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Abstract

This dissertation is concerned with the outcome of a study on control system designs from
input-output data.

Recently, because of a suggestion that system identification and controller design should be
performed simultaneously and a theoretical interest that some control systems can be designed
with the operation closed in input-output data, control system designs based on input-output
data are recognized again. However, the majority of former works take interests in LQG optimal
feedback control of linear time invariant discrete-time systems. To provide new control system
designs for other systems and control problems is a future work in this field. On this subject,
three new control system designs are proposed in this dissertation.

First, a “Laguerre system” is introduced by expanding a linear continuous-time system into a
series expansion with the Laguerre orthonormal basis function, and a new LQG control system
design from input-output data for the system is proposed using the Laguerre system. The
actual algorithm, that the controller is composed by merging the optimal feedback law and the
observer and is realized in the form of the state space representation, is given.

Second, for linear time invariant discrete-time systems, an adaptive-learning control design
based on input-output response is proposed. In this method, control objects are represented
with Markov parameters, an impulse response of system, and then the adaptive-learning control
law is designed so that a quadratic cost function is optimized and so that control sequences
and Markov parameters are updated simultaneously. To verify the effectiveness, it is applied
to an experimental device whose modeling is difficult.

Last, it is shown that some optimal control systems, e.g. time optimal control, for linear
time invariant discrete-time system are designed by formulating the design problems in the
generalized numerical optimizations using input-output data. By introducing an auxiliary
problem of the original one, control design can be transformed into a nonlinear optimization
problem in the case of nonlinear input-affine systems or into a linear programming in the case
of linear systems. The efficiency is investigated through numerical simulations.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Background and Motivation

When one designs a control system, information on a control object is considered as most
important factor. Since Kalman has proposed the state space representation [44], the modern
control system design theory has evolved by penetrating system behaviour deeply with a control
object model. That is, mathematical models such as transfer function and state-space equation
given by modeling are utilized to obtain system information. Therefore, in present standard
design procedures, the mathematical models allow us to design control system rationally.

However, recently, if we go back to the starting point of control system design, i.e., “Find a
input by which an output behaves in desirable way.”, then a question whether mathematical
models are needed really arises [56].

Before the state space representation is proposed, control system is designed directly based on
system responses like Bode and Nyquist plots and Nichols charts ete. PID controller, which is
regarded as an extremely useful controller used historically long time and even in the present,
is tuned on the basis of system responses caused by test signals like the methods proposed
by Ziegler and Nichols etc., namely, in classical control system, not models but some system
responses have been used directly in order to design.

Now considering the modern control case, system responses are reflected in mathematical
models by considering an identification problem to decide model parameters so as to approxi-
mate behaviour of control objects exceedingly. In other words, the modern control theory has
proposed design algorithms for a class considered as a model set such as linear/nonlinear sys-
tems, time-invariant/time-variant systems, mechanical systems and plant systems, therefore,
practical control system designs need the identification step in order to obtain the required
model out of a class.

These model-based control designs, LQG, Hy and etc., promise good performances if accurate
models are given. They are especially effective in such systems, for example mechanical systems,
that accurate structure and parameters can be obtained relatively easily. Otherwise, as long
as modeling error between actual systems and models can be estimated sufficiently like flexible
structure systems, robust control designs such as H,, promise good performance even if accurate
models cannot be constructed perfectly.

However, there are not always these cases generally. There are many cases that even model
structures cannot be given. In such case, it is necessary that under the assumption of a class
including the real object a model is chosen from the class and is constructed so as to approx-
imate the system behaviour sufficiently. This identification problem is called non-parametric

Chapter 1. 1



CHAPTER 1. INTRODUCTION

identification while the problem to identify parameters of a model given its structure informa-
tion fully is called parametric identification [30]. In non-parametric identification, to obtain
an accurate model is more difficult than in the parametric case, and the obtained model has
physical structure information no longer. This indicates that non-parametric models give no
other information except approximation of the real system input-output relation.

Considering the mentioned question again, it can be answered from above observations as
follows, namely, if models can be obtained exactly, nothing can be better than the way using
the model in order to design control system. However, let us consider the more general case
where available information is only an input-output response. Considering a class assumed to
include real control objects, if there exists such a reasonable method that is closed on operation
of input-output data and that can design the desirable control from direct operation of input-
output data, the method is better than the model-based method in the non-parametric case
where the identified parameters have no physical sense. Furthermore to design control system
from input-output data directly reduces the possibility of occurrence of artificial mistakes and
meets an argument that modeling and design should be integrated because they depend on
each other [46]. '

Since these concepts have appeared, the data-based control system design comes to be paid
many attention, recently. Many works have been reported, but the majority of these works
assumed only linear time invariant discrete-time system for a class. Skelton and others proposed
a LQG controller design method from the Markov parameters which is the impulse response
of discrete-time systems [45]. Furuta and others showed that not only LQG controller but also
Hy controller and disturbance attenuation controller can be obtained by the same Markov
parameters [22][42]. Tkeda and others gave basis vectors forming the input-output data space
and considered a tracking problem and LQ problem regarding the basis vectors as a new system
representation [56] [57]. Chan obtained an equivalent output feedback controller to the optimal
state feedback law by deciding controller parameters in a sense of the least square without
separating LQG control system design problem into the optimal feedback gain and observer
designs [17] [18] [19]. Hjalmarsson and Gevers introduced a gradient method called Iterative
Feedback Tuning for the minimum variance control problem and applied to LQG controller
design also [12] [13] [14]. Kawamura proposed an iterative LQG controller tuning [58]. Sugie and
others approached a new model-free control input design problem from a convex programming
viewpoint [53]. Favoreel and others proposed the LQG control system design method for linear
and bilinear systems from arbitrary input-output data utilizing the subspace identification
method [54]. Moreover, in a broad sense, the direct adaptive control design, learning control
design and behaviour approach may be considered as the control design based on input-output
data. Therefore it is possible that connecting these methods to the response-based method
yields a new control system design method.

On the mentioned background, this djssertation also shall take the same position similar to
the previous works and shall consider a control system design based on input-output data. The
mentioned references handled only discrete-time systems, and no data-based control design for
other classes has been proposed, so this dissertation shall propose a new LQG control design
for linear time invariant continuous-time systems to extend the class with which data-based
control can deal. In this method, a Laguerre series expansion is introduced to deal continuous
time signals with finite data, then a optimal controller can be represented with the expansion
coefficients obtained from responses generated by injecting the time response of the Laguerre
function to the system as input. Furthermore a state space realization method of a continuous-
time controller is given.

1.1.  Background and Motivation 2



CHAPTER 1. INTRODUCTION

Next, to illustrate the efficiency of control system design based on input-output data for such
system that its structure and dynamics cannot be given explicitly, one of applications shall be
given as an example.

In this example, an active vibration isolation system, which provides low-vibration environ-
ment on the table by moving the table to suppress the vibration from the out environment by
some actuators, is considered. The table carries an external machine which needs low-vibration
environment, for example a stepper, an electron microscope and etc.

The external machine moves repeatedly in the same pattern and causes a periodic distur-
bance. Therefore these disturbances must be suppressed, but modeling of this system is diffi-
cult due to complexity of the coupling dynamics between the table and the external machine.
Because of the micro-vibration, linear time invariant discrete-time systems are assumed to be
appropriate class in this case. Under the situation a new adaptive learning control design based
on input-output data is proposed and is applied to the system having the periodic disturbance
and the complex modeling.

Moreover, for examples of the control system design closed on the operation of input-output
data, new design methods of a time-optimal control, fuel-optimal control and etc. are proposed
for linear time invariant discrete-time systems. In this methods, each design problem can
be formulated in the linear programming, and its constraints can be represented with some
system responses. As a result, time optimal control and other controls, which are difficult to
be obtained by analytical methods in general, can be easily given by any usual solver of the
linear programming.

Organization of dissertation and outlines of each chapter are given as shown in the next
section.

1.2 Qutline

This dissertation consists of six chapters and is organized as follows.
Chapter 1: Introduction

In this chapter background and motivation of this dissertation are mentioned, and the outline
of each chapter is given respectively. Notation used in each chapter is also collected and shown,
here.

Chapter 2: A LQG Controller Design for Linear Continuous-Time Systems based
on Laguerre Series Expansion

In this chapter, a new control system design shall be proposed for linear time invariant continuous-
time systems from input-output data. This method is different from the previous works with
respect to considering continuous-time systems as a class.

How continuous signals are treated is one of crucial topics of the proposed method and to
solve this problem a series expansion representation based on the Laguerre fuction is introduced.
Although the Laguerre series expansion is widely used in the fields of identification and system
representation, the control system design using the Laguerre series expansion representation
has never studied yet. We shall first equip the system representation based on the Laguerre
series expansion, which we shall call Laguerre system. After that, for the Laguerre systems of
considered continuous-time systems, we give design methods of an optimal feedback gain and

1.2. OQutline 3
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full order observer and then show that merging them leads to a LQG dynamic controller.

Furthermore, we shall show that the LQG controller is described by expansion coefficients of
a response yielded by injecting the time response of the Laguerre basis function to the control
object as input, and give a realization method which gives the state space representation of the
obtained LQG controller. Theoretically, this method provides almost same controller with one
designed based on the state space representation.

Finally, a numerical example is given to investigate the proposed method. The method is
applied to LQG control design for a 2nd-order system and compared with the state space case.

Chapter 3: An Adaptive Learning Control Using Markov Parameters

A learning control is an effective approach which makes the system output track a desired
trajectory perfectly. If the system is completely known, there is no need for the learning
control because the input that yields the desired trajectory may be derived by the inverse
system. However, due to the inaccuracy of the parameters, such an inverse system cannot be
obtained. .

In this chapter, two simple adaptive iterative learning control method for linear time invariant
discrete time systems, which are effective in the case where system parameters are unknown
and/or there are modeling errors, are proposed. The proposed methods give the learning
control laws based on a quadratic criterion and both input update and parameter estimation
are obtained at each iteration simultaneously.

Method 1 is based on an algorithm in which a dual operator of the system is used for its
update law explicitly in the same way as [39] [40]. However, if some disturbance is injected to
the system, the convergence cannot be guaranteed. To overcome this problem, in method 2,
the disturbance is explicitly taken account of using the inverse system. In these method the
Markov parameters are used for the unknown system representation, therefore the methods can
cope with all class of linear discrete-time systems.

To illustrate the efficiency, the proposed method 2 is applied to a micro tremor isolation
vibration system practically.

Chapter 4: Time Optimal Control Design with Nonlinear Programming

This chapter studies a time optimal control system design using bounded input through ap-
plication to swing-up control of the pendulum. Time optimal control of a nonlinear system
can be formulated by Pontryagin’s Maximum Principle, which is, however, hard to compute
practically. In this chapter, a new computational approach is presented to attain a numerical
solution of the time optimal problem.

Time optimal control problems is described as minimization of the achievable time to attain
the terminal state under the bounded input amplitude, although algorithms to solve this prob-
lem are known complicated. Therefore, in this paper, it is shown how the optimal time swing-up
control is formulated as an auxiliary problem that the minimal input amplitude is searched so
that the terminal state satisfies a specification at a given time. Through the proposed approach,
time optimal control can be solved by nonlinear optimization.

Its approach is evaluated by numerical simulations of a simplified pendulum model, is checked
satisfying the necessary condition of Maximum Principle, and is experimentally verified via ap-
plication to swing-up of a rotating type pendulum from the pendant to the inverted state which
is known one of most difficult control problems, since the system is nonlinear, underactuated,
and has uncontrollable states.

1.2.  OQutline 4



CHAPTER 1. INTRODUCTION

The result of this chapter leads to some extensions as shown in next chapter. Because of the
extensions, time optimal, fuel optimal and some optimal controllers for linear time invariant
discrete-time systems can be designed by operation closed in input-output data.

Chapter 5: Time and Fuel Optimal Control Design by Linear Programming Using
Input-Output Data

In this chapter, considering a finite dimensional, linear time invariant, discrete-time system,
we show first that the time optimal control, the fuel optimal control and the mixed time-fuel
optimal control problems can be formulated as the linear programming problems.

However, the time optimal and fuel optimal control problems cannot be formulated as the
linear programming in a straightforward way. Hence, we need to consider an auxiliary problem
formulated in the linear programming for its design problem, and solve the original problem
utilizing the auxiliary problem. Especially about the time optimal control, the auxiliary prob-
lem is practically set on the analogy of such an auxiliary problem, which is proposed in the
previous chapter, that we considered how the optimal control problem for nonlinear control
systems is formulated as a nonlinear optimization problem.

Moreover, in this approach, if we were confronted with the case that a model of an object for
design isn’t given explicitly, the optimal control could be designed from some system responses
as long as the responses can be measured. As a result, we can design these optimal control
laws easily from some system responses by any usual solvers for the linear programming.

To verify the effectiveness, we apply the methods to the design problem of a positioning
control for track seek motion of a hard disk drive. On each evaluation of the time optimal,
fuel optimal and mixed time-fuel optimal, the optimal input is designed under the input and
output restrictions.

Chapter 6: Conclustions

This chapter summarizes the results and contributions of each chapters and suggests future
research directions.

1.3 Notation

The notation used for simplicity throughout each chapter is presented here briefly. Note that
other used notation is defined in each chapter suitably.

1.83. Notation 5
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Chapter 2:

INTRODUCTION

R, R, reals and nonnegative reals
L,(Ry) p-norm Lebesue space
|-l p-norm in £, space
{-}.<x sequence
¢i(t) Laguerre function
L.[-] Laguerre transform
(A, B, C) continuous-time system
(An, Bwn, Cy) block-diagonal state space representation
Dy differential of Laguerre system
z(t) continuous time signal
Xy coefficient vector of Laguerre series expansion
Xo initial condition of Laguerre system
Chapter 3:
(A, B, C,D) discrete-time system

)
z;:(subscript)
X:(capital character)
z:(small character)
Z:(tilde)

Z:(hat)

<, >

I lle

Chapter 4:

zx:(with subscrlpt)
Zo:(with subscript 0)
zs:(with subscrlpt f)
)

)

b)

Chapter 5:

(@, I, C, D)

Iy

Y

Yy :(with subscript)
£

1.3. Notation

i-th step signal sequence
Toeplitz form of signal sequence
vector form of signal sequence
error siginal

estimation of signal

inner product of vector

2-norm with weight matrix Q

continuous signal

discretized signal

initial contidion

terminal condition

variable of nonlinear optimization
linear equality constraint

linear inequality constraint
nonlinear equality constraint
nonlinear inequality constraint
lower bound and upper bound

discrete-time system

Observability matrix

Toeplitz matrix of Markov parametes
vector form of signal sequence
variable of Linear Programming



CHAPTER 2. A LQG CONTROLLER DESIGN FOR LINEAR CONTINUOUS TIME
SYSTEMS BASED ON LAGUERRE SERIES EXPANSION

Chapter 2

A LQG Controller Design for Linear
Continuous Time Systems based on
Laguerre Series Expansion

2.1 Introduction

Recently, various control system designs are considered for systems giving less prior information
about themselves. The direct adaptive method, learning control and data-based control are
taken as examples. In such a case, given information on systems is only input-output data and
the structure of its model is not given mostly.

Since the state space representation has been proposed by R. E. Kalman [44], the approach,
in which some mathematical models are derived and then control laws are designed based on
the models, has been established in the modern control theory, and a lot of works on LQG, H,
and other control designs have been studied. Therefore, we may say that the modern control
theory has been evolved by deep insight into models [58)].

In the modern control system theory the assumption that models are given is a starting-point
to discuss the design algorithm. Hence, if accurate models can be obtained, the model-based
controller promises good performance. However, this assumption causes another problem of how
to construct a model to reflect the considered system sufficiently, i.e., identification problem.
Therefore, these control system designs need two steps, identification and control law design.

If control objects are systems giving structure information of its model easily and clearly such
as mechanical systems, an relatively accurate model can be obtained by modeling and identi-
fication of its parameters. But a prior knowledge on the system cannot be given sometimes.
In this case, we should consider a class, i.e., a model set such as linear discrete time system,
bilinear system, mechanical system and etc. Then, we choose an appropriate class to which
the considered system can belong, and identify the model reflecting the system behaviour out
of the class. This procedure is called non-parametric identification. A model given by the non-
parametric identification does not have the physical sense about its structure and parameters
any longer except reflecting the input-output behaviour of systems.

If we go back to the starting-point of control system designs, “Find a input which lets the
output of a control object behave in desirable way”, a question whether models are indispensable
to design control systems is caused. In the case that information obtained from a control object
is only input-output response, to construct the model is not always needed. That is, if control
systems are designed reasonably by close operations using only input-output data, it is enough.
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Such control system designs directly using input-output data meet a claim that the modeling
and control design problems are not independent problems and they should be integrated into
a continuous operation [46].

Before, the response-based control is regarded as merely another design method of an usual
one. However, since the concept of integrated design has appeared, the response-based control
comes to be paid many attention. In recent works, supposing that a control object belongs to
the class of linear time invariant discrete-time systems, the control system has been designed
from input-output data. Skelton [45], Furuta and others [22] [42] have proposed LQG, H, and
Hy optimal controller design methods. Ikeda and others [56][57] have considered vector bases
forming the input-output data space and have given a new system representation using these
bases, and tracking and LQ controllers have been designed based on the system representation.
Chan [17][18][19] has led a output feedback control equivalent to an optimal state feedback
control, deciding controller’s parameters in a sense of least square and not separating the design
problem into the optimal regulator and observer design problems. Hjalmarsson, Gevers and
others [12][13][14] have introduced a gradient method called Iterative Feedback Tuning for the
minimum variance control problem and have applied it to the LQG controller design. Kawamura,
[58] also has proposed an iterative LQG control tuning. Sugie and others [53] have approached
a new model-free control input design method from a convex programming viewpoint. Favoreel
[54] has designed LQG controllers for linear or bilinear systems from arbitrary input-output
data utilizing the subspace identification method.

In this chapter, we also take the standpoint of the control system design based on input-
output data and propose a new data-based control design for linear time invariant continuous-
time systems. Our method is different from the above mentioned methods with respect to
considering continuous-time systems as a class.

How continuous signals are treated is one of crucial topics of the proposed method and to solve
this problem a series expansion representation based on the Laguerre function is introduced.
Although the Laguerre series expansion is widely used in the fields of identification and system
representation, control system designs using the Laguerre series expansion representation have
never been studied yet. We shall first provide a system representation based on the Laguerre
series expansion, which we shall call Laguerre system. After that, considering the Laguerre
system representation of a continuous-time system, we give design methods of an optimal
feedback gain and full order observer, and show that to integrate them leads to a LQG dynamic
controller. Furthermore, we shall show that the LQG controller is obtained from expansion
coefficients of a response yielded by injecting the time response of the Laguerre basis function
to the control object as input, and then propose a realization method which gives the state
space representation of the obtained LQG controller. Basically, our method provides almost
same controller as one based on the state space representation.

Finally, the proposed method is investigated via a numerical example. The method is applied
to a LQG control design for a 2nd-order system, and is compared with the state space case.

This chapter is organized as follows. In the next section, notation and preliminary results
on the Laguerre series expansion are summarized. In Section 3, main results of a new LQG
controller design for Laguerre systems are given. In Section 4, we shall show the designed
controller is represented with system responses and a controller realization method is given in
Section 5. Finally, we give a illustrative numerical example and some concluding remarks in
Section 6 and the last section, respectively.

2.1.  Introduction 8
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2.2 Preliminalies

Let us start by defining notation and terminology used throughout this chapter and summariz-
ing some results on the Laguerre series expansion. R and R, mean the reals and the nonnegative
reals respectively. £, (R, ) consists of real-valued vector Lebesgue measurable functions f on

1/p
R, such that ||z(¢)]|, = [fm |f(t)|p] < 0o. The notation |||, means p-norm in £, space.

So long as there is no notice especially, we use £; and ||-|| for the shorthand of Ly (R;) and

II"lly, respectively. Furthermore, let { fn}n>i denote a sequence.
We shall consider only a continuous-time, finite dimensional, linear time invariant system

#(t) = Az(t) + Bu(t) (2.1)
y(t) = Cz(t)

where 2(t) € R™! is the state, u(t) € R™! is the input, y(t) € R"! is the output and
(A, B, C) have appropriate dimension respectively. It is assumed that (A4, B) is controllable
and (C, A) is observable.

In our approach, a dynamical controller can be obtained by collective matrix and vector
operations of data which are gotten observing responses when test signals are injected to the
system. The practical operations are made by computers, therefore they have the restriction
that computer’s memory is finite. That is, the continuous-time signals cannot be handled as
they are as long as they aren’t changed into some discrete form. Here, the laguerre function,
which is widely used in the fields of identification, is introduced. We consider the laguerre
function as a basis of the £, space and expand continuous signals into expansion coefficients of
the basis. The reason why the laguerre function is introduced is described afterward.

Laguerre functions are obtained by normalization and orthogonalization of the series

{(pt)i e‘Pt}.>0. The generalized form of the sequence {¢i(t)}.5¢ of Laguerre functions is given

as following polynomials.

0= VI Y (1) () gttt (2.3

As (2.3) shows, the Laguerre function has a parameter p. The Laguerre function is transformed
into such a rational polynomial in s domain,

pi(s) = V2P (p - S)i (2.4)

_p-f-s p+s

by the Laplace transform. It can be easily seen that the Laguerre function consists of a first-
order lowpass filter and n all-pass functions, which have poles at —p. Therefore we can also
consider that the parameter p determines the mode of time response of the Laguerre function.

Expansion coefficients of Laguerre functions are obtained by the inner product operation.
Let’s consider that a continuous-time signal v(t) € R7*! is expanded to expansion coefficients
{vi}iso- vi € R7*! is calculated as follows.

s = / o), (1) dt (2.5)

2.2.  Preliminalies 9
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Proposition 1 [11] The Laguerre functions {¢n(t)}nzo form an orthonormal basis of Lo. Fur-
thermore, the system of the laguerre functions is complete.

This proposition shows some useful fact about the system of Laguerre functions, which are led
from its complete orthonomal property.

Proposition 2 Let {6n(t)},,50 be the complete orthonormal basis of La, which consists of the
Laguerre functions, and let Tvi}igo be obtained by the inner product (2.5). Then, for any
v(t) € Ly following equations hold.

1.

v(t) = ka¢k (t) (2.6)
k=0

O = fof*- (2.7)
k=0

The expansion coefficients {vi};>o are given to approximate the L5 space in a sense of 2-norm
exceedingly. An element of the £, space is represented by the infinite linear combination of the
Laguerre basis and coefficients, and can be approximated with an arbitrary accuracy. (2.7) is
called Parseval’s identity which shows a relation between 2-norm in £y space and the expansion
coefficients.

These properties are useful for application to the LQG control design problem of linear
continuous-time systems. The LQG problem is defined as minimization of a cost function in
the form of 2-norm, so the cost function can be represented with the expansion coefficients
of the Laguerre series by the Parseval’s identity. If the continuous signals of systems and the
cost function are approximated by the Laguerre series expansion, it is possible that the LQG
problem is formulated using only the coefficients. It is the just reason why the Laguerre function
is introduced.

Considering the approximation of a continuous signal v(t) with N terms of the Laguerre
series:

N-1

v(t) = ) vrdu(t) (2.8)

k=0

, we shall let Viy denote a vector form of the coefficients {vr}, and define £, [], which we shall
call Laguerre transform, as an operation that Viv is formed out of v(t) as follows.

L [v(t)] =V (2.9)
Vv :i=[of of ... vh_, ]T (2.10)
This operation has next properties.

Proposition 3 Let £, [-] be the operation that expansion coefficients of the Laguerre basis are
formed out of a continuous signal. Then, the operation holds the linearity.
1.

L, [ov(t)] = al, [v(t)] (2.11)

2.2.  Preliminalies 10
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2.
Lo [v(t) +w(t)] = Lo [v(t)] + Lo [w(?)] (2.12)

Proof. It is obvious that these equations are satisfied from the fact that the coefficients are

calculated by the inner product (2.5). O
In next section, we shall consider how the continuous-time systems are represented with
the Laguerre series expansion and how the LQG problem is formulated and solved under this

expression.

2.3 Main Results

2.3.1 Representation of systems with the Laguerre series expansion

First we shall describe a representation of the system (2.1)-(2.2) using the expansion coefficients
of the Laguerre series. Before dealing with (2.1)-(2.2), we consider the Laguerre transform of
the initial state response of the following autonomous system with an initial condition z(0).

Lemma 1 Consider an autonomous system (2.13) with an initial condition z(0).
T = Az, with z(0) (2.13)

If the initial state response of (2.13) with the initial condition z(0) is transformed into expansion
coefficients by the Laguerre transform, the coefficients can be represented as follows:

ze = /2p (pI — A)~* (pI + A)* 2(0), k>0 (2.14)
where p is the parameter of the Laguerre function and A is the system matriz of (2.13).

Proof. We consider how the initial state response of (2.13) with z(0),
z(t) = e*z(0) (2.15)

is expanded into the Laguerre series. From the definition, we can obtain the coefficients by
calculating each inner product:

Ty = /O " e*2(0) - ¢r(t)dt (2.16)

In practice, the result of the above integration can be constructed from
k= /0 " eMz(0) - the~Pdt = k! (pI — A)*HD 2(0) (2.17)
, because ¢ (t) consists of tfe~7. ( See Details 2.8.1 ). We shall use this relation and prove

that the solution of (2.16) is in the form of (2.14) with mathematical induction. Tn & — 0 case,
the inner product,

To=/2p co = /2p(pI — A~ z(0) (2.18)

2.83. Main Results 11
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satisfies (2.14). Next, it is supposed that

) ” N ki K
Ty = /0 eAtQ;(O) . ¢k(t)dt = /0 eAt:v(O) {\/@Z (_1) —i (2}?)1 mtze_p } dt

!

k
= VoY (@) e ol - 470 (219)

is equivalent to /2p (pI — A)~*Y (pI 4 A)* z(0).
Multiplying (2.19) by (pI — A)™" (pI + A) from the left-hand side and using the following
relations:

(pI — A)7 (pI + A) = —1 +2p(pI — A)™ (2.20)
(pI = A)™ (pl + A) = (pI + A) (pI — A)™" (2:21)
, then we get
o . (k+1)!

(I = AT I+ Az = Va3 () 0) s (0 - )70 2(0)(222)

( See Details 2.8.2 ). Because (2.22) is equivalent to V2p (pI — A)~*+? (pI + A1 2(0), ie.,
(2.14) holds in the k + 1 case, the proof is completed. O
Furthermore, using the expansion ( see Details 2.8.3 )

i1
(PL = A (pI +A) =" (1) 2p(pl — A7 (I + A+ (“1)T  (2.23)
k=0
, we shall show an algebraic equation which the expansion coefficients should satisfy.
Theorem 1 Consider an autonomous system (2.13) with an initial condition x(0).
z= Az, with z(0)

If the initial state response of (2.13) with the initial condition x(0) is represented with the
Laguerre series ezpansion, the expansion coefficients obtained by the Laguerre transform have
to satisfy the following algebraic equation:

DyXn — Xo = AnXn (2.24)
where
s ' |
—2pl pl
Dy = 2pl —2pl pl
| (DY opr (—1)MPopr - —2pl I |
[ Zo I
I I
Xn = : , Xo=1+/2p : z(0)
i IN-1 (—1)N_1 I
Ay = diag(A, 4, ---, A) (2.25)
N

2.3. Main Results 12
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Proof. Apply (2.23) to the result of Lemma 1:

zi = /2p (pI — A)™' - (pI — A)™* (pI + A)* 2(0)
k

-1

2= V2p(pl = A7 D (=) 2p(pl — AV (ol + A)' + (~1)* 1| 2(0)

i=0
k-1

(pI = A) e = (=1)* " 2pay + /2p (—1)* Iz(0) (2.26)
i=0

Stacking up (2.26) from £ =1 to N — 1 leads to its vector form (2.24). O

An algebraic equation of the continuous-time system (2.1)-(2.2), which the Laguerre series
expansion coefficients of the system should satisfy, is obtained by the result of Theorem 1 and
the linearity of Laguerre transform.

Corollary 1 Consider a continuous-time, finite dimensional, linear time invariant system

(2.1)-(2.2):

#(t) = Az(t) + Bu(t)
y(t) =Cz(t)
If we shall transform signals z(t), u(t) and y(t) into ezpansion coefficients by the Laguerre

transform, then the coefficients of each signal have to satisfy the following algebraic equation
which is constructed by these coefficients, the system matriz and an initial state z(0):

DyXn — Xo = AnXn + ByUy (2.27)
YN = CNXN (228)

where By and Cy are defined similarly to Ay, and Yy and Uy are defined similarly to Xy .

We shall call the representation (2.27)-(2.28) of the continuous-system (2.1)-(2.2) Laguerre
System throughout the chapter.

2.3.2 LQ problem

We have already had the Laguerre system which the coefficients obtained by expanding the
continuous system to the Laguerre series should satisfy. Additionally we consider here how the
standard LQ problem for the continuous system is formulated and solved with the Laguerre
series expansion. First let us start by considering the Parsevel identity about the cost function
of the LQ problem. :

The LQ problem is to find the control input u(t) minimizing a quadratic cost function

J= / ” (zT(1)Qz(t) + uT () Ru(t)) dt, @R>0, R>0 (2.29)

where () is a semi-positive definite matrix and R is a positive definite matrix under the con-
straint £(t) = Az(t) + Bu(t). (2.29) can be rewritten in the norm form:

T = llz®)llg + )|l (2.30)

2.3. Main Results 13
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, and it can be represented by the expansion coefficients of x(t) and u(t) as

J=) (z;Qzk + ul Ru) (2.31)
k=0

because of the Parseval identity. If (2.31) can be approximated using finite number of expansion
coefficients, it is possible to state the LQ problem by the Laguerre expansion coefficients as
follows:

LQ problem: Find the control input Uy minimizing the cost function
J=XQnXy +ULRyUy (2.32)
, where Qn and Uy are defined similarly to Ay, under the constraint (2.27):
DnXNn — Xo = AnXn + BaUy

The optimal control input Uy and the minimum value of the cost function are given by the
next theorem.

Theorem 2 The optimal control Uy minizing the cost function (2.32) under the constraint
(2.27) is given as

Uy = — (Ry + BRALQnANBy) ™ BLALQAX, (2.33)
where Ay = (Dn — AN)_I, and the mininum value of the cost function is given as
minJ = XT P, X, (2.34)
Un
Py = ARQnAn — ALQnAvBy (Ry + BRASQnAnBy) ' BTATQnAy  (2.35)
Proof. From (2.27) Xy is
Xn =(Dnv — An)"' Xo+ (D — Ax) "' ByUy = Ay Xy + Ax ByUx (2.36)
, and substituting (2.36) into the cost function (2.32) leads to the modified:

S [ X% '] ARQnAy ALQnANBy Xo
| Uv | | BRALQnAn Ry +BLALQNANBy | | Uy

= (]17\/j + XgA%QNANBN (RN +B]€A£QNANBN)*1:| (RN -|- qu\;A%QNANBN)
x [Un+ (Rw + BYARQnANBy) ™ BM%QNANXO] + X PLX, (2.37)
PL = A%QNAN - AJT\}QNANBN (RN —+ BITVAEQNANBN)—I BJI\;A%QNAN

Therefore, from (2.37) the optimal input is given as
Un = — (Ry + BRARQnAnBy) ™' BS ALQnNAn X,
and the minimum value is XT P X,. O

2.3. Main Results 14
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Note that, from (2.33), the optimal control is given as not the feedback law but the feedfor-
ward law using the initial condition Xq. If we consider the case that some disturbance signals
are injected to the system, there is difference between the feedback and the feedforward, that is,
the former type control input reflects the influence of the disturbance but the latter type does
not reflect. However, owing to the Parseval identity, the relation with respect to the minimum

of the cost function

u(t) UN N—oo

o<
min/ (z(6)"Qz(t) + w(t)" Ru(t)) dt = min lim (XNQnXy + UGRNUN)  (2.38)
0
is held, and the feedback type control law using the Laguerre series expansion coefficients is
given in the next corollary.

Corollary 2 Let P be a solution of the riccati equation:
ATP+PA+Q—-RBR'BTP=0 (2.39)

, and the optimal feedback gain F of (2.1) is given as F = —R-'BT P, Then, because of the
Parseval identity P is equivalent to

T

P=I}yP Iy, In=[1 -1 .. (=1)"'I] (2.40)

Furthermore, F can be represented as
F=-R'BTILP Iy (2.41)
Proof. The statement is obvious from (2.38). a

2.3.3 Full order observer

In the case that the state z(t) cannot be measured directly from the output for the system
(2.1)-(2.2), the optimal state feedback control law cannot be applied in practice, so we estimate
the state utilizing the observer generally. The final aim of this chapter is to design a dynamical
output feedback controller by integrating the state feedback law and observer represented in
the form of the Laguerre expansion coefficients, and the state feedback law has been obtained.
Then, we shall consider how a full order observer is denoted as a Laguerre system.

First the full order observer is given as

z(t) = Ad(t) + Bu(t) + K [y(t) — C3(t)] (2.42)
For a technical reason, we shall divide (2.42) into two equations as follows:

z1(t) = AZ1(t) + Bu(t)
Zo(t) = Ada(t) + K [y(t) — Ci(t)]

, and let these equations be rewritten as the Laguerre systems:

DnXyy — Xpo = AnXn1 + ByUy
DnXno — Xy = AnXpno + Ky [YN — CNXN]

2.8. Main Results 15
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Throughout the c~hapter~, the initial state of the observer is assumed to be zero, Z(0) = 0, i.e.,
we assume that Xy = X9 = X0 = O. Then, the Laguerre system of the observer (2.42) is

denoted as

X = X1+ Xao (2.43)
= ANByUy — [Dn — (Ay — KyCn)] ™' KnCyAnByUn + [Dy — (Ay — KnCy)] ™ Ky Y

In addition, we show that [Dy — (Ay — KxCy)]™' Ky in (2.43) can be obtained by considering
the LQ problem for a dual system of (2.1)-(2.2).
Using the dual system of (2.1)-(2.2)

i(t) = ATz (t) + CTa(t) (2.44)
4(t) = BT#(t) (2.45)

, the LQ problem for this system is formulated in the next lemma.
Lemma 2 For the Laguerre system of the dual system (2.44) '
DnXy — Xo = AL Xy + CLUy (2.46)
, the optimal input Uy which minimizes the quadratic cost function
J=XLOnXy + ULRNUy (2.47)
18 given as
Un=- (RN + C’NANQNfi%C’;)_I CNANQNAEXOa Av= (DN - ATJ\}) -~ (2.48)
; and the minimum value of the cost function is given as

minJ = XT P, X, (2.49)
Un

- - o~ -~ o~ ~ “ o~ o~ -1 ~ o~ o~
P = ANQnAY — ANQnALCE (RN + CNANQNAgcﬁ) CnANQnAL
Proof. This statement is led by replacing the coefficients according to Ay — A N, By — C’f,,

Qn — Qn and Ry — ng in Theorem 2. O
We make Uy = —KTX denote the optimal feedback law of the dual system and substitute

it into DNXN - Xg = AJI\}XN - CJT\;K%XN, then
Uy = —Ky [Dy — (A} - CRKD)] 7' X, (2.50)
is obtained. Comparing (2.50) with (2.48)
- ~ . x ~1 . x
K [Dy = (A% = CRER)) ™" = (B + CnAnONARCE) ™ OnAnGxAL  (251)

is held. Furthermore, because the dual system has the special structure with respect to /Lv,
there is the relation between the original system and the dual system as follows. ( See appendix
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2.8.4).

[ 6K
0K 61K

[Dn ~ (An — KnCn)] "' Ky = 2; 1 -

| ONK GyaK o 8K

[ KT6T
_ KT6T  KT§T
Ky [Dy—(Ah—cRrp))™=| "% &% (2.52)

| KT8, KT6T | ... KToT

Therefore, we calculate (2.48) and rearrange the result according to (2.52).
So [Dy — (Ay — K NCN)]_l Kx can be represented by using the expansion coefficients of the
Laguerre series.

Theorem 3 The full order observer in the form of the Lagueﬂ:e system 1s constructed as fol-
lows:

X = ANByUn — [Dy — (Ay — KnCn)] ™ KnCyAnBaUn + [Dy — (An — KExCn)] ! KnYn

where [Dy — (Ay — KNCN)]—IKN can be obtained by the following procedure. For the dual
system

DnXy — Xo = AL Xy + CLUy
, we shall find the optimal feedback law which minimize the cost function
J=XLQnXn + UL RNy
Then, we get
- . -~ o~ -1 .
K% [Dy — (AL - CTKE)] ™ = (RN + CNANQNAgc*}G) CnAnONAL,

Finally, it is rearranged according to (2. 52).

2.3.4 Dynamic output feedback controller

From Theorem 2, Corollary 2 and Theorem 3, integrating the state feedback law and the full
order observer leads to design a dynamic output feedback controller which is represented by
the expansion coefficients of the Laguerre series.

Theorem 4 For the system (2.1)-(2.2), an optimal dynamic output feedback controller is given
as follows.

Un = FNANByUy — Fn[Dy — (Axy — KnCy)) ™ KnCnANByUy
+ Fy[Dy — (Ay — KnCy) 7 KnYy (2.53)
F=—-RBT[T [AﬁQNAN ~ ARQnANBy (Rv + BEALQnAynBy) ™ BﬁA,TvQNAN}m)

where Fy is defined similarly to Ay .
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Remark 1 The proposed dynamic controller is formed by the combination of the optimal state
feedback law and the full order observer. This controller is the same as a LQG controller formed
by the combination of an optimal state feedback law and a Kalman filter. The optimal state
feedback law is equal to one designed with the same weight matrices Q@ and R to minimize the

following cost function:

ty—o0

J= lim & {/tf (J;TQ:L' + uTRu) dt} (2.55)
0

, where £ {-} means a expectation operator, for a statistical system

T=Ax+ Bu+w

Y Crto (2.56)

. Furthermore, the full order observer comes to be same with the Kalman filter if disturbances
w, v and the initial state xo satisfy the following statistical condition:

E{ut)} =0, £Q®}=0 (2.57)
5{[ ‘;’((f)) } [ wT(r) oT(r) }} _ [ g gJa(t—T) (2.58)
£{z(0)} =0 (2.59)

Therefore, we can say that the proposed dynamical controller is a LQG controller in a sense
that it coincides with the LQG controller designed under the conditions (2.57)-(2.59) for the
system (2.56).

2.4 LQG controller representation by system responses

As shown in the previous section, the LQG dynamic output feedback controller has been rep-
resented with the expansion coefficients of the Laguerre series. Furthermore we shall show the
controller can be represented with some system responses, here. This is one of the main pur-
poses in this chapter. First, we shall consider these system responses and their representation,
and next, show the optimal feedback gain (2.33) and the observer (2.43) are represented by
them. Finally combining these results yields the Laguerre series representation of the LQG
controller.

2.4.1 System response to Laguerre input

An input-output relation of the Laguerre system (2.27)-(2.28) with the zero initial state z(0) =0
is described as
h | up
- 12 { 1 Uy
Yy =CnANByUy = | | . : (2.60)

I In_1 - 4 UN_1
C(pl - A)~' B, i=1

b= { 2p-C (pl + A) % (pl — A)7T'B, i>1 (2:61)
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( See Details 2.8.5 ).
Let us consider the following system instead of (2.1)-(2.2), here.
&(t) = Az(t) + Fw(t) + Bu(t)
y(t) = Cx(t) (2.62)
The Laguerre system of (2.62) is given as
DnXy — Xo = ANXN + ENWy + ByUn
Yy = CnXy (2.63)
(2.63) has two kinds of input, Wy and Uy. We shall consider two responses from Wy to Yy and

from Uy to Yy. For each path, its input-output relation with the zero initial state is described
similarly to (2.60)-(2.61) as follows.

( v | [ 9 Wo
w
yl _ 9.2 a1 . | .1 (2.64)
| Yn-1 ] | N gN-1 - Q1 WN-1
( Yo ] [ hi Uo
h h U
S ! (2.65)
| Yn-1 | | Av-1 hn—2 - Iy UN-1
where
o Cl-ATE, i=1
BV op-CI+ A 2(pI - A7 E, i>1

b — ClI-4)7'B,  i=1
Tl 2 ClI+ATPI-ATB, i>1
Since (2.64)-(2.65) have the same structures with linear discrete time systems, a special re-

sponse such as the Markov parameters of linear discrete time systems can be considered.
Namely it indicates a response to unit pulse input. For example the response from u to v,

[AT, BT, -, hmT, is given by injecting the input sequence
I i=0
ui_{ 5 g (2.66)
into the Laguerre system (2.63) and the response from w to v, [ng, ar, ... g}\}]T, is given in

the same way.

The unit pulse input (2.66) can be generated practically by injecting the continuous sig-
nal of the Laguerre basis ¢o(¢) in (2.3) to the original system (2.1)-(2.2) because the La-
guerre basis is orthogonal to other bases, therefore the expansion coefficient of ¢i(t) is given as
o, ---,0,1, 0, -, O]T where [ is at the i-th block row. Owing to the toeplitz structure
of (2.64)-(2.65), the special response can be obtained by not only {ur:wo=1, wp=0 (k#0)}
but also {ux :w; =1, ux =0 (k#4)}. However, note that the Laguerre system case is dif-
ferent from the linear discrete time system case, that is, the input signal ¢;(t) injected to the
original system in order to generate the unit pulse input {ug : u; = I, u, = O (k #4)} is dif-
ferent from other signals ¢;(¢) (i # j) although the unit pulse input is only delayed in discrete
time system case.
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2.4.2 Optimal feedback gain case

Let us consider the LQ problem again to find a control input u(¢) minimizing a cost function:

J= / (¥" )y (t) + u" (t) Ru(t)) dt
0
= YgYN + U;RNUN = X}GC%CNXN + U;RNUN (2.67)

for the Laguerre system (2.63).
Substituting Qn = C%Cx in Corollary 2 leads to the optimal control:

Uy = —R_IBTIN [A%C]CI\;CNAN — AgC%CNANBN
x (Ry + BLAGCTCn Ay By) ™ BJTVATJQCJECNAN] In (2.68)

It can be easily seen that (2.68) consists of R, CyAnBy, BTINALCy and CyAnIy. R is
assumed to be given and Cy Ay By is obtained by the unit pulse response (2.65) of the Laguerre
system. Similarly BT Iy AL Cy can be also represented with (2.65). ( See Details 2.8.6 ). But
CnApIy alone cannot be represented with (2.64)-(2.65), therefore we shall show that it can be
represented with the responses combining it with coefficients of the observer, at later.

2.4.3 Full order observer case

Similarly to (2.43), the observer for the Laguerre system (2.63) is given such as

X = ANByUy — [Dy — (A — KnCy)] ™ KnCy Ay ByUy
—+ [DN — (AN — KNCN)]_l KnYn (269)

In (2.69), it is obvious that CnAnBy can be represented with (2.65) or AnBy cannot, and it
is not obvious with respect to [Dy — (Ay — K NCN)]_I Ky. Here, the part of observer gain,
[Dv — (Ay — K NC'N)]_1 K, is designed again with considering an optimal control of a dual
system:

DnXy ~ Xo = AL Xy + CLUN (2.70)
Zn = EY Xn
The cost function is given as
J=252y = XFENEL Xy + UL Ry Un (2.71)

Substituting Qv = ExET in Lemma 2 yields
Ky [Dn — (A% - CEER)]™
. N N -1 .
- (RN + CNANENEJT,A%C}’\;) CnANENET AT (2.72)

(2.72) cosists of Ry, CnAnExn and E}Gﬁﬁ Ry is assumed to be given and CyAnEy are
represented with (2.64), but EX A% alone cannot. ( See Details 2.8.7 ). After all, AyBy in
(2.69) and EL A% in (2.72) need to be combined with COnAnIy of the optimal feedback gain
to describe the whole controller with (2.64)-(2.65).
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2.4.4 Representation of dynamic controller with the unit pulse re-
sponse

To represent the whole controller using (2.64)-(2.65), we shall integrate the optimal feedback
gain and the full order observer considered previously. Especially the parts which cannot be
represented alone with the unit pulse response are focused on.

From Theorem 4, the dynamic controller is described briefly as

Uy = diag(F, F, ---, F)X
N————
N
Then, we shall extract the previous mentioned parts from this controller and show them:
[ CnAnIn l
CnANI _
NN AnBy (2.73)
| CNANIN i
[ CNANIN ]
CNANIN _
[Dn — (An — KnCN)) 7 Ky (2.74)
i CyAnIy _f

As a matter of fact, (2.73)-(2.74) can be described with (2.64)-(2.65) ( See Details 2.8.8 ), and
this fact leads to the following theorem.

Theorem 5 The dynamic output feedback controller (2. 53)-(2.54) can be represented with only
the unit pulse response (2.64)-(2.65) and weight matrices R > 0, R > 0 as follows.

Un = [I—Fy+KnHy] " KnYy (2.75)
Fem Femn
Fn = : , Kn= : . Kqa (2.76)
Feyn -+ Fom FoAn -+ Fon
Fo=-R'[A - %] [I — Ay (Rw + BLHY) ™ H{,] (2.77)
3 _ -1
KL = [RN + GNcﬁ] G (2.78)
. 2 Q1 o 9N
Hy = o , Gn= IR (2.79)
| h/N PP hl gl
hy [ hq ]
= ; (2.80)
hn | Zfiﬂ*l)i_l’m—iﬂ ]
hivi+hs | i i
B o +1.+ o Nor 9+1'+9
Y = —_211 : sy W= __2p : (2'81)
hiyn + hipn-1 | gi+N + gi+N-1

Remark 2 Note that the representation of the LQG dynamic controller (2.75 ) has the toeplitz
structure because Fn, Ky and Hy have the same structure also.
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2.5 Realization of a continuous time dynamic controller

In previous section, we have shown that the LQG dynamical controller is represented with the

expansion coefficients of the responses generated by injecting the Laguerre basis signal ¢;(t)

to the system (2.62). As a result, the LQG controller is given such as (2.75)-(2.81) which are

the relations that expansion coefficients of the optimal input and output should satisfy. In this

section, we consider how this relation is realized as the continuous time dynamical system.
From Remark 2, (2.75) has the toeplitz structure, which is shown as

@,
®,
Oy - By P
On the other hand, let (4., B., C.) denote a LQG dynamic controller realized as a continuous
system from (2.75), and then its Laguerre system is given as

Uv =Cen (Dy — Acn) BonYn (2.83)
Comparing (2.82) and (2.83) yields the following relation.
C.(I — A.)"' B, i=1

= { 20-Ce(pl + Ae)  (pI — A) ™ B,, i>1 (2.84)
In (2.84) we shall define
Ac = (pI + Ac) (p[ - Ac)—l ) Bc =V 2p (PI - Ac)_l B,
Ce=v2Cc(pI —A)™',  De=C.(pl - A) ' B, (2.85)
and then modifying (2.85) with respect to (4., B,, C.) leads to
- - 1 _
Ac:p‘ AC+I IAC—I, Bcz—p]_.Ac Bc
( ) ( ) \/%( )
1
Ce=—=C.(pI — A, 2.86
a5l ) (2.86)
(2.84) is rewritten as
D, i=1
i = { C.A'B, i>1 (2.87)

(/Ic, B, C,, Dc) can be realized from ®; according to Ho and Kalman’s minimum realization
method, for example. .
Therefore we shall propose a realization algorithm for the continuous time dynamic controller.

Algorithm

Step 1: Design the LQG dynamic controller according to (2.75)-(2.81).

Step 2: Extract the controller parameters ®; from the result of Step 1.

Step 3: Realize (AC, B, C., Dc) from ®; according to Ho and Kalman’'s minimum
realization method.

Step 4: Transform the result of Step 3 into the state space representation of the con-
tinuous time dynamic controller, (A., B, ,C.)
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2.6 Numerical examples

To illustrate efficiency of the proposed method, we shall give numerical examples. For the
comparison to the traditional LQG control design based on the state space representation, the
following 2nd order system is considered.

j::[[—foo] —110}1”{300 g]“’*[(l)]“ (2.88)
y=[10

Moreover, the weight matrix of input R and R is set as R = [0.01] and Q = I, respectively.
This case is equivalent to choosing Q = diag(1, 0), R = [0.01] as weight matrices for the
optimal feedback gain and Q = diag(900, 9), R=1 as weight matrices for the observer gain.
With these weights, the optimal feedback gain F' and observer gain K were calculated using

the model (2.88) as

F=[-4.9876 x 107" —4.9752 x 10~ ] (2.89)
K =[ -27848 x 10" 6.224 x 107" ]

where the solution of the Riccati equation corresponding to each gain is given as

+00 -01
9.9876 x 10 4.9876 x 10 J (2.90)

Fr= [ 4.9876 x 107°1  4.9752 x 10~

po — | 27848 x10%%  —6.2240 x 10+"!
K7 —6.2240 x 10791 4.2016 x +02

Basically, the optimal controller for the Laguerre system should be equal to the one designed
based on the state space representation in the sense of the limit. However, since the controller
must be approximated with finite one, designers should choose parameters, i.e. the pole of the
Laguerre function, p and the length of the expansion coefficient, N appropriately. This chapter
cannot suggest the optimal choice in presence stage. This problem is our future work. Here,
comparing with the state space case, results with p =5, N = 5 and p =295, N =12 are shown
in Figure 2.1-2.6.

From Figures, it can be seen that the proposed method gives the almost same LQG dynamic
controller with one designed based on the state space representation as long as NV is enough large.
The required N might depend on the choice of p, that is, it is possible that the good choice of p
provides less necessity of long length N. Of course, since continuous signals are approximated
with the continuous signal bases in the proposed method, we will not need the large data
relatively to represent original signals even if we compare other system representations using
data set with our method. This is one of our method’s merits.

2.6. Numerical examples 23



CHAPTER 2.

A LQG CONTROLLER DESIGN FOR LINEAR CONTINUOUS TIME
SYSTEMS BASED ON LAGUERRE SERIES EXPANSION

Traditional vs. Laguerre Method (input, N=5)
2 T T T
A\ Org.-input -~
| o By}
15 7"1‘ N=5-input 1
[:1
i l‘
1 i 1
|
- 0.5 \‘ I
3 !
=3 {‘ VA
A T
05} | /7 -
-1} |\\. .\\““7/"" .
/
-1.5 \ ' : :
0] 0.5 1 1.5 2
Time [sec]
Figure 2.1: time response of optimal input (p = 5, N = 5)
Traditional vs. Laguerre Method (input, N=12)
2 T T ‘I
f Org.-input -
15 1;\\ N=12-input i
R
|
i L li .
|
= 05} | ]
2 .
= o} | S T~
/
-0.5 + \,‘ // -
\/
-1 \/ / 4
s
-1.5 ' . -
0 0.5 1 1.5 2
Time [sec]

Figure 2.2: time response of optimal input (p =5, N = 12)
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Traditional vs. Laguerre Method (Output, N=5)

2 T T T
/NG Org.-output -

N ] __N=b-output -

Output

-12 : - -
0 0.5 1 1.5 2

Time [sec]

Figure 2.3: time response of output to optimal input (p =5, N =5)

Traditional vs. Laguerre Method (Output, N=12)
2 T '

TN Org.-output
/ ™ - Nz=12-output

Output

10 V i

-12 - - .
0 0.5 1 1.5 2

Time [sec]

Figure 2.4: time response of output to optimal input (p=5 N=12)
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Traditional vs. Laguerre Method (state, N=5)

60 . ; .
Org.-state(1) -
50 | % Org.-state(2) -
N=5-state(1) -
40 . N=5-state(2) - - - -
30 ' b -
o 20} ]
3
@ 10 | i
0] + T
N
-10 } -
-20 .
-30 . - !
0 0.5 1 1.5 2
Time [sec]
Figure 2.5: time response of state to optimal input (p=>5, N=5)
Traditional vs. Laguerre Method (state, N=12)
60 T T T
Org.-state(1) -
0 Org.-state(2) -
S0 T /A N=12-state(1) - i}
N=12-state(2) - :
40 /7 -
o 30 |
s
U) 20 5 1 i
0 / ——i";_—\\\*~-—-ﬂ——- e,
-10 e : .
0 0.5 1 1.5 2

Time [sec]

Figure 2.6: time response of state to optimal input (p=15 N=12)
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2.7 Concluding Remarks

This chapter has proposed a new design method of a LQG dynamic controller for linear
continuous-time systems by using input-output data set. In this method, the Laguerre basis is
introduced in order to discretize continuous signals and to extend the system to coefficients of
the Laguerre series expansion. Then a new system representation called “Laguerre system” has
been proposed. Using this Laguerre system representation, the design methods of the optimal
state feedback and full order observer have been given, and then integrating them has led to
a LQG controller consisting of the expansion coefficients. Furthermore, considering the repre-
sentation of the designed controller with input-output responses, it has been shown that the
controller can be described by the expansion coefficients of responses generated by injecting the
time response of the Laguerre basis to the original system. Finally this chapter has provided
a realization method of the continuous-time state space model of the designed LQG controller
in the form of the Laguerre expansion coefficients. According to the proposed algorithm, the
continuous-time LQG controller can be designed from only system responses. To verify the
proposed method, it has been applied to a 2nd order system and has been compared with the
controller designed based on the state space representation. Theoretically the proposed method
shall give an almost same controller to the state-space-based controller. Simulation results have
shown that this statement holds as long as the coefficient’s length is long enough.

2.8 Details
2.8.1 Proof of (2.17)

In £ =1 case,
o
co = / eMag - eTP'dt = (pI — A) 'z (2.91)
0

We shall partially differentiate (2.91) with respect to p,

8k

550 = / e’zo - (—t)* ePdt = (—1)" k! (pI — A) " 2y (2.92)
D 0

2.8.2 Proof of (2.20)-(2.22)
Equation (2.20):

(T = A)™ (pI + A) = (pI — A)™ [~ (pI — A) +2pI] = ~I + 2p (p — A)"! (2.93)
Equation (2.21):

(pI + A) (pI — A) = p’I — A% = (pI — A) (pI + A)
(pI = A) (pI + A) = (pI + A) (pI — 4)~ (2.94)
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Equation (2.22):
(pI = A)7 (I + A)

VY (1) o) g 0T - A7
Y O s T - AT
- VBY - (k’“ T = 4

+\/_§ J k+1 1(2 )’i (k+1)' ( I—A —(i+1)
Pl P ateri—g =4 2

= VIR T = )~ VoY (1 ) g (o7 — A)

i=1

k=i i (k+1)! _ Ay
v Zk—l—l @) T P AT
+ / p 2p k-l-l (p]- _ A) (k+2) T

= V2p (-1)**" (p1 — 4)™

+\/%Z ( k N z'—'k:+1) (_1)k+l—i (2p)ii!(%'i%(pl_j4)—(i+l)xo

i+ 1
+\/_— 2p k+1 p]— A) k‘+2

= \/_Z k+1 —i )z . (/(gk_:_llli) (pl — A)" (i+1) .

2.8.3 Proof of (2.23)
From (2.93) and (2.94)
(p] — A)™ (pI + A)' = =4 (b1 +4) (o] = A) D pr+ 4y

(2.95)

~(pI = A" (oI + A) 7 + 2p (pI — A)~0V (pI + A)1(2.96)

and repeating the expansion (2.96), finally {2.23) can be obtained.

2.8.4 Structure of A matrix in dual system

From (2.24)-(2.25)

pl — A
—2pl I—A

Dy — Ay — ::0 p

(;l)N_IZpI —2pI pl— A

2.8. Details
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As long as A has no pole at p, the inverse matrix of (2.97) exists and has the toeplitz structure
because of the same toeplitz structure of Dy — An. Let us represent the inverse matrix as

aj
(Dy—-Ay) =] (2.98)
an oy o
On the other hand, for the dual Laguerre system
pl — AT
Dy — A% = —%pl pl- A1 | (2.99)
(—1)N'—1 opl —2;;1 pl — AT
is transposed to
pl — A —2pl (—l)N_1 2pl
(Dy — AL = - A _25pI (2.100)
pl— A
From (2.98) the inverse matrix of (2.100) is given as
a1 Gz -+ Qy
(Dy —A%) T = (2.101)
a;  on
ajp
Then, it shows the special structure of the dual system. a

2.8.5 Components of (Dy — Ay) ™"

We shall give practical components of (2.98). From Theorem 1 the autonomous Laguerre system

must satisfy

Xnv=(Dy— AN)—IXO

Zo o I
I (87) (07} -1
—vop| : 2(0) (2.102)
TN_1 ay - az o (-1)N-11
2= V2 (pl = A" (pI + 4)* 2(0)
From the structure of (éi102), the next relation is held.
zo = /2p a1z(0) = \/2p (pI — A)~" 2(0)
i = /2p aip12(0) — zim1 = /2p (pI — A~ (pI + A) 2(0) (2.103)
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Using and substituting (pI + A) = [2pI — (pI — A)], (2.103) is arranged as
z;i = \/2p2p (pI — A" (pI + A)? z(0) — 241 (2.104)
Comparing (2.103) and (2.104) results in

(pI — A)™* i=1

4= { 2p(pl + A 2 (pI — A)™" i>1 (2.105)
O

2.8.6 Representation of the optimal feedback gain with the unit
pulse response

From (2.64),
hy
- hy Ry
CnAnBy = | . ) (2.106)
hy hy Ry
and from (2.102)
g I 1
- oy -1 o) —a
Aiy=| " 7 : - L (2.107)
ay - o (-1 I i () avoin
Then, CyAnInB is obtained as
hy
- ha — hy
CyAnIyB = | (2.108)

3L (F1) T i
|

2.8.7 Representation of the full order observer with the unit pulse
response

From (2.48) and (2.65),

hy g1 g2 - 9N
— . h2 hl ~ ‘. :
CnANBy = . . , CNANEN = ’ : (2109)
: " g G
hy -+ hy )]

2.8. Details 30



CHAPTER 2. A LQG CONTROLLER DESIGN FOR LINEAR CONTINUOUS TIME
SYSTEMS BASED ON LAGUERRE SERIES EXPANSION

2.8.8 Combination of the optimal gain and the observer
Let us consider (2.73) first. Extracting the part regarding the A matrix from (2.73) leads to
AnIyn AnIy (071
. Ay = o (2.110)

ANIN ANIN any -

AnIna; denotes

(03] 1 Bl

_ s @ -1

AnvIya; = /2p :2 ' . : o = ﬁ:Q o; (2.111)
ay - ay (=1~ B

k

where G, = Z (—l)i—1 Ok—it1.
i=1
From (2.102) §, is also described as

Br = /2p (pI + A)* ! (pI — A)* (2.112)
Then,

Brs = /2p (pI + A)*™ (pI — A)7™F . 2p (pI + A)~2 (pI — A)"
= 2p\/2p (pI + A)**7% (p1 — 4) ™+ (2.113)

On the other hand,

i+ Ckric = 2p (p1 + A)M7 (pI — A)FT L 9p (pI + AYHE (p — )R
=2pl(p] + A) + (pI — A)] (pI + A)*+° (pI — A) 7+
= 2p | 2p (oI + A)** (pI - 4y (2114)

Comparing (2.113) and (2.114) gives

2
Bra; = ?f) (Qkri + Qpyiz1) (2.115)
As a result of integrating them,
CnAnIy T V5 hivi + h;
: ABy=| : - ,%=2—f : 2.116)
CnAnIy IN M hisn + hiyn_1

Next, let us consider the combination Fy and [Dn — (Ax — KnCy)] K. At first, F is sepa-
rated into Fiz and CyAly:

F = FoCnAnIy (2.117)
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where F; can be represented with (2.64)-(2.65). The problem part is discribed using (2.52)
and (2.117) as

[ CvAnIN 0 K
I CnAnIy | | 68K -+ 8K
[ CnAnInG K
= : L (2.118)
| ONANINONK -+ CnAnIné K
Transposing each components of (2.118) gives
KT§TILALCT
KT IZALCY - KTSTILATCT
IZARCE
= K3 [Dy — (4% - Rk
IFANCE
. INARCE
= (B + OnAnENERARCE)  CnAnEnELAL, (2.119)
IFARCR,
where
_ T _
( | IRARCE CnAnIy
4 ELAL . = ANEyN
\ INARCY CnAnIy
[ CnAnIy ap - oy E
= S (2.120)
| CNANIN (03] E

The part on the A matrix of (2.120) is given in the same way of the optimal feedback gain case.
Then, (2.120) is represented as follows.

CnAnIn ) o AN 1 Giv1 + G
: ANEN = P B : (2.121)
_ N 2p
CnAnIN : T GirN + GitnN—1
Using (2.121), (2.119) is rewritten as
INALCE
Ky [Dy — (A% - CRKD)] ™
INALCE
o
—KL| : . (2.122)
e o AT
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~ ~ - -1 -
where Kg = (RN + CNANENEIJGA%C%) CNANEN.

"Transposing each components of (2.122) again gives the following final form.

Fen
Fova  Foh

Fn[Dy — (Av — KnCr)] Ky = : ' K¢ (2.123)
FeAwn Fein-r -+ Fon
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CHAPTER 3. AN ADAPTIVE LEARNING CONTROL USING MARKOV PARAME-
TERS

Chapter 3

An Adaptive Learning Control Using
Markov Parameters

3.1 Introduction

A learning control is an effective approach which makes the system output track a desired
trajectory perfectly. If the system is completely known, there is no need for the learning
control because the input that yields the desired trajectory may be derived by the inverse
system. However, due to the inaccuracy of the parameters, such an inverse system cannot be
obtained.

Several iterative learning control methods surveyed in [27] for example have been proposed,
and if some given conditions are satisfied, they showed advantages of the iterative learning
control as a priori knowledge of the system information is not needed too much for perfect
tracking during a fixed period of time. There are, however, many systems which cannot meet
these conditions and which are completely unknown. Therefore, in this chapter, we propose
simple adaptive iterative learning control methods for linear time invariant discrete time sys-
tems, which are effective in the case where system parameters are unknown and/or there are
modeling errors.

In our method, the Markov parameters are used to represent the target system, and the
control law and each signals are defined in the form of sequences. Because of this approach, the
adaptive learning control can be designed on the basis of system responses measured at each
steps and can cope with systems which have unknown dynamics.

Meanwhile, in the literatures of iterative learning control methods, several iterative learning
control algorithm with adaptation has been proposed. B. H. Park used the parameterization
of unknown mechanical systems, and studied an adaptive iterative learning control for robotic
systems with some uncertainties in [3]. Recently, M. French has reported a non-linear adaptive
learning control [34], in which some adaptive controller design methods based on Lyapunov
functions are used in order to design the learning control law for continuous time systems. In
his method the ’learning’ is achieved during each iteration, i.e., on-line, so the implementation
of its controller became slightly complex.

Our methods, which are different from former works, are based on an algorithm in which
a dual operator of the system is used for its update law explicitly in the same way as [39]
[40]. The proposed methods give the learning control laws based on a quadratic criterion and
both input update and parameter estimation are obtained at each iteration simultaneously.
Although we use the Markov parameters for the unknown system representation similarly to
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M. Q. Phan who used the same parameters in his work [37], our approach is different from
his work with respect to the way of the parameter estimation, i.e., his approach is indirect
estimation, however, our methods are direct ones. Furthermore, an effect of a disturbance
signal is explicitly taken account of in the algorithm.

In this chapter some numerical simulations are given to show the effectiveness of the proposed
methods, and the method is also applied for an active vibration isolation system. In the
considered system a repeated disturbance is generated by a motion of a part of the system.
The iterative learning control method is very efficient for the application. The results will show
the validity of the proposed methods and the practical efficiency for the suppression of the
repeated vibration generated by machines installed on the stage.

3.2 Problem Formulation
In this chapter we consider the following discrete linear time invariant system:

z(k +1) = Az(k) + Bu(k), z(0) =0, (3.1)

y(k) = Cz(k) + Du(k), (3.2)

where u(k), z(k), y(k) are input, state and output respectively, and in this chapter the plant is
assumed to be SISO system, though it is possible to extend the proposed methods for MIMO

systems. Since one iterative step has N samples, then the input sequence of the i-th step is
defined by

wi = [ (1), wi(2), ... ,ui( N7,

and y; is also defined similarly.
Then the relationship of the input/output can be described by :

yi = Hu, (3.3)
where
D 9
CB D
H = . )
CAN-2B ... D

h:=[D,CB,...,CAN2B|T.
The inner product and norm with an arbitrary weight matrix ¢} > 0 are defined as follows:

(z,y) =2y
Iz = (z,Qz).

The purpose of learning control algorithms is, under a given desired trajectory y; and a defined
error e; := yg — ¥;, to find the input u; which achieves ||e;|| — 0 (i — oo) by iterations.
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3.3 Adaptive Learning Control Algorithm

The i-th estimated model of the system (A, B, C, D) is represented by (/L, B;, G, f),), and H,
is also defined like H. The estimation error is defined as @; := a — ;.
The control input and estimated model parameters are updated according to the following

laws:
Uil = Ui + ViZ; (3.4)
h,‘+1 = hi + YiW;. (35)
z;, w; and ; are determined for each control method which is defined later.

(3.4) is the general form of learning control [39] [40], and (3.5) is given corresponding to the
form of (3.4). Using these control laws we present two adaptive learning control methods in

this chapter.
The proposed methods are given by Method 1 and Method 2 as follows.

From the definition, the error between the system and the model for a same input u; is
described by

& = Hu; — Hu; = Hu; = Uih,, (3.6)
where
u;(1) O
U, = u":(z) w(l) ) . (3.7)
uZ(N) . ui(1)

In MIMO case, input and output sequences are described by

wi=[uf(1) (@) - F(N)]" (3.8)

v o) of@) - f () ] (3.9)
where w;(k) € R™*! and y;(k) € RP*!. h; and U; need to be redefined such as

hi = [Vee(D)T,- -+, Vec(CAN-2B)T]T | (3.10)

uzT(l) ® I
ul (2) ® I,
Ui = z (3.11)

w(N) @I - ul(1)®In
where Vec(X') denotes the vector formed by stacking each column of X into one long vector:

Vee(X):=[ 2 2 - 2T ]T (3.12)
Xz[xl Ty -+ a:n] (3.13)

and ® operator is Kronecker product. With these notations, we can consider MIMO systems
as well as SISO, so only the SISO case is handled in the following methods.
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[Method 1] Consider a criterion

1 1.~

5= Sledlly + 5 ] (3.14)
2 2
with any @ > 0 and chose each signal as follows:

Z; = H;TQei, (315)
w; = —Z Qe; + UTe;, (3.16)

2 15112
il + ] 1)

CTHER + el

where Z; is defined like U;.
Then J; will decrease in the steepest way at each iteration, and we have || — 0 and
&l — .

Proof. From ei;1 = ya — yit1, Yir1 = Hui1, hipr = h — hiyq and (3.4)-(3.5),

T = 3llga = B+ 320l + Sl = P
= %“ei - %Hzi”2Q + %Hilz — w2 (3.18)
then
T = i = =T QB2 — i + Ll + )
= el QB — el Qs + b 7 Qs — WATUT e, + L (| Haly + )
Using (3.15), Hz; = Z:h; and & = Hu; = UJLi, |
T = Ji = =l + ) + 2 (U0 + )

_ ==l + lled)?
= 2 HAH 5 + ) = (3.19)

Remark

e If u; is persistently exciting, the parameters of the model will converge to the true values
according to €; — 0, which means ||e;]| — 0.

e It should be noted that if a disturbance is imposed on the system, the decreasing is not
ensured.

® Hz; in 7; can be obtained from a response of the system with the input sequence z;.
Concretely, if u; +e€z;, where € is a small number, is injected to the system in an additional
step, we observe the output as

y; = H(u; +€z) =y, + eHz (3.20)
, then Hz; can be calculated as
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If the e is selected small enough, the injection of the input will be allowed, however, the
step is still impractical. In that case we can modify the gain as follows. If a lower bound
of the estimate of ||H||, is given previously, we can use the relation

1 H 2| < [[H|| o |]2:]] (3.22)

and replace ||[Hz|| to ||H||, ||| in v, and the convergence can be also guaranteed.
In practice, Hz; is usually replaced by Hz;, but the convergence cannot be guaranteed
theoretically.

Notes

e We can also consider a weighted norm of the parameters estimation error as ||h;||2, with
any matrix R > 0. Notes that, in this case, the Method 1 handles the problem how the
controller is designed in order to reduces the tracking error ef of the weighted system,
which is redefined as

eff = yg — U;Rh.

To overcome the problem in the remark, we present a second method using the inverse system,
and consider the following relationship.

Y; = H(Uz + d) < Lyi =v; +d, (323)
vi = Liya + u;, (3.24)
where u; is the input sequence, d is the disturbance which is assumed to be repeated at each

iteration and L is the inverse system of H.
From (3.23), (3.24), and @; := u; + d, we obtain

~

u; = Ly; — Liyq
= Lyi — Lie;
= Yil; — Lie;, (3.25)

where Y; is defined like U;, and l~,- like ilz Parameter estimation laws are defined by the following

Uil = Ui + Vi 2s, (3.26)
[Method2] Consider a criterion
1oy 1
Ji= gl + S (3.28)

where any @ > 0, R > 0 and chose each signal as follows:

Z; = f/iei, (329)

w; = R'YTQxz, (3.30)
[EAIP

(3.31)

Y = )
U Ml + el
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where Y; is defined like U;. Then J; will decrease in the steepest way at each iteration and
|[zi]| — 0.

Proof. Because ;1 = 4; + ;2 and l~i+1 = l~i — y;w; from update laws,
T 5T 04 2 2
Jiv1 — Ji = %ty Qzi — vil; Rw; + j(”ZiHQ + [lwillz)
and from (3.25)

2
~ ~ 71
Jis1 — Ji = v(Yili — Lie;)"Qz; — vIT Rw; + g(llzill?g + [lwill %)
2
~ "}’l
= —i(Lie:)" Qzi + wl] (Y7 Qz — Ruw;) + —2-(l|zz'||2Q + [Jwi||%)
_ 2 '712 2 2
= —illzllg + —2-(|I2z'HQ + llwillk)

(el -
= 20l + ) = (3.32)

Remark

e If the system is strictly proper, we should consider the input Joutput relationship shifted
by a delay.

3.4 Numerical Simulation

We present results of some computer simulations to demonstrate the effectiveness of the pro-
posed methods. Let the plant be a system whose transfer function is described by

5.0(z + 0.1)(2 — 0.9)

Gl2) =12 0.1)(z — 0.8)(z — 0.9)’ (3.33)
and a nominal model of this plant to be updated is chosen by

A 6.0 0.3)(z—0.9

Golz) = (2 +03)(z — 0.9) (3.34)

(z—=0.1)(z=0.7)(2 — 0.8)°

We set N = 100, chose @ = I and R = [ as weight matrices in the criterions, and performed
20 iterations.

3.4.1 Tracking Problem

A tracking control is performed using Method 1. Figure 3.2, Figure 3.3 and Figure 3.4 show J;,
the tracking error 1||e;[|? and the parameter estimation error 2|hil|? respectively. These figures
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show that J; decreases at each step and ||e;|| — 0. Figure 3.1 shows the desired trajectory and
the output of the system at 5 and 20 iterations.

o6 |

outut

_______

10 20 30 40 50 60 70 80 90 100
N

Figure 3.1: Output of the system by tracking control (step i=5 and 20)

method 1

J

10

(=]

8 10
steps

Figure 3.2: Cost function : J;

12

14 16 18 2
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method 1 |

Tracking Error

o 2 a4 (=1 8 10 12 14 16 18 20
steps

Figure 3.3: Tracking error : ||e;]|?/2

11.0 T v
method 1
10.8 —
=
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L
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=
&
(i
10.2 -
10.0

O 2 4 [S] 8 10 12 14 16 18 20
steps

Figure 3.4: Estimation error of the Markov parameters : l|As]|2/2
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3.4.2 Existence of repeated disturbance

We assume a disturbance in (3.23) which is specified as

0 (1 <k < 20)
d(k) = { 0.01sin(27%20) (20 < k < 60) |, (3.35)
0 (60 < k£ < 100)

and the desired trajectory y; = O. Method 2 is applied to this case. Figure 3.6, Figure3.7,
Figure 3.8 and Figure 3.9 show J;, the input criterion +1|%@;||?, the parameter estimation error
%||l~1||2 and the tracking error, respectively. These figures show that J; decreases at each step
and |[e;]| — 0. Figure 3.5 shows the desired trajectory and the output of the system at 1, 10
and 20 iteration.

desired
i=1 (Uu=0) --——————
f i=10 oo
i=20
0.04 |- ) _
A A 2 2 4 4
{ {
0.02 ]
=
= O R
=3 -
i /
-0.02 | \ I —
3 ! i
L BB iy
-0.04 | -
-0.06

O 10 20 30 40 50 60 70 80 0 100
N
Figure 3.5: Output of the system by tracking control with a repeated disturbance (step i=1,

10 and 20)
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Figure 3.6: Cost function : J;
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‘method 2
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Figure 3.7: Estimation error of disturbance : ||%;]|?/2
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Figure 3.8: Estimation error of the inverse system : ||I;]|2/2
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Figure 3.9: Tracking error : ||e;]|?
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3.5 Application to Vibration Isolation Systems

We applied the proposed method to the control of an active vibration isolation system. Figure
3.10 and 3.11 show the configuration of this system and its coordinates. The stage is levitated
by 4 air springs. The places indicated 0 - 7 have the air actuators, position and acceleration

Sensors.

Loaded machine

Alr spring

Figure 3.10: Active vibration isolation system

N

4

Figure 3.11: Actuating and sensing points of stage
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The main purpose of this system is to realize environments that the loaded machine (e.g.
X-Y stage to process LSI devices) can move precisely, and to decrease the vibration which is
occurred by the machine. Many control methods have been designed in order to isolate the
vibration from ground. Actually, because of the existence of the direct vibration from the
machine, the isolation is disturbed by the motion.

Therefore, to overcome this problem we utilize the method 2 and try to remove the effect
from the machine. Figure 3.12 shows the block-diagram of this system which has a minor PI
and H,. controller. The purpose of PI controller is to levitate the stage to a referenced level,
and that of H., controller is to isolate the vibration from the ground.

In this experiment, Method2 is applied to the control of the horizontal direction (y in
Figure 3.11) and only position data is used as output, so the system becomes SISO system.
The criterion’s weights @ and R were chosen as @ = I, R = I through the experiment.

Figure 3.13 shows that ||z is monotonously descending until 5-th iteration. Figure 3.14
indicates that ||e;|| decrease to the lowest value at 5-th step. Figure 3.15 shows the position of
the system at step 0, 1, and 5. Using the proposed method, the error at step 5 is three times
smaller than those at step 0. '

acc
Ua

Figure 3.12: Minor-feedback loop
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Figure 3.13: Cost function value : ||z]|
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Figure 3.14: Tracking error : ||e|
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Figure 3.15: Position of the stage by tracking control (step 0, 1, 5)
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3.6 Conclusions

We presented adaptive learning control methods using Markov parameter which provides in-
put and parameter update simultaneously. Simulation results showed that these methods are
effective on the systems which have modeling error and/or whose parameter are unknown, and
the control performance is sufficiently good. Furthermore we illustrated the effectiveness of the
proposed methods by applying them to a vibration isolation system.
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Chapter 4

Time Optimal Control Design with
Nonlinear Optimization

4.1 Introduction

Time optimal control under bounded input was studied and formulated by Pontryagin et al.
[31] by his Maximum Principle giving the necessary condition of optimality, but it is not easy
to obtain solutions for general nonlinear systems. It is reported that analytic solutions are
impractical if the dimension of a system is higher than three [5]. Therefore, many numerical
methods [9] [33] have been developed, and some new approaches such as the evolutionary
approach [55] have been studied recently. Even for numerical solutions, difficulty arises when
a system has uncontrollable states. The necessary conditions of optimality in the above case is
studied in [1].

This chapter proposes a new computational approach using nonlinear optimization to attain
a numerical solution for the time optimal control of a class of nonlinear systems such as the
swing-up control of the rotating type pendulum.

While the time optimal control problem is generally defined as minimization of the terminal
time to attain a desirable state under bounded input amplitude, the algorithm to solve is known
complicated. Thus, we introduced an auxiliary problem of the time optimal control. It is to
find the minimal input amplitude numerically so that the terminal state satisfies a specification
at a given terminal time. We formulate the time optimal swing-up control according to the
auxiliary problem, and solve it using the nonlinear optimization method. Furthermore, this
approach leads to the next chapter with extending the targets to the linear time invariant
discrete-time systems. There, it shall be shown that time optimal control and several similar
optimal controls for linear system can be designed by the Linear Programming using only some
system responses. .

However, unfortunately, it is difficult to prove that the obtained solution is time optimal,
because no sufficient condition of optimality is given in general. But, solutions satisfying the
necessary condition are usually assumed to be optimal in practical sense [7] [29].

In this chapter, we consider the simplified model of a 2nd-order pendulum to verify our
approach through numerical simulations, and ascertain that the simulation results of the time
optimal control computed by the proposed method satisfy the necessary condition of optimality.
Furthermore, this chapter presents an experimental result of a rotating type pendulum which
is hinged to an arm connected to a direct-drive motor. This type of the rotating pendulum is
called Furuta Pendulum developed in the Furuta Laboratory of Tokyo Institute of Technology
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2] [35].

| ]P[enliulums are known to have intrinsically interesting behaviors, and have been research
objects for many researchers including Galileo Galilei. The swinging of a pendulum has been
studied mathematically for a long time, and its control to keep upright state was paid attention
to in early 60’s in an analogy to the control of the launching rocket. When we consider the
control of a pendulum connected to a moving cart by a hinge, the control problem is not
only keeping it upright but also swinging up from the pendant to the upright position. Such
control has been known practically difficult since the controlled system, whose control input is
saturated, is nonlinear, underactuated, and has uncontrollable states.

The swing-up control of a pendulum was first studied by one of the authors [49]. This control
law was feedforward and not robust to the change of system parameters. Furuta and others
[21] studied the swing-up control of a rotating type pendulum by the bang-bang type feedback
law paying attention on the state of the pendulum. Other control laws, for example based on
energy, were also reported [2] [21] [26] [41] [50]. However, time optimal swing-up control of a
pendulum has not been studied yet.

This chapter is organized as follows. In section 4.2, the algorithm to attain the time optimal
control by nonlinear optimization is proposed, and optimality of the attained solution is verified.
In section 4.3, the approach was applied to Furuta Pendulum by an experiment. In the last
section, the robustness of the proposed approach to the change of system parameters and the
comparison with an energy based approach are discussed, and concluding remarks are given.

4.2 Nonlinear Optimization Based on Time Optimal Con-
trol

Time optimal control formulated by Maximum Principle gives the necessary condition for op-
timal control, but an analytical and even a numerical solution is difficult to be determined for
nonlinear systems.

On the other hand, it is reasonable to consider that the optimal time can be shorten as input
bound is larger, and that the terminate time shall be longer as input bound can be smaller.
Based on the consideration, an equivalent problem is proposed here. That is, we iteratively
find the minimal input bound with which the state can be transferred from initial to terminal
one for a given time interval. To find the minimal input bound, our approach uses nonlinear
optimization. If the minimal input bound obtained is larger than a specification, we make the
achievable time longer, otherwise make it shorter, and then compute again until the minimal
input bound equals to the given one.

4.2.1 Time Optimal Control Problems

Consider a time optimal control problem of a class of nonlinear systems which are linear in
input. The problem is to find the minimal achievable time ¢ Iz

mint, (4.1)
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subject to
& = flz)+g(x)u
|u| < Umag
4.2
.’L‘(to) = o ( )
z(ty) = a4

where ., is the specification giving input bound, and

z e R" :  the state vector

u € R™ : the control input (m =1 here)
f(-), g(-) € R* : function vectors

9 € R* : the initial state

zy € R* : the terminal state

Obviously, as the input bound y,q, is smaller, the minimal achievable time ¢ s becomes longer,
otherwise, as umq, is bigger, ty becomes shorter. Based on this observation, we consider an
auxiliary problem of the time optimal control problem.

4.2.2 Auxiliary Problems of Time Optimal Control

An auxiliary problem is to search the minimal input bound so that the terminal state satisfies a
specification at a given time. A numerical, iterative algorithm to solve this problem is proposed
here. It is described as

1. Solve the following auxiliary problem:

min tg[rz(?‘i(f] lu(t)] (4.3)
subject to
t = f(z)+g(z)u
z(to) = zo (4.4)
z(ty) = x5

where t; is given.
2. If the minimal input bound obtained satisfies the specification, terminate this algorithm.
3. If the obtained bound is larger than the specification, lengthen t¢, otherwise shorten ¢ 2
and then repeat from 1.

In order to solve this problem, our approach uses the nonlinear optimization:

min h(Z) (4.5)
subject to
( e(z) <0
Ceq(Z) = 0
J Az < b (4.6)
Aeg T = by
L < 2 <y
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where Z is a vector of variables, h(-) is a scalar objective function which may be linear or
nonlinear, ¢(-) and cey(-) are function vectors as the nonlinear constraints, A and A., are
constant matrices, b and b., are constant vectors as the linear constraints, each [, and u; is the
lower and the upper bound vector. The inequality of vectors means that each row of vectors
must satisfy the inequality.

To describe the auxiliary problem as a nonlinear optimization one, we need discretize the
problem as follows:

te = kY =kh k=1,2 ., N
Tk = z(te) (4.7)
A
U = MU
and
ié[,u of T v 2l vy .. 2f UN]TGR("“)(N“) (4.8)

where either N or h is given, and input uy is separated into the amplitude x and the normalized
input vg. In our case, vy are scalar because only single input case is considered. Obviously,
the solution is more accurate as h is smaller, however much more computing time is required.
Although there are many solvers of nonlinear optimization, we used one named fmincon in
Optimization Toolbox of Matlab. The constraints of the initial and terminal states can be rep-
resented by the linear equality, and the state transform on every time interval by the nonlinear
equality, i.e.

ty tx
JORNVAN
Ceq (%) = —Tk + Tp1 +/ f(z)dt + M’Uk/ g(z)dt
tg—1 tp—1

=0 fork=1,2,..., N (4.9)

No inequality constraint is used in the problem. Lower and upper bound constraints play an
important role in the optimization. Specifically, following two algorithms can be considered.

Algorithm 1:

min - max fo] =min max |k meneal (4.10)
subject to
. . . 1T
rceq(a:)=[c£1’1(_m) Cg;,z(m) Cg;],N(Z)] =0
Tony1 = o
J T4 )N:(n+)N4n = TN =T (4.11)
po=1
-0 < I <400
(| — < v <40

where  and ceq(Z) are defined in (4.8) and (4.9), respectively. Z;; is a subvector consisting of
elements between the i-th and the j-th row. If we consider the bang-bang form of time optimal

4.2.  Nonlinear Optimization Based on Time Optimal Control 94



CHAPTER 4. TIME OPTIMAL CONTROL DESIGN WITH NONLINEAR OPTIMIZA-
TION

control, the another algorithm can be described as follows:

Algorithm 2:

miinu = mgn 11 (4.12)
subject to
(ceq(®) = [ T (3) Ly@) .. En@E ] =0
) Tont1 = To
4 L(n4+1)N:(n+1)N+n = IN = Ty (4_13)

-0 < I <400
—-1§ Vg S].
. 0< p <400

where 4 is the maximal input magnitude for any input sequence {uy}g=1.. x from (4.7), i.e.

A

p= max lul (4.14)
Some practical computations reveal that the Algorithm 2 converges more quickly than the Al-
gorithm 1, whereas, that the Algorithm 1 is less dependent on the initial condition. It is known
that nonlinear optimization depends on the initial condition, and that giving a satisfactory ini-
tial condition is hard. Therefore, in our approach, the Algorithm 1 is used to attain a feasible
control for the initial condition {u; = O}k=1,.. n, and then, the feasible control is used as an
initial condition of the Algorithm 2 to attain the optimal solution quickly.

4.2.3 Verification of the Proposed Approach

Generally, the analytical proof that a obtained solution is time optimal is known difficult. Even
optimality of a numerical solution is hard to be verified, because no sufficient condition is given
in general. Practically, a control satisfying the necessary condition, Pontryagin’s Maximum
Principle, is usually considered time optimal [7][29].

To show that our approach really gives the time optimal solution, we check it through two
numerical simulations. First, this approach is applied to a 2nd-order simplified model of a
single pendulum, and the result is compared with the time optimal control computed using the
Linear Programming approach. To verify whether the solution satisfies Pontryagin’s Maximum
Principle, we propose utilizing a switching function which determines the switching condition
of the optimal input. Second, we check the optimal solution of the 4th-order real pendulum
model similar to the simplified model.

Comparison Using Simplified Model of a Single Pendulum

Consider the simplified model of a single pendulum, which is a 2nd-order system:

6 = sin 6 + cos fu (4.15)

4.2. Nonlinear Optimization Bused on Time Optimal Control 55



CHAPTER 4. TIME OPTIMAL CONTROL DESIGN WITH NONLINEAR OPTIMIZA-
TION

where 6 is an angle of the pendulum to the vertical line, and v is equivalent torque. (4.15) is

nonlinear, and is uncontrollable at 6 = kr + %7r.

Now, let us apply the proposed approach to (4.15) in order to find the time optimal swing-
up control from the pendant, [0, 9] = [m, 0], to the upright position, [9, 9] = [0, 0]. The
result of this simulation is shown in Fig. 4.1, where the solid line is the result of the proposed
approach, and the dotted line is the one based on Linear Programming appoaches in [23] [47].

From Fig. 4.1, it is observed that these two solutions are almost the same. In fact, for
the condition of the terminal time of 5.7 seconds, the minimal input bound of the nonlinear
optimization and the linear programming approach was 0.9793 and 0.9966, respectively.

The bound given by the linear programming is slightly larger than the one of nonlinear
optimization because of the fact that the linear programming case has the non-control regions.
It is considered that the non-control regions are brought by the uncontrollable states. The
optimal control should be the bang-bang form from Maximum Principle, and the proposed
approach has no non-control regions, and is almost the bang-bang form, therefore, it seems to
be the time optimal control.

Con:parison of swing—up control designed by NO and LP: ('solid - NO, dotted - LP)

0.5f .
of 4
-0.5F 4

_1 k I 1 L— [l
0 1 2 3 4 5 6

Time [sec]
Angle of pendulum: ( solid - NO, dotted - LP )
4 T

Angle [sec]

Time [sec]

Figure 4.1: Comparison of time optimal control using nonlinear optimization (N O) and linear
programming (LP): The upper shows the optimal input, and the lower shows the angle of the
pendulum, where the solid line is of NO case and the dotted line is of LP case.
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Verification of Necessary Condition

A solution not satisfying Pontryagin’s Maximum Principle is not optimal, but all satisfying
solutions may not be optimal, because the principle gives only the necessary condition. However,
since the optimal control will be unique if exists, the solution satisfying the necessary condition
may be considered optimal [29]. We examine that the solution given by our approach satisfies
the necessary condition. In order to check the condition, the methodology in [29] is used, and
is summarized as follows.

Criterion of (4.1) is equivalent to

J(to) = / Y 1t (4.16)

to

and Hamiltonian for system (4.2) is
H(z,u,p) = 1+p" [f(z) + g(z)u] (4.17)

where p is a co-state of system (4.2) and satisfies

Pontryagin’s Minimum Principle states that the necessary condition is to minimize the Hamil-
tonian:

H(z*,u", p*) < H(z*,u,p*) for all admissible u (4.19)
where the superscript * denotes an optimal quantity. In addition, we have
H(z,u,p) =0 to <t <ty (4.20)

from [10]. From (4.2), (4.17), (4.19), the optimal control is represented as follows:

+Umas if pTg(-) <0
u'(t) = § (~Umazs + Umaz) if pTg(-) =0 (4.21)
~Umaz if pTg(-)>0

where p” (¢)g(z(t)) is called a switching function. If the switching function is equal to zero
over some time interval, (4.21) does not determine an unique solution, in which case the time
optimal control is called singular. Conversely, if the switching function is zero at isolated times,
(4.21) determines a bang-bang control, in which case it is called non-singular.

Here, we use (4.21) to check the necessary condition. To utilize (4. 21), the initial co-state
p(to) is required. The solution of the linear adjoint differential equation (4.18) is given by

p(t) = (¢, t0)p(to) (4.22)

where ®(t,20) is the transition matrix associated with (4.18). Since both z(t) and u(t) are
known, ®(t,ty) can be computed. If the input switches at time tsi, the corresponding switching

function must satisfy
P (tei)g(z(tss)) = 0 (4.23)
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ie.
p* (t0)®7 (tsi, to)g(2(tsi)) = 0 (4.24)
at t = ts. Furthermore, according to (4.17) and (4.20), the initial co-state must satisfy
P’ (to) [f (z0) + g(o)u(to)] = —1 (4.25)

Consider the case that the input u switches k times, then a non-homogeneous system consisting
of k£ +1 linear equations is defined by both (4.24) and (4.25) with n unknown initial co-states
p(to). If k+1 = n, the system has a unique solution as long as these k+ 1 equations are linearly
independent. If k + 1 > n, the system has a solution as long as at least k +1 — n equations
is linearly dependent, otherwise it has no solution. Finally, if k + 1 < n, a set of solutions
exists. Thus, it is claimed in [29] that the switching times is almost not more than n — 1.
However, in the previous example of the simplified single pendulum, the model is of 2nd-order
dimension, while the input switches 3 times. It is considered that this is possibly due to the
uncontrollable states of the system. The verification of the previous example is illustrated in
Fig. 4.2. The initial co-state was computed from the state at the first switching time in reverse
time. Obviously, we can confirm that left two switchings of input satisfy the condition derived
by the switching function, therefore, the control is considered time optimal.

Verification of necessary condition: ( solid — pendulum )

Angle [rad]

Time [sec]

Optimal Input & switching function: ( dotted — input, solid — co—state )

Time [sec]

Figure 4.2: Verification of necessary condition using simplified pendulum model: the upper is
the angle as a result of optimal swing-up control, and the lower shows the optimal input (dotted
line) and the corresponding switching function (solid line).
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Table 4.1: Identified parameters of Furuta Pendulum

| Physical quantity l Symbol ] Units I
Arm’s length Ly 2.2343 x 1072 [m)]
Arm’s inertia Iy 2.5617 x 1072 [kg m?]
Viscous friction coefficient Cow 4.3281 x 1072 [Nms]
Coulomb friction coefficient Coe 3.5686 x 10! [N]
Mass my 8.3077 x 107* [kg]
Pendulum’s length L 1.0364 x 107! [m)]
Pendulum’s inertia Ji 2.7684 x 107* [kg m?
Viscous friction coefficient Civ 2.4577 x 107* [Nms]
Threshold of Dead zone Uy 0.68
Propotional constant ky 1.7391

In addition, the same verification is applied to the following real pendulum (4.26).

[ p1 +p2sin®6; picosé J o }
p3 cos by P4 61
n F C()v + %pz s1n(201)01 —P3 sin 9191 + %pg sin(291)90 jl { 9:0 J
L -—%pg sin(291)90 Clv 91
[ Coe sign(éo) T
+ —pssind; | | O (4.26)
where p; are defined as
p = g+ m1Lg
P = ml?
p3 = miliLo (4.27)
pa = i+ mllf
ps = milig

By linearizing (4.26) around the unstable equilibrium point [01, 61, 90] = [0, 0, 0], the linear

|+ . = 4.28
[p3 p4}[91} {0 Clv][el * 0 —ps 6 0 (4.28)
In this verification, for simplicity, no friction is considered, and model parameters were used
in Table 4.1. Simulation arguments of nonlinear programming was chosen as ¢ F=095 h=
0.025, N = 38.

Its solution and corresponding responses are depicted in Fig. 4.3, where the initial co-state
p(to) is computed according to the first three switching times as follow:

model is

p(to) = [ —0.3040 —0.0932 0.0225 —0.0635 |”

This system is of 4th-order while the solution has four switching times. It is observed that the
fourth switching time coincides with the fourth zero crossing time of the switching function.
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We can therefore conclude that Pontryagin’s Maximum Principle is satisfied in this case, and
can consider that our approach gives time optimal control.

Verification of necessary condition: ( solid — pendulum, dashed — arm )

Angle [rad]
|

|
N

_4 [l 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [sec] .
Optimal input & switching function: ( dotted — input, dashed - co-state )
2 T T i I T T T T I
1+ R R AR . .
-7 =~ AN - T - - -
0~ AN 7 S
7 N Id FEERN
1 e e e e e ~ /e e e e e e e e e N o
) > ~ //
-2F AN -
N /
~ /
-3 ~_7 -
_4 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [sec]

Figure 4.3: Verification of necessary condition using real pendulum model (4.26): the upper
shows the angles of the pendulum (6;: solid line) and the arm (f: dotted line). The lower
shows the optimal input (dotted line) and the switching function (dashed line).

4.3 Experiment on Furuta Pendulum

This section gives experimental results of Furuta Pendulum based on the proposed approach.
If a model of the pendulum is accurately described, the pendulum can swing up to the upright
position where the velocity is zero by only the feedforward control. However, since modeling
errors, parameter estimation errors and disturbances are unavoidable in practice, the pendulum
cannot arrive at the upright position with exactly zero velocity, and it cannot stay at the
unstable equilibrium point.

Therefore, to swing up to the upright position and keep the position, swing-up control is
divided into 2 steps. The first step is to let the pendulum swing up to a neighborhood of
the upright position by feedforward time optimal control designed by the proposed approach.
The second step is to stabilize the pendulum in the neighborhood by LQ regulator where the
linearized model (4.28) is used.
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4.3.1 Feedforward Time Optimal Control

The time optimal control is attained by applying the proposed approach to Furuta Pendulum
(4.26). The computed result is shown in Fig. 4.4, where the initial and final states are

[ 80(0) 81(0) 8o(0) £1(0)]" =[0 —x 0 0]"
[8o(ts) 6:(ts) bolty) b(ty) ] =[0 0 0 0]

where the terminal time and the time interval were chosen as ¢; = 0.95[s] and h = 0.05[s],
respectively.
The attained minimal input bound was

Tm = 1.4355

Swing-up control of Furuta Pendulum ( dottéd - optimal control )

15 ooooo T T Teeseronns 4ossses0ee fesovessens dsvene T I
/L ]
051 ~
o} i
-05| -
Ak -

-15 [evsasvssns gosees 1 1 1 L Lo sesagtecae L
0 0.1 0.2 0.3 0.4 05 0.6 07 08 0.9 1

Time [sec]
Angle: ( solid — pendulum, dashed - arm )
2 T T 1 L] [ T T T 1

Angle [rad]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time [sec]

Figure 4.4: Design of time optimal swing-up control of Furuta Pendulum: the upper is the
designed input for swing-up, and the lower shows angles of the pendulum (4;: solid line) and
the arm (6p: dashed line) in swing-up motion.
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4.3.2 Feedback Stabilization Control

LQ type state feedback control based on the linearized model (4.28) was chosen for stabilization.
The quadratic criterion function J was

J = /oo(xTQ:L' + ru?)dt (4.29)
0

where x and u stand for [, 6, 90 91]T and 7, respectively. @ and r were specified as:

Q =diag (30 2000 0.1 10 )"
r=1 (4.30)

The designed optimal stabilizing feedback was
u=flz

f=1[54772 61.5627 3.9337 5.81’10]T (4.31)

4.3.3 Results of the Experiment

If [6:] < 0.5[rad] is satisfied, the control stage is changed from the swing-up control to the
stabilizing control. The experimental and simulated results are shown in Fig. 4.5 - Fig. 4.7
corresponding to 61, 6y and input 7, respectively.

Angle of the pendulum: { dashed - experiment, dotted - desired )

t
-
5l
T
~

Angle [rad]

1
g
)

T
~

-3} PRl

_a} SN -

-4.5
0

) . L L 1 . L L )
0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1
Time [sec)

Figure 4.5: Result of experiment: the dotted line shows the computed trajectory of the pendu-
lum angle #;. The dashed line is of the experimental result.

4.8.  Experiment on Furuta Pendulum 62



CHAPTER 4. TIME OPTIMAL CONTROL DESIGN WITH NONLINEAR OPTIMIZA-
TION

Angle of the arm: ( dashed - experiment, dotted — desired )

Angle (rad]

. 1 L L . | L . )
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Time [sec]

Figure 4.6: Result of experiment: the dotted line shows the computed trajectory of the arm
rotation angle #y. The dashed line is of the experimental result.

Optimal Input:(dashed - experiment, dotted — desired)

2.5 T T T T Y T
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Figure 4.7: Optimal input used in experiment: the dotted line shows the designed input. The
dashed line shows the input used in experiment,.

From the experimental results, it is observed that the angles ¢, and 6, track the simulated
trajectories, and it reveals that the assumptions of modeling are appropriate and the parameter
estimation is effective.

Note that in the neighborhood of the upright position, the tracking error, especially 6, is big,
because the control has been changed to the state feedback stabilizing control. In the weight
matrix @, the weight corresponding to 8, is bigger than the one of 6, and the tracking error
of 8; would be smaller than the error of .

The input of the motor is limited within 2 volts, |7| < 2.3476. Actually, the required torque
for the stabilizing control is larger than this limit, this causes the big tracking error around the
upright position. The photos of swing-up control motion are shown in Fig. 4.8.
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Phase 1: the position of pendulum is pendant Phase 2: the pendulum begins to swing up

Phase 3: the control strategy is changed to the Phase 4: the pendulum is stabilized by the LQ
stabilizing of the pendulum at the neighborhood  regulator.
of upright position

Figure 4.8: Photos of swing-up control of Furuta Pendulum

4.4 Discussion and Conclusion

In this sectibn, we summarize our approach, and discuss about merits and demerits. Compari-
son of our nonlinear optimization based approach with the energy-based is given. A robustness
of the proposed feedforward control is also investigated.

4.4.1 Discussion about the Proposed Approach

The problem we focused is to solve time optimal control problem of nonlinear systems, for
example, time optimal swing-up control of Furuta Pendulum. In general, solving this problem
is known difficult, so we considered the auxiliary problem to find the minimal input bound
satisfying the terminal condition of state at a given time. It depends implicitly on the fol-
lowing consideration: It is reasonable to.consider that the optimal time can become shorter
as the input bound is larger, otherwise the optimal time shall be longer as the bound can be
smaller. Accordingly, we minimize the input bound in stead of the achievable time, and the
auxiliary problem can be formulated by the nonlinear optimization solved using many solvers,
for example, Matlab.

It is known that solutions of nonlinear optimization depend on the initial conditions. We
proposed two algorithms. Some practical computations revealed that the algorithm 1 is less
dependent on the initial condition and that the algorithm 2 requires less computational time,
and we consider the cause is that the algorithm 1 has no constraint of input v, while the
algorithm 2 has the bounds of v;. Therefore, we use the algorithm 1 to find a feasible solution,
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and then, the solution is used for the initial condition of the algorithm 2, so that we can quickly
obtain the optimal solution which is less dependent on the initial condition.

By the way, it may be wonder that the solution of the algorithm 1 becomes like the bang-
bang form since the algorithm 1 has no input constraints as mentioned above. Let us suppose
that an optimal control obtained according to the algorithm 1 is not of the bang-bang form.
In this case, values of the optimal control at some times are less than the value of the minimal
input bound, but the values can increase to the value of the minimal input bound. Similarly to
the consideration about the auxiliary problem, the achievable time should be shorter if more
input can be used. Therefore, the supposed case is not the optimal one, and the values of the
optimal control at each time will be equal to the minimal bound of the input, so that it is like
the bang-bang form.

4.4.2 Comparison Against Energy-based Approach

Energy-based approaches are effective methods in swing-up control of both the single and
the double pendulums. The comparison between our approach and the energy-based one for
swing-up control of Furuta Pendulum is given, here. See the appendix A for the detail of the
energy-based approach.

The input bound was set at 7,, = 1.4355 as same as in the previous experiment. The
simulation result is shown in Fig. 4.9. Obviously, the energy based approach requires more
time for swing-up control than the proposed approach. This implies that the control based on
our approach might be time optimal. Furthermore, since our approach can choose any terminal
state as long as it is suitable, the approach has an advantage that the arm can be also controlled
to any desired position, while the position control cannot be taken into consideration in the
energy based approach.

Swing-up of the energy-based: ( solid — pendulum )

0 T

Angle [rad]

—6 1 1 ] 1 1 1
o 0.2 0.4 06 08 1 1.2 1.4
Time [sec]
is Input: ( solid - input, maximum — 1.4435 )
. I— T T
1 I 1 ] _
0.5 4
or 4
-0.5F B
-1+ -
_1 5 1 1 1 i ]
0 0.2 0.4 0.6 08 1 1.2 1.4

Time [sec]

Figure 4.9: Simulation result of swing-up control based on energy-based approach: the upper
shows the angle of pendulum, and the lower shows the input
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4.4.3 Investigation of Robustness to Parameter Perturbations

It is known that feedforward control requires an accurate model and that it is not robust to
parameter perturbations. As reported in [21], swing-up of the pendulum succeeds by a feedfor-
ward control if all parameters are correct, otherwise, it fails if an uncertainty is introduced, for
example, by attaching a 15g weight to the end point of the pendulum in [21].

Here, robustness of our approach is investigated by introducing the same parametric uncer-
tainty. The nominal and perturbed parameters are listed in Table 4.2.

Table 4.2: Nominal and perturbed parameters of Furuta Pendulum: the values of the perturbed
parameters are as a result of attaching a 15g weight to the end point of the pendulum

Symbol Nominal Perturbed
D1 2.9765 x 1072 | 3.0513 x 1072
P2 8.9241 x 107* | 1.0535 x 1073
D3 1.9238 x 1072 | 2.2712 x 1073
jn 1.1692 x 1073 | 1.3304 x 1073
D5 8.4468 x 1072 | 9.9617 x 102

The same input as shown in Fig. 4.4 is applied to the perturbed system, and the simulation
result is shown in Fig. 4.10. It is observed that the pendulum still could swing up to the
attraction region of stabilization control, while the swing-up failed in [21]. Of course, it could
not swing up to the upright position where §; = 0. Note that p; has been perturbed more
than 10%, it is suggested that time optimal control is not so sensitive to uncertainty as other
feedforward control.

Swing-up control of the perturbed pendulum: ( solid - pendulum, dotted — arm )
2 T T

Angle [rad]

Il t Il

1 1 1 1 1 L
4] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1

Time [sec]
Input: ( dotted - input, maximum - 1.4355 )

......... Teerscresefennrsnesntorssr

.....

................

Figure 4.10: Result of swing-up control of the perturbed pendulum: the lower is the same
control input as Fig. 4.4. The upper shows the angle of the pendulum (61: solid line) and the
arm (6o: dotted line)
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4.4.4 Concluding Remarks

This chapter proposed a new computational approach to design time optimal control of general
nonlinear systems with input bound. To solve the problem is known difficult in general, however,
our approach can be computed by an auxiliary problem of finding the minimal input bound
satisfying the terminal condition of state at the given time, and it could be solved by usual
nonlinear optimization. The approach was applied to the time optimal swing-up control of
the rotating type pendulum numerically and experimentally. The numerical solution obtained
was verified using a simplified model of a single pendulum, and shown to satisfy the necessary
condition of optimality. It was compared with the energy-based approach, and it was observed
that our approach could make the pendulum swing up in shorter time and could control not
only the angle of the pendulum but also the position of the arm. In addition, this approach
was practically experimented on using Furuta Pendulum. In experiment, feedforward control
was used to swing up to the neighborhood of the upright position from the pendant, and a
conventional LQ regulator was used to stabilize the pendulum in the neighborhood. And then,
adding some weight to the end of the pendulum, same experiment was carried out again to
investigate the robustness against the parametric uncertainty. From the experiment and the
analysis, the proposed approach not only could provide good reference trajectory, but also was
less sensitive to parametric uncertainty. Another good feature of this approach is that it can
be used for the time optimal control of general nonlinear systems.
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Chapter 5

Time and Fuel Optimal Control Design
by Linear Programming Using
Input-Output Data

5.1 Introduction

Recent competitive development of computers has led to remarkable improvement of its ability,
L.e. calculation speed, memory capacity and etc. Consequently, we can easily get these high
performance computers, which can carry out an operation needing large memory capacity and
which can execute loop routines repeated many times in a short time.

Under this circumstance, the application field of control system design is extended. For
example, we can easily and in a short time solve the design problem difficult to be solved
analytically and the searching problem of optimal solution needing a lot of repeats by numerical
algorithms. Therefore, we should consider control designs more depending on computers in a
further step.

In practice, such works have reported in [24][60]. In these works, the time optimal control
design for some nonlinear systems is formulated as a numerical optimization problem and it is
solved by computational algorithm as shown in the previous chapter.

Meanwhile, if only input-output data is obtained as system information and a control system
can be designed directly by a reasonable method closed in input-output data, it is better than
the case where the control system is designed on the basis of models constructed by non-
parametric identification, because non-parametric identification gives no useful information
any longer except approximation of the behaviour of the control object. That is a suggestion
considered in the fields of control system designs recently.

In this chapter, in order to show examples of the design methods closed in input-output
data, we consider the time optimal control, the fuel optimal control and the mixed time-fuel
optimal control formulated as the linear programming problems for finite dimensional, linear
time invariant, discrete-time systems. As a result, we can design such optimal control laws
easily because these linear programming problems are solved easily by any usual solvers for the
linear programming. In the proposed formulation, the system model and the specified initial
and terminal conditions are treated together as equality constraints, and the input sequence
which we should design is chosen as a variable of the linear programming, so the optimal
feedforward control sequence can be obtained directly as the variable optimized by the solver.

The object function of the linear programming should be chosen to reflect the control purpose
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corresponding to the time optimal control, the optimal fuel control or the mixed optimal time-
fuel control. However, time optimal control cannot be formulated as the linear programming in
a straightforward way. While time optimal control is chosen out of the control laws satisfying
the given conditions so that its terminal time is most short, we cannot formulate the design
problem in the linear programming if the terminal time is chosen as the object function. Hence,
we need to consider an auxiliary problem formulated in the linear programming for its design
problem, and need to solve the original problem by utilizing the auxiliary problem.

Especially about time optimal control, its auxiliary problem is practically set on the analogy
of the auxiliary problem, which has been proposed and formulated as a nonlinear optimization
problem for nonlinear systems case in the previous chapter. In the mixed time-fuel optimal
control case, the weight value is introduced to realize the trade-off between time optimality and
fuel optimality. Furthermore, it is shown that these approach can be extended to having some
inequality condition about the output.

How to choose the object function is the just point that we shall highlight, and we claim that
it is new and easy approach. In this approach, if we were confronted with the case that any
model of the object isn’t given for design explicitly, the optimal control could be designed from
some system responses as long as the responses can be measured. This is the advantage of the
proposed method.

To verify the proposed methods, we apply the methods to the design problem of a positioning
control for track seek motion of a hard disk drive. On each evaluation of the time optimal,
fuel optimal and mixed time-fuel optimal, the optimal input is designed under the input and
output restrictions. Simulations results show that each optimal control to satisfy constraints
and restrictions can be designed easily by proposed methods.

5.2 Time Optimal Control Design Using Linear Program-
ming

In this section we shall propose an algorithm that time optimal control for linear discrete time
systems is designed using the linear programming on the analogy of the case that time optimal
control for nonlinear systems is designed by the nonlinear optimization. We shall also show that
not only time optimal control but also fuel optimal control, mixed time-fuel optimal control
and etc are formulated and solved as the linear programming in later. Furthermore, in this
approach, if information of the system, i.e., model and its parameters, is not given explicitly,
it is shown that optimal control is designed using only the system responses as long as the
responses are measured.

Consider a finite dimensional, linear time invariant, discrete time system (5.1):

Zryr = Pz + Dy

5.1
yr = Cxp + Duy, ( )

where 7, € R"*! is a state vector, u;, € R™! is a input vector, y, € RP*! is a output vector,
®ec RV T e RM*“™ C e RP*™ and D € RP*™,
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The output equation of (5.1) is represented in the vector form as shown in (5.2).

Yy =T'nzo+ PnUny (52)
[ o Up C
u co
Yy = y:I , Un = :1 , I'v = )
YN-1 UN-1 CcoN-1
[ D o,
cr D
by = ) .
ceN-r ... CT' D

where zp is an initial state vector, ['y is the observability matrix, ®y is a toeplitz matrix
consisting of the Markov parameters.

We consider the multi output case, and describe upper and lower bounds of each channel of
Uu; as {aj}jzl’“_’m, respectively. Each channel of input u; is normalized by dividing it by the
maximum of bounds, i.e., max; &;. As a result, u; is represented with a constant number i and
a normalized vector v; as follows.

u; = piv; (5.3)
pw >0
lvg| <o for j=1,---,m (5.4)
Ui=['0i1 Vig - Uim]T

where a; = &;/ max; &; is the normalized bound of each channel of u;, therefore, max; a; = 1
and p = maxu;. With input representation in (5.4), the output equation (5.2) is rewritten as

the following equality constraint.
O=[—YN+FN.’L'0|(1)N]§ (55)

T .

E=[ylvw - vio]

The time optimal control design of linear discrete time systems (5.1) can be formulated as
the linear programming by introducing its auxiliary problem similarly to the way of nonlinear
system case. First, we shall summarize the linear programming briefly.

Linear programming

Find § maximizing the cost function’(5.6) under the constraints (5.7).

max fre (5.6)
A€ <b
subject to { Al = beg (5.7)
b < & <w

where f, &, b, bey, lp and u, are vectors, A and Aeq are matrices. Each pair of (4, b) and
(Aeqs beq) means inequality and equality constraints, respectively. [, is a lower bound vector of
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€ and up is an upper bound vector. Equality or inequality in the vector form means that each
component of a vector should satisfy the equality or inequality condition. &

Finally, the auxiliary problems is described using the input representation (5.4) and equality
constraint (5.5) on the linear programming problem.

An auxiliary problem for time optimal control design of linear discrete time systems

The terminal time N and terminal condition Yy are given. Find a variable £ maximizing the
cost function (5.8) under the constraints (5.9).

m?,xfo, ff=[10 -+ 0] (5.8)
( Al=DB, A=[-Yy+Dyzo|®v], B=0O
] e=[f & - i, ] (5.9)
u>0
( |viy| < a5, maxa;=1 fori,j
¢

Once the auxiliary problem is solved, the maximum input amplitude i is obtained. According
to the examination with respect to the auxiliary problem for the time optimal control design,
if ¢« is more than the specified input saturation in the original problem, the terminal time N
must be extended, while, in the contrary case, N must be shortened, and then the auxiliary
problem should be solved again under the new terminal time. We can search the optimal time
N by repeating this algorithm until an approapriate solution is obtained.

Remark

e Note that the optimal solution satisfying constraints might not exist if the time slice is
rough, i.e., the sampling time is not short enough.

e There are many solves of the linear programming problem (5.6)-(5.7), for exmaple, the
function linprog in Optmization Tool Box of MATLAB. In our case, we have developed
and used a solver like linprog on MATX[36].

¢ The iteration algorithm, in our case, was realized by the bisection method practically.

5.3 Fuel Optimal Control Design Using Linear Program-
ming

We consider an other control design using the linear programming, i.e., the fuel optimal and

the mixed time-fuel optimal control designs, as well as the time optimal control design. Each

cost function of the time optimal control and fuel optimal control is put together in a cost
function by introducing weight variables as follows.

J:/tfa-1+ﬁ-|u(t)[dt (5.10)

to
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where a and 3 are weight variables. B = 0 means the time optimal control problem, a = (
means the fuel optimal case and other the other means the mixed case.

We first show that the fuel optimal control design problem is formulated in the linear pro-
gramming. As shown in the previous case, the control period is divided into N intervals, and,
in each interval, the input assume to be constant because of choosing the zero-order holder as
the input generator, for instance. Then the cost function (5.10) with @ = 0 and 8 = 1 can be
approximated as follows

ty N-1
min/ |u(t)| ~ min Z |u] (5.11)
u to Uug, —

It is known that the problem of minimizing an absolute value under linear constraints, ming |€],
can be formulated in the linear programming by an appropriate arrangement [38].

Problem of minimizing an absolute cost, ming |£], in linear programming

maxc’é, I=[-1 -1] (5.12)
€
E=[e ¢ "
§=¢r—¢
subject to (5.13)
£r>0
£ 20
¢

Using the above formulation, the fuel optimal control can be described in the linear program-
ming problem as follows.

Fuel optimal control design using linear programming

The terminal time N and the terminal condition Y are given. Find a variable ¢ maximizing
the cost function (5.14) under the constraints (5.15).

m?Xfo ff=[-1 .. —1] (5.14)

(A6 = B

A= [ Oy f —dy J

B = Yy +T'nzg

subject to ¢ . (5.15)
&= [ @h )" () - ()"

Uy
U 0
U 0

:

=+

i

Remark

e The cost function of the fuel optimal control design is represented by the sum of absolute
values of input sequences. To formulate this problem in linear programming, the input
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is devided into u;” and u; accroding to (5.12)-(5.13). Since the input u; must satisfy the
system constraints (5.5), (5.5) is also divided as shown in (5.15) in line with the input
division.
Finally we shall integrate the time and fuel optimal control problem. The mixed cost function
(5.10) is approximated similarly to (5.11) introducing the weight value ~ newly:

7= [Ty = - 1)+ S (5.16)
k=0

to

As to the auxiliary problem of the time optimal control design (5.8)-(5.9) and the fuel optimal
control design (5.14)-(5.15), these constraints and the cost functions can be put together into
a constraint and a cost function, respectively.

An auxiliary problem for mixed time-fuel optimal control design in linear program-
ming

The terminal time N and the terminal condition Yy are given. Find a variable ¢ maximizing
the cost function (5.17) under constraints (5.18).

max f1g,  fT=[1]—y - -] (5.17)
(At =B
A= [ —YN+FN.T()|@N _q)N]
B =0
subject to < - (5.18)
E=[a|@) - Wi)T )T o (wy_)T ]
w >0
{ a; > vl >0, o >v; >0, maxa;=1, fori,j

Remark

e Because this mixed design problem integrates the auxiliary problem of time optimal con-
trol design and the fuel optimal control design problem, iteration is needed similarly to
the time optimal case.

While only the input which we should design has the inequality constraints such as satura-
tions in previous design problems, the proposed method can be extended to one with output
inequality constraints. In real system, diie to some physical constraints and the care of safety,
the request to let the output leave in some region exists. Especially time optimal control is easy
to yield the large output because the input is in the switching form of the maximum amplitude.
We shall show the design method explicitly coping with these cases with the output constraints.

To prevent from confusing notations, we make Yn denote the terminal condition and Yy
denote an output variable. Then, an extended time optimal control design using the linear
programiming is shown as follows.

An auxiliary problem for time optimal control design with output inequality con-
straints
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The terminal time N and the terminal condition Yy are given. Find a variable £ maximizing
the cost function (5.19) under the constraints (5.20).

mgaXfTﬁ, 1T = [ 10 --- 0 ] (5.19)
(A = B
A = FNI'O CI)N -1
| -Yw| O |1
0
B=|9 }
) i (5.20)
&= [ulw - i ()]
u >0
logl <, maxa; =1, fori,j
.\ n <Yy <(
where each 7 and ( is the lower and upper bound vector of the output, respectively. %

Remark

e If the element of 7 or ¢ is oo, the corresponding element of Y¥ has no restriction.
¢ The same extension can be applied to the fuel optimal control design or the mixed time-
fuel optimal control design.

5.4 Time and/or Fuel Optimal Control Design Using
System Responses

The proposed control design problems formulated in the linear programming for the system
(5.1) need only the no-input response I'yzo and the toeplitz matrix ® consisting of the Markov
parameters as to system constraints. If these responses are measurable, we can design proposed
optimal control even if the system model and parameters are unknown.

e No-input response — I'nzo
e Unit impulse response  — I'yzg + ¢n
where ¢y = [DT, (CT)T, ..., (C‘I)N_I)FT]T'

Considering suppression of an effect of measurement disturbances and the Persistent Exciting
condition of input, [yzy and ®» can be estimated from the large data set of Y,, Ys, U, and
Uy in a sense of the least square [54].
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Tnzo &~ Li1n(pem)Wai) (5.21)
Oy ~ L Npim)+iend
Y, w, ]
(Wp = (U;J:,, L—YfI:U;}
[y - YN+ UN e U_Ngg
) Y, = ) . LU, = . )
Y1 Yoy Uiy e U
Yo ooy U -
Y, = ) . LU, = ) .
L | YUN-1 " YN-—145 UN-1 """ UN-1+j

where Alijm:n) denotes the sub matrix from the i-th to j-th rows and from m-th to n-th columns
of A. '

9.5 Numerical Examples: Positioning Control of Hard
Disk Drive

To illustrate effectiveness of the proposed methods, the positioning control for the track seek
motion of a hard disk drive is designed with respect to time optimal control, fuel optimal control
and mixed time-fuel optimal control, respectively. Since the speedy seek motion is wanted and
both input and output are restricted to some regions due to the physical constraints and the
care of safety, the control design problem for this system is suitable for an application of the
proposed method. We first consider a model of the drive briefly and then show simulation
results for each design.

5.5.1 A Hard Disk Drive System [16]

The Head of a hard disk drive is attached on the top of the carriage arm which is driven
by a voice coil motor, VCM. VCM generates torque in proportion to current of the coil. Let v
denote a command voltage, ¢ a coil current, R, a resistor and L, an inductance, respectively.
Then, the transfer function from the command voltage to the current is

1

) = 7V ) (5.22)

Although (5.22) shows that the frequency property of VCM is of the low-pass type, its
property is usually adjusted to flat by equipping VCM with a compensator for the current
amplifier. Therefore VCM with the compensator is considered as a proportional element Gq
[A/V].

Using G, and a conversion coefficient of current-to-torque, K; [N-m/A], the transfer function
from v to the angular acceleration of the carriage arm I is

1
Lil = _'KtGaU (523)
Iy
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Table 5.1: HDD parameter values
Explanation Symbol Value
VCM amplifier gain G, 259 x 10°1 A/V
Current-torque gain  K; 7.57 x 1072 N-m/A
Moment of inertia I,  5.70 x 10~ kg-m?
Pivot-head distance r; 520x 102 m
Equivalent back EMF k., 2.05 x 1072 sec~!
Sampling time  df  1.32 x 10 sec
Maximum input  tmee 9.32 x 10*2 m/sec?
Maximum velocity vmee 2.40 x 1010 m/sec

where I is moment of inertia. Since, for the hard disk system, the displacement of the head
is measured with a track as an unit and the displacement angle of the arm is less than 30° in
general, the displacement along the radius, p, is approximateéd by the arm angle z; and the
arm length r; as p; = riz;.

Furthermore, we shall define equivalent constants corresponding to the ones in (5.23) as

K
Ky == Current-to-torque constant K 7 [N/A]
1
Iy :
my = 2 Equivalent mass m, [kg]
1

, and transform (5.23) into

L1
p= m—beGa'U (5.24)

The state representation of (5.24) is shown as
d | p 101 P 0
5] =[5 o] [3)+] e ] 029

. Since the velocity, acceleration and input are restricted in design, we shall transform the
input in (5.25) into an equivalent acceleration and reconstruct the state space form including
effect of back electromotive force.

%[ﬂz[g -llchﬂJ“[H“ (5.26)

Using parameters in Table 5.1 and discretizing (5.26) with the sampling time 132y [sec] lead
to the discrete time state space representation:

o _ [ 100 1.30x 107 8.63 x 1079 . (5.27)
17 0.00 973 x 107t | Tk 1.30 x 10~% :

In the following numerical examples, we shall use (5.27) for each control design.
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5.5.2 Simulation results of positioning control for track seek motion

We shall design the positioning control for long track seek motion (6.00 x 107 [m]) and show
the results in Fig 5.1-5.12, here. In this simulation, the restrictions for the acceleration, velocity
and input are shown as below.

* Acceleration restriction: max || = 9.32 x 10*? [m/sec?]
e Velocity restriction: max [v| = 2.40 x 10™ [m/sec]
e Input restriction: max |u| = 5.00 x 1072 [m/sec?]

Time optimal control : Fig. 5.1~5.4

Head-seek controt with time optimal control
1000

—aceeleration ]
o 500 pF——er__ i
< T ——
3 T
i [
E
5 ot -
=
= i
@D H
<« i
<<,:-’ -500 |} ’ o e
-1 000 L 1 L 1 1 1
0O 0.001 0.002 0.003 0.004 0.005 0.006

Time [sec]

Figure 5.1: Acceleration in head-seek time optimal control

Head-seek control with time optimal control

ve locity —

2.5 | ]
g
E 1 .5 - T \\,\ 7
= e \'\\.\\
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K=} e IS
D e N
= 0.5 | "‘/‘_,,.—“‘ . \-\\ N .

0 ]
- O . 5 1 1 L 1 '] L
(o] 0.001 0.002 0.003 0.004 0.005 0.006

Time [sec]

Figure 5.2: Velocity in head-seek time optimal control
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Head-seek control with time optimal control
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Figure 5.3: Position in head-seek time optimal control
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Figure 5.4: Input in head-seek time optimal control

Fuel optimal control : Fig. 5.5~5.8

Head-seek control with minimum fuel control
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Figure 5.5: Acceleration in head-seek minimum fuel control
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Head-seek control with minimum fuel control
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Figure 5.6: Velocity in head-seek minumum fuel control
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Figure 5.7: Position in head-seek minimum fuel control
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Figure 5.8: Input in head-seek minimum fuel control

Mixed time-fuel optimal control : Fig. 5.9~5.12
( Weight value is set to v =4.5 x 1076 )
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Head-seek control with time optmal - minimum fuel control
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Figure 5.9: Acceleration in head-seek time optimal - minimum fuel control
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Figure 5.10: Velocity in head-seek time optimal - minumum fuel control
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Figure 5.11: Position in head-seek time optimal - minimum fuel control
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Head-seek control with time optmal - minimum fuel control
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Figure 5.12: Input in head-seek time optimal - minimum fuel control

It is easily seen that the restrictions on the acceleration, velocity and input regions are
satisfied in the time optimal, fuel optimal and mixed time-fuel optimal control design from
simulation result Fig. 5.1-5.12. While the designed input should be of the rectangular form
in theory, a part of the input gets out of rectangular shape as shown in Fig 5.4, 5.8 and 5.12.
This fact is caused by discretization. Originally, in continuous time systems, the switching can
be allowed to happen at any time in the control period. But, it is possible that the switching
occurs in a sampling interval in discrete time system, and in this case the input cannot become
the rectangular shape any more, that is, the shape should be broken a little in order to satisfy
the given conditions. If the sampling interval becomes more rough, no optimal input satisfying
the initial and terminal conditions with input saturation might exist. To avoid causing this
situation, the sampling intervals should be chosen short enough.

5.6 Concluding Remarks

In this chapter, for the linear time invariant discrete time system, the control design methods
which are formulated and solved as the linear programming problem with respect to (1) time
optimal, (2) fuel optimal and (3) mixed time-fuel optimal case are proposed. These problems
can be solved by existing solvers easily. Even if the parameters or model of system are not given
explicitly, they can be also solved as long as some system responses, the no-input response and
the unit pulse response, are measured or estimated. Furthermore, these problems have been
extended to ones with output inequality constraints. To verify the effectiveness of proposed
methods, they have been applied to the, positioning control for track seek motion of a hard disk
drive, and the control sequence has been designed in three cases. The simulation showed the
correct results.
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Chapter 6

Conclusions

6.1 Concluding remarks

This dissertation has proposed and has given new control 'system designs and applications
based on input-output data. In the beginning, a new LQG controller design method has been
proposed for linear time invariant continuous-time systems to extend the class with which data-
based control can deal, because the majority of previous works studied for linear time invariant
discrete-time systems. Next, in order to show that data-based control is effective in the case
that obtained system information is only input-output data, that is, in the case that models,
structures and dynamics are not given explicitly, a new adaptive learning control design using
the Markov parameters has been proposed and has been applied to the microtremor vibration
isolation system. At last, for an example that some control systems can be designed with
operations closed in input-output data, it has been shown that time optimal and fuel optimal
control design can be formulated in the form of a numerical optimization only with some system
responses and can be solved easily by usual solvers.
The details of obtained results in each chapter are summarized as follows.

A LQG Controller Design for Linear Continuous Time Systems based on Laguerre
Series Expansion

This chapter has proposed a new design method of a LQG dynamic controller for linear
continuous-time systems. The Laguerre basis is introduced to discretize continuous signals
and to expand the system. As a result a new system representation called “Laguerre system”
has been given. Design methods of the optimal feedback gain and full order observer have been
proposed with this Laguerre system representation, and it has been shown that by integrating
them a new LQG controller is given. The designed controller has been described by expan-
sion coefficients of a response, and the response is generated by injecting the time response of
Laguerre basis to the original system. Finally this chapter has provided a realization method
of the continuous-time state space model of the designed LQG controller represented with La-
guerre expansion coefficients. To verify the proposed method, it has been applied to a 2nd order
system and compared with a controller designed on the basis of the state space representation.
Consequently, it has shown that the proposed method gives an almost same controller with the
model-based controller as long as the coefficient’s length is long enough.
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An Adaptive Learning Control Using Markov Parameters

We presented adaptive learning control methods using Markov parameters. In these methods,
input and parameter are updated simultaneously to minimize a quadratic cost function. Because
the Method 1 cannot guarantee convergence if some disturbances are injected to the system,
to overcome this problem a new algorithm utilizing an inverse system has been proposed in the
Method 2. Simulation results showed that these methods are effective in the systems which
have modeling error and/or whose parameters are unknown, and that the control performance
is sufficiently good. Furthermore the proposed method has been applied to a vibration isolation
system, and the effectiveness has been confirmed.

Time Optimal Control Design with Nonlinear Programming

This chapter proposed a new computational approach to design time optimal control of general
nonlinear systems with input bound. This approach can be computed by an auxiliary problem
of finding the minimal input bound satisfying the terminal state condition at the given time,
and it could be solved by usual nonlinear optimization. To illustrate the efficiency of the
proposed algorithm, the approach has been applied to time optimal swing-up control of a
rotating type pendulum numerically and experimentally. The obtained numerical solution was
verified using a simplified model of a single pendulum, and shown to satisfy the necessary
condition of optimality. The algorithm has good feature that it is useful for the time optimal
control of general nonlinear systems

Time and Fuel Optimal Control Design by Linear Programming Using Input-
Output Data

In this chapter, it has been shown that problems of time optimal, fuel optimal and mixed
time-fuel optimal control system design can be formulated and be solved using the linear pro-
gramming for the linear time invariant discrete-time system. These problems can be solved by
usual solvers. Even if parameters or models of systems are not given explicitly, the problems
can be also solved as long as the non-input response and the unit pulse response are measured
or estimated. To verify the effectiveness of proposed methods, they have been applied to the
positioning control for track seek motion of a hard disk drive. The simulation has showed the
correct results.

6.2 Future research directions
The following research direction can be expected in future.

e In Chapter 2, to discretize continuous signals the Laguerre function was introduced. How-
ever, other orthonormal functions, for example the Kautz function, can be considered as
the function basis. It may be problem whether the continuous system can be represented
with such functions in similar way to the Laguerre function.

e In Chapter 2, because only a LQG controller design method has been proposed, it may
be extended to other controller designs, for example H,..

e Although the Laguerre function has been introduced to discretize continuous signals in
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Chapter 2, that provides a good feature that a signal is approximated with functions.
Application of this method to discrete-time system may solve the problem that many
expansion coefficients, i.e. the Markov parameters, are needed in order to represent the
system in the previous works, where the unit pulse is used as the basis of signal sequence.

e With the Laguerre system representation proposed in Chapter 2, a similar adaptive learn-
ing control of Chapter 3 may be considered for continuous-time systems. However, because
it may be difficult to estimate the length of required expansion coefficients in the control
period, the convergence of estimation of unknown system parameters may be taken as a
problem.

e Although, in Chapter 4 and 5, time optimal and fuel optimal control has been designed
in the form of sequences, it is convenient that the optimal control law can be given with
the state conditions or functions. Key point is whether other auxiliary problem meeting
this purpose can be considered and formulated.
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6.2. Future research directions
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