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CHAPTER 1

INTRODUCTION

Let X(t), t € (-0, o ), be a real-valued weakly stationaryb process
- and we assume EX(t) = 0 for simplicity. We denote

.

EX(H)2=q% , EXWX(t+R) = g%

This paper is a report of the study on a simplified estimate of correlogram
fa -

ILet us assume that the process X(t) is observed at t =1, 2, ..... )
N + ﬁ.‘. Then we usually estimate f3 by the value which consists of the

statistic
N

| N—'— XXM X (RHR)

n=|

But in this paper, we consider another estimate for Pg. Letus consider
thié attempt from another point of view. In mény fields-of applied statistics,
fs is evaluated not only by the usual method, but also by the simplified
methods. The latter can be obtained by means of the modifications of the ;
former on the physical considerations : These modifications give maﬁy
sconveniences to use them, .1t seems that these simplified methods contain
‘many interesting problems in mathematical and statistical point of view,
but such investigation has scarcely been carried out. We aim at the study
of a simplified method from the mathematical and statistical standpoint.
The main point of the construétion of the simplified estimate treated
in this paper is that the term X (2) X (nt+A)  in the estimate is replaced
by the term x(z'z')/.lgn (X(?Hﬁ)), where sgn(y) means 1, 0, -1 corres-
pondingly as 470, Y=0, Y$< 0. We shall discuss the-statistical
properties of the estimate constructed as the above. The contents of this
paper are as follows,

In Chapters 2 and 3, we deal with the case that ¢%is known.
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It is shown that

Yo = 725 ",;,"n X(n)4gn (xmﬂt))

—;

is an unbiased estimate»o_f 54, when X(n) is a Gaussian process.

In Chapter 2, we discuss the statistical properties of ¥4 for a simple

) Markov process and, in Chépter 3, we discuss them for a general procéss
satisfying some conditions, The crux of this discussion is how to evaluate
the varia-nce of Yg .. In Chapter 2, we evaluate it directly by the Markov
property and, in Chapter 3, we evaluate it by the projection based on the

" linear regression. It is also shown that Y& is a consi'sterit estimate,
when Iun fa = . Further the vérian’ce of ¥z is compared, for the .

" typical cases, with that of the usual estimate

_ N
Fi = 57 X(M)X(N+R)
TN 2 _.

»

Chapter 4 deals with‘the simplified estimation of .fg when 0? is
unknown., We shall discusg it about the case that N is sufficiently large.

Here, the statistic

z

Z x(n)Agn(xmm
[7=2= )

mn)l o S .

comes into problem. We show that the diﬁtibution lfunction- of \/"' ( r’-ﬁw f4.)
tends to the Gaussian d1str1but1on functmn with mean zem a8 N —s o0,
if X(n) is a Gaussian process havmg a finite movmg average representatlon
and sat1sfy1ng some other conchtlons And we evaluate the asymptotlc
‘,variance of '\/'— (la "vfﬁ,) K These results are shown by using mamly

a kind of extended central limit theorem and the similar method to the one

in Chapter 3, Concerning the usual_ estimate

v :

~ Z( X(ﬂ)xmwt)
[& =
Z Ixuz)l 3o

we can find analogous results to those of [# . For typical cases, we shall

‘compare the asymptotic variance of. - YN {2~ fz ) with that of \/N(ﬁ;,-fﬁ).



In Chapter 5, we shall discuss the bias of ¥& When the condition that
X(n) is a Gaussian process is not sat1sf1ed We consider th1s problem
in the meaning that X(n) departs slightly from a Gaussian process.
First of all, a question arises as to how we define a process
which departs slightly fvrorn a Qauésiah process. We define this process
by putting a few cohditions on the simultaneous distri'but-ion of .X(n) and
X (+k) for any L., This defihition aims at the ortho'gonal development,
using the Hermite polynomials, of the density of the simultaneous distri-
bution function. The bias of ¥ is expressed by the coefficients, which
appear in the orthogonal development and indicate the degree of the departure
from the Gaussian distribution. These'coefficients are also expressed by
moments,

Non Gaussian cases are systematmally cons1dered in Chapter "6,
Here we malnly discuss the variance of Y3 for the processes which
depart from a Gaussian process." The def1mt10n,of non-Gaussian processes
in Chapter 5 ls not sefficient for this purpose, ‘W'e define thém by the
same idea ag in Chapter 5, but more strictly and more systematically.
This definitioh is related'to the orthogonal de:velopment usln‘g the Hermite
polynomials in Lz (R%), of - the dens:ty of the k- dlmenswnal sn'nultaneous
distribution function of (X (nry, X (ﬂz) y = y,' X (/1,;) )
The influence ovf the departure on the Variance is expressed by the, coef-
ficients in thls orthogonal development Whmh 1ndlcate the degree of the
departure frorn Gaussian property and can be represented by moments.
And the variance is shown in the forms connected with the results in
Chapters 2 and 3 In this chapter, we make dlSCU.SSlQnS generally as
much as poss:lble go that we may use these methods in case of dlSCUSSlOl’lS
about thev properties of the other stat1st1c related to a-ystatlonary process

departing from a Gaussian process.

g The method of'constructihg the. estimateof correlogram in this paper
is or1g1na11y found in Takahasi and Hus1m1 s paper ( 13 ) .
Takahasi and Husimi have used this method to determme the per1od and

the decrement of a vibrating system exposed to 1rregular forces
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They have treated the process X(n) satisfying the relation

ad%x ({)

) dxt) . a8 (t)
T

+ 2N At wzvx(t)'r- —a‘r,

where B(t) is a Brownian motion process, They sa”y that this method
saves greatly the labour of the calculator. They have applied this method,
for example, to the analysis of the atmospheric pressure and have shown
the comparison between this method and the usual method for practical
data, This result agrees with ours, ’

Recently, the 'analogous attempts have been proposed in the engineering
field, Correlators have been made on the similar principle to the above
(see Imai (2) ). 1tis sﬁown that the circuits for these correlators
become very simple. Also in the field of fishery science, the statistic

T .
—= ST x () agn (X (tTR)
N tZ, g7 ( )

is employed to simplify calculations of the covarianceé in analysis of ship's

rolling records by Kawashima [ 5] .

Some other simplified methods of the estimation of correlogram are

as follows.

(1) A correlator based on the principle slightly different from ours
is presented in Imai [2) .- We assume that X(t) is a strongly
stationary process with . |

EX(t)507and EX(t)i + 0.

For a sufficiently small pésitive number § , A is a positive number

such that
EX(6)°~ EX() XA (X)) S,
Whei‘e | . '
s [ X ZA,
Xa(x) = { 7 w7
- 0 , iflxlzA,
.Let Ur, Uz, =, U ~ be independent random variables, each -
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haying a rectangular 'di_Stribution on the interval {~-A, A) . Furthermore,
Up (3=1,2, -, N is assymed to be 'independent‘ of X(t) for any t.

Now let us consider the statistic

W Y KW agn (xtr tU)

when E x(t) % is known.
. Then we have

E(r,

Iy s
) = fﬂ. [} o ’ LT ( ' )
n‘;’) is not an unbiased estimate of .fp .
A merit of this estimate is that the relation (1) holds for any strictly '
stationa‘ry pfocess satisfying some conditions, We shall éompare the
-variance of J’m with that of our estimate ¥z for the cases treated in
Chapter 3.
It holds:
w2y 1A X 2
B T) = e { 2. EX(t)
ts/

Mz

EX(DX(S)gm (X (t+h)+Ue) san(x(sm)ws)}

N
DA
t /5=
45

!
)

d\"

%k
*Mz

| : | |
{N(T ;,%Z EX(t)X(S)X(tv%)X(th)}

by

L L
- N?

r-(..
m"
Nt

.;

Therefore, we fmd that the var1ance of b’g, )' is generally greater than

that of R (see Chapter 3).

(i) Let ‘X(t); TEX(D)=0, be a statxonary process such that
e Ixwinea, - |

‘where A is a constant.v When EX (t) =d‘2 is known, we ghall construct



the statistic

@ 1 A' N -
'a =W o X sgn (X W+ Yt) Sgn (X (tHh)+Z¢) |
where Y , Yz -—---, Yy and Zs, _Zz,"‘;‘ , Zaw~ are mutually

independent random variables, each of which is un'ifo,rmly distributed
over (-A, A) and independent of X(t) for any t, |

Then it is shown that )’,{2) is an unbiased estimate of §3 . (seke Jespers.
Chu and Fettweis (3] , Stato and Kawarada )[12]' and Veltman and
- Kwakernaak (14] ). A strong point of this estimate is that the’

unbiasedness holds for any weakly stationary process, provided that

| Xx(t)] <A .

The processes treated in this discussion are not same as ours, so we
can not compare two estimates from the viewpoint of estimation theory.
The similar method is proposed in Sato (11) . Let X(t) be a

‘weakly stationary process such that

0O 4 X(t)<LA.

We assume that Y;, Yz ,--~-, YN andr Zy, Z2,----, ZN ~ are
mutually independent random variables, each of which has a rectangular
distribution on (0, A) and is indepeéndent of X(t) for any t. Letus
consider the random variables ‘ '
Xt =Xt)~Yg and Xy, =X(¢t+h) - Z¢,
t=1 2, ~—---, N,

And we define the random',variabjle;Qtvas fqll_ows i

1, if X¢70 and Xerg >0,
Qt:{ :

0, ' otherwise,

+

Then the: statistic -

3) A7 &
L’L:',VZ a+

t=1

is an unbiased estimate of EX(t)Xx(ttr) .

-6 -



(iii) Let X(t) be a:stationary Gaussian process with mean zero.

We shall calculate the value

a,ﬁ(tl) - —/\/7;_" 49 n (X(i))dgn(x(t+ﬁ)) _.

Then we have
4 2 -
E(Y, ))'—‘ F Ain 5,

(see Ekre (1) , Kashiwagi and Kataoka (4) , McFadden [ 6) and
Veltman and Kwakernaak [14} ).
- This is called the polarity »cbrrelati-on.

The similar method is also employed in Ruchkin (10) . Let X(t)
be a stationary ergodic Gaussian px:ocess.with mean zero.
In this case, the sampling intervals are assumed to be such that the
samples are ixidepe;_ndent. Then the random variable: (¢ is defined

as ifollows,

il

c { 1, if X(t) and X (t*#) have the same polarity,
Ce v

0, if X(t) and X (t*+£) have opposite polari’ciés.

Now we shall éonstruct the statistic.
Pu=4 ¥ Co
NN & Ct.
Then we have

E(Py)=%+7 Sin”(fp) =5 coa”/(-fe) .

So let us congider the statistic

(s ‘
3"&)'-*- - C04 (7;P~)

for the estimation of fp , It is shown that

() o '
EVy = fpexe [~n'er)(~(Em) [2n)

= | o
Var, (K;f)) ~ I (E/;vjv(/—m Px))
-7 -
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for lai;ge N. The standard deviation of Yf) is alwéys> greater than

that of Qaual estimate. The ratio of the former to the latter increases
without Hmit as |$2| approaches unity, In our treatment, the sampling
interv’éls aré not assumed to be such that the samples are independent.

So, we can not compare these results with ours (cf. Chapter 4).

{iv} W'g ghall quote Morishita (9) . Let X(t) be a stationary
Gaussian process with mean zero. It is shown that we can obtain
correlogfam by calculating the mean value of sampled data X (#+%) R

where § is given by
X(<4) =5

for an arbitrarily preset non-zero level ¥,

For the related topics, we can find the studies which deal with the

axis crossings of a stationary process (see McFadden (7) , (8) ).
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ON A SIMPLIFIED METHOD OF THE ESTIMATION OF
THE CORRELOGRAM FOR A STATIONARY
~ GAUSSIAN PROCESS

By Mituaxr Huzil
(Received Jan. 11, 1963)

1. Introduction

Tet x(¢) be a real valued weakly stationary process with discrete
time parameter ¢, such that Ez(t)=0, Lx()'=d, Ex{t)x(t+h)=0d 0.
The problem considered in this paper is concerned with the estimation
of the correlogram p,. For this, we assume the variance ¢! to be known.
Further, since the correlogram p, is Symmetrjc about h=0, we take A
to .be nonnegative. For the correlogram p,, the unbiased estimate

T T
= s 3 a(t)x(t+h)

-

is usually considered. However, we do not’ take this estimate, as it is,
but make modification. The essential part of our modification is to
replace x(t)x(t+h) by x(t)sgn(x(t+h)) in the estimate 7,, where sgn(y)
means 1, 0, —1 correspondingly as y>0, y=0, y<0, The statistic thus
obtained originates in Takahasi and Husimi’s method of determining the
period and decrement of a vibrating system exposed to irregular statistical
forces [4]. This statistic has been used as a simplified estimate of the
~ correlogram in many practical fields. However, its validity has not
been assertained. This problem was first presented to the author by
Prof. R. Kawashima, the Faculty of Fisheries, Hokkaido University.
- He used (1/N) X S]Y‘ %(t)sgn((t+h)) to simplify calculations of the covariance
in analysis of Shlp s rolling records [3].

In the present paper, we shall investigate mathematical and statlstlcal
properties of the statistic obtained by that replacement from 7,. In
~ section 2, it will be shown that, when x(f) is a stationary Gaussian
process, we can give an unbiased estimate of the correlogram in terms
of x(t)sgn(x(t+h)). The estimate is

T 11X

n=y 5 -3 w(t)sgn(e(t+h)).

- The variance of this estimate will also be evaluated. In general, it is
not easy. to evaluate the variance, and, our-discussion is mainly restricted

259

-12 -



260 : MITUAKI HUZIT

to the case where x(¢) is a Markov process, Further, in section 3, we.
shall give numerical comparisons of the variances of our estimate y,
with those of the ordinary estimate 7,. From this comparison, it will
be seen, at least in that Markov case, that our estimate has smaller
variance than the ordinary one for small lag &.

2. Mean and variance of estimate 7,

First, we shall show that, if x(¢) is-a stationary Gaussian process, B
7. is an unbiased estimate of p,. s '
In fact, for h+0, putting simply x(t)~—oc and x(t+h) Y, we have

Ex(t) 9(}n(x(t—|~ L))
_ 1_“”8‘” r . ' <____1f____ 1 2>d d
B VT Jymo Jomen I XD\ =5 iy Bon )y
= 1:l gw r x exb(—-——l—————(wQ—??nmy + ?/2)> didy
2na’ 4/1— 0, Ju=0 Jo=—co 26*(1—p}) :
I S Su. r x exp < — —1—(962 —20,2Y+ y2)> dxdyA
210t V1 —pj Jov=-o Jumoo 20'(1—pi) " -

and

1 R R < 1 2 2 > . g,
. —_— —20, dxdy = —£
2o x/1-p}ig S XD\ = iy & Ay jddy = e

y=0 Jr=—0c
I (e
oo’ 1,/1_‘0" S &rexp 20( )(-'17 p,,ocyﬂl) ray = Jon
Consequently, _
Ea(t)sgn(a(t-+h)=1/ "?{ 60n,
- and finally
_ : E(Tn):.‘)n .
For h=0, we can also show |
E(To)——,“l.-

In the next place, we . consider the variance V() of estimate 7,.
Evaluation of the variance of y, proceeds as follows, We have

V()(,) E(y —-1)2 Eyi—1,

-13-



ON A SIMPLIFIED METHOD OF THE ESTIMATION OF THE CORRELOGRAM 261
\ T 11X
Eyi=FE TN > w(t)sg'n(x(t))

1
% ﬁ Ex(s)sgn(w(s))m(t)sg%(x(t))v

11
»——71'—(-’—2— I\]’2 t=1_8§=1

71 1 & e
+_é_ NI lL’oc(t) sgn’(w(t)),

-and_; for simplicity, putting x(s):é: and x(t)#y,
 n(s)sgn(a(s)a(t)sgn(a(®) = Bla(s)|x(t)

1 o 1
== é«mf:ﬁ};f;'gyz—w Sw=—~°° I xl |y| eXp('_' 202(1 - ,()3~,_)(w2— 2,0.9—,,%?/-{" @/2)) dxd?/.

Using the expansion (S. O, Rice [2], section 3.5)
Sws wu’v“‘ exp(—u'—v'—2auv)dudv
0 C

©we get, for example,

'C’Jv oo ' b‘ 1 . . |
SH S, vy e’f"("m (x2—2ﬂ-«—zwy+y”))dwdy
— 2 (Z,Os () v ]C‘{"Z
=o(1—p)( 3 Gl (£ ))

Thus, -we have

E 06(8)89%(90(8))90(089%(x(t))

_ 20— gL ) (& o™ p 41y
b (220 (2m)-!'11(m+1))’

. and ﬁnally,

2 49 (5 o)™ _
V(n)—N2 ’2;3:1(1 ol ’)/.<m20 s l’(m+1)>+?ﬁ 1

_2_-Nl — ,2)3/8 (2401») 2] _

= ;JI(N k)(l —oi) (Z om ),1( +1))+—2—.17 .

For n>0, the variance of y, is given as follows. As was stated in
section 1, we hereafter restrict our attention to. the case where «(t) is.
a stationary Gaussian Markov process. A process x(t) is called a Markov
‘process in the sense of J. L. Doob [1] when x(t) satisfies the followmg

T condltlon

- 14 -



262 ~ MITUAKI HUZI

for any integer n=1 and any pamméter ‘values t,<t; <2+ <t,, the con-
~ ditional probabilities of %(%.), relative to x(t,), (ty),**, #(t,—.), are the same
as those relative to x(t,-,) in the semse that for each 2

P{m(tll)é'”w(tl)r x(tz);' *y x(tn—l)} :P{x(t,,)gllx(tn_l)}

with probability 1.
In this case, the correlogram is expressed as

o =a!" (lalél)
(see J. L. Doob [1]). Let

f,n(xla Lyy 22, xn)

 be fhe probability densfty function of -the mn-dimensional Gausgian
distribution. Then, for a Gaussian Markov process x(¢), and for any
t1<tz< s <tn—-2<tn-1<tn, we have

Fulwlt), (8, + o, 0lta), 2ltos), 3(6)
_ Sy, x(t) .. Si@(t.-s), B(ta)) Fux(ta), %(t)).

Ji(x(ty)) Si((t,-1))

We use this fact for calculation of the variance of y,. For simplicity,
we assume that N is sufficiently large and N>k. Then we obviously, have

variance of y,= V(y,)=F(y,—p,) = FEyi—p},
and '

B =E (\/ % L LS altsgniat+h) )

?}5 LE< ﬁ SIL‘ .x(t)sgn(x(t+h))x(s)sgn(w(s+h))>

t=1 s=1

15 ﬁ‘ Ex(t)sgn(a(t+h))u(s)sgn(@(s+h))

23 E'oc(t)sgh(x(t—l—h))x(t-l— Rysgn(z(t--2h)
31 Bo@)sgn'@t-+h) | -

In the following we evaluate each part of summation.
i) When s>t and t+h>s, we have

~15 -



ON A SIMPLIFIED METPIéD OF THE ESTIMATION OF THE CORRELOGRAM 263

Fix(®), x(s), 2(t+h), ©(s+h))

_F0(0), 5(8) LoD, SR £ ooty a(sih
Ji(x(s)) filx (t-{-h)) f(ﬂ’/'(t—l— ), 9(:(3-{- ).

For simplicity, we put
2(t)=ux, ©(s)=y, x(t—i—h) x, x(s+h)=19.

Then we have

fiw, . 5,7) SRR
_ 1 R S PN
= e " w )
X exp<—— —‘—“’1—-“ (7/‘—Pt+h—s-&'?)2“"——*~——1———(§J2—2{),-_,9~6"I7+:l72)> .
20" (L—=pt—s) 0 20%(1—pi) '
Now
Ba(tyn(s)sgn(o(t-+h)sgn(o(s+ b))
=" 77 aysgn@sonns o, v, 3, D)dvdydady
= auria v v pdedydiy
b N eutie, v pdsdyasdy
—Xi S‘j r r 2y f (e, y, & B)dedydidy
y=—00jx=0jy=—00 Jr=~—o0
c0 0
+|. S~ g S vy f (@, y, &, P)dedydidy,
y==—coJu =—c0 Jr=—00
and
o T eurin, v ndedydaay
Py=0}e=0)y=—c0 Jr=—00 ) » .

zg N U suri v, 2 dadydaay

w==o /Y=o Jr=—0

— Pl =045 5 (%' —2p,- Lwy+y”))dxdy

: 1
ex ————
el P i )

2 V1—pl_,
Pocflivnzs Sm {7 #rex ( ____1._ 320, FY+ >d”d‘..
2rat V1= pl_, ps By S"i =0 P 20%(1—p'_,) (x 05— &Y+ ") | 2oy

Using the expansion formula used in the'evaluatio‘n of V(r;,),We can get

16~



- 264 MITUAKI HUZII -

R
S

S S _@yf i, v, & Bdedydidy

?

T o) 1J—~°° T=—00

51— Ptz;c ) VI—pl, z(k | (22\;,)’“ F(k;—l)“)

b et (& (27: ' p (k) r =)

,
».:Q? =

Similarly, we get

© 0 >4 oo
e T e v, 8 ipdadyazay
y=0Ja=—coy=—o Jum—o 77 ,

0 0 oo oo .
:gzg_mﬁ Ny {m | our i, v, &, Ddedydady

S

Therefore we obtain

Fx(tyx(s)sgn(x(t+ h)sgn(z(s-+h))
— 02‘().\—L(1 - p?—f-h »:;) '\/J-—__f;: <

T

(210& 1) o
0 @mt 1) [(erl))

+ 20% ph(L— 0l )" (}] (20,-)"

3

3 oy Dm0t 1),

i) When s>t—|—h we have using the same notation as in i),

fi(t), %(t+h) (s), @(s+h))

2(1

— — r—
2 T B Y e e S W | S L
! o 2
xexp( S — ) (&= po—r-n)'— yyﬂ/))

In this case, we have

E(x/%, y, §) =%
E(xy/®, §)=EQE(x[E, y, D)2, §)

— Os- (1— P/) B on(1— Pe 1) iy,
1—pi, 1—pi,
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Consequently, we get
Ea(t)sgn(x(t+ h))bc(s)sgn(w(s +h)) .
- Bl ) e ( 53 (2o 1"(m+2')ﬁ(m.,-i—1)>

" = @m41)

ph(l P»~1 IL) '\/1 los 3 0_0‘ (zps—l)2m ]1 __1 2
+ T ({mlzjo (Zm)' (ml )> .

iil) When s=t+h, the necessary joint probability density function
is fi(@(t), 2(t+h), x(t+2Rh)). With the same notation as in i), we have

A, (t+h), 2(t-+20)
= P8O, BAD) 11 1), e+ 2))

Si(x(t+h))
S NN -
) eXp< 2o o) (@—ouy ))
>h< exp ( 2(]14;?) (J —2p, J'y%“ 2))

Using this expression, we get
Ex(t)sgn(ax(t + k)4 h)sgn(x(t+2h))

‘ 2 ! h 1— ',Zlﬂ/'l CS\ 2 '277”’1 T p .
:j,p(Tr o1) (,,?:o ((2:;3_1)' l(m+2)F(m+1)>.

iv) When t=s, we have
Ex) (sgn(xt+h)) ="
Usihg these results, we finally get
V(ri) = Eri—pi

1\172[% (N—F) {p‘(l phi) V1—pl <7§0(—(22ﬂ—§%;;~1!~1”(m+1)2>\

o+
T 200 (L) (= (—;2—”%)—, I(m-+2)(m-+1))

1
J
+2k§;1 (N——]C) {Pk(l—PZ) \/1———‘0,L ( > _MWF(”@ |_2)1 (m+1)>

im0 (2m+1) !
ot (l—pi) VI= (z o Tom 1)
F2N= Ry (i) ( 33 2O Pan )+ 2N |

9
—Pn
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266 MITUAKI HUZIL

3, Comparison of y, with 7,

I

1

The variance of 7,= 2% ) x(t)x(t%h)' for a stati‘(‘mary Gaussian
g L= o ‘ - .

,_‘

process is as follows:
i) When h=0, we have

. . N . 2 Nrjl L ! Ny 3 .
variance of fu= Vif) = 31 (N—k)(L+260)+ 5 —1.

i) When Ah+0, assuming Ma_i‘kov property, we have
variance of 7,= V(f,b):Ef}i—p;i |

|23 (N—k)pk(1+2ph )

+ 2k§+‘l(N —k)o(1+20i_,)

+6(N—1)i + N(L+201)
— 0} |
In this section, we compare, numerically, the variance of 7, With

that of 7,.
We are considering a Markov process, 50 we have

pe=a"! (a|<1).

Numerical comparisons. aré made for the 'following cases :
| 0.8, 0.8,
N=50, 500.

The results are shown in Table 1 and Figure 1.

Taking into account the present numerical results and the ease of
computation of 7,, we can say that the estimate 7, is a fairly good
estimate of the correlogram for a stationary Gaussian Markov process.
This will also be referred to in future by M. Slbuya from ‘the point of
view of estlmatlon theory.
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TABLE 1#
a=0.8
N\ N=500 N=50
. , N o o
AN V() V@, V(i) v(T,)
0 1.0000 | 0.0048 0.0181 0.0464 0.1743
1 0.8000 0.0070 0.0174 0.0630 " 0.1671
2 0.6400 0.0084 0,0160 0.0808 0.1535
3 0.5120 0.0093 0.0146 0.0894 0.1391
4 0. 4096 0.0098 0.0133 0.0949 0.1263
5 0.3277 0.0102 ® 0.0122 0.0984 0.1159
6 0.2621 0.0104 0.0113 0.1007 0.1079
7 0.2097 0.0106 0.0107 0.1021 0.1019
8 0.1678 0.0107 0.0102 0.1031 0.0975
9 0.1342 1 0.0107. 0.0099 0.1037 0.0043
10 0.1074 0.0108 0.0096 0.1040 0.0921
11 0.0859 10.0108 ©0.0095 0.1043 0.0916
12 0.0687 10.0108 0.0093 0.1044 0.0901
13 0.0550 0.0108 0.0093 0.1045 0.0892
14 0.0440 0.0108 0.0092 0.1046 0.0885
15 0.0352 0.0108 0. 0092 0.1046 0.0879
20 0.0115 0.0108 0.0091 0.1047 0.0873
25 0.0038 0.0108 0.0091 0.1047 0.0872
30 0.0012 | 0.0108 0.0091 0. 1047 0.0872
a=(0.8)'=0. 32768
N— 500 N— 50
ph, - D 7
/z Vi) V(7,) V() V@)
0 1.00000 |  0.0014 ' 10,0050 0.0138 | 0.0494
1 0.32768 0.0034 |  0.0032 0.0338 0.0316
2 0.10737 0.0036 |  0.0026 0.0359 0.0259
3 0.03518 0.0036 |  0.0025 0.0362 0.0249
1 0.01153 0.0036  0.0025 0.0362 0.0247
5 0.00378 0.0036 |  0.0025 0.0362 0.0247
10 000001 0.0036 0.0025 0,0362 0.0247

comments and advices,

Thanks are also due to MI

T. Komazawa and

Miss K. Ozaki for performing all the necessary programmings and opera-
tions of the FACOM-128 computer to prepare the numerical results.
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) As was stated in H. Akaike [5], the variance of 7 is asymptotlcally of order 1/N. The
present results are in accordance with this fact.
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ON A SIMPLIFIED METHOD OF THE ESTIMATION OF
THE CORRELOGRAM FOR A STATIONARY
GAUSSIAN PROCESS, II

By Mituaxk: Huzir

§1. Summary.

‘For the estimation of -the correlogram of a real valued weakly stationary
process z(f), we usually use the estimate using the term x(Hx(t+h). We try to
replace the term x(fa(t+-h) by the term z(f) sgn(x(t+h). In the previous paper
- 2], we showed that, when the variance is known, we can get an unbiased estimate
by this replacement for a Gaussian process, and also showed its variance for a
simple markov Gaussian process. In this paper, we shall evaluate its variance for
a general Gaussian process, and show that this estimate is a consistent estimate
under a wmmms condition. And especially, we compare, numerically, its variance with
that of usual estimate, for the second-order process. ‘

§2. The estimate and its variance.

Let x() be a real valued weakly stationary process with continuous time para-
meter ¢, such that Ex(t)=0, Ex(¢)*=0*, Ex({t)x(+h)=a?p,. We assume the variance
o* to be known. And, given observations {x(¥), {=1, 2, .-+, N, -+, N+h}, we consider
to estimate the correlogram p,, where N and % are positive integers. We shall try
to replace the term x(®)x(t+-h) of the usual estimate '

1

.1
7‘/@——?

=)

X .
2 x(Da(t+-h)
t=1
by the term x(t) sgn(x(¢-+h)), where sgn(y) means 1, 0 and —1, correspondingly
as >0, y=0 and y<0. .
For a Gaussian process, the estimate
/= 1 1 X
T”_\/ -72— T N 2=le(zf) sgn(e(t--1)

is an unbiased estimate [2]. We shall determine the variance of this estimate. Now,\

Var.(yn)=Eyi*—pi?,

Received June 1, 1961
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o = 1 1 X !

T 1 N N

= —1%,7 E<§ §1 2(f) sgn(a(t-+-1))(s) sgn(ﬁf(S-Ht)))
and, we shall evaluate the value of
() sgnlx(t+m)e(s) sgnlx(s-|-h))).
i) When ¢ s, t4h and s+ 4 are all distinct, we put
(t)= Az(s)+ Ba(t+ 1)+ Ca(s+h)-+<(0)
where A, B and C are constants and «(¢) is a stochastic_ process such that
a) - FEe(t)=0,
) e(f) has no correlation with x(s), x(¢-4) and x(s+-h).";
So, A, B and C are all determined by the relation
E(x(H)— Aa(s)— Ba(t+h)— Ca(s+h))a(s) =0,
E@(f)— Aw(s)— Ba(t+h)— Cals-+h)e@-+h=0, (1)
B(a(t)— Aw(s) — Ba(i+-h) —Ca(s-+ Ba(s+h)y=0.
As x() is a reaﬂvalued process, ‘we have the equivalence |
pL=p-1.
Using this, we can rewrite the 1‘élation (1) as follbws:
A +BpesntCon =ps,
Apsin+ B +Cps—i=pn, | (2)
Api Bpsa 4+C =pesine

®

From Uic equation: (2), we have

Ps-t Ps~t—h On N 1 st Pu
1 : , 1
A= |on 1 pamt s B | pomo peet |
Psmtple Os -t 1 o Ps—teh 1

— 24 -
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1 ‘ sttt Pst
and C=-A— Ps—t-n 1 i ,
n P51 8-t
where
1 . Ps-t=h ; i
d= Ps—t~h 1 - fs—t |

o Ps=t 1
Therefore, We have |
E(@(t)/(s), 2(t+h), (s+h) ,
= E(A(5)+ Br(t+ 1)+ Cax(s-+h)+e(t)/2(s), 2(t-+h), a(s-+1)
, = Ax(s)+ Bx(t+h)+ Cx(s+h).
Al‘ld; .so it holds
E(u(@)x(s)/x(t-+h), u(s-+h))
= ELw(s)(E@®)2(s), 2E+h), 1(s- )/ e@+h), x(s-+h)]
= E@(6)(A(5)+ Ba(t-+h)+ Cals+h)a(t-+ 1), a(s-+ )]
=FK[A w('.S)”+t>’x(S)x(t+h) +Ca(s)x(s+h) -+ h), x(s-+h)).
In the next place, let us put '
| 2= Falt+ 1)+ Ga(s-+-) 55,
where -7)(5) is a stochastic process such as
a’) En(s)=0,
W) #(s) has no correlation wfth x(t+h) and x(s--h).
Trom this condition, we can express as

E@(s) ~ Fu(t-+h) — Ga(s-+h)a(t-+h)=0, ,
R S . f (3)
E(@(s)~ Fa(i--1)— Gals-+m)a(s |- h)=0. :

Writing (3) in the correloggam’s terms, we have

-~ 25~



202 _ ; MITUAKI HUZIL

F ’{_Gps--L:{)s—t_;h,
' (4)
FPS-—L‘}‘G = Ohs

By solving the cquation (4), we have

1 0s—t—n Ps-t ' 1 1 Ps—t—n
F= = and G= —- )
D on 1 D Ps-1 on
where :
l Ps—t
D= .
Codese l
Substituting the above expression, we get

LE@@Oa(s)izt-+h), x(s+h)
= E[AF(t-+h)+Ga(s+h) +7())*+ B Z(t-+b)4-G(s+ h)+-7(s) 2+ h)
+C(Fx(t+h) A+ Ga(s+h)+y()w(s+h) x(s+h), 2@-+h)] |
=(AF*+BF)Yx(t-+h)+QAFG 1 BG+ CF)x(t-+h)x(s+h)
HAG*+CG)x(s+-h)* - AE(s) w(t-+h), 2(s+h)).
And, as 7(s) is independent of x(t+4) and x(s+4), we have
EGps)*[wt-h), (s+h)
== E[(x(s)— Fa(-+h)—Gx(s+h)) [zt h), 2(s-+h)]
= E[(2(5) — Fa(t+h)— Ga(s-+h)* 2+ h) =0, 2(s+h)=0]

= Efa()*/o(t-+h) =0, a(s+h)=0]= _"_;i.

Consequently, it follows
| E(@(®) sgn(@t+m)a(s) sgaa(s+-1)
 Elsgn(@(t4-1) sgn(a(s-+m)E@DHE)/(-+h), o(s-+R)]
| <(AF*+BF)E@(+hy sgna(t-+ 1) sgn(s-+h)
+@AFG+BG+CR)E(|a(t-+ 1)l [a(s-+1)])
(AG*+CO)E(@(s+ b sgn(@((-+)) sgn(@(s--1))

+4 2 Eisgn(at-+ M)sena(s-+ )

-26 -
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Now, we shall put, for simplicity, 2(t+h)=2 and x(s+h)=y and further put

(&'~2pg_,xy+y2) [24°D

1
S, Y) = 5. VD&
Then We have .

E(x(t+h)? sgn(x(@+h)) sgnle(s4-M)))

:Sm Sm x%f(x, y)dxd?/hg

y=0Ja=0 y=0J 2 Yy=— Jr=0

Sl_w r*f(x, y)dwdy— SO 'Sm x2f(x, y)dxdy

0
+SO S_ > (z, y)dxdy.

Y=—c0

Being

5 e nasay={" (" -, vdady={ (" atfta, ey

y=0d =— 0Jz y=0J 2=0

== go Sw x2f(x, y)dxedy

Jy=—oc0 Jr=0

and

Y00 o y=0J @= 0Ja=

0 0 * 00 oo o ) -

U0 avw deay={" (" apa, —ppazay={" (" wta, yiaaay,
o p=—00 =0 y= =0

so it holds |

E(t+1)* sgn(x(t-+ ) sgnx(s-+h)))

:2<Sm S;Oxzf(x, y)dxdy—gm Sm o:vzf(x, -—'y)dmdy).

y=0 y=0J z=

Let us use the expansion (Rice [4], section 3. 5)

oo (* 00 ] —_ k Sy .
S % uty™ exp (—u’—v:—2auv)dudy = -—1—- 2 (—2a) P< [4k+1 >[< m] ‘] +1 )
¢ Jo . 4 k=0 k ! 2 ‘_)4
and put

~2@”P<l+k+1>r<m+k+1>

[(—2a, 1, my= " X a

k=0 k !
Consequently, we get
E(x(t4-h)? sgn(re(+h)) sgn(x(s--h)))

ZDB/Z 2D3/2
0 - (I2ps-1, 2, 0)—I(—205-¢, 2, 0))= o L

=2 X. Sl(ﬂs—t,)
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where
‘. - » oo' (2[)3—/‘)2"”1 , , N >
Si(ps /)~z<7’12:0 BT 'on+2)"m-+1)).
Similatly, '
B x(sH4-m)])
¢ B2 2 N/2
o TP e 1 11201, = s,
Io(a(s | h)® sgn(x(t—l«h)) sgn(z(s--7)))
271)8/2 2 3/2 .
o P 0,9~ 1200, 0, )= 2 0
and
E(sgn(@(t-+h)) sgn(a(s-+h))
=25 VD 121 0,0~ 12, 0,00 = P Sito,
where
T (210‘5 /) sty 9
sen=( &S rom 1)
and

w (2ps-1)™ }
S“(ﬂ““’)—z< 2, @m1) 1)‘ Iom-+ D)

=0
As the result, we obtain

Elx(f) sgn(x(+ h))x(S) Sgn(x(s+ )]

a2 3/2

—(AF*+-BF). D— (pr- z)l(2AFG+B(‘+CF)

Sz(ﬂs—z)

+(AG®

(ps-1)+ A anjﬁ Sa(0s-1).

ii) When s=t+h, s+h=t}2h. The situation is the same¢ when ¢t=s+hk. In this
case, we have " :

E(x@®)x(s) sgn{x(s-+Mm) sgn(x@-+h)))
= E(x)xt+ k) sgn(x(t-+ b)) sgn(x(t+2k)))
= Ex(t+h) sgn{x(t+ h)) sgn(x(t+2h))E(x(t)/x(t+ h), x(t+2h))).

- 38—



| ESTIMATION OF CORRELOGRAM 205
As the above, we shall put
x(t)=Hx(t+h)+ Kx(t-+2h)+6(f)
where H and K are constants and 4(¢) is a stochastic process such as
a”y  Ed(t)=0, |
by a(t) has no correlation with z(¢--7) and x(t--2h).
H and K are determined by the conditions

E(x(t)—Hx(t+-h)— Kx(t--2h) 2t + h) =0,

(95)
" E(x(t)— Hx(t+h)— Kx (- 20) 2+ 2h) =0.
e5e
W conditions are equivalent to
H”I— Kon=pu,
(6)

Hﬂn, ”{“K: e

By solving (6), we get

1 n n 1 1 On
H=— and K= —— ;
I3 : 1 DIL .
P2n On Oz
where
1 Pr
D,Fl “
ph 1
We have . :
E (@) x(t+h), 2(t+-2m))=Ha (- h)+Ka(t+2h)
and '

El2(t)2(t-+h) sgn(e(t-+ b)) sga@(--2m)] |
= HEGo(t+ hY* sgn(@(t-+ ) sgn(@(t +20)+ KEat-+ )| 2+ 20
Using the same method as in i), we get

()'ZD[LS/Z

s

azDhslz

SL‘(pn)“*‘K*-‘;‘“ Sa(on).

E(x@®)x(t -+ h) sgn(x(t+h) sgn(x(t+2h))) =H

iii) When f=s, it holds that
E(x(t)? sgn¥(a(t+h)))=Ex(t)*=a*,

Therefore, using the above results, we obtain, by putting s—i=k,

_929-



206 MITUAKI HUZII
Var.(fh,) :E ZTIL - Ph2

— | T+ 3 v AP+ BRDYS 0i 1 2AFGBG-CR)D S0

k=1 L=h41

+(AG*+CG)D**S (i) + —Z%—f;; Sa(mc)]

'y

]A ) .
|- NE (N*/i?[fID/LS/gsl(ﬂrz) + K Du¥2S(on)] -+ % g _I]V— —p’.
3. Comparison of 7, with 7.

Now we shall compare the estimate 7, with the estimate 7, which is usually
used. The estimate 7, and the estimate 7. are both unbiased estimates. Here the
comparison is made on the point of variance. '

It holds, for a stationary Gaussian process with mean 0, that

Elx@x(t-+nxs)z(s+h)
=(Ex()a(t-+mn)Ex(s)x(s+ )+ (Ex@)x(s))(Ex( +-hx(s 1)
H(Ex(Hx(s+mIEx()x@-+h),
when ¢#<s and t+h¥s. Using the above relation, we obtain

Var.(52)=EF1?) —pn?

1 X 2
:E<—U§- & Lt +) ~p

t=1

=T % %Ew(t)w(t+h)$(3)$(s+h)—-pnz
o N = .

' 1
= W kZ=1(N~k)(pk2 + 0%+ prsxpr-i) + N (1+2p042)— pi.

Let us compare the variance of y, with that of §,, numerically. For this, we
shall consider the second-order process in the sense of Bartlett [1]. That is, x(f) is
subjected to the equation

ax(f)+-ax@)dl - fx(@)dt=dy(D), (7)

where @(#) is a mean square differential coefficient of x(f), di(¢) is the change in
2(H In dt and y(@) is the orthogonal process of the accumulated impulse effects.
Then we find that correlogram p. satisfies the equation

p" +ap!’ +pp.=0 | (z>0),

~-30 -
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ESTIMATION OF CORRELOGRAM 207
where p.”=dp./dr, etc., whence we have
pT:Aeln‘_{_vBehr (T>O),

where 4, and 2, are the roots of A2-}ad{f=0. TFurthermore p. must satisfy the
condition : A

po=1 and  py’=0,

This leads finally to

pe= z.égzd ezhr"”foanZ e >
Table 1
N=50 N=250
h on T -
: Var. (rn) Var.(74) Var. (yv) Var. (1)

1 0.9572 0.0720 0.2487 0.0149 0.0516

2 0.8536 0.0772 0.2269 0.0159 0.0471

3 0.7192 0.0850 |*  0.1985 0.0173 0.0411

4 0.5759 0.0954 0.1706 0.0194 0.0353

5 0.4384 0.1074 0.1480 0.0218 0.0306

6 0.3154 0.1199 0.1327 0.0244 0.0273

7 0.2116 0.1315 0.1243 0.0268 | 0.0256

8 0.1282 0.1412 0.1212 0.0289 0.0250

9 0.0647 0,1487 0.1214 0.0305 0.0250
10 0.0189 0.1539 0.1230 0.0317 0.0254
11 —0.0119 0.1573 0.1251 0.0324 0.0259
12 -20.0307 0.1592 0.1268 0.0329 0.0263
13 | —0.0403 0.1602 0.1280 0.0331 0.0265
14 ~0.0432 0.1606 0.1286 0.0332 0.0267
15 | —0.0416 0.1608 0.1289 0.0332 0.0267
16 ~0,0373 0.1608 0.1289 0.0332 0.0268
17 ~0.0316 0.1607 0.1288 0.0332 0.0267
18 —0.0254 0.1607 0.1287 0.0332 0.0267
19 | —0.0194 0.1607 0.1286 0.0332 0.0267
20 -0.0140 0.1607 0.1285 0.0332 | 0.0267
21 —0,0095 0.1608 0.1285 0.0332 0.0267
22 —0.0058 0.1608 0.1285 0.0332 0.0266
23 —0.0030 0.1608 0.1285 |  0.0332 ©0.0266
24 —0.0009° 0.1608 0.1285 0.0332 0.0266
25 0.0004 0.1608 0.1285 0.0332 0.0266
30 0,0016 0.1608 | - 0.1285 0.0332 0.0267
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Nl
—  variance of 5
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0 5 o 15 24 Ly sk

Fig. 1
For numerical cor:n.putation,, we shall  take -
S a=—»—210gk0‘8_ and  B=2(log 0.8)
In this éaée, the corrélografn is
L = "(0.8)!+! cos (|7 10g08+7r/4)
By taking N=50 and 250 the numerical results are ShOWn in Table 1 and Flgure 1.

This results are like as in the case of a simple Markov process [2]. For a
small value of lag 4, the var1ances of the estimate 7, are smaller than that of the

estimate 7. .
Orlgmally, the model (7) is discussed in Takahasi and Husimi [5]. So we have

taken this model in this time and discussed from the statistical point of view. As

we have shown, 7, is a fairly good estimate for a Stationary Gaussian process.

4. Congistency of the estimate 7.

Let us further assume t‘hét the correlogram p, has the follOwing pr’operty'

- for any posztwe number e, there exzsts a number T such that ]p,|<e is statisfied
Jor any number © such as t>rt., fe. lim o= 0 :

» In this case, we can prove that 7 is a consxstent estlmate The proof is as
follows, ;
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In the expfession of the variance qf rn. we shall put, for Simplicity,
Ui(k)y=AF*+BF, []3<k)=2AFG+‘BG+CF, - Usk)y=AG*+-CG.
Then, it holds

-1 - ‘
o T (V| Ui DS, 00+ U D50

A4 1y
+ U7, (/\)03/281({%)‘1“ 2Dz Sa(ﬂn)] <1—V‘>

and

S (N=OUHDLS )+ KDS 001 =0( 7).
Now we shall evaluate theb value of

: A
R TR U@Des, <m>+m(k)DwzsxmU«k)D'*/_'sl(m)1 =
N k=h41 ) 21)

Far any positive number ¢, there exist a positive number K. =K{(¢) such that
lox|<e - and  |pp-n|<e

are satisfied for any & being larger than K,

It Lolds
Ok Okt on
IA I e _l~ ) 1 : : - Ok~ |- p/nolui 1Pk~ IL“{ ()IL Pk—ﬂnpun OnPr—n—
4|0 P 14 Zpl,ﬂhm 1= 0nE— P11
Orh o 1

and, for any k>K,

101 P ’Lok—h""!’hzﬂk*PhPlﬁ = OnPk—n— Ok
'_élf)kl”'—lpkpk{lt,{)lc_hl“l-"()nzv‘l)kl-l-Ip,,,pk,bhl+lphpk_hl+lpk3|
<6,

|14 zpkpn,ok-ﬂ — pﬁz - P — 0i?|

2,, ] ‘__pILZ —Zkapth;h‘ -—--plc—hz—-—-pkz .
- : 4¢*
Sleptedd=(-p) (1 ).

Now we can’ say

~-33 -~
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1— 4e? Zi.
1'_‘011,2 - 2
So we have '
- 12 _ 12
’AI = —1—_~pn—ze~ae, . a= l—ph2 .

In the next place,

|B|= , pn+phm i 11Dk n+,0hplc *Pkpk h_‘PIcpIuIL“p_h
'l-zp/cphpk n= 01" — Ok—n?— pi2

oIt
- (1“!’/12)(1—— _4L?>

1~ph
4¢* 4e?
=lon]+- o : '!ihljr Sy
( "—ph)< — 1__phz>
= ,phl +b€2,

Similary we obtain
- |Clsee, [Fl=¢f and |G| <|pu|+eq.

In the above expression, a, b, ¢, fand ¢ are constants which are independent
of £ and N,

Let us evaluate the value of Si(ox), Se(or) and Sy(py).

Z (Z,OL)

P<m+2>r<m+1>[ |

ol 5 Cornsts 5 @opne - T She

|Se(or)| =

F( +1)2’
:2(1+(20k)2<§1%17( +1)2>>

S2(14@0F 51 ) Sal e

and

(Zplc)
2% G Ly |
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Slo <ZJ (2pk>2m>_ T%—._he,

m=1

where /[, [, and [, are constants which are independent of % and N. From the
ahove results, it holds

lUmk)Dmslw)l_s_<af2e3+f|pﬁ|e‘+bfe3>‘-1-zlegezdl,
\U(R)DY*S(0r)| =(2af | pule*+2afget+ | pu*+blonle?+ gl on
bget - foet) 1B+t <2t %),
[UsR) DS (01| (@l ou +-€2g) e+ (| ou| +-e2)e) - 1 Lie = dye?
and 4

z A4

; )1)1/4 — |A I ,A' IS-‘i(pl\)I __((ZE)(]_ 01L2+45z)(156) <d4€ ’

— Ss( Pk)

where d,, di, ds and d, are constants which are independent of k and N. Accor-
dingly, we get

1 N-—-1 A
T2 (V=) VDS, - U DS )+ Us( )Y DV, (i) T S0 |

é 1 Z (N=R)[*d, -+ r)()/rz+2€2d.2+52(173+52d4]

k=Rl

(226 st <w—~ 5 (N—k)>

k=K+1

e (52611*[—2(%2—!-2 zdz"l-a d3+ €2d4)—"‘<1"‘" K;1 ><1"‘ *5—6——)

. QK+D) . K
=it = L2 e KEED et 2ditdebdi (1252 (1- )

1 .
— 2 [ 2
= Op, +O<~——N>-i O(@).
And it holds that

] K

| ' A4
3 5, OB VDS 00 L UD ™S00+ DD S0 00 |

o)

I*finally, we obtain
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Var. ()‘,,) L ()< _11v> +O(e),

H0

P(lyn—onl >0)= X%&-(ﬂl =-l§1y<0<—]-1\[~) +O(62)>.

This shows that the estimate j,. is a consistent estimate.
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ON A SIMPLIFIED METHOD OF THE ESTIMATION OF
THE CORRELOGRAM FOR A STATIONARY
GAUSSIAN PROCESS III

By Mrruakr Huzn

-§ 1.. Introduction,

~ In this paper we shall deal with a simplified method for the estimation of the
correlogram for a stationary process.
Let X(n) be a real-valued stationary process with discrete time parameter .
We assume FX(n)=0. We put

EX(ny=d®,  EX(m)X(n+h)=0"ps,

and we consider to estimate the correlogram p.

In the previous papers [4], [5], we discussed a simplified method for the esti-
mation of the correlogram when o® is known. But in the present paper, we discuss
the case when ¢* is unknown. For simplicity, let us assume the process X(#) to
‘be obscived at #n=1,2, ., N, - N+/z

Usually, in order to estlm'lte the correlogram p,, we use the estimate

R Z XOHNQr i
PIL: n=1 .

R

Now we shall modify the estimate /7. “The essential part of our modification
is to replace X(m)X(n+h) by X(n)sgn (X(n+h)), where sgn (y) means 1, 0 —1 corre-
spondmgly as y>0, y=0, y<0. The new estimate is :

N

> X(n) sgn (A(n+h>>
Iy= 21

ZLMMI

C o=l

This new estimate I’ niay be considered as follows. We make a nonlinear
~‘operation on the input X(») and assume that the output is Y(n) =sgn (X#)). Then,
the estxmate Fn consists of the cross-correlation of the input X(#) and the output
Y(n).

We shall show below that When X(n) is a Gaussian process satisfying some
conditions, the estimate Iy i§ an asymptotically unbiased estimate of the correlogram

" Received December 13, 1965,
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pr as N—oo, ‘We evaluate the asymptotic variance of I'n.. The estimate Iy is also
an asymptotically unbiased estimate of p.. Further, I'» and I', are both consistent
estimates of p.. We compare, for the typical cases, the asymptotic variance of Iy
with that of . .

§2. The estimate 1.
Let X)) be a stationary Gaussian process having a finite moving average repre
sentation : o
(1) X) =Gk () Gré(n—"1)+ -+ Gu(a—M),
WHGTG &(n) is the white noise with ,
E&(m)=0,  E&(n)=1,
Efinl)f(nz)=0 when 7% 7,

M is some positive number and {Gy's} are constants,
Let L.(X;n) denote the closed linear manifold generated by {X(s);7=n} and
1.:(5; n) denole the closed linear manifold generated by {&(j);i<#n}.

*

Lumma 1. If X(n) is a stationary Gaussian process which has the moving
average representation (1) and if the condition

(2) Lo X; n)=La(&; )

holds for an arbitrary integer n, £&(n) is a stationary Gaussion process.

In fact, we consider the joint distribution of &(n), -+, é(n,). As &(m)eL(X; n.),
'there are constants {«;/=0,1,2, ...} such that

N
En)=1.1.m. ) &, X(n,~1).
Noweo [=(
‘I'herefore for any real numbers Aj, As, ~~-,‘/1k,
Ai6(ny) Ak (nn) 4+ - Ak (o)
N N ' N
:llvi' m ‘ Ay (Z a X @~ l)) +A2<Z azX(m«l)) + . +Ak<[Z (;,X(fzk——l)> }
—roe =0 =0 =0 X
The distribution’ of ‘
‘ N N ‘ N
/L(Z mX(n1~~»l)> + A2<Z (ZlX(%z—l)> A Ak<,Z mX(n/;-—l))
L=0 =0 X7 ==0
is Guﬁssizm, go the distribution function of
| Ak )+ A ) +-+-- 4 Aum)

is Gaussian. This shows &(x) is a Gaussian process,

As &(n) is a white noise, &(n,) and E(hg) are orthogonal, for any #,%#,, so that,
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ESTIMATION OF CORRELOGRAM - 197

by the aboveylemma, &(n1) and &(n,) are mutually independent.

Now we determine the asymptotic distribution of the estimate I",. Without loss
of generality, we can assume that 2>0, We have

- 3 X(r) sgn (Xn-+1)
/\/N(FII ﬂh) /\/N =l

- p/z.
“ZJI | X(n)| -

R N i ’
B 1 \/ 1 Y X(n) sgn (X(n-+h))
N 2 0 n=1
:N/N - 1 _,T? 1 7 —Pn

A 7;.5:1 [ X(m)l

271N \/75 i Z] {X(n) sgn (Xt 1) —pn| X ()]}

]f, LX)

n=1

In the first place, we consider the statistic

1 el &
=5y ;llX(")l

Using the results in Huzii [4], we have

I5(ra) =1
and 5

W(rs)=the variance of y,

2 N-1 anf o (206)*™ k 2 l._.l_-—
= sz 5 (N—R)(1 =) (1"?:0 oL <m+1?> Few Tt

Levmma 2.

, [/ N) is « process having the vepresentation (1), then Viyo)—0 as
N—co, '

Proof. I‘on our process X(12), =0 When (RI>M. So we have

=0 (2m)!

r 1

2 M . ] 2 m
V=55 2, (N~k>(1wpk2>3’2(z: O T+ 1)
2 3 (Nt Lo

+7\ﬁ1.¢=§1+'1( ) IN—_ o

Now,

2 B 2 (N—.—M—l)(N——M) . @ME1) | MMH1)
N, Z(N"” T2 ===yt

Therefore we get

— 4.0~
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V=2 (1~ )(1 (5 T P<m+1§2)

m=0 (2771)!
B (2M+1) - M(M+1) L E 1
N N& 2 N°

This shows V(ye)—0 as N—oo,
From this Lemma 2, we can find the following result:
TurorEM 1. 7o converges in probability to 1 as N—oo.

In the next plaée, we consider the numerator of /N ([‘h—ph), that is,

A E o 32X sn (XGr )~ pul X0,

n=1

Let us denote
) '
Y(n)= @; { X(n) sgn (X(n4-7)— pu| X(n)| }.

Since the process X(n) has the representation (1) and the &()’s are mutually inde-
pendent, ¥Y(n,) and Y(n,) are mutually independent if |n,—ny|>M-/.
Here, we quote the result in. Diananda [2].

DeriniTiON 1 (Diananda).  Let d, be a function of »#. Suppose {X:} (i=1,2, )
_ is a sequence of random variables such that the two sets of variables (Xi, X, -+, X»)
and (X, X1, -+, Xn) are independent whenever s—#>d,. Then we say that {X;}
(i==1,2,---) is a sequence of du-dependent variables or is a dy-dependent process.

Lemma 3 (Diananda). Let {X;} (i=1,2,.:) be a sequence of stationary m-
dependent scalar variables with the mean zero and E(XiX;)=Ci ;. Then the disiri-
bution function of the random variable (X\+Xs-+-+Xu)IN # — the normal distri-
bution function with the mean zero and the variance 3™, Cp as n—co.

In our case, Y(n) is a sequence of (M+/4)-dependent variables and since X(#)
is a stationary Gaussian process, Y(#) is a stationary process. It is clear that
EY(n)=0. Let us denote EY(n)Y(m)=C(n—m). From the above Lemma 3, the
distribution function of ‘the random variable

MN Z Y(n)"JN \/ r 1 Z { X(m) sgn (X(n—Hz)) Pan(n)l}

tends to the normal- distribution’ functlon W1th the mean zero and the variance
Zk__(MJrh) C(k) as N—oo,
Now, we shall evaluate the value of C(k)=£IY(n)Y(n-k).
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Clk)=EY) Y(n+k)
= 5 E{CX00) sgn (Xr-1) =0 X))
(X(n+-k) sgn (XOn-le+-)) — pu| X(e-R)))
i LX(n) sgn (X(n+lz))X(n+k) sgn (X(n-+k-+1)

L\:]'a
it

e ]

— ,2___1_ ornEEX(n) sgn (X(n+/z))|X(7H k)]

- g 12 phEIX(n)IX(n+k) sgn (X(n+k+h))+ -—1—-p,,E|X(n)HX(n+k)| |

(1) When % is neither zero nor +lz, we have, by using the results in the
previous paper [5],

% 0—14 LX(n) sgn (X(n-+1) X(n+ k) sgn (X(n--k-- 1))
=5 (AFZ+BF)D.3’281(prc)+v(2AF G+ BGHCF)D¥*Sy(py)

HAG+CED S (po)+A- - N/FSK(Pk)}

and
T 1 , | O
5 o MEIXWI X (nt-B)| = 5 0iD* 2S00,
where
1 k- o Pk Pr-h  Pr
1 .
d=\ pe-n 1 Prp A=‘Z Pn 1 pe)
Pn Ok 1 Oktn Pk 1
' L oe pn 1 pu-n
1 : 1
' L= Vi Ok-n  Pn Pk} C= Vi or-n 1 pn |,
or  Pr+n 1 On Ok Ok+n
1 pe 1| ox-r P 1 1 pin
oo 1 Dl 1] DPk on |

e @y ,
sl<pk>-2( 5 oy on2)1 <m+1)).

) 2 .
sz(pk)=2( Z %%F(m+1)2),

(zpk) m+1

m=0
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Now, the value of

o pUIEX() s (X4 )] X+ )

is as follows. Suppose that
X(n)y=U Xn+k)+ Vi X(n+0)+vi(n),
where ul(u) is a Gaussian process with the mean zero and satisfies
Evi(ny X(n+-k)=0, Evl(n)X(n—l—h) 0.
Then, Uy and Vi are determined by the following conditions:
F(X)— Us X(n k) — Vi X +-1) Xn -+ k) =0,
(X)) — U\ X(n+k)— ViX(n+h) X(n+-h)=0.

IFrom these, we get

' ] Pk Ph-k 1 14
UL::-EL and Vi= »DL ¢ ,
How 1 Y on-k On
where
1 Oh—k
D= .
Oh—k 1

The new random Vai‘iable vi(n), determined in the above, is independent bobf X(n+-k),
X(n+-h) and (X(n+k), X(n+h)). Using these results, we have

EX(n) sgn (X(u+0)| Xn+k)|
=10 (Uds.(nJrk)Jr ViX(n+h)-+vi(n)) sgn \(n+h))lX(n+k)l
= U, L X(n-+k) sgn (X(n+ )| X(n+kB)| + ViE| X(n-+-1)|| X(n+ )]
2 2
= Uy DY*Su(pn-0)+ Vi DY Sulpn-s).

So we have

T 1 Pn

5 S PILEX(”) sgn (X(”‘| /l))IX(”‘Hv [ = = {UDY*Si(pn-)+ VleS (i)},

Similarly, we get

g. 1z onE) X(m)| X(n-+- k) sgn (X(n+k+h))= —QL{ UaD“‘Sl(ﬂun)Jr Vzl)é““fz(ﬂkvu-n)}, :
where
’ T oni | Ok Prin I
D, / l, U= %— o "I and Ve= ﬁl‘ l.
Onei 1 : zlon 1 2\ Okvn Pr

_.43_
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Consequently, using the above results, we obtain
Ck)=EY#)Y(n+k)
- _'L[
2
HAGHCOD S A+ 55500 |
" —ou DY UiSi(pn-1)+ ViSlon-)} |
— DY UnSi(pn1i) 4 VaSulona )} + f)il)“’z|8‘z(}'/a)]-

(AF*4-BF )b“’ 25'1(9;,») +Q@AFGH BG +CF)D3/ 2S.(px)

~ (ii) Here we shall treat the case |k|=h. In the first place, let us consider the
case k=7, ‘
LA

Clh)y= 5

LX) X(n+-R)| sgn (X(n-1-2h))
— % ;;12- enE X)X (n+-h)— —g— ;lz-an | X(n)| X(n-+h) sgn (X(n-+2h))
+- —’3 =5 AL | XG0 | Xt 1)

In this expression,

1 o 1. . o
’25?— EX | X(n-+1)] sgn (X(n-+20)= 5 D *(HuSi(pn) +KiS:(pw)),
where
,;)IL ) P Pn . » 1 On
1),L~‘ . H=p and k=7~ .
Pn 1 b \pan 1 - blon  pon
And
T 1 N T,
5o o EX(m)X(n--h) = o e
We treat the term
1 o .
g« — o | X(m)| X(n+h) sgn (X(n—l—Zﬁ))

as the following, Let’_,“us put .
Xn+h)=H, X))+ K, X+ 28)+0x(n),

where d,(n2) is independent of X(n), X(n+2h) and (X(n), X(n+2h)). The above con-
dition is satisfied by determining the constants [, and K, from the following
relations:

ES,(m)Xm)=0  and  Edy(n)X(n+2h)=0.
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Then H; and K, are

p ) 11 1
1= | P2'| and IQ-D1 ol
Dan O 1 2] pan P
where
Nl
I)Z/L"_‘ ‘0 "
O2n 1
Hence we have
1
o an!X(n)lX(nth) sgn (X(n+2/z))
= g 1,5 onHLEX (n)* Sgn (X(n)) sgn (X (n+2h)
1
-t Z aanzlnIX(n)llX(nwLZh)l
1
= 0} PhD%z(stl(ch)+K252(ch))-
Lastly, it is shown
1
L EIXO) X i1 = 5 DS (o).

Consequently, we obtain

Uty = DS o)+ KaSip)
— T ph— PﬂDm(f 1, 231(P2h) +Kzsa(ﬂzn)) + PfLDJ/Zsz(Ph)]-

In the next place, when k=—4, we can consider
‘ C(—h)y=C(h).
(iii)  When k=0,

C(0)= i-—-% E(X(n) sgn (X(u-4-1)— pal X))

EX(n)z 200 EX(n)* sgn (X(n)) sgn (X(n +/l))+anX(n)l)

il

fi

ISTE I STE
le—a le""

(" "2"” 2 Dps, (pn) + Mz)

= % —pr D3 Si(on)+ % O

From the above results, we have-

—,‘1‘5— .
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M4 M+h
Cv== 2, CR=CW0)+2 3, Ck)
L k=R k=1 .

L

:§~wMW&ww~§m+wﬂmaww+m&@m

— O ])jff([[z.s ((/zh) —I']{ZSd(pl/L)) ’f—ﬂfLDA/ZSz(Ph)
‘ M-
) + Z L(AF”~I~BF)D3/”SL(pk)—i—(2AFG+BG4—01«‘)1)3/%&(,;@

(l»#h)

rn ct 4 .
FAG*H-CG)D*® Sl(pk) +A- WD: Ss(e)— p DY UrSy(pr—r)+ V1Sz(pn—/c_))

— 0 DY (UsSipn i)+ stz<ph+k»+pzD“'ZSZ(pk>].

Now we shall make the following assumptions: -
(A, 1) The determinants 4, D, D; and D, are not zero when kz1 and kxh.
(A,2) Dnx0-and Dux0.

llere we rearrange the above results.

TuroriM 2. If X(n) is a stationary Gaussian process having a Jfinite moving
average representation (1) which satisfies the condition (2) and if the correlogram
Lias the properties (A, 1) and (A, 2), the distribution function of Y¥-. Y(n)la/ N tends
to the normal distribution function with the mean zero and the variance Cr, as N—co.

Now, we shall consider the distribution function of /N (I'»—ps). By Theorem 1,

o= A e 321X

n=1

converges in probability to 1 as N—co, And by Theorem 2, the distribution func-
tion of '

TN e 2 100 sgn (XGn-H)— pul X0

n=1

tends to the normal distribution function with the mean zero and the variance
C, as N—oo. Therefore we have the following theorem.

ToroOREM 3. If X(n) is a stationary Gaussian process having a finite moving
average rvepresentation (1) wwhich satisfies the condition (2) and if the correlogram
has the properties (A,1) and (A, 2), the distribution function of /N (I'nv—pu) tends
to the normal distribution funclion with the mean zero and the vaviance Ci, as
N—co, ’

§3. The estimate I'.

, In this section, we éhall consider, with' respect to the estimate I's, the same as
we did in §2. Let the process X(x) have the same properties as § 2.

Q6
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Now we have:

. ZNI X)X (n-+-h) _ %
'\/N(l'zr—pn) '\/N =1 7 ey | = AN

2, X(ny?

n=1

N
Z () X(n-+h)
I — O
pa

2['-*“('—
ﬁl_\{lz

X(n)2

17\‘? L y:] (X0 X(n+h)— pm\(n)‘)

jq"*ZX( n)?*

n=1

© We shall denote

oL
To= N
“Then from the results in Huzii [4],

L\’_lz

1 N
— X(n)t

n

1

and

N—
V(70)~ Z=} (N-—-R)(14 zpk)+—-~1

1 k\ ,
=qEHE (1))
Hence, we have following lemma and theorem.

_ Lrvma 4. If X(n) is a stationary Gaussian process which has a finite moving
average vepresentation (1), V(F,) tends to zero as N—oo,

TuroreM 4. If Xn) isa stationary Gaussian process having a finite moving
average vepresentation (1), Fo converges in probability to 1.

Now,' we shall consider the statistic
5 2 XX+ h)—pu X0
Let us put ' '
| : IN’(n)='~1—(X(n)X(nth)—phX(n)'“’)- .

As X(n) is a SLdllOﬂdly Gaussjan- process havmg a finite moving average represen-
tatlon (1) which satxsﬁes the condition (2), Y(n) is a (M+#h)-dependent variable and
,FY(n) 0. Cleally, Y(n) is'a statxonary process ‘We shall denote

I Y(n)Y(m) C(n——m)

By using the result of Lemma 3, the distribution function of the random variable
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ESTIMATION OF CORRELOGRAM 200
1 Vo 1 1 X : . ,
~/ 5 Z=J Y(n)= 77\,—0-2— 7§1 (XX A1) —pnX(0)?)

tends to the normal distribution function with the mean zero and the variance
P ny C(k) as N—oo. '
Combining the above result with Theorem 4, we can say that the distribution
function of &/N (Fx—ps) tends to_the normal distriburion function with the mean
zero and the variance L% in, C(k) as N--co,
. Let us now compute the value of S+, C(B).
Ciy=EY ¥ (n+-k)

= »—14-E<X<n>X<n+h>—an(anX(n+k>X<n+k+‘/z>— PnX(n+-k))

= {EX(n)X(M-k)X(n+h)X(n+k+h) —pnEX(n)* X(n+ k) X(n-+-k+-h)
——phE)&(n)X(n—i~k)2X(n+h)+phEX(%)2X(ﬂ+k)2
(i) When % is neither zero nor =4,
)= (et it 01— P1pn-+200001)— 00+ 201+ L+ 26D
= P4 On-k0n 1k~ 201050k1 0 200 0k0n-k - 2040%.
(i) When k=h, |
- Cty=put-20,— 0}~ 20000
and when k=—4,
| C(—my=Cw).
- (i) When l;=0,
C)=1~ps.

I’uttiﬁg
~ Mth ~
Co= D3 C(kR),
© k=—CAM-R)

we obtain, from the above results,

Cr=1— P42 pant+-204— 0 — 20} pun)
M+h
t+2 Z (pk+plb~kp/L|r—2pnphp/m,—~.&pnpkpn k—'—._),{),Lph)
dahy ,

Hence we have the following theorems:

Tueorem 5. IS X(n) is @ stalionary Gaussian process having o finite moving
.average vepresentation (1) which satisfies the condition (2), the distribution function
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of Xt 17(")/3/ N tends to the normal distribuiion function with. the mean zero and
the variance Cn as N—oo. :

TuroreMm 6. If X(n) is a stationary Gaussian process having a finite moving
average representation (1) which satisfies the condition (2), the distribution function
of NN on) lends to - the normal distribution functzon with the mean zero and
the variance Cy as N—oo,

§4. Comparison of the estimate I', with the estimate I'..

We shall compare the estimate I, with the estimate I', on the viewpoint of
the variance. Without loss of generality, we can assume #>0.
a) When X(u) is a white noise, we have p;=0 for any .%0. So we have

Co= and Gl
for any hz=l.
b) Let us assume
L— ptCH =11+
(4) pr=q 1=
0; |k|=M+1,

ol¥lcos kO; 0=|k|EM,

where p and 0 are constants and 0=p<1, For simplicity, we write

1—prCr=1kt+1)

1_pé<M+1) cos kb

o=

Then we have Jax| <1 and pr=agp'®!,
In this case, we can say as follows: ’

TUeoREM 7. If |gn <p*<e holds for sufficiently small positive number e, Cy
and Cy, are given aj)proximately for any hzhy as lelows;‘

o (2
Crreg P2 T a1 ”"(mo(;nﬁw‘ 7).

and

Cunl+2 P

where the sign ~ is used to mdzcate that the left side and the right szde are coin-
side by ignoving the magnitude of the order e. :

. Proof. Here, we shall prove this theorem only when M=/4. The stituation is
the same when A2=M+1,
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As px=arp'¥l, we have for 2>k>0, in the expression (3),
A=1—atp*—ah ip* PO 10),  D=1—aie¥,
Di=1—a} ™" ®,  Dy=1+0(e),
Du=1+0(e?), - Dan=140(*),
A= +0(),  F=an " *{(1—a}p™)+0().

And each of B, C, G, H,, K, is O(). Turther AF2D*S,(ox) is O(s?)., Now we
have

Y|
A- ENZI) «Ss(0x)

_ k‘ . 1- alch gl o k)+0(e)) w
= (ap* +0(e)) zv& aip® ZQEL@ +D'mm>
— 2010 /T— g™ (m}_?O( “"i;), (m !)2>+O(s).

Using the above results, we obtain ‘

7Z'

Crm g B Ar 55 S +00

A,Zl

2
= “723 +2 Z azp¥n/T—alp™ ( 2 EZZ:‘:_)D, (m !)2> +0O(e) .

= 52T VTR (:oéﬂfﬁl),( !)2)+0(e>.

Similarly we have

51;:.1'!‘2 Z pi+OCe).

Concemmg the relatlon between C, and Ch, we can obtain the following
- theorem: :

THEOREM 8. If the value of lono| 1 sujﬁczently smal[ that is, |pu|<g<e
holds for sufficiently small positive number ¢, it holds

% éh =Cn> éh
for any hzh. |

Proof. 1In the first place, we shall prove that Cv>Cr. By Theorem 7,

201
L +22 pkN/l pk( (éﬂ:—:'l)‘ ( ’)2>

{ﬁw‘lzw 374
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and
Crm142 3 ot
» k21
We shall show

< (21%) neY=

m =0

for cach k. Tor simplicity we put pi=X, then the above relation is

i @ 2?771.(”2!).1 m) .
“/1“X<n§o CESVI A

We consider the function

v B 00 22m(ml)2 - 1
f(X)——(mZ—o @m-+1) X) «/1 X

for 0=X<1. We have F(0)=0. Funthen

Xm

s _%21"_(@1@, i w2
S10= m}; @Cm+D Xm (1 X)
- 22("””((m+1)')2(m+1) Xm— Z (2m+1)(2m-1)~-5~3-1
Cwm (2mAB)! =0 mh 2m
i (22<m"‘1>((m+1)!)2(m+1) _ @mA1H )Xm b
“ 2m+3)! _' - omi2mi )
Now we write
b 22D (m+-D)o(m+1) (2m+1)" '
o @m-+3) T Tl
and :
. : (lm:bm""('m-
T'hen
FX)= 3 anX™.
. m=1
We have
2 1 2
])o=?>60:~2— and ao='§“%~>0
If bw>cm holds, we find .
| 22(m4-2)° _em+d)
| I e T B @m B )~ T Yomt 1)
because -
(5) 28 (m+-2)% S (2m--3)
' (2m-l~4)(2m+5)(m+1)- 2m+1)°

1) @m+1)1=1.3.5.--(2m—1)-2m+1).

O
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So we have a0 for any positive integer 7 and this shows F(X)>0 for X>0
This result shows /(\) 0 for 0 X<1 and we obtam

o o 2ml)*
VIEX( & g )2 L
Cohsequent]y we have Cn>éhv. N
In the next place we shall prove that (z/2)C,>C,. TFor this purpose, we show
' n & 2yl m) '

2> VX (B G xe)

Let us consider the }Llllction

. 1 3 22m ! 2
AHX)= 5 i — )

by writing p*=X as the above.

2VI-X B i X"
for 0-<X<1. We have g(O):n/Z-1>0 and
3 (n @m- QH_ - N'”«m+1)'>2<m+1> ) o
a=o\ 4 il 2m (2m4-3)!
We shall write

T @mE B Do)
A T T )]
and ' '

me=

Om=0Cn _‘f'm .
Then we have

~>f =5 and 00>0

We show ¢.,70 for any positive integer m. Let us assume that, for a certain
integer m, ¢.<0, that is, en< fm Then we find

o emty  P(m+2y
em»l-l—ejm 2m Il) <fml1 Sme

(2m+-4)(@m+5)(m-+1) ’
ThlS shows ¢, <0 for any m’=m and we have

by using the 1jelatior1 5).

1> 8 s Im ém+1 \fﬁ"iﬂ\

) fm fmil ./7"!2 U
On the other hand,

. e
lim =

—lim ™ CmA1N (2m+-3)
msoo fin N S 22(1:L4-1)((m+1)!)2(m+1)
i E@mi D (2mA3)!

mo 4 " 2PM(ml)s 2FOED (G | D)) (mA-1)
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Using Stirling’s formula

n1~(2n)1/2nn+l/ze—n,

we, have
. em _ oo (2n)1’2(2m{—1)2m+""29“2’""'”_ : (Zn)uz(zm_}_g)zmﬂ/zy(2m4'3)
}rf-,mooﬁ N ,173230 4 QR D)t gt i 22(7n+-1')(m_{_1)(27r)(m+1)2m+88~2(m+1)
1 .. ) 1 \2m 1 2m+2 1 \8/2 3 \8/2 1
= 1 - I =Y { S Y
w,ﬂﬂ(1+2m> (y*2m+2)_ (1+zm) (1+2m) <L+1>2 L
m

This is a contradiction. Consequently we have g»=0 for a]l positive integer m.
From this result, we obtain ¢/(X)>0 for 0=X<1 and ¢(X)>0 for 0=X<1.
This implies

Table 1,
h on Ch ‘ Cr
1 0.4322 0.484 0.279
2 —0,2663 1.244 0.829
3 —0.5069 ° 2.000 ‘ 1.423
4 —~0,2677 2.630 1.948
5 0.0929 3.101 2,360
6 0.2517 - 3.430 2,661
7 0.1581 ' 3.650 2.870
8 —0.,0244 3,793 ' 3,010
9 —0,1223 . ‘ 3.887 3.103
10 ~0,0901 .3.950 3.165
11 0.0004 3.992 3.207
12 0,0580 4,022 , 3.236
13 0.0499 4,044 3.256
14 0,0060 4.060 3.271
15 - —0.0267 - 4.073 - 3.284
16 ~0,0269 © 4,084 , 3,293
17 —0.0062 ‘ 4.091 3,300
18 0.0119 4,096 3.305 -
19 0.0142 - 4.098 3.307
20 0.0047 4,098 : 3.307
21 - —0,0050 , 4.099 3.308
22 ~0.0072 4.099 : 3,308
23 ~0.0031 4.099 . 3.308
% 0.0019 ) 4.099 3.308
% 0.0035 14,099 3.308
30 : 0.0001 4100 3.309
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T Y A 227n(ml)2 >

- > 1_ < Xm
VI E @i

and we obtain (rc/2)C~n2Cn.
¢) As‘it is difficult to compare
we make a ok

¢, with &, generally, w

comparison numerically,
For this purpose, we treat the
casc when the correlogram py is 357
defined by (4). I
~ Considering the case 30k -
and M=30, 4
25k

p=08,  6=025
we obtain the result of numerical
comparison as Table 1. This result

is also shown ag Figure 1 /
. !

The situation of the other cases, f
- {

sk | f

!

{

/

{

{

{

!

/

assuming each of the parameters p,
l

¢ and M to have various values, will
he similar to that of the above case.
- Cne 10k

Generally, C. will be greater than C,

L
5 10

“The author wishes to express his
heartfelt thanks to Dr, H. Akaike, the
Institute of Statistical Mathematics, h
for his useful comments and advices. Figure 1,
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ON THE BIAS OF A SIMPLIFIED ESTIMATE
OF CORRELOGRAM

By Mrruaxk: Huzn

"§1. Introduction.

Let X(n) be a real-valued weakly stationary process with discrete time bara-
meter #. For simplicity, we assume EX(#)=0.
‘We shall denote

EX(wP=o*  and  EX()X(n+h)=0p

and consider to eétimate the correlogram py, when o? is known. We assume X(»)
to be observed at n=1,2, 3, ---, N, -+, N+h. Usually, we use the estimate

. 1

= o 72 X(n)X(nJr 1)

for the estimation of pn. §. is an unbiased estimate of pn.
We have shown that when X(#) is a Gaussian process,

- N
7'/;:\/_——% "];" W }; X(n) sgn (X(n-+h)
is also an unbiased estimate of pn, where sgn(y) means 1, 0, —1 correspondingly as
>0, y=0, y<0, and we have evaluated the variance of 7. ({3], [4]).

In this paper, we discuss the bias of the estimate 7, when the assumption
that X(n) is a Gaussian process is not satisfied. Tor a class of stationary processes,
which are not Gaussian, we shall show the bias of 7, and its properties.

§ 2. Stationary processes which deviate from a Gaussian process.

In this paper, we shall assume a stat1onary pxocess X(n) which deviates from
a Gaussian process to be as follows.

Let X(n) be, furthermore, a strictly stationary process and F(x, ¥) denote the
probablhty density of the joint distribution of the variables X(n) and X(n—}-h)
Clearly, f(z, v) does not depend on n. We have

Received May 7, 1966.
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—b56-
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EXt)y=EX(n+h)=0,  EX(ny=EX(i-+hy=d*
and ' N 5
EX(n)X(n+hy=0pn.

Let @y(x, v; 0%, o®pp) denote the probability density function of the two-dimensional
GGaussian distribution function with the mean vector

( ) )
0/
and the variance-covariance matrix

< a? atpn ) ,
02,0!; :02

Now, we shall assume thaf f(x, y) satisfies

(1) | YS*’ Sw P& gy oo

w0 Do, Y3 0%, o)

——

Let us use the notations

Ly(R)= [ 9(x); Simoz(i)dx{ 400 ]
and

La(RY) = - S“ 1z, y)dxdy<+oo].

—00 ) =

e,

Then the condition (1) can be written as

J, ) o
N ER T Ry

‘Now we shall' make two random variables
Uln)=X(n)—pn X(n-+-h),
Vin-+hy=X{n-+h)

and treat these random variables U(n) and V(n-+k) instead of X(n) and X(n-+A).
Clearly weé have . : ' ' , '

EU®) Vin-+h)=0.
~ Corresponding to the above transformation, we change the variables as follows:

u=x—py, o=y,
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BIAS OF SIMPLIFIED LESTIMATE 375
By this transformation, we assume f(z, ) is transformed into f(w, v).

Let us denote

..‘1;2/202

(pl(x, 0‘2)—— %7;; .
Then we find *
Do(z, vy 0%, 0*0n)==Di(u, 0*(1—p0*))P1(v, %)

L

and the condition (1) can be written as

. . . Fo, 9)
(2) g S_w;ﬁ(% o¥(1 _40“2))@1(7)' ) dudy < 40, :

that is
fw, v)
N/(])1(% ‘)‘(1 {)hz))&/’lﬁ(v GLA(P)
§3. A complete orthonormal system of L,(R*.

Here we shall prepare for an orthogonal devclopment of the function which

belongs to L.(R?).
: We assume that IT.(x) represents the Hermite polynomial defined by the relation

{Z n a0 E 1 : . ‘
T " Y LA 3] s 2 v,
( e > ¢ (=D Hu(w)e \ (1=0,1, 2, )

Hy(®) is a polynomial of degree #n, and we have
Hio)=1, H»)=z Hyz)=2"—1,
Hy(x)=x*—3x, Hy(x)=x'"—6x+3,

............................

Then, as is generally known, the system

[ NI )1/4 s Hul@)e™ :Lw}

is a complete orthonormal system on (—oo, co):

S S Y 1 for m=n, —
N omla/n! «/ 2r S HL(T)[L'L(x)p dw = 0 for mxn O, n=0,1, 2, ).
We write

oul@, 1)= j::~vlfn<x> VOGED  (1=0,1,2, ).
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Some prbperties of the Hermite polynomials are as follows:

(a) Haulx) is an even function pf % for k=0, 1,2, -

(b) Huis(2) is an odd function of @ for £=0,1,2, -

©)  Hia(@)—2H)+kHi-1(@)=0,
" Now let us define ¢m,n(x, 15 ,1) by

G @, 15 U D=pn@, Dy 1) Omy 1=0,1,2, ).
Then the system |
{(¢mn(a, 1; 9, 1)

is a complete Aorthonormal ‘System of Ly(R?%,

§4. An oxthogonal expansion of f(u, v) derived from the two-dlmensmnal
Gaussian dlstl‘lbutlon

In this section, we shall discuss an expansion of f(#,v) by orthogonal func-
tions which are induced in §3. The two-dimensional Gaussian distribution plays a
leading part in this expansion. We consider f(#, ») to be slightly different from
the two-dimensional Gaussian distribution function, that is, @,(x, 01— 0.2))P:(v, o%).

In accordance with the section 3, we define ¢y, ¢ (, 0«/ 1=pu% v, 0) by

Go.itt, on/L—pi¥5 v, a>~;/p, II,;(G T ) vl Ha( )wpl(u o*(L = piE)Bi(w, o).

Then {¢y, (u, an/T—pn% ; v, 0)} is a complete orthonormal system of Lu(KR*).
Now, by the condition (2), we have

Su, v)
Vi, H—pabie, 7 <

so we can find the expansion such that

S, v) ¢ R
Vi, A= i, ) prfz-o 9o afp.ah o/ 1=pi 0, )

where

— Slu, ), A |
az'.q—SS /\/@1(% (1= phz))q)l(v ) Do, ot on/1—pi% v, o)dudv

_ ;73%7_&'8 S m)(],—ﬁ%;jé) Hq(-z-) e, v)dudo.

In the above expression, we find
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BIAS OF SIMPLIFIED ESTIMAT]E g 377

| t, o:—‘SS]'(u, v)dudv=1,

' i, 0 SSHI g Pl Ty )f(%; Z))(ludU: '—I\/i‘~;? =0,
v —~Pn

Uy, 1= IL -S—) u, v)dudz)

Nl

v g Wt o viudo= (G =1)=0.
(
|

)111( Z) Fty vydudv= l“Uff}f (”;]“”) 0,

1,17 SS[L —(IN/l

g, 2= ;/12‘ S[L< )f(u, Vdudy= j2<—w —1):().

So we have

a®

f (2, v)

’\/(I)<M 0'2(1 p’Lz))d;l—(vl g )

{1'1 [/\/(1)1(%, g” (1"“4‘—71b2))q)1(1); 2)+ Z ap, (1¢p q(u UN/]- Ph y Uy ‘7)]

=5} P,q=0

= L.i
I
17+q>d

1.
%,Q
§5. An orthogonal expansion of (u--p.v)sgn (v).

At the beginning, let us arrange our discussion, The cssential point of our
discussion is to evaluate the value of EX(»)sgn (X(n—Hz)) Now, the value of
EX(n)sgn(X(n+/z)) is as follows:

 EX(n) sgn (X(n--1))= S Sw sgn (1) f(z, v)dzdy

= S S(%-I—ph,v) sgn (0)f(u, v)dudp.

The {unction (%4 prv)sgn(v) does not belong to L,(R?). But by the condition 2),

S, v)
N/fpl(% o*(1— th)) ,\/(I)l(v, 9 )

belongs to L:(R?). So, let us express the above value as follows:

. -'60-
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I’ X(n)sgn (X(n+-h)= S S(u - or0) sgn W) f(u, v)dudy

J(u, v)
*(1— pnz))(!’l(v, )

-dudv,

=t sen o) o wa=amme - VO,

Then both -

m+mwwn®v@Maﬁﬂ~m%%wwﬂamiv@ﬂ[ﬁﬁﬁzwﬁwég

belong to La(R?).
Here we shall discuss an orthogonal expansion of the function

1+ 0u2) 520 O/ Luo L= 005, 7).

As this function belongs to L.(R?), we can expand this function by the orthogonal
system

{sbk.l(u; 0'\/1_‘0}1.2; v, 0)}~

We consider that this expansion is

, L
(- puv) sgn @A P, a*(1L— pu2)) (o, 2)~11n };, }; o, i, 1ty o8/ 1= 0% 0, a).

Now we havc

o1 =\ @t 0u0) g O/ 0t T )0, 0% i, o/ T=0% 0, o)
; 7'1:/ SS(%+'0W) sgn (Z))ch( ]%},,_})H‘<"§'>@1(’4’ o*(1— p,ﬁ))(l)l(v, o®)dudy.

SSusgn(v)Hk< e )H,< ) (1, *(L— 020w, o*)dudv

7%;’1'&7 1§ {ssn @ N/l--—;—)m( )0, a*1—pu20, o*)dud.

The first term of the above cxpression is

Q@ﬁfﬁH”%H@HK;¢f7fyi0%ﬁm%ﬁa*“m@m”wm“
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= ;71'5%[[}( ml/lg ) W, 6*(1— p;ﬁ))du] N/ijxsgil(z))ltlz( z>@1(v, a")dv}.

1 |

U/\/l pul .«/(3 I l) ,Sbgn(”)[[mﬂ( )Q)J(v, a®)dv, k=1, l=22';lﬂl (=0, 1, 2, -+,

0, A 7 otherwise,

The second term is as follows,  As stated in §3, it holds

—f-’;m(lj) qu( )HHH( )

Using this relation, we have

T T Er e T R

1 ] o . .
= 0n [ 7,318[]]»(@1;‘;;;2) D1(2e, 0*(L—pu®))du

[~/¥f! S” Sgn (”)H‘< z )@1‘(0, oz)a’v}

| e campira]

=d % /\/7 Ssgn(v)ffm( )1(v, dv+ N/nssgn(v)ﬁ’z 1( )@1(0, %)di ]121
1
VE!

>([)1(u, ot(1— p;ﬁ))du”Slvl(l)l(v, az)dv}, I=0,

"”S [2101(v, o%)dv, ‘ : k=0, I=0,

ono 7(%7—,{ Ssgn(v)PIznl(%)@l(v, o*)dv

+@sen, o (L)00, ar| k=0, 1=2j  GzD),
0, otherwise.

Thevefore we find
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o 0100, 0%, o k=0, 1=,

N ),[sgn@m@( )@1@, v

3

+(Z])838H(U)sz—( >@1(v,0)dv]> k;o, =2 (=D,

Ci, 1=

PIVA R T +1),Ssgn(v)Hzm( )d)l(v,a)dv, k=1, [=2i+1 (i=0),.

0, B ortherwise.

Consequently we have
(u+puv) sgn (v)«/@I(?é}"&z"(1"—“—?5125)71’?(0—,“23
;'llﬂlm ['\/w Upnsl’o o(u, U«/l ph ’ 1), 0)

-F Z Coy 260, 21(%, 0'/\/1."“0'102; v, 0)+ Zocl, 2041671, 2 £+1(%, a«/l—p;{‘; v, o).
=1 - : t=

§6. ‘Evaluation of the bias of the estimate fn.

Using the results in §4 and §5, we shall, in the first plaoe, evaluate the value
of LX(n)sgn (X(n-+h).

X0 sgn (X(+-)) = SS&: sgn (1) (%, v)dedy

S S(% + pnv) sgn (0)f(u, v)dudy

SS ut-pu0) sgn O/ Bilat, (L= N0, 7 /5 0,{&“ 22))@1(0’~ 5 dudo

SS{\/— 0o, oty "N/l Pn P 0, a)

li
1}’6—»00

+ Z Co, 2490, zi(%‘ an/T=pi% v, 0) + EOCL 2ir1¢1, 2i1(%, UN/]»"PILQ—; v, 0)}
il . 1=

[¢o o(%, "N/l !710: v, ")+ Z K ¥, o(%, 0«/1 —on% v, 0)]d“d”

P+qg3
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‘2’~ N « ' ©
:\/7 opn+ Z o, 2ilo, 2i -+ Z C1, 2i4141; 241
i=2 i=1

So we have l : ..,
? 1 Y . o0
o ";‘ EX(n) sgn (X(n+h)=pn+ \/ - = { 22 Co, 24@0, 26 23 €1, 2641001, 241 | -
- i3 i=1
This means : : o .
Iy n)- — Z \/ -5 bX(n) Sgn (X(n—Hz))

n=1

—-*p/r]— \/~—- IZ Co, 2itto, 21+ Zbl 2i+101, 2t+1}-

Therefore the estimate y, has the bias

\/~2~ T{ELO 2illo, 2i | Z(l 204101, mnl.

2

Tuporem 1. When a strictly stationary process. X(n) satisfies the condition
(1), the estimate yn of pa has the property:

E(rn)=pun+bu,

" where by is the bias and

T
b= 5" T; [ Z Co, 2ilo; 2+ Z.' Ci, 24101, 241

§7. Some properties of @, , and the relations between a,,, and moments.

In this sectlon, we shall consider the relation between ap,, and moments, and
also the relatlon between ap, s and Gaussian properties. :
Now,

ap,¢= VﬁﬁS‘SHpi(%ﬁ)m(%)m, v)dudp.

If f(u, v) iys the probability density of two-dimensional Gaussian distribution func-
tion, Uln) is independent of V{(h+7%). So we havelclea‘rly the following facts:

Lemma 1. When the joint distribution of Uln) and Vin+h) is two-dimensional
© Gaussian distribution, we have
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{1 Jor — p=q=0,
Tp.g= —
0 for — px0  or g0

LemMma 2. If the joint distribution of Un) and V(n-+h) is Gaussian, the joint
 distribution of X(n) and X(h+1h) is also Gaussian.. And the converse is also true.

LemMma 3. When X(n) is a Gaussian process, we have

{1 for p=0 and g=0,
[ N
"lo for px0 or g0,

and i is an unbiased eslimate of pn..

LEMMA 4, When X(n) is « stribtly stationary process, ap,, depends only on /.

Now let us put

M, = EURYV (04l = SSu"v‘ s, o)dudp

and ‘
mi, 1=EXn)X(n-+-h)= S Sx"y‘ F (@, y)dzdy.

Clearly We have
My, 1=my, 1.
Let
' ﬁ}(wl,‘wz, ey )

denote a [linear combination of i, ws, «+, We1 and o with constant coefficients.
Then we have the following result.

LEMMA 5. It holds
azk; zz=a§’f(Mo.'o, Mo.' 21 "y Mo, 2, Mz, 0 Mz.z; "‘QAMz.zz, *tty lea. 0 Ma, 2, *++, Mak,a1), .
azk,zz+1=a§'f+;(Mo. 1y Mo.a, M) Mo,zl+1, Mz,l, Mz. 8" M2.2l-;1, ety Mzk. 1y Mzk.s, Yy Mzk.zt+1),
Qairr, =0 (M, 0 My, 5, +++, My,21, My,0, M2, ++, My, 21, *, Maks1,00 Maksr,2y +*y Maksr,21),
and ’ 3 , 7 |
@air1, z}+x=a§'fii(M1. 1y Mx, 3 ';', My, o141y Ms._ 1 Ms.‘s, siey My, a141,
ey Affzm—l, 1 M2k+1. 3 "' Mzk+1, 2L+1) (k, l=0, 1, 2,"")-
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As we have seen in the above, the bias of the estimate pr 18

C 7 1
D :,\/,,,Zﬁ {Z Co, 2@, 21 + Z C1, 2t+101, 2141

and this shows that the bias is affected only by {ao_z,i} and {a1, 211}
Now- we have

and

Mo,2L=mo.zz=mzz.o . %

M. o12=EUm) V(?ﬁ+h 2“'1-F(X(n) o X ) XAy

=LXm)Xn |"h)2“I*PILEX(n-i-h)Z“z**Wh al+17 @ntg, 21+2.

So we have

3)
;111(1

(4)

Examples.

ao,m:a‘;i(Mo‘ 0, ]V[o. 2, " Mo.zi)

T_-((g,j(’)ﬂ()' 0, Ply, 2y =y Mo, 22‘)

y, sirr=ay (M1, Mys, -, M, 2i41)

== 0y (101, 1, P, 5y ***y T, 2041, Mo, 2y Mo, 4y *** THlo, vite)s .

1 15 45

o 6’:‘76—?‘(—0—6‘- M, 6— - Mo, «+ —("Z—Mo 2”“15)
1 1 15 15

= (o= ot T3 mo=15)

1
T WSy i)

1 1
= VAT /T
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N/Bl 04/\/]_ = Ontilo, 1My y),

1 10 15

oy ‘
ay, 57 ;/ 51(‘76&/.1?;0/; ]le, 5 04,\/1 Pl Ml I z/\/] ‘0 Ml. 1>

1 10
s ( G«/l /)h M_l.:— 1N/1 ph M, 3> :

r }720 oF 10.0n == 1M; 4 __‘1~ =5 11, 56— ot = 1%1 3>
a‘\/] R/l p Dot/ 1— —pnt N/l

When X(n) is a Gaussian process, it holds

M, o= (@—1) 11 Mly=@k—1) 1l mi,
and
Ml, ZIH—I:-O, thﬂt iS, My oni :{7117710‘ ok | zf(zk_}_l) !! ﬂ]ﬂn{:;l.

Then, we have

i1, Mo, s, -ty Qim1) 1 MEN=a(1, o, o, -+, @i—1)1 71 =0
and , |
aéi»l 1(0) 07 IR 0)

:a’%i“(()nmo. 2 3 !! thgm ) (27'|']) I P/ng;l, Mo, 2, 3! 777(2).2; "ty (25—*'1) I 7"3;1)
=0

By the above results, we can say as follows:

TureorREM 2. If X(n) is a strictly stationary process satisfying the condition
Q) and if ay,:=0 for i=2 and @i 2n=0 for i=1, 7. is an unbiased estimate
of pn. @, 2 and 3,041 CON be expressed m the form of (3) and (4) respectively.

If Xoadn and 2@ are suﬂimently small in comparison with |pul, Eys is ap-
proximately equal to pn,. As we have stated in the above, a4 is related to the
coefficient of eXceSS Let us consider the situation in (#, v, z) space, The value of
@, gives a measure of flattening of the frequency curve on a section paprallel to
the (v, 2)-plane. @,»; will 'have a meaning similar to ao,. On the other hand,
@, i1 gives a measure of the two-dimensional asymmetry. '

The other features of the frequency surface, e.g. the one- Slded asymmetry, etc.,
do not influence the bias of the estimate 7.

Like the bias, will be a problem ' the effect on the Varlance of 7n When X(n)
deviates from the Gaussian process. This problem will be treated by the method
similar to the above. We shall treat this sub;ect in the future. '
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ON A SIMPLIFIED ESTIMATE OF CORRELOGRAM
FOR A STATIONARY NON-GAUSSIAN PROCESS

by MITUAKI HUZII

Introduction,
Let X(n) (n =0, :tl,’ﬁ:Z, ...... ) be a real-valued weakly
stationary process with- EX(n) = 0 and we denote .
EX(nm)’= G° and  EX(R)X(n+4)= 0 fp

We shall discuss the properties of a ’sifnplifiéd estimate of the
correlogram [ assuming that 0% is known,
In the previous papers (3) (4), we have shown that when X{(n)

is a stationary Gaussian process,

o1 . '
TN RZ:Z’ x(n)sgn (X(ntR))

. 'Xﬁ:/\/

NI

f 7 4o
Agn(?)#{o ;Y=o

-l wco

is an unbiased estimate of ‘f3 and we have obtained its variance.

Also we have evaluated the variance of the usﬁal estimate

~ o1 Y o '
% = T2 N 2 X()X(ntk)
‘ n=f
- and compared the variance of ¥a with that Yof' ’)\;ﬁ_ .- In _( 5) , we have

discussed the biag of )& when X(n) departs ‘from a Ga‘ussia\n process.
In this paper, using the same idea, we define more generally the
processes which depart from a Gaussian process and discuss the

influence on the variances of Y& and ¥4 . -
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2.

-

Stationary processes which depart ‘f.x;om a Gaussian process.,

In ( 5) , we have defined the stationary proc‘esses which depart
from a Gaussian process and used this definition to discuss the Bias
of the estimate Y& . In this paper, in order to discuss the variances
of the estimates ¥4 ‘and ?ﬁ, , we d‘e_fine,, by more strict conditions,
the class of the stationary procevsses which depart from a Gaussian

proce.ss. We shall define it generally,

Let m)()ép, X2, —=--- ‘, Xn) be the probability density function
of a n-dimensional distribution function and (;"_;fz)()(l, Xz, —-”",)(n) be

the probability density of the n-dimensional Gaussian distribution
which has the same man vector and the same variance-covariance

matrix as f(”)()(,lj(z,—-——, Xn) . For example, we sometimes write

FP ) =f ™0, X, -+, Xn)
o (71) R n)
L})(ﬂ)(:x) :"Lf(ﬂ)(-)é’zxzx Tty ‘Xﬂ) :Lf)f (x’, Xz,“—“}XIL)'
for simplicity, Let %, be the class of n-dimensional probability densi;:y
functions, of which each function + ™ (X1, X2, ===, JCn) satisfies the

condition

-—— MhiA/..,_I)(X’,XZ;_—'—AXn) . o .
5 J c};rﬂ) ()(;,)(z,‘~~))(n) d)(, d[a erL <+oo'
R™ :

Then we have the following lemma.

Lelnrﬁa 1. If f(ﬂ)<)(]))(2)““, Xn)€Fn  holds, we have

. ) .
‘ jf, (X1, X2, ~~-, &, —~~Xn) dd € Fn-1,
g .
%
Proof. Let ‘fm./)v(x,"xzf'h),(ﬁ"" )C“,)___)(’n) be the (n-1) - dimensional
Gaussian distribution function which has the same mean vector and the

salhe variarice—coVar'ianc.e matrix as
ff"”)(x X2, "7, X —= Ap) dd
J 1, X2, "7 gty F, Xgr, m7, ) dd.
"Then we have

(n-1)
¥

<.Xl"(2) - g -1, X1, ~=-, X’Z) = f(f(”)(xl, Xe, =5 x‘ﬁ‘/, S, XﬁJr!,‘“‘.‘, Xn)d,ﬁ,
4 ’ :
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We have

(L "0 Xaen 4, a1, x0) d2)°
J'—'J y f O T S Rart 1Y) 44) dX;-=-dX -t dXgr1---dXn

R (™0, - X, 4, Xaws, X ) )
4

Cw " L
- $5 P, 5 Xa, 0 er1 X)) § QX S 0n) S U X 8 X )t~

RI‘L-I ( I Lfm) (xl,-";xi»l,/x,xﬁﬂ,"‘aXﬂ)d,J)
4

-1 (" (n)
<J'J ( £ f")(x,,-—, Xg-1, 4, Xg+1,--Xn )Z‘fm)()(,;-', Xe-1,4, Xﬁ.ﬂ,"')(n), dd ) x( i Y 0o, X, J,)(ﬁl."',Xn)dJ)r/Ir;len
-

R™ (;g ‘)"MZX:,---,)G;—/, d, )CﬁH,"“,)(ﬂ)dJ)

= |--- (n) (PR | -,
J J jf (X, Xaer, 4 Xatr,--Xn)E (= Xa-1,8, Xat1,~ Xn) ,dJ dx,---dxXn
R™! 4 : ' ;

<+

This means

o :
‘ [f (Xt,“': Xy, .X,)Ci{r'/,““,)fn)dzf € 3:/'1—/.
3 .

Definition 1, Let X (n) be a stationary Gaussian proéess.. A

process X(n) is said to belong the class U(‘)(XQ) if it has the

following properties :

(1) X(n) is a strictly stationary process with
EX(n)=0 , EX(n)%= ¢%<ito0 .

- 72 -



(ii) It holds
EX(N1)X(N2)=EXo (N1) Xo (712)
for any 7y and n,.
(iii)  If 2y <72 <--<M% are parameter values, the joint

distribution function of (X (n/), X (Nn2),-"-, X (ﬂﬁ)) is

non-degenerate and absolutely continuous, and its density

function belongs to the class Fg¢ .

From Lemma 1, we find the following facts.

Theorem 1, If  X{n) € U(‘)(Xo), we have X(n) € U(i-’)()(o). This means

(3)

U (XD = U¥xe) 2 UTX) 2 -

Theorem 2, If X(n) ey® (Xo), we have

Elx(nfx ()82 x (ng) | <+ oo

for any integers /i, < 1z {--+{/lg and any non-negative integers fr, £2,---, 4y .

In fact,

E|X J/;) x(ﬂz) - X (72%) f = f f Ix,'x,_,——— xﬁ J (x, Xﬁ)di,‘“d)(ﬁ
R*

(%) 4
= o e X))y e die

PE (), - xB)Z

&)y '
/ f f W dx, e M I f O P xo) i

(II"";X )

JRIZAS

L+ co

In the following, we consider to expand a k-dimensional distribution
function, using the k-dimensional Gaussian distribution function. This

is the reason why we consider the class ¥y Using this expansion, we

“shall discuss the bias and the variance of yg and also the variance of ?‘& .
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3 3. The variance of Y#. for a process belonging to  U“(xo).

Let Xo (n)-be a stationary Gaussian process. To discuss the
variance of ¥x for a stationary process which departs frofm Xo {(n),
we shall rnalinl.y consider the process belonging to the class u®(xo),

In this section, we shall show the variance of ¥z for a process X(n)
“belonging to U™ (Xe), in the form of the variation from the variance
of Xo (n). For this purpose we shall assume that the correlogram

. f& of the process X(n), which is equal to that of the process Xo(n),
vsatisfies{the following conditions :

(P, 1) The determinant

[ o Ta

S L
fx Pp 1

is not zero when # Z 1 and #® % A,

(P, 2) The determinant

| 5’;%1
o L

is not zero when £ 2Z [.

Let L2 (R i) denote the totality of measurable functlon ﬁ(x) such that

J ﬁf}ﬁax)l d X <+ o0

And let Hp (X) be the Hermite polynomials‘ defined by the relations

xz
) e 2 ~( D Hn(x)e 2 (n=0,1,2,---).

We shall denote

u) f x*
r TanEemEet (He®

2
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then {¢nw(1’; T) } is a complete orthonormal system of [, (R),

And also let us denote

(k)

Ry Na -, g (11 XZ (Tg, - —— ; X4, Q‘ﬁ)
(1) (
= Pa u, 0 #80x, o) o Fre Ocx, Tr)
(ﬂ” 7’12)‘"‘, Ng = -00 1, 2, - ) .

Then the system
(%) L |
{ ai,ne, =7, RA (X 05 Xe, G5 5 X, G) |

is a complete orthonormal system of [2 (R%).
Let Vx (J’ﬂ) denote the variance of ¥& for a process X(n). Then

we have

Ve (1r) = E 1 - CExp)?

N N |
= T )2Z 2 EX(n)x(m) agn (X(ntR))agn (X (m+R))

—(4/- E X (ﬂ)/.!gﬂ (X (nHi)))

R .
"‘"“g:“z’/([z ﬁZ’ (N-%) EXV(ﬂ)X(_nﬂé)/Jgn (x (n+£))/1;n(x(ﬂ+ﬁ +ﬁ))

(R¥R) : '
(N-8) _

*7}% Nf EX(ﬂ)IX(n+ﬁ)|4gn(x(n+2%))

y 2
tzw —(Fatbr),
| where by =fF - Fp - and the syrnbol Zi means
’ (B#AR)

Zou i,ou ou

wfi)
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We shall evaluate the each term of \y (dz).

() EX(r)X(ntR) $97 (X (n+R)) Agn (x(nth+#))
Now | '

EXIRX(+R)IAG7 (X(n 1)) 457 (X (nt4+£))

' ~(4)
=[- f Xn Xng Agn (Unsg) agn(0rresh) 7 Olr, Xnth, Xk, Xushth) ddnddnsk dXnthe stk ,
R4 . 7 »

where ')Z-w)(ln, Xnth, XntR, XnthtR) indicates the density

function of the joint probability distribution of - (x¢n), X (n+%), x(ﬂ+£))x(”+£+£)), .

And let 'f,‘»“’(x;z; Xnth, Xntt, Xntha+ts) be the Gaussian

density function of the joint distribution of

(Xo(n), Xo (n+h), Xo(n+R), Xo (ntB1R)).
We use the notation, such as

X = (Xn, Xnta, Xn+#, )Cn+ﬁ+ﬁ),

e

() ~ (4) |
FoaO =97 Xn, Xnth, Xnt£, Xn+gsr)
and | |

~ (4)

‘ 2)3(4)(1)0 =% (Xn, )Cﬂﬁ@; Xnt#, )(’Hf“ﬂt))

“when it ig not confused. So by the assumption,

~(4
) ()

"ﬁ €lz (RY (1)
(

Now we shall put the random vectors.

X = (X, X(nt#), X (M+R), X (n+RtR))
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Then by the assumptions (P, 1) and (P, 2), we can find a linear

transformation T4 which satisfies the following conditions :

(a) Ta %t = U/t, where U =(Un, Untg, Unth, Un+etr) i8 the

random vector whose variance-covariance matrix is a

diagonal matrix.

(b) T4 is the matrix such as

I A ~B ~-C
Ta=| 0 I -F ~@

0 0 A -

0 0 fi

0

where A, B, C, F and G are constants _(see (4] )

Corresponding to this linear transformation T4, let us assume § ()

is transformed to

4)
f () = =fP(uny d nit, Untx, Un+hith),

Here, we shall use the notation
(1) 12
‘-/" (X,0) = V—:_—'F e 2¢2

- Writing E Ue = @ , We can express

"3 0]
‘f X) =¥ "(Un, ) ‘/’w(anm Tuta) ¥ (Un s, Cntz)

) |
X PV CUnrtsh, Turher).
. Putting
"f(d)- ) = ‘/‘(U | ), ' @, NN o
(W) =7 (Un,Tn) V7 (Unth, Ttk ) ¥ 7 (Unth, TutR) P (Unthsk, Tnrket),
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we have

£ w)

VD )

by the relation (1), So we can expand the function

¢ Lz (R%)

£ )

by the complete orthonormal system

(4) : :
{4’ (4P 8 (Un, O Unth, Quve s Unth, Ttk Unitth, Cntgit) ]
We shall‘ write simply |
‘P i,4.P.8 (Ul) ‘/’ 5,8, P8 (Un,Gn Untk, Tath s UntR, Qutk s UnthtR, TuthtR),
Let the orthogonal expansion be
@) | |
Jow) * @
W = Z | Aijrsg (It(,j,P,Z cu)
VY5 w) Largzo | y

where the sign of equality means that the left side and the right side

coincide in the mean and

(4)
Qi ipg Jm\/“ﬁ”((lw) biing (W du

urwz (_nm) Hg( Un+ﬁ+£)

T B 5

(4) | |
X f (Un,Un+e, Untr, Un+atr ) dindlprgdlpg diines
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In the above expansion, we have

*

ao,o, 0,0 = ]
and
Qi jpg =0 T 0<iritPrg g 2,
S0 we have
_.f_{j)(_u'()__ 95 (4) Z a 73 “)
. - + ) . M ;
1w o000 L) L3P 2Z0 LR Tiang (u),
| [tfTPt3 23

Here we shall rearrange our discussion, It holds

E Xn) X(ﬂﬂ‘s,) agn (X qmrR))agn (X (nth+r))

~H)

= fj Xn Xntg /Lgn(XnHt)/ign (Xntath ) £ (Xn, Xnth, Xash, Xntzi)
' dxnd Xark dXnth dXn+htt

:j[ Xn Xnth Agn ()/ﬂfﬁ)éﬁﬂ (Xntzra) Py,

Xntl, Xnth, Xn+ htR)
‘R4

. ~(4)
X f(.)(n,)(ﬂ+ﬁ,_)(n+£,)(n+ﬁ+£)

~d
| ’\’Lf( (I(:,Xfﬁ;)Kﬂ*ﬁ,)CinrﬁvLﬁ)

DndXntt dXnrp dX niter

:f’"J (Un+ol Un+a +8 Untht & Unt&+R) (Unthtd LUnth tE UntH+A)
R4 |

X Agn (Un+ﬁ+dﬂun+ﬁ+ﬁ)dgn (Un+g+s )‘/‘fm(Uﬂ, Un+k, Un+h L/nffé*ﬁ)»

()
X f (Un,Untk, Untd, UntE+R)

- dundunit duns dintstr
’\/(f( (Un, L!n+fé, Un+, Untetr) ' _ 7
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/

where o, g8, ¢, d,\l, 8, and 4 are constants such that

y

]

"

o
Now, we shall consider to expand the function

£,u) (G

= (UntAUn+h 4B Un+r + Jua+ﬁ+ﬁ) (Un+ﬁ+d\’1.ln+ﬂ+ﬁ,u;1+£+ﬁ_)

XAgn (éerf; +d Un +;@+ﬁ)/ign <Lln +R1TR) /3”(4)(dn,an+£,dn+ﬁ, Un+#+R )

£a(U) f 9@cu)  €L2(RY),
)

we can expand this function by the system { 95[ i P 3 (U()} and

assume this expansion is

e 4@
) A/ POU) Z Cz,;,/’,g 7)[(,4},/7.3 O
LePgzo0

where

Cia B g =J[[[Aa WNGT@ P55 (W) du
| R*

= "‘—"“J‘“ ‘
ﬁTﬁTWJﬁgg“(u”’u”f’u" R, Unfﬁh@.) H: (%)H}(%{I—f

Unth\ ' ,lUn+seg, @)
X Hp( V‘n+ﬂ)/'/g ((];,h@m) P (Un,Untk, Un+g, Unt#+R) A iln dU[['fﬁ_d[/nf-ﬂdanﬁfﬁ

Now we have
k A : ‘ :
CL/J"; P, g4 = 0 forany (i, j) except for the
following cases :
i=0,1

i=0,1,2
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and -

Co,o%o,o = E Xo(n) Xo(n+%)Agn (Xa(n+£))4gn (Xo (nﬁswt))_

Using the above results, we have

EX(n)X(n+k)agn (Xinth))agn (X (nt&th))

f(a{) S
(U)o ¢ )

) }J(Z Coipg ¢ La(;)Z(W))

4 04'
R 2
: Z Z20
X “ ' W
(%w@o<W)*'Zi LJP8¢L]P$(w9dm
L‘:J'lﬁg;?;o
(t3tPtgz3
-k '. | k . %
= Co,o,@,o t Z Ci'.;},P,Z | az,},/zz
0414l
04482
Ps$zo0
(+f+P+§23
We have the following result :
Lemma 3, E X)X (ntR)agn (X(ntR))agn (X(nt £ Hi))

. SR A
= EXo(7) Xo (n+8)agn (Xo(ntR)agn (X, (nthth) + 2y Ci,ép g i o
<t o :
, |
P3zo
i+§tPt§z3
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G EXOe) 1x Gerk) | agn (X(ri22), :

—~

Let S (X, Xnia, Xnt2r) (or simply f(‘”(pc))
denote the prvobability density function of the joint distribution
of (X(?z) ) >((}21*}4L)'> X(ﬁf?ﬁ))' Then we have

EX(n)|x (nt#)]|4gn(X(nt2#))

- /ff)(h. | Xntw| dgn (X;lf"zﬂ)]'EZB)(Xn}Xﬂ"ﬁn,hfgﬁ,)f&n&[jlﬁidxﬂfzﬁ.
| i v

Let .‘70(3)(1/72, Xn)rﬁ,)(nréﬁ) be the Gaussian density

function with the same mean vector and the same variance-

. : 3,
covariance matrix as £ (Xn, Xn+k, Xn+28),

As X(’L) E;U(4)(X0)) ~e have

£ (x)

ST

Let us put

X =(X(n), X(n+#), X(n+27)).

Then, by the assumptions (P, 1)and (P, 2), we can find a linear
transformat"fon T3 which satisfies the following conditions :
a' ‘ t ¢
( ) Tj X = v )
g he
where \y_(vﬂl anﬁ, Vlszﬁ’) and the
variance-covariance matrix of V is diagonal.

(b') T; is the matrix such as

/! -H -k
Ts= 1| o S
o 0 1

where H and K are constants,
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- We shall put

We have
E X (n)'x(ruﬁ)'\-dg/z (X(nfzi))

:jf;f Xy ’ anﬂl 20 ()(ﬂ*Zfi)][(3)(1;/0)(/1‘%),1//”2{) dXy dXntt dXnt2k
R .

= j'f/(?/nf (9/an+n *0‘9%5«2&)/ Untt +@,~‘1fﬂ+z;/ 497 (’lfnf?ﬁ)

/\;3

() | 2 | :
X f (Uﬂ,‘ Varz, Wf?ﬂ) dVn d Vs d Vn+er,

Let us assume that 2}; (3) (;{n Ynts Xnﬂﬂ) is transformed to
. ) b £
(3) . e
y (qﬁli'wfﬁ) Uni2k) by '[y and denote simply
{3<w—):(vﬂ'f OAUntR+ Gp I,/’H'Zﬁ,) l Vn+g + OrVn+2r l Agﬂv(U'nfzﬂ,)
FO) = SO (n, Vatk, \Vwtz#)

and

ﬁ"m(W) _ y(é)( Uns Un+k ) \fn}zﬁ) .

EX (n) | x(n+#%) | dgn (x(nrzm)
:f/g fs (V) fO(y) dv
iy A (wW)-%,%ﬁW
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We shall consider the functions

W and }f3({f)my

LW ¢ 1 e
— (Rj) an 13 )
W‘”wf) ‘ | da As(WA e (Uf)élz(/?f))

we can expand these functions by the cdrn’plete orthonormal system

() | |
7)Ll J'IP(M) (j)L J)P (V;ll—zn) W*ﬁ; Ynfﬁ} %fZﬁ 713"'2';‘)

and .
—([?‘zgl/ez, for [":vﬂ,’ ﬂ%f) n+2t .

Let these -expansidhs be

FO>w)

ety Lo (y
A ;on a‘ w /W,/D (V)
and

'\V’ 3 :
where s .

LJ/D /jf//V“’(@f) (3) mf)dfllf

4/7/7;, /// Hi V")H ( tf”“'i) (%’,f‘:jf)f(v it Uit 2f)d1, dVicth oVt 22
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and

(J/}J P //j}g\?(’llf)q/ (3)(]})? 56(';)/3(’“)‘) d’uf' .

ﬁ;ﬁﬁj / f ﬁj(?fn Unth, Varzh) Hi(Z* 7 )/7,,} ?V;l::%f//a (‘ﬁ;ﬁ L)y, Ui, U/uzﬁ)d{/adlf,”ﬂd%fzfl.

In tbé ‘..abovg—z ex[.)res_sions; we have
'aa‘£ 0=4I
s - |
ab‘,»(},/n———»O for .0<£+0{+ID§'2_
Also we bkcan see easily the vf(')HQ'\_x‘fing facts :

4. . S
Cijop=o forany i 22,

Co 5, 0 = E‘Xa(ﬂ)lx_a(m i)\ngn’(xa(me/:)),'

Cons equehtly, we obtain

' EX(ﬁ)lX(n%ﬁ)\ngd(X(¢+zé0

(3)

xjjf 73 W“)/V%”(?l/“) m‘

0‘L</

hrzoe . e

- /f/(L ch f‘”,;(ur))( 4 (wz: : J,;%j;( W) dv

Caaa Z CLJ.,P 0(},

0L i &
APZO
{ TJ*_F =3
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From the above results, we have the following fact :

}_953_1{2%,:4_.-._ EX ()| x(nr ) Iagﬂ()( <n+2’f>)

= EX, (/UIX,;(/H/‘{) lx/yll ()(,,, (a+zﬂ))

A
"> CL ,},P at‘,,},P

05 =/
4 PZEO
Lt +Pz3

In the previous paper ( 5 ] , we have obtained

Efﬁ‘“F //ﬁ— [;' 92>L’Q0,26+Z C’ZVH a’ZHA/})‘

/=2

where

L. /. X~ J# Xnt ’ X | |
Qi =g -——-——Wﬁﬁz_‘ | Hj (FE22) £ 00 Xons) o et

and

Cu = o X Gome) (Bt ; (525

) :
x 4 anrf)ﬂanf, J7|//~P,g2) > 1 (')an+£:¢)dxﬂdfq+ﬁ .
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Combining the above results, we have

N .
Vx (40 ) =% aiz e HZI% EX (n)=37 (X (/7+Ii))x(m)»dyfl(X(m+ﬁ))

‘(4/2; —d~/: EX (n)<gn (XC/zfﬁ))) 2

N-
=Z (_fL /_\flgj (N-%) E)((n)A;/?(x(n+ﬁ))X("+ﬁ)4¢"'/?(X(ﬂﬁ%*m)
234

rg g 2 (N=A) EX ()| X (nt#) ,4?ﬂ(xm+zﬁ))

bE L (4/;27 EXr)sgn (X(n1))”

= Vo (%) + 7%, fj(xv R)( 221 C‘,,pg Oz,ws)

=1 055y
ﬁ 05452
rGzo
i+j+pfg73
W/ 14
+ (1-& >
qgz N( N) ey C‘,JP ab‘/ P)
4pzo
‘ , ¢;—J.+P23
(LS S . |
{ 2 (2 ( % Co,2i Ao, 2t t Z.{ Gy, 2i+! al.Zl:H)
. = L= .

— o |
+2f)ﬁ/)/§' T ,[Z:?Co,ﬁ ao,?éf£Z;/>~C/24+/Q/2t+/)> ————— (2)
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Therefore, we have the following result.

Theorem 3 ., Let X, (n) be a stationary Gaussian process.

If X(n) is a stationary process belonging to the class 0(4)()(0(/1)))

the variance of the estimate

'ﬂgf/g %/MVLZ x(n).d;ﬂ()((lﬁﬂ)) |

=/

is given by (2).
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Comparison of the variance of }, with that of ?)\;ﬁ .

The variance of 5’\‘% is as follows.

V(%) =4 J*/“Z <% ZN EX(n)x(n+R)ximyx(m+R)— fp’

n=t m=|

- L2 Y (Nﬁ7‘%)5)((/z)x(ﬁfﬁ)x(ﬂfé)x(ﬂflé*ﬁ)
ff L Z (N=-R)EX(n) x(nt £)*X (n+2£)

+ L 5 EX(0)X(ne#)? = f?

Now we shall consider the same transformation Ty or T; as in §3.

And we shall denote
£y (W) =(UntplinsatFlnthtd Unrgtr)

X (Umﬁ A Uns s o lUntprr )(UntatdUnsarh ) Untatg |

Then we have
" _
Ra (U SAW) €Ly (RY),

and so we can expand this function by the system {‘Pi, i /(04,)3 (Ul)}

as the following :

y |
ha (WP = 2. C%irg ¢z,g,(f5{g (),

LHP3 20
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where

‘ e )
Clas = JJff 45 V97w bi,iop, g (W du
, Ra

TR | _ y *
i s ntim o s He (5 Yo (Gt p () Py (s ).

) _
XLf (\uﬂ,aﬂ‘r&, u[H-ﬁ_. Uﬂﬂ%)ddndu“ﬁdum% dUurﬁm,,.

As is easily seen, it holds

. .
Ci,ipg =0 except for 0%i<l, 04§42, 0LP%£3,046%44

and

* * - | |
C0,0,0,0 =EXo(n) Xo(n+®)Xo (NtR)Xo (R1EFR) |

Therefore we get the following fact :

Lemma 5,

EX(n)X(ntg)X(n+r) X (n+%&+R)

(4)
= I #rawde@w). 4L 4y
R4

Py

= E}Xa(p)Xa(n+ﬁ)Xq(ﬂfﬁ)Xo(ﬂ+ﬁ+ﬁ)

‘ X b
r 2 Cuaeg Qigng
0Li4 '
0£§42
0£p4d
04844
{tétpPrgz3
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In‘the next place, we shall put

* ' ) : 2>
Az (W)= (Vnt 8aVn+4 + Op Vrsza) (Vntg + BrVrt24) Vn+'27?,_
As we have

s (WN PP €L (RY),

we can expand this function by the system { ¢L ;S)P (W) }

as the following :

ﬁg(wn/'éo‘”m o Ciie 0w
[ & P2Zo

where

Coi'p m A3 (w)«/‘f”’(w Lf} (V) dv

'{—A/_F jff ﬁd (VUn, Vg, UmM)HL{ )HJ(*(:::_)HP rzfnfzﬂ)t)o (U Uneg, uﬂﬂﬁ)d?}nd%ﬁd?fﬂwﬁ_

It holds

* A
Cijrp =0 except for O£, PL3, 14PLq

. and

* R
C0,0, o = FE X, (ﬂ)Xo(ﬂ’f'ﬁ)ZXa (7’1+2ﬁ)'

Consequently we obtain the following fact :

Lemma_ 6. EX(R)X(n+E)2X (nt2 R)

"EXo(n}Xa(ﬂ'f‘ﬂ) Xo(ﬂ+2ﬁ)+z CL,,}P ahdnp

05L&
0é¢é3
[$P&4
[+jtPZ3
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Lastly we have

EX(n)ix (n+4)%= E Xo(n)%%o(nth) 2 + Z Ci ¢ CLW

VTTf—” WV77§"

04042
2¢i%4
itéza
where N
Coi = b [ X X e (i), g
R

’ o (Xn -2 PrXnXnsh + X k)
X 2 e 20‘2(/"%%)
2T0yi- pE A Xy Ay

Combining the above results, we obtain

Vi (§2) = Vo (00) + 72 2 Z W8 (%, Ciipy Qiipg)
B o0kis
4642
04P%3
0¢4%4
i+4tPi§z3
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Therefore we have the following theorem.

Theorem 4. Let Xo (n) be a stationary Gaussion process. If X{(n)
is a stationary process belonging to the class u“ (Xo(n)), the

variance of the estimate

- N
s 1 1
s o Z rr)

is given by (3).

—y
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§ 5.  On the variation of the variance.
Ih §3 and 84, we have evaluated the variané.es of the éstimates '3
and ¥y . Using this evaluation, we shall discussfthe variation of the
variances. | ‘ ‘ |
At first, we s‘hall d_iscvuSS’this"'pvvroblem' ini’a general way. ’Le't Xo(n)
be a stationary Gaussian-proceés "~ We assume that.X(n) and Y(n) are
stationary processes belonging to the class U(ﬁ)(Xo)
Let f(ﬁ)(Xﬂ/, “Mne, -, xll:é)ﬁ S and ?(g)(XIl/ Xnz, -, Xnﬁ)
be the probability density func‘tidr‘ls‘ of the k- dlmenswnai joint
distri:bution functions of (X(as), X(/'Zz)‘,x ——=- X(ﬂ&)) and (Y(ﬂ/) Y(nz) -~-,Y{n,;))

respectively. Wlthout loss of. 5enera11ty, we can assume

N, <Nz < “"'( 71&

Now we shall define the norm

-~ (&)
1 F " Otny, Xng, -y Xng ) = 3"(xn,,xnz,~—~ 171@)”?

as the following :

“ (;(ﬁ).(l’m, Xné, -—, Xng) - 3()%)(an, Xite, - Xne)ll ;B

), J , b (Xm an -- Xﬂﬂ) g (Xﬂr an,—~- Xaﬁ)l Ndln,dlnz—-—d)(ng
R , e | Lf (ln, )(rzz,~-— )(nﬁ)

Then we have the following relation,

Theorem 5. It holds

~ (1) ' ‘ |
“f (X/'Z/, ==, Xng- 1 Xrt,,.”,‘"- Xru) -3 (ﬁ ’)(Xﬂl o Xﬂ»—‘ Xﬂm " Xny )’”_7
. ' ) e

S0, e ) = §% O, -, xag )l
for any f and { which satisfy the conditions |
6 < L £h
L < d
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Proof. As
’ ~(£-1) ) ~
f Kny,-= - Jonyy | X1, Xng ) =jf X, -, -, Xng ) dXn;

and
~(L-1)

~(L
: 2 (Illv,,“‘,\Xﬂ;‘-l, Iﬂ;+/,“",Xﬂ4 ) :fg( )(Xfl,, -t X?Ze)dln;_ ’
we have

’\([;]) . ~(4 ’ .
”f (l’n,,"‘,Xna-r,XﬂH/, -, Ane ) - . ’)(X/?/ =, Ay /Xﬂm Xﬂl) ”%ﬂ-}

ya ~(0) AXp,dXip ey doG;ep -~ dXng
f .I X (4) R X =3 RN
[R{CII ( ny, * e ) g (Xzz, llg)lan ) AM /)(X/u, 2 X1, Xng et -,y )

sl LF 0= e )-Cg‘“’_an,;—-, X ) L0060, -, xa) v, )’
| “’)(X 1 © ’
o- ")
R

d«Yﬂ, dx”cl alXﬂgH dlﬂg
’g‘)(l 1)

X
(Xny, ===, ni—y, Xnzar,=, Xng )

(.. ‘fw)(Xn, -~ Xy )—'5(0(,{”,,—:1@)!2“_ (0 |
A i ) (5 )

Q(Zf(, = dIfI -1 de? £ ‘“dllu
FED (- e, Xz, X, )

- f“_f l)“( )(Xll;, A ) - 9(2)(1/@ X’”), AdXn,---~"dXn,
Z};(e)(X”/, T Xne)
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s ! L ’ 2
” f(e)()(n,,’“f,an) - ?(e) (X"Iv_-—_’xnl)‘“;[j .

- Now, 'we shall restrict our attention to the proceés belonging to
vthe clla's’s U(4) ( Xo) and consider the variance of the estimate YR,
Let> X{n) a.nd Y(n) be two stationary pl‘(’;C@SdGS belonging to the class
U Xo ). And, as in 83, let fm ()Cn, Xnte, An+k, )(n%rﬁ)

* denote the Jo1nt probability’ den51ty function of

'(x-(/z) X (ntR), X (n+k), X (R+4+4) ) and :
T (0, X ik, Xats, )(,m@,%) denote that of- (Yin), Y(ﬂm),Y(ﬂm) Y(ntatR)),

-

m(Xm Xn+t, Xn+24) and 9“(3)()(,1,)(;”,{,)(7”2,{)

Also, we assume. §
to denote the joint probability density_functions of

(X)), X(rF 7Y, X(n¥eR) ) and (Yin), Y(n+R), Y(n+2R))

respectively,

Definition 2.  Let X(n) be a vstati,onary prdcess belohging to the
class U(4)(Xb) and £ be a positive number., A stat‘ionai‘y pvrocess :

Y(n) is said to belong to the class Vg (X) if it has the following

properties : :
(1) Yin) € U (Xo),
(ii) - max| max g
| [/<ﬁ</\/ | ( 1§ (xn, Xnta, )Crl+ﬁ,)(rz+@+ﬁ,) 7 (Xn,xzqunﬂe )’nwﬁ) 7.,
R

5 (3) |
” (Xn X+, Xn+2ﬁ) JC (X/z;)Cﬂhe )(n+2ﬁ.)”}"3]

Then we have the following theorem.

Theorem 6, It 'ho‘lds '

‘VVYV(M vx(m I<C€ and lvy(zm) Vx (T2)]<C €
| -96-v ‘



for any Y(n) €Ve '(x)) where C and C are constants.

The above result can be easily obtained by the use of the following

lemma and Theorem 5.

Lemma 7. Let X(n),Y(n) 6U(€)( Xo) We shall assume

A (X1, Xz’ "*',Xe) to be a measurahle function of £ variables.
. ®

Then we have

| E & (X(), X (1), X () ~E % (Yn),Y (ng), = Y (1)) |

4 ~
é KZ ” ]c w)(xn,,_.._ , Xﬂe) — 3 (Xﬂ,, ST X”l)” 7?1 5

if

= | me- '2 ~—
K J- fﬂ (Xn;, Xnig -~ Xng ) ‘f(e)O(n,,Xﬂz,“‘,J(ng ) dXn, dXny=--d Xn,

g
R {+ o0

In fact, we have
|E 2 (xm,xmn,~~-, X(Mg)) — E& (Y, Y(Re), ~==~, Y(Ng)) |

= - e » ~(¢ |
' j J-ﬁ. (Xﬂl,“';X”.Z ) f ()(X/l,, “',Xlu) d)(l[,‘“ dln“

. )
j ef ﬁ“jnl, T Ltfnl) ) (gﬂr,"-) ?fl_e )d?ﬂ, “"dyﬂg ’
K

< (.- - -
= f [[ , 3 ()(711, “')lXﬂg ) ” f“)(l/ﬂ/, “’,Xﬂe)"3@)(1121,“‘,)(721) ,dXTZ,“'k ¢
R | '
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