T2R2 東京科学大学 リサーチリポジトリ Science Tokyo Research Repository

論文 / 著書情報 Article / Book Information

題目(和文)	長期間経過した実構造物中のセメント硬化体のキャラクタリゼーショ ン
Title(English)	
著者(和文)	沢木大介
Author(English)	Daisuke Sawaki
出典(和文)	学位:博士(工学), 学位授与機関:東京工業大学, 報告番号:甲第7921号, 授与年月日:2010年3月26日, 学位の種別:課程博士, 審査員:坂井 悦郎
Citation(English)	Degree:Doctor (Engineering), Conferring organization: Tokyo Institute of Technology, Report number:甲第7921号, Conferred date:2010/3/26, Degree Type:Course doctor, Examiner:
 学位種別(和文)	
Type(English)	Doctoral Thesis

長期間経過した実構造物中のセメント硬化体の キャラクタリゼーション

目 次

了。""你们,你们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们们
第1章 序論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1.1 本研究の背景・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
1. 2 本研究の目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2
1. 3 本研究に関連する既往の研究報告・・・・・・・・・・・・・・・・・・・・・・・・・ 3
1.3.1 長期間を経たセメント硬化体の化学的あるいは鉱物学的評価方法に関する研究報告 3
1.3.2 長期間を経たセメント硬化体の物理的あるいは化学的性状に関する研究報告・・・4
1. 4 本論文の構成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7
【参考文献】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第2章 既存の化学的分析手法によるセメント硬化体の統合的なキャラクタリゼーション・・・・ 14
2. 1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.2 長期間を経た構造物のセメント硬化体の特殊性と
統合的なキャラクタリゼーションのシステム・・・・ 14
2.2.1 構成材料の特殊性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.2.2 統合的なキャラクタリゼーションのシステムと具体的な評価方法・・・・・・・15
2.2.3 主なキャラクタリゼーション手法の概要・・・・・・・・・・・・・・・・・・17
(1) 蛍光 X 線分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(2) 粉末 X 線回折・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(3) 走査型電子顕微鏡・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(4)電子線マイクロアナライザー・・・・・・・・・・・・・・・・・・・・・・・・・・・・18
(5)配合推定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(6)塩酸溶解分の分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(7)水銀圧入ポロシメーター・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・20
2.3 第2章のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・20
【参考文献】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第3章 セメント硬化体における非水硬性物質の反応・・・・・・・・・・・・・・・・・23
3. 1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.2 骨材粒子とセメントペーストの界面の観察および分析・・・・・・・・・・・・・ 23
3.3 微粉末化した岩石類のポゾラン反応性と硬化モルタルの組織および物理性状への影響・・25
3. 3. 1 試料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3. 3. 2 実験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・26

(1)	岩石類の性質評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・26
(1)	蛍光 X 線分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	粉末X線回折分析 (XRD)・・・・・・・・・・・・・・・・・・・・・・・・・ 26
3	偏光顕微鏡観察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(2)	岩石類微粉末の調製・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
(3)	混合セメントの調製・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
(4)	圧縮強さの測定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(5)	示差熱分析 (DTA) による水和セメントの評価・・・・・・・・・・・・・・・・27
(6)	細孔径分布の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
(7)	EPMAによる水和セメントの評価・・・・・・・・・・・・・・・・・・・・・・・・ 27
3. 3	3. 3 実験結果及び考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
(1)	モルタルの圧縮強さ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
(2)	DTA による水和セメントの評価・・・・・・・・・・・・・・・・・・・・・・ 28
(3)	モルタルの細孔径分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・29
(4)	EPMAによる水和セメントの評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・29
(5)	岩石類の構成鉱物と微細組織・・・・・・・・・・・・・・・・・・・・・・・・・・・・・30
3.4	第3章のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・32
【参考了	に献】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第4章 E	PMA マッピング分析による硬化体中のセメントの化学組成の推定・・・・・・・・・・・・・・34
4. 1	はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・34
4.2	硬化体中のセメントの化学組成推定の概要・・・・・・・・・・・・・・・・・・・・・・34
4.2	2. 1 塩酸溶解分析法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・34
4.2	2. 2 塩酸溶解分析法の欠点・・・・・・・・・・・・・・・・・・・・・・・・・・・・35
4.2	2. 3 EPMAによる推定方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・36
4. 3	実験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・37
4. 3	3. 1 モルタルの調製・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・37
4. 3	3. 2 コンクリートの調製・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・37
4. 3	3. 3 EPMAマッピング分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・38
4. 3	3. 4 マッピング分析結果に基づくセメントの化学組成推定・・・・・・・・・・・38
4.4	モルタルに関する試験結果と考察・・・・・・・・・・・・・・・・・・・・・・・39
4. 4	4. 1 マッピング分析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・39
4. 4	 2 セメントの化学組成の推定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

(1)個々のピクセルの分析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・39
(2)全てのピクセルの平均組成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(3)骨材に相当するピクセルの除外条件の検討・・・・・・・・・・・・・・・・・・・42
4.5 コンクリートに関する試験結果と考察・・・・・・・・・・・・・・・・・・・・・48
4.5.1 マッピング分析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・48
4.5.2 骨材に相当するピクセルの除外とセメントの化学組成の推定・・・・・・・・48
4.5.3 骨材に石灰岩が使用された場合の推定・・・・・・・・・・・・・・・・・55
4.5.4 化学的変質が推定組成におよぼす影響の確認・・・・・・・・・・・・・・56
4.6 昭和 10 年代に建造された構造物のコンクリートへの適用・・・・・・・・・・・・・・59
4.7 塩酸溶解分析法による推定結果のクロスチェック・・・・・・・・・・・・・・・・61
4.8 第4章のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・64
【参考文献】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第5章 長期間経過した硬化モルタル中のセメントのキャラクタリゼーション・・・・・・ 66
5. 1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 66
5.2 野蒜築港の概要と明治初期の日本のセメントの事情・・・・・・・・・・・・・66
5. 2. 1 野蒜築港の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 66
5.2.2 明治初期の日本のセメントの事情・・・・・・・・・・・・・・・・・・・・・ 67
(1)セメント産業の勃興・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・67
(2) 国産セメントの性状・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 68
 粒度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
 ② 化学組成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.3 野蒜築港遺構群から得られた硬化体の化学分析評価・・・・・・・・・・・・ 71
5.3.1 試験方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 71
(1) 蛍光 X 線法による化学組成分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(2) 塩酸溶解分と不溶分の分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 71
(3)粉末X線回折法による構成物質の同定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(4)電子線マイクロアナライザーによる微細領域の組織観察及び元素マッピング分析・・・・71
5.3.2 セメント硬化体であることの確認・・・・・・・・・・・・・・・・・・・・・ 72
(1) 化学組成分析による確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(2)構成物質の同定による確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(3) 微細領域観察による確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・75
5.3.3 セメント性状の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・77

(1)セメント粒子の大きさ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・77
(2)セメントの化学組成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・79
(3)セメントの構成鉱物の種類と状態・・・・・・・・・・・・・・・・・・・・・・・・・・81
5.3.4 セメント硬化体の性状評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・84
(1)塩素の含有量・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(2)骨材を構成する鉱物の種類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・87
5.4 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 87
【参考文献】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第6章 長期間経過した硬化コンクリートのキャラクタリゼーション・・・・・・・・・・・・90
6. 1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 90
6.2 明治末期~昭和初期のコンクリートの性状・・・・・・・・・・・・・・・・・ 90
6.2.1 コンクリートの性状変化の背景と要因・・・・・・・・・・・・・・・・・・91
6. 2. 2 水セメント比・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・91
6.2.3 圧縮強度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 91
6. 2. 4 中性化深さ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 92
6.3 通常の自然環境条件に曝された構造物のコンクリートの評価・・・・・・・・・・・93
6.3.1 コンクリートを採取した構造物・・・・・・・・・・・・・・・・・・・・・ 93
(1)構造物(a):旧海軍の石油貯蔵タンク(広島県)・・・・・・・・・・・・・・・ 93
(2)構造物(b):旧海軍の監視小屋(神奈川県)・・・・・・・・・・・・・・・・・・・・ 93
(3)構造物(c):工場の原料庫(福井県)・・・・・・・・・・・・・・・・・・・・・・・ 94
6.3.2 コンクリート採取の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 94
(1)構造物 (a)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(2)構造物 (b)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(3)構造物 (c)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6.3.3 評価項目と方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・95
(1) 目視観察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(2)配合推定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(3)力学的性質の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(4)セメントペーストのEPMAマッピング分析・・・・・・・・・・・・・・・・・・・・・ 95
(5)細孔径分布の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(6)中性化深さの測定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(7)EPMAマッピング分析によるSとClの濃度分布の評価・・・・・・・・・・・・・・・ 95

6.3.4 初期性状の推測・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・95
(1) 目視観察結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(2)配合推定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(3)力学的性質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(4)セメントペーストの EPMA マッピング分析結果・・・・・・・・・・・・・・ 99
(5)細孔径分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6.3.5 経時的変質の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(1) 中性化深さ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(2) SとClの濃度分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6.3.6 三つのコンクリートの初期性状と経時的変質の比較・・・・・・・・・・・・・・・・106
6.4 きわめて過酷な環境に曝された構造物のコンクリートの評価・・・・・・・・・・ 108
6.4.1 調査の対象としたRC建築物・・・・・・・・・・・・・・・・・・・・・・・・・・・・・108
6.4.2 コア採取の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 108
6.4.3 評価項目と方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(1)粉末X線回折試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(2)示差熱分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(3) 配合の推定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(4)水銀圧入法による細孔径分布の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(5)電子線マイクロアナライザーによる観察と分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(6)電気炉加熱による変質の観察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・110
6.4.4 初期性状の推測・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 110
(1)配合推定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(2) 研磨面の BEI 観察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・110
(3)細孔径分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(4)XRDおよびDTAによる分析・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 112
6.4.5 原爆投下時の高温暴露による変質の評価・・・・・・・・・・・・・・・・・・113
(1)コア表面から深さ 40mm までのマッピング分析・・・・・・・・・・・・・・・・113
(2)変色部と非変色部の BEI 観察とマッピング分析・・・・・・・・・・・・・・・・・・113
(3) 非変色部の電気炉加熱による変質の観察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・115
6.4.6 二つのコンクリートの初期性状と経時的変質の比較・・・・・・・・・・・・116
6.5 第6章のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・117
【参考文献】・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

第7章	結論	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	122	i
本論文に	関す	3	研	充	報	告	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	126	,
謝辞・・	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	127	,

1. 1 本研究の背景

資源やエネルギーの削減、地球環境への負荷低減が全世界的に求められる今日、土木・建築構造物に も、従来のようなスクラップ・アンド・ビルドではなく、長期間にわたり供用されることが望まれつつ ある。そのため、コンクリートの耐久性向上にとって有用な知見や技術の蓄積が、これまでに増して必 要となるであろうことは想像に難くない。建設から長期間を経過したセメント硬化体のキャラクタリ ゼーションは、モルタルやコンクリートの初期の性状や時間の経過に伴う変質など、構造物の長期耐久 性を考察する上で必要な多くの情報を提供するものであり、その進展が望まれる¹⁾。

また、明治や大正期に建造され、日本の近代化の推進に寄与の大きかった土木・建築構造物を文化的 遺産と捉え、その価値を後世に伝えようという気運が、急速に高まりつつある^{2,3)}。構造物を恒久的に保 存するためには、定期的な補修が欠かせない。適切な補修を行うためには、構造物の構成部材の性質、 中でも化学的な性質を明らかにすることが必要であるという認識も生まれつつある。コンクリートに使 用されたセメントのキャラクタリゼーションは、このような観点からも重要と考えられる。

さらには、省資源、省エネルギー、地球環境への負荷低減などの観点から、セメント、コンクリート の製造においても、これまでの常識にとらわれない、新たな原燃料の選択肢が模索されつつある。明治 や大正などのコンクリートには、現代では汎用的材料とはいいがたい火山灰が、耐海水性向上という明 確な意図をもってしばしば使用されていた⁴。また、一般的には化学的に安定と考えられがちな骨材も、 その界面にセメントとの反応層が生成することは経験的に知られている。そのような現象やコンクリー トの物性への影響については、これまでほとんど研究されていない。

長期間を経過したセメント硬化体に関する研究手法の一つとして、計画的な実験に基づき、モルタル やコンクリートの性状を長期にわたり評価するというアプローチがある。小樽港 100 年耐久性試験 ⁵、 小野田セメント 50 年試験 ⁶、秩父小野田 100 年試験 ⁿなどは、日本におけるその代表例である。これ らの研究では、実験室で作製した供試体を、恒温室など温度や湿度が管理された条件下で保管し、一定 の期間を経るごとに、主としてその物理的性質を評価している。それらは系統的な実験結果を提示する ものの、結果の判明までに非常に長時間を要するという弱点がある。また、実際の自然環境下で構造物 が経験するさまざまな条件を、実験室で正確に再現することは困難である。

一方、50年あるいは100年以上の長期間にわたり供用された実際の構造物から、セメント硬化体を 採取し、その物理的あるいは化学的性状を評価した調査や研究も、多数存在する。図1.1に示すように、 日本のセメント生産量は、高度経済成長期に飛躍的に増加した^{8,9,10)}。言い換えれば、第二次世界大戦以 前にセメントを用いて造られた構造物は、現代と比べて格段に少なく、そこから得られるセメント硬化 体は、実証的試料としてきわめて貴重なものといえる。それらの性質を詳細に評価し、材料の品質、施

工の優劣、供用中の維持補修などに関する情報を明らかにすることは、セメント硬化体の経時的変質に 関する実証的なデータを提供し、長期耐久性を考察するうえできわめて有用である。しかしこのような アプローチは、一つの構造物に関する調査報告が多く、コンクリートの初期性状や供用中に暴露された 環境が、いかように経時的変質に影響したかを読み取ることは難しい。

図 1.1 明治から現代までの日本のセメント生産量の推移 8,9,10)

1.2 本研究の目的

1.1にて述べた事情を背景とした本研究の目的について記す。

① 既存の評価手法を駆使し、少ない試料であっても効率的なキャラクタリゼーションを実施するための、統合的な評価システムの提案を試みた。キャラクタリゼーションの手法自体は、通常のセメント硬化体と同様であるものの、長期間を経た実構造物のセメント硬化体には、長期であるが故の特殊性が秘められている可能性がある。すなわち、それがセメント硬化体であるか否かが不明である、建造時の材料事情を反映した特殊な材料構成である、長期間の暴露により非常に変質が進んでいる、などの点である。また多くの場合、採取できる試料はきわめて少量に限定される。このような事情や制約をよく考慮し、過不足のない評価を行うことが必要であり、それに応えるための統合的な評価システムを考察した。
 ② これまでの常識にとらわれないコンクリート材料の新たな選択肢として、天然岩石類のセメント混合材としての活用を検討した。天然岩石類の微粉末を普通セメントに混合し、モルタルを作製し、その物理的および化学的性質を評価した。

③ ①で提案した評価システムに加え、セメント硬化体のキャラクタリゼーションの新たな方法として、 EPMAマッピング分析により、硬化体に使用されたセメントの化学組成を推定する方法を検討した。硬 化体に使用されたセメントの種類は、経時的変質などに関係する要因であり、その特定は重要である。 セメントの種類を特定するには、その化学組成が重要な情報となる。従来より実施されている、塩酸溶 解分の化学分析による推定(従来法)には、塩酸に溶けない混合材や、塩酸に溶ける骨材が使用されて いる場合は適用できないという弱点があった。またクロスチェックする手段がなかったため、得られた 結果の妥当性を検証することができなかった。これらを考慮し、EPMAマッピング分析による新たな推 定方法を検討した。また本方法を、実際の長期材齢硬化体に適用し、セメントの化学組成を推定すると ともに、従来法による結果のクロスチェックを実施した。

④ ①にて提案した評価システムおよび③で検討した方法に従い、明治初期に作られた日本では最古の 部類に属するモルタルと思われる硬化体を評価し、結合材や骨材のキャラクターや硬化体の特性を明ら かにすることを試みた。また、昭和初期のほぼ同じ年代に建設された複数の構造物のコンクリートにつ いて、同じ方法でキャラクタリゼーションを実施し、その結果から、打設当初の性状を推察するととも に、供用期間中に被った経時的変質を明らかにし、初期性状と経時的変質の関係について考察した。

1.3 本研究に関連する既往の研究報告

1.3.1 長期間を経たセメント硬化体の化学的あるいは鉱物学的評価方法に関する研究報告

日本の研究報告では、長期間を経たセメント硬化体の化学的あるいは鉱物学的な評価の方法を体系的 に検討したものはほとんど見られない。そのような研究のほとんどは、欧州のものである。本章の参考 文献として末尾に列記するとともに、いくつかの報告の概要を記す。

Lindqvist ら ¹¹は、光学顕微鏡を用いた定量的評価方法を提案した。石灰石骨材が使用され、酸溶解 に基づく配合推定を適用できないコンクリートについて、薄片を作成し、ポイントカウンティングで結 合材、骨材、空隙を定量することを試みた。25 個のモルタルの骨材/結合材比を、ポイントカウンティ ングと化学分析から求め、両者の相関を検討した。

Middendorf ら ^{12,13}は体系的な評価のフローを提示した。評価手法にはそれぞれ得手不得手があるの で、単独ではなく複数の手法が併用されるべきであり、またその結果は相補的、複合的に解釈されるこ とが望ましいとした。たとえば石灰岩は粉末 X 線回折で容易に検出できるが、セメント水和物の炭酸化 物と石灰岩骨材を判別することはできず、鉱物学・岩石学的観察によらざるを得ないことなどを述べた。

Alvarez ら¹⁴は石灰モルタルの結合材と骨材を分離定量する方法として、煮沸した塩酸による溶解法 を提案した。煮沸した1:5塩酸に試料を加えて30分間撹拌する。塩酸濃度が薄いと溶解が不十分とな り、濃いと骨材からコロイドシリカが生成してしまう。煮沸下での操作とすることにより、30分という 短時間での溶解が可能となる。

1.3.2 長期間を経たセメント硬化体の物理的あるいは化学的性状に関する研究報告

明治から昭和初期の構造物の物理的および化学的な性状を評価した調査や研究を、本章の参考文献として末尾に列記するとともに、いくつかの報告の概要を記す。

橋本らは1870年(明治3年)、1873年(明治6年)および1907年(明治40年)にそれぞれ竣工した品川灯台(東京)、菅島灯台付属官舎(三重)および金沢監獄(石川)の煉瓦積みモルタルをX線マイクロアナライザ(XMAまたはEPMA)により評価し、構成材料の解明を試みた¹⁵⁾。二次電子像とX線像の観察および線分析により、品川灯台のモルタルは石灰と火山灰から成るが、菅島灯台付属官舎と金沢監獄のモルタルにはセメントが使用されていることを明らかにした。

中山らは 1887 年 (明治 20 年) に竣工した日本ハリストス正教会教団・東京復活大聖堂 (ニコライ堂、 東京)のモルタルを目視観察、顕微鏡観察、X 線回折、EPMA 分析、配合推定などにより評価し、結合 材や骨材の種類、混和材の有無、配合等を明らかにした¹⁷⁾。評価した9点のモルタルのうち7点に普通 セメントが、1点に白色セメントが、1点にドロマイトプラスターが使用されていた。骨材は川砂が多 く、結合材と骨材の重量比は結合材:骨材=1:1~1:2程度であった。

杉本らは1897年(明治30年)に竣工し、1995年に重要文化財に指定された旧法務省庁舎(東京) の建築材料として、漆喰、天然スレート、煉瓦、目地モルタル、銅葺き屋根、火災を受けた御影石など を評価した¹⁹⁾。粉末 X 線回折および電子顕微鏡により、建造時に施工された漆喰には主にカルサイト (CaCO₃)が、昭和の改修工事時に施工された漆喰にはセッコウ(CaSO₄・2H₂O)が確認された。煉 瓦目地モルタルの配合は、セメント:石灰:砂=1:4:6と推定された。これは石灰セメントモルタル である。石灰セメントモルタルは、1891年(明治24年)の濃尾地震で石灰モルタルの脆弱さが問題視 されたことから、セメントを添加して使用されるようになったものである。本建築物はそれからわずか 数年後のものであり、当時の最新技術が採用されていたものと推察した。

東武鉄道株式会社らは、1899年(明治32年)に竣工し約100年を経た元荒川鉄橋(埼玉)の橋台と 橋脚の基礎コンクリートから採取したコアについて、圧縮強度試験と配合推定を実施した²⁰⁾。圧縮強度 は250kgf/cm²程度であり、当時のセメントの品質から考えると高い値であると判断された。セメント と骨材の重量比は、橋台ではセメント:骨材=1:6と推定された。一方、橋脚では1:3と推定され、 よりセメントに富む配合が採用されたものと推定した。

森川らは 1902 年(明治 35 年)に竣工した日本最古の合成床版橋梁である明治橋(大分)の床版コン クリートを採取し、圧縮強度試験と化学的分析評価を行った ²³⁾。未反応のまま残るセメント粒子を観察 し、100 µ m を超える粗粒であること、間隙質が大きいことを明らかにし、また EPMA による点分析に より各クリンカー鉱物の化学組成を求めた。電子顕微鏡観察では緻密な C-S-H や、炭酸化で生じたと考 えられるバテライトが認められ、また気泡を埋めるようにエトリンガイトなどが生成していることが観 察された。

風間らは 1899 年(明治 32 年) ~1911 年(明治 44 年)に建造された横浜港新港ふ頭(神奈川)のコ ンクリートについて、配合推定、顕微鏡観察、示差熱重量分析などを実施した²⁴⁾。水セメント比は 40 ~50%程度、圧縮強度は 260kgf/cm² 程度であった。表面の炭酸化や海水の硫酸イオンによる劣化はそ れほど激しくないと判断された。

鳥居らは1911年(明治44年)に竣工した鉄筋コンクリート橋梁である石川橋(石川)から24本の コアを採取し、力学的試験と各種の化学的分析を実施した²⁵⁾。圧縮強度は10~200kgf/cm²と幅があっ た。X線回折では水酸化カルシウムはほとんど検出されず、溶出により失われたものと思われ、骨材界 面には水酸化カルシウムの溶出により生じたと思われる空隙が多く認められた。

福留らは1910年代(大正初期)に建造された旧豊多摩監獄(東京)が約70年供用後に解体される際、 給水塔の柱(40cm×40cm)から採取したコンクリートについて、力学的および化学的な評価試験を実 施した^{31,32)}。圧縮強度は3本の平均値が454kgf/cm²と高い値であり、また中性化深さは18~33mmの 範囲であり、経年を考えると妥当な数値と判断された。コアの表面から深さ100mmまでを幅10mmで 切断し、それぞれのセメントペーストを示差熱重量分析に供した結果、表面付近では内部より水酸化カ ルシウムが少なく、水による溶出の進行などが推察された。配合推定により、水セメント比は53.5%、 単位セメント量は405kg/m³と推測され、小さい水セメント比とセメントに富む配合のため、70年経過 後も健全さを保つものと推察された。

玉井らは1917年(大正6年)に竣工し、約90年を経過した旧三越大阪店(大阪)の地下の柱および 基礎から採取したコンクリートの力学的および化学的評価試験を実施した³⁵⁾。圧縮強度は16N/mm²程 度であるが、当時の水準を考えると比較的強度の高いものと推察された。しかし、粗大な空隙の多いこ とも確認された。配合推定および塩酸溶解で取り出した骨材の粒群分析により、配合は当時の基本的配 合であるセメント:細骨材:粗骨材=1:2:3と推定された。単位セメント量の推定値は291kg/m³で あり、当時としては高強度を想定していたものの、締め固めなどの施工技術が未熟であったため、粗大 な空隙が多く、強度発現が不十分であったものと推察された。粉末 X線回折、電子顕微鏡観察、示差熱 重量分析により、通常のセメント水和物が確認されたが、水酸化カルシウム量は少ないことが確認され た。光学顕微鏡により、セメント粒子が観察され、その大きさは100~200μmと粗く、またビーライ トと間隙質が主であり、エーライトは少ないセメントであることが確認された。

守分らは 1924 年(大正 13 年)に建設されたケーソン(神奈川)の気中部、干満帯及び海中部から採 取したコンクリートについて、配合推定、圧縮強度と塩素量の測定、鉄筋腐食の観察等を実施した⁴¹⁾。 水セメント比は 52%、セメント量は 321kg/m³と推定された。干満帯や海中部では、気中部と比べ塩素 量は多く、鉄筋の腐食が進みやすい条件であったが、実際には腐食は極めて少なかった。酸素供給量が 少なく、腐食の進行が遅かったものと考察された。

大野らは1924年(大正13年)に竣工した旧中川水門(東京)の鉄筋コンクリート製基礎杭を評価し

 $\mathbf{5}$

た^{42,43)}。配合推定により 4 つのコンクリートの水セメント比は 44.5~63.1%、平均 52.5%と推定された。中性化深さは 2.2~4.4mm であり、これは大気中自然暴露として中性化算定式により推定される値の 1/6~1/3 と小さいものであった。12 試料の圧縮強度の平均値は 454kgf/cm² であった。光学顕微鏡によりセメント粒子が観察され、ビーライトとフェライト相が確認された。

吉岡らは 1923 年(大正 12 年)~1929 年(昭和4年)にかけて建設された深川政府倉庫(東京)か ら採取したコンクリートコアを評価した^{47,48)}。推定された水セメント比は 78~89%と非常に高かった。 当時は水セメント比説が提唱される少し前であり、高価なセメントをできるだけ節約しようとしたもの と推察した。コアの約3割が密実性不足により採取不可能であった。圧縮強度は最小 8.1N/mm²、最大 22.0N/mm²、平均 13.7N/mm²であった。

武井らは 1920 年代後半(昭和初期)に建設された横浜港郵便局山下町分室(神奈川)の解体時に、 柱、壁、梁、床スラブから 29 本のコアを採取し、力学的性質を評価した ⁵⁶⁾。圧縮強度の平均値は 177kgf/cm²であり、これは当時としては高いものであったことを述べた。また同時に、シュミットハン マー反発硬度試験も実施している。

迫田らは 1933 年(昭和8年)に竣工した鉄筋コンクリート製の清水橋(静岡)が70年供用後に解体 される際、現地調査および45本のコア採取を行い、力学的性質などを評価した⁶⁴⁾。圧縮強度は19.3~ 36.3MPa、中性化深さは12~44mmの範囲にあった。

津崎らは 1935 年(昭和 10 年)に竣工した多摩川原橋(東京)が撤去される際、橋脚、桁、スラブか らコンクリートコアを採取し、力学的試験や配合推定、細孔径分布の測定などを実施した^{67,68,69)}。細孔 径分布測定により得られた 0.1μm 以上の細孔容積と圧縮強度の関係を、8本のコアについて求めてい る。

厳らは 1937 年(昭和 12 年)に竣工した函館地方裁判所庁舎(北海道)の解体時にコア 75 本を採取 し、圧縮強度や中性化深さの評価を行った ^{71,72}。75 本の圧縮強度の平均値は 192kgf/cm² であった。こ の値を、竣工が 1920 年から 1980 年までの建築物の圧縮強度の推移の図にプロットすると、当時とし ては平均的な値であると判断された。中性化深さはコアを採取した部位によるばらつきは大きいが、仕 上げ材の厚さに対してプロットすると、仕上げ材が厚いほど中性化が小さい傾向が認められた。

長谷川らは 1941 年(昭和 16 年)に完成したコンクリートゲルバー桁橋である初代十勝大橋(北海道) を調査した ⁷⁶⁾。コアの圧縮強度は、建設当時のテストピースの 28 日圧縮強度の 1.8~2 倍あり、供用中 にも強度が大きく増進したものと判断された。当時のセメントの粉末度が低かったことが、長期強度増 進に関係したものと考察している。

熊谷らは同じく初代十勝大橋について、使用されたセメントのキャラクターを詳細に評価し、現代の セメントと比べてビーライトに富む組成であり、かつ粒度が粗かったことが長期強度増進に作用したも のと考察した⁷⁷⁾。

森らは 1944 年(昭和 19 年)に建造され、現在は漁港の防波堤として使用されている鉄筋コンクリート船武智丸(広島)から、船体を貫通するコア 3 本を採取し評価した ⁷⁹⁾。圧縮強度は 34N/mm² と高かった。中性化深さは室内側では 20mm 程度であり、水セメント比を 50%として浜田式から推定される値と近いが、船体表面側では数 mm と小さかった。EPMA マッピング分析により、船体表面側の Cl の浸透が室内側より小さいことが明らかであった。船体にはアスファルトと思われる塗装が施されていた可能性があり、これが表面側の中性化と Cl 浸透の小さい理由であると考察した。

小門前らは 1951 年(昭和 26 年)に架設された日本最初のプレストレスコンクリート橋である長生橋 (石川)が撤去される際、主桁や間詰めからコンクリートを採取し、力学的試験や配合推定などを実施 した ^{80,81,82)}。主桁のコンクリートの圧縮強度は 60N/mm²を超え、単位セメント量は 500kg/m³以上と、 非常にセメントに富む配合であることが判明した。

1. 4 本論文の構成

本論文は7つの章からなる。

第1章「序論」では、本研究を行うに至った背景と本研究の目的、および本研究に関連する既往の研 究について記した。

第2章「既存の化学的分析手法によるセメント硬化体の統合的なキャラクタリゼーション」では、既 存の評価手法を駆使し、少ない試料であっても効率的なキャラクタリゼーションを実施するための統合 的な評価システムを考察し、提案した。

第3章「セメント硬化体における非水硬性物質の反応」では、硬化体内部における水硬性の小さい物 質とセメントとの反応を、電子顕微鏡などの方法により評価した。通常の骨材、火山灰、水硬性クリン カについて、セメントとの界面における組成の変化を観察した。また、天然岩石類のセメント混合材と しての活用を検討するため、その微粉末を普通セメントに混合し、モルタルの性状を評価した。モルタ ル強さは初期材齢では普通セメントより低いが、一部の岩石では、材齢の経過に伴い普通セメントに近 いレベルまで伸長した。そこには、岩石類のポゾラン反応が寄与していることを確認することができた。

第4章「EPMA マッピング分析による硬化体中のセメントの化学組成の推定」では、硬化体中のセメ ントの化学組成を、EPMA マッピング分析により推定する新たな方法を確立した。EPMA によるミク ロンオーダーの微細な領域(ピクセル)の化学組成分析により、セメントの化学組成を推定した。推定 精度を上げるため、ピクセルの大きさはできるだけ小さくし、骨材に相当するピクセルは極力除外して、 セメントに相当する十数万点のピクセルの分析値の平均を求めることとした。分析およびデータ処理の 条件を検討した結果、普通セメントおよび高炉 B 種セメントを用いたモルタルおよびコンクリートにつ いて、実測組成にきわめて近い推定結果を得ることができた。また実際の長期材齢硬化体にも適用し、 セメントの化学組成を推定するとともに、塩酸溶解分析法による結果のクロスチェックを実施した。

第5章「長期間経過した硬化モルタル中のセメントのキャラクタリゼーション」では、構造物から採 取したごく少量の部材の化学分析により、構成材料のキャラクターを詳細に明かすことができることを 示した。明治初期に宮城県に計画された野蒜築港の遺構群から採取された、我が国では最古の部類に属 するセメントを用いたと思われる硬化体を分析し、硬化体がモルタルであることを証明し、使用された セメントの粒子の大きさ、化学組成、水硬性鉱物の種類、量、存在状態などのキャラクターを明らかに した。

第6章「長期間経過した硬化コンクリートのキャラクタリゼーション」では、昭和初期に建設された 複数の構造物から採取したコンクリートについて、前章までと同様の手法によりキャラクタリゼーショ ンを実施した。化学的変質が及んでいないコア内部の評価により、コンクリートの初期の性質を推察し、 表面部の変質の進行している部分と比較することにより、初期の性質や暴露環境が経時的変質に及ぼす 影響を考察した。また、コンクリートに使用されたセメントの化学組成(CaO含有量)を、第4章で検 討した EPMA マッピング分析で測定した。その値をコンクリートの配合推定に用いることで、耐久性 と密接に関連する水セメント比の推定精度が向上することを、中性化深さの結果と関連させて明らかに した。

第7章「結論」では、各章で得られた結果と考察をとりまとめた。

【参考文献】

- 1) 日本コンクリート工学協会:コンクリートの長期耐久性に関する研究委員会報告書,2000
- 2) 土木学会東北支部「野蒜築港 120 年委員会」:近代土木遺産シンポジウム -野蒜築港跡「悪水吐暗 渠」発掘調査からみる近代土木遺産-(2004.12.11)資料集,2004
- 3) 日本コンクリート工学協会:歴史的構造物の診断・修復に関するシンポジウム 委員会中間報告及 び論文報告集,2006
- 4) 小野田セメント株式会社:小野田セメント製造株式会社 創業五十年史, 1931
- 5) 長瀧重義:コンクリートの長期耐久性[小樽港百年耐久性試験に学ぶ],技報堂出版,1996.8
- 6)森茂二郎,国広悦司:各種セメントを用いたコンクリートの永年試験,セメント技術年報,No.27,
 pp.278-283, 1973
- 7)小野義徳、中村秀三、大西達人:各種セメントを用いたコンクリートの永年試験、第48回セメント 技術大会講演集、pp.592-595、1994
- 8) セメント協会、日本セメント技術協会:セメント工業八十年のあゆみ
- 9) セメント協会:セメントの常識, 1975
- 10) セメント協会:セメントの常識, 2002
- 11) J.E.Lindqvist and M.Sandstrom : Quantitative analysis of historical mortars using optical microscopy, Materials and Structures, Vol.33, December, pp.612-617, 2000

- 12) B.Middendorf, J.J.Huges, K.Callebaut, G.Baronio and I.Papayianni : Investigative methods for the characterization of historic mortars – Part1: Mineralogical characterization, Materials and Structures, Vol.38, October, pp.761-769, 2005
- B.Middendorf, J.J.Huges, K.Callebaut, G.Baronio and I.Papayianni : Investigative methods for the characterization of historic mortars - Part2: Chemical characterization, Materials and Structures, Vol.38, October, pp.771-780, 2005
- 14) J.I.Alvarez, A.Martin, P.J.Garcia Casado, I.Navarro and A.Zornoza: Methodology and validation of a hot hydrochloric acid attack for the characterization of ancient mortars, Cement and Concrete Research, Vol.29, pp.1061-1065, 1999
- 15) 橋本博和,丸嶋紀夫,菊池重郎:X線マイクロアナライザによる明治時代の煉瓦造モルタルの結合 材の推定,大成建設技術研究所報,No.12, pp.39-52, 1979
- 16) 高村功一: 歴史的建物保存改修工事 ニコライ堂調査工事について, 防水ジャーナル, Vol.24, No.3,
 pp.127-130, 1993
- 17)中山實,高橋敏夫,笠井浩:ニコライ堂建設に使用された 70~100 年前のモルタルの調合・組成分 析調査結果報告,日本建築学会技術報告集, No.3, pp.8-14, Dec., 1996
- 18) 横関康祐,中曽根順一,柿崎和男,渡邉賢三:100年以上経過した地下コンクリート構造物の耐久 性について,コンクリート工学年次論文報告集,Vol.20, No.1, pp.251-256, 1998
- 19) 杉本賢司,井上正樹,田中一哉:旧法務省における建築材料の調査,大成建設技術研究所報,第
 28 号, pp. 225-230, 1995
- 20) 東武鉄道株式会社,前田・戸田・住友共同企業体,財団法人建材試験センター:100 年経たレンガ 橋の調査結果,建築仕上技術, pp.41-47, 1996.5
- 21) 星野富夫, 辻正哲, 高橋茂, 浅賀喜与志, 中田善久, 魚本健人: 100 年以上供用されているドック コンクリートの調査・分析事例, 歴史的構造物の診断・修復に関するシンポジウム 委員会中間報 告ならびに論文報告集, pp.67-74, 2006.6
- 22) 杉原伸泰,中村聖三,中原智法,高林和生,山尾敏孝:現存する日本最古の鋼鈑桁道路橋 明治橋 の構造・材料調査,土木史研究 講演集, Vol.25, pp.263-271, 2005
- 23) 森川卓子,水越睦視,日野伸一:100年を経た鋼橋(明治橋)床版コンクリートの分析,土木学会 第 60 回年次学術講演会講演概要集,第 5 部, pp.79-80, 2005
- 24) 風間亭,上杉忠男,飯田勲,守分敦郎:明治時代に建造されたコンクリート製港湾構造物の耐久性 について,土木学会第45回年次学術講演会講演概要集,第5部,pp.466-467,1990
- 25) 鳥居和之,上田信二,西本敏晴,川村満紀:80 数年経過した鉄筋コンクリートアーチ橋(石川橋)の解体調査,コンクリート工学年次論文報告集,Vol.16,No.1, pp.983-988, 1994

- 26)安達実,上田信二,吉田浩一,鳥居和之:明治時代に建設された鉄筋コンクリートアーチ橋(石川
 橋)の解体調査事例,土質工学会シンポジウム発表論文集, pp.155-160, 1995
- 27) K.Torii, M.Kawamura and S.Ueda: Material characteristics of an eighty-year-old concrete bridge, Concrete Under Severe Conditions – Environment and Loading, Vol.1, pp.860-869, 1995
- 28) 依田彰彦:現存する最初期の RC 造建物と解体 RC 造建物,建築保全, No.85, pp. 40-52, 1993
- 29) 長崎作治:60 年経過したコンクリートの強度 -清水灯台の例-,セメント・コンクリート, No.290, pp.28-31, 1971
- 30) 浦憲親:大正レンガ造建物の性状調査,金沢工業大学研究紀要A, No.22, pp. 67-88, 1985
- 31) 福留和人, 喜多達夫, 前田照信:約70年を経過したコンクリート構造物の耐久性調査, 土木学会 年次学術講演会講演概要集,第5部, pp.55-56, 1984
- 32) 喜多達夫,前田照信,福留和人:旧豊多摩監獄の解体調査 (その2) コンクリートの耐久性に ついて-,間組研究年報, pp.289-292, 1984
- 33) 木村敬三, 松崎育弘, 阿部保彦, 遠藤彰: 大正〜昭和初期に建設された電力施設の耐力調査, 鹿島 建設技術年報, Vol.26, pp. 167-172, 1978
- 34) 澤村勇雄:旧能取岬燈台のコンクリート調査,セメント工業, No.170, pp.2-6, 1981
- 35) 玉井譲,佐々木孝彦,森川卓子,吉田秀司,西澤英和,谷川恭雄:90 年が経過したコンクリート 地下柱・基礎の基本物性に関する分析調査,歴史的構造物の診断・修復に関するシンポジウム 委 員会中間報告ならびに論文報告集,pp.61-66,2006.6
- 36) 瀬崎正博,磯田節子:大正・昭和初期のRC造建築の鉄筋とコンクリートの強度について 熊本 市における 3 つの近代建築の調査結果–,日本建築学会大会学術講演梗概集 A-1 材料施工, pp.753-754, 2000
- 37)川上英男,脇 敬一:長期材齢コンクリートの調査研究(20 福井市足羽浄水場),福井大学工学
 部研究報告,第38巻,第1号,pp.15-22,1990.3
- 38) 川上英男:長期材齢コンクリートの調査研究(7 旧福井県会議事堂),福井大学工学部研究報告, 第 29 巻,第1号,pp. 1-10, 1981
- 39)川上英男:長期材齢コンクリートの調査研究(6 福井県庁舎本館),福井大学工学部研究報告,第
 28巻,第2号,pp.269-282,1980.9
- 40) 大内一之,八十島治典,袴谷秀幸:大正末期と昭和初期に建設された建物の耐久性調査,日本建築 学会大会学術講演梗概集 A-1 材料施工, pp.633-634, 2002
- 41) 守分敦郎,伊坂健二,福手勤,羽渕貴士:70 年以上経過した鉄筋コンクリート構造物の干満帯および海中部における耐久性,コンクリート工学年次論文報告集,Vol.19,No.1, pp.829-834, 1997
 42) 大野惣平,山崎和夫,浅岡宣明,小石川功:長年月経過した鉄筋コンクリート杭および木杭の性状,

土木学会年次学術講演会講演概要集,第5部, pp.59-60, 1984

- 43) 山崎和夫, 浅岡宣明, 小石川功:大正年代に築造された鉄筋コンクリートの調査, セメント工業, No.188, pp. 1-11, 1985
- 44) 寺井達夫:黎明期の鉄筋コンクリート構造 武蔵大学本館一部解体調査(上), 施工, No.87, pp.67-77, 1981
- 45) 日本セメント株式会社中央研究所:長年月を経た鉄筋コンクリート構造物の劣化調査報告,セメント工業, No.188, pp.12-19, 1985
- 46) 山本努, 松川俊介: 建設から 75 年経過した開削 SRC トンネルの調査・診断, トンネル工学報告集, 第 15 巻, pp.395-402, 2005
- 47) 吉岡昌洋,古賀一八,山辺智典:築 72~77 年の RC 倉庫群および事務所の劣化調査(その 1.当時の施工状況),日本建築学会大会学術講演梗概集 A-1 材料施工,pp.629-630,2002
- 48) 山辺智典,古賀一八,吉岡昌洋:築 72~77 年の RC 倉庫群および事務所の劣化調査(その 2. 補 修及び劣化調査),日本建築学会大会学術講演梗概集 A-1 材料施工,pp.631-632, 2002
- 49)川上英男:長期材齢コンクリートの調査研究(9 松任小学校),福井大学工学部研究報告,第 31
 巻,第1号,pp. 27-33, 1983
- 51) 小嶺啓蔵, 鶴田浩章, 高場正富, 真崎洋三:60 年間供用されたコンクリート橋の材料調査について, コンクリート工学年次論文報告集, Vol.22, No.1, pp.571-576, 2000
- 52) 古賀一八, 吉岡昌洋, 平田延明: 同潤会アパートの施工技術に関する調査及び研究 ~大塚, 青山, 江戸川アパートを対象とした記録保存調査 躯体及び仕上編~, 長谷工技報, 20 巻, pp.13-20, 2003
- 53) 依田彰彦: 60 年経過した RC 造事務所の耐久性調査, 建築保全, No.51, pp.62-66, 1987
- 54) 阿部道彦,橋本勇二,藤村成夫:函館西高等学校旧校舎のコンクリートと鉄筋について,北海道立 寒地建築研究所 昭和 58 年度調査研究報告集, pp.181-184, 1984
- 55) 川上英男:長期材齢コンクリートの調査研究(10 福井大学旧講堂),福井大学工学部研究報告, 第 32 巻,第1号, pp.17-34, 1984.3
- 56) 武井一夫, 佐藤真一郎, 新林実, 中川三夫: 昭和初期の建物のコンクリート圧縮強度を調査して, とびしま技報 建築, No.8, pp.154-160, 1981
- 57) 川上英男, 脇 敬一:長期材齢コンクリートの調査研究(19 昭和初期の学校建築および公会堂), 福井大学工学部研究報告, 第 37 巻, 第 1 号, pp.57-73, 1989
- 58) 川上英男:長期材齢コンクリートの調査研究(14 昭和初期の学校建築・その3),福井大学工学

部研究報告, 第 35 巻, 第 2 号, pp.279-296, 1987

- 59) 川上英男:長期材齢コンクリートの調査研究(12 昭和初期の学校建築・その 1),福井大学工学 部研究報告,第35巻,第1号,pp.55-68,1987
- 60)川上英男:長期材齢コンクリートの調査研究(8 七塚小学校講堂及び宇出津小学校講堂),福井大 学工学部研究報告,第30巻,第2号, pp.121-128, 1982
- 61) H.Sakurai, K.Okada, T.Tsuchimoto, K.Shirooka, K.Yamaguchi and N.Saeki: Research on evaluation of durability and preservation of concrete structures with cultural assets in cold regions, 北見工業大学研究報告, 32巻, 2号, pp. 9-17, 2001
- 62) 川上英男:長期材齢コンクリートの調査研究(15 昭和初期の学校建築・その 4),福井大学工学 部研究報告,第36巻,第1号, pp.75-92, 1988
- 63) 川上英男:長期材齢コンクリートの調査研究(13 昭和初期の学校建築・その 2),福井大学工学 部研究報告,第35巻,第2号,pp. 261-278, 1987
- 64) 迫田恵三,渡邉晋也,斯波明宏,樋口正典:70 年経過した鉄筋コンクリート橋の耐久性調査,セ メント・コンクリート論文集, No.60, pp.419-425, 2006
- 65)内田昌勝,岡本享久,大津政康:AE 法による築後 63 年を経た鉄筋コンクリート建造物の健全性 評価,土木学会第 53 回年次学術講演会,pp. 584-585, 1998
- 66) 大久保孝昭, 松本慎也, 流田靖博, 沢木大介: 広島で被爆した RC 造建築物における材齢 70 年の コンクリートの諸物性, 日本建築学会構造系論文集, 第 73 巻, 第 623 号, pp. 27-34, 2008
- 67) 津崎淳一,塩谷智基,大津政康:64 年を経たコンクリート橋の AE レートプロセス理論による健 全性評価,第12回アコースティック・エミッション総合コンファレンス論文集,pp. 83-86, 1999
- 68) 田中斉,津崎淳一,藤本孜,高桑信,肥沼年光,加藤淳司:材齢 64 年のコンクリートおよび鉄筋の性状について,土木学会第 54 回年次学術講演会,pp. 90-91, 1999
- 69) 津崎淳一,田中斉,加藤淳司,塩谷智基,高桑信:64 年経過したコンクリートと鉄筋の物性及び AEによる健全性評価,とびしま技報 土木,No.50, pp.78-85, 2000
- 70) 川上英男:長期材齢コンクリートの調査研究(17 昭和 10 年代の学校建築・その 2),福井大学工 学部研究報告,第 36 巻,第 2 号, pp. 211-224, 1988
- 71) 巌文成,徳田京誠:旧函館裁判所の解体に伴うコンクリートの調査結果について,昭和 59 年度建 設省技術研究会営繕部会報告, pp.160-165, 1985
- 72)徳田京誠,巌文成:昭和初期(昭和12年)に建設された庁舎のコンクリートの性状について,第
 28回北海道開発局技術研究発表会論文集,pp. 1611-1616, 1985
- 73) 依田彰彦, 横室隆:65年経過した RC 造庁舎の耐久性調査, 足利工業大学研究集録, 第40号, pp.53-58, 2006

- 74) 玉井孝幸,小林一郎,渡邊英樹,嵩英雄:旧国鉄宮原線に現存するコンクリートアーチ橋に関する 調査,土木史研究 講演集, Vol.26, pp. 1-9, 2006
- 75)川上英男:長期材齢コンクリートの調査研究(16 昭和 10 年代の学校建築・その 1),福井大学工学部研究報告,第 36 巻,第 1 号, pp. 93-107, 1988
- 76) 長谷川高司,小谷内史義,菊田悦二,熊谷守晃:初代十勝大橋の解体調査 ーコンクリートの長期 耐久性に関する調査研究-,建設省技術研究会報告, pp.83-86, 1999
- 77) 熊谷守晃,星俊彦,佐伯昇,太田利隆:50 数年経過したコンクリートの物理,化学的特性と耐久性,土木学会論文集,No.686/IV-52, pp.41-54, 2001
- 78) 郵政省建築部施工課 保全室:仙台逓信病院の解体に伴う劣化調査,建築保全,8巻,1号,pp.
 101-112,1986
- 79) 森弥広, 宇野祐一, 小林一輔: 鉄筋コンクリート貨物船「武智丸」に関する調査報告, コンクリート 工学年次論文報告集, Vol.25, No.2, pp.1939-1944, 2003
- 80)小門前亮一,西垣義彦,竹腰勇ノ介,鳥居和之:わが国で最初の PC 橋(長生橋)の解体調査と PC 桁の載荷試験,プレストレスコンクリート,44巻,5号,pp. 39-46,2002
- 81) 西垣義彦,小門前亮一,奥田由法,鳥居和之:日本最初の PC 橋-長生橋の耐久性調査,コンクリート工学年次論文集, Vol.24, No.2, pp. 607-612, 2002
- 82) 西垣義彦,小門前亮一:日本初のプレストレスコンクリート橋-長生橋の耐久性調査,ピー・エス 技術資料,18巻, pp. 125-134, 2002
- 83)川上英男:長期材齢コンクリートの調査研究(11 材齢 28 年の体育館 2 棟),福井大学工学部研究 報告,第 32 巻,第 2 号, pp.309-320, 1984
- 84) 真崎洋三,吉田須直,浅利公博,植山定:約45年供用されたコンクリート道路橋の残存機能に関する調査,コンクリート工学年次論文集,Vol.24, No.1, pp. 1479-1484, 2002
- 85) 宮本一成,高羅信彦,林田博明,西村次男,魚本健人:既設 30 年以上のコンクリート建築物の劣
 化調査,生産研究,54 巻,3 号,pp. 222-225,2002

2.1 はじめに

古代ローマ帝国では、紀元前2世紀頃より、土木・建築工事にモルタルやコンクリートが使用され始 めた¹⁾。日本では、明治初期のポルトランドセメント製造開始と前後して、セメントの使用が急速に普 及した。それらの構造物には、今日もなお、健全さを維持しながら存在するものがある。それらを構成 するセメント硬化体を分析し、建設当時の材料、配合、施工技術に関する情報や、暴露環境と経時的変 質の関係などを明らかにすることは、高耐久性コンクリートの設計においてきわめて有用と考えられる ²⁾。また近年、日本では、明治や大正期の土木・建築構造物を、文化的遺産として保護する気運が高ま りつつある^{3,4)}。歴史的構造物の調査・研究は従来、古文書等の調査や測量等の現場調査が主体であった が、最近はそれらに加え、硬化体の物理的性質や化学分析による評価の報告事例が増えつつあり、新た な情報を提供しており^{5,6,7,8)}、ローマ帝国を始めとする古代のコンクリートに関する研究も進んでいる ^{9,10,11,12,13,14,15,16,17)}。さらには近年、放射性廃棄物の埋設施設建設と関連して、セメント系材料が長期の 耐久性を要求される人工バリアとして利用可能かどうかの検討も進められている。これらの基礎的な データとしても、長期間を経過したコンクリートの化学的分析結果が必要となっている。

施工から長い時間を経た構造物のセメント硬化体には、現代のコンクリートには見られない特殊性が ある。試料の前処理方法や分析手法の選定、得られた結果の解釈などにおいて、それらを十分考慮する 必要がある。また多くの場合、構造物から採取できるセメント硬化体は少量に制限される。本章では、 少ない試料をもとに最大限の情報を得るため、計画的かつ効率的な評価を行なうための手順を考察し、 統合的なキャラクタリゼーションのシステムを提案することを試みた。

2.2 長期間を経た構造物のセメント硬化体の特殊性と統合的なキャラクタリゼーションのシステム

2.2.1 構成材料の特殊性

モルタルやコンクリートは、現代ではごく汎用的な材料であるが、日本のセメント製造業が立ち上 がったばかりの頃、国内におけるセメント消費量は、現代とは桁違いに少なく、価格も高価であった¹⁸⁾。 またポルトランドセメントが流通する以前から、石膏やしっくいなどの鉱物系材料が、目地や表面仕上 げ材として使用されていた。このような理由から、古代や近代の構造物の構成材料は、目視だけでセメ ント系材料であるとは断定しがたく、科学的な方法により確認することが必要である。

また古代から近代の構造物の場合、現代のモルタルやコンクリートとは構成材料(セメント、混合材、 骨材)や配合が大きく異なる可能性がある。例えば古代ローマ帝国のセメントは、ポルトランドセメン トのような水硬性クリンカー鉱物を含むものではなく、火山灰など非晶質で反応性の高いシリカを多く 含む材料に消石灰を混合したものであり¹⁾、骨材には、天然岩石の他にレンガや陶磁器屑などが使われ

ていた。日本でも明治期には、今日ではあまり使用されない火山灰が、コンクリートの耐海水性向上の 目的で使用されていた¹⁹⁾。

日本のポルトランドセメントの製造は、明治初期に始まった。その性状、特に化学組成や粒度分布は、 第5章に後述するように、明治から昭和にかけて大きく変化した(第5章、図5.5および5.6)^{19,20,21)}。 明治期のセメントの性状には、現代のセメントとは大きな差異がある。

さらに長期間を経た構造物では、経時による変質が進んでいる可能性がある。外来要因の影響による セメントペーストの変質、骨材の変質、セメントペーストと骨材との化学的作用による変質などに分け ることができる。材料の性状や配合が異なれば、また時間経過による変質が進行していれば、その結果 として硬化体の性状にも、現代の硬化体とは違った特徴が見られることが多い。このように長期間を経 た構造物の構成材料には、以下のような特殊性がある。

- ① セメント硬化体であるか否かが不明である。
- ② コンクリートの構成材料(セメント、混合材、骨材)や配合が現代とは大きく異なる。
- ③ セメントの性状が現代のものとは大きく異なる。
- ④ 経時による変質(セメントペースト、骨材、それらの界面)が進んでいる。
- ⑤ ②、③、④の結果として、現代の硬化体とは違う性状を持つ。

現実には、評価の出発点が①であるケースと、②以降であるケースがある。すなわち、対象の建造物 が、セメントがまだ汎用材料ではなかった明治期以前のものである場合などは、セメント硬化体である か否かの確認から始める必要がある。一方、コンクリートが広く普及した時代のもので、工事記録など も残されており、分析以前にコンクリートであることが明白な構造物の場合は①の確認は不要であり、 材料の種類や配合、使用されたセメントの性状、さらには硬化体としての化学的あるいは物理的な性状 の評価から始めることになる。

長期間を経た実構造物、特に歴史的価値の高い構造物の場合、分析評価のために入手できる試料の量は少ないことが多い。少量の試料で、必要十分な評価を行えるよう、計画することも重要である。

2. 2. 2 統合的なキャラクタリゼーションのシステムと具体的な評価方法

前述の特殊性を考慮した長期構造物の構成材料の統合的なキャラクタリゼーションのシステムを図 2.1 に、具体的な評価手法を図 2.2 に示す。得られる情報の番号は、上述の特殊性に対応する。

バルク試料による評価は、数 mm~数 cm 程度の大きさの試料を均一化して行なわれる。試料を構成 する成分(元素、化合物、鉱物等)の特定、構造や状態などの評価を目的とする。顕微鏡による微細領 域の観察は、構成物の微細な形態や成分などを評価するもので、mmより小さい領域について行なわれ る。顕微鏡観察には、バルク試料の分析では検出不可能な現象評価の可能性があり、分析手法としての 威力は非常に大であるが、その反面、ミクロンあるいはサブミクロン領域の評価であるため、結果を解 釈する上で、測定領域の代表性には注意を払う必要がある。バルク試料の分析と顕微鏡観察は、相互に 補完しながら用いられることが望ましい。

図 2.1 長期構造物の構成材料の統合的なキャラクタリゼーションのシステム

(①~⑤は本文2.2.1の記述に対応)

図 2.2 具体的なキャラクタリゼーション手法

2.2.3 主なキャラクタリゼーション手法の概要

(1) 蛍光 X 線分析

化学組成は、固体物質の種類や起源を特定するための最も基本的な情報の一つである。従来、化学組 成は、湿式分析により求められていた。しかし近年では、蛍光 X 線分析法により、湿式分析と比べて非 常に短時間で化学組成を求めることができるようになった。試料に X 線を照射し、試料中の原子から放 出される蛍光 X 線を検出し、その波長またはエネルギーから原子の種類を、その強度から原子の含有量 を知る。原子が放出する蛍光 X 線の強度は試料の粒度に影響される。それを除くため、試料は粉砕して 微粉末とするか、ホウ酸リチウムなどの溶融剤と混合し、1050℃程度に加熱して溶融させた後、冷却し て飴状の固体とする。

(2) 粉末 X 線回折

部材を構成する物質の種類は、化学組成と同様に、正体を特定する上で重要な情報である。粉末 X 線 回折法(XRD)は、結晶質物質の種類を特定するための基本的手法であり、広く用いられている。測定 して得られたプロファイルに現れる回折ピークの組み合わせを基に、含有される結晶性物質を同定する ことができる。必要な試料量は 1g 程度であり、採取されたサンプルの代表性が保証されるなら、試料 の採取もごく少量でよい。

評価対象物がセメントの硬化体であることを確かめるには、セメントの水和生成物または未水和セメ ントの検出が必要である²²⁾。未水和セメント鉱物(エーライト、ビーライト、カルシウムアルミネート、 フェライト)の回折ピークは、骨材の構成鉱物と重なることが多く、また硬化体に占める量は一般にセ メントより骨材の方が多い。したがって試料の前処理が重要であり、篩い分けなどにより、できるだけ 骨材を除き、セメントペースト分の比率を高くすることが望ましい。主要な水和生成物であるカルシウ ム・シリケート水和物(C-S-H)は一般的には結晶性が低く、明瞭な回折ピークが現れないことが多い。 むしろ最強回折ピークが低角度側に現れ、骨材鉱物の回折ピークとの重なりが少ないカルシウム・アル ミネート水和物(C-A-H)の方が、セメントか否かを判定するための有力な手がかりとなる。

モルタルをそのまま粉砕した試料と、乳鉢中で軽く砕きながらピンセットで骨材を除去し、さらに網 目篩を通過させペースト分を回収した試料の粉末 X 線回折の結果を図 2.3 に示す。網目篩は、目開き 70μmのものを用いた。篩分けを行なっても、石英や長石類などの骨材に由来する鉱物を完全に除去す ることは困難であるものの、それらの回折ピークをかなり小さくすることはできることが、図 2.3 から 分かる。低角度側にエトリンガイト E (3CaO・Al₂O₃・3CaSO₄・32H₂O) やフリーデル氏塩 Fr (3CaO・ Al₂O₃・CaCl₂・10H₂O) 等のセメント水和物の、32~35° にビーライト B (2CaO・SiO₂) 等のセメン ト鉱物を確認でき、篩分けによりセメント関連物質の回折ピークが明確にできることが明らかである。

セメント硬化体の場合、外気に接する表層部は炭酸化が進んでいることが多く、できるだけフレッ シュな部分を採取することが望まれる。

B:ビーライト (2CaO・SiO₂), F:フェライト (4CaO・Al₂O₃・Fe₂O₃), P:ポルトランダイト (Ca(OH)₂), C:カルサイト (CaCO₃), E:エトリンガイト (3CaO・Al₂O₃・3CaSO₄・32H₂O), Fr:フリーデル氏塩 (3CaO・ Al₂O₃・CaCl₂・10H₂O), Q:石英 (SiO₂), f:長石族 (曹長石 Na₂O・Al₂O₃・6SiO₂ など)

図 2.3 モルタルの粉末 X 線回折結果

(3) 走査型電子顕微鏡

走査型電子顕微鏡(SEM)は、微細領域の立体的な形態観察、平均的な組成の評価など、多様な情報 を得ることができる。直径数 nm 程度の電子線を、真空下において試料に照射し、そのエネルギーによ り試料が放出するいくつかの信号を検出し、画像化する。観察像のうちよく用いられるのは二次電子像 (SEI: Secondary electron image)と背面反射電子像(BEI: Back-scattered electron image)である。 SEI では破断面の立体的な形状が、BEI では研磨面の組成情報が得られる。硬化体中に未反応で残るセ メント粒子は、セメント系材料であることの最も有力な証拠であり、それらは BEI で明確に観察できる。 BEI は組成像ともいい、構成物の組成に応じ明暗のコントラストを持った像として観察される。

モルタルの研磨面の BEI を図 2.4 に示す。 明るい粒子状の部分(記号 U)は未水和セメ ント粒子、角ばった暗色の部分(記号 A)は 骨材、それらの間を充填する暗い部分(記号 H)は水和セメント(主にカルシウムシリケー ト水和物)と判断され、セメント粒子の有無 を、比較的容易に観察することができる。

(4) 電子線マイクロアナライザー

電子線マイクロアナライザー(EPMA)は、 電子線照射により放出される信号の一つであ

図 2.4 モルタルの BEI (観察領域 1.1mm×0.9mm)

る特性 X 線を検出し、その波長や強度を基に、局所領域の定性および定量分析を行う。平滑に研磨され た試料に電子線を照射し、試料(または電子線)を動かすことにより照射位置を移しながら、特性 X 線 に基づいて個々の箇所における元素の種類と量を評価すれば、元素濃度の二次元状の分布を知ることが できる。これを元素マッピング分析という。

マッピング分析の対象領域は、個々の分析領域(ピクセル)の個数と大きさにより、一定の範囲内で 任意に定めることができる。例えばピクセルの個数を縦横 400 個とし、一辺の大きさを1 μ m とすれば 400 μ m×400 μ m の領域の分析が、一辺の大きさを 100 μ m とすれば 40mm×40mm の領域の分析が 行える。セメントの粒子や水和物の大きさは μ m のオーダーであるので、ピクセルサイズも同程度に設 定し、一方、肉眼で視認できるようなモルタル、コンクリートの変質(中性化、外来成分との作用等) を評価するには、ピクセルサイズは 100 μ m 程度とすることが多い。このように、ピクセルの大きさは、 評価対象物の大きさを考慮して設定する。評価対象の大きさに比べピクセルサイズが小さ過ぎると、分 析に長時間を要し効率が悪く、逆に大き過ぎると対象物の特徴を正しく評価できない。

マッピング分析は測定値を演算処理により画像化した後でないと、結果を見ることができない。した がって通常は、BEIによる予備観察で分析したい領域を選択し、マッピング分析を行なう。

(5)配合推定

硬化したコンクリートを分析し、元の配合を推定する方法が配合推定である。実用的に実施されている配合推定方法として、セメント協会 F-18 法 ²³⁾がある。

粉砕して粉末状にしたコンクリートを分析し、水、セメント、骨材の量をそれぞれ推定する。水の量 は、600℃での強熱減量(ig.loss)を基に推定する。セメントおよび骨材の量は、試料を(1+100)塩 酸に加え、溶出した Ca および不溶残分を定量し、それらを基に推定する。骨材の推定量は細骨材と粗 骨材の合計であり、両者を分別して推定することはできない。

推定においては、当該コンクリートに用いられたセメントと骨材を入手し、それらの CaO 含有量、 不溶残分、強熱減量を求め、推定の計算に用いることが望ましい。しかし実際には、使用されたセメン トや骨材を入手できるケースは少ない。入手できない場合は、セメントや骨材の種類を仮定し、それら の平均的な CaO 含有量、不溶残分、強熱減量を用いて計算を行う。

セメント協会 F-18 法は、セメントは(1+100)塩酸に溶解し、骨材は溶解しないことを前提とした 方法である。したがって石灰岩のように、塩酸に溶解する岩石が骨材として使用されたコンクリートに は適用できない。石灰岩を骨材に用いたコンクリートの配合推定方法としては、溶媒にグルコン酸ナト リウムを用いる方法²⁴及びギ酸を用いる方法²⁵が確立されている。

(6) 塩酸溶解分の分析

配合推定においては、希塩酸に溶解した Ca のみを定量するが、これに加え、Ca 以外のセメントの構成元素(Si、Al、Fe、Mg、S、Na、K、Ti など)も、ICP 発光分光分析などの方法により求めること

で、セメントの化学組成を推定することができる。溶液中の各元素濃度を定量し、これから固体試料中 の酸化物形態での質量百分率を算出する。その合計は、水分や炭酸ガス、骨材の存在のため、100%に はならないので、これがおよそ100%となるよう、質量百分率をさらに換算する。実際には、多くのセ メントにおいて、Si、Al、Fe、Ca、Mg、S、Na、K、Tiの9元素の酸化物形態での合計が97~98% を占めるので、相対的な比率を保ったまま合計が97~98%となるように質量百分率を換算し、これを セメントの推定組成とする。硬化体の強熱減量と塩酸不溶分も測定し、それぞれを水分や炭酸ガスなど の揮発分の量および骨材の量とする。

(7) 水銀圧入ポロシメーター

試料に水銀を高圧で注入し、加えた圧力と注入された水銀の量との関係を基に、細孔径分布を求める。 加える圧力と水銀が注入される細孔の大きさの間には式(1)の関係があり、両者は反比例する。すな わち、圧力を増加させると、それに応じて水銀はより微細な孔に注入される。圧力を段階的に変化させ ながら水銀の注入量を求めると、細孔の大きさ毎にその量が求められる。

$\mathbf{r} = -2\,\sigma\cos\theta\,/\mathbf{P} \quad (1)$

r:細孔の半径、σ:水銀の表面張力、θ:水銀の接触角、P: 圧力

固体試料は破砕して、数 mm 程度の大きさとする。粉体試料はそのまま測定に供する。セメント硬化体の細孔には水分が含まれ、水銀の侵入を阻むので、適切な方法で乾燥して除去する。所定量の試料を入れた容器に水銀を注入し、さらにこれを最大で 4100 気圧程度(細孔径としては 3nm に相当)までの 圧力を加えて、水銀を細孔に注入する。所定の圧力下で、水銀の注入量を測定し、その結果をもとに細 孔径分布を求める。水和物やセメント粒子間の間隙でありセメント硬化体の物理的性質と密接な関係の ある毛細管空隙、および C-S-H 水和物の層間であるゲル空隙に関する情報を得ることができる。

2.3 第2章のまとめ

本章では、既存の評価手法を適切に組み合わせ、少試料であっても効率的な評価を実施するための統 合的なキャラクタリゼーションのシステムを提案した。建設から長期間を経た実構造物から得られるセ メント硬化体には、長期であるが故の特殊性が秘められている可能性がある。また多くの場合、採取で きる試料はきわめて少量に限定される。このような事情や制約をよく考慮し、過不足のないキャラクタ リゼーションを行うことが必要であり、それに応えるためのシステムを提案した。また具体的なキャラ クタリゼーションの手法を明確化し、主要な手法の概要とセメント硬化体に適用する上での要点を記し た。

【参考文献】

- 1) 小林一輔:コンクリートの文明誌, 岩波書店, 2004
- 2) 日本コンクリート工学協会:コンクリートの長期耐久性に関する研究委員会報告書,2000
- 3) 土木学会東北支部「野蒜築港 120 年委員会」:近代土木遺産シンポジウム -野蒜築港跡「悪水吐暗 渠」発掘調査からみる近代土木遺産-(2004.12.11)資料集,2004
- 4) 日本コンクリート工学協会:歴史的構造物の診断・修復に関するシンポジウム 委員会中間報告及 び論文報告集,2006
- 5) 横関康祐,中曽根順一,柿崎和男,渡邉賢三:100 年以上経過した地下コンクリート構造物の耐久 性について,コンクリート工学年次論文報告集,Vol.20, No.1, pp.251-256, 1998
- 6) 森弥広, 宇野祐一, 小林一輔:鉄筋コンクリート貨物船「武智丸」に関する調査報告, コンクリート 工学年次論文報告集, Vol.25, No.2, pp.1939-1944, 2003
- 7) 玉井譲,佐々木孝彦,森川卓子,吉田秀司,西澤英和,谷川恭雄:90年が経過したコンクリート地下柱・基礎の基本物性に関する分析調査,歴史的構造物の診断・修復に関するシンポジウム 委員会中間報告ならびに論文報告集,pp.61-66,2006.6
- 8) 星野富夫, 辻正哲, 高橋茂, 浅賀喜与志, 中田善久, 魚本健人: 100 年以上供用されているドック コンクリートの調査・分析事例, 歴史的構造物の診断・修復に関するシンポジウム 委員会中間報 告ならびに論文報告集, pp.67-74, 2006.6
- 9) F.Rassineux, J.C.Petit and A.Meunier : Ancient analogues of modern cement : Calcium hydrosilicates in mortars and concretes from Gallo-Roman thermal baths of Western France, Journal of American Ceramics Society, Vol.72, No.6, pp.1026-1032, 1989
- K.Suzuki and W.Nishio : The study on the durability of lime mortar used for construction material in the ancient Roman Empire, Inorganic Materials, Vol.3, Mar., pp.139-146, 1996
- 11) P.Degryse, J.Elsen and M.Waelkens : Study of ancient mortars from Sagalassos (Turkey) in view of their conservation, Cement and Concrete Research, Vol.32, pp.1457-1463, 2002
- 12) S.Sanchez-Moral, L.lique, Juan-Carlos Canaveras, V.Soler, J.Gracia-Guinea and A.Aparicio : Lime pozzolana mortars in Roman catacombs : Composition, structures and restoration, Cement and Concrete Research, Vol.35, pp.1555-1565, 2005
- E.Sakai, S.Tokitsu, T.Mishima and M.Hisada : Properties of Roman concrete in Somma-Vesuviana ruins, Journal of the Society of Inorganic Materials, Japan, Vol.14, pp.146-151, 2007
- H.Y.Ghorab, J.Ragai and A.Antar : Surface and bulk properties of ancient Egyptian mortars.
 Part I: X-ray diffraction studies, Cement and Concrete Research, Vol.16, pp.813-822, 1986

- 15) J.I.Alvarez, A.Martin, P.J.Garcia Casado, I.Navarro and A.Zornoza: Methodology and validation of a hot hydrochloric acid attack for the characterization of ancient mortars, Cement and Concrete Research, Vol.29, pp.1061-1065, 1999
- 16) J.I.Alvarez, I.Navarro, A.Martin and P.J.Garcia Casado : A study of the ancient mortars in the north tower of Pamplona's San Cernin church, Cement and Concrete Research, Vol.30, pp.1413-1419, 2000
- 17) P.Maravelaki-Kalaitzaki, A.Balolas and A.Moropoulou : Physico-chemical study of Cretan ancient mortars, Cement and Concrete Research, Vol.33, pp.651-661, 2003
- 18) 小野田セメント株式会社:小野田セメント百年史, 1981
- 19) 小野田セメント株式会社:小野田セメント製造株式会社 創業五十年史, 1931
- 20) 中尾龍秀:わが国のセメントの品質,セメント・コンクリート, No.253, pp.27-40, 1968
- 21) 台信富寿:明治・大正期におけるセメント製造技術の変遷 -小野田セメント製造株式會社を例 として-,山口大学博士学位論文,2007.9
- 22) 日本コンクリート工学協会:コンクリートの試験・分析マニュアル, p.77, 2000
- 23) セメント協会・コンクリート専門委員会:硬化コンクリートの配合推定に関する共同試験報告, 1967
- 24)中田善久,笠井芳夫,松井勇,湯浅昇:硬化コンクリートの単位セメント量判定試験方法に関する 研究 ーグルコン酸ナトリウムによる試験方法の確立-,日本建築学会構造系論文集,第460号, pp.1-10,1994
- 25) 吉田八郎, 横山滋, 高野豊: 石灰石骨材を使用した硬化コンクリート中のセメント量推定方法, コンクリート工学年次論文報告集, 12-1, pp.347-352, 1990

3.1 はじめに

省資源、省エネルギー、環境負荷低減などへの希求を背景とし、セメント、コンクリートの製造にお いても、これまでの常識にとらわれない、新たな原燃料の選択肢を検討する必要があると考えられる。 明治や大正などのコンクリートには、現代では汎用的材料とはいいがたい火山灰が、耐海水性向上とい う明確な意図をもってしばしば使用されていた¹⁾。それらは、ポゾラン反応による硬化組織の緻密化な どにより、コンクリートの海中での耐久性を大きく向上させた。また化学的に安定と考えられがちな骨 材も、時にはその界面にセメントとの反応層が生成することは経験的に知られている。長期間を経過し たコンクリートにおいては、骨材の輪郭部の反応層が、電子顕微鏡などによりしばしば観察される。こ のような反応層は、コンクリートの物理的性状と少なからず関係するものと思われ、特に微細な粒子に おいて、その影響は大きいものと推察される。このように、セメント硬化体における非水硬性粒子の反 応は、コンクリートの物性や耐久性と無関係ではなく、長期材齢ほどその影響は無視できないと思われ るが、そのような観点での研究はこれまであまり行われていない。

以上に鑑み、本章では、セメント硬化体における非水硬性物質とセメントの作用について検討した。 モルタルやコンクリート中の骨材粒子とセメントペーストの界面を、電子線マイクロアナライザー (EPMA)により観察および分析し、反応層の形態や組成を評価した。また、天然岩石類のセメント混 合材としての活用を検討するため、それらの微粉末を普通セメントに混合し、モルタルの性状やセメン トとの作用を評価した。

3.2 骨材粒子とセメントペーストの界面の観察および分析

図3.1に、材齢20年のコンクリートの研磨面を、EPMAにより観察およびマッピング分析した結果を 示す。観察像は背面反射電子像(BEI)、マッピング分析結果はCaOとSiO2のモル比の分布である。 CaO/SiO2モル比は、骨材内部では黒色で表示され、0.5未満であることが分かるが、骨材の輪郭に、水 色で表示され、1.0~1.5である部分が認められる(矢印で示した)。セメントペースト部は主に黄緑色で 表示され、1.5~2.0の範囲にある。骨材輪郭部のCaO/SiO2モル比は骨材より高く、セメントペーストよ りは低い。骨材のSiとセメントペーストのCaとの反応層であり、両者の中間の組成を持つものと考えら れる。反応層はBEIにおいても、骨材内部よりも明るく観察される。

図3.2に、骨材とセメントペーストの界面の線分上で、CaOおよびSiO2濃度を、EPMAにより連続的 に分析した結果を示す。分析範囲は、図中のBEIに示した150µmの線分上である。分析は0.1µm間隔 で実施した。骨材はJIS R 5201に規定されるケイ砂である。CaO、SiO2のいずれも、その濃度が、骨材 とペーストの界面で急激に変化することが明らかであった。BEIにおいても、骨材の輪郭は明瞭であり

、ペーストとの界面には、高真空下での観察により生じたと考えられる空間が認められた。この骨材と ペーストの界面には中間層は認められず、両者の反応が進行していないことが明らかであった。

昭和初期の構造物から採取したコンクリートに認められた、火山灰と思われる粒子とペーストの界面 について、同様の分析を実施した結果を図3.3に示す。界面におけるCaOおよびSiO2濃度の変化は連続 的であった。BEIにおいても、界面には図3.2のような空隙は認められず、粒子とペーストとが一体化し たように観察される。

以上のように、セメント硬化体内部において、骨材などの粒子とセメントが反応することがあり、そ の場合は両者が一体化する現象が認められた。このような反応層の生成は、硬化体の物理的性状に対し 、少なからず正の影響を持つことが期待される。これを踏まえ次節では、天然岩石類を微粉末としてセ メントに混合した場合の水和セメントとの作用、およびモルタルの性状について検討した。

BEI

CaO/SiO₂モル比の分布

図 3.1 材齢 20年のコンクリートに認められる骨材輪郭部の反応層

図 3.2 骨材粒子(ケイ砂)とペーストの界面における線分上での CaO および SiO2 濃度の変化

図 3.3 火山灰と思われる粒子とペーストの界面における線分上での CaO および SiO2 濃度の変化

3.3 微粉末化した岩石類のポゾラン反応性と硬化モルタルの組織および物理性状への影響

セメント硬化体内部の高い塩基性下において、岩石類が変質する現象はしばしば認められる。アルカリ 骨材反応によるゲルの生成は、代表的な例である。変質は岩石類を構成するシリカ(SiO₂)、その中でも 結晶度が低い、構成粒子が微細である(隠微晶質)、常温で安定でない、などの特徴を有するものとアル カリ類との作用により進展する。一方、低結晶質シリカとカルシウムとの反応であるポゾラン反応の進行 は、セメント硬化体の組織を緻密化し、長期強度発現に寄与する。アルカリ骨材反応性が高く骨材として は不適切な岩石類を微粉末としてコンクリートに混合すると、先行する微粉末の反応のために骨材の反応 が遅延され、コンクリートの膨張を抑制できることも近年報告されている^{23,4})。低結晶質シリカのポゾラ ン反応に関する報告は多数あるが、それらはフライアッシュ、火山灰・礫、もみ殻灰など、従来よりポゾ ラン材料として認識されている物質に関するものがほとんどであり、微粉末化した岩石類の作用に関する 報告は少ない。

本節では、岩石類の微粉末を混合したセメントを調製し、モルタルを作製し、硬化体の物理性状や水和 組織を評価した。普通セメントやフライアッシュセメントのモルタルと比較し、岩石類微粉末のポゾラン 反応性、硬化モルタルの組織や物理性状への影響を明らかにするとともに、岩石類の鉱物学的特徴と対照 しながら考察した。

3.3.1 試料

表3.1に示す6種類の天然岩石類、フライアッシュ 、普通セメントを使用した。岩石類はいずれも工業 用途で採掘されているものである。これらを粉砕し 、ブレーン比表面積3000~4000cm²/gに調製した。 フライアッシュはセメント工場の原料用のものであ る。

試料の化学組成を表 3.2 に示す。本試験に用いた 流紋岩、安山岩、玄武岩の SiO₂含有量はいずれも、 各々の酸性度の範疇に含まれる値である。チャート とケイ砂はいずれも約 90%が SiO₂から成るケイ酸 質のものである。

表 3.1 実験に使用した材料

++*1の種格	ブレーン比表面積
材料の推知	(cm²/g)
玄武岩	3550
安山岩	3700
流紋岩	3890
砂岩	3620
ケイ砂	3400
チャート	3600
フライアッシュ	8200
普通セメント	3540

材料の種類	ig.loss	${ m SiO}_2$	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO_3	Na ₂ O	K_2O	P_2O_5	${ m TiO}_2$	MnO	合計
玄武岩	2.02	47.3	17.5	11.9	10.2	4.9	0.0	4.5	1.3	0.1	0.2	0.1	100.02
安山岩	4.06	55.9	17.1	7.2	7.4	2.0	0.0	3.2	2.1	0.2	0.7	0.2	100.06
流紋岩	6.59	66.5	13.7	1.5	4.5	1.3	0.0	1.1	4.5	0.1	0.1	0.1	99.99
砂岩	3.53	61.0	15.1	4.5	5.6	1.9	0.3	3.4	3.7	0.2	0.6	0.1	99.83
ケイ砂	1.91	88.8	4.2	1.7	0.3	0.1	0.1	0.4	2.0	0.1	0.1	0.1	99.81
チャート	0.17	94.6	2.8	1.0	0.1	0.2	0.0	0.0	0.6	0.1	0.1	0.1	99.77
フライアッシュ	4.48	52.0	27.3	8.6	2.3	0.7	0.5	0.6	1.3	0.7	1.1	0.1	99.68
普通セメント	1.10	22.1	4.8	2.8	64.9	0.9	2.2	0.3	0.4	0.1	0.2	0.02	99.82

表 3.2 各材料の化学組成(%)

3.3.2 実験方法

(1) 岩石類の性質評価

① 蛍光X線分析

岩石類を風乾した後で粉砕し、950℃強熱減量(ig.loss)測定および蛍光X線でFP(ファンダメンタル・パラメーター)法による化学組成分析を行った。蛍光X線分析はブリケットで行った。

② 粉末X線回折分析 (XRD)

岩石類を風乾後、粉砕し、粉末X線回折法により構成鉱物を同定した。測定条件は、管球Cu、管電圧 50kV、管電流250mA、ステップ0.02°、スキャン速度5°/分とした。

③ 偏光顕微鏡観察

厚さ20μm程度の薄片を作製し、偏光顕微鏡により微細組織や鉱物種を観察した。

(2) 岩石類微粉末の調製

直径46cm、幅47cmの円筒型ボールミルで粉砕した。

(3) 混合セメントの調製

普通セメントと岩石類微粉末またはフライアッシュを質量比3:1でビニル袋に採取し、手で振って混合した。

(4) 圧縮強さの測定

ASTM C-109に基づき測定した。すなわち水セメント比0.485、砂セメント比2.75のモルタルを練り 混ぜ、1辺50mmの立方体型枠で成形した。翌日脱型し、20℃の水中で材齢3日、7日、28日まで養生し 、圧縮強さを測定した。

(5) 示差熱分析 (DTA) による水和セメントの評価

28日圧縮強さを測定したモルタルを真空乾燥し、めのう乳鉢中でよくすりつぶし測定した。測定条件 は温度範囲25~600℃、昇温速度10℃/分、試料質量約50mgとした。

(6) 細孔径分布の評価

28日圧縮強さを測定したモルタルを約5mm角に切断し、真空乾燥器中で脱気・乾燥した後、水銀圧 入法(MIP)により細孔径分布を測定した。加圧範囲は3.448kPa~413.7MPaとした。

(7) EPMAによる水和セメントの評価

28日圧縮強さを測定したモルタルを真空乾燥し、約20mm角に切断し、その一面を研磨し、CaとSiのマッピング分析を行なった。測定条件は加速電圧15kV、試料電流5×10⁻⁸A、測定時間40msec/ピクセル、プローブ径1 μ m、ピクセルサイズ1 μ m、ピクセル数400×400とした。

3.3.3 実験結果及び考察

(1) モルタルの圧縮強さ

混合セメントのモルタル強さ試験結果を表 3.3 に、普通セメントのモルタル強さに対する比を図 3.4 に示す。混合材はいずれもセメントに、内割で 25%を混合した。したがって混合材がモルタル強さに何 ら影響しないならば、モルタル強さ比は点線で示す 0.75 付近で推移する。これを上回る場合は、混合 材が強さ発現に寄与するものと判断できる。フライアッシュは各材齢を通じ、最も高い強さ比を示した。 またその値は、材齢の経過に伴い増大し、28 日では 1.0 に大きく近づいた。岩石類では流紋岩、安山岩、 玄武岩、チャートの順に強さ比は大きく、いずれも材齢に伴い増大した。砂岩は材齢 3 日では玄武岩や

表 3.3 岩石類微粉末を内割 25%混合した セメントのモルタルの圧縮強さ

些云頪	材齢(日)										
石石規	3	7	28								
玄武岩	13.7	19.9	29.9								
安山岩	14.9	21.1	31.0								
流紋岩	15.8	22.0	33.6								
砂岩	14.5	20.3	28.8								
ケイ砂	13.3	18.7	26.5								
チャート	13.8	19.6	28.8								
フライアッシュ	16.9	24.1	37.7								
普通セメント	20.4	27.0	38.3								

普通セメントモルタルに対する比

チャートよりも高かったが、材齢に伴う伸びは小さかった。ケイ砂はいずれの材齢でも強さ比は最も小 さく、材齢による伸びも小さかった。後述するように強さ比の増大は岩石類のポゾラン反応に起因する と考えられ、砂岩やケイ砂はその進行程度が小さく、停滞も早いものと考えられる。強さ比が 0.75 に 満たない現象については、岩石類微粉末が及ぼす他の影響、例えばフレッシュモルタルの流動性を低下 させ、巻き込み空気量が増加したなどのことが、その理由として推察される。

(2) DTA による水和セメントの評価

安山岩、ケイ砂およびフライアッシュを混合したセメントのモルタルのDTA試験結果を図3.5に示す。100℃付近の吸熱ピークはカルシウムシリケート水和物(C-S-H)などの脱水に、450℃付近の吸熱ピ

ークは水酸化カルシウムの脱水に相当す る。前者はフライアッシュ、安山岩、ケイ 砂の順に大きく、後者はこの順に小さかっ た。セメント硬化体で生起するポゾラン反 応は、ポゾラン材のシリカと水和セメント の水酸化カルシウムが作用し、C-S-Hを生 成することが主体である。DTAの結果より 、ケイ砂よりも安山岩の方が、また安山岩 よりもフライアッシュの方がポゾラン反 応が進んでいることが明らかである。

図 3.5 安山岩、ケイ砂およびフライアッシュを混合 したセメントのモルタルの DTA 試験結果
(3) モルタルの細孔径分布

安山岩、ケイ砂およびフライアッシュを混合したセメントのモルタルの細孔径分布(大径側からの累 積細孔容積)を図3.6に示す。累積総容積はフライアッシュ混合の場合が最も少なく、ついで安山岩で、 ケイ砂混合では最も多かった。三つのモルタルの空隙量の差は、空隙直径0.1~10μmくらいの範囲で明

らかであり、フライアッシュ、安山岩、ケイ砂 の順に少なかった。この領域の空隙は主として 水和物などの間隙である毛細管空隙に相当し、 この空隙が少ないことは、ポゾラン反応により 毛細管空隙が充填され、緻密さが増したことを 表すものと考えられる。0.01 µ mより小さい領 域の空隙はフライアッシュ混合の場合が最も 多く、ついで安山岩混合であり、ケイ砂混合で は少なかった。この空隙は主にC-S-Hの構造内 に存在するゲル空隙に相当する。C-S-Hの生成 がフライアッシュ混合モルタルで最も進んで おり、次いで安山岩であり、ケイ砂では最も進 んでいないことを示す。

図 3.6 安山岩、ケイ砂およびフライアッシュを混合 したセメントのモルタルの細孔径分布 (大径側からの累積細孔容積曲線)

(4) EPMAによる水和セメントの評価

安山岩、ケイ砂およびフライアッシュを混合したセメントのモルタルのCaO/SiO2モル比のマッピン グ分析結果を図3.7に示す。黒色で表示された部分は骨材、フライアッシュおよび空隙で、それらの間隙 が水和セメントである。水和セメントのCaO/SiO2モル比は、ケイ砂混合セメントの場合は赤色で表示 される2.0~2.5の部分が多く認められた。安山岩混合では赤色で表示される部分は少なく、フライアッ

図 3.7 安山岩、ケイ砂およびフライアッシュを混合したセメントのモルタルの CaO/SiO₂ モル比の マッピング分析結果(分析領域:400 µ m×400 µ m)

シュセメントではさらに少なく、黄緑~黄色で表示される部分が多く、CaO/SiO2モル比は1.2~2.0にあることを示した。表3.2に示したようにケイ砂は、ここにあげた三つの混合材の中ではSiO2含有量が最も高い。にもかかわらず、ケイ砂混合モルタルの水和セメントのCaO/SiO2モル比が、他の二つのモルタルより高いという結果であった。

前述のDTA分析や細孔径分布の測定結果と図3.7のマッピング分析結果を総合して考察すると、フラ イアッシュセメントではポゾラン反応が進んでC-S-Hがよく生成しており、一方、ケイ砂混合セメント ではポゾラン反応の進行度は小さく、安山岩混合セメントは両者の中間にあるものと考えられる。

(5) 岩石類の構成鉱物と微細組織

岩石類の偏光顕微鏡による観察写真を図 3.8 に、偏光顕微鏡および XRD により確認された岩石類中のアルカリシリカ反応性鉱物を表 3.4 に示す。

玄武岩は斑状組織を呈し、斑晶は半自形〜自形のカンラン石及び自形の普通輝石からなっていた。石 基は自形で長柱状の斜長石が主であり、半自形の普通輝石も認められた。アルカリシリカ反応性の高い 鉱物は、観察した範囲では認められなかった。

安山岩は斑状組織を呈し、斑晶鉱物は自形の斜長石、普通輝石、斜方輝石であった。石基は隠微晶質

^{1mm} 玄武岩 ^{1㎜} 安山岩 0.5mm **流紋岩**

図 3.8 偏光顕微鏡による岩石類の観察写真(クロスニコル)

の石英及び斜長石からなる。隠微晶質の石英は、高いアルカリシリカ反応性を持つ鉱物である。またXRD により、やはり高いアルカリシリカ反応性を持つ鉱物であるクリストバライトが認められた。

流紋岩は三日月形〜凹形を示すバブルウォール状のガラス片が80%以上を占めるガラス質凝灰岩で あった。石英、斜長石もわずかに認められた。ガラスは高いアルカリシリカ反応性を持つ物質である。

砂岩は基質が40~50%を占める、中粒の石英質ワッケであった。砂粒は亜角~角の石英、斜長石、チャート岩片、砂岩岩片、頁岩岩片からなっていた。基質は粘土鉱物と二次的に晶出した方解石からなっていた。アルカリシリカ反応を生起する可能性のある鉱物としては、隠微晶質の石英がチャート岩片、砂岩岩片、頁岩岩片に認められたが、その量は少なかった。

ケイ砂を構成する粒子は単結晶石英または複結晶石英からなり、わずかにパーサイト構造を示すカリ 長石からなるものも認められた。いずれの粒子も亜円~亜角を示した。石英の結晶粒は粗粒に発達し、 アルカリシリカ反応性の高い鉱物や組織は認められなかった。

チャートは粒径5~10μmないしはそれ以下の隠微晶質の石英からなり、また径0.1mm前後のやや粗 粒な石英あるいはカルセドニーからなる脈が発達していた。カルセドニーや隠微晶質の石英など、アル カリシリカ反応性の高い鉱物組織が確認された。

フライアッシュにはガラスの存在が認められた。粒子は球形のものばかりではなく、不定形のものも 多く認められた。掲載した写真では明確に確認できないが、XRDでは石英とムライトも確認された。

以上のように、長期材齢においてモルタルの強さが伸長し、普通セメントモルタルとの差が小さくな る岩石類には、アルカリシリカ反応性の高い鉱物や組織が認められる傾向があった。アルカリシリカ反 応性鉱物・組織の存在が、ポゾラン反応に関与している可能性がある。

		ſ	扁光顕微鏡			XI	RD
	隠微晶質石英	Cr, Trd	Op	Chal	ガラス	Cr	ガラス
玄武岩							
安山岩	tr	tr				\bigtriangleup	
流紋岩					O		0
砂岩	\bigtriangleup						
ケイ砂							
チャート	0			\bigtriangleup			
フライアッシュ					Ô		0

表 3.4 偏光顕微鏡および XRD により確認された岩石類中のアルカリシリカ反応性鉱物

Cr: クリストバライト, Trd: トリディマイト, Op: オパール, Chal: カルセドニー

◎: 多量に含まれる、〇: 中程度に含まれる、△: 少量含まれる、tr: ごくわずかに含まれる

アルカリシリカ反応の進行は、骨材に生起する場合はゲルを生成し、膨張などコンクリートに有害な 影響を及ぼす。一方、微粉末に生ずる場合は骨材の反応に先行して進み、ゲルの生成を抑制して膨張を 低減するという正の作用を持つ^{2,3,4,5,6)}。二つの作用の境界となる粒度が存在することが、知られている ^{2,5)}。ただしこれらの報告では、アルカリシリカ反応性物質を微粉末として加えるとモルタルの膨張が低 減されることは示されているが、反応生成物の種類や量には言及されていない。本研究では一部の岩石 類微粉末によりC-S-Hの生成が増加することが確認されたが、反応の作用機構や生成物の決定要因など 、塩基性下におけるシリカの反応については、いまだ不明な点も多い。今後の検討を要する課題と考え る。

3. 4 第3章のまとめ

セメント硬化体における非水硬性物質とセメントの作用として、骨材粒子のセメントペーストとの界 面における反応層の観察と分析、および天然岩石類を微粉末として普通セメントに混合した場合のモル タルの物性とセメントとの反応を評価し、以下の結果を得た。

- (1) セメント硬化体内部において、骨材などの粒子とセメントが反応することがあり、その場合は両 者が一体化する現象が、電子線マイクロアナライザーによる分析や観察により確認された。
- (2)流紋岩、安山岩、チャートなどの微粉末を混合したモルタルの普通セメントモルタルに対する強 さ比は、材齢の経過に伴い増大した。砂岩やケイ砂の微粉末を混合した場合は、強さ比の伸びは小さ かった。
- (3)示差熱分析により、安山岩混合モルタルではケイ砂混合モルタルと比べ、C-S-Hが多く水酸化カ ルシウムが少ないことが確認された。ポゾラン反応の影響と考えられた。EPMAマッピング分析でも 確認された。
- (4) 安山岩混合モルタルでは、毛細管空隙の減少とゲル空隙の増加が確認され、ポゾラン反応の影響 と考えられた。ケイ砂混合モルタルでは、安山岩混合モルタルと比べて明らかではなかった。
- (5) 材齢経過に伴いモルタル強さ比が増大し、ポゾラン反応を生起していると考えられる岩石類は、 アルカリシリカ反応性の高い鉱物を含む傾向があった。
- (6)以上の結果は、天然岩石類であっても、その微粉末がセメント混合材として活用できる可能性を 示すものである。

【参考文献】

- 1) 長瀧重義:コンクリートの長期耐久性[小樽港百年耐久性試験に学ぶ],技報堂出版,1996.8
- 2)藤崎邦弥,古澤靖彦,丸山民子:微粉末の非晶質シリカ材料によるアルカリシリカ反応抑制効果に 関する一実験,セメント技術年報, No.41, pp.407-410, 1987
- 3) Bian Qinghan, Wu Xuequan and Tang Mingshu : Effect of reactive aggregate powder on

32

suppressing expansion due to alkali-silica reaction, Proc. 10th ICAAR (Melbourne), pp.546-553, 1996

- 4) M.Cyr, A.Carles-Gibergues, M.Moisson and E.Ringot : Use of reactive aggregate powders to mitigate ASR expansion, Proc. 12th Int. Conf. Chem. Cem. (Montreal), 2007
- 5) 藤崎邦弥, 今立文雄, 丸山民子: 微粉末の非晶質シリカによるアルカリ・シリカ反応抑制メカニズ ムについて, 第43回セメント技術大会講演集, pp.672-677, 1989
- 6) 魚本健人, 古澤靖彦: アルカリシリカ反応によるモルタルバーの膨張挙動を予測するモデルの構築, コンクリート工学論文集, Vol.3, No.1, pp.109-119, 1992

4.1 はじめに

モルタルやコンクリートに用いられたセメントの化学組成を推定することは、現実においてしばしば 必要とされる。例えば、コンクリートの強度や色調などの品質が予測とは大きく隔たったものとなり、 工事仕様に定める種類のセメントが使用されたかどうかが疑わしく、科学的に確認することが求められ る場合がそれにあたる¹⁾。あるいはまた、明治や大正時代に築かれた古い建造物から得られるモルタル やコンクリートを科学的に評価する場合にも、使用されたセメントの化学組成を求めることは重要であ る。ポルトランドセメントの化学組成は、明治初期のセメント産業草創期から昭和初期にかけて、時代 とともに変遷した事実がある^{2,3)}。当時のモルタルやコンクリートを分析し、セメントの化学組成を求め ることは、このような史実を実証することとなる。さらには、造られた年代が不明な硬化体であっても、 セメントの化学組成を推定することにより、明治や大正のものか否かを判定できる可能性がある⁴。

硬化したモルタルやコンクリート中のセメントの化学組成は、セメント分を酸に溶解し、溶液中のセ メントに由来する元素を定量することにより求められる。しかしこの方法は、石灰岩のように酸に溶け る岩石が骨材に使用されている場合は適用できない。また時間の経過に伴ない硬化体が変質し、水和セ メントの難溶化や骨材の可溶化が進行すると、酸溶解法による推定の信頼性は大きく損なわれる可能性 がある。しかし現状では他に適切な方法がないため、この方法によらざるを得ず、得られた結果の妥当 性を検証することもできない。

これらに鑑み本章では、電子線マイクロアナライザー(EPMA)を用いたマッピング分析により、硬 化体中のセメントの化学組成を推定する方法を検討した。

4.2 硬化体中のセメントの化学組成推定の概要

4. 2. 1 塩酸溶解分析法

従来より行われている方法は、塩酸によりセメントを溶解し、硬化体から分離して、その組成を求め るものである。この方法に特定の名称はなく、本論文では塩酸溶解分析法と称することとする。塩酸溶 解分析法の概要を図4.1に示す。モルタルやコンクリートはセメント(未水和および水和)、水和セメン トと結合した水分や炭酸ガス、骨材および空隙からなる。これを粉末状にし、塩酸水溶液に加え、セメ ント分を溶解する。塩酸に溶出したセメントに由来する元素を定量し、硬化体における質量百分率(酸 化物形態)に換算する。その合計は、水分や炭酸ガス、骨材の存在のため、100%にはならないので、 これがおよそ100%となるよう、質量百分率をさらに換算する。実際には、セメントを構成する主要な 元素であり、多くのセメントにおいてその酸化物形態での合計が97~98%を占める Si、Al、Fe、Ca、 Mg、S、Na、K、Tiの9元素について、質量百分率を求め、相対的な比率を保ったまま、合計が97~

34

図 4.1 塩酸溶解分析法による硬化体中のセメントの化学組成推定の概要

98%となるように換算する。硬化体の強熱減量(以下 ig.loss)と塩酸不溶分も測定し、それぞれを水分 や炭酸ガスなどの揮発分の量および骨材の量とする。

4.2.2 塩酸溶解分析法の欠点

セメントは塩酸に溶解し、骨材は溶解しないことを前提とした方法であるため、以下の場合には適用 できない。

① 塩酸に溶解する骨材が使用されている場合

骨材の母岩となる天然岩石類の多くは SiO₂を主成分とし、それらは塩酸に難溶であるが、CaCO₃を 主成分とする石灰岩などは塩酸に溶解するので、それらが骨材として用いられた硬化体には、本方法は 適用できない。我が国の骨材に石灰岩が占める比率は増加しつつあり、1980 年頃には 2%程度であった ものが、2005 年には 8%を超過した⁵。石灰岩骨材コンクリートの分析が求められる機会は、今後増え るものと思われる。

② 塩酸への溶解度が小さい混合材が使用されている場合

混合材は結合材であるセメントの一部と考えるべきであるが、混合材に用いられることが比較的多い フライアッシュやシリカフュームの塩酸への溶解度は小さい 6。したがってこれらが、ある程度多量に 混合された硬化体の場合は、塩酸溶解分析法ではセメントの化学組成を求められない。フライアッシュ やシリカフュームが一貫して塩酸に溶解しないのであれば、不溶分に取り込まれたそれらの粒子を電子 顕微鏡などにより観察し、ある程度の精度でその混合量を求めるという方法も、検討の余地がある。し かしこれらは、セメント硬化体中では、ポゾラン反応によりカルシウムシリケート水和物(以下 C-S-H) に変化し、塩酸に溶解するようになり、しかもどの程度の混合材が C-S-H に転化したかを知ることはで きないため、電子顕微鏡観察併用による推定も不可能である。

③ 水和セメントの難溶化、骨材の可溶化が進んだ場合

C-S-H は、炭酸化により炭酸カルシウムとシリカゲルへと変化する。シリカゲルは酸には難溶である ため、セメントの SiO₂が実際より低く推定されることになる。一方、SiO₂質の骨材であっても、水和 セメントの高い塩基性下では経時的に変質することがあり、カルシウムと反応して C-S-H を生成した例 も報告されている ⁷⁾。C-S-H は酸に溶けるので、この場合はセメントの SiO₂推定値は実際より高くな ると考えられる。このような経時的変質に起因する現象は、ことに古い建造物のモルタルやコンクリー トにおいて、推定の誤差要因として無視できない。

4. 2. 3 EPMA による推定方法

本研究で検討した EPMA マッピング分析による推定方法の概要を記す。硬化体からセメント(未水 和および水和)のみを分離し、その部分における主要元素の構成割合を求め、その合計が 97~98%と なるように換算することは塩酸溶解分析法と同様だが、分離の方法が異なる。溶解という化学現象を利 用する塩酸溶解分析法に対し、微小領域の分析データを集積する EPMA マッピング分析法では、多数 のデータの中から、分析値を基にセメントに該当するもののみを選択して、その平均組成を求める。

方法の概要を図 4.2 に示す。EPMA では、一辺がμm オーダーの微小な領域の化学組成を分析するこ とができる。この微小な領域をピクセルと称する。ピクセル毎の分析を、所定の大きさの二次元領域に ついて実施することにより、各元素濃度の二次元分布を得ることができる。これをマッピング分析とい う。対象とする領域のマッピング分析を行い、各ピクセルの分析値を基に、セメント(未水和、水和) と骨材に相当するピクセルを識別する。そして骨材に相当するピクセルを除外し、残りのピクセルをセ メントとして、その組成の平均値を求めることで、セメントの化学組成が推定される。セメントと骨材

図 4.2 EPMA マッピング分析による硬化体中のセメントの化学組成推定の概要

が混在するピクセルでは、分析値は両者の中間の組成となるので、これらも除外する。

ピクセルの識別は、特定の元素についてしきい値を設定することで行われる。元素の種類としきい値 は推定の精度を決定づける要因であり、その最適化が本方法の要点の一つである。またセメントと骨材 にまたがるピクセルをできるだけ少なくするよう、個々のピクセルは可能な限り小さくすることが望ま しく、一方、小さいほど分析値のピクセル間のばらつきは大きくなるので、できるだけ多くのピクセル について分析し、その平均を求めることが、精度の高い推定には必要と考えられる。

4.3 実験方法

4.3.1 モルタルの調製

JIS R 5201「セメントの物理試験方法」にしたがい、水セメント比 0.5、砂セメント比 3 でモルタル を練り混ぜ、40×40×160mmの直方体に成形した。翌日脱型し、練り混ぜ後 4 週間まで 20℃の水に浸 漬した。セメントは普通セメント (Ordinary Portland cement、以下 OPC) と高炉 B 種セメント (Blast furnace slag cement、以下 BSC)の2種類とした。蛍光 X 線分析法により求めたそれらの化学組成を **表 4.1** に示す。

表 4.1 モルタルおよびコンクリートに使用したセメントの化学組成(%)

	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂	Sum
OPC BSC	19.33 25.18	5.11 9.00	2.85 1.84	63.94 54.94	2.38 3.99	2.10 1.98	0.26 0.27	0.40 0.37	0.27 0.41	96.64 97.98
OPC	: 普通·	セメント	BSC:	高炉	B種セ	メント				

4.3.2 コンクリートの調製

モルタルと同じセメントを使用し、コンクリートを調製した。水セメント比は、OPC コンクリート では 0.5、BSC コンクリートでは 0.567 とした。これらを直径 10cm、高さ 20cm の円筒型試験体に成 形し、20℃の水中で養生した。コンクリートの配合と練り混ぜ直後の性状を、**表 4.2** に示す。

表 4.2 コンクリートの配合と練り混ぜ直後の性状

			配合(k	(g/m ³)			練り注	昆ぜ直後の	性状
セメント		セイント	细母壮	約 周4	泪和刘	W/C	スランプ	空気量	温度
	八		和可有初	他有构	化比个山角小	W/C	(cm)	(%)	(°C)
OPC	165	330	924	1001	2.64^{*1}	0.5	7.7	1.8	20.0
BSC	170	300	842	1116	3.0^{*2}	0.567	8.9	1.6	19.5

*1:レオビルド SP8SE、 *2:ポゾリス No.70

4. 3. 3 EPMA マッピング分析

練り混ぜから 28 日後に、モルタルおよびコンクリートを、その長軸に直交する方向に切断し、中央 部付近から小塊を採取した。これを数日間アセトンに浸漬した後、室温で乾燥することにより、硬化体 内部の自由水を除去した。そこから約 15mm 角の小片を採取し、エポキシで固化し、その一面を最小で 粒径 0.05 μ mの研磨剤を用いて鏡面状になるまで研磨した。長期間を経た実構造物から採取される試料 は必ずしも十分な量があるとは限らず、場合によっては小片程度しか得られないこともあること、また 精度の良いマッピング分析を行うために重要な要件である分析面の鏡面研磨をできるだけ精巧に行う ためには、試料はできるだけ小さい方が良いこと、などを考慮し、小片の試料とした。研磨した面に導 電性物質として炭素を蒸着し、Si、Al、Fe、Ca、Mg、S、Na、K、Tiの9元素について、EPMAによ りマッピング分析を行い、結果をそれぞれの酸化物形態での質量百分率で表示した。EPMA 装置は日本 電子製 JXA-8200 を使用した。マッピング分析の条件を表 4.3 に示す。ピクセルは一辺1 μ mの正方形 とし、分析個数は分析所要時間などの実用的事情を考慮し、縦横方向にそれぞれ 400 個、総数で 160000 個とした。したがって分析領域は 400 μ m×400 μ mである。できるだけ骨材が少なくなるように留意 しながら、各モルタルおよびコンクリートについて、二つの分析領域を選定した。

加速電圧	15kV
試料電流	$5 imes10^{-8}$ A
プローブ直径	0.5μ m $>$
ピクセルの大きさ	$1\mu\mathrm{m}~ imes~1\mu\mathrm{m}$
分析したピクセル数	160000~(400~ imes~400)
1ピクセルの測定時間	40msec
	Ca, Si: Wollastonite (CaO=48.00%, SiO ₂ =50.94%)
	Al, Na, K: K-Feldspar (Al ₂ O ₃ =20.44%, Na ₂ O=7.07%, K ₂ O=5.62%)
標準試料	Fe, Mg: Forsterite (Fe $_2O_3$ =9.75%, MgO=50.83%)
	S: Anhydrite (SO ₃ =58.81%)
	Ti: KTiOPO ₄ (TiO ₂ =40.33%)
分光結晶	Ca, S, Ti: PETJ Si, Al, Mg: TAP Fe: LiFH Na: TAPH K: PETH

表 4.3 マッピング分析の条件

4.3.4 マッピング分析結果に基づくセメントの化学組成推定

個々のピクセルについて求められた各元素の定量分析値を、元素間の相対的な比率を保ったまま、そ の合計が OPC では 97%、BSC では 98%となるように換算した。このようにして個々のピクセルにつ いて求めた換算組成を平均し、セメントの推定組成とした。平均する際、骨材の占める割合の高いピク セルをも含めると、推定結果は実測組成とはかけ離れたものとなると予測されるため、骨材のピクセル を除外するための条件を検討した。

4. 4 モルタルに関する試験結果と考察

4.4.1 マッピング分析結果

普通セメントモルタル(以下 OPC モルタル)と高炉 B 種セメントモルタル(以下 BSC モルタル)
の二つの領域の Si、Al、Fe、Ca の 4 元素の質量百分率および CaO/SiO2 モル比のマッピング分析結果
を図 4.3 および図 4.4 に示す。各々の上段左端の写真は、分析領域の背面反射電子像(Back-scattered electron image、以下 BEI) である。

BEIにおいて暗灰色に観察される粒子(記号 A)は骨材、明灰色の粒子(記号 C)はセメント、同じ く明灰色の粒子(記号 S)は高炉スラグ、それらの間隙を埋めるのがセメントペーストである。JIS R 5201 に定められた骨材はケイ砂であり、そのSiO2含有量は90%に近いものと思われ、マッピング分析結果 においても骨材のSiO2は70~100%に相当する白色で表されている。セメントペースト部分について は、CaOの質量百分率およびCaO/SiO2モル比はOPCモルタルの方が総じて高いこと、逆にAl2O3の 質量百分率はBSCモルタルの方が高いことが明らかであり、セメントの化学組成の特徴と矛盾しない。

4. 4. 2 セメントの化学組成の推定

(1) 個々のピクセルの分析結果

ー例として、OPC モルタルの分析領域1における連続した10個のピクセルの分析結果、およびそれ らを元素間の相対的な比率を保ったまま合計が97%となるように換算した結果(以下これを換算組成と 記す)を表4.4に示す。換算組成において、No.9とNo.10のSiO2は90%を超えており、主として骨材 に相当するピクセルと判断される。No.1からNo.8はセメントペーストに相当すると思われるが、組成 のばらつきはきわめて大きく、またその平均値は表4.1に示した普通セメントの化学組成とは大きく異 なるものであった。ピクセルの大きさに相当する1µmの立方体を考えると、その体積は10⁻¹⁸m³、質 量は10⁻¹²g程度に過ぎない。個々の分析点であるピクセルがこのように微小なものであることを考慮す ると、表4.4のようなばらつきは避けられない。実測値に近い推定値を得るためには、多数のピクセル について分析し、その平均値を求めることが必要であることが明白である。

(2) 全てのピクセルの平均組成

OPC モルタルおよび BSC モルタルの二つの分析領域の全ピクセル 160000 点について、換算組成を 平均した結果を表 4.5 に示す。いずれの領域でも、蛍光 X 線分析による実測組成と比べると、SiO₂ は高 く、他の元素のほとんどは低いこと、その程度は同じモルタルでも分析領域により相違があることが明 らかである。これは、骨材をも含んだ平均組成を求めていることによる。各領域に占める骨材の面積は、 OPC モルタルでは領域 2 の方が、BSC モルタルでは領域 1 の方が大きいことが、図 4.3 および図 4.4 より明らかである。表 4.5 の結果はこれと矛盾しないものである。以上のことより、セメントの化学組 成を求めるためには、骨材に相当するピクセルを除外することが非常に重要であることが明らかである。

39

領域1

C:セメント、 A:骨材

図 4.3 普通セメントモルタルのマッピング分析結果 (分析範囲: 400 µ m × 400 µ m)

領域1

C:セメント、 A:骨材、S:高炉スラグ

図 4.4 高炉 B 種セメントモルタルのマッピング分析結果 (分析範囲: 400 µ m × 400 µ m)

表 4.4 OPC モルタルの分析領域1における連続した 10 個のピクセルの分析結果(%)

NI-				実	測組成	Ż								換算	組成*	l			
NO.	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂	Sum	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂
1	9.4	1.4	0.3	63.8	0.3	3.1	0.2	0.1	0.0	78.5	11.6	1.7	0.3	78.8	0.4	3.8	0.3	0.2	0.0
2	7.3	1.0	0.3	60.3	0.2	1.7	0.4	0.2	0.0	71.4	9.9	1.4	0.3	81.9	0.3	2.3	0.6	0.3	0.0
3	9.9	2.1	0.3	56.7	0.3	1.7	0.9	0.2	0.0	72.1	13.3	2.8	0.3	76.4	0.5	2.2	1.2	0.2	0.0
4	12.7	3.2	0.7	51.2	0.1	1.0	0.5	0.2	0.2	69.8	17.6	4.4	1.0	71.1	0.2	1.3	0.7	0.3	0.3
5	16.6	3.7	0.3	42.3	0.5	1.3	0.2	0.2	0.3	65.4	24.6	5.5	0.4	62.7	0.7	2.0	0.3	0.4	0.5
6	16.1	3.9	0.1	44.5	0.3	1.3	0.0	0.3	0.3	66.8	23.4	5.7	0.2	64.5	0.4	1.9	0.0	0.4	0.5
7	16.6	3.4	0.7	40.6	0.7	2.7	0.1	0.4	0.0	65.2	24.7	5.1	1.1	60.3	1.0	4.1	0.1	0.6	0.0
8	18.8	2.2	0.5	40.1	1.1	2.7	0.0	0.2	0.0	65.6	27.9	3.2	0.7	59.3	1.6	4.0	0.0	0.2	0.0
9	93.7	1.6	0.3	0.1	0.1	0.0	0.0	0.2	0.1	96.1	94.6	1.6	0.3	0.1	0.1	0.0	0.0	0.2	0.1
10	88.9	1.6	0.1	0.4	0.5	0.0	0.2	0.8	0.9	93.4	92.3	1.6	0.1	0.5	0.5	0.0	0.2	0.8	0.9
										Av.*2	19.1	3.7	0.5	69.4	0.6	2.7	0.4	0.3	0.2
*1:	実測組度	式の9元	素 (SiC	Do. Ala	On Fea	O_{2} C	O. Mo	0. SO). Na	O. K.O	TiO ₂)	の相対	的比率	を保ち	ながら	. 合늵	・が979	6となる	るよう

*1: 実測組成の9元素 (SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, SO₃, Na₂O, K₂O, TiO₂)の相対的比率を保ちながら、合計が97%となるよう 換算した組成

*2: No.1~No.8の平均値

表 4.5 OPC および BSC モルタルの全 160000 ピクセルの換算組成の平均結果(%)

モルタル	分析領域	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ C) K ₂ O	TiO ₂	ピクセル数
OPC	1	26.1	4.7	2.2	59.3	1.8	2.1	0.4	0.2	0.2	160000
OPC	2	36.3	4.2	2.0	50.3	1.6	1.8	0.4	0.1	0.2	160000
蛍光X線岔	分析結果	(19.33	5.11	2.85	63.94	2.38	2.10	0.26	0.40	0.27)	
BSC	1	44.8	5.9	1.6	40.3	2.5	2.1	0.4	0.1	0.3	160000
BSC 蛍光X線約	2 分析結果	35.3 (25.18	6.5 9.00	1.6 1.84	48.7 54.94	2.8 3.99	2.4 1.98	0.3 0.27	0.1 0.37	0.3 0.41)	160000

(3) 骨材に相当するピクセルの除外条件の検討

骨材とセメントペーストで含有量に明白な差異のある元素について、上限値あるいは下限値を定め、 上限値を超える、あるいは下限値を下回るピクセルを骨材相当のものと判断し、平均値の計算から除外 することとした。骨材とセメントペーストでの差の大きい元素はSiO2とCaOであり、骨材において前 者の濃度は非常に高く、後者の濃度はきわめて低い。これを考慮しSiO2については上限値を、CaOに ついては下限値を設定することとし、その適正値を検討した。上限値および下限値を10%刻みに設定し、 これを逸脱するピクセルを除外して換算組成の平均値を求め、実測の組成と比較した。その結果をSiO2 の上限値、CaOの下限値のそれぞれについて、表4.6および表4.7に示す。また横軸にSiO2の上限値 を、縦軸にセメントの主要4成分であるSiO2、Al2O3、Fe2O3、CaOの推定値をとりプロットしたもの を、OPC モルタルについて図4.5に、BSC モルタルについて図4.6に示す。同じく横軸はCaOの下限 値とし、縦軸はSiO2、Al2O3、Fe2O3、CaOの推定値としたものを、OPC モルタル、BSC モルタルの それぞれについて図4.7と図4.8に示す。いずれも図中の点線は、蛍光X線分析法による実測値を示す。

表 4.6 および表 4.7 において、除外されず推定に用いられたピクセルの数 n に着目すると、SiO₂の上 限値が 90~40%の範囲で、また CaO の下限値が 10~50%の範囲でほぼ一定である。またその値は、 骨材の面積が占める割合がより大きい領域、すなわち OPC モルタルでは領域 2、BSC モルタルでは領 域 1 の方が小さい。これらの範囲では骨材が除外されているものと考えることができる。骨材が除外さ れた範囲での n の値に、SiO₂に上限値を設ける場合と CaO に下限値を設ける場合で大きな差はなく、 いずれの条件によっても骨材を同程度に除外できるものと判断される。

図 4.5 において、SiO₂の上限値を 20%および 100%とした場合は、推定値は実測値と乖離したもの となるが、30~90%とすると実測値とかなり近くなり、30%と 40%の間で最も実測値と近いことが分 かる。また図 4.7 において、CaO の下限値を 0%および 60%とした場合は、推定値と実測値の違いは大 きいが、10~50%とすると実測値とかなり近くなり、40%で最も実測値と近いことが分かる。このこと から、OPC モルタルについては、SiO₂の上限値を 30~90%、最も望ましくは 35%程度とし、または CaO の下限値を 10~50%、最も望ましくは 40%程度とし、これらを逸脱するピクセルを除外し、残り のピクセルについて換算組成の平均値を求めることにより、実測値に近いセメントの化学組成を求める ことができると判断される。

SiO2の上限値を 100%として、および CaO の下限値を 0%として得られる推定値の実測値との乖離 は、前述のように骨材をも含んだ平均組成を求めていることによるもの、SiO2の上限値を 20%として、 および CaO の下限値を 60%として得られる推定値の実測値との乖離は、Ca(OH)2や CaCO3など CaO 含有率が高い部分の割合が多くなることによるものと考えられる。

BSC モルタルについては、図 4.6 と図 4.8 より、SiO₂の上限値は 40~90%、最も望ましくは 60%程度とし、CaO の下限値は 10~40%、最も望ましくは 20%程度として、これらを逸脱するピクセルを除外し、残りのピクセルについて推定を行うことが望ましいと判断される。

BSC の方が OPC より、SiO₂の上限値を高く、また CaO の下限値を低く設定すべきであるのは、BSC が OPC より高 SiO₂、低 CaO の組成であることによるものと考えられる。

43

モルタル	分析	SiO。上限值				推定組	成 (%)				ピクセル
	領域	(%)	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	SO3	Na ₂ O	K ₂ O	TiO ₂	数
									-	_		
OPC	1	100	26.1	4.7	2.2	59.3	1.8	2.1	0.4	0.2	0.2	160000
		90	21.0	5.1	2.4	63.6	2.0	2.2	0.4	0.2	0.2	149112
		80	20.6	5.1	2.4	63.9	2.0	2.3	0.4	0.2	0.2	148218
		70	20.4	5.1	2.4	64.1	2.0	2.3	0.4	0.2	0.2	147745
		60	20.3	5.1	2.4	64.2	2.0	2.3	0.4	0.2	0.2	147339
		50	20.2	5.1	2.4	64.3	2.0	2.3	0.4	0.2	0.2	146912
		40	20.1	5.1	2.4	64.4	2.0	2.3	0.4	0.2	0.2	146295
		30	18.0	5.4	2.7	65.8	2.1	2.3	0.4	0.2	0.2	123715
		20	10.0	7.0	3.7	71.1	2.3	2.2	0.3	0.2	0.2	61181
	2	100	36.3	4.2	2.0	50.3	1.6	1.8	0.4	0.1	0.2	160000
		90	22.0	5.1	2.5	62.3	2.0	2.3	0.4	0.1	0.2	129167
		80	21.4	5.2	2.5	62.8	2.0	2.3	0.4	0.1	0.2	129753
		70	21.2	5.2	2.5	63.0	2.1	2.3	0.4	0.2	0.2	127313
		60	21.0	5.2	2.5	63.2	2.1	2.3	0.4	0.1	0.2	126745
		50	20.8	5.2	2.5	63.3	2.1	2.3	0.4	0.1	0.2	126119
		40	20.7	5.2	2.5	63.4	2.1	2.3	0.4	0.1	0.2	125326
		30	18.3	5.6	2.8	64.9	2.2	2.4	0.4	0.1	0.2	104019
		20	10.5	7.4	4.2	69.4	2.5	2.2	0.4	0.1	0.3	49994
	蛍光	X線分析結果	19.33	5.11	2.85	63.94	2.38	2.10	0.26	0.40	0.27	
BSC	1	100	44.8	5.9	1.6	40.3	2.5	2.1	0.4	0.1	0.3	160000
		90	25.5	8.1	2.1	55.1	3.4	2.9	0.5	0.1	0.3	116932
		80	24.9	8.1	2.1	55.5	3.4	2.9	0.5	0.1	0.3	115864
		70	24.6	8.1	2.1	55.7	3.5	2.9	0.5	0.1	0.3	115202
		60	24.4	8.2	2.1	55.9	3.5	2.9	0.5	0.1	0.3	114510
		50	24.2	8.2	2.2	56.0	3.5	2.9	0.5	0.1	0.3	113733
		40	23.9	8.2	2.2	56.2	3.5	3.0	0.5	0.1	0.3	112233
		30	18.2	9.6	2.9	58.7	3.8	3.7	0.5	0.1	0.4	69127
		20	10.5	11.0	3.9	64.0	3.0	4.7	0.4	0.1	0.4	34740
	2	100	35 3	65	16	48 7	2.8	2.4	03	0.1	03	160000
	2	90	24 4	0.5 7 6	1.0	57.2	33	2.8	0.5	0.1	0.3	136004
		80	24.0	7.0	1.9	57.6	33	2.8	0.1	0.1	0.3	135038
		70	23.7	77	19	57.8	33	2.8	0.1	0.1	0.3	134349
		60	23.5	77	19	57.9	34	2.8	04	0.1	0.3	133679
		50	23.3	77	2.0	58.0	3.4	2.8	0.1	0.1	0.3	132873
		40	23.5	78	$\frac{2.0}{2.0}$	58.2	34	2.8	03	0.1	03	131666
		30	19.0	85	2.5	60.2	3.6	33	03	0.1	03	90930
		20	10.3	9.8	3.7	66.5	3.1	3.9	0.3	0.1	0.3	41076
-	蛍光X	線分析結果	25.18	9.00	1.84	54.94	3.99	1.98	0.27	0.37	0.41	

表 4.6 OPC および BSC モルタルのセメント推定組成の SiO2 上限値による変化

モルタル	分析	CaO 下限値				推定組	成(%)					ピクセル
	領域	(%)	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂	数
OPC	1	0	26.1	4.7	2.2	59.3	1.8	2.1	0.4	0.2	0.2	160000
		10	20.6	5.0	2.4	63.9	2.0	2.3	0.4	0.2	0.2	148207
		20	20.4	5.0	2.4	64.1	2.0	2.3	0.4	0.2	0.2	147585
		30	20.3	5.0	2.4	64.2	2.0	2.3	0.4	0.2	0.2	147126
		40	20.2	5.0	2.4	64.4	2.0	2.3	0.4	0.2	0.2	146531
		50	20.4	4.7	2.0	65.0	1.8	2.3	0.4	0.2	0.2	140933
		60	16.4	3.5	1.0	72.4	1.2	1.8	0.3	0.2	0.1	76068
	2	0	36.3	4.2	2.0	50.3	1.6	1.8	0.4	0.1	0.2	160000
		10	21.6	5.1	2.5	62.7	2.0	2.3	0.4	0.1	0.2	128156
		20	21.2	5.1	2.5	63.0	2.0	2.3	0.4	0.1	0.2	127298
		30	21.0	5.1	2.5	63.3	2.0	2.3	0.4	0.1	0.2	126599
		40	20.8	5.1	2.5	63.4	2.0	2.3	0.4	0.1	0.2	125727
		50	21.0	4.7	2.1	64.3	1.8	2.3	0.4	0.1	0.2	119399
		60	16.9	3.6	1.1	71.8	1.2	1.8	0.4	0.1	0.1	61558
	蛍光	X線分析結果	19.33	5.11	2.85	63.94	2.38	2.10	0.26	0.40	0.27	
BSC	1	0	44.8	5.9	1.6	40.3	2.5	2.1	0.4	0.1	0.3	160000
		10	25.1	8.1	2.1	55.4	3.4	2.9	0.5	0.1	0.3	116153
		20	24.7	8.1	2.1	55.7	3.4	2.9	0.5	0.1	0.3	115298
		30	24.4	8.1	2.1	56.0	3.4	2.9	0.5	0.1	0.3	114367
		40	24.1	8.1	2.1	56.4	3.3	2.9	0.5	0.1	0.3	111799
		50	23.2	7.4	1.7	59.3	2.4	3.1	0.5	0.1	0.3	87441
		60	12.6	4.9	1.5	74.9	1.5	1.9	0.4	0.1	0.3	20225
-	2	0	35.3	6.5	1.6	48.7	2.8	2.4	0.3	0.1	0.3	160000
		10	24.2	7.6	1.9	57.5	3.3	2.8	0.4	0.1	0.3	135352
		20	23.8	7.7	1.9	57.7	3.3	2.8	0.4	0.1	0.3	134428
		30	23.6	7.7	1.9	58.0	3.3	2.8	0.4	0.1	0.3	133532
		40	23.3	7.7	1.9	58.3	3.2	2.8	0.4	0.1	0.3	131671
		50	22.7	6.9	1.7	60.8	2.4	2.9	0.3	0.1	0.2	109719
		60	14.3	4.5	0.8	74.8	1.3	1.8	0.3	0.1	0.2	30797
	蛍光	X線分析結果	25.18	9.00	1.84	54.94	3.99	1.98	0.27	0.37	0.41	

表 4.7 OPC および BSC モルタルのセメント推定組成の CaO 下限値による変化

注) 点線は蛍光 X 線分析結果

図 4.5 OPC モルタルにおける SiO2の上限値と SiO2、Al2O3、Fe2O3、CaO の推定値の関係

注) 点線は蛍光 X 線分析結果

図 4.6 BSC モルタルにおける SiO2の上限値と SiO2、Al2O3、Fe2O3、CaO の推定値の関係

注) 点線は蛍光 X 線分析結果

図 4.7 OPC モルタルにおける CaO の下限値と SiO2、Al2O3、Fe2O3、CaO の推定値の関係

注) 点線は蛍光 X 線分析結果

図 4.8 BSC モルタルにおける CaO の下限値と SiO2、Al2O3、Fe2O3、CaO の推定値の関係

4.5 コンクリートに関する試験結果と考察

4.5.1 マッピング分析結果

普通セメントコンクリート(以下 OPC コンクリート)と高炉 B 種セメントコンクリート(以下 BSC コンクリート)の二つの領域の、Si、Al、Fe、Ca の 4 元素の質量百分率および CaO/SiO₂ モル比のマッ ピング分析結果を図 4.9 および図 4.10 に示す。

ケイ砂を用いたモルタルとは異なり、骨材の SiO₂ は 70~100%に相当する白色のみではなく、赤や 桃色でも表示され、その質量百分率はケイ砂よりも幅が広いことが明らかである。したがって、骨材の ピクセルを除外する条件は、モルタルの場合とは異なるものと予想される。モルタルと同様の検討を行 い、確認することとした。

4.5.2 骨材に相当するピクセルの除外とセメントの化学組成の推定

SiO₂の上限値および CaO の下限値を 10%刻みに設定し、これを逸脱するピクセルを除外して換算組 成の平均値を求め、実測の組成と比較した。その結果を SiO₂の上限値、CaO の下限値のそれぞれにつ いて、**表 4.8** および**表 4.9** に示す。また、横軸に SiO₂の上限値または CaO の下限値を、縦軸に SiO₂、 Al₂O₃、Fe₂O₃、CaO の推定値をとりプロットしたものを**図 4.11~14** に示す。

モルタルの場合、SiO2の上限値を 90%とするだけで、推定組成は実測値とかなり近くなり、また SiO2 の上限値が 30~90%の範囲では、推定値には大きな差異はなく、概ね一定のレベルであったが、コン クリートでは違っていた。すなわち、SiO2の上限値が 90%では、実測組成との乖離はいまだ大きく、 上限値を下げることで徐々に実測値と近くなり、OPC では 30%、BSC では 40%とすることで、よう やく実測値とほぼ一致した。モルタルでは、上限値にはある程度の幅が許容されたが、コンクリートで は適切な上限値が限定されるということができる。CaOの下限値についても、適切な範囲はモルタルよ り狭く、OPC コンクリートについては 30~50%、最も望ましくは 50%程度、BSC コンクリートにつ いては 20~40%、最も望ましくは 30%程度として推定を行うことが望ましいと判断される。骨材がケ イ砂のみであるモルタルに対して、コンクリートでは、骨材の組成に幅があることを反映するものと考 えられる。マッピング分析により明らかになる、セメントや骨材の化学組成を参照し、適切なしきい値 を設定することが必要であるということができる。

以上の検討により明らかとなった、適切な推定値を得るために設定すべき SiO₂ または CaO のしきい 値をまとめると、表 4.10 のようになる。なお、一般的には CaO よりも SiO₂の方が、岩石の種類によ り含有量に幅があることを考慮すると、SiO₂の上限値より CaO の下限値を採用する方が、より適切で あるものと考えられる。

48

領域2

領域1

C:セメント、 A:骨材

図 4.9 普通セメントコンクリートのマッピング分析結果 (分析範囲: 400 µ m × 400 µ m)

領域2

領域1

C:セメント、 A:骨材、S:高炉スラグ

図 4.10 高炉 B 種セメントコンクリートのマッピング分析結果 (分析範囲: 400 µ m × 400 µ m)

コンク	分析	SiO。上限值				推定組	し成 (%)				ピクセル
リート	領域	(%)	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	SO3	Na ₂ O	K ₂ O	TiO ₂	数
			_				-	0	_	-	-	
OPC	1	100	27.6	6.3	2.9	54.4	2.0	1.9	0.4	1.4	0.2	160000
		90	24.9	6.5	3.0	56.4	2.1	1.9	0.4	1.4	0.2	154115
		80	24.7	6.6	3.0	56.7	2.1	1.9	0.4	1.4	0.2	153446
		70	24.5	6.6	3.0	56.8	2.1	2.0	0.4	1.4	0.2	152950
		60	23.9	6.4	3.1	57.6	2.1	2.0	0.3	1.3	0.2	150614
		50	21.7	5.5	3.2	61.2	2.3	2.1	0.3	0.4	0.2	141464
		40	21.3	5.4	3.2	61.8	2.2	2.1	0.2	0.4	0.2	139021
		30	18.7	5.8	3.5	63.6	2.4	2.2	0.2	0.4	0.3	111605
		20	10.5	7.7	4.8	68.5	2.7	2.1	0.2	0.3	0.3	52313
	2	100	23.2	6.1	3.2	59.0	2.3	2.1	0.4	0.5	0.3	160000
		90	22.4	6.1	3.2	59.6	2.3	2.2	0.4	0.5	0.3	158203
		80	22.1	6.1	3.2	59.9	2.3	2.2	0.4	0.5	0.3	157592
		70	22.0	6.1	3.2	60.1	2.3	2.2	0.4	0.5	0.3	157016
		60	21.6	6.0	3.2	60.6	2.3	2.2	0.4	0.5	0.3	155572
		50	21.1	5.8	3.2	61.3	2.3	2.2	0.3	0.4	0.3	153302
		40	20.7	5.7	3.2	62.0	2.3	2.2	0.4	0.4	0.3	150688
		30	17.3	6.1	3.5	64.5	2.4	2.4	0.3	0.3	0.3	116390
		20	9.9	7.2	4.1	70.3	2.6	2.2	0.3	0.3	0.3	63413
	蛍光	X線分析結果	19.33	5.11	2.85	63.94	2.38	2.10	0.26	0.40	0.27	
BSC	1	100	30.2	9.5	2.5	48.5	3.3	2.5	0.8	0.4	0.3	160000
		90	27.3	9.9	2.6	50.6	3.4	2.6	0.8	0.4	0.3	153224
		80	26.9	10.0	2.6	50.8	3.4	2.6	0.8	0.4	0.3	152428
		70	26.7	10.0	2.6	51.1	3.4	2.6	0.8	0.4	0.4	151687
		60	26.0	9.8	2.6	52.0	3.5	2.7	0.7	0.4	0.4	148772
		50	25.1	9.6	2.6	53.2	3.5	2.8	0.5	0.4	0.4	144591
		40	24.5	9.5	2.6	54.0	3.5	2.8	0.5	0.3	0.4	140026
		30	19.1	10.4	2.9	57.8	3.6	3.2	0.4	0.2	0.4	86180
		20	11.1	11.8	3.3	64.7	2.9	3.4	0.3	0.2	0.3	39309
	2	100	27.9	10.2	27	49 7	33	2.8	07	04	04	160000
	_	90	27.0	10.2	2.8	50.3	33	2.8	07	0.4	04	157927
		80	26.8	10.3	2.8	50.4	3.3	2.8	0.7	0.4	0.4	157503
		70	25.8	10.2	2.8	51.5	3.4	2.9	0.7	0.4	0.4	154106
		60	25.4	10.2	2.8	51.9	3.4	2.9	0.6	0.3	0.4	152772
		50	25.0	10.1	2.9	52.4	3.5	2.9	0.6	0.3	0.4	150604
		40	24.5	10.0	2.8	53.0	3.5	2.9	0.6	0.3	0.4	146780
		30	19.5	11.2	3.2	55.9	3.7	3.3	0.5	0.3	0.4	92753
		20	11.5	13.6	4.2	60.6	3.4	3.7	0.4	0.2	0.4	40703
	蛍光X	〈線分析結果	25.18	9.00	1.84	54.94	3.99	1.98	0.27	0.37	0.41	

表 4.8 OPC および BSC コンクリートのセメント推定組成の SiO2 上限値による変化

表 4.9 OPC および BSC コンクリートのセメント推定組成の CaO 下限値による変化

コンク	分析	CaO 下限値				推定組	成(%)					ピクセル
リート	領域	(%)	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂	数
OPC	1	0	27.6	6.3	2.9	54.4	2.0	1.9	0.4	1.4	0.2	160000
		10	22.0	5.5	3.0	61.2	2.2	2.1	0.4	0.4	0.2	141805
		20	21.8	5.4	3.0	61.6	2.2	2.1	0.3	0.4	0.2	140632
		30	21.5	5.3	3.0	62.0	2.1	2.1	0.3	0.4	0.2	139328
		40	21.3	5.3	3.0	62.3	2.1	2.1	0.2	0.4	0.2	137508
		50	21.4	5.0	2.4	63.5	1.9	2.1	0.2	0.4	0.2	127720
		60	16.5	4.3	1.3	71.4	1.3	1.6	0.2	0.3	0.1	61584
	2	0	23.2	6.1	3.2	59.0	2.3	2.1	0.4	0.5	0.3	160000
		10	21.2	5.7	3.0	61.8	2.2	2.1	0.3	0.4	0.2	152449
		20	21.0	5.6	2.9	62.2	2.3	2.3	0.3	0.4	0.2	151237
		30	20.8	5.5	2.9	62.4	2.1	2.3	0.3	0.4	0.2	150105
		40	20.6	5.4	2.9	62.8	2.1	2.3	0.3	0.4	0.2	148023
		50	20.5	5.1	2.3	64.3	1.8	2.2	0.3	0.4	0.2	135655
		60	14.1	4.4	1.4	73.6	1.2	1.7	0.2	0.3	0.1	64704
	蛍光	X線分析結果	19.33	5.11	2.85	63.94	2.38	2.10	0.26	0.40	0.27	
BSC	1	0	30.2	9.5	2.5	48.5	3.3	2.5	0.8	0.4	0.3	160000
		10	25.5	9.4	2.4	53.3	3.4	2.7	0.5	0.3	0.3	144929
		20	25.1	9.3	2.3	53.9	3.4	2.8	0.5	0.3	0.3	142828
		30	24.9	9.2	2.3	54.4	3.4	2.8	0.5	0.3	0.3	140327
		40	24.4	9.0	2.2	55.3	3.2	2.8	0.4	0.3	0.3	133829
		50	21.8	8.3	1.9	60.1	2.2	2.8	0.4	0.2	0.2	88617
		60	12.5	6.9	1.1	73.8	1.2	1.9	0.3	0.2	0.2	26641
	2	0	27.9	10.2	2.7	49.7	3.3	3.3	0.7	0.4	0.4	160000
		10	25.4	10.0	2.7	52.2	3.4	3.4	0.6	0.3	0.4	151844
		20	25.1	9.9	2.7	52.7	3.4	3.4	0.6	0.3	0.4	149862
		30	24.8	9.6	2.6	53.3	3.4	3.0	0.6	0.3	0.3	146601
		40	24.4	9.4	2.6	54.2	3.3	3.0	0.5	0.3	0.3	139531
		50	22.2	8.8	2.1	58.7	2.3	3.0	0.4	0.3	0.2	90441
		60	14.2	7.0	1.4	71.2	1.5	2.0	0.3	0.2	0.2	24801
	蛍光	X線分析結果	25.18	9.00	1.84	54.94	3.99	1.98	0.27	0.37	0.41	

注) 点線は蛍光 X 線分析結果

図 4.11 OPC コンクリートにおける SiO2の上限値と SiO2、Al2O3、Fe2O3、CaO の推定値の関係

注) 点線は蛍光 X 線分析結果

図 4.12 BSC コンクリートにおける SiO2 の上限値と SiO2、Al2O3、Fe2O3、CaO の推定値の関係

注) 点線は蛍光 X 線分析結果

図 4.13 OPC コンクリートにおける CaO の下限値と SiO2、Al2O3、Fe2O3、CaO の推定値の関係

注) 点線は蛍光 X 線分析結果

図 4.14 BSC コンクリートにおける CaO の下限値と SiO2、Al2O3、Fe2O3、CaO の推定値の関係

セメント	しきい値	JIS モルタル(ケイ砂骨材)	コンクリート
OPC	SiO ₂ の上限値	30~90%、望ましくは 35%	30%
OPC	CaO の下限値	10~50%、望ましくは 40%	30~50%、望ましくは 50%
DCC	SiO ₂ の上限値	40~90%、望ましくは 60%	40%
DSC	CaO の下限値	10~40%、望ましくは 20%	20~40%、望ましくは 30%

表 4.10 セメント組成推定のための SiO₂ または CaO のしきい値

4.5.3 骨材に石灰岩が使用された場合の推定

骨材に石灰岩が使用されたコンクリートの場合、前節までに記した方法でセメントの組成を推定する ことは難しい。図 4.15 に石灰岩骨材を用いたコンクリートのマッピング分析結果を示す。BEI におい て明灰色で観察される粒子がセメント(記号 C)、暗灰色で観察される粒子が骨材(記号 A)である。 骨材の CaO 含有量は 50~60%の範囲にあり、セメントペーストは 30~50%、セメント粒子は 60~70% であるので、CaO にしきい値を設定してセメント部分と骨材を分けることは不可能である。一方、SiO2 含有量は、骨材ではごく少なく、セメント部分では 20%以上である。このことから、前節までとは逆に、 SiO2 について下限値を設定し、それを下回るピクセルを骨材として除外することが適切と考えられる。

C:セメント、A:骨材

(分析範囲:400 µ m×400 µ m)

表 4.11 に、SiO₂の下限値を 10%刻みで設定し、セメントの組成を推定した結果を示す。また横軸に SiO₂の下限値を、縦軸に SiO₂、Al₂O₃、Fe₂O₃および CaO の推定値をプロットしたものを図 4.16 に示 す。SiO₂の下限値を 20%とした場合に、蛍光 X 線分析による実測組成と近い推定結果を得ることがで きることがわかる。このように骨材に石灰岩が使用された場合は、SiO₂の下限値により骨材のピクセル を除外し、残余のピクセルをセメント部分として、セメントの組成を推定することが適切と考えられる。

表 4.11 骨材に石灰岩が使用されたコンクリートのセメント推定組成の SiO2 下限値による変化

SiO ₂ 下限值			:	推定組	成 (%)					ピクセル
(%)	SiO ₂	Al_2O_3	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂	数
0	31.0	3.4	3.3	56.7	0.9	2.1	0.1	0.3	0.2	160000
10	32.9	3.0	2.6	55.8	0.8	2.1	0.1	0.4	0.1	149387
20	34.0	2.7	2.1	55.6	0.8	2.1	0.1	0.4	0.1	140830
30	38.7	2.8	1.9	50.6	0.7	2.5	0.2	0.4	0.1	88747
40	47.7	2.8	1.6	41.8	0.6	2.8	0.2	0.4	0.1	29521
50	58.9	2.3	1.2	31.9	0.5	2.6	0.2	0.4	0.1	7496
実測組成(%)	34.3	3.3	3.4	54.4	0.8	2.0	0.1	0.3	0.2	

注)実測組成は蛍光 X 線分析結果

注) 点線は蛍光 X 線分析結果

図 4.16 骨材に石灰岩が使用されたコンクリートの SiO₂ 下限値と SiO₂、Al₂O₃、Fe₂O₃、CaO の推定値の関係

4.5.4 化学的変質が推定組成におよぼす影響の確認

長期間を経た実構造物のコンクリートの場合、炭酸化などの化学的変質が進行している可能性に常に 留意する必要がある。化学的変質はセメント組成の推定に影響すると思われる。これを考慮し本節では、 実構造物の表面部から採取した一辺が 40mm の板状試料を用い、その中の複数のポイントについて、前 節と同様に EPMA マッピング分析によるセメントの化学組成推定を実施した。分析ポイントは、図 4.17 に示すように、板状試料内の 9 個とした。 図 4.18 に 9 個のポイントにおけるマッピング分析 結果として、CaO と SiO₂ のモル濃度比(以下 CaO/SiO₂ モル比)の分布を示す。ポイント①および ③には、白色で表示される CaO/SiO₂ モル比が 3.5 を 超える領域が多く存在することが分かる。他のポイン トでは、セメントペースト部分の大半は黄緑色(1.5 ~2.0)で表される。セメント水和物の主体であるカル シウムシリケート水和物(C-S-H)の CaO/SiO₂ モル 比は 1.4~1.7 程度であるので、これらの領域では C-S-H が主として存在すると判断される。これに対し ①、③に多く見られる白色領域では、水酸化カルシウ

図 4.17 マッピング分析を実施したポイント

図 4.18 9 個のポイントにおけるマッピング分析結果 (CaO/SiO₂ モル比の分布、分析範囲: 400 µ m×400 µ m)

ムや炭酸カルシウムなど、C-S-H よりも CaO/SiO₂ モル比の高い物質が卓越するものと思われる。これ らの分析ポイントがコンクリート表面に近く、図 4.17 においてもこれらを含む領域が内部とは異なる 色調を呈することから、①と③では炭酸化が進んでいるものと判断される。

9 個のポイントにおける推定結果を表 4.12 に、またそのうち SiO₂、Al₂O₃、Fe₂O₃および CaO の推 定値をプロットしたものを図 4.19 に示す。推定は、CaO の下限値を 30%として、これを下回るピクセ ルを骨材として除外し、残余のピクセルをセメント部分とみなすことにより実施した。炭酸化の進行が 確認されたポイント①、③の推定結果は他のポイントと比べ、CaO が高く SiO₂が低いものであった。 このように炭酸化が進んだ部位では、そこに卓越する炭酸カルシウムにより、CaO は高く、他の成分は 低く推定されるものと判断される。また①、③ほどではないが、ポイント②の結果にも同様の特徴が認 められた。ポイント②もまた、他のポイントより炭酸化が進んでいるものと思われる。

一方、ポイント⑨では、他と比べ CaO の推定値がやや低い。この板状試料は第6章でも分析を行っ ており、40mm×40mmの領域の元素マッピング結果が図6.14に示されている。その CaO 濃度分布図 によると、ポイント⑨を含み、周囲より CaO 濃度が低い領域があることが確認できる。この領域では、 セメント分の溶出などが生じているものと思われ、推定結果はそれを反映しているものと考えられる。

ポイント④から⑧の推定組成は、CaOに2%程度の幅はあるものの、おおむね一定であった。

以上の結果から、炭酸化やセメント分の溶出などの変質は推定組成に影響するので、そのような部分 は分析ポイントとしては避けるべきであることが明らかである。可能であるならば、本節のように、あ らかじめ広域のマッピング分析を行い、CaO 濃度分布などを求め、それをもとに変質の及んでいない領 域を分析ポイントに選定するのが望ましい。

	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂	ピクセル数
1	17.1	5.4	2.8	69.3	1.5	0.5	0.4	0.8	0.2	135974
2	26.2	9.4	3.4	56.5	0.8	1.0	0.2	0.1	0.3	127316
3	23.9	8.4	3.1	58.7	1.2	1.3	0.5	0.7	0.2	134044
4	28.2	10.2	3.0	54.2	0.9	0.9	0.2	0.2	0.2	152509
5	28.0	9.6	3.1	54.3	0.9	1.4	0.2	0.2	0.2	151470
6	28.5	8.5	3.1	55.2	1.0	1.2	0.2	0.1	0.2	145929
\bigcirc	27.9	8.0	3.0	56.4	0.9	1.2	0.2	0.2	0.3	125601
8	28.3	8.9	2.9	55.3	0.8	0.9	0.3	0.2	0.2	126542
9	29.7	9.4	3.2	52.8	1.0	1.1	0.3	0.3	0.2	145772

表 4.12 9 個のポイントにおけるセメントの化学組成推定結果(%)

(CaO 下限値を 30%として推定)

図 4.19 9 個のポイントにおける SiO₂、Al₂O₃、Fe₂O₃ および CaO の推定値

4. 6 昭和 10年代に建造された構造物のコンクリートへの適用

本研究で確立した方法に基づき、昭和 10 年代に建造された実構造物から採取したコンクリートのセ メントの化学組成を推定した。マッピング分析結果を図 4.20 に示す。骨材の化学組成に着目すると、 SiO₂は 30~40%(黄色で表示)や 50~70%(桃色で表示)であり、また一部には 70%を超える部分 (白色で表示)も認められ、また Al₂O₃ も 15~30%(桃色、白色で表示)である。これらは石灰岩で

C:セメント、A:骨材、S:高炉スラグ

図 4.20 昭和 10 年代に建造された構造物のコンクリートのマッピング分析結果 (分析範囲:400μm×400μm)

はないことが明らかであるので、CaOの下限値を設定し、骨材を除外することとした。CaO下限値を 10%刻みに設定して推定組成を求めた結果、表4.13および図4.21に示すように、高炉セメントに近い 組成と考えられたため、表4.10にしたがいCaO下限値を30%とした場合の推定組成を選択し、表4.14 に示した。現代でいうところの高炉 B種セメントにきわめて近い組成であった。高炉スラグは、図4.20 のBEIにおいて角ばった形状を呈し、またマッピング画像ではAl₂O₃やMgO濃度が比較的高い粒子と して、その存在を確認できる。

表 4.13 昭和 10 年代に建造された構造物のコンクリートのセメント推定組成の CaO 下限値による変化

CaO下限值	推定組成 (%)									ピクセル
(%)	SiO ₂	Al_2O_3	Fe_2O_3	CaO	MgO	SO_3	Na ₂ O	K ₂ O	TiO ₂	数
0	26.7	9.4	2.2	51.1	1.3	4.6	0.5	0.9	0.3	159985
10	25.6	8.6	2.2	54.1	1.3	4.1	0.3	0.4	0.3	150496
20	25.5	8.3	2.1	55.0	1.4	3.9	0.3	0.2	0.3	147330
30	25.2	7.9	1.9	56.0	1.4	4.0	0.3	0.2	0.3	142652
40	24.9	7.7	1.9	56.5	1.3	4.0	0.3	0.1	0.3	138763
50	20.8	7.5	1.8	61.8	0.9	3.7	0.2	0.1	0.2	91091
60	12.9	6.9	1.2	72.4	0.6	2.5	0.2	0.1	0.2	38100

図 4.21 昭和 10 年代に建造された構造物のコンクリートの CaO 下限値と

SiO₂、Al₂O₃、Fe₂O₃、CaO の推定値の関係

表 4.14 昭和 10 年代に建造された構造物のコンクリートのセメントの推定化学組成(%)

(CaO 下限値を 30%として推定)

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂
25.2	7.9	1.9	56.0	1.4	4.0	0.3	0.2	0.3

4. 7 塩酸溶解分析法による推定結果のクロスチェック

4. 2に記したように、硬化体に使用されたセメントの化学組成の推定は、これまでは塩酸溶解分析 法により行われていた。それ以外に適切な方法がなかったため、得られた推定結果を信じるしかなく、 その妥当性を検証することは不可能であった。本節では、明治から昭和初期に建造された七つの構造物 から採取したセメント硬化体について、EPMAマッピング分析と塩酸溶解分析の両方によるセメントの 組成推定を実施し、二つの結果を比較することとした。EPMAマッピング分析による推定の方法は、前 節までに記述した通りである。塩酸溶解分析は以下のように実施した。すなわち、硬化体を微粉砕し、 その約 1g をセメント協会 "コンクリート専門委員会報告 F-18:硬化コンクリートの配合推定に関す る共同試験報告" ®に従い塩酸(1+100)に添加し、溶解した 6 種類の元素の定量を行った。定量は、 Caは EDTA 滴定法、S は硫酸バリウムによる重量法、その他の元素(Si、Al、Fe、Mg)は ICP 発光 分光分析法で実施した。定量結果から、硬化体における各元素の酸化物形態での質量百分率を算出し、 さらにその合計が 96%になるように換算したものを、セメントの推定組成とした。二つの方法による推 定結果を表 4.15 に、またそのうち SiO₂、Al₂O₃、Fe₂O₃、CaO について、二つの方法による推定値の相 関を図 4.22 に示す。

	お	よび塩酸溶解	分析法に。	よるセメン	トの推定組成	梵(%)		
No.	構造物の竣工年	方法	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃
	1880年	EPMA	28.9	7.4	3.0	55.0	1.2	0.9
(I)	(明治13年)	塩酸溶解	25.2	10.0	3.6	53.3	2.6	1.3
0	1892 年	EPMA	28.7	6.8	3.2	55.9	0.9	0.8
2	(明治 25 年)	塩酸溶解	22.7	9.9	5.4	55.3	MgO 1.2 2.6 0.9 1.8 0.9 2.6 1.8 2.6 1.2 2.2 1.6 2.8 0.9 1.1	0.9
ି	1930年	EPMA	30.8	6.6	2.2	54.0	0.9	2.1
0	(昭和5年)	塩酸溶解	29.5	10.9	6.1	44.6	MgO 1.2 2.6 0.9 1.8 0.9 2.6 1.8 2.6 1.8 2.6 1.8 2.6 1.8 2.6 1.8 2.6 1.8 2.6 1.8 2.6 1.2 2.2 1.6 2.8 0.9 1.1	2.3
	1930年代後半	EPMA	27.0	6.0	2.8	57.3	1.8	1.2
4	(昭和10年代前半)	塩酸溶解	28.0	10.7	5.4	48.3	MgO 1.2 2.6 0.9 1.8 0.9 2.6 1.8 2.6 1.8 2.6 1.8 2.6 1.8 2.6 1.8 2.6 1.8 2.6 1.1	1.0
	1934 年	EPMA	28.6	6.0	2.1	57.1	1.2	1.2
0	(昭和9年)	塩酸溶解	28.1	11.2	6.4	46.9	2.2	1.2
6	1934 年	EPMA	25.4	6.4	2.2	59.0	1.6	1.4
\bigcirc	(昭和9年)	塩酸溶解	18.3	13.9	8.2	52.0	2.8	0.9
$\overline{\mathcal{T}}$	1940 年	EPMA	29.1	8.7	3.2	53.5	0.9	0.8
U	(昭和15年)	塩酸溶解	22.0	9.7	3.9	58.4	MgO 1.2 2.6 0.9 1.8 0.9 2.6 1.8 2.6 1.2 2.2 1.6 2.8 0.9 1.1	0.9

表 4.15 明治~昭和初期の構造物のセメント硬化体の EPMA マッピング分析法

図 4.22 より、いずれの元素も塩酸溶解分析法の推定値の方が幅が広いこと、また塩酸溶解分析法の 推定値は EPMA 法と比べ、Al₂O₃と Fe₂O₃が高く SiO₂と CaO が低い傾向があることがわかる。塩酸 溶解法では、推定の誤差を助長する要因として、骨材やセメント水和物の化学的な変質が考えられ、長 期間を経た硬化体では、特にその影響が懸念される。Al₂O₃と Fe₂O₃が高値であるのは、骨材が変質し 塩酸に溶解しやすくなったことが、SiO₂が低値であるのは、炭酸化により C-S-H の SiO₂が塩酸に溶解 しにくくなったことが原因ではないかと考えられる。CaO が低値であるのは、Al₂O₃と Fe₂O₃が高値の ため相対的に低くなったのではないかと思われる。ただし以上の考察は、実験による充分な検証に基づ くものではなく、さらに詳細な検討が必要であると考えられる。

図 4.22 EPMA マッピング分析法と塩酸溶解分析法による推定値(SiO2、Al2O3、Fe2O3、CaO)の相関

なお、ここで比較した値はいずれも推定値であり、実測されたセメントの化学組成ではない。これを 考慮し、化学組成の明らかなセメントを使用したコンクリートについても塩酸溶解分析法による推定を 行い、実測組成と比較することとした。コンクリートは4.5で使用した OPC コンクリートと BSC コ ンクリートとし、セメントの化学組成は蛍光 X 線分析により求めた。実測組成と推定結果を表 4.16 に、 また SiO₂、Al₂O₃、Fe₂O₃、CaO の相関を図 4.23 に示す。2 点のみのデータではあるが、この場合も同 様に、塩酸溶解分析法では Al₂O₃ と Fe₂O₃ は高く、SiO₂ と CaO は低い傾向が見られた。 以上のことを考慮すると、塩酸溶解分析法による推定の精度には、さらに検討を加える必要があり、 硬化体中のセメントの組成を推定するには、本研究で確立した EPMA マッピング分析による方法が適 するものと考えられる。

	方法	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃
	蛍光 X 線	19.33	5.11	2.85	63.94	2.38	2.10
	塩酸溶解	19.0	10.0	8.5	53.0	4.2	1.2
	蛍光X線	25.18	9.00	1.84	54.94	3.99	1.98
BSC 1 2 9 9 - F	塩酸溶解	21.6	12.5	8.3	47.2	5.1	1.3

表 4.16 蛍光 X 線分析法によるセメントの実測組成と塩酸溶解分析法による推定組成(%)

図 4.23 蛍光 X 線分析法による実測値と塩酸溶解分析法による推定値(SiO2、Al2O3、Fe2O3、CaO)の相関

4.8 第4章のまとめ

モルタルやコンクリートの硬化体を分析し、そこに用いられたセメントの化学組成を推定するための 新たな手法として、EPMAマッピング分析による方法を検討し、以下の結果を得た。

- (1)普通セメントおよび高炉 B 種セメントを用いたモルタル(骨材にケイ砂を使用)およびコンクリートによる実験の結果、マッピング分析の際のピクセルを可能な限り小さくし、ピクセルの数は数万~
 +数万点と多くし、さらには骨材に相当するピクセルをできるだけ除外して、各ピクセルについて得られる推定組成を平均することにより、実測値にきわめて近い推定組成を得ることができた。
- (2) 骨材に相当するピクセルの除外には、骨材とセメントペーストで含有量に明白な差異のある元素 についてしきい値を設定し、それに基づいて骨材のピクセルを選別することが有効であった。具体的 には SiO₂について上限値を、または CaO について下限値を設定し、それらを逸脱するピクセルを除 外することで、セメントの組成推定への骨材の影響をほとんど排除できた。
- (3)本研究で用いたモルタルおよびコンクリートについては、推定のために適切な SiO₂の上限値は、 OPC モルタルは 35%、BSC モルタルは 60%、OPC コンクリートは 30%、BSC コンクリートは 40% であった。
- (4) 同じく、推定のために適切な CaO の下限値は、OPC モルタルは 40%、BSC モルタルは 20%、
 OPC コンクリートは 50%、BSC コンクリートは 30%であった。
- (5) 骨材に石灰岩が使用されたコンクリートの場合は、SiO2に下限値を設定し、それを下回るピクセルを除外することで、セメントの組成を推定できた。
- (6) 炭酸化など化学的変質が生じた部分では、精度の良い推定はできないこと、あらかじめ数 cm 角 程度の広域のマッピング分析を行い、CaO 濃度分布などを求め、それをもとに化学的変質が大きく進 んでいない領域を分析ポイントに選定するのが望ましいことを明らかにした。
- (7) 昭和 10 年代に建造された構造物のコンクリートについてセメントの化学組成を推定し、現代で いうところの高炉 B 種セメントであることを明らかにした。
- (8) 塩酸溶解分析法による推定結果を EPMA マッピング分析による推定結果と比較したところ、塩酸溶解分析法では Al₂O₃ と Fe₂O₃ は高く、SiO₂ と CaO は低い傾向が見られた。塩酸溶解分析法による推定の精度には、さらに検討を加える必要があり、硬化体中のセメントの組成推定法としては、 EPMA マッピング分析法の方が適するものと判断された。

【参考文献】

- 1) 沢木大介:化学分析手法によるセメント・コンクリートの品質トラブルの解明,セメント・コンク リート, No.747, pp.38-43, 2009
- 2) 小野田セメント株式会社:小野田セメント製造株式会社 創業五十年史, 1931
- 3) 台信富寿:明治・大正期におけるセメント製造技術の変遷 -小野田セメント製造株式會社を例として-,山口大学博士学位論文,2007.9
- 4) 沢木大介,後藤光亀:野蒜築港市街地跡の遺構から得られたセメント硬化物の化学的評価 -構成 部材の化学分析に基づく近代土木遺産の考古学的解析-,土木学会論文集 D, Vol.65, No.3, pp.229-243, 2009
- 5) 高木亮一, 吉本稔: コンクリート用石灰石骨材の動向とその特徴, Journal of the Society of Inorganic Materials, Japan, Vol.16, pp.191-197, 2009
- 6) 横山滋, 丸田俊久: 硬化コンクリートの配合推定方法, Journal of the Society of Inorganic Materials, Japan (Muki-Materiaru), Vol.2, No.254, pp.55-64, 1995
- 7) 沢木大介,坂井悦郎:微粉末化した岩石類のポゾラン反応性と硬化モルタルの組織および物理性状 への影響,セメント・コンクリート論文集,No.62, pp.89-94, 2008
- 8) セメント協会・コンクリート専門委員会:硬化コンクリートの配合推定に関する共同試験報告, 1967

第5章 長期間経過した硬化モルタル中のセメントのキャラクタリゼーション

5.1 はじめに

結合材や骨材のキャラクターは、コンクリートの長期耐久性を考察する上で、非常に重要な情報であ る。本章では、第2章および第4章に記した基本的手順と新たに確立した方法を駆使し、実構造物から 採取したごく少量の部材の化学分析により、使用された材料のキャラクターを詳細に解明することを試 みた。明治初期に宮城県に計画された野蒜築港の遺構から採取された、我が国では最古の部類に属する セメントと思われる硬化体を分析し、そこに含まれる未水和セメントの化学組成、粒子の大きさ、水硬 性鉱物の種類、量、存在状態などのキャラクターを明らかにした。土木学会の選奨土木遺産にも認定さ れた野蒜築港建設の遺構群は、日本の近代化推進の証であり、そこから得られる材料の化学的解析は、 土木・建築遺産の考古学的研究のツールとしての可能性をも秘めるものと考えられる。

5.2 野蒜築港の概要と明治初期の日本のセメントの事情

5.2.1 野蒜築港の概要

野蒜港 1.2)は明治初期、宮城県を流れる鳴瀬川河口の野蒜地区(現在の東松島市・浜市)に、明治政 府の直轄下で建設が進められた。殖産興業の一環として、東北地方の交通網整備が急務となり、内務卿・ 大久保利通により、仙台湾内にある当地区に港湾建設が決定された。この港湾を要とし、運河や河川お よび道路を介して、仙台や岩手、山形、福島、秋田など東北各県を結ぶ交通網構想が掲げられた。オラ ンダから招聘した土木技術者ファン・ドールンの指揮下、港湾の第一期工事が1878年(明治11年)7 月に着工された。1882年(明治15年)10月、突堤完成により開港式が行なわれた。しかし、設計や 施工技術上の問題点、さらに1884年(明治17年)9月の大型台風による突堤破壊が直接的な引き金と なり、翌年、明治政府は港の建設を断念し、「野蒜港」は幻の港となった。

港の建設当時、鳴瀬川の河口にある湿地帯を埋め立て、新たな市街地を造成する計画があった^{1,2)}。 現在、市街地化計画跡である浜市地区には、当時を物語るいくつかの遺構が残存する^{1,2)}。現代の下水 道に相当する「悪水吐暗渠」跡からは、土管の接合部にセメント硬化体と思われる材料が発見された(**図** 5.1)^{1,2,3)}。内港部の土砂堆積を抑制するため開削された新鳴瀬川に架けられた上の橋のレンガ製橋脚に は、目地材としてセメント硬化体と思われる材料が使用されていた(**図** 5.2)。東北初の測候所として、 1881 年(明治 14 年)に建造された野蒜測候所跡には、レンガ製の門柱といわれる遺構(**図** 5.3)が残 存し、その目地材にもセメント様の材料が使用されていた。これらが当時のセメントの硬化体であるな ら、日本では最古の部類に属するものであり、実証的試料としてきわめて価値が高い。本章ではそれぞ れを「悪水吐暗渠」、「上の橋」、「測候所跡」として、キャラクタリゼーションを実施した。

66

図 5.1 悪水吐暗渠跡とそこに使用された近代土管接合部のセメント様硬化体 1.2.3)

図 5.2 上の橋のレンガ製橋脚

図 5.3 測候所跡のレンガ門柱

5.2.2 明治初期の日本のセメントの事情

(1) セメント産業の勃興

日本におけるセメントの使用は、徳川幕府末期に始まったとされる^{4,5}。当初、セメントは欧州から の輸入品であった。それが極めて高価であったこと、加えて官庁、大学、鉄道など大型の建設工事が明 治に入り急速に増加したことにより、セメントの自国生産の必要性が高まった⁶⁾。1872年(明治5年) 7月、東京・深川に建設された官営セメント工場で、セメント製造の研究が開始され、1875年(明治8 年)5月19日、宇都宮三郎の指導下、初めて試験的製造に成功した⁷⁾。1881年(明治14年)には、最 初の民間セメント会社が設立され、1883年(明治16年)、山口県・西須恵村字小野田(現在の山陽小 野田市)で製造が始められた⁸⁾。明治初期のセメント輸入量と国内生産量を**図 5.4** に示す⁸⁾。国内需要 の増加は当初、輸入により補われていたが、1877年(明治10年)以降、国産品の供給が始まった。野 蒜港の着工は、まさにその頃であった。

図 5.4 明治初期のセメントの輸入量と国内生産量 ⁸⁾

(2) 国産セメントの性状

国内製造が始められた明治初期から大正、昭和にかけて、セメントの性状は大きく変化した。その背 景には、製造様式の進化、品質向上意識の高まり、それらを反映した原料事情の変化などがあった。セ メントの品質と密接な関係のある粒度と化学組成について、時代による変遷を記す。

1 粒度

図 5.5 に、日本のセメント中の粗い粒子の含有量の時代変化⁹⁰を示す。縦軸は、網目の大きさ 88 µ m の篩を通過せず、篩上に残る粒群の含有量(88 µ m 篩上残分)である。明治期のセメントの粗粒分は多く、中には 88 µ m 篩上残分値が 60%を超えるものもあった。時代とともに粗粒分が減少したことが、 **図 5.5** より明らかである。

この理由の一つに、クリンカーの粉砕方法の発達があるものと考えられる。明治初期、クリンカーの 粉砕は、フレッドミルという石臼のような設備で行われており、多分に原始的であった。やがて稼動効 率が良く、生産能力の高いチューブミルに代わり、また分級機なども導入され、粉砕能力は著しく向上 した¹⁰。

また、今日に残るセメントの粒度に関する記録は、図 5.5 に示す東京工試の試験結果 9や製造工場に 残る記録 100のいずれもが、明治中期以降のものである。粒度がセメントの品質と密接に関係するという、 今日では常識ともいえる認識が、明治初期には希薄であったものと思われ、これもまた、粗粒分が多かっ たことの要因の一つと推察される。

注1)通産省工業技術院東京工業試験所による依頼セメント試料の試験結果 注2)縦軸は網目の大きさ88μmの篩を通過せず、篩上に残る粒群の含有量

図 5.5 普通セメント中の粗粒分含有量(88µm篩上残分)の推移⁹⁾

2 化学組成

粒度と同様に、セメントの化学組成もまた、時代とともに大きく変化した。1887年(明治20年)から1927年(昭和2年)まで5年毎の、小野田セメント社の普通セメントの化学組成の推移^{10,11)}を図5.6に示す。点線は、現代の普通セメントの標準的な数値を示す。明治期のセメントは、現代のものと比べ、CaOは少なくAl₂O₃が多い組成であった。年代とともにCaOは増加、Al₂O₃は減少し、昭和初期に現代のセメントに近い組成となった。明治期のセメントが、現代のものより低CaO、高Al₂O₃であったことには、以下のような事情がある。

今日のセメント製造には、石灰岩やケイ石、粘土などが原料として使用されている。それらは品位や 組成に基づき、厳密に選定されている。しかし明治初期のセメントは、石灰と、工場付近の川底から得 られる泥土のみで作られていた。交通網が今日より未発達であった当時においては、工場付近で産出し、 定常的に入手できることが、原料に求められる重要な要件であったものと考えられる。川底泥土の主成 分は粘土類であり、SiO₂に対する Al₂O₃の比率が、セメントに比べて高い組成であった^{10,11}。その結果、 当時のセメントは高 Al₂O₃ であったものと考えられる。

当時のセメントの製造は、徳利窯^{12,13}と通称される竪窯で行なわれていた⁸。このことも、セメントの組成と関係する。徳利窯の外観と、セメント焼成のしくみを図 5.7⁸に示す。徳利窯では、石灰と泥土を所定の割合で混合して調製したセメント原料を、角製と呼ばれる角型のケーキに成型し、乾燥して自立できる程度の強度を持たせた後、窯内部に燃料の石炭と交互に積み重ねて焼成した⁸。この方式では、

69

注 2) 5年間の平均値。例えば 1887年の値は 1887~1891年の平均値を示す

注3) 点線は現代の普通セメントの標準的な数値

図 5.6 明治以降の普通セメント組成の変化(点線は現代の組成)^{10,11)}

積み重ね工程での角製の崩壊により製造効率が低下することのないよう、壊れにくい角製を作ることが 重視された^{10,11)}。そのためには、石灰との密着が優れる粘土を用いることが望まれ^{10,11)}、それらは一般 に高 Al₂O₃質であった。

以上のように、当時は製造の効率が最も優先されていた。その背景には、粒度と同様に、化学組成が セメントの品質と密接に関係することが、まだ十分に認識されていなかったという事情があったものと 思われる。

図 5.7 重要文化財に指定された徳利窯(山口県山陽小野田市)の外観と焼成の模式図 8)

焼成方式は変遷し、1903年(明治 36 年)には現代のロータリーキルンの原型である回転窯へと進展 し、徳利窯は使用されなくなった¹⁰。これにともない、角製製造に関する粘土選定の制限、すなわち高 Al₂O₃質の粘土使用は必須ではなくなり、セメントの Al₂O₃は減少した^{10,11)}。また、品質向上への意識 が高まるにともない、セメントの強度発現性状にとって CaO が重要であることが認識されるようになっ た。その結果、石灰の混合割合は増加し、セメントの CaO は増加した¹⁰⁾。こうしてセメントの化学組 成は、現代のセメントに近づいていった。

5.3 野蒜築港遺構群から得られた硬化体の化学分析評価

5.3.1 試験方法

(1) 蛍光 X 線法による化学組成分析

硬化体の数グラムを振動ディスクミルで微粉砕し、JIS R 5202 "ポルトランドセメントの化学分析方法"に従い強熱減量(ig.loss)を測定し、またプレス成形したものを蛍光 X 線分析に供した。蛍光 X 線分析装置は理学電機工業の RIX3100 を使用した。測定条件は**表 5.1**の通りである。

(2) 塩酸溶解分と不溶分の分析

硬化体の数グラムを振動ディスクミルで微粉砕し、セメント協会 "コンクリート専門委員会報告 F-18:硬化コンクリートの配合推定に関する共同試験結果"¹⁴⁾に従い塩酸(1+100)で分解し、不溶分 の秤量及び溶解元素の定量を行った。溶解元素は、カルシウムは EDTA 滴定法、硫黄は硫酸バリウムに よる重量法、その他の元素は ICP 発光分光分析法で定量した。ICP 発光分光分析装置は Varian の VISTA AX を使用した。測定条件は**表 5.2**の通りである。

(3) 粉末 X線回折法による構成物質の同定

硬化体を乳鉢中で軽く砕きながら、ピンセットで骨材と思われる粒をできるだけ除去し、さらに網目 篩に通して微粉のみを回収した。これをメノウ乳鉢中ですりつぶし、指頭に粒状を感じなくなるくらい の微粉末として測定に供した。網目篩は、目開き 70 µ mのものを用いた。ただし、試料『測候所跡』の みは、少量のため骨材粒の分離が難しく、硬化体全体を粉砕した。粉末 X 線回折装置は理学電機工業の RINT2500 を使用した。測定条件は**表 5.3**の通りである。

(4) 電子線マイクロアナライザーによる微細領域の組織観察及び元素マッピング分析

硬化体を切断して 15mm 角程度の試料を採取し、乾燥後、エポキシ樹脂で固化した。硬化体の一面を 鏡面研磨し、研磨面に炭素を蒸着し、電子線マイクロアナライザー(EPMA)を用いて背面反射電子像

(BEI)の観察及び各種元素のマッピング分析を実施した。EPMA 装置は日本電子の JXA-8621M または JXA-8200 を使用した。観察および分析は、表 5.4 のように、セメント系材料に通常適用している条件にしたがって実施した。

なお5.3.3(2)に記すセメントの化学組成推定の方法は、第4章に記した通りである。

表 5.1 蛍光 X線分析の条件

管球	Rh	分光結晶	LIF200, PET, Ge, RX25			
管電圧	55kV	検出器	SC, PC			
管電流	70mA	分析線	Κα			

表 5.2 ICP 発光分光分析の条件

プラズマ出力	1.0kW		Si 251.611nm		
アルゴンガス	キャリヤ 0.9 L/min	测空冲目	Al 396.152nm		
ノルコンカス	補助 1.5 L/min	側足仮女	Fe 259.940nm		
流重 -	冷却 15.0 L/min		Mg 279.553nm		

表 5.3 粉末 X線回折測定の条件

管球	Cu	ステップ	0.02°		
管電圧	50kV	スキャン速度	5°/min		
管電流	250mA				

DEI 细皮	加速電圧	15kV
DEI	試料電流	1×10 ⁻⁹ A
-	加速電圧	15kV
~	计划专注	5×10 ⁻⁸ A(分析領域: 800 µ m×800 µ m)
ツ い	武州电伽	1×10 ⁻⁷ A(分析領域: 8mm×8mm)
	計数時間	50msec/ピクセル
У H	プローブ	1μm(分析領域: 800μm×800μm)
	径	10µm(分析領域: 8mm×8mm)
万	ピクセル	2μm (分析領域: 800μm×800μm)
ועי	サイズ	20µm(分析領域: 8mm×8mm)

表 5.4 EPMA による観察および分析の条件

5.3.2 セメント硬化体であることの確認

野蒜築港市街地跡の遺構はいずれも、セメントが貴重品であった明治初期に築かれたものである。そ れらの構成部材が本当にセメント硬化体であるか否かは、外見だけでは判断できず、化学分析や観察に より確認することが必要である。まず始めにそれを試みた。

(1) 化学組成分析による確認

硬化体の化学組成を求めることにより、その正体を特定することを試みた。

蛍光 X 線法による化学組成分析結果を表 5.5 に示す。三つの硬化体はいずれも SiO₂、Al₂O₃、CaO を 多く含む。SiO₂ と Al₂O₃ は土、砂、石、岩などに多く含まれ、CaO はセメントの主たる構成成分であ る。このことから、これら硬化体が、セメントと砂などを配合し硬化させたモルタルである可能性が示 唆される。

	ig.loss	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂	P_2O_5	MnO	Cl
悪水吐暗渠の硬化体	16.10	47.00	9.69	4.75	16.28	3.22	0.17	1.65	0.44	0.49	0.17	0.13	0.006
上の橋の硬化体	15.49	42.07	9.14	3.81	24.71	1.94	0.62	1.15	0.36	0.42	0.12	0.11	0.157
測候所跡の硬化体	20.07	37.59	8.59	4.18	20.21	4.18	1.82	1.25	0.29	0.40	0.27	0.14	0.979

表 5.5 蛍光 X線法により求めた硬化体の化学組成(%)

塩酸溶解成分の分析により、さらに確かな確認が可能である。この方法は、塩酸に対しセメントは溶 解し、骨材はほとんど溶解しないことを利用し、両者を分離するものである。溶解部分は主としてセメ ントからもたらされるので、その元素構成は、使用されたセメントの化学組成を反映する。塩酸溶解分 析の結果を表 5.6 に示す。また、SiO₂~SO₃の6成分の合計が96%となるよう、各成分値を換算した値 を表 5.6 に併記する。硬化体がセメントを用いたものであるならば、この換算値はセメントの化学組成 と近似した値となるはずである。表 5.6 に明らかなように、換算組成はセメントの化学組成と比較的近 い。このことから、本試料がセメントを使用したものであることが分る。

		ig.loss	不溶分	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	材料の	材料の重量比(配合)推定			
		(%)									水 セメント 骨材			
悪水吐暗渠	分析值	16.10	61.48	2.47	2.71	1.09	13.63	1.78	0.14	0.74	1	2.82		
の硬化体	換算値	_	_	10.9	11.9	4.8	60.0	7.8	0.6					
上の橋	分析値	15.49	42.80	10.69	4.24	1.52	22.60	1.09	0.57	0.38	1	1.05		
の硬化体	換算値	_	_	25.2	10.0	3.6	53.3	2.6	1.3					
測候所跡	分析値	20.07	48.47	4.74	2.34	1.13	19.42	2.29	0.96	0.65	1	1.57		
の硬化体	換算値	_	_	14.7	7.3	3.5	60.4	7.1	3.0					
セメントの	明治20年	_	_	22.9	7.9	2.2	56.9	2.8	_					
組成例	現代	_	_	21.1	5.2	2.8	64.2	1.5	2.0					

表 5.6 硬化体の塩酸溶解分析結果および換算値

注) 換算値:合計が96%となるようSiO2~SO3の6成分値を換算した値

ig.loss が水に、不溶分が骨材に、SiO₂、Al₂O₃、Fe₂O₃、CaO、MgO、SO₃の6成分がセメントに相 当するとみなして求めた水、セメント、骨材の重量比(配合)(セメントを1とする)を表 5.6 に示す。 上の橋、測候所と比べ悪水吐暗渠は、水と骨材の比率が高かった。三つのセメント硬化体の配合に違い があったことを示す。構造物の強度を保持する必要のあった前二者に対し、土管接合用の後者では強度 への要求は小さく、貴重品であったセメントを節約する意図があったことが推察される。

(2)構成物質の同定による確認

粉末 X 線回折の結果を図 5.8 に示す。また縦軸の範囲を狭め、かつ統一し、小さいピークまでも確認 でき、その大きさを硬化体間で比較できるように表示したものを図 5.9 に示す。これらをもとに、各硬 化体中に存在が確認された骨材鉱物以外の物質を表 5.7 に示す。図 5.8 および図 5.9 では、低角度側に エトリンガイト (図中の記号 E、3CaO・Al₂O₃・3CaSO₄・32H₂O) やフリーデル氏塩 (図中の記号 Fr、 3CaO・Al₂O₃・CaCl₂・10H₂O) のピークが認められた。また 32~35°には、ビーライト (図中の記 号 B) を確認できた。これらより本試料はセメント硬化体であることが分かる。

図 5.8 硬化体の粉末 X 線回折結果

B:ビーライト(2CaO・SiO₂), al:カルシウムアルミネート(3CaO・Al₂O₃), f:フェライト(4CaO・Al₂O₃・Fe₂O₃), P:ポルトランダイト(Ca(OH)₂), C:カルサイト(CaCO₃), E:エトリンガイト(3CaO・Al₂O₃・3CaSO₄・ 32H₂O), Fr:フリーデル氏塩(3CaO・Al₂O₃・CaCl₂・10H₂O), Ms:モノ サルフェート水和物(3CaO・Al₂O₃・CaSO₄・12H₂O), Mc:モノカーボ ネート水和物(3CaO・Al₂O₃・CaSO₄・12H₂O), Br:ブルーサイト (Mg(OH)₂)), Q:石英(SiO₂), F:長石族(曹長石 Na₂O・Al₂O₃・6SiO₂など)

表 5.7 硬化体中に確認された結晶質物質(骨材鉱物を除く。物質を表す記号は図 5.9 と同じ)

 \odot :>4000cps, \odot : 2000~4000cps, \bigcirc : 500~2000cps, \triangle : 500cps> (cps: Counts per second)

	セン	メント釒	広物		水和生成物あるいはその派生物							
	В	al	f	Р	С	Ε	\mathbf{Fr}	Ms	Mc	Br		
悪水吐暗渠の硬化体	0	\bigtriangleup	0		00	\bigtriangleup		\bigtriangleup	\bigtriangleup	0		
上の橋の硬化体	0	\bigtriangleup	0	0	0	0	0			0		
測候所跡の硬化体	\bigtriangleup	\bigtriangleup	\bigtriangleup		00	\bigtriangleup	0			0		

(3) 微細領域観察による確認

試料を切断し、平滑に研磨した面の微細な領域を、EPMAで観察、分析することにより得られる情報 は、セメントか否かを判断するためのさらに有力な材料となり得る。三つの硬化体の BEI (背面反射電 子像)を図 5.10 に示す。いずれも 800 µ m×800 µ m の領域についての観察結果である。BEI は、試料 が反射する電子(背面反射電子)を検出し、画像化したものである。平均原子番号の大きい(=重い元 素を含む)物質は、反射電子強度が大きいため、明るく観察される。平均原子番号に起因する明暗によ り、組織や構成物質の相違を識別することができる。モルタルやコンクリートでは、未水和セメントや 水酸化カルシウムは明るく、水和したセメントはそれより暗く観察される。骨材は母岩の種類により組 成はさまざまだが、多くは未水和セメントより暗く観察される。亀裂や空隙など実体のない部分は、非 常に暗く(黒く)観察される。図 5.10 において、明るい粒子状の部分(記号 U)は未水和セメント粒 子、角ばった暗色の部分(記号 A)は骨材、それらの間を充填する暗い部分は水和セメント(主にカル シウムシリケート水和物)、黒い部分は空隙(記号 P)であり、そのうち球状の部分は気泡と判断され る。骨材やセメント粒子を含むことから、これら硬化体はいずれもセメント硬化体(モルタル)である と断定できる。

悪水吐暗渠と上の橋の硬化体では、セメント粒子を取り囲むように、暗色の部分(矢印で指し示す) が観察される。これはセメント粒子内部の水和反応層であり、元のセメント粒子の形状や大きさは、こ の層も含めたものである。

悪水吐暗渠の硬化体は、他の二つと比べ空隙が多い。図 5.10 以外の複数の視野についても BEI を観察したところ、悪水吐暗渠の硬化体は総じて空隙が多く、特に骨材周囲にセメントが行き渡っていない 部分が多く認められた。他の二つと比べ、骨材に対しセメントが少ないことが明らかであり、前述した、 塩酸溶解分析により推定された配合と符合する結果であった。

図 5.10 と同じ領域について、元素マッピング分析を行った。セメントの主要成分である CaO と SiO₂ の濃度分布を求め、CaO/SiO₂ モル比に換算し、色分けして表示した。結果を図 5.11¹⁵に示す。未水和 セメント粒子の CaO/SiO₂ モル比に着目すると、悪水吐暗渠と測候所跡の硬化体は主として 2.0~2.5(赤 色で表示)、上の橋では主として>3.0(白色で表示)であり、それぞれビーライト(2CaO・SiO2)及 びエーライト(3CaO・SiO2)から成ることが分る。なお、測候所跡のセメントペーストにおいて、白 色で表示される CaO/SiO2モル比の高い部分が見られるが、これらには、水酸化カルシウムあるいは炭 酸カルシウムなど、カルシウムに富む物質が偏在しているものと思われる。

悪水吐暗渠の硬化体

上の橋の硬化体

測候所跡の硬化体

A:骨材、U:未水和セメント、P:空隙

図 5.10 三つの硬化体の BEI (観察領域: 800 µ m×800 µ m)

悪水吐暗渠の硬化体

上の橋の硬化体

測候所跡の硬化体

注1) カラーバーの数値は CaO/SiO2 モル比を表す.

図 5.11 三つの硬化体の元素マッピング分析結果(CaO/SiO2モル比)(分析領域:800 µ m×800 µ m)¹⁵⁾

5.3.3 セメント性状の評価

野蒜築港市街地跡から採取されたセメント硬化体様の試料は、いずれもモルタルであることが判明した。次に、各々のモルタル中に残るセメント粒子に着目し、使用されたセメントの粒度や化学組成などの性状評価を試みた。野蒜港関連の工事用として、官営深川工場からセメントが出荷されたことが、記録に残っている ?。一方、前述のように、明治初期には輸入セメントも使用されていた。三つのモルタルのセメントが国産と輸入品のいずれであるかを特定することは、当時のセメントの性状に関する現状の知見では困難であるが、前述のようなセメント性状の時代推移とモルタル中のセメントの評価結果を照合するなら、セメントの製造された年代については推察が可能と考えられる。そのような観点で、分析及び観察結果を精査した。

(1) セメント粒子の大きさ

セメントは水と反応し、水和物を生成するが、硬化体の内部で水との接触が不十分な場合などには、 未水和のまま残存することがある¹⁶⁾。三つのモルタルでも、未水和セメントは認められた。前述のよう に、明治初期のセメント産業草創期には粗かったセメント粒子は、時代を経るにともない微細化して いった事実がある^{9,10)}。モルタル中に残るセメント粒子の大きさは、セメントが製造された時代を推察 する手がかりの一つになると考えられる。

三つのモルタルの中で、セメント粒子が特に多く確認された上の橋のモルタルについて、多数の視野 の BEI を観察した。その一部を図 5.12 に示す。内部の水和反応層を見極めながら、セメント粒子の外 周を点線で囲んだ。粒子の大きさにはばらつきがあり、その長径は小さいもので 100~200 µ m、大き いもので 500~600 µ m であった。観察面はあくまで粒子の一つの断面であり、必ずしも粒子の最大径 の部分を観察しているとは限らないことを考慮すると、粒子はさらに大きいものである可能性がある。

本章で評価対象とした明治初期のセメント硬化体に加え、大正中期および昭和初期のセメント硬化体 に残存するセメント粒子の観察像を図 5.13 に示す。明治初期の硬化体には長径 500 µ mほどの粒子が確 認されるが、大正のものでは 200 µ m 程度、昭和のものではさらに小さく 100 µ m程度になっているこ とが確認された。この結果は、明治から昭和初期にかけ、セメント中の粗粒分の含有率が次第に減少し たという史実を実証するものと考えられる。

図 5.13 において、明治初期の 500 µ m ほどのセメント粒子の内部の大部分は明るく観察され、いま だ水和していないことが明らかである。しかし大正期の硬化体では、セメント粒子には暗く観察される 内部水和層が多く、さらに昭和の硬化体ではセメント粒子内部のほとんどが水和していることが分かる。 セメント粒子の小径化により、内部に残る未水和部分が少なくなったことを、この観察結果は示すもの と考えられる。コンクリートの強度が長期にわたり伸長するためには、ビーライトが多く粒子の粗いセ メントが望ましいとする研究 ¹⁷があり、実構造物について確認した報告 ¹⁸⁾もある。しかし、粒子の粗 さがどの程度まで許容されるか、適正な粒径はどの程度であるかについては、これまでほとんど検討さ

77

れていない。未水和部分を残さず、セメントのほとんどが水和することが望ましいとの観点に立つなら、 図 5.13 のような粒子径と内部水和層の関係をより広範に検討することにより、適正な粒度の範囲を考 察できる可能性がある。

図 5.12 上の橋のモルタルの複数視野の BEI

1879年(明治 12年)

1918年(大正7年)

1940年(昭和15年)

図 5.13 さまざまな時代のセメント硬化体中に認められるセメント粒子

(2) セメントの化学組成

セメントの化学組成もまた、時代とともに変遷した事実があり、製造年代を推察する手がかりとなり 得る。本節では、第4章に記述した EPMA マッピング分析法により、三つのモルタルに使用されたセ メントの化学組成を推定した。

図 5.14、5.15 および 5.16 にマッピング分析結果を、表 5.8 に化学組成の推定結果を示す。推定において骨材を除外するための条件は、CaOの下限値を 30%とし、これを下回るピクセルを取り除くこととした。三つのモルタルのセメントの組成には、かなりの差があるが、いずれも明治期のセメントのように、現代のものと比べて低 CaO、高 Al₂O₃の組成であることは共通していた。ただし5.3.4(1)に後述するように、本モルタルの一部のものは海水で練り混ぜられた可能性を否定できない。そのような場合は、海水からもたらされる元素による推定組成への影響はあるものと考えられる。

なお前述のように、本モルタル中のセメント粒子は数 100µm と大きなものであり、400µm×400 µm というマッピング分析の領域のほとんどがセメント粒子で占められる可能性もある。その一例の マッピング画像とセメントの推定組成を図 5.17 と表 5.9 に示す。CaO/SiO2モル比より、構成鉱物は エーライトと判断され、また推定組成はエーライトの理論組成に比較的近く、表 5.8 に示す上の橋モル タルのセメントの推定組成とは大きく異なるものであった。セメント粒子において、エーライトが偏在 する部分を分析領域に選んだため、このような結果になったと判断される。このことから、セメントの 平均的な組成を推定するためには、セメント粒子で占められることのないように、分析領域を選定する 必要があることが明らかである。

図 5.14 悪水吐暗渠のモルタルの元素マッピング分析結果(分析領域:400 µ m×400 µ m)

図 5.15 上の橋のモルタルの元素マッピング分析結果(分析領域: 400 µ m×400 µ m)

図 5.16 測候所跡のモルタルの元素マッピング分析結果(分析領域:400 µ m×400 µ m)

表 5.8 三つのモルタル中のセメントの推定化学組成(%)

	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂	ピクセル 数
悪水吐暗渠	30.6	9.3	3.3	45.3	3.9	3.8	0.4	0.1	0.3	129357
上の橋	28.9	7.4	3.0	55.0	1.2	0.9	0.3	0.1	0.3	146539
測候所跡	24.3	6.8	2.9	52.8	2.8	6.7	0.3	0.1	0.3	145971
組成例	22.9	7.9	2.2	56.9	2.8	—	—	—	—	—

(CaO 下限値を 30%として推定した)

注) 組成例は明治 20 年頃のセメントの組成の一例 10,11)

図 5.17 上の橋のモルタル中のセメント粒子のマッピング分析結果 (分析領域: 400 µ m × 400 µ m)

表 5.9 図 5.17 の領域について推定したセメントの化学組成(%)

(CaO 下限値を 30%として推定した)

SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	SO ₃	Na ₂ O	K ₂ O	TiO ₂	ピクセル数
17.2	6.6	2.3	69.2	0.9	0.2	0.1	0.2	0.3	159999

(3) セメントの構成鉱物の種類と状態

セメントを構成する鉱物の種類と量は、化学組成と密接に関係する。明治初期のセメントの化学組成 が、現代のものとは大きく異なることから、鉱物の構成割合、すなわち鉱物組成にも、現代のセメント との違いがあることが推測できる。モルタルに残るセメント粒子について、構成鉱物に着目して観察し た。

セメントの SiO₂ と CaO の量は、構成鉱物であるカルシウムシリケート相、すなわちビーライト (2CaO・SiO₂、略号 C₂S) とエーライト(3CaO・SiO₂、略号 C₃S)の割合を決定し、SiO₂に対し CaO が少ないと、ビーライトが多くエーライトが少ないセメントとなる。明治初期のセメントは、現代のも のと比べ、SiO₂に対する CaO の比率が小さいものであった。また化学組成と同じく、鉱物の生成に関 する影響要因の一つである焼成温度は、徳利窯では最高で1,200℃程度と推測され¹⁹、現代の焼成様式 と比べて低かったものと思われる。これらの事情から、エーライトを主成分とする現代のセメントとは 異なり、当時のセメントの主たる構成鉱物はビーライトであったと考えられる。図 5.11 のマッピング 分析結果では、悪水吐暗渠と測候所跡のセメント粒子にビーライトが確認されており、これを裏づける。 これらでは、他の視野でもビーライトが多かった。図 5.11 の上の橋のセメント粒子に確認されたのは エーライトである。これは当時の原料調合や焼成技術上、均一な組成のセメントを製造することが困難 であったため、部分的に生成したものと考察するが、他の二つとは組成の異なるセメントが使われた可 能性も否定できない。そのいずれであるかは、本研究で実施した範囲の試験では特定できず、今後の課 題としたい。

セメントの構成鉱物は**図 5.18**(現代の普通セメント)に示すように、粒子状のエーライトやビーライトなどの間隙を、カルシウムアルミネート相($3CaO \cdot Al_2O_3$ 、略号 C_3A)やフェライト相($4CaO \cdot Al_2O_3 \cdot Fe_2O_3$ 、略号 C_4AF)などの間隙質相が充填する形で存在する。カルシウムシリケート相と間隙質相の 割合は($CaO + SiO_2$)と($Al_2O_3 + Fe_2O_3$)の比と関係し、($CaO + SiO_2$)に対して($Al_2O_3 + Fe_2O_3$)が

図 5.18 現代の普通セメントの BEI

図 5.19 上の橋モルタル中の未水和セメントを拡大した BEI15)

多いと間隙質相は多くなる。上の橋モルタルの未水和セメント内部を拡大し、図 5.19¹⁵に示した。図 5.18 の現代のセメントと比べ、上の橋のセメントは間隙質が多いことが分かる。これは、明治初期のセメントが高 Al₂O₃質のため、間隙質相の多いものであったであろうことと符合する。

上の橋のセメントは、間隙質相の量のみならず、その存在状態も現代のセメントと異なることが、図 5.18 及び図 5.19¹⁵⁾から明らかである。これは、セメントの製造様式を反映するものと考えられる。現代 の製造方法では、クリンカーはロータリーキルン内で最高 1,500℃程度に加熱された後、速やかにキル ン外に排出され、エアークーラーで急速に冷却される。排出された時の冷却の速度がセメントの品質に 関係し、強度発現性等の点から、急速に冷却されることが望ましいからである。しかし明治期に主流で あった徳利窯では、クリンカーの排出は、窯内の温度が下がってからとならざるを得ず、クリンカーは 必然的に緩慢冷却であった。現代のクリンカーでも、実験的に緩慢冷却されたものは、図 5.20 に示す ように、図 5.18 のクリンカーとは明らかに異なる組織を示す。図 5.18 のクリンカーの間隙質相は明瞭 な針状形態を示すが、緩慢冷却された図 5.20 のクリンカーでは C4AF は独立して析出し(図 5.20 の視 野では C3A は認められない)、明瞭な針状の形態とはならない。上の橋のセメントに見られる間隙質相 は図 5.20 のものと類似しており、緩慢冷却であったことを示唆する。徳利窯で製造されたと考えるに 矛盾のない結果である。

図 5.20 実験的に緩慢冷却された現代のセメントの BEI

以上に記したように、野蒜築港跡地遺構のセメント硬化体に残るセメントの特徴を文書記録 9,10,11)に 残る明治初期のセメントの性状と照合すると、符合する点が多く、これらのセメントが明治初期のもの と考えることに不合理のない結果であった。このような分析や観察手法を駆使することで得られる情報 を基に、セメントの製造年代を推定できる可能性を示すものであり、新たな考古学的解析手法として期 待できる。

なお、セメントの年代のみならず、生産地までも特定できるなら、考古学的解析手法としての価値は さらに大きいものとなる。そのためには、日本のみならず海外各国におけるセメントの製造様式や材料 事情とその時代変遷を幅広く把握し、生産地を特定し得る地域性に富んだ特性値を明らかにし、その評価技術を確立することが必要である。現時点ではこれらは未達であり、今後の課題としたい。

5.3.4 セメント硬化体の性状評価

(1) 塩素の含有量

図 5.11 のように、1mm 未満の狭い領域の元素マッピング分析では、未水和セメント粒子の大きさや 組成に関する情報などを得ることができる。これより広い、mm~cmの領域の分析により、水和セメン ト(セメントペースト)や骨材の特徴の評価を試みた。三つのモルタルの、およそ 8mm×8mm 領域の 元素マッピング分析結果を図 5.21、5.22 および 5.23 に示す。各元素の濃度(塩素以外は酸化物形態で の濃度)を色分けして表示した。塩素(以下 Cl と記す)の濃度に特徴的な差異が認められた。悪水吐 暗渠のモルタルと比べて、他の二つのモルタルの Cl 濃度が明らかに高い。表 5.5 に示した蛍光 X線法 による分析結果でも同様であり、上の橋は 0.157%、測候所跡は 1%に近く、悪水吐暗渠は 0.006%と低 かった。蛍光 X線法による分析値は、骨材を含めたモルタルとしての含有量であるが、マッピング分析 では水和セメント部分の Cl 濃度を知ることができ、上の橋は 0.3~1%(黄緑および黄色で表示)、測候 所跡は 0.3~1.5%くらい(黄緑、黄色および赤で表示)とさらに高くなる。また粉末 X 線回折では、悪 水吐暗渠以外の二つのモルタルに、Cl を含むセメント水和物であるフリーデル氏塩が認められている。 Cl はセメント、骨材、水など材料からもたらされたか、周囲の環境から浸入したかのいずれかであり、 以下、その起源を推察する。

カラーバーの数値は濃度(質量百分率)を表す

図 5.21 悪水吐暗渠のモルタルの元素マッピング分析結果(分析領域:約8mm×8mm)

外部からの浸入については、現地は海の近くであるものの、上の橋、測候所跡のいずれも、直接海水 に接したり波浪に曝されていたものではなく、海水の Cl が浸入したと考えるには、分析値は高過ぎる 値と思われる。

カラーバーの数値は濃度(質量百分率)を表す

図 5.22 上の橋のモルタルの元素マッピング分析結果(分析領域:約8mm×8mm)

カラーバーの数値は濃度(質量百分率)を表す

図 5.23 測候所跡のモルタルの元素マッピング分析結果(分析領域:約8mm×7mm)

骨材は後述するように砂である。海砂であるなら Cl を持ち込む可能性があるが、砂に付着した Cl と 考えるには、分析値は高過ぎる値と思われる。また砂に含まれる微細な粘土類は、その層間に Cl を取 り込んでいる可能性もあるが、それらに由来するとしても、分析値は高過ぎる値と思われる。

明治初期のセメントの Cl 含有量の記録は残されていないが(現代の普通セメントの Cl 含有量は 0.01%程度)、当時の製造工程では、原料を海水で混練して成形していたという記録がある¹⁰⁾。したがっ て、当時のセメントの Cl 含有量を確かめることが望ましい。明治初期のセメントの入手は困難なため、 モルタル中のセメント粒子の Cl 濃度をマッピング分析で測定した。結果を図 5.24 に示す。

Cl 濃度はセメント粒子内部では低く、一方、周囲の水和セメントでは高い。またセメント粒子内部の 水和反応層には、周囲の水和セメントと同じくらいの Cl が含まれる。このことから、Cl はセメントか らではなく、練り混ぜ水からもたらされた可能性が強いことが推察される。海水の Cl 濃度(約 2%)と 二つのモルタルの水セメント比の推定値(前述のように上の橋は 0.38、測候所跡は 0.65)から、セメン トペーストの Cl 濃度を計算すると、それぞれ 0.76%および 1.30%となり、元素マッピング分析による 水和セメントの Cl 濃度の結果はこれと矛盾しない。

以上のことから、これら二つのモルタルの練り混ぜに、海水が用いられた可能性を否定できない。

BEI

A:骨材、U:未水和セメント、P:空隙

図 5.24 モルタル中のセメント粒子とその周囲の Cl のマッピング分析結果(分析領域: 800 µ m×800 µ m)

カラーバーの数値は濃度(質量百分率)を表す

(2) 骨材を構成する鉱物の種類

図 5.21、5.22 および 5.23 のマッピング分析結果に見られる多角形の粒子状物は骨材である。骨材の 大きさは最大 1mm 強で、比較的円磨された形状を呈し、砂と思われる。元素含有量に基づき、骨材を 構成する鉱物を推測する。

SiO₂の分布図において白色(SiO₂>70%)で表される骨材粒子は、石英(SiO₂)から成るものであ る。SiO₂濃度が桃色(70%>SiO₂>40%)、Al₂O₃濃度が赤色~白色(Al₂O₃>10%)、Na₂O 濃度が黄 色~桃色(10%>Na₂O>2%)で表される骨材粒子は長石類から成るものである。Fe₂O₃ 濃度が白色 (Fe₂O₃>20%)、MgO 濃度が白色(MgO>10%)で表される骨材粒子は、鉄・マグネシウム系の鉱物 から成るものである。以上の特徴は三つのモルタルに共通しており、使用された骨材の種類には大差な いものと判断される。

骨材の岩石の種類は、セメント硬化体の起源を推定するための重要な情報である。岩石の種類は、通 常は、厚さ 20μm 程度の薄片試料を作製し、偏光顕微鏡で観察して、鉱物相の種類、量、微細組織な どを評価することで特定される。そのためには、岩石学、鉱物学への精通が不可欠である。一方、マッ ピング分析結果では、偏光顕微鏡観察ほど詳細な鑑定はできないが、本節に記したように、化学組成に よりある程度の構成鉱物の判定は可能であり、また複数の試料の異同識別には適用が可能である。専門 技術者による偏光顕微鏡観察を行えない場合の、補助的な評価手段としては有意義な方法と考えられる。

5.4 まとめ

明治初期に宮城県に計画された野蒜築港の遺構群から採取された、我が国では最古の部類に属するセ メントと思われる硬化体の詳細なキャラクタリゼーションを実施し、以下の結果を得た。

- (1) 蛍光 X 線分析、塩酸溶解分析、粉末 X 線回折、背面反射電子像観察により、硬化体がまぎれも なく、セメントを用いたモルタルであることが確認された。
- (2) 塩酸溶解分析の結果を基にモルタルの配合を推定し、使用された部位により明らかな差異があったことが確認された。
- (3) モルタル中のセメント粒子を背面反射電子像で観察した。その長径は、観察された範囲において 最大 500~600 µ m に達し、現代のセメントと比べて非常に粗いものであった。比較のため観察した 大正中期の硬化体のセメント粒子はこれより小さく、昭和初期の硬化体ではさらに小さかった。この 結果は、文書記録に残るセメント中の粗粒分の変遷と符合するものであった。
- (4) EPMA マッピング分析法により推定されたセメントの化学組成は、現代のセメントより低 CaO、 高 Al₂O₃ であり、文書記録に残る当時のセメントの化学組成と符合する結果であった。
- (5) 背面反射電子像で観察されるセメントの構成鉱物の種類や状態には、現代のセメントとは異なる 特徴が認められた。それらは、当時のクリンカー焼成設備である徳利窯の製造様式を反映するもので

あった。

- (6) EPMA マッピング分析により、モルタルの練り混ぜに海水が使用された可能性が示された。
- (7)硬化体中のセメントのキャラクタリゼーションで得られた結果はいずれも、明治初期のセメントの材料事情や製造様式等と符合するものであった。これらのキャラクタリゼーション手法により、硬化体の素性を明らかにできるのみならず、セメントが製造された時代を推定する手がかりを得られる可能性を示すものである。

【参考文献】

- 1)後藤光亀:野蒜築港市街地跡「悪水吐暗渠」発掘調査からみる近代土木遺産,青葉工業会報,第49
 号,pp.42-49,2004
- 2) 土木学会東北支部:近代土木遺産シンポジウム -野蒜築港跡「悪水吐暗渠」発掘調査からみる近 代土木遺産-,2004
- 3) 沢木大介,伊神光男,後藤光亀:野蒜築港跡悪水吐暗渠のセメント硬化物の分析,平成十六年度土 木学会東北支部技術研究発表会講演概要,pp.678-679,2005
- 4) 長瀧重義:コンクリートの長期耐久性, p.40, 技報堂出版, 1995
- 5) 鎌谷親善:明治期における科学技術-セメント製造業と技術,科学の実験, Vol.30, No.5, pp.80-88, 1979
- 6) 日本セメント株式会社:百年史, 1983
- 7)藤井光蔵:ポルトランドセメント発達の沿革(7)、セメント・コンクリート、No.118、pp.26-32、
 1956
- 8) 小野田セメント株式会社:小野田セメント百年史, 1981
- 9) 中尾龍秀:わが国のセメントの品質,セメント・コンクリート, No.253, pp.27-40, 1968
- 10) 台信富寿:明治・大正期におけるセメント製造技術の変遷 -小野田セメント製造株式會社を例 として-,山口大学博士学位論文,2007.9
- 11) 小野田セメント製造株式会社:創業五十年史, 1931
- 12) 台信富寿, 守明子, 河原利江:小野田セメント徳利窯保存工事の概要, 歴史的構造物の診断・修復 に関するシンポジウム 委員会中間報告ならびに論文報告集, pp.133-140, 2006
- 13) 河原利江, 守明子, 台信富寿:小野田セメント徳利窯の明治期における改修, 歴史的構造物の診断・ 修復に関するシンポジウム 委員会中間報告ならびに論文報告集, pp.141-148, 2006
- 14) セメント協会・コンクリート専門委員会: 硬化コンクリートの配合推定に関する共同試験報告, 1967
- 15) 沢木大介,後藤光亀:野蒜築港構造物のセメント硬化物の分析,平成十七年度土木学会東北支部技術研究発表会講演概要,pp.600-601,2006

- 16) 玉井譲, 佐々木孝彦, 森川卓子, 吉田秀司, 西澤英和, 谷川恭雄: 90 年が経過したコンクリート 地下柱・基礎の基本物性に関する分析調査, 歴史的構造物の診断・修復に関するシンポジウム 委員 会中間報告ならびに論文報告集, pp.61-66, 2006
- 17) G. Washa and K. F. Wendt : Fifty years properties of concrete, ACI Journal, 1, pp.20-28,1975
- 18) 熊谷守晃,星俊彦,佐伯昇,太田利隆:50 数年経過したコンクリートの物理,化学的特性と耐久性,土木学会論文集,No.686/IV-52, pp.41-54, 2001
- 19) 羽原俊祐: Smeaton と Aspdin ポルトランドセメントの発祥の地 Leeds を訪ねて、セメント・ コンクリート, No.684, pp.35-42, 2004

第6章 長期間経過した硬化コンクリートのキャラクタリゼーション

6.1 はじめに

第1章に記したように、日本のセメント生産量は高度経済成長期に飛躍的に増加した^{1,2,3)}。逆にいえば、 第二次世界大戦以前のコンクリート構造物は希少であり、そこから得られるコンクリートは、実証的試料 としてきわめて貴重なものといえる。50年、あるいは 100年以上を経てもなお、健全さを保つ構造物の コンクリートの性質を詳細に評価し、材料の品質、施工の優劣、供用中の維持補修等に関する情報を明ら かにすることは、コンクリートの経時的変質に関する実証的データを提供し、長期的な耐久性を考察する うえできわめて有用と考えられる。

長期間供用された構造物の構成部材を材料科学的に評価した調査や研究は、わが国でも多数報告されて いる 4.5.6.7.8)^{など}。それらは実証的データを提供する貴重な研究であるが、一構造物についての報告が多く、 コンクリートの初期の性状や暴露環境が経時的変質に及ぼす影響をそこから読み取ることは難しい。一方、 計画的な実験に基づきコンクリートの長期的変化を評価した研究として、小樽港 100 年耐久性試験 ⁹、小 野田セメント 50 年試験 ¹⁰、秩父小野田 100 年試験 ¹¹などがあるが、これらには試験結果を得るまでに非 常に長い時間を要するという弱点がある。また実際の自然環境下で曝された条件を、実験室で正確に再現 することは困難である。

以上の点に鑑み第6章では、同時期に建造され長期間供用された複数の構造物からコンクリートを採取 し、それらの初期性状を推測し、また暴露環境の作用によりもたらされた経時的な変質を明らかにし、最 初の品質や暴露環境がその後の変質に及ぼす影響を、実証的に明らかにすることを試みた。始めに、1940 年頃に神奈川県、福井県および広島県に建設され、通常の自然環境条件に曝された三つの構造物のコンク リートを採取し、評価した。ついで、1934年(昭和9年)に広島市内に建設され、原爆というきわめて 過酷な環境条件に曝された構造物のコンクリートを採取し、評価した。目視レベルによる断面の観察、配 合推定、力学的性質の評価、細孔径分布の評価、SEM や EPMA による微細領域の観察や分析等により、 初期性状を推察した。ついで、現時点における性状として、中性化深さや外来元素の浸入状況、表面近傍 の微細な性状などを評価した。以上の結果から、コンクリートの初期性状と経時的変質の関係を考察した。

6. 2 明治末期~昭和初期のコンクリートの性状

コンクリートの性状は、時代とともに変化した。特に本章で対象とする昭和初期は、コンクリートの 品質への要求が高まり、その性状が徐々に向上しつつある時代であった。当時のコンクリートのレベル を把握するため、明治末期から昭和初期のコンクリートの性状を評価した先行文献をレビューした。そ れらに記載される評価結果のうち、水セメント比、圧縮強度、中性化深さをピックアップし、時代によ る推移を概観した。

90

6.2.1 コンクリートの性状変化の背景と要因

明治末期から昭和初期にかけ、コンクリートの性状が変化した背景の一つに、1923年(大正12年) に発生した関東大震災があるといわれている。震災から約20年さかのぼる1900年代初頭、琵琶湖疏水 運河施設などで、鉄筋コンクリートが使われ始めた⁹。その出現以降、建築用コンクリートには施工し やすさが重視され、軟練り化が進行した⁹。関東大震災を機に、軟練りコンクリートの強度不足が問題 視され、強度とワーカビリティーを両立する配合設計が検討されるようになった⁹。それに加え、材料、 特にセメントの品質向上、バッチャープラント導入など施工技術の向上、水セメント比説を始めとする コンクリートの品質に関する科学的考証の進展などが、コンクリートの高品質化を推進した。さらに第 二次世界大戦以後は、AE 剤や生コンクリート工場が導入され、コンクリートの品質に新たな局面がも たらされた。以上のことを考慮すると、明治末期から昭和初期は、コンクリート品質に関する一つの時 代に区分することができると思われる。

6. 2. 2 水セメント比

図 6.1 に水セメント比(配合推定法による推定値)の推移を示す¹²⁻²⁵⁾。明治から昭和初期にかけて 高くなり、昭和に入るとやや低下した傾向が認められる。上述のように、明治期終盤の鉄筋コンクリー トの導入に伴い、軟練り化が進んだことを表すものと考えられる。

図 6.1 明治~昭和初期の構造物から採取されたコンクリートの水セメント比(配合推定値) 12-25)

6.2.3 圧縮強度

図 6.2 に圧縮強度の推移を示す 5,12,14,15,18-39)。40N/mm²を超えるものも見られるが、おおむねは 10

~40 N/mm²の範囲にあり、このくらいが当時のコンクリートとして一般的であったものと思われる。 時代とともに高強度となる傾向も見られ、セメントの品質向上の寄与もあったのかもしれない。

図 6.2 明治~昭和初期の構造物から採取されたコンクリートの圧縮強度 5,12,14,15,18-39)

6.2.4 中性化深さ

図 6.3 に中性化深さの推移を示す 5.14,15,17-20,23-25,28,29,32,34,35,36,38-40)。個体によりさまざまであり、時代 による変化の傾向は見られない。コンクリートの初期性質や表面仕上の方法、暴露環境等による差異が 大きいものと考えられる。

図 6.3 明治~昭和初期の構造物から採取されたコンクリートの

中性化深さ 5,14,15,17-20,23-25,28,29,32,34,35,36,38-40)

6.3 通常の自然環境条件に曝された構造物のコンクリートの評価

6.3.1 コンクリートを採取した構造物

(1)構造物(a):旧海軍の石油貯蔵タンク(広島県)

内容積5万k0の覆土式の石油タンクである。1940年(昭和15年)、広島県呉市吉浦にて竣工し、2004年(平成16年)まで、船舶の燃料用タンクとして使用された。海岸からの距離は約200m、海抜は数mである。概略の構造と開口部から見た断面を図6.4に示す。厚さ300mm程度の無筋コンクリートでできた直径(外径)88m、高さ10mの円筒形のタンクを、外側の全周囲から、階段型のコンクリート駆体で支持する構造である。

(2)構造物(b):旧海軍の監視小屋(神奈川県)

花立新砲台に建設されたコンクリート造りの監視小屋である。1938年(昭和13年)、神奈川県横須 賀市にて竣工した。コアを採取した壁付近に丸鋼が見られ、鉄筋コンクリートと判断される。同砲台付

構造物(a)(概略の構造と開口部から見た断面)

構造物(b)(東側からの外観とコアを採取した西向き壁面)

図 6.4 コンクリートを採取した構造物(a)(b)

近は現在、防衛大学校の所有地である。海岸からの距離は約400m、海抜は約90mである。東側からの 外観とコアを採取した西向きの壁面を図6.4に示す。

(3)構造物(c):工場の原料庫(福井県)

工場の原料ストック庫である。1930年代後半に竣工した。鉄筋コンクリート造である。海岸からの 距離は約700m、海抜は数mである。

6.3.2 コンクリート採取の概要

各構造物から採取したコアの外観を図6.5に示す。

(1) 構造物(a)

タンクの内表面の、底部から約6.5mの高さで、 直径150mm、長さ約250mmのコンクリートコア3 本を同じ位置から採取した。2005年(平成17年) 秋に採取したので、コンクリートの材齢は約65年 である。なお、タンクの内表面には、合成樹脂と 思われる被覆材が塗布されていた。これは1983年 (昭和58年)に施工されたものである。

(2) 構造物(b)

監視小屋の西側の壁より、地面から約 1m の高 さで、厚さ約 300mm の壁を貫通するコア1本を 採取した。コアの直径は 45mm である。採取は 2006 年 (平成 18 年) 夏に実施したので、コンク リートの材齢は約 68 年である。

(3)構造物(c)

原料庫の壁より、地面から約 2mの高さで、厚 さ約530mmの壁を貫通するコア1本を採取した。 コアの直径は 150mm である。コアの外観から明 らかなように、壁は異なる二層のコンクリートで できており、その境界は壁のほぼ中央付近であっ た。より厳しい環境にさらされたものと判断され る屋外側のコンクリートを評価試料とした。採取 は 2007 年(平成 19 年)秋に実施したので、コン クリートの材齢は約 70 年である。

構造物 (a)

構造物 (b)

構造物 (c)

図 6.5 構造物から採取したコンクリートコア

6.3.3 評価項目と方法

(1) 目視観察

コアを長軸方向に二分割し、切断面におけるコンクリートの充てん性、骨材の形状と分布、骨材とペー ストの界面の状態などを観察した。

(2)配合推定

セメント協会法41)に従い、セメント量、水量および骨材量を推定した。

(3) 力学的性質の評価

圧縮強度試験は、JISA 1107 "コンクリートからのコアの採取方法及び圧縮強度試験方法"に準拠した。静弾性係数およびポアソン比は、圧縮強度試験用の供試体に縦方向と水平方向に貼り付けたひずみ ゲージ(120mm)により測定した。

(4) セメントペーストのEPMAマッピング分析

長軸方向に二分割したコアの切断面から、表面(構造物(a)ではタンクの内表面、構造物(b)及び (c)では屋外側の表面)を含む40mm×40mm×10mmの板状試料を採取した。40mm角の面を研磨し、 できるだけ中性化していない領域を選び、カーボンを蒸着して、1mm以下の微細な領域について、電子 線マイクロアナライザー(EPMA)により、CaとSiのマッピング分析を行なった。分析条件は加速電圧 15kV、試料電流5×10^sA、測定時間40msec/ピクセル、プローブ径1μm、ピクセルサイズ2μm、ピク セル数400×400とした。

(5) 細孔径分布の評価

コアの非中性化部分から数十gを採取し、ニッパーで数mm角に割裂した。アセトンに浸漬して水分を 除去し、真空乾燥器中で脱気・乾燥した後、水銀圧入法により細孔径分布を測定した。加圧範囲は 3.448kPa~413.7MPaとした。

(6) 中性化深さの測定

コア端部の切断面にフェノールフタレイン1%エタノール溶液を噴霧し、JIS A 1152に準じて非変色 深さを測定した。

(7) EPMAマッピング分析によるSとClの濃度分布の評価

(4)に記したEPMAマッピング分析用研磨試料にカーボンを蒸着して、EPMAによりSとClのマッ ピング分析を行なった。分析条件は加速電圧15kV、試料電流1×10⁻⁷A、測定時間40msec/ピクセル、プ ローブ径50 μ m、ピクセルサイズ100 μ m、ピクセル数400×400とした。

6.3.4 初期性状の推測

(1) 目視観察結果

コンクリートコアを長軸方向に二分割した切断面の状態を図6.6に示す。いずれのコンクリートも切

断面の粗骨材は丸みを帯びており、川砂利と思われた。アルカリ骨材反応によるゲルの生成などは確認 されなかった。構造物(a)と(b)では、骨材とペーストの界面にはブリーディング水に伴う空隙は認 められず、また充てん不良箇所もなく、よく締め固められている密実なコンクリートと思われた。構造 物(c)では、骨材とペーストの界面やモルタルの内部に空隙が、(a)や(b)より多く認められた。

構造物 (c)

構造物(a)

図 6.6 コンクリートコアの切断面

構造物(b)

(2)配合推定

結果を表6.1に示す。推定に必要な数値である、コンクリートに使用されたセメントの化学組成は、i g.lossには昭和10年代のポルトランドセメントの一例である0.6%⁴²⁾を、CaOには第4章で確立したEPM Aマッピング分析法による実測値として(a) 53.5%、(b) 56.1%、(c) 57.3%を用いた。同じく推定に 必要な数値である、コンクリートに使用された骨材の化学組成は、全国の骨材の平均値であるinsol=95 .2%、ig.loss=1.2%およびCaO=0.4%とした⁴¹⁾。なお比較のため、セメントのCaOを昭和10年代のポル トランドセメントの一例である65%⁴²⁾とした場合についても推定を行い、表6.1に併記した。

構造物 (a)、(b)、(c)の推定値はそれぞれ、単位水量は139、259及び184kg/m³、単位セメント量は 277、451及び236kg/m³、単位骨材量は1972、1545及び1897kg/m³であり、水セメント比は0.50、0.57 及び0.78と推定された。図6.1に表示した明治から昭和初期に建設された構造物のコンクリートの水セメ ント比 (配合推定値)は、低いものは0.4程度¹²⁾、高いものは0.9程度²¹⁾であった。これらを考慮すると 、構造物 (a)、(b)の水セメント比は高くなく、構造物 (c)の水セメント比はやや高めであったと判 断される。

なお、セメントのCaOを65%とした場合の推定値は上記とは異なり、特にセメント量が低く見積もられ、その結果、構造物(a)、(b)、(c)のいずれでも、水セメント比は上記の値より約0.1も高い推定値であった。

		W/C		
	水	セメント	骨材	W/C
構造物(a)	139 (139)	277 (236)	1972 (2013)	0.50 (0.59)
構造物(b)	259 (263)	451 (397)	1545 (1595)	0.57 (0.66)
構造物(c)	184 (186)	236 (209)	1897 (1922)	0.78 (0.89)

表 6.1 配合推定結果

注)()内の数値はセメントの CaO を 65%とした場合の推定結果

昭和初期、コンクリートの配合は、材料の容積比で定められていた。土木学會による「鐵筋コンクリート標準示方書」の制定は1931年(昭和6年)43)、最初の改訂版の発行は1940年(昭和15年)44)のことであり、そのいずれにも、配合は容積比で表わす旨が記されている。重量比とされたのは、1949年(昭和24年)制定の「コンクリート標準示方書」45)からである。1921年(大正10年)に公布された「土木及び建築工事示方書」には表 6.2 に示すように、用途に応じた容積配合のガイドラインが記されている。それによると、セメントペーストに富む配合はセメント:細骨材:粗骨材=1:2:4、骨材に富む配合はセメント:細骨材:粗骨材=1:3:6や1:4:8であった。配合推定試験結果から、各コンクリートのセメントと骨材の容積比を計算した。セメントの単位容積質量は「鉄筋コンクリート標準示方書」(昭和6年)43)等に記された1500kg/m³、骨材の単位容積質量は「鉄筋コンクリート標準示方書」(昭和6年)43)等に記された1500kg/m³、骨材の単位容積質量は川砂、川砂利の値の一例として1650kg/m³46)とした。結果は、(a)はセメント:骨材=1:6.5、(b)はセメント:骨材=1:3.1、(c)はセメント:骨材=1:7.3であった。(a)は1:2:4配合に、(c)は1:2.5:5配合に近かったものと思われる。(b)は1:2:4配合以上にペーストに富んでおり、軍事施設という性格上、特殊な配合であったものと推察される。

用途	配 合
橋台、橋脚等、厚い断面の鉄筋コンクリートで強度を要する構造物	$1:2:4 \sim 1:3:6$
建築物その他一般の鉄筋コンクリート構造物	$1:2:4{\sim}1:2.5:5$
基礎または強度を要しない構造物	$1:3:6\sim 1:4:8$

表 6.2 土木及び建築工事示方書(大正 10 年)に記された容積配合のガイドライン 43)

単位水量を基に、各コンクリートのフレッシュ性状を推測する。普通セメントと最大寸法 40mm の川 砂・川砂利を用い、スランプ 4±1cm のコンクリートを調製するのに必要な単位水量は、139~150 kg/m³ の範囲で、平均 147kg/m³ (試験点数 n=9) との報告がある ⁴⁷⁾。このことと上述の単位水量推定値より、 (a) のコンクリートはスランプ数 cm の硬練り、(b) のコンクリートは比較的軟練りであったと考え られる。上述のように、いずれのコンクリートもよく充てんされており、ていねいに打設されたことが、 特にスランプ数 cm の硬練りと推測される(a) のコンクリートにおいて、強く推察される。

(c) のコンクリートは容積配合の近い(a) と比べて水セメント比が高く、(a) より軟練りであった と推察されるが、図6.6に示される充てん状態から考えて、(a) ほどていねいに打設されたものではな かったものと思われる。

(3) 力学的性質

表6.3に圧縮強度、静弾性係数およびポアソン比の試験結果を示す。コンクリート(a)、(b)及び(c) の圧縮強度は、それぞれ40.6、41.6及び18.8N/mm²であった。この値を最近のコンクリートと比較する ため、砕石を用いたコンクリートおよび川砂利を用いたコンクリートの比較的長期材齢のデータ^{10,47,48)} に基づき、図6.7のようにセメント水比と圧縮強度の関係を求め、これに本試験結果をプロットした。 粗骨材最大寸法や暴露環境などが異なるものの、コンクリート(a)、(b)の圧縮強度は、同程度のセメ ント水比のコンクリートと比べ、低いレベルではなかった。また図6.2に示したように、昭和初期のコ ンクリートの圧縮強度は10~40N/mm²の範囲内が多く、(c)はこれらと同等、(a)と(b)は当時の水 準ではかなり高いレベルにあったものと判断される。

			構造物(a)			構造物(b)		構造物(c)
		No.1	No.2	平均	No.1	No.2	平均	—
直径(mm)		152.1	152.2	_	45.0	45.0	_	99.0
高さ(n	nm)	163	153	_	89	89	_	119
高さ/直	径比	1.07	1.01	_	1.98	1.98	_	1.20
補正係数		0.887	0.870	_	1.00	1.00 -		0.918
最大荷重	Ē(kN)	777.5	900.0	-	60.6	71.6	-	158.0
圧縮強度	補正前	42.8	49.5	_	90.1	45	41 C	20.5
(N/mm ²)	補正後	38.0	43.1	40.6	30.1	40	41.0	18.8
静弹性係数(kN/mm²)	28.8	25.3	27.1	29.9	26.3	28.1	10.9
ポアソン比		0.197	0.159	0.178	0.27	0.29	0.28	0.27
質量(g)		6994.3	6536.7	_	313.6	316.9	_	2077.0
単位容積質	量(kg/m ³)	2360	2359	2360	2220	2240	2230	2267

表 6.3 力学的試験結果

図 6.7 セメント/水比と圧縮強度の関係

(4) セメントペーストの EPMA マッピング分析結果

セメントペースト部の1mm角以下の微細な領域について、EPMAマッピング分析によりCaOとSiO2 のモル比(以下 CaO/SiO2 モル比)の分布を測定した結果を、同じ領域の背面反射電子像(BEI)と並 べて図 6.8、6.9 および 6.10 に示す。マッピング分析結果で黒~青で表される部分は骨材、その間はセ メントペーストである。セメントペーストの CaO/SiO2 モル比は、いずれのコンクリートでも、黄緑お よび黄色で表示される、1.2~2.0の範囲にあった。セメント水和物の主体であるカルシウムシリケート 水和物(C-S-H)の CaO/SiO2 モル比は 1.4~1.7 程度であることから、いずれのセメントペーストも、 C-S-H を含むものと判断されるものの、コンクリート間の相違は明瞭に確認される。すなわち、構造物 (a)および(b)のセメントペーストと比較して、構造物(c)の CaO/SiO2 モル比は総じて低いこと が明らかである。この理由は、以下のように考察される。前述の配合推定では、(c)は他の二つと比べ

構造物 (a)

図 6.8 EPMA マッピング分析により求めた CaO/SiO₂ モル比の分布 ① (分析領域: 800 µ m × 800 µ m)

てセメント量は少なく、水セメント比は高いものであったと推測された。また図 6.10 の BEI では、(c) のセメントペースト部には暗色で観察される空隙部が他の二つより多く、ペーストと骨材の密着も悪い ことが明らかである。以上のことから、(c) のセメントペーストは他の二つと比べて空疎なものであり、 そのため外部からの雨水等が内部に浸透しやすく、セメントペーストの Ca 分が溶解し、その多くが失 われたのではないかと考えられる。

なお、構造物(b)のBEIにおいて右上部に観察される、細骨材と思われる粒子の内部には、空隙が 多く認められ、この粒子が多孔質なものであることが明らかである。

構造物 (b)

図 6.9 EPMA マッピング分析により求めた CaO/SiO2 モル比の分布 ②(分析領域: 800 µ m × 800 µ m)

構造物 (c)

図 6.10 EPMA マッピング分析により求めた CaO/SiO₂ モル比の分布 ③(分析領域: 800 µ m × 800 µ m)
(5) 細孔径分布

細孔径分布の測定結果(大径側からの累積細孔容積曲線)を図 6.11 に示す。構造物(a)のコンクリートは、強度や種々の耐久性と密接に関係する 0.01~1µm 程度の毛細管空隙は少なく、また 0.01µm より小径側のゲル空隙は多く、セメントの水和がよく進行した緻密なコンクリートである。構造物(c)のコンクリートは、(a)と比較して毛細管空隙は多く、ゲル空隙は少なく、緻密さは(a)より劣るものと判断される。構造物(b)のコンクリートは、上述の各種試験結果から、(a)と同等の緻密さを有することが予想されるが、細孔径分布の測定結果では、他の二つより空隙は多く、特に 0.1~1µm の空隙が多い結果であった。これは、図 6.9 の BEI にて確認される多孔質の骨材に起因するのではないかと考えられる。

実構造物から採取したコンクリートの細孔径分布を評価し、0.1μm 以上の細孔の容積と圧縮強度の 関係を検討した先行文献³⁶⁾の結果を図 6.12 に示す。これに、本研究の三つのコンクリートをプロット した。(a) と(c) は回帰直線に比較的近いところにプロットされたが、(b) は回帰直線から大きく乖 離したところにあった。構造物(b) の骨材内部の空隙が、その原因ではないかと考えられる。

図 6.11 細孔径分布の測定結果(大径側からの累積細孔容積曲線)

6.3.5 経時的変質の評価

(1) 中性化深さ

測定結果を表6.4に示す。平均値は、構造物(a)で4.8mm、構造物(b)の屋内側で6.9mm、屋外側 で6.4mm、構造物(c)で21.9mmであった。図6.3に示したように、長期間供用された構造物から採取 されたコンクリートの中性化深さはさまざまではあるが、数十mm以上に及ぶとの事例も多い。それら と比較して、構造物(c)の中性化深さは同等のレベル、構造物(a)と(b)の中性化深さはかなり小さいレベルであるといえる。構造物(a)は石油貯留用として使われていたが、常に石油で満杯であっ

図 6.12 実構造物から採取したコンクリートの 0.1 µm 以上の細孔の容積と圧縮強度の関係 36)

表 6.4 中性化深さの測定結果 (mm)

構造物(a)

1	2	3	4	5	6	\bigcirc	8	9	10
4.6	4.2	5.5	4.1	4.6	4.7	6.7	4.5	4.2	6.6
(1)	12	(13)	14	15	16	17	18	19	20
4.7	3.5	3.5	4.7	5.9	4.0	2.9	3.8	5.4	8.3

平均:4.8mm (σ=1.25)

構造物(b)

屋内側	1	2	3	4	5	6	$\overline{7}$	8
	6.0	10.0	5.5	15.0	4.0	4.0	4.0	7.0
屋外側	1	2	3	4	5	6	\bigcirc	8
	9.0	11.0	11.0	2.0	1.0	5.5	7.0	5.0

屋内側平均:6.9mm (σ=3.59)、 屋外側平均:6.4mm (σ=3.55)

構造物	(c)

1	2	3	4	5	6	\bigcirc	8
12.0	10.0	8.0	8.0	29.0	29.0	43.0	36.0

平均:21.9mm (σ=5.00)

た訳ではなく、コアを採取した比較的高い位置では、空気と接する時間も長かったと考えられる。また 構造物(b)は海抜約90mに位置し、風雨に曝される時間は比較的長かったと考えられる。これら暴露 環境を考慮すると、(a)と(b)のコンクリートは、緻密で中性化への抵抗性の大きいものであったも のと推察される。

普通セメントや中庸熱セメントなどを用いた17種類の実験データに基づき求められた、水結合材比及 び材齢と中性化深さの関係⁴⁹⁾を式(1)に示す。

$$\alpha = (-3.57 + 9.0 \text{W/B}) \times \sqrt{t}$$
 (1)

ここで α:中性化深さ (mm)、W/B:水結合材比、t:材齢(年)

配合推定により求めた各コンクリートのW/Bの推定値とtを式(1)に代入して求めた材齢と中性化深 さの関係を図6.13に示す。W/Bは表6.1に示した二つの値、すなわち使用されたセメントのCaO値を EPMAマッピング分析法による実測値として推定した値と、昭和10年代のポルトランドセメントの一例 である65%⁴²⁾として推定した場合の両方を用いた。図6.13では前者を□、後者を■で表示した。○で表 示した中性化深さの実測値のうち、構造物(a)については、材齢を竣工から樹脂被覆材が塗布される までの期間である43年としてプロットした。

図 6.13 √t 式による中性化深さ予測曲線と実測値

いずれの構造物でも実測値(○)は、昭和10年代のセメントの組成から推定したW/Bを用いた曲線(■) からは大きく乖離していた。しかし、セメントのCaOをEPMAマッピング分析による実測値として推定 したW/Bを用いた曲線(□)との乖離は小さかった。このことは、配合推定において、セメントのCaO 値にEPMAマッピング分析による実測値を用いることで、推定の精度が向上することを示すものと考え られる。使用されたセメントや骨材の組成は、配合推定を行う上で重要な数値でありながら、実際には 記録として残されていないことが多く、ほとんどの場合、文献等から得られる仮の数値が用いられる。 従来よりこれは配合推定の誤差要因の一つであった。EPMAによる推定法の確立により、セメントの CaO値に実測値を用いた配合推定が可能となった結果、水セメント比、および水セメント比と密接に関 係する各種耐久性能の予測の信頼性が向上するものと期待される。

(2) SとClの濃度分布

マッピング分析結果を図6.14、6.15および6.16に示す。目視観察写真(左上)とCaの濃度分布(右上) も示した。図の上端部が、採取したコアの表面(構造物(b)では屋外側の表面)に相当する。

構造物(a)のコンクリートでは、Ca、S、Clのいずれも、表面から深さ数mmの領域において、内部 より濃度が低かった。目視でも、この部分の色が内部とは異なることが判る。これは中性化(炭酸化及 び/またはセメント分の溶脱)した領域であると考えられる。その深さ数mmは、フェノールフタレイ ンによる評価値とおおむね一致している。

炭酸化の進行にともない、SやClを含有する水和物等が分解され、これらの元素が濃度勾配により内 部の非炭酸化領域へ移動する、いわゆる濃縮現象が知られている⁵⁰⁾。構造物(a)のコンクリートでも、 Sの濃度分布において濃縮が認められたが、その程度は小さく、炭酸化の進行度合いは大きくないと考

図 6.14 EPMA 面分析により求めた Ca、S、Cl の濃度分布 ① (分析領域: 40mm×40mm)

えられる。Cl濃度は非中性化領域において、外部から内部に向けて漸次低下している。海岸近くの建造物であり、飛来塩分の影響があったことを物語る。

構造物(b)のコンクリートでは、構造物(a)のような、表面近傍における元素濃度の低い領域は認

構造物(b)

図 6.15 EPMA 面分析により求めた Ca、S、Cl の濃度分布 ②(分析領域: 40mm×40mm)

図 6.16 EPMA 面分析により求めた Ca、S、Cl の濃度分布 ③(分析領域: 40mm×40mm)

められなかった。上述のように(b)の中性化の深さは(a)よりやや大きかったが、アルカリ性低下の 度合いは(b)の方が(a)より小さいのではないかと推察される。(b)は(a)よりセメントに富む配 合と推定されることや、現地の気象条件が関係するものと思われる。

Cl 濃度は(a) より低かった。海岸線からの距離が(a) より遠いことによるものと思われる。S 濃度 は総じて(b)の方が高かった。(b)では外部と内部の濃度差は小さく、比較的均一に分布しているこ とから、外来Sの侵入よりも、始めからコンクリートに含有されたS量の相違、例えばセメント配合量 の相違等に起因するものであろう。なおセメントペースト部のS濃度はSO3としておおむね 0.5~1.0% の範囲にある。当時のセメントのSO3含有量は 1.0%程度であり 42、これと前述した水セメント比の推 定値を考慮すると、測定結果は妥当な値ということができる。

構造物(c)のコンクリートでは、表面付近のS、Clの濃度は非常に低く、その内部に、特にSの濃度が非常に高い領域が認められる。これは、炭酸化によるSの濃縮によるものと考えられ、他の二つと比べて炭酸化が進んでいることを示す。 Clは、炭酸化領域を除き、表面から深さ40mmまでの領域のペーストの全てにおいて認められ、構造物(a)のように、内部に向かって漸次濃度が低下する様子は確認できなかった。マッピング分析を実施した領域よりも内部まで Clが浸入しているものと考えられる。構造物(c)は、(a)よりも海岸からの距離が遠いにもかかわらず、Clの浸入が深いのは、緻密さが(a)より劣ることによるものと考えられる。

6.3.6 三つのコンクリートの初期性状と経時的変質の比較

本節で明らかにされた三つのコンクリートの性状を表 6.5 にまとめる。初期性状が経時的変質にとって重要であることを物語るものと考えられる。

	(a)	(b)	(c)
断面の状態(目視)			
断面の状態(電顕)			
W/C推定值	0.50	0.57	0.78
压縮強度(N/mm ²)	40.6	41.6	18.8
中性化深さ(mm)	4.8	屋内側 6.9、屋外側 6.4	21.9
塩素浸透状況 注)海岸からの距離 (a)200m (b)400m (c)700m	C1 5 mm	C1 Sam	0.70 0.60 0.30 0.30 0.30 0.30 0.30 0.30 0.3

表6.5 三つのコンクリートの初期性状と経時的変質の比較

6. 4 きわめて過酷な環境に曝された構造物のコンクリートの評価

6. 4. 1 調査の対象としたRC建築物

調査対象のRC建築物は広島県立広島商業高校の校舎である⁵¹⁾。1934年(昭和9年)に竣工し、2004 年(平成16年)まで供用された後、解体された。広島市中区の広島湾河口に近い天満川沿いにあり、原 爆の爆心地より南西2.88kmに位置していた。一部に塔屋を有する3階建てであり、建築面積1509m²、 延床面積は4802m²であった。

6. 4. 2 コア採取の概要

1、2、3階、屋上および基礎部より、柱、壁、梁、床から79本のコアを採取した⁵¹)。本研究ではそれ らのうち、原爆の影響が最も大きかったと判断された、爆心地側の2階の梁から採取したコア(以下、2 階・梁)と、地中にあり比較的影響の小さかったと思われる基礎コンクリートから採取したコア(以下 、地中・基礎)を対象とした。コアの外観を図6.17に示す。直径は10cmである。採取は2004年(平成 16年)に実施され、その時点でのコンクリートの材齢は70年である。採取後、評価試験に供するまでは 、顕著な変質が進まないよう、常温の室内に保管した。端部に厚さ20~50mmのモルタルのあるコアが あり、1984年(昭和59年)以降の改修工事において施されたものと思われる⁵¹)。分析評価において、こ れらはすべて排除した。

5cm

図 6.17 採取されたコンクリートコアの外観

6.4.3 評価項目と方法

長軸方向に切断して得られたコア端部の断面を図6.18に示す。右側が端部に相当する。端部側のセメ ントペーストが赤味を帯び、明灰色の内部側とは質の異なることが、目視により明らかであった。両者 の境界を点線で示した。赤味を帯びた領域は、2階・梁では地中・基礎より大きく、5~10cmを越えて いた。評価は、端部の変色部分と内部の非変色部分のそれぞれについて実施することとした。

2階・梁 地中・基礎

図 6.18 コンクリートの切断面

(1) 粉末X線回折試験

コンクリートの一部を採取し、ハンマーで砕いた。粗骨材を除去し、目開き70µmの篩で細骨材をで きるだけ除去した。これをめのう乳鉢中でよくすりつぶし、粉末X線回折(以下XRD)測定に供した。 装置はPANalytical製X'Pert PRO MPDを用いた。測定条件は管球Cu、管電圧45kV、管電流40mA、ス テップ0.033°、スキャン速度12.36°/分とした。

(2)示差熱分析

(1)と同様の試料を示差熱分析(以下、DTA)に供した。装置は理学電気製TAS200を用いた。測 定条件は温度範囲25~1000℃、昇温速度:10℃/分、試料重量:約50mgとした。

(3)配合の推定

コア内部側の変色の見られない部分から、できるだけ多量のコンクリートを採取し、セメント協会法 41)に従い配合推定に供した。

(4) 水銀圧入法による細孔径分布の評価

コンクリートの一部を採取し、ニッパーで数mm角に割裂した。アセトンに浸漬して水分を除去し、 真空乾燥器中で脱気・乾燥した後、水銀圧入法(以下、MIP)により細孔径分布を測定した。装置は島 津製作所製AutoPoreIV9520を用いた。水銀圧入のため加える圧力は3.448kPa~413.7MPaとした。

(5) 電子線マイクロアナライザーによる観察と分析

コアを長軸方向に二分割し、その切断面から、コンクリートの表面を含む40mm×40mm×10mmの 板状試料を採取した。その一面を研磨し、電子線マイクロアナライザー(以下、EPMA)により組成像

(以下、BEI)観察と元素マッピング分析を行なった。装置は日本電子製JXA-8200を用いた。BEI観察 の条件は、加速電圧15kV、試料電流1×10⁻⁹Aとした。元素マッピング分析の条件は、分析領域が800 μ m×800 μ mの場合は、加速電圧15kV、試料電流5×10⁻⁸A、測定時間40msec/ピクセル、プローブ径1 μ m、ピクセルサイズ2 μ m、ピクセル数400×400とし、分析領域が40mm×40mmの場合は、試料電流 1×10⁻⁷A、プローブ径50 μ m、ピクセルサイズ100 μ m、その他の条件は上述と同様とした。

(6) 電気炉加熱による変質の観察

非変色部分から厚さ約7mm、一辺が4~5cmの小片を採取し、電気炉中で一定時間加熱した後、常温 近くまで冷却し、セメントペーストの色調を観察するとともに、硬度を測定した。加熱は300℃から始 め、100℃ずつ上昇させ、最高で900℃とした。加熱時間は各温度とも10分間とした。色調は目視によ り、硬度はモース式硬度計により評価した。

6.4.4 初期性状の推測

変色部、非変色部のそれぞれを分析評価した。またコアの内部にあり、原爆の影響が小さかったと考 えられる非変色部の分析結果から、コンクリートの初期性状を推察した。

(1)配合推定

結果を表6.6に示す。推定に必要な数値である、コンクリートに使用されたセメントの化学組成は、i g.lossには昭和10年代のポルトランドセメントの一例である0.6%⁴²⁾を、CaOには第4章で確立したEPM Aマッピング分析法による実測値として2階・梁:59.0%、地中・基礎:57.1%を用いた。同じく推定に 必要な数値である、コンクリートに使用された骨材の化学組成は、全国の骨材の平均値であるinsol=95 .2%、ig.loss=1.2%およびCaO=0.4%とした⁴¹⁾。

2階・梁、地中・基礎、それぞれの単位水量は161および151kg/m³、単位セメント量は171および269 kg/m³、単位骨材量は1942および1962kg/m³であり、水セメント比は0.94および0.56と推定された。前 述のように、明治期終盤の鉄筋構造の導入に伴い、建築用コンクリートの軟練り化が進み⁹、本研究の コンクリートが製造された昭和初期、水セメント比は現在より高めであったものと考えられる。図6.1 に表示した、明治から昭和初期に建設された構造物のコンクリートの水セメント比(配合推定値)は、 低いものは0.4程度¹²、高いものは0.9程度²¹であった。これらを考慮すると、地中・基礎の水セメント 比はあまり高くないが、2階・梁は当時のコンクリートとしてもかなり高い値であったといえる。

		W/C		
	水	セメント	骨材	w/C
2 階・梁	161	171	1942	0.94
地中・基礎	151	269	1962	0.56

表 6.6 コンクリートの配合推定結果

(2)研磨面の BEI 観察

研磨面のBEIを図6.19に示す。多角形の粒子は骨材、その間はセメントペーストである。骨材は、その大きさから、細骨材と判断される。2階・梁では細骨材の周囲に空隙が多い様子が認められる。採取

したコアの多くには、目視でも確認できるような粗骨材とセメントペースト間の空隙が認められた^{51)が}、BEI観察によると、細骨材の周囲も同様であることが明らかであり、コンクリートの充填が十分では なかったことを推察させる。ただし地中・基礎では、このような骨材周囲の空隙は、2階・梁と比べて 少なかった。

2 階·梁

・梁 地中・基礎 図 6.19 コンクリートの研磨面の背面反射電子像(BEI)

(3)細孔径分布

細孔径分布の測定結果を、大径側からの累積細孔容積として図6.20に示す。■および●で表示した非 変色部の試料で比較すると、累積総容積は2階・梁は0.1249ml/g、地中・基礎は0.0838ml/gであり、後 者の方が少なかった。特に0.1µmより大径側において、地中・基礎の空隙が少ない。この領域の空隙は 、主として水和物粒子の間隙やセメントペーストと骨材の界面に存在する毛細管空隙に相当するもので

図 6.20 細孔径分布の測定結果(大径側からの累積細孔容積曲線)

ある。また図6.19に示した、セメントペーストが不十分な箇所の空隙の一部も該当すると考えられる。 □および○で表示した変色部の試料は、非変色部の試料と比べ、毛細管空隙に相当する領域の空隙量が 多く、0.01 µ m未満の空隙は少ない。0.01 µ m未満の空隙は、C-S-Hの層間に存在するゲル空隙であり 、炭酸化によりC-S-Hが分解したため、減少したものと考えられる。ただし地中・基礎では、ゲル空隙 の減少は、2階・梁ほど明らかではなかった。

以上のように、配合推定、BEI観察、細孔径分布のいずれでも、2階・梁と比べて地中・基礎の方が 緻密であったことを示す結果が得られた。二つのコンクリートの性状に、施工当初から差異があり、地 中・基礎の方が良好なものであったことを示す結果である。

(4) XRDおよびDTAによる分析

地中・基礎の変色部と非変色部のXRDおよびDTAの結果を図6.21および図6.22に示す。XRDにおい て、非変色部には明瞭に認められるポルトランダイト(Portlandite、図中のP)のピークが、変色部で はごく小さくしか見られない。逆にカルサイト(Calcite、図中のC)のピークは、変色部で大きく非変 色部では小さい。DTAでは、非変色部において、常温から300℃付近までおよび450~500℃付近におけ る吸熱現象が明瞭である。これらはセメントの水和物やポルトランダイトの脱水によるものであり、そ の存在を表すが、変色部ではそれらはごく小さく、かわりに750~850℃付近のカルサイトの脱炭酸によ る吸熱現象が明瞭である。これらのことから、変色部では、水和セメントの炭酸化が大きく進んでいる ことが明らかである。

以上の結果は、1階・梁から採取したコンクリートの試験結果⁵¹⁾とほぼ同様であり、原爆による熱の 作用によるものと考えられる。地上にあったコンクリートのみならず、地下のコンクリートにも原爆に よる熱の影響があったことを証明する事実である。

P: ポルトランダイト(Ca(OH)₂), C: カルサイト(CaCO₃),
 Q: 石英(SiO₂), F: 長石類 (Na₂O·SiO₂·6SiO₂ and so on.)

図 6.21 粉末 X 線回折試験結果(地中・基礎)

図 6.22 示差熱天秤分析結果(地中·基礎)

6. 4. 5 原爆投下時の高温暴露による変質の評価

(1) コア表面から深さ 40mm までのマッピング分析

2階・梁と地中・基礎のコアの表面から深さ40mmまでの領域の、Ca、S、Cのマッピング分析結果(CaO、SiO₂およびCとしての質量%)を図6.23に示す。目視観察写真(左上)も示した。図の上側がコ ア表面である。地中・基礎では、表面側に赤味を帯びた領域が見られ、そこのセメントペーストでは、 内部に比べてCの濃度は高く、CaとSの濃度は低かった。S濃度は変色部と非変色部の境界付近で明らか に高く、それより内部ではおおむね一様であった。これらは炭酸化により説明することができ、Cの高 濃度は炭酸化の進行、Sの分布についてはエトリンガイトなどの硫酸塩の炭酸化による分解と濃度勾配 による非炭酸化領域への移動500によるものと思われる。

2階・梁では、地中・基礎のような変色部と非変色部の境界は認められず、観察視野内のほぼ全面が 赤味を帯び、セメントペースト部の各元素の濃度はおおむね一様であった。6.4.3にも記したよう に、2階・梁の変色部は表面から5~10cmに達しており、地中・基礎と比べて原爆熱の影響が甚大であ ったことを示す。

(2)変色部と非変色部の BEI 観察とマッピング分析

2階・梁と地中・基礎の変色部および非変色部における800 µ m×800 µ mの領域のCaOとSiO2のマッ
 ピング分析結果(CaOおよびSiO2としての質量%)を図6.24に示す。CaOとSiO2のモル比(CaO/SiO2)
)および同じ領域のBEIも表示した。

セメントペーストの緻密さに明らかな差異があることが、BEIにより確認される。変色部では、いずれ のコンクリートにも、暗く観察される空隙の部分が多く認められ(あるいはペースト全体が暗く観察さ

2階·梁

地中·基礎

図 6.23 EPMA マッピング分析による CaO、SO3、C の濃度分布測定結果(分析領域:40mm×40mm)

れ)、疎な組織になっていることが明らかである。非変色部は変色部と比較して空隙は少なく緻密であ り、また2階・梁より地中・基礎の方が緻密であった。Ca、SiのいずれもBEIで観察される緻密さと対 応し、緻密なものほど全体的にセメントペーストにおける濃度は高かった。疎なものでは黒色で表示さ れる、きわめて低濃度の部分が多く認められた。セメントの水和により主として生成するカルシウムシ リケート水和物(C-S-H)のCaO/SiO2モル比の値は1.4~1.7程度であるが、セメントペースト部分のマ ッピング分析値がこれに近い範囲にあるのは地中・基礎の非変色部のみであり、ほかの試料はいずれも 自色で表示される、CaO/SiO2モル比が3を超える部分が多かった。

CaとSiの濃度低下はセメント分の溶脱を、CaO/SiO2モル比の増大は炭酸化の進行をそれぞれ示すも

図 6.24 EPMA マッピング分析による CaO、SiO₂、CaO/SiO₂(モル比)の分布測定結果 (分析領域:800 µ m×800 µ m)

のと解釈される。原爆の熱によりセメント水和物が分解し、セメントペーストの組織が空疎となったこ とにより、炭酸化や溶脱が進行しやすくなったことが推察される。

(3) 非変色部の電気炉加熱による変質の観察

加熱前および700℃で加熱後のコンクリ ート小片の外観を図6.25に示す。加熱によ りセメントペーストの色調は明らかに変化 し、赤みを帯びた。色調変化は2階・梁では 300℃で、地中・基礎では400℃で明確に視 認できるようになった。変色は、2階・梁の 方がやや強かった。コンクリートは熱を受 けると変色し、300℃以上ではピンク色と なることが知られており52)、本研究の結果 もこれと一致した。

コンクリート小片のセメントペースト部 分のモース硬度を**表6.7**に示す。モース硬度 は、最も柔らかい滑石(硬度1)から最も硬 いダイアモンド(硬度10)まで、10種類の 鉱物を標準とし、それらを対象物に当て、 その硬さを評価するものである。ほぼ同等 の硬さと判断される(すなわち、対象物は 傷つかず鉱物も削られない)鉱物の硬度に より、あるいは対象物に傷がつく、つかな いの境界となる二つの鉱物の硬度により表

される。例えば長石(硬度6)と同等の硬さであれば6、長石では傷つかず石英(硬度7)で傷のつく硬 さならば6-7とする。数値が大きいほど硬いことを表す。加熱前、2階・梁の硬度は変色部、非変色部と もに方解石と同等の3、地中・基礎は方解石と蛍石(硬度4)の間であった。加熱によりいずれも硬度は 低下した。2階・梁の方が、わずかではあるが、より低い温度から低下する傾向が見られた。800℃以上 では、いずれも滑石よりは硬いが石膏(硬度2)よりも柔らかい硬度となり、指で破断できるほど脆弱 となった。前述の電気炉加熱試験で確認された、加熱による色や硬度の変化が2階・梁の方がやや大き かったことも、初期性状の差異に起因するものと考えられる。施工当初の性状と供用中の暴露環境によ り、両者の変質の程度に差異が生じたものと推察される。

			モース硬度		
			2 階・梁	地中・基礎	
加熱品	非変色部 変色部		3	3-4	
为日然时间			3	3-4	
	加熱	300°C	3	3-4	
		400°C	3	3	
		$500^{\circ}\mathrm{C}$	3	3	
加熱後		600°C	3	3	
		700°C	2-3	3	
	反	800°C	1-2	1-2	
		900°C	1-2	1-2	

表 6.7 コンクリートのセメントペースト部分のモース硬度測定結果

6. 4. 6 二つのコンクリートの初期性状と経時的変質の比較

2 階・梁と地中・基礎のコンクリートの性状を**表 6.8** にまとめる。前節の三つのコンクリートと同様 に、初期性状が経時的変質にとって重要であることがうかがえる。

	2階・梁	地中・基礎		
断面の状態(目視)		fr##		
断面の状態(電顕)		COMP 15.84/ -48 100 m		
W/C推定值	0.94	0.56		
700℃で10分間の 加熱による変色				

表6.8 2階・梁と地中・基礎のコンクリートの初期性状と経時的変質の比較

6.5 第6章のまとめ

昭和初期に建造された複数の構造物から採取したコンクリートの性状を評価し、以下の結果を得た。 (1)昭和初期に建造され、竣工から70年を経た二つの構造物のコンクリートはいずれも、充てん不良 箇所は見られず、よく締め固められた密実なものであり、ていねいに打ち込まれたことが推察された。 水セメント比の推定値は、当時のコンクリートとして高くはなく、力学的性質は低いレベルではな かった。中性化深さは表面から数mm程度と小さく、外来元素の浸透は顕著ではなかった。

(2)同じ時代に建造されたもう一つの構造物のコンクリートは、ペースト/骨材界面などに空隙が多く 見られ、水セメント比の推定値は高く、力学的性質は当時としては中程度であるが、上記二つと比べ ると劣っていた。中性化深さは表面から数mm~数十mm程度と上記二つより大きく、Clの浸透は上 記二つより進んでいると判断された。

- (3)従来は配合推定法における誤差要因の一つであった、コンクリートに使用されたセメントの化学 組成(CaO含有量)は、第4章で述べた EPMA マッピング法で実測することが可能であり、その結 果、水セメント比、および水セメント比と密接に関係する各種耐久性能の予測の信頼性が向上するこ とを、中性化を実例として実証した。
- (4)昭和初期に広島市に建設され、原爆投下時にも供用されていたRC建築物のコンクリートには、 採取した部位により、その性状に明らかな差異が認められた。いずれもコアの端部に、著しく炭酸化 が進行し、明らかに変色した領域が認められたが、その領域は、2階・爆心地側の梁のコンクリート の方が、地中の基礎部のコンクリートより大きかった。
- (5)内部側の変色していない部分の電子顕微鏡観察、EPMAマッピング分析、細孔径分布などの評価、およびコア全体の配合推定により、二つのコンクリートにはその初期性状に明らかな差異があり、 基礎部のコンクリートの方が、水セメント比の低い緻密なものであったと推察された。
- (6)以上の結果により、コンクリートの初期の性状が、経時的な変質に対して非常に大きな影響を持 つことを実証した。

【参考文献】

- 1) セメント協会, 日本セメント技術協会:セメント工業八十年のあゆみ
- 2) セメント協会:セメントの常識, 1975
- 3) セメント協会:セメントの常識, 2002
- 4) 横関康祐,中曽根順一,柿崎和男,渡邉賢三:100 年以上経過した地下コンクリート構造物の耐久 性について、コンクリート工学年次論文報告集,Vol.20, No.1, pp.251-256, 1998
- 5)鳥居和之,上田信二,西本敏晴,川村満紀:80数年経過した鉄筋コンクリートアーチ橋(石川橋)の解体調査,コンクリート工学年次論文報告集,Vol.16,No.1, pp.983-988, 1994
- 6) 玉井譲,佐々木孝彦,森川卓子,吉田秀司,西澤英和,谷川恭雄:90年が経過したコンクリート地下柱・基礎の基本物性に関する分析調査,歴史的構造物の診断・修復に関するシンポジウム 委員会中間報告ならびに論文報告集,pp.61-66,2006.6
- 7) 星野富夫, 辻正哲, 高橋茂, 浅賀喜与志, 中田善久, 魚本健人: 100 年以上供用されているドック コンクリートの調査・分析事例, 歴史的構造物の診断・修復に関するシンポジウム 委員会中間報 告ならびに論文報告集, pp.67-74, 2006.6
- 8) 熊谷守晃, 星俊彦, 佐伯昇, 太田利隆: 50 数年経過したコンクリートの物理, 化学的特性と耐久性, 土木学会論文集, No.686/IV-52, pp.41-54, 2001
- 9) 長瀧重義:コンクリートの長期耐久性[小樽港百年耐久性試験に学ぶ],技報堂出版,1996.8

- 10) 森茂二郎, 国広悦司: 各種セメントを用いたコンクリートの永年試験, セメント技術年報, No.27, pp.278-283, 1973
- 11) 小野義徳,中村秀三,大西達人:各種セメントを用いたコンクリートの永年試験,第48回セメント技術大会講演集, pp.592-595, 1994
- 12) 風間亨,上杉忠男,飯田勲,守分敦郎:明治時代に建造されたコンクリート製港湾構造物の耐久性 について,土木学会第45回年次学術講演会講演概要集,第5部,pp.466-467,1990
- 13) 喜多達夫,前田照信,福留和人:旧豊多摩監獄の解体調査 (その2) コンクリートの耐久性に ついて-,間組研究年報, pp.289-292, 1984
- 14) 福留和人, 喜多達夫, 前田照信:約70年を経過したコンクリート構造物の耐久性調査, 土木学会 年次学術講演会講演概要集,第5部, pp.55-56, 1984
- 15) 澤村勇雄:旧能取岬燈台のコンクリート調査,セメント工業, No.170, pp.2-6, 1981
- 16) 守分敦郎, 伊坂健二, 福手勤, 羽渕貴士: 70 年以上経過した鉄筋コンクリート構造物の干満帯お よび海中部における耐久性, コンクリート工学年次論文報告集, Vol.19, No.1, pp.829-834, 1997
- 17) 大野惣平,山崎和夫,浅岡宣明,小石川功:長年月経過した鉄筋コンクリート杭および木杭の性状, 土木学会年次学術講演会講演概要集,第5部, pp.59-60, 1984
- 18) 寺井達夫:黎明期の鉄筋コンクリート構造 武蔵大学本館一部解体調査(上), 施工, No.87, pp.67-77, 1981
- 19) 日本セメント株式会社中央研究所:長年月を経た鉄筋コンクリート構造物の劣化調査報告,セメント工業, No.188, pp.12-19, 1985
- 20) 山本努, 松川俊介: 建設から 75 年経過した開削 SRC トンネルの調査・診断, トンネル工学報告集, 第 15 巻, pp.395-402, 2005
- 21) 吉岡昌洋,古賀一八,山辺智典:築 72~77 年の RC 倉庫群および事務所の劣化調査(その 1.当時の施工状況),日本建築学会大会学術講演梗概集 A-1 材料施工,pp.629-630,2002
- 23) 依田彰彦: 60 年経過した RC 造事務所の耐久性調査, 建築保全, No.51, pp.62-66, 1987
- 24) 小嶺啓蔵, 鶴田浩章, 高場正富, 真崎洋三:60 年間供用されたコンクリート橋の材料調査について、コンクリート工学年次論文報告集, Vol.22, No.1, pp.571-576, 2000
- 25) 依田彰彦, 横室隆:65年経過した RC 造庁舎の耐久性調査, 足利工業大学研究集録, 第40号, pp.53-58, 2006
- 26) 東武鉄道株式会社,前田・戸田・住友共同企業体,財団法人建材試験センター:100 年経たレンガ 橋の調査結果,建築仕上技術, pp.41-47, 1996.5

- 27) 杉原伸泰,中村聖三,中原智法,高林和生,山尾敏孝:現存する日本最古の鋼鈑桁道路橋 明治橋 の構造・材料調査,土木史研究 講演集, Vol.25, pp.263-271, 2005
- 28)川上英男, 脇敬一:長期材齢コンクリートの調査研究(20 福井市足羽浄水場),福井大学工学部 研究報告,第38巻,第1号, pp.15-22, 1990.3
- 29)川上英男:長期材齢コンクリートの調査研究(6 福井県庁舎本館),福井大学工学部研究報告,第
 28巻,第2号,pp.269-282,1980.9
- 30) 大内一之,八十島治典,袴谷秀幸:大正末期と昭和初期に建設された建物の耐久性調査,日本建築 学会大会学術講演梗概集 A-1 材料施工, pp.633-634, 2002
- 31) 阿部道彦,橋本勇二,藤村成夫:函館西高等学校旧校舎のコンクリートと鉄筋について,北海道立 寒地建築研究所 昭和 58 年度調査研究報告集, pp.181-184, 1984
- 32)川上英男:長期材齢コンクリートの調査研究(10 福井大学旧講堂),福井大学工学部研究報告, 第 32 巻,第1号, pp.17-34, 1984.3
- 33) 武井一夫, 佐藤真一郎, 新林実, 中川三夫: 昭和初期の建物のコンクリート圧縮強度を調査して, とびしま技報 建築, No.8, pp.154-160, 1981
- 34) 瀬崎正博,磯田節子:大正・昭和初期のRC造建築の鉄筋とコンクリートの強度について –熊本 市における 3 つの近代建築の調査結果–,日本建築学会大会学術講演梗概集 A-1 材料施工, pp.753-754, 2000
- 35) 迫田恵三,渡邉晋也,斯波明宏,樋口正典:70 年経過した鉄筋コンクリート橋の耐久性調査,セ メント・コンクリート論文集, No.60, pp.419-425, 2006
- 36) 津崎淳一,田中斉,加藤淳司,塩谷智基,高桑信:64 年経過したコンクリートと鉄筋の物性及び AEによる健全性評価,とびしま技報 土木,No.50, pp.78-85, 2000
- 37) 巌文成,徳田京誠:旧函館裁判所の解体に伴うコンクリートの調査結果について,昭和 59 年度建 設省技術研究会営繕部会報告, pp.160-165, 1985
- 38) 長谷川高司,小谷内史義,菊田悦二,熊谷守晃:初代十勝大橋の解体調査 ーコンクリートの長期 耐久性に関する調査研究ー,建設省技術研究会報告, pp.83-86, 1999
- 39) 森弥広, 宇野祐一, 小林一輔:鉄筋コンクリート貨物船「武智丸」に関する調査報告, コンクリート 工学年次論文報告集, Vol.25, No.2, pp.1939-1944, 2003
- 40) 川上英男:長期材齢コンクリートの調査研究(12 昭和初期の学校建築・その 1),福井大学工学 部研究報告,第 35 巻,第 1 号, pp.55-68, 1987.3
- 41) セメント協会・コンクリート専門委員会:硬化コンクリートの配合推定に関する共同試験報告,セメント協会,1967
- 42) 中尾龍秀:わが国のセメントの品質,セメント・コンクリート, No.253, pp.27-40, 1968

- 43) 土木学會: 鐡筋コンクリート標準示方書, 1931
- 44) 土木学會: 鐡筋コンクリート標準示方書, 1940
- 45) 土木学会:コンクリート標準示方書, 1949
- 46) 岡田 清, 六車 熙編: コンクリート工学ハンドブック, p.91, 朝倉書店, 1991
- 47) セメント協会・コンクリート専門委員会:各種セメントを用いたコンクリートの長期強度,セメント・コンクリート, No.246, pp.43-49, 1967
- 48) 土木研究所:都市ごみ焼却灰を用いた鉄筋コンクリート材料の開発に関する共同研究報告書,2002
- 49) 土木学会: 2002 年制定コンクリート標準示方書 [施工編], 土木学会, p.79, 2002
- 50) 小林一輔, 白木亮司, 河合研至: 炭酸化によって引き起こされるコンクリート中の塩化物, 硫黄化 合物及びアルカリ化合物の移動と濃縮, コンクリート工学論文集, Vol.1, No.2, pp.69-82, 1990
- 51) 大久保孝昭, 松本慎也, 流田靖博, 沢木大介: 広島で被爆した RC 建築物における材齢 70 年のコンクリートの諸物性, 日本建築学会構造系論文集, 第 73 巻, 第 623 号, pp.27-34, Jan.2008
- 52) 日本コンクリート工学協会:コンクリート診断技術'03[基礎編], pp.179-180, 2003

長期間経過した実構造物中のセメント硬化体を、長期耐久性を考察するための貴重な実証試料ととら え、その諸性状を詳細に明らかにするため、従来から用いられている化学的分析手法を組み合わせ、効 率的なキャラクタリゼーションを実施するための統合的なシステムを提案し、また EPMA マッピング 分析に基づく新たな評価手法として、硬化体中のセメントの化学組成を推定する方法を開発した。これ らを駆使し、長期間経過した実構造物から採取した数多くの試料のキャラクターを明らかにし、長期耐 久性の研究進展に有用と思われる新たな知見を得た。以下に、各章で得られた主要な知見を記し、本論 文の結論とする。

第1章「序論」では、本研究を行うに至った背景と本研究の目的、および本研究に関連する既往の研 究について記した。

第2章「既存の化学的分析手法によるセメント硬化体の統合的なキャラクタリゼーション」では、既存の評価手法を適切に組み合わせ、少試料であっても効率的な評価を実施するための統合的なキャラクタリゼーションのシステムを提案した。建設から長期間を経た実構造物から得られるセメント硬化体には、長期であるが故の特殊性が秘められている可能性がある。また多くの場合、採取できる試料はきわめて少量に限定される。このような事情や制約をよく考慮し、過不足のないキャラクタリゼーションを行うことが必要であり、それに応えるためのシステムを提案した。また、評価の各ステップで用いられる具体的なキャラクタリゼーション手法を明確化し、主要な手法については、その概要とセメント硬化体に適用する上での要点を記した。

第3章「セメント硬化体における非水硬性物質の反応」では、セメント硬化体における非水硬性物質と セメントの作用として、骨材粒子のセメントペーストとの界面における反応層の観察と分析、および天然 岩石類を微粉末として普通セメントに混合した場合のモルタルの物性とセメントとの反応を評価し、以下 の結果を得た。

- (1) セメント硬化体内部において、骨材などの粒子とセメントが反応することがあり、その場合は両 者が一体化する現象が、電子線マイクロアナライザーによる分析や観察により確認された。
- (2)流紋岩、安山岩、チャートなどの微粉末を混合したモルタルの普通セメントモルタルに対する強 さ比は、材齢の経過に伴い増大した。砂岩やケイ砂の微粉末を混合した場合は、強さ比の伸びは小さ かった。
- (3)示差熱分析により、安山岩混合モルタルではケイ砂混合モルタルと比べ、C-S-Hが多く水酸化カ ルシウムが少ないことが確認された。ポゾラン反応の影響と考えられた。EPMAマッピング分析でも 確認された。
- (4) 安山岩混合モルタルでは、毛細管空隙の減少とゲル空隙の増加が確認され、ポゾラン反応の影響

と考えられた。ケイ砂混合モルタルでは、安山岩混合モルタルと比べて明らかではなかった。

- (5) 材齢経過に伴いモルタル強さ比が増大し、ポゾラン反応を生起していると考えられる岩石類は、 アルカリシリカ反応性の高い鉱物を含む傾向があった。
- (6)以上の結果は、天然岩石類であっても、その微粉末がセメント混合材として活用できる可能性を 示すものである。

第4章「EPMA マッピング分析による硬化体中のセメントの化学組成の推定」では、モルタルやコン クリートの硬化体を分析し、そこに用いられたセメントの化学組成を推定するための新たな手法として、 EPMA マッピング分析による方法を検討し、以下の結果を得た。

- (1)普通セメントおよび高炉 B 種セメントを用いたモルタル(骨材にケイ砂を使用)およびコンクリートによる実験の結果、マッピング分析の際のピクセルを可能な限り小さくし、ピクセルの数は数万~
 +数万点と多くし、さらには骨材に相当するピクセルをできるだけ除外して、各ピクセルについて得られる推定組成を平均することにより、実測値にきわめて近い推定組成を得ることができた。
- (2) 骨材に相当するピクセルの除外には、骨材とセメントペーストで含有量に明白な差異のある元素 についてしきい値を設定し、それに基づいて骨材のピクセルを選別することが有効であった。具体的 には SiO₂について上限値を、または CaO について下限値を設定し、それらを逸脱するピクセルを除 外することで、セメントの組成推定への骨材の影響をほとんど排除できた。
- (3)本研究で用いたモルタルおよびコンクリートについては、推定のために適切な SiO₂の上限値は、
 OPC モルタルは 35%、BSC モルタルは 60%、OPC コンクリートは 30%、BSC コンクリートは 40%
 であった。
- (4) 同じく、推定のために適切な CaO の下限値は、OPC モルタルは 40%、BSC モルタルは 20%、
 OPC コンクリートは 50%、BSC コンクリートは 30%であった。
- (5) 骨材に石灰岩が使用されたコンクリートの場合は、SiO2に下限値を設定し、それを下回るピクセルを除外することで、セメントの組成を推定できた。
- (6) 炭酸化など化学的変質が生じた部分では、精度の良い推定は不可能であり、あらかじめ数 cm 角 程度の広域のマッピング分析を行い、CaO 濃度分布などを求め、それをもとに化学的変質が大きく進 んでいない領域を分析ポイントに選定するのが望ましいことが判明した。
- (7)昭和 10 年代に建造された構造物のコンクリートについてセメントの化学組成を推定し、現代で いうところの高炉 B 種セメントであることを明らかにした。
- (8) 塩酸溶解分析法による推定結果を EPMA マッピング分析による推定結果と比較したところ、塩酸溶解分析法では Al₂O₃と Fe₂O₃は高く、SiO₂と CaO は低い傾向が見られた。塩酸溶解分析法による推定の精度には、さらに検討を加える必要があり、硬化体中のセメントの組成推定法としては、 EPMA マッピング分析法の方が適するものと判断された。

第5章「長期間経過した硬化モルタル中のセメントのキャラクタリゼーション」では、明治初期に 宮城県に計画された野蒜築港の遺構群から採取された、我が国では最古の部類に属するセメントと思わ れる硬化体の詳細なキャラクタリゼーションを実施し、以下の結果を得た。

- (1) 蛍光 X 線分析、塩酸溶解分析、粉末 X 線回折、背面反射電子像観察により、硬化体がまぎれも なく、セメントを用いたモルタルであることが確認された。
- (2) 塩酸溶解分析の結果を基にモルタルの配合を推定し、使用された部位により明らかな差異があったことが確認された。
- (3) モルタル中のセメント粒子を背面反射電子像で観察した。その長径は、観察された範囲において 最大 500~600 µm に達し、現代のセメントと比べて非常に粗いものであった。比較のため観察した 大正中期の硬化体のセメント粒子はこれより小さく、昭和初期の硬化体ではさらに小さかった。この 結果は、文書記録に残るセメント中の粗粒分の変遷と符合するものであった。
- (4) EPMA マッピング分析法により推定されたセメントの化学組成は、現代のセメントより低 CaO、 高 Al₂O₃ であり、文書記録に残る当時のセメントの化学組成と符合する結果であった。
- (5) 背面反射電子像で観察されるセメントの構成鉱物の種類や状態には、現代のセメントとは異なる 特徴が認められた。それらは、当時のクリンカー焼成設備である徳利窯の製造様式を反映するもので あった。
- (6) EPMA マッピング分析により、モルタルの練り混ぜに海水が使用された可能性が示された。
- (7)硬化体中のセメントのキャラクタリゼーションで得られた結果はいずれも、明治初期のセメントの材料事情や製造様式等と符合するものであった。これらのキャラクタリゼーション手法により、硬化体の素性を明らかにできるのみならず、セメントが製造された時代を推定する手がかりを得られる可能性を示すものである。

第6章「長期間経過した硬化コンクリートのキャラクタリゼーション」では、昭和初期に建造された 複数の構造物から採取したコンクリートの性状を評価し、以下の結果を得た。

- (1)昭和初期に建造され、竣工から70年を経た二つの構造物のコンクリートはいずれも、充てん不良 箇所は見られず、よく締め固められた密実なものであり、ていねいに打ち込まれたことが推察された。 水セメント比の推定値は、当時のコンクリートとして高くはなく、力学的性質は低いレベルではな かった。中性化深さは表面から数mm程度と小さく、外来元素の浸透は顕著ではなかった。
- (2)同じ時代に建造されたもう一つの構造物のコンクリートは、ペースト/骨材界面などに空隙が多く 見られ、水セメント比の推定値は高く、力学的性質は当時としては中程度であるが、上記二つと比べ ると劣っていた。中性化深さは表面から数mm~数十mm程度と上記二つより大きく、Clの浸透は上 記二つより進んでいると判断された。
- (3) 従来は配合推定法における誤差要因の一つであった、コンクリートに使用されたセメントの化学

組成(CaO含有量)は、第4章で述べた EPMA マッピング法で実測することが可能であり、その結果、水セメント比、および水セメント比と密接に関係する各種耐久性能の予測の信頼性が向上することを、中性化を実例として実証した。

- (4)昭和初期に広島市に建設され、原爆投下時にも供用されていたRC建築物のコンクリートには、 採取した部位により、その性状に明らかな差異が認められた。いずれもコアの端部に、著しく炭酸化 が進行し、明らかに変色した領域が認められたが、その領域は、2階・爆心地側の梁のコンクリート の方が、地中の基礎部のコンクリートより大きかった。
- (5)内部側の変色していない部分の電子顕微鏡観察、EPMAマッピング分析、細孔径分布などの評価、およびコア全体の配合推定により、二つのコンクリートにはその初期性状に明らかな差異があり、 基礎部のコンクリートの方が、水セメント比の低い緻密なものであったと推察された。
- (6)以上の結果により、コンクリートの初期の性状が、経時的な変質に対して非常に大きな影響を持つことを実証した。

<u>1.査読つき論文</u>

- Daisuke Sawaki, Etsuo Sakai: Characterization for long-aged hardened cement collected from old structures by modern technique for chemical analysis, Journal of Advanced Concrete Technology, Vol.5, No.3, pp.325-332, 2007 (第2章)
- 2) Daisuke Sawaki, Etsuo Sakai: Procedure of systematic chemical analysis of hardened cement used in historical structures built in the olden days, Restoration of Buildings and Monuments, Vol.14, No.3, pp.211-224, 2008
 (第2章)
- 3) 沢木大介,坂井悦郎:微粉末化した岩石類のポゾラン反応性と硬化モルタルの組織および物理性状 への影響,セメント・コンクリート論文集,No.62, pp.89-94, 2008 (第3章)
- 4) 沢木大介,小林久美子,坂井悦郎:電子線マイクロアナライザーによる硬化モルタル中のセメントの化学組成の推定,分析化学,Vol.59,No.4, pp.311-318, 2010 (第4章)
- 5) 沢木大介,後藤光亀:野蒜築港市街地跡の遺構から得られたセメント硬化物の化学的評価 -構成 部材の化学分析に基づく近代土木遺産の考古学的解析-,土木学会論文集 D, Vol.65, No.3, pp.229-243, 2009 (第5章)
- 6) 沢木大介,田中敏嗣,黒田一郎,米倉亜州夫:昭和初期に建造された貯油タンクから採取したコン クリートの力学的及び化学的性質,セメント・コンクリート論文集,No.61, pp.390-396, 2007
 - (第6章)
- 7) Daisuke Sawaki, Satoshi Tanaka, Ichiro Kuroda, Asuo Yonekura : Characteristics of concrete in two structures completed about seventy yeas ago, Journal of Advanced Concrete Technology, Vol.7, No.3, pp.375-384, 2009 (第6章)
- 8) 沢木大介,松本慎也,大久保孝昭:広島市に昭和初期に建てられた RC 建築物のコンクリートの品 質と原爆による変質,セメント・コンクリート論文集,No.63, pp.340-346, 2009 (第6章)

2. 査読つき国際会議論文集

- Daisuke Sawaki, Ichiro Kuroda, Makoto Ichitsubo, Hideaki Kitazono, Satoshi Tanaka, Asuo Yonekura : Mechanical and chemical properties of the concrete used in the structures built in old days, Proceedings of Building Stock Activation 2007, pp.291-298, 5-7 November 2007, Tokyo (第6章)
- 2) Daisuke Sawaki, Etsuo Sakai: Characteristics of concrete collected from a structure completed around 1940, Proceedings of 4th International Conference on Construction Materials
 : Performance, Innovations and Structural Implications, Vol.2, pp.829-834, 2009 (第6章)

<u>3. 総説等</u>

1) 沢木大介, 坂井悦郎: 歴史的建造物を構成するセメント系材料の統合的化学分析手法, Journal of the Society of Inorganic Materials, Japan, Vol.16, No.340, pp.184-190, 2009 (第2章)

謝 辞

本論文は、東京工業大学大学院理工学研究科博士課程材料工学専攻(社会人コース)に在学中に、主として株式会社太平洋コンサルタントにて行った研究内容をまとめたものです。

研究を進めるにあたり、東京工業大学大学院理工学研究科教授 坂井悦郎博士には、指導教官として、 また学位論文の主査として、終始懇切なる御指導をいただきました。あらためて、ここに感謝の意を表 します。また東京工業大学応用セラミックス研究所長 岡田清博士、同学大学院理工学研究科国際開発 工学専攻教授 大即信明博士、同学大学院理工学研究科物質科学専攻教授 柴田修一博士、同学大学院 理工学研究科材料工学専攻教授 中島章博士には、学位論文の副査として、厚い御指導をいただきまし た。ここに御礼申し上げます。

本研究を進める上で、株式会社太平洋コンサルタント代表取締役社長 下山善秀博士、同社常務取締 役 加藤忠男氏を始め、同社の役員、部長の皆様には多大なる配慮をいただきました。自由に研究を進 めることのできる社風であるからこそ、学位論文の完成に至ったものであります。ここにあらためて感 謝の意を表します。また同社前社長の石崎寛治郎博士には、博士課程への入学や社内での研究推進に関 し、多大なる御尽力をいただきました。石崎博士の強力な後押しなくしては、本テーマを研究として具 体化し、学位論文として完成させることは難しかったと思います。あらためて御礼申し上げます。

1987 年に旧小野田セメント株式会社に入社以来、数多くの方々から御指導をいただきましたが、中 でも元小野田セメント取締役 内川浩博士、現・旭鉱末株式会社 宇智田俊一郎博士、現・岩手大学大 学院工学研究科准教授 羽原俊祐博士には、セメント化学に関する高度かつ広範な御指導をいただきま した。当時教えていただいたことが基盤にあったからこそ、本研究をセメント硬化体のキャラクタリ ゼーションの論文として結実させることができたものと思います。あらためて御礼申し上げます。

本論文の第 5 章に記した野蒜築港建設遺構のセメント硬化体は、東北大学大学院工学研究科准教授 後藤光亀博士の御厚意により御提供いただいたものです。後藤博士には、近代土木遺産の価値を後世に 伝えることの重要性を御教授いただき、論文を執筆する上で強力な原動力となりました。学術誌への投 稿の際には、懇切なる御指導をいただきました。また、野蒜築港モルタルの分析評価結果を考察するに 際し、元小野田セメント生産部長 台信富寿博士には、明治期のセメントの性状に関する多くの貴重な 御助言をいただきました。ここに、深く御礼申し上げます。

第6章に記した旧海軍の構造物のコンクリートの調査と研究は、広島工業大学大学院工学系研究科教 授 米倉亜州夫博士を中心とする有志グループで実施したものです。米倉博士、および調査と研究を共 にした防衛大学校准教授 黒田一郎博士、太平洋セメント株式会社中央研究所 田中敏嗣博士、独立行 政法人国立高等専門学校機構教授 市坪誠博士、株式会社安部日鋼工業 北園英明氏に、深く御礼申し 上げます。

127

本論文の第6章に記した広島商業高校校舎のコンクリートは、広島大学大学院工学研究院教授 大久 保孝昭博士の御厚意により御提供いただいたものです。大久保博士の、論文により原爆の悲惨さを後世 に伝えるべきとの理念の下、学術誌に投稿することができました。またその際には、懇切な御指導をい ただきました。ここに深く御礼申し上げます。

最後になりますが、太平洋コンサルタント社の皆様、特に私が所属します解析技術部のメンバーには、 研究の推進に不可欠な実験データ採取など、多くの御協力をいただきました。また第4章に記した EPMAマッピング分析による硬化体中のセメント組成推定の開発は、3年前まで我々の同僚であった山 本正義氏の示唆に端を発するものです。これらメンバーの協力なくしては、本論文の完成には至らな かったものであり、ここに深く御礼申し上げます。

平成22年3月末日 沢木 大介