ® O(t) satisfies c2(€) = c1(€) — 1. O



RANK TWO AMPLE VECTOR BUNDLES 23

Proposition 4.4. Let £ be as above. Assume that c3(€) > c1(€) — 1. Then c3(€) >
2¢1(€) — 4, and equality holds if and only if £ ~ O(2) ® O(t) for some integer t > 2.

Proof. If ¢3(€) > 4ca(€), as in the proof of (4.3), ’we get an exact sequence
0= 0() = &= ZIz(m)—0, |
where I,m € Z, | > m > 0, and m? > deg Z in view of (1.8). Then we have
0<ca€)— (&) -1)=(l-1(m=1)+degZ < (I+m)(m —1),
and hence m > 2. Thus we see that
c2(€) — (2c1(€) —4) = (1 —2)(m — 2) + deg Z > 0,

and equality holds if and only if m = 2 and deg Z = 0. Under these conditions, we obtain
E~02)a0(). Conversely, for every integer ¢t > 2, we see that £ := O(2)® O(t) satisfies
c2(€) = 2¢1(€) -

If c2(€) < 4ca(€), we have
i 4(cz(€) ~ (2c1(€) = 4) 2 (ca(€) = 4)* 2 0,

and equality holds if and only if ¢;(£) = 4 and c2(€) = 4. Under these conditions, we find
that x(€(—2)) = 2, h%(£(-2)) = 0, and h°(£(—3)) = 0. Hence there exists a non-zero
section s € H?(£(—2)) such that dim(s)y < 0. We have (s)o = 0 since co(E(— 2)) = 0.
Then the section s induces an exact sequence

0— O £(—2) — det(£(-2)) — 0.
Since det(£(—2)) ~ O, we obtain that £ ~ 0(2)92. O

Theorem 4.5. Let £ be an a'rﬁple vector bundle of rank two on P2,

(I) c2(€) = c1(E) if and only if either
(I4) € ~0(2)%?, or
(L-ii) € =~ Tps.
(I1) co(€) = c1(€) + 1 if and only if either
(I-i) €~ O(2) ® O(3), or
(IT-ii) &€ is semistable, but not stable, and there exists an exact sequence
0— O2) = & = I,(2) = 0, where = is a point of P2,
(IIT) c2(€) = ¢1(€) + 2 if and only if £ is one of the following:
(I11-i) € ~ O(2) ® O(4);
(III-ii) & 4s not semistable, and there exists an exact sequence
0— O3) = & = I,(2) = 0, where x is a point of P?;
(IL-iil) € ~ Tpa (1);
(IlI-iv) & is stable and there exists an ezact sequence 0 — O(1) = & - Iz(3) — 0,
where Z i3 a zero-dimensional subscheme of P? with deg Z = 3.
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Proof. Suppose that ¢1(€) < ¢c2(€) < ¢1(€) + 2. From (4.4) we get c2(€) > 2¢1(€) — 4,
and hence c1(£) < 6. If ¢1(€) = 6, then c2(€) = 2¢1(£) — 4 = 8. Hence we obtain
- £~ 0(2)® O(4) by (4.4). This is the case (III-).

If ¢1(€) < 3, we obtain £ >~ Tp2 by (4.1). This is the case (I-ii).

If c;(€) = 5, then we get 6 < c2(€) < 7. In case (¢1(€),c2(€)) = (5,6), we have
c2(€) = 2¢1(€) — 4, and hence £ ~ O(2) @ O(3) by (4.4). This is the case (II-i). In case
(c1(E),c2(E)) = (5,7), we find that x((—2)) = 3, h?(£(—2)) = 0, and h°(E(—4)) = 0.
If h°(£(—3)) > 0, there exists a non-zero section s € H9(€(-3)) such that dim(s)y < 0.
Since co(€(—3)) = 1, we see that (s)o is one reduced point z of P?. Hence the section s
induces an exact sequence

00 5 E(-3) = T(-1) =0
since c;1(£(—3)) = —1. Then tensoring with O(3) gives an exact sequence
0=503) =€ —=TI,(2) = 0.

This is the case (III-ii). If h°(£(—3)) = 0, there exists a non-zero section s € H?(£(—2))
such that dim(s)g < 0. Since c3(£(—2)) = 1, we see that (s)o is one reduced point z of P2
Let 7 : 1 — P? be the blowing-up of P? at = and E the exceptional curve of 7. Then 7*s
determines a non-zero section s’ € H°(Z,,7*(£(—2)) ® [~ E]) such that (s')p = 0. Hence
we get an exact sequence

0 — Oz, -5 1*(£(~2)) ® [~E] — det(n*(E(—2)) ® [~E]) — 0
- and then the exact sequence
0— [7r*(’)(2))+ El—»7n*€ = [n*O(3) - E]| =0
is induced. This exact sequence is non-split, otherwise we have
082 ~ [1*E|g ~ [r*O(2) + Elg @ [7*O(3) — Elg ~ Op(-1) ® Og(1),

a contradiction. Since Ext'([7*O(3) — E], [7*O(2) + E]) ~ HY(Zy,n*O(-1) + 2E) ~ C1,
we see that € is unique up to isomorphism if it exists. On the other hand, 7pz(1) satisfies
the condition of £. Thus we conclude that £ ~ Tp2(1). This is the case (III-iii).

If ¢1(€) = 4, then we get 4 < ¢3(€) < 6. In case (c1(€),¢c2(€)) = (4,4), we have
c2(€) = 2¢1(€) — 4, and hence £ ~ O(2)®2 by (4.4). This is the case (I-i). In case
(e1(€),ca(€)) = (4,5), we find that x(E(-2)) = 1, h?(E(=2)) = 0, and A°(E(-3)) =
0. Hence there exists a non-zero section s € H%(£(—2)) such that dlm( Jo < 0. Since
c1(E(—2)) = 0 and c2(E(—2)) = 1, the section s induces an exact sequence

050 -5E(-2)>TI,—0,
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where z is a point of P2. Then tensoring with @(2) gives an exact sequence
0—=0(2) =& —TI,(2) — 0.

Note that £ is semistable since A°(£(—3)) = 0. This is the case (II-ii). In case (c1(£), c2(€))
— (4,6), we find that x(£(—1)) = 4, h2(£(=1)) = 0, and h%(£(=3)) = 0. If h°(£(~2)) > 0,
then a non-zero section s € H%(£(—2)) induces an exact sequence

0= 0= E(~2) = Iz —0,

where Z is a zero-dimensional subscheme of P? with deg Z = c3(€(—2)) = 2. Then we
have Z = z + z', where z and z’ are two points of P? (not necessarily distinct). Let L be
the line passing through z and z’. Since 0 # s|, € H°(E(—2)|L), we see that £(—2)| =~
OL(t) ® Op(—t) for some integer ¢t > 2. It follows that €|, ~ Or(2+1t) ® Or(2 —t), which
is a contradiction since | is ample. Thus we get h°(£(—2)) = 0. Then there exists a
non-zero section s € H%(£(—1)) such that dim(s)g < 0. The section s induces an exact
sequence
0— 0 -2 E(~1) = Zz(2) =0,

where Z is a zero-dimensional subscheme of P? with degZ = c3(€(—1)) = 3. Then
tensoring with O(1) gives an exact sequence

0—>0(1) > &—ZIz(3)—0.

Note that £ is stable since h°(£(—2)) = 0. This is the case (IlI-iv). O

Remark 4.6. We make some comments on (4.5).

The existence of £ in the cases (II-ii) and (III-ii) is shown by Fujisawa [5, Example (3.9)];
furthermore, the existence of £ in the case (III-iv) is shown by Fujisawa [5, Example (3.11)].

In the case (III-iv), by Szurek-Widniewski [18, p. 298, REMARK], £(—1) is spanned
and the evaluation O®4 — £(—1) induces an exact sequence 0 — O(-1)%9%2 — 0% —
£(—1) — 0. ‘ »

Using the theorems above, we can classify rank two ample vector bundles with small ca
on P2,

Corollary 4.7. Rank two ample vector bundles € with co(€) < 6 on P? are the following:
(1) c2(€) =1 and £ ~ O(1)®2; A

(2) c2(E) =2 and £ ~ O(1) ® O(2);

(3) c2(€) =3 and € ~ Tpe;

(4) c2(€) =3 and € ~ O(1) & O(3);

(5) c2(€) =4 and € ~ 0(2)9%;

(6) c2() =4 and £ ~ O(1) & O(4);

(7) c2(€) =5, € is semistable, but not stable, and there ezists an ezact sequence

c
0— O(2) = & = I,(2) — 0, where I, is the ideal sheaf of a point z € P?;
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(8) c2(€) =5 and £ ~ O(1) ® O(5);
(9) c2(€) =6, & is stable, and there exists an ezract sequence
0— O(-1)%2 5 0% - £(~1) = 0;
(10) co(€) =6 and £ ~ O(2) & O(3);
(11) ¢cp(E) =6 and £ ~ O(1) & O(6).

Proof. Suppose that co(€) < 6. In case ¢;(€) < 3, € is a vector bundle of the type (1),
(2), or (3) by (4.1). In case ¢1(€) > 4, we have 4 < ¢1(€) < c2(€) +1 < 7 by (4.3). Then
we see that c2(€) < ¢1(€) + 2 and hence € is of the type (4), (5) (6), (7), (8), (9), (10), or
(11) by (4.3), (4.5), and (4.6). O

Remark 4.8. We conclude with a remark that (4.3) gives the equality condition in (1.5)
on P2.
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ON POLARIZED MANIFOLDS OF SECTIONAL
GENUS THREE

HIRONOBU ISHIHARA

§1. Introduction

Let L be an ample line bundle on a complex projective manifold M of
dimension n=2. The sectional genus g=g(M, L) of a polarized manifold (M, L)
is defined by the formula 2g(M, L)—2 = (K+(n—1)L)L""!, where K is the
- canonical bundle of M. For polarized manifolds over C, it is known that g
takes non-negative integers ([F1; Corollary 1] or [12; Lemma 7]).

In many papers the structure of (M, L) with low g has been studied: see
[F1] or [I2] for g=<1; [BeLP] for g=n=2; [F2] for g=2; [Ma] for g=3
and n=2, As for the case g=3 and n=3, we see from the results of [F1] or
{127 that (M, L) is one of the following types.

(1.1) There is an effective divisor £ on M such that (E, Lg)=(P" !, o(l))
and [EJz=0(—1).

(1.2) There is a fibration @: M—C over a smooth curve C such that
every fiber F of @ is a hyperquadric in P* and Lz=0().

(1.3) There is a fibration @: M—C over a smooth curve C such that
(F, Lp)=(P? 0(2)) for every fiber F of @,

(1.4) (M, L) is a scroll over a smooth surface S.
(1.5) K+(n—2)L 1s nef.

(1.6) (M, L) is a scroll over a smooth curve of genus three.

In the case (1.6), we have nothing more to say.

In the case (1.1), using the theory of minimal reduction (e.g. [12; (0.11)], [F2;
(1.9)], or [F; (11.11)]), we see (M, L) is obtained by a finite number of simple
blow-ups of a polarized manifold (M’, L’) which is of type (1.3) or (1.5).

The cases (1.2) and (1.3) are further studied in §2 and §3, which is the
main part of this paper. We shall see our classification results are similar to
those in case g=2, but the computations are more complicated.

In the case (1.4), (M, L)=(Ps(&), H(&)) and g(S, det &)=3 for some vector
bundle & on S, thus the classification of (M, L) is reduced to the classification
of ample vector bundles & for each polarized surface with g=3. Under the

" Received February 1, 1994; revised February 24, 1995.
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additional condition that [ is spanned, the classification was obtained in [BiLL].
Without this condition, however, we have only some partial results and our
classification is not yet complete. The author hopes. this case will be treated
in a future paper. .

The case (1.5) is a kind of “general type”. For any fixed n, there are only
finitely many deformation types of (M, L). (See [F; (13.1)].) But it seems to
be difficult to enumerate all such deformation types.

The author would like to express his sincere thanks to Professor T. Fujita
for kind encouragement and for many valuable comments during the prepara- -
tion of this paper. The author would also like to thank the referee for his
useful suggestions, which made this paper more readable than in previous version.

Notation and Terminology

Basically we use the customary notation in algebraic geometry as in [H2].
All varieties are defined over C and assumed to be complete. Vector bundles
are often identified with locally free sheaves of their sections and these words
-are used interchangeably. Line bundles are identified with linear equivalence
classes of Cartier divisors, and their tensor products are denoted additively,
while we use multiplicative notation for intersection products in Chow rings.
The linear equivalence class is denoted by [ ], and its corresponding invertible
sheaf is denoted by o[ J. We use { } for the homology class of an algebraic
cycle.

Given a morphism f: X—Y and a line bundle A on Y, we denote f*A by
Ay, or sometimes by A for short when there is no danger of confusion. The
canonical bundle of a manifold M is denoted by K?#, unlike the customary
notation K. The ©(1)s of projective spaces P,, Pg, -+ will be denoted by
H,, Hg, --. Given a vector bundle & on X, we denote by Px(&) (or P(&)) the
associated projective space bundle, and denote by H(&) the tautological line
‘bundle on P(&) in the sense of [H2]. The pair (P(&), H(&)) is called the scroll
of &. ‘

§ 2. The case of a hyperquadric fibration over a curve
In this section, we study the case (1.2), following the idea in [F2; §3].

(2.1) Since A%F, Lr)=n+1, &:=0+0x[L] is a locally free sheaf of rank
n-+1 on C and a natural map @*€—L is surjective. This yields a C-morphism
p: M—Py&) and for every point x on C the restriction of p to F,:=0"'(x)
is an embedding of F, into P". Hence p itself is an embedding and M is a
member of |2H(&)+Bp,| for some line bundle B on C. We put d=L" e=
c(&), b=deg B and denote by g(C) the genus of C. After simple computation,
we get d=2e-+b, 2g(C)+e+b=4, and s:=2e¢-+(n-+1)b=0. Furthermore in the
last inequality, equality holds if and only if every fiber of @ is smooth by
[F2: (3.3)]. From these results, we have (n+1)d+s+4ng(C)=8n, hence g(C)
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=0 or 1.

(2.2) We first study the case g(C)=1. In this case, C is an elliptic curve
and we have e=d—2 and b=4—d from the equality above. Hence we obtain
d<6, since s=0 and n=3.

(2.3) We consider the ampleness of &. If & is ample, then det & is ample
and e=c,(&)>0. It follows that d>2, hence & is not ample when d<2. On
the other hand, &€ is ample when d=5 by the argument in [F2; (3.13)]. In
general, for any indecomposable vector bundle & on an elliptic curve, g is
ample if and only if ¢,(F)>0 (for a proof, see e.g. [H1]). Thus when d=3 or
4, € is ample if it is indecomposable.

(2.4) When d=3 or 4, we can find an example of (M, L) similarly as in
[F2; (3.12)]. We can also find an example of (M, L) with d=6 as follows.
Let C be a smooth elliptic curve and take a line bundle .£ on C with deg L=
1. We put &€=.0%, then & is ample, ¢(€)=4, Ps(&)=2CX PE, and H(E&) = H,+
Lpey, where H, is the pullback of ©(1) on P¢. Putting B=—2.L, we have
deg B=—2 and 2H(&)+Bpwy =2H,. Then a general member M of |2H(&)+
Bpesy| is smooth and, putting L=[H(€)]y, we obtain an expected example of
(M, L) with d=6.

(2.5) From now on, we study the case g(C)=0. In this case, C=P¢ and
we have e=d—4 and b=8—d from the equality in (2.1). Hence we obtain d<
12, since s=0 and n=3. Furthermore when d=11 or 12, we have n=3; when
d=12, we have s=0 and @ is a P'XP'-bundle over P

(2.6) We put P=Py(€), H=H(&), and denote by H. the pullback of &(1) on
P}. Since C=P}, we can describe £=20(e))P - PO(es), where ¢, -, e, EZ,
= - Ze,, and 2.,e;=e. We denote O(e)P - PO(e,) by ey, -, en) for
simplicity. We shall classify €=20(e,, -, e,) for each d=1, 2, ---, 12,

2.7)
LEMMA. 2(e,..+e,)<d when ¢,<0.

Proof. (cf. [F2; (3.24)]). A natural surjection &—(e,, -, ¢,_) gives a
prime divisor D, :=P(O(e,, -+, e,_1)) on P. Similarly &—0(e,, «, €n_s €,) gives
a prime divisor D,:=P(O(ey, "+, €n_s, 22)) On P and &—0(ey, -+, en_,) gives a
subvariety W:= P(O(e,, -, ¢n_5)) of P. We have D, & |H—¢,H;|, D,
| H—en_1H,|, and W=D,N\D, as schemes. When ¢,<0, we have W¢M since
Hy is not ample. Hence dim(MNW)=n—2 and 0<L* 2 {MNW}=H"*2H-+
bHé)(H—enHe)(H_en—le):d—z(en—1+en)- O

(2.8) Suppose that d=1. We have e=-3, b=7, and Me|2H+T7H;|. By
2.7, ¢=0(-3,0, -, 0, 0(—2, —1,0, -, 0), or &(—1, —1, —1,0, -, 0).

(2.8.1) When ¢=o(—-1, —1, —1,0, -, 0), we have n<4 by the argument
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in [F2; 3.21)]. Indeed, we have

Pz{(EO: ENVX(Gg: O1% Gyt Gags Tyt o+ % Opot om)epgxpzn—z}
[€0: 61==030: Tp= "+ =0 Opy
H=H,—H,, and Me|2H,+5H;|. Thus we can describe
M= {q(0)65+q:(0)§6,+ -+ +¢5(0)§1=0 in P},

where ¢o, **+, gs are homogeneous polynomials of degree two in a,, 0'1, v, Gai.
In this defining equation of M, we put

o= A&+ Baib1, O1=0a1060+ 016, 2=+ d2né,
G30==as&0, 0'31—-.—"(1351, vy Ono=0r€y, Tn1=aa&,
where aq, a4, -, a, are constants. Then we obtain an equation
Qu(@)Ei+01(a)sié1+ -+ +C1(a)§]=0,

where Q,, -+, @, are homogeneous polynomials of degree two in (a):=(a,
Aoy, 5 Qn). If n25, then Q4la)= - =Q,(a)=0 has a non-trivial solution. We
fix such a solution (a) and define a rational map a: P}—P2i""? by

&y &) i =(awbotané:: abitandi: anbo+ané)
Dasbet @dit ot anbol aaby).

If o is not a morphism, then ay: dw: G=0¢0: an: @y and a;= - =a,=0.
Since (a) is non-trivial, the equations

Go: 0% 03 =Gg ! G0} G20=Co1: Q11 Qa1 Cag=0g= +++ =20p=0p,;=0

determine a point z on PZ2""% Let Z be the fiber of P}X P2 *—PZ*"% gver z.
Then we have ZCM by the definition of Z, hence 0K LZ = HZ=(H,—H)Z=
—1. This is a contradiction, thus « is a morphism. Let /" be the graph of a.
Then I'CM by the definition of &, hence 0<LI'=HI'=(H,—HgI'. However,
since H,I'=H.I'=1, this is a contradiction too. Hence we have proved that
n<4, thus e=e(—1, -1, —1,0) or o(—1, —1, —1,0,0). If e=o(—1, —1, —1,
0), then P={(&: E)X(gs: 01 0t Ono: Go) E PEX P E: =04 04}, Thus
the projection p: P—P¢ is the blowing-up of P; with center W := {gyy=05,=0
in P} =P® Since the exceptional divisor £ of p is a member of |H,—H,|,
we have Me|7H,—5E|. Hence M is the strict transform of a hypersurface
of degree seven in P}, which has singularities with multiplicity five along W.

(2.8.2) When €z=0o(—2, —1,0, ---, 0), we claim that n<4. The following
argument is similar to (2.8.1). We have
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P {(Eo: §DX(04: Gt Ol Ot Gaut el 0 Opol Oay: anz)EPéxP3""‘}
[&0: &1=01p: G11=00: Gg1==0g1: Tpa= "'+ =Cpq. Op1=0pn1: Opn2

H= H,—2H;, and M€ |2H,+3H,|. Thus M = {g)(0)63+q:(0)EE .+ go( 0)€.E3+
¢x(0)61=0 in P}, where g, -, g, are quadric polynomials in (¢). We put

00= 0065+ B01&ob i+ obY, 10=E(anéo+ané1), 0u=E(a&+auél),
O30=0:83, 001=e6ef1, Caa=0:8%, ), Tno=0n&, 0n1=0,&e61, Tra=0aa8l

Then from the defining equation of M above, we obtain an equation

Qu(a)5i+Q . (a)sie+ - +Q4(a)s1=0,

where Q,, -, @, are quadric polynomials in (a)::(ao;,, Aoy, ***, Gg). If n=5,
then Qy(a)='-=@,(a)=0 has a non-trivial solution (a¢). We fix it and define a
rational map «: P}—P3** by

a6 81)1=(a0bs+anbof1 4 a0ebl: So(anéotané): E(anét+anéy):
@288 @bt @56t i 4l anebi: anfh).

If @ is not a morphism, then @,=--=a,=0 and for some (c,: ¢;)&€ P} we have
QroCota11c1=0 and agcitaoceci+aepci=0. In the case a,,=a,;;=0, let Z be
the fiber of Pix P '—=Pi*! over z:=(1: 0: ---: 0). Then we have ZCM,
hence 0<LZ=HZ=(H,—2H,)Z=—2. This is a contradiction, thus a,+0 or
(111?':0.

In this case, @p&i+aeé&efi+aebl is devided by awé+ané in CL&, §]; we
denote by be&,+5b,&, its quotient. We put

Z: {00=b0010+b1011, Tgg= *** =0'n2:0 in P}.

Then dimZ=1 and ZC M by the definition of Z, hence 0< LZ=HZ=(H,—2H)Z.
However, since H,Z=1 and H;Z=1, this is a contradiction too. Thus « is a
morphism. '

Let I" be the graph of . We have ['CM and then 0<LI=HI=(H,—
2H)I". However, since H,I'=2 and H,['=1, this is also a. contradiction. Hence
we have proved that n<4, thus €=0(—2, —1, 0, 0) or &(—2, —1, 0, 0, 0).

(2.8.3) When € = ©(-3,0, ---, 0), we claim that n <4 as before. P is
isomorphic to

{(Eo: ENX(Ty: Grg: Out Orzt Orgt 0l Oagl Onil Tnat Gna)EPéXP§n| }
>
&0t §1=01w: Ou=0Cn! Ou=01: 0u="""=0n! On1=0n1’ Gn2=0nz. On3

H=H,—3H,, and M<|2H,+H,|. Thus M= {gy(0)&+q.(0)6,=01in P}, where ¢,
and ¢, are quadric polynomials in (o). We put
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Go=Qood+ 2016561+ Goebofi+aosfl,
Tro=0:&, ou=a:861, 01.=0.68, gu=a8}, -,
Ono=0nbl, Oni=an361, 0na=0r&:8l, Ona=0a.8l.
Then from the defining equation of M above, we obtain an equation
Qu(@)5i+Q1(a)§ie1+ -+ +Q+(a)é1=0,

where Q,, -, ¢, are quadric polynomials in (a):=(@e, Go1, '+, an). If 725,
then Q¢ (a)=:-=Q,(a)=0 has a non-trivial solution (a). We fix it and define a
rational mapa: Pi—Pi" by

aEy: &) :=(anbi+ani i+ anbelitantl: a8 a.8i6: a.bbl: a6l
ol GR8Y aa8361: anbiflt aaél).

If @ is not a morphism, then a¢,=---=a,=0. Let Z be the fiber of P{xXP;"—
Piroover z:=(1:0:--:0). We have ZCM and then 0<LZ=HZ=(H,—3H)Z
—=—3. This is a contradiction, hence « i3 a morphism. Let I" be the graph
of . We have I'CM and then 0<LI'=HI =(H,—3H;)I". However, since
H,’=3 and H.I'=1, this is a contradiction too. Hence we have proved that
n=d, thus €=06(-3, 0,0, 0) or (-3, 0, 0, 0, 0).

(2.9) Now we study the case d=2. We have e=—2, b=6, and Me|2H+
6He|. By .7), ¢=0o(-2,0, -, 0) or 0(—1, —1, 0, ---, 0).

(2.9.1) When ¢=0(-1, —1,0, -+, 0), we have n=4 as in (2.8.1). Hence
850(*11 '—11 0) 0) or O(—]-) —1) 0: 0) 0)-

©(2.9.2) When €=&(—2,0, -, 0), we have n<4 as in (2.8.2). Hence &=
(=2, 0,0,0) or (—2,0,0,0,0).

(2.10) Suppose that d=3. Then e=-1, b=5, and Me|2H+5H;|. From
(2.7), we have €=c&(—2,0, -, 0, 1), e=0(—-1, —1,0, -, 0, 1), or ex=06(—1, 0,
., ).

(2.10.1) When &€=0o(—1,0, -+, 0), we have n<4 as in (2.8.1). Hence &=
o(—1,0,0,0) or o(—1, 0,0, 0, 0).

(2.10.2) When e=0(—1, —1,0, -, 0, 1), we have n=<4 by the argument
in [F2; (3.23.2)] which is similar to (2.8.1). Hence &€=¢&(—1, —1, 0,1) or
o(—1, —1,0,0, 1).

(2.10.3) When e=0(—2,0, -, 0, 1), we have n=4 as in (2.8.2) and (2.10.2).

Hence €=0(—2,0, 0, 1) or (—2, 0,0, 0, 1).
The next lemma is useful for d=4.
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(2.11)
LEMMA. When d=4, —1 does not appear twice in {ey, -+, 2,}.

We can prove this lemma by the argument in [F2; (3.18)].

(2.12) Now we study the case d=4. We have ¢=0, b=4, and Me<|2H+
4He|{. By (2.7) and (2.11), &=0(—1,0, -+, 0, 1) or OO, ---, 0).

(2.12.1) When €=e(-1,0, ---,0,1), we have n<4 as m (2.10.2). Hence
e=0(—1,0,0,1) or (—1,0,0,0, 1).

(2.12.2) When €=0e(0, -+, 0), by the argument in [F2; (3.23.1)], we have
n<4, P=P}XP? Bs|L|=¢, and the morphism ¢ : M—P} defined by (L[ is
4 finite morphism of degree four. Conversely, a general member M of |2H,+
4H.| on P does not contain any fiber of the projection P—PF, thus L :=Hy is
ample and (M, L) is a polarized manifold of the above type.

The next lemma is useful for d=5.

(2.13)
LEMMA. ¢gy=—1 when d=5.

We can prove this lemma by the argument in [F2; (3.19)].
Similarly we obtain the following two lemmas.

(2.14)
LEMMA. ¢,=0 when d=7.

(2.15)
LEMMA. ¢,=1 when d=9.

(2.16) Now we study the case d=5. We have e¢=1, b=3, and Me|2H+
3H;|. By (2.11) and (2.13), £=0(-1,90, -+, 0,2), o(—1,0,--,0,1, 1), or (0,
<, 0, 1), ‘

(2.16.1) When €=0(—1, 0, ---, 0, 2), we have n<3 similarly as in (2.10.2),
hence €=0e(—1, 0, 0, 2). Furthermore Bs|L| is one point as in [F2; (3.23.2)].

(2.16.2) When 85(5(—1, 0,-,0,1,1), we have n<4 and Bs|L| is one
point as in (2.16.1). Thus ¢=0o(—1,0,1, 1) or &(—1,0, 0, 1, 1).

(2.16.3) When =60, -+, 0, 1), by the argument in [F2; (3.24)], we have
n<4 and |L| makes M the normalization of a hypersuface of degree five in
P! which has triple points along a P? in P"*!,

(2.17) Suppose that d=6. We have e=2, =2, and M<|2H+2H;|. From
(2.7), (2.11), and (2.13), we have &=0o(~1,0, -, 0,1, 1, 1), o0, ---, 0,1, 1),
o, -+, 0, 2).
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(2.17.1) When 0=&(—1,0,---,0,1,1,1), we show that n=3 similarly as

in (2.7). Natural surjections E—Ney, -+, en-1), E— ey, **+, €n_e, €,), and & —
Oeo, ***, @n_y, €n_1, €,) give prime divisors D;:= P(Xey, -, @n_1), Ds:=
P(O(ey, -, @z, €), and Dy:= P(O(ey, ', @n_s, en_1, €p)) respectively. A
natural surjection &— (e, -, en_s) gives a subvariety W :=P((e,, >, en_y))

of P=P(¢). We have Di€|H—e H;|, D.€|H—e, H:|, Dy €| H—e,_sH;], and
W=D,ND,N\D, as schemes. Since Hy is not ample, we have W¢ M, hence
dim(MNW)=n—3 and O<L*{MNW}=H" 2H+-2H:(H—H;)*=2e—4=0 if n
=4. This is a contradiction, thus we have n=3 and €=®(—1,1, 1, 1). By the
argument in [F2; (3.26)], M is a double covering of P}XPZ and its branch
locus is a smooth member of |4H;4-2H,|. We also have L=[H,+H,]x.

(2.17.2) When €=0(0, ---, 0, 1, 1), we have n<4 as in (2.16.3), hence &=
©0,0,1,1) or ©0,0,0,1,1). We show the existence of (M, L). When &=
00, 0,1, 1), we have P=2{(&: E)X(g¢: 011 Oa: 0o’ Oyt 03) EPEX P& &=
Oa 't Oa=0y: 0y} and H=H, Let M be a general member of |2H,4+2H;| and
put ' L=[H,]y. Then Bs|L|=¢ and the restriction of P—P: to M is the
morphism ¢ defined by |L|. If ¢: M—e(M) is not finite, M contains a fiber
Z of P—P! over one point z on the line [:={0y=0s=03=0:,=0 in PJ}.
Using homogeneous polynomials ¢, ¢;, and ¢, of degree two in (¢), we can
describe that M= {gy(0)65+q:(0)6:E:1+qx(0)83=0 in P}. Then ZcM if and only
if go(2)=qi(2)=¢x(z)=0. Thus if we choose ¢, ¢, and ¢, generally to satisfy
that IN{glo)=¢i(0)=¢0)=0 in P§} =¢, then ¢ becomes finite and L is ample.
Similarly we can find an example of (M, L) when €=0(0, 0, 0, 1, 1).

(2.17.3) When =6, -+, 0, 2), we have n=3 as in (2.16.3), hence &=
&0, 0, 0, 2). We can show the existence of (M, L) similarly as above.
When d=7, the situation is much simpler.

(2.18)
LEMMA. Bs|Li=¢ and L is very ample when d=7.

We can prove this lemma similarly as in [F2; (3.31)]. This lemma tells
us that our results overlap [Il1; Theorem 4.3], but our method is different
from his. ‘

(2.19) Now we study the case d=7. We have ¢=3, b=1, and Me<|2H+
H¢|. Furthermore ¢,=0 by (2.14), and e;=1 by the argument in [F2: (3.25)].
Hence €=0(0, 0,1, 2), 0, 1,1, 1), or &0, 0, 1, 1, 1). In each case, (M, L) exists
similarly as in (2.17.2). By the morphism defined .by |L|, M is isomorphic to
a manifold of degree seven in- P"*?,

(2.20) Suppose that d=8. We have e=4, /=0, and M= |2H|. Furthermore
2,=0 by (2.14), and e, =1 by the argument in [F2; (3.26)]. Hence £=¢(0,1,1,2),
&0,1,1,1, 1), or o1, 1, 1, 1).
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(2.20.1) When €=0(1, 1, 1, 1), we have P=PiXP} H=H+H, and M&
|2H,+2H:|. Hence M isa smooth divisor of bidegree (2, 2) on P. Conversely,
let M be a general member of |2H.+2H,| and put L=[H:+H,lx. Since & is
ample, L is ample and (M, L) is.a polarized manifold of the ahbove type.

(2.20.2) When €=e(0, 1,1, 1, 1), by the argument in [F2; (3.26)], M is a
double covering of P}X P§ and its branch locus is a smooth member of |2H:+
2H,|. We have also L=[H+H,]x.

(2.20.3) Even when €=e(0, 1, 1, 2), by the argument in [F2; (3.26)], we
have a morphism h: M— PiXP? and L = h*(H,+H,). Since L is ample, A:
M—h(M) is finite and h(M)<|a,Hs+a,H,| for some non-negative integers a,
and a,. Then 8=L3%=(degh)-[H:+H, 1k un=(deg h)a,+3a,). From the con-
struction of h, we get degh=2 and' a,=a,=1. Hence h(M)e|H;+H,| and
M—h(M) is a double covering.

~ (2.21) Suppose that d=9. We have e¢=5, b=-1, and Me|2H—H;|. Since
e=1 by 2.15), =0, 1,1, 2) or ©(1, 1, 1, 1, 1).

(2.21.1) When €=06(1,1,1,1,1), similarly as in [F2; (3.27)], the restriction
of the projection P=PixXPi—P: to M is a blowing-up of P} and its center
is a complete intersection of two hyperquadrics in P,

(2.21.2) When &=0(1, 1, 1, 2), we have P={(&: £)X(0s: 0,1 03 Gyt Ta1)
EPIX P& £,=04: s}, hence P is the blowing-up of P; with center {os=
g,=0 in P%. The exceptional divisor E is {gs=04,=0 in P}&|H,—H|, thus
Me|3H,—E| and M is the strict transform of a smooth hypercubic in P,

(2.22) Suppose that d=10. We have e=6, b=—2, and M |2H—H,|. Since
e,=1 by (2.15), e=6(1,1,1,3), 01,1, 2,2),61,1,1,1,2), or (1, 1, 1, 1, 1, 1).

(2.22.1) When e€=0(1, 1,1, 1,1, 1), we have P=P}x P} H=H:+H, Me
|2H,|, and L =[H:+H,]». Hence M= P;x(Q, where @ is a smooth hyper-
quadric in P2, '

(2.22.2) When €=0(, 1, 1, 1, 2), by the argument in [F2; (3.28)], we have
M is the blowing-up of a hyperquadric in P¢ and its center is a smooth quadric
surface.

(2.22.3) When €=0(1, 1, 2, 2), we have P= {(&: E)X(0y: 01! G0 01 Ogot
0 )EPIXPE| &y E1=03: 0= 04 0a}, H=H:+H, Me|2H,|, and L =[H;+
H,]y. Since & is ample, H is ample and then L is ample for any general
member M of |2H,|. Because of (2.18), M is embedded in P° as a manifold
of degree nine by the morphism defined by |L]. On the other hand, the
restriction of the projection p: P—P§ to M is the morphism defined by |L—
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He|, and M is birationally mapped onto p(M). We have 10=L*=3[H]x[H,1%
+[H,13 and [H:]y[H,]5=2 since M—P} is a hyperquadric fibration. Thus
the degree of u(M) is four. Furthermore, since (P)= {04051~ 030:,=0 in P}
and M€ |2H,|, p(M) is a complete intersection of two hyperquadrics in P¢.
Even when €=0(], 1, 1, 3), we have the same result as above.

(2.23) Suppose that d =11. We have e=7, b= -3, and M |2H-—-3H;|.
Since ¢,=1 by (2.15), and since n=3 by (2.5), e=0o(, 1, 1, 4), (1, 1, 2, 3), or
o, 2, 2, 2).

(2.23.1) When €=0(1, 1, 1, 4), we claim that (M, L) does not exist. Assume
that (M, L) exists. A natural surjection & —©(, 1, 1) gives a prime divisor
W:=P(©(1,1, 1) on P. We have W=P}x P: Hy=H:+H, and W¢M, hence
IMlw=MNWe|2Hy—3H:\=12H,—H;|. This is a contradiction, thus we have
proved the claim, :

(2.23.2) Even when €=20(l, 1, 2, 3), we can show that (M, L) does not
exist.  We have P={(&: £)X(0: 011 Ol Cal Gu! Tt Cp)EPEXPEE: =
Oo0t O3=0g: Gg=0y @ 0y} and H=H,+H, Assume that there exists a smooth
member M of |2H,—H.|. Then there is an exact sequence of normal bundles

0 — Tigisr —> Tlgp —> [(Nasplz —> 0,

where B :=Bs|2H,—H:|={00w=0a=03=0u=04,=0 in P}=P(O(1, 1)). Since
B is the complete intersection of D;:={¢y=0,=0 in P}=P©(, 1, 3)) and
Dy i={0w=0u=0,=0 in P}=P©Q, 1, 2)), we have fzzl':‘\lPE |:7ZDIIP]BEB[?ZDZ/P]BE
[H,—H:1sP[H,—2H: 1. Also we have T, p={2H,—H:]s. Then the morphism
o [H,—HsP[H,—2H:]5—[2H,— H;]5 corresponding to 71z/p—[N/r]s is given
by some o, HB, [H,]s) and .= H%B, [H,+H:]s). Since [H,]1s[H,+H:]1z=1,
¢ and . have a common zero point, at which ¢ is not surjective. This is a
contradiction and (M, L) does not exist.

(2.23.3) When €=0(, 2, 2, 2), we can show the existence of (M, L). We
have P={(§y: §)X(0¢: 1% 011t Oaol Gzt Oaot 0'31)EP4{'XP3|503 §i=a0y: op=
Ta ' Gu=03! 0g} and H=H,+H,. Putting U,={£+0 in P} and V,;={g;+0
in P}, we take a rational section s,:={(UNV}, 0¥/&-&/0%)}.; of 2H,—H,.
Note that A% P, 2H—3H;)=h"(P{ SHE)R[—3H,:])=15. Let f,, -, fis be rational
functions on P such that

fi= & G001 _ & Ou0u fo= §  040m _ & 0,0y
== 2070 0, = e ¢ 0 30 T07 8
o & of & af & of & 7
fo= §  0o03 . & 040y = & oh _ &y 0,0y
=0 707 50 FOTL Rl R LA hats
' gt & a3 & ay & a3 & 7
) fiz= & 0100 . & ol . &0 01903 . &y G0y
JESIL TR — 3¢ . =b ZLeve o 56

CRATE s fo= 2k Zrlee o Su DT
o5 & a & 7 & a &
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fo= & Owon _ & 0,04 fa= o 0103 & 0404
=0 T 80 Turet —_ 20 .20,
of & o} &1 ’, ’ ai &o as I ’
fo= §y Owou _ & 01,0 Fro= & a% . &y On0On
g= e s —o L 30 ZALTIL — =0, =20 TRl
i & ot & 7 Tl g o} &
fu= §y T30y _ & ai f & T30 &y T304
= — ==« — B e e
ot & ot & "ot & o &
Fro= & Own0y & 0504 Fr= & ah _ §y T30m
el ihd AL S LA Y — 20, =22 307t
o5 & o} &1 ’ " af & ad & !
Fis= &y On0y _ & 0%
=" =
o & oy &
Then C{f,, -+, fisp, the vector space spanned by fi, -+, fis over C, is isomor-

phic to H°(P, 2H,—H,) by mapping each f; to f;-s;. Thus we can describe
|2H,— H| = {div(f-s)l fE€C{fy, -, f10—0},

where div(f-s;) is an effective divisor defined by a regular section f-s, of
2H,—H;. Since Bs|2H,—H;|={o,,=01="=03=0 in P}=Pix{1:0:: 0},
it we take f=3L c,fi€C{fy, -+, f1s> With (¢, ¢s )0, 0, 0), div(f-s,) is
nonsingular along Bs|2H,—H:|. Thus a general member M of [2H,—H.| is
smooth by Bertini’s theorem. For such M, L :=H, is ample since & is ample,
hence (M, L) is a polarized manifold as desired. .Furthermore, similarly as in
(2.16.3), | L—H;| makes M a desingularization of a variety of degree five in P{.

(2.24) Suppose that d=12. We have ¢=8, b=—4, and Me |2H—4H.
Since ¢, =1 by (2.15), and since n =3 by 2.5), €=o(, 1, 1, 5), (1, 1, 2, 4),
01,1, 3,3), 031, 2,2, 3), or 02, 2,2, 2).

(2.24.1) When €=0(2, 2, 2, 2), we have P=PlX P}, H=H,+2H;, Ms|2H,],
and L=[H,+H:]y. Hence M=P;xQ, where @ is a smooth quadric surface
in P}. Since Q=P ;X Pji, we have M= PixPix P} and L=2H.+H,+H,.

(2.24.2) When €=0(1, 1, 1, 5), (M, L) does not exist by the argument in
(2.23.1).

(2.24.3y Even when €=0(1, 1, 2, 4), we can show that (M, L) does not exist
similarly as in (2.23.2).

(2.24.4) When €=0(l, 2, 2, 3), we can show the existence of (M, L)similarly
as in (2.23.3). In fact, we have Pz {(&: £)X(0¢: G1p: 11t Oz’ Ga1: T Oyt
) E PEX P& : &= 01 011 = G’ Oou = Gy G0 =0y, : Oy}, H=H,+H, and
h(P, 2H—4Hg)=h"(P}, SHEYR[—4H:])=11. We take a rational section s,:=
WUNV;,, 63/E5-8/aD},; of 2H,—2H:, where U, and V; are the same as in
(2.23.3). Let f,, -, f1, be rational functions on P such that
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fi= &  ayoy fo & o 7 & 0100 fi= & 010
=0, 28 =2 -0z = L 210780
R T - B B - L B T
fo= & T fo= & ok fr= £ 0u0y fe= 8 Oun0un
PESI LRk N — 50 .50 720730 ==L, 3
of & 7 e & T & 0 e &
f ___512)_ o8 Fro= & 0awoun Fr= & 03003
== R 0= g T =TT
o & o & TV g &

Then HYP, 2H,—2H)=C{f,, -+, fi.> and Bs|2H,—2H:=Px{(1: 0: ---: 0)}.
For any f=3WL ¢.f; with ¢,#0, div(f-s,) is nonsingular along Bs|2H,—2H,|,
thus a general member M of |2H,—2H;| is smooth., Putting L=Hj, we obtain
a polarized manifold (M, L) as desired. In this case, |L—H.| makes M a
desingularization of a variety of degree six in P".

(2.24.5) Even when €=0(1, 1, 3, 3), we can show the existence of (M, L)
similarly. We have P={(&: &)X (0y: Gy: Oap: Ga1i Ozl Oyt Tgy Op) € PEX
P7|$o E1==021 Op=0n ' O9=0m'@ Oy =04 0y} and H(P, 2H,—2H,) = C<fy,

, f1s>, where
fi= £ 0003 fo= & 00030 fa= & 010y fio= & 0.0y
=2 p= L =20, — 50 T1730
o & o8 & e & v T ad &
f_é_::%.UEo f_f_g_o'zoazl f‘“g—%——-o%l f__‘fi.o'zogao
8 0_% S% ’ 6 O'% E% ) 1 0_% % ) 8 0_% 5% ).
f _ﬁ. T 031 Fro= &t L O210a f 50 . al f '_é%“. 30031
9 O'% E% ’ 10 U‘(?i E(Z) ’ n= s% » 12 0_‘2) . Eg ]
& o3
f13=%- 21 .
of &
Since Bs|2H,—2H|={0n=02a="=0,=0 in P}, if we take f=,¢,;f; with

c16,—C263 %0, then div(f-s,) is nonsingular along Bs|2H,—2H|. Thus a general
member M of |2H,—2H.| is smooth. Putting L=H,, we obtain a polarized
manifold (M, L) as desired, and |L—H:| makes M a desingularization of a
variety of degree six in P".

(2.25) Summarizing the results above, we obtain the following.

THEOREM. Let (M, L) be a polarized manifold of the type (1.2). Then g(C),
the genus of C, is 0 or 1, &:= @wOu[L] is a locally free sheaf on C, M
|2H(E)+Bp,| for some line bundle Bon C, and L= [H(é’)],v Putting d=L",
e=c,(€), and b=degB, we have the following results.

When g(C)=1, we have 1=d=<6, e=d—2, b=4—d, and

(1) if d=1 or 2, then & is not ample ;

(it) if d=3 or 4, then & is ample as long as it is indecomposable ;

(ifiy if d=5 or 6, then & is ample.
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and their lists are in the table below.

When g(C) we have C=P{, 1<d<12, e=d—4, b=8—d, Mec|2H(E)+bH,|,

face of degree five in PS8,

42

d e (M, L)
1 &(—3,0,0,0)
O(_—B: 0! 0) O; O)
o(-2z,—10,0 The existence is uncertain.
o(—2, —1,0,0, 0)
o(—1, —1, =1, 0)
o(—1, -1, —1,0,0)
2 (=2, 0,0, 0)
0(=2,0,0,0,0) The existence is uncertain.
o(—1, —1,0, 0)
o(—-1, —1,0, 0, 0)
3 | o—2001)
o(—2,0,0,0,1)
o(=1 —10,1) The existence is uncertain.
o(-1, —1,0,0, 1)
o(—1,0,0,0)
o(—1,0,0,0,0
4 o(—1,0,0, 1) The existence is uncertain.
0(-1,0,0,0, 1) The existence is uncertain.
o0, 0, 0,0 | L] makes M a quadruple covering of P*.
(0, 0,0, 0, 0) |L| makes M a quadruple covering of P,
5 o(-1,0,0, 2) Bs|L| is a point.
o(—1,0,1, 1) Bs|L| is a point.
o(—1,0,0,1, D Bs|L| is a point.
©0,0,0, 1) | L| makes M the normalization of a hypersur-
face of degree five in P,
©0,0,0,0, 1) | L) makes M the normalization of a hypersur-
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d & (M, L)
6 o(—1,1,1,1) M is a double covering of PiXP§ with branch
Jocus being a smooth divisor of bidegree (4,2).
L=[He+H;]x.
©0,0,1,1) Exist.
©0,0,0,1, 1) Exist.
0, 0, 0, 2) Exist.
7 o0, 0,1, 2) Exist.
©0,1,1,1 Exist.
©0,0,1,1,1) Exist.
8 ©0,1,1,1, 1) M is a double covering of _P§><P3 with branch
locus being a smooth divisor of bidegree (2,2).
L=[Hg+H, ]
o0, 1,1, 2) M is a double covering of a divisor of bidegree
(1, 1) on Pix P} L=[He+H]u
o1,1,1, 1 M is a smooth divisor of bidegree (2,2) on
PixP;. L=[H¢+H]u.
9 o01,1,1, 1L, 1 M is the blowing-up of P¢ with center being a
complete intersection of two hyperquadrics.
L:[He'l"Hu]M-

o1,1,1, 2 M is the strict transform of a smooth
hypercubic in P¢ by the blowing-up of Pj
with center being a P2 L=[H:+H,]xu.

10 o1,1,1,1,1,1) M=P}xQ, where Q is a smooth hyperquadric
in Pg. ‘ L=[H5+Hn:|M~
od,1,1,1, 2) M is the blowing-up of a hyperquadric in Pg
with center being a smooth quadric surface.
L=[H+H,x.

o1, 1, 2, 2) M is a desingularization of a complete intersec-
tion of two hyperquadrics in PE.
L=[H:+H, .

o1,1,1,3 M is a desingularization of a complete intersec-
tion of two hyperquadrics in P&,
L=[H¢+H,]y.

11 o4, 2, 2, 2) | L—H| makes M a desingularization of a
three-dimensional variety of degree five in P°.
12 o1, 1,3, 3 | L—H,| makes M a desingularization of a
three-dimensional variety of degree six in F’.
o1,2,2,3) | L—H,| makes M a desingularization of a
~ three-dimensional variety of degree six in P".
02222 M=P{X PiX Py and L=2H;+H,+H,.
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§3. The case of a Veronese fibration over a curve

In this section we study the case (1.3), using the argument in [F; (13.10}].

(3.1) Put H=K42L, then ¢:=0,04[H] is a locally free sheaf of rank
three on C and (M, H) is the scroll of &, We have L=2H+®*B for some
B&Pic(C). Similarly as before, we put d=1L3 e=c,(&), b=degB and denote by
g(C) the genus of C. Then e=0, ¢-+b=1, and d=8e¢+12b. By the canonical
bundle formula, we obtain that K¢-det€+2B=0, hence 2g(C)—2+e¢-26=0.
From these results, (e, d)=(0, 12) or (2, 4).

(3.2) When (e, d)=(0, 12), we have b=1 and g(C)=0, hence C=P', B=0(1),
and €=0(e)PO(e,)P0O(e;) for e, e;, ex&Z. For each 1=7/<3, a natural surjec-
tion £—0(e;) gives a section Z; of @ and Hz,=0(e;). Since ¢;+e,+e,=e=0
and Lz,=0(2e,+1) is ample, we have e,=e,=¢,=0 and €=0%°, thus M =P}x
P: and L=H-+2H,.

(3.3) When (e, d)=(2, 4), we have b=—1 and g(C)=1. Hence C is an
elliptic curve and det€+2B=0 since K°=0;. Let Q@ be any quotient bundle
of &. If rank Q=1, then Z:=P(Q) is a section of ¢ and HZ=c¢,(Q). Then
c(@)=1 since 0<LZ=2¢,(@)—1. If rank Q=2, then D: =P (Q)s|H—0*q]|,
where & is the kernel of &—@Q. Since 0<L:D=4(1—c¢,(F)), we have c¢,(Q)=
e—c(F)=2. In both cases we have (rank Q)-c,(€)<(rank&)-c,(@), hence € is
stable. Conversely, let & be a semistable vector bundle on C with rank £€=3
and ¢,(€)=2. We put M=Py(&), H=H(€) and let @ : M—C be the bundle map.
By the semistability criterion in [Mi; (3.1)], 3H—®%det &) is nef., Since C is
an elliptic curve, we can find some Be&Pic(C) satisfying det &+28=0. Then
3R2H+0*BY=23H+0*2B))—®*B is ample. Hence L:=2H4+@*B is ample and
(M, L) is a polarized manifold of the type (1.3).

(3.4) Summing up, we obtain the following theorem.

THEOREM. Let (M, L) be a polarized of the type (1.3). We put d=L* and
denote by g(C) the genus of C. Then (M, L) is one of the following two types.

(1) g(C)=0, heuce C=P}; d=12, M= P{X P2, and L=H;+2H,.

() g(C)=1 and M=Pc(&), where &:=0xOu[K+2L] is a stable vector
bundle of rank three on C with ¢(€)=2; d=4 and L=2H(&)+D*B, where B
Pic(C) with det &+2B=0. '
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COMPLEX MANIFOLDS POLARIZED BY AN AMPLE AND
SPANNED LINE BUNDLE OF SECTIONAL GENUS THREE

YOSHIAKI FUKUMA* AnD HiroNoBU ISHIHARA

ABSTRACT. Let X be a complex projective manifold with dim X > 3 and let I be an ample
and spanned line bundle on X. We classify polarized manifolds (X, L) of sectional genus three
mainly by adjunction theory and the classification theory of A-genus.

Introduction.

A pair (X, L) is said to be a polarized manifold if X is a nonsingular projective variety
and L is an ample line bundle on X. The sectional genus g(L) of a polarized manifold
(X, L) is an important invariant and is defined by g(L) := 1+ (1/2)(Kx + (n— 1) L)L,
where n = dim X and Kx is the canonical bundle of X. Complex polarized manifolds
(X, L) with g(L) < 2 have been classified by [F4], [Io2], [BeLP], and [F5]. As for the case
g(L) = 3, both [M] for n = 2 and [Is] for n > 3 gave partial classification; it seems that
complete classification is very difficult. Spannedness of line bundles generally makes the
situation clearer and more geometric. Indeed, under the assumption that L is very ample,
classification of (X, L) with g(L) = 3 was obtained by [Iol]. Under the assumption that
L is spanned by global sections, classification of (X,L) with g(L) = 3 and n = 2 was
obtained by [LL1]; that with g(L) = 3, n = 3, L3 = 3, and h°(L) = 4 was obtained by
[LL2].

The purpose of this note is a generalization of these classifications above, that is, to
classify complex polarized manifolds (X, L) with g(L) = 3 and n > 3 under the assumption
that L is spanned. To do this, we mainly depend on the results of [Is] (and also [BiLL]) and
then we use the classification theory of A-genus, which is defined by A(L) := n+L"—h°(L)
for (X, L). In Appendix, we give the list of complex polarized manifolds (X, L) such that
g(L) =2, n > 3, and L is spanned. Although these polarized manifolds have been already
classified in [F5] without the spannedness of L, we believe that our list is non-trivial and
useful for applications.

The authors are grateful to Professor Takao Fujita for his valuable comments during
the preparation of this note.

§ 1. Preliminaries.
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2 FUKUMA AND ISHIHARA

Definition 1.1. Let X be a smooth projective variety with dim X = n and let L be a
line bundle on X. Then we say that (X, L) is a scroll over Y if there exists a fiber space
7 : X — Y such that every fiber F' of 7 is isomorphic to P*~™ and Lp := L|p = Opn-m (1),
where 1 <m =dimY < dim X.

Definition 1.2. Let (X, L) and (X',L’) be polarized manifolds. Then (X, L) is called a
simple blowing up of (X', L') if X is a blowing up at one point on X’ and L = pu*L' - E,
where p : X — X' is the blowing up and FE is the p-exceptional effective reduced divisor.

Lemma 1.3. Let (X,L) be a polarized manifold with dim X = n. If L is spanned and
g(L) > 1, thend:= L™ > 2.

Proof. If L is spanned and d = 1, then (X, L) & (P*, O(1)), which shows g(L) =0. O

Lemma 1.4. Let (X, L) be a polarized manifold with A(L) = 1.
(1) If d = 2, then there is a double coveringw: X — P™ and L = n*(Op=x (1)).

(2) If L is spanned and g(L) > 2, then d = 2.
Proof. See [F1]. O

Lemma 1.5. Let (X, L) be a polarized manifold with dim X = n > 3. Assume that |L|
has no fixed component, A(L) =2, d = 4 and g(L) = 3. Then (X, L) is either

(1) X is a hyperquartic in P**! and L = Ox(1), or
(2) |L| makes X a double covering of a smooth hyperquadric Q™ with the branch locus
B € |Ogr (4)|.

Proof. See [F3;(0.6)]. O

Lemma 1.6. Let (X, L) be a polarized manifold with dim X = n > 3. Assume that L is
spanned, d = 3 and g(L) = 3. Thenn = 3 and q(X) := h}(Ox) = 0.

Proof. By assumption, we get h°(L) = n + 1 because of Lemma 1.4. Let p: X — P" be
the morphism defined by |L|. Then p is a triple covering such that L = p*(Opn (1)).

If n > 4, then by Proposition 3.2 in [La], Kx = p*(Opr (k)) for some k € Z. It follows that
Kx + (n — 1)L = p*(Opn (k + n — 1)), hence 2g(L) — 2 = 3(k + n — 1), a contradiction.
So we have n = 3. Then by Theorem 1 in [La], we obtain ¢(X) = 0. This completes the
proof of Lemma 1.6. O :

Lemma 1.7. Let F be an fndécomposable vector bundle on an elliptic curve. Then:

(1) RO(F) = c1(F) if c1(F) > 0;
(2) RO(F) < 1 if ¢1(F) = 0.

Proof. See Lemma 15 in [A].

§ 2. The case in which g(L) = 3.
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Theorem 2.1. Let (X, L) be a polarized manifold over C with dim X = n > 3. Assume
that g(L) = 3 and L is spanned. Then (X, L) is one of the following.

(I) There is a fibration f : X — C over a smooth curve C with g(C) < 1 such that
every fiber F' of f is a hyperquadric in P® and Ly = O(1). Then £ := f.O(L) is a locally
free sheaf of rank n+1 on C, X € |2H(E) + n*B| on P(€) for some line bundle B on C,
and L = H(E)|x, where w is the projection P(€) — C, and H(E) is the tautological line
bundle on P(£). We put d = L™, e = ¢;(€) and b = deg B.

(I-1) When g(C) =1, we haven=3,d =6, e = 4,b = —2 and £ is ample.

(I-2) Wheng(C) =0, wehave C 2 P;,4<d<12,e=d~4,b=8~d, X € [2H(£)+
bH¢| (He is the pull back of OIP’é)f EX2Oeg)®-- D O(en) =: Oleg,-+ ,€n),
and their lists are in Table 1. ‘

(II) (X, L) is a scroll over a smooth curve of genus three.

(III) (X, L) is a scroll over a smooth surface S. Let £ be a locally free sheaf of rank n—1
on S such that (P(€),H(E)) = (X, L). Let F, be the rational P!-bundle P(Op: & Op: (—¢))
with e > 0, o the minimal section, and f a fiber of F, — P'. Then (S, £) is as follows:

(IlI-1a) S = P2, £ = Op:(1)®%;

(III-1b) S = P2, and either £ = Op2(1)®2 & Op2(2) or € = Tp2 @ Op2(1);
(II-1c) S = P2, rank€ = 2 and det £ = Op2(4);

(I11-2a) S = Fy, and either € = [0 + f] @ [0 + 3f] or £ = [0 + 2f]®%;
(I1I-2b) S =F1, E=[o+2f] D [0+ 3f);

(I1I-2¢) S = Fs, € = [0 + 3f]%%;

(I11-3) S is a Del Pezzo surface with K2 = 2 and either £ = [—-K3|%%, or £ =
¥*(Qly), where 1 is a birational morphism from S to a congruence Y of
bidegree (4,4) in the Grassmannian of lines of P2, and Q is the universal rank
two quotient bundle; ,

(I1I-4) S = P(F), where F is a rank two vector bundle over an elliptic curve C with
c1(F) =1 and € = H(F) ® p*G, where p : S — C is the bundle projection
and G is any rank two vector bundle on C defined by a non splitting exact
sequence

' 0= 0¢—G— Oc(z) =0,

where z € C.
(IV) X is a smooth hyperquartic in P"*! and L = Ox(1).
(IV') (X, L) is a simple blowing up of another polarized threefold of the type (IV).

(V) |L| makes X a double covering of a variety W. Let B be the branch locus. Then

(V-1) W =P™ and B € |Op= (8)|, or
(V-2) W =Q" and B € |Ogn(4)|.

4§
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Table 1
d Z X, 1)
4 0(0,0,0,0) |L| makes X a quadruple covering of P°.
0(0,0,0,0,0) |L| makes X a quadruple covering of P*4.
5 | 0(0,0,0,1) |L| makes X the normalization of a hypersurface
of degree five in P4,
0(0,0,0,0,1) |L| makes X the normalization of a hypersurface
of degree five in P5.
6 | O(-1,1,1,1) X 75 2 double covering of P} x P; with branch locus being
a smooth divisor of b1degree (4,2). L =[H¢ + H,|x.
0(0,0,1,1) Exist.
0(0,0,0,1,1) Exist.
0(0,0,0,2) Exist.
7 | 0(0,0,1,2) Exist.
0(0,1,1,1) Exist.
0(0,0,1,1,1) Exist.
8 | 0(0,1,1,1,1) X is a double covering of P; x P35 with branch locus being
a smooth divisor of bidegree (2,2). L = [Hy + H,)x
0(0,1,1,2) X is a double covering of a divisor of bidegree (1,1)
“ OHIP’IX]P’3 L= [Hg-I-H]
0(1,1,1,1) X is a smooth d1v1sor of bidegree (2,2) on P; x P3.
| = [He + Holx.
9 | 0(,1,1,1,1) X is the blowing—up of P% with center being a complete
intersection of two hyperquadrics. L = [He + H,)x
0(1,1,1,2) X is the strict transform of a smooth hyperqubic in P4 by the
blowing-up of P with center being a P2. L = [H + H,]x.
10 |0(1,1,1,1,1,1) X = P; x Q*, where Q* is a smooth hyperquadric in IP’5
L= [Hg + H ]
0(1,1,1,1,2) X is the blowing-up of a hyperquadric in P2 with center
being a smooth quadric surface. L = [H¢ + H,|x
0(1,1,2,2) X is a desingularization of a complete intersection of
two hyperquadrics in P3. L = [He + H,]x
0(1,1,1,3) X is a desingularization of a complete intersection of
two hyperquadrics in P3. L = [He + H,x.
11 0(1,2,2,2) |L — He| makes X a desingularization of a three-
dimensional variety of degree five in PS.
12 | 0(1,1,3,3) |L — H¢| makes X a desingularization of a three-
dimensional variety of degree six in P7.
0(1,2,2,3) |L — H¢| makes X a desingularization of a three-
dimensional variety of degree six in P”.
0(2,2,2,2) XgPéX]P’}LX]P’i andL=2H§+HM+H>\.
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Proof. Let (X, L) bé_ a polarized manifold over C with dim X = n > 3. We see from the
results [F4] or [Io2], (X, L) is one of the following types:

(A) There is an effective divisor E on X such that (E,Lg) = (P"!,Opa-1(1)) and
Og(E) =0(-1). .
(B) There is a fibration f : X — C over a smooth curve C such that every fiber F of
f is a hyperquadric in P* and Lr = O(1).
(C) There is a fibration f : X — C over a smooth curve.C such that (F,Lp) &
(P2, Op2(2)) for every fiber F of f.

(D) (X, L) is a scroll over a smooth surface S.

(E) (X,L) is a scroll over a smooth curve C.

(F) Kx + (n— 2)L is nef.
We consider the above cases separately. Assume that g(L) = 3 and L is spanned.

(1) Case (B). |
We obtain the former part of (I) by the arguments in [Is;(2.1)].

(1-1) The case in which g(C) = 1.
Then1<d<6,e=d—2,and b =4 —d by [Is;(2.2)]. The case d = 1 is ruled out by
Lemma 1.3.

(1-1-1) The case in which g(C) =1 and d = 2.
Then A(L) = 1 since L is ample and spanned. But by Lemma 1.4, Kx + (n—2)L is ample
and this is impossible.

(1-1-2) The case in which g(C) =1 and d = 3 or 4.
Then £ is ample as long as £ is indecomposable. Hence if £ is indecomposable, then
RO(L) = h°(€) = c1(€) < 2. But this is impossible because L is-ample and spanned.
Hence £ is decomposable.

(1-1-2-1) The case in which g(C) =1 and d = 3.
By Lemma, 1.6, we get n = 3 and ¢(X) = 0. But this case cannot occur since g(C) = 1.

(1-1-2-2) The case in which g(C) =1 and d = 4.

Then ¢1(€£) = 2, and by an argument similar to that in [F5] we can prove that & is
semipositive. If R%(L) > n + 2, then A(L) = 2 by Lemma 1.4 (2). By Lemma 1.5, we
obtain that Kx + (n — 2)L is nef. But this is impossible. Hence h°(L) = n + 1.

Let & = @™ ,&;, where each &; is an indecomposable vector bundle on C. We have e; :=
deg&; > 0 since € is semipositive. Then we may assume that (e1,...,en) = (0,...,0,1,1)
or (0,...,0,2). Since rank& = n + 1 and A%(€) = h®(L) = n + 1, we find that m = n or
n + 1 by Lemma 1.7. In case m = n + 1, each &; is a line bundle and we get

(i) £ 0% '@ F, where F is a vector bundle of rank two on C.
In case m = n, we see that (e1,...,e,) = (0,...,0,2) and rank &, < 2. If ranké, = 2,
then we get (i). If rank &, = 1, then we get

(i) £ O&" 2@ E, ®G, where G is an indecomposable vector bundle of rank two on

Co
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C with degG = 0 and h°(G) = 1.
Note that we have a non-trivial extension 0 -+ O¢ — G — O¢ — 0. Hence in both cases
(i) and (ii), we have a natural surjection £ — O%?. This surjection determines a subvariety
W = P(0O%?) of P(£). We see that WNX # @ since f : X — C is a hyperquadric fibration.
Take a point p € WNX and let C’ be a section of W — C in |H (€)|w| passing through p.
Then C' C X since X - C' = (2H(E) + n*B)C' = 0. It follows that LC' = H(E)-C' =0,
a contradiction to the ampleness of L. Thus these cases cannot occur.

(1-1-3) The case in which g(C) = 1 and d = 5 or 6.

Then £ is ample. So we obtain h°(L) = h%(€) = ¢1(£) = d — 2 < 4. On the other hand
hO(L) > n+1. Hence the d = 5 case is impossible, and if d = 6, then n = 3 and h°(L) = 4.
An example of (X, L) for d = 6 will be given in Example 2.4.

- (1-2) The case in which g(C) = 0. ‘

Then by [Is; §2], we get 1 <d <12, e =d—4,b=8—b, and (X, L) is one of the types
in the table of [Is;(2.25)]. Since L is spanned, we obtain Table 1 in Theorem 2.1 by the
following lemma.

Lemma 2.2. Let (X, L) be a polarized manifold as in (B). Then Bs|L| # 0 if g(L) = 3,
C=P,1<d<5,andey <0.

Proof of the Lemma. Assume that g(L) = 3, C 2 P!, 1 < d < 5, and eg < 0. The
projection £ — O(eg) determines a section Z of P(§) — C. Then H%(Z,H(E)|z) &
" HO(P!, O(ep)) = 0, hence we have Z C Bs|H(E)|. Since H'(P(€),H(£)) — H°(M, L) is
surjective, we see that M N Z C M NBs|H(E)| C Bs|L|. By assumption,

MZ = (2H(E) +bH)Z = 2eq +b = 2e0 + (8 — d) > 0.

Hence M NZ # () and then Bs|L| # 0. O

(2) Case (D).

Then by the classification results of [BiLL], we obtain the case (III) in Theorem 2.1.
(3) Case (C).

Then by [Is;(3.4)], we obtain (X, L) is one of the following two types.

~(3-1) g(C) =0 and (X,L) = (]P’é x P2, He + 2H,);

(3-2) g(C) =1 and (X,L) = (Pc(£),2H(E) + f*B), where £ is a stable vector bundle
of rank three on C with ¢,(€) = 2, and B € Pic(C) with det€ + 2B = 0.

The case (3-1) is a special case of (III-1c) in Theorem 2.1. o
In case (3-2), let S be a general member of |[L|. We have g(Ls) = 3, ¢(S) = 1, L% = 4,
and K2 = —1. Then by p.279 Case 3 in [LL1], S is an elliptic P -bundle S’ blown-up at
a single point p, and Lg = n*(40’ + F') — 2E, where nn: S — S’ is the blowing up, o’ is
a minimal section with ¢'2 = 0, F’ is a fiber of the P!-bundle, and E = n~!(p). Let o be
the strict transform of ¢/ under 7. Since

0<Lg-0=(40"+ F')o' —2Ec =1 - 2Eo,
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we see that EO' =0and Lg-o = 1. It follows that ¢’ = ¢ = P! since Lg is spanned. This
is a contradiction, thus the case (3-2) is ruled out.

(4) Case (F).
Since g(L) = 3 and Kx + (n — 2)L is nef, we have 2 < d < 4.

(4-1) The case in which d = 2.
Then A(L) = 1 since g(L) = 3. By Lemma 1.4 (1), we obtain (V-1).

(4-2) The case in which d = 3.
By Lemma 1.6, n = 3 and Kx + L is nef. Then there is a fibration f : X — W onto
a normal variety W such that Kx + L = f*A for some ample line bundle A on W (see

[F0;(0.4.15)]). We get L - (L(f*A)?) < (L?(f*A))? by Index Theorem (see [F0;(0.4.6)]).
Since

L*(f*A) = (Kx + L)L? =2g(L) -2 - L% =1,

we find L(f*A)? = 0, which implies that W is a smooth curve. Then we get deg A = 1
and L2F = 1 for any general fiber F of f. Since L is spanned, it follows that F = P2
Lp =.0O(1), and Kr = O(-3). On the other hand, we have Kp + Ly = [Kx + L|r =

[f*A]lp = Op. This is a contradiction, thus this case cannot occur. '

(4-3) The case in which d = 4.

Then (Kx + (n—2)L)L™"1 = 2g(L) — 2 —d = 0. Using Fibration Theorem as in (4-2), we
get a fibration f : X — W such that Kx + (n — 2)L = f*A for some ample A € Pic(W).
Then we have Kx +(n—2)L = Ox since (f*A)L"~! = 0. By Riemann-Roch Theorem and
Vanishing Theorem, we get h°(L) = g(L)+n—1 = n+2. Hence A(L) = n+L"—h%(L) = 2.
By Lemma 1.5, we obtain (IV) and (V-2) in Theorem 2.1.

(5) Case (A).

In this case, by using the theory of minimal reduction (e.g. [l02;(0.11)], [F5;(1.9)], or
[F0;(11.11)]), we see (X, L) is obtained by a finite number of simple blowing ups of a
polarized manifold (Y, A) which is of the type (C) or (F). Let 7 : X — Y be its birational
morphism. '

(5-1) The case in which (Y, A) is of the type (C).
Then n = 3 and (Y, A) is of the type (3-1) or (3-2).

(5-1-1) The case in which (Y, A) is of the type (3-1).
Then we can find a curve Z in Y such that AZ =1 and Z passes through a point which
is blown up by 7. This is a contradiction since LZ’ < 0 for the strict transform Z’ of Z
under . /

(5-1-2) The case in which (Y; A) is of the type (3-2).

We have L? < 3. If L3 < 2, then A(L) = 1 and L?® = 2. By Lemma 1.4, we obtain
k(X) = 0, a contradiction. Hence L3 = 3, but this case cannot occur as in the case
(1-1-2-1).

E2
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(5-2) The case in which (Y, A) is of the type (F).
Then L™ = 2 or 3 since A™ < 4 and L is spanned.

If I" = 2, then A(L) = 1 and X is a double cover of P* whose branch locus B is a -
hypersurface of degree 8 by Lemma 1.4. But in this case, Kx + (n — 2)L is ample and this
is impossible.

If I = 3, then A" = 4 and 7 : X — Y is the blowing up at one point y € Y. Note
that n = 3 by Lemma 1.6. Then we find that (Ky + A)A? = (Kx + L)L? — 1 = 0. Since
Ky + A is nef, as in the case (4-3), we infer that Ky + A = Oy and A(A) = 2. Since
L is spanned, |A| has no fixed component. Hence (Y, A) is of the type (IV) or (V-2) in
Theorem 2.1 by Lemma 1.5. If (Y, A) is of the type (V-2), then we have a double covering
p:Y — Q2 such that A = p*Oga(1). Set p~1(o(y)) = {y,¥'}; then |L| has a base point
on 7~ 1(y’) (possibly ¥ = y'). This is a contradiction, thus (X, L) is of the type (IV').

This completes the proof of Theorem 2.1. O

Remark 2.3. The existence of the case (IV’) in Theorem 2.1 can be shown as follows.

Let X’ be a general hyperquartic in P4 Then X' is irreducible and smooth; moreover,
X' cannot be a union of lines in P* (see, e.g., Theorem 8 in [BaV]). Take a point p € X’
which is not on any line contained in X’ and let m# : M — P* be the blowing up of P*
at p. Then H := 7*Op:«(1) — E is spanned, where E = n~1(p). We have h°(M, H) = 4
and we denote by p : M — P3 the morphism defined by |H|. Note that p is surjective
and the fibers of p consist of the strict transforms of lines in P* passing through p. Let X
be the strict transform of X' under n. Then n|x : X — X' is the blowing up at p and
Hyx = (r|x)*(Ox (1)) — Ex, where Ex = (n]|x)~!(p). Since X’ does not contain any line
passing through p, we infer that X does not contain any fiber of p and p|x : X -+ P2 is a
finite surjective morphism. Hence L := Hx = (p|x)*Ops(1) is ample and spanned. Thus
(X, L) is a simple blowing up of (X', Ox/(1)) and we easily see g(L) = 3.

Example 2.4. We give an example of the case (I-1) in Theorem 2.1 (informed by T.
Fujita).

Let C be any smooth elliptic curve and let {p;}3_, be four points of order two in the group
structure on C. We set £ = @5_,Oc(p;). Then € is ample and so is the tautological
line bundle H(E) on P(£). Let 7 : P(€) — C be the projection. For each i, a natural
injection O¢(p;) — € determines a prime divisor D; € |H(€)—7*O¢(p;)| on P(€); a natural
surjection £ — O¢(p;) determines a section C; := P(O¢(p;)) of 7. Then C; = D;NDpND;
for {i,7,k,1} = {0,1,2,3} as schemes. Let g; be the point C; N F;, where F; := 7~ 1(p;).
Since D; + F; € |H(E)|, we have Bs|H(E)| € Ni_o(D; + F) = {q0,.-.,q3}. Set B =
Oc(—2po); then B = Og(—2p;) for each i. Note that h°(2H(E)+7*B) = h°(S%(£)® B) =
4. Since 2D; € |2H(E) + ©* B|, we have Bs |2H () + n*B| C N}_,D; = 0. Hence a general
member X of |2H (&) + n* B is irreducible and smooth by Bertini’s Theorem, and ¢; € X
(¢ =0,1,2,3). Then L := H(E)|x is ample and spanned, g(L) = 3, and d = 6. Thus
(X, L) gives an expected example.

Appendix. The case in which g(L) = 2.
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Theorem. Let (X, L) be a polarized manifold with dim X =n > 3. Ifg(L) =2 and L is
spanned, then (X, L) is one of the following:

(I) X is a double covering of P" with branch locus being a smooth hypersurface of
degree 6, and L is the pull back of Opn(1).

(IT) (X, L) is a scroll over a smooth surface S. Let £ be a locally free sheaf of rank two
on S such that (Pg(€), H(E)) = (X, L). Then (S,£) is either
(Il-1) S =P, x P and £ = [H, + 2Hp| @ [Hy + Hg), or
(IT-2) S is the blowing up of P? at a point and £ = [2H — E|®2, where H is the pull
back of Op2(1) and E is the exceptional divisor.
(IIT) (X, L) is a scroll over a smooth curve of genus two.

(IV) (X, L) is a hyperquadric fibration as in the case (I) of Theorem 2.1. We have
C = ]P’é, 3<d<9,e=d-3,b=6-d, X € |2H(E) +bH¢/|, and their lists are in Table 2.

Table 2

d £ (X, L)

0(0,0,0,0) |L| makes X a triple covering of P3.

4 | 0(0,0,0,1) | |L| makes X the normalization of a hypersurface of degree
four in P*, which has double points along a line.

) ' Exist.

) | X is a double covering of P; x P2 with branch locus being

W

(%]
G
Py

: a smooth divisor of bidegree (2,2). L = [H; + H,|x.
71 0(1,1,1,1) X is the blowing-up of P with center being a complete
intersection of two hyperquadrics. L = [He + H,|x.

8| 0(1,1,1,2) X is the blowing-up of hyperquadric in P with center

, being a conic in P?. L = [H + H,|x.
0(1,1,1,1,1) X = P; x Q, where Q is a smooth hyperquadric in Pj.

, L= [Hg + H,|x.

9| 0(1,1,2,2) |X 2P x Xy, where X is the blowing-up of P2 at a point.
L= [H& + H) + H,|x.-

Proof. By [F5], [F6], [BiLL], and by an argument similar to that in Theorem 2.1, we can
prove this Theorem. O
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