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Abstract

Low-density parity-check (LDPC) codes are linear codes defined by sparse parity check matrices.
Due to the sparseness of the parity check matrices, LDPC codes are efficiently decoded by the
belief propagation (BP) decoder. It is known that non-binary LDPC codes can outperform
binary ones. However, the decoding complexity grows with the size of non-binary alphabets.
Hence, there is a trade-off between performance and complexity. In this dissertation, we focus
on both binary and non-binary LDPC codes.

We analyze the decoding error probability for finite length LDPC codes under BP decoding.
The curve of the decoding error probability for finite length LDPC codes, as a function of channel
error probability, is divided into two regions called waterfall region and error floor region. We
analyze the decoding error probability in the waterfall region for binary LDPC codes and in the
error floor region for non-binary LDPC codes.

The main results of this dissertation are summarized as follows:

o We analyze the decoding erasure probabilities of waterfall regions for binary LDPC codes
over binary erasure channels (BECs) without any assumptions by analytically solving the

covariance evolution.

e We propose a method to lower the decoding error rates in the error floors of non-binary
LDPC codes defined over Galois field and general linear group transmitted over the BEC,
the memoryless binary-input output-symmetric (MBIOS) channel and g-ary memoryless
symmetric (¢-MS) channel. Simulation results show that the decoding error rates of the
codes designed by the proposed method outperform those of the codes designed by the

conventional method proposed by Poulliat et al.

e We give lower bounds of decoding error rates in the error floor regions for non-binary
LDPC codes over the BEC, MBIOS channel and ¢-MS channel. Simulation results show
that those lower bounds are tight. Moreover, we show that the decoding error rates for
non-binary LDPC codes defined over general linear group have same decoding performance
in the error floor regions with that for non-binary LDPC codes defined over Galois field.
Furthermore, we show that this tight lower bound monotonically decreases, as the order
of Galois field of non-binary LDPC code increases in the BEC and binary additive white

Gaussian noise channel.
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e We derive the weight distribution of the decoding error patterns in the BP decoder for

non-binary LDPC codes defined over general linear group transmitted over the BEC.
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Symbols and Abbreviations

R the set of real number

N the set of natural number including 0 (non-negative integer)
F field

Fom the finite field of order 2™

GL(m,F)  general linear group of degree m over F

FMxN the set of M x N matrices over F

#A the number of elements in (cardinality of) the set A
|A| the number of elements in (cardinality of) the set A
E[X] mean (expected value) of random variable X

Cov[X,Y] covariance of X and Y

LDPC low-density parity-check (code)
BP belief propagation

PA peeling algorithm

CE covariance evolution

BEC binary erasure channel

BSC binary symmetric channel

BAWGN  binary additive white Gaussian noise (channel)

MBIOS memoryless binary-input output-symmetric (channel)
q¢-SC g-ary symmetric channel
¢-MS g-ary memoryless symmetric (channel)
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Chapter 1

Introduction

1.1 Background

Reliable communications can be possible by channel codes or error correcting codes. In channel
coding, an appropriate amount of redundancy is added to the information bits to protect them
against the errors or the erasures in the channel. Then, the receiver decodes the received bits
to determine the information bits. Shannon’s channel coding theorem [1] asserts the existence
of a maximum rate, called the channel capacity or simply capacity, at which information can be
transmitted with vanishing error probability over a given channel.

A Linear code is an error correcting code such that any linear combination of codewords is
a codeword of the code. Each linear code is defined by Tanner graphs or a parity check matriz.
More precisely, a Tanner graph represents a parity check matrix and a parity check matrix defines
a linear code. For a given N and M, a linear code over a finite field I, is defined by an M x NV

matrix H = (h; ;), called parity check matrix, as follows:
{mGIFéV|H:cT:OT€IFéV[},

where & represents the transpose of row vector € = (r1,22,...,2x). A Tanner graph for a
binary linear code, i.e., a linear code over Iy, is represented by a bipartite graph with variable
nodes and check nodes. If the v-th variable node and the c¢-ch check node are connected, then
he,n = 1, otherwise h., = 0. For a non-binary linear code, i.e., a linear code over F, where
q > 2, the Tanner graph is represented by a bipartite graph with variable nodes, check nodes
and labeled edges. If the v-th variable node and the c-ch check node are connected with an edge
labeled h. ., € F, \ {0}, then A, # 0.

Low-density parity-check (LDPC) codes, invented by Gallager [2], are linear codes defined by
sparse parity check matrices. Due to the sparseness of the parity check matrices, LDPC codes are
efficiently decoded by the belief propagation (BP) decoder. Optimized LDPC codes can exhibit
performance very close to the Shannon limit [3]. Davey and MacKay [4] found that non-binary
LDPC codes can outperform binary ones. However, it is known that the decoding complexity

grows with the non-binary alphabet size [5]. Hence, there is a trade-off between performance

3



Block erasure rate

Error Floor \Waterfall

01 02 03 04 05 06
Channel erasure probability

Figure 1.1: Block erasure rates for the (3,6)-regular binary LDPC code ensembles of code length
256,512,1024, co.

and complexity. In this dissertation, we focus on both binary and non-binary LDPC codes.

To construct codes which have good decoding performances, it is important to analyze the
decoding error rates of LDPC codes. It is known that the decoding error probability of the
individual elements of an ensemble close to ensemble average with high probability [6]. More
precisely, all except an exponentially small fraction of codes behave within an arbitrarily small
value from the ensemble average. Hence, in this dissertation, we analyze the ensemble average
of decoding error probability.

The LDPC codes defined by Tanner graphs with the variable nodes of degree d, and the
check nodes of degree d. are called (dy,d.)-regular LDPC codes. Figure 1.1 shows that the
decoding erasure rates! for (3,6)-regular binary LDPC code ensembles over the binary erasure
channel (BEC) under BP decoding.

The BP threshold is denoted by €®F in Figure 1.1. For the BEC, the BP threshold is defined
by the supremum of the channel erasure probability such that the decoding error probability is
equal to 0. For the LDPC codes of infinite code length, the decoding erasure probabilities are
determined by the BP threshold. The BP threshold is analyzed by the density evolution [3].

On the other hand, there is room for further research for the LDPC codes of finite code
length, or simply finite length LDPC codes. Hence, we analyze the decoding error probability
for finite length LDPC codes. The curve of the decoding error probability for finite length
LDPC codes is divided into two regions which called waterfall region and error floor region. In
the waterfall region, the decoding error probability drops off steeply as the function of channel
error probability as in Figure 1.1. The waterfall region is mainly caused by the decoding errors
of large weights. In the error floor region, the decoding error probability has a gentle slope as in
Figure 1.1. The error floor region is mainly caused by the decoding errors of small weights. In

the analysis of decoding error rate for finite length LDPC codes, we analyze both the waterfall

IFor the BEC, the error rate in the decoding is called decoding erasure rate.

4



Table 1.1: Dissertation contribution.

Waterfall region Error floor region
Rigorous Stoppi
Finite-length derivation | Error floor Opflﬁgt, ;
scaling of scaling | analysis consteliation (set)
distribution
parameter

Binary LDPC
code ensemble

Non-binary LDPC
code ensemble

Amraoui et al. [7] | Chapter 3 | Di et al. [8] | Orlitsky et al. [9]

Kasai et al. [10] Chapter 4,5 Chapter 6

region and the error floor region.

1.2 Objectives of Dissertation

Table 1.1 shows that the works about analysis of decoding error probability for finite-length
LDPC code ensembles. The first and second columns represent the analysis of the waterfall
regions. Finite-length scaling is a method to analyze the waterfall regions. By the finite-length
scaling, the decoding erasure probabilities in the waterfall regions for binary and non-binary
LDPC code ensembles were analyzed by Amraoui et al. [7] and Kasai et al. [10], respectively.
However, those analyze use unproved assumptions. Hence, we should analyze the waterfall re-
gions without assumptions. The third and fourth columns represent the analysis of the error
floor regions. For the binary case, decoding error probability of error floors and weight distri-
bution of decoding error patterns (stopping set distributions) are derived by Di et al. [8] and
Orlitsky et al. [9]. However, the error floors for non-binary LDPC codes has not been done so

far.

Thus, we should solve the following problems to analyze the decoding error probabilities.
1. Rigorous derivation of scaling parameter for binary LDPC code ensembles
2. Rigorous derivation of scaling parameter for non-binary LDPC code ensembles

3. Analysis of decoding error probability in the error floors for non-binary LDPC code en-

sembles

4. Analysis of weight distribution of decoding error patterns (stopping constellation distribu-

tions)

The dissertation solves the problems 1, 3 and 4 in Chapter 3, Chapter 4,5 and Chapter 6,
respectively. The Dissertation does not deal the problem 2. This problem will be solved in

future works.



1.3 Main Results and Organization of Dissertation

The main contributions of this dissertation are analysis of decoding error rate for finite-length

LDPC code ensembles. The contributions and Organization of the dissertation are the following:

Preliminaries

Chapter 2 We introduce several definitions and basic facts on finite length LDPC codes.

Rigorous derivation of scaling parameter for binary LDPC code ensemble

Chapter 3 We derive the scaling parameter rigorously for the binary irregular LDPC code

ensembles.

Error floor analysis for non-binary LDPC code ensemble

Chapter 4 We give lower bounds of bit and symbol error rates in the error floor regions for
the non-binary regular and irregular LDPC code ensembles over the BEC. Furthermore,
we propose a design method to lower the error floors for the non-binary irregular LDPC

code ensembles over the BEC.

Chapter 5 We extends the results in Chapter 4 to the generalized non-binary LDPC codes
over the g-ary memoryless symmetric (¢-MS) channels. We give lower bounds of symbol
error rates in the error floor regions for the non-binary regular and irregular LDPC code
ensembles over the ¢-MS channel. Next, we propose a design method to lower the error
floors for the non-binary LDPC codes over the ¢-MS channel. Moreover, we compare the
decoding error rates in the error floors for non-binary LDPC codes over the general linear
group with those for non-binary LDPC codes over finite field transmitted over the ¢g-MS

channel under BP decoding.

Stopping constellation distribution for the non-binary LDPC code ensembles

Chapter 6 We derive the stopping constellation distributions for the non-binary regular and

irregular LDPC code ensembles.

Conclusion

Chapter 7 We conclude the dissertation.



Chapter 2

Preliminaries

In this chapter, we review LDPC codes and basic facts related to this dissertation. We also

introduce some notations used throughout this dissertation.

2.1 Mathematical Preliminaries

2.1.1 Finite Field of Order 2™

A finite field or Galois field is a field that contains a finite number of elements. The number of
elements in a finite field is called its order. Denote a finite field of order 2™, by Fom.

Let « be a primitive element of Fom. Once a primitive element « of Fom is fixed, each symbol
is given by an m-bit (vector) representation [11, p. 110]. We denote the m-bit representation of
v € Fam, by b(y). We denote the i-th bit of b(v), by b;(7)-

Example 1 With a primitive element o € Fys such that a® + a4+ 1 = 0, each symbol is
represented as b(0) = (0,0,0), b(1) = (1,0,0), b(a) = (0,1,0), b(a?) = (0,0,1), b(a®) = (1,1,0),
b(at) = (0,1,1), b(a®) = (1,1,1) and b(a®) = (1,0, 1).

2.1.2 General Linear Group

For an non-negative integer m and a field I, the set of m x m invertible matrices over F, i.e.,
Fm>™is called the general linear group over F and is denoted by GL(m,F). In this dissertation,

we consider GL(mg,Fams). The number of elements in GL(mg, Foms ) is given by

1 m3=0,

[T2 (2 —1) ms > 1.

1=

[m3lama =

In particular, the number of elements in GL(m,Fs) is

1 m =0,

"\ e -y met



To simplify the notation, we denote the number of elements in GL(m,Fs), by [m].

2.2 LDPC Codes

Gallager invented LDPC codes [2]. Binary and non-binary LDPC codes are defined by M x N
sparse parity check matrices. For the binary LDPC codes, each entry of parity check matrices is
an element in Fo. For the non-binary LDPC codes over group (or field) G, each entry of parity
check matrices is an element in G.

The Tanner graph for a binary LDPC code is represented by a bipartite graph with variable
nodes, check nodes and edges. For the non-binary LDPC codes over group (or field) G, the
Tanner graphs are represented by bipartite graphs with variable nodes, check nodes and edges
labeled by non-zero elements in G.

The details are in the following sections.

2.2.1 Binary LDPC Code

A binary LDPC code is defined by the null space of an M x N sparse parity check matrix
H = (h; ;) € FY*N as follows:

{x eF) |Hz" =0" e Fy'}.

Note that N is called bit code length or simply code length. The parity check matrices are
represented by Tanner graphs as the following: If the v-th variable node and the c-th check node

are connected with an edge, h., = 1, otherwise h., = 0.

Example 2 Figure 2.1 shows an example of Tanner graph. The circles and squares in the
Tanner graph represent variable nodes and check nodes, respectively. Tanner graph in Fig. 2.1

represents the following matrix:

S O ==
S = O =
_ o o =
S = o= O
_ o = O
_ = o O

2.2.2 Non-Binary LDPC Code over Galois Field

A non-binary LDPC code defined over Galois field Fom is defined by the null space of an M x N

sparse parity check matrix H = (h; ;) € F%,XN as follows:

{z e FY. | H" =0T e F}l.}.



1

= W N

2
3
4
)
6

Figure 2.1: An example of Tanner graph. The circles and squares represent variable nodes and
check nodes, respectively.

Note that N is called symbol code length. The bit code length n is given by m/N. The parity check
matrices for non-binary LDPC codes are also represented by Tanner graphs as the following:
If the v-th variable node and the c-th check node are connected with an edge labeled h., €
Fom \ {0}, hew # 0 heo = 1, otherwise he,, = 0.

2.2.3 Non-Binary LDPC Code over General Linear Group

A non-binary LDPC code defined over general linear group GL(m,Fs) is defined by the null
space of an M x N sparse parity check matrix H = (h; ;) € GL(m,F2)™*¥ as follows:

N
(@1,@2,...,xN) € (FF)N | D hija) =0T € Fy' Vie [1,M]
j=1

where we denote [k, ko] := {k € N | ky < k < ko} for k; < ko. The bit code length n is given
by mN. The parity check matrices for non-binary LDPC codes are also represented by Tanner
graphs as the following: If the v-th variable node and the c-th check node are connected with
an edge labeled h¢, € GL(m,F3) \ {0}, h¢, # 0, otherwise h¢, = 0.

2.2.4 Generalized Non-Binary LDPC Code

In the similar way, we define the non-binary LDPC codes over general linear group GL(mg, Foma).
Non-binary LDPC codes over general linear group GL(mg,Fams) are defined by the null space
of M x N sparse parity check matrix H = (h; ;) € GL(mg, Fams )M >N as follows:

N
(wl,zcg,...,a:]v) S (ngw%)N | Zhiyjﬁc;r = OT S anrs’él Vi € [1,M}
j=1

We refer the number of variable node N, as symbol code length of non-binary LDPC code over
GL(mg,Fams ). The bit code length is mgmy4N. The parity check matrices for non-binary LDPC
codes are also represented by Tanner graphs as the following: If the v-th variable node and
the c-th check node are connected with an edge labeled h., € GL(ms3,Fama) \ {0}, hey # O,

9



otherwise h¢, = 0.
Since the non-binary LDPC codes over Fom = GL(1,Fam) and over GL(m,Fy) are special
cases for the non-binary LDPC codes over GL(ms,Fam, ), we refer the non-binary LDPC codes

over GL(mg,Fams) as generalized non-binary LDPC codes.

2.3 LDPC Code Ensembles

It is known that the decoding error probability of the individual elements of an ensemble close
to ensemble average with high probability [6]. More precisely, all except an exponentially small
fraction of codes behave within an arbitrarily small value from the ensemble average. Hence, in

this dissertation, we analyze the ensemble average of decoding error probability.

2.3.1 Binary Irregular LDPC Code Ensemble

Let A\; and p; be the fractions of the edges connected to variable nodes and check nodes of
degree i, respectively. Let £ and R be the sets of degrees of variable nodes and check nodes,
ie. L:={i| A #0}and R := {i | p; # 0}, respectively. Each irregular LDPC code ensemble
[12] is characterized with the number of variable nodes N and a pair of degree distribution,
Mz) =, Mzt and p(x) =30, cp pir' ™t

The total number of edges in the Tanner graph is

N
¢= fol Az)dz

Let L; and R; be the fraction of the variable nodes of degree i and the check nodes of degree j,

respectively, i.e.,

_ Ai ._ Pj
- 1 ) Rj = S :
i [y AMz)d o plx)de

i .

Define the design rate r as follows:

fol p(:c)dx.

r=1—-—F——

fol Mz)dx

The number of check node M is M = (1 — r)N. The average variable node degree is expressed

as

1

Aove = ———.
Jo Mz)dz

Assume that the number of variable nodes N and the degree distribution pair A(z), p(z) are
given. A binary irregular LDPC code ensemble E(N, A, p) is defined in the following way. There
exist L; N variable nodes of degree ¢ and R;N(1 —r) check nodes of degree j. A node of degree

i has i sockets for its connected edges. Consider a permutation 7 on the number of edges £.

10
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[ Random Permutation

Figure 2.2: The irregular binary LDPC code ensemble E(9, A, p), where A(z) = %x—i— %mz + %x3
and p(z) = 123 + 22°.

Join the i-th socket on the variable node side to the m(i)-th socket on the check node side. The
bipartite graphs are chosen with equal probability from all the permutations on the number of

edges.

Example 3 Figure 2.2 shows the irregular LDPC codes ensemble E(9, A, p), where

_ 3 3 2,43 _ 43,35

/\(x)—14x—|—14x +7x, p(ac)—7$ +7x.
The number of variable nodes is N = 6. The sets of degrees of variable nodes and check nodes
are £ = {2,3,4} and R = {4,6}. The total number of edges is & = 28. The fraction of the

variable nodes and check nodes are

The design rate is r = % The number of check nodes is given by M = 4.

Discussion 1 A (dy, d.)-reqular LDPC code is a binary LDPC code such that every variable
node has degree d, and every check node has degree d.. Figure 2.1 shows a (2,3)-regular LDPC
code. The (dy,d.)-regular LDPC code ensemble is denoted by E(N, 2% 1 pde=1).

2.3.2 Non-Binary Irregular LDPC Code Ensemble

The non-binary LDPC code ensembles are defined in an analogous way as in the binary case.
Firstly, we define the non-binary irregular LDPC code ensemble defined over GL(mg, Fom, ). For
a given number of variable nodes N, Galois field Fom and degree distribution pair A(z), p(z), a
non-binary irregular LDPC code ensemble LDPC(N, GL(m3, Fama ), A, p) is defined in the follow-
ing way. There exist L; N variable nodes of degree ¢ and R;N(1 —r) check nodes of degree j. A
node of degree ¢ has i sockets for its connected edges. Consider a permutation 7 on the number

of edges. Join the i-th socket on the variable node side to the 7 (i)-th socket on the check node
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side. The bipartite graphs are chosen with equal probability from all the permutations on the
number of edges. Each label in an edge is chosen as an element from GL(mg3,Fams) \ {0} with
equal probability.

To simplify the notation, we denote the non-binary LDPC code ensemble over GL(m,F3)
and over Fom, by EGL(N,m, A, p) and EGF(N, Fam, A, p), respectively.

Discussion 2 The regular non-binary LDPC code ensemble is defined in a way similar
to the binary case. The (dy,d.)-regular non-binary LDPC code ensemble is denoted by
LDPC(N, GL(m3, Fom, ), 21 xde=1_p).

For the non-binary defined over Galois field case, it is empirically known that (2, d.)-regular
non-binary LDPC codes exhibit good decoding performance among other LDPC codes for m > 6
[13]. However, this is not the case for m < 6. In this dissertation, we consider the irregular
non-binary LDPC codes which contain variable nodes of degree two for the generality of code

ensemble.

2.4 Channel Models

In this section, we introduce channel models used in this dissertation.
To simplify the notation, the input alphabet is {+1,—1} indeed of {0,1}. The mapping is
the following:

00— +1,

1+———1.

With some abuse of notation, we make no distinction between {+1,—1} and {0, 1}.

We regard the codewords in the non-binary LDPC codes as binary codewords (z1, Z2, ..., ZxN),
i.e., the codewords x are represented by (x11,%1,2,...,ZN,m), Where x; ; = bj(z;) for i €
[1,N],j € [1,m]. Hence, the codewords in the non-binary LDPC codes can be transmitted

by binary channels. We denote the received word as (y1,1,y1,2,-- -, YN.m)-

2.4.1 Binary Erasure Channel (BEC)

Let X and Y be the channel input and the channel output, respectively. For the BEC, the
channel input and channel output take value in the alphabet X € {+1,-1} and Y € {+1,-1,7},
respectively, where ? indicates an erasure. Each channel input is either erased with probability e
or received correctly with probability 1 — e, where € is referred to as channel erasure probability.

Figure 2.3 depicts the BEC with channel erasure probability e.

2.4.2 Binary Symmetric Channel (BSC)

For the BSC, the channel input and channel output take value in the alphabet {+1,—1}. Each
channel input is either error with probability € or received correctly with probability 1 — €, where

€ is referred to as crossover probability. Figure 2.4 depicts the BSC with crossover probability e.

12



—1 ——e-1

Figure 2.3: The BEC with channel erasure probability e.

+1 1—¢ +1

Figure 2.4: The BSC with crossover probability e.

2.4.3 Binary Additive White Gaussian Noise (BAWGN) Channel

Each channel inputs and channel outputs of the BAWGN channel are X € {+1,—1} and Y € R,
respectively, where R is the set of real number. More precisely, Y = X + Z, where Z is a
Gaussian random variable with zero mean and variance o2. In other words, the transition

probability density function for the BAWGN channel with noise variance o2 is written as

pyix(y | x) = \/2;76@ [—(y;;) ]

where exp|x] is the exponential function. The signal to noise ratio (SNR) of the BAWGN channel

with noise variance o2 is o~ 2.

2.4.4 Memoryless Binary-Input Output-Symmetric (MBIOS) Channel

For the binary channel, we denote the channel input @ := (z1,1,%1,2,- -, ZN,m—1,TN,m) and the
channel output ¥ = (¥1,1,¥1,2, - - »YN,m—1,YN,m). A channel is called memoryless binary-input
channel if
N m
p(y| =) = H Hp(yi,j | @i ;)
i=1j=1

A memoryless binary-input channel is called output-symmetric if

p(y|z) =p(-y| —z).

The MBIOS channels are characterized by its L-density a [5]. Examples of the MBIOS channels
include the BEC, the BSC and the BAWGN channel.
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2.4.5 g¢-ary Memoryless Symmetric (¢-MS) Channel

The cardinality of an input alphabet X of a g-ary channel is ¢ i.e., |[X| = ¢. For the g-ary
channel, we denote the channel input  := (z11,%12,...,ZN,ms—1,LN,m,) and the channel
output ¥ = (Y1,1,%1,2, - - - » YN,ma—1, YN,m,) for a fixed positive integer ms. A g-ary channel is
called memoryless if
N mo
ply|z) = H Hp(yi,j | i)
i=1j=1

The channel symmetry for a g-ary memoryless channel is given in the following definition.

Definition 1 [14, Definition 1] A g-ary memoryless channel which is characterized by a tran-
sition probability p(- | -), an input alphabet X', and an output alphabet Y is symmetric if there

exists a function 7 : Y x X — ) which satisfies the following properties.
1. For every x € X, the function 7 (-,z) : Y — Y is bijective.

2. For every z1,29 € X and y € ), the following equality holds:
p(y | z1) = p(T(y, 22 — x1) | 22)

3. For channels whose output alphabet ) is continuous, the mapping 7 is that its Jacobian

is equal to 1.

Example 4 The g-ary symmetric channel (¢-SC) is an example of the ¢-MS channel. We
consider 2™-SC in this dissertation. The input alphabet is X = Fom and the output alphabet is
Y = Fam for the 2"*-SC. The transition probability function is

1—¢ T =y,
e/(2™m—1) z#uy.

p(ylz)=

If we set X = ]F21n, y = ]:FQTVL and
T(y,z) =y +w,
then Definition 1 holds the 2™-SC.

Example 5 The MBIOS channel is also an example of the ¢-MS channel. If we set the input
alphabet X' = Fy, the output alphabet is ) and

y x=0,
T(y,x) =
-y = 17

then Definition 1 holds the MBIOS channel.
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2.5 Decoding Algorithms

In this section, we review decoding algorithms and several properties about decoding algorithms.

2.5.1 Belief Propagation Decoder for Binary LDPC Codes

BP decoding proceeds by sending messages along the edges in the Tanner graph. The messages
arising in the BP decoder for binary LDPC codes are vectors of length 2. Let \IIE,[)c be the message
from the v-th variable node to the c-th check node at the ¢-th iteration. Let @éﬁ), be the message

from the c-th check node to the v-th variable node at the ¢-th iteration.

Initialization

Set £ = 0. Recall that N and M are the number of variable nodes and check nodes in a Tanner
graph, respectively. For v € [1, N], let C,, = (C,,(0), C, (1)) denote the initial message of the v-th

variable node. The initial message C, is given from the channel outputs as follows:

9!
—
o
=
I

Pr(Yv =Y | Xy = 0)7
Pr(YU =y, | Xy = 1).

a
~—
-
=
Il

Let NM¢(c) be the set of the indices of the variable nodes connecting to the c-th check node. Set
for all ¢ = [1, M] and v € N (c),

Iteration

Iteratively perform the following actions for £ =1,2,....

Variable node action Let N, (v) be the set of the indices of the check nodes connected to

the v-th variable node. The message \I/,(Jé)c is given by the component-wise multiplication of the

initial message C, and the incoming messages @E{)

N, (v) \ {c}, i.e., for x € Fy

, from check nodes whose indices c are in

1 ¢
V(@) =2C(2) [ oY, ().
C c'eN,(v)\{c}

where ( is the normalization factor such that 1 = \Ifgé?:(O) + \117(16)5(1)

Check node action The convolution of two vectors ¥; and ¥, is given by

[T e)@= >  Wi(y¥s(2),

y,2EFy:x=y+2
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where Y

To simplify the notation, we define

yozcFaa—ytz Y1(y)¥2(2) is the sum of Wy (y)¥s(2) over all y, z € F such that x = y+z.

@ U, =0, 6UsB - P V.
i€{1,2,....k}

The message @Ef;* R

o= P vl
v EN(\ o}

is given as, for x € Fy

Decision

For z € Fy

1
DY (z) = Ecv(gc) IT 2%,
ceN, (v)

where ( is the normalization factor such that 1 = Dq(,é)(O) + Dl(,e)(l). The decoding output &

given as the following:

0 DI (0)> D),
i =<1 DY (0) < DP (1),

where 7 represents that the v-th symbol is not recovered.

2.5.2 Peeling Decoder for Binary LDPC Codes

The peeling algorithm [15] is a sequential iterative decoding algorithm for the BEC. As the PA
proceeds, edges and nodes are progressively removed from the original Tanner graph and the
so-called residual graph is left at each iteration. The residual graph at each iteration consists
of the variable nodes that are still unknown and the check nodes and the edges connecting to
those variable nodes. The decoding process successfully stops if and only if the residual graph
vanishes.

Peeling decoding proceeds as follows.

Initialization Variable nodes receive the channel outputs. The variable nodes receiving the
known values send their values to the check nodes connected to them. Then the variable nodes

sending their values and edges connecting to those variable nodes are removed from the graph.

Iteration The decoder uniformly chooses a check node of degree one in the residual graph. The

chosen check node sends the value computed from the received values to the adjacent variable
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node. The variable node propagates this value to all adjacent check nodes. The variable node is

removed together with its edges.

Decision If the decoder does not find any check nodes of degree one in the residual graph, then
the decoding process stops. If the residual graph is empty, then the decoding process succeeds,

otherwise it fails.

Discussion 3 For the BEC and sufficiently large number of iterations, the BP decoder stops in
a fixed point of decoding. It is known that the BP decoder and the peeling decoder stop in the
same decoding results [15]. Hence, we are able to analyze the decoding performance under BP

decoding by analyzing peeling decoder.

2.5.3 BP Decoder for Non-Binary LDPC Codes

The BP decoder for the non-binary LDPC codes is an extension of the BP decoder for binary
LDPC codes. BP decoding proceeds by sending messages along the edges in the Tanner graph.
The messages arising in the BP decoder for LDPC codes over GL(mg, Fams ) are vectors of length
2™ where m = mgzmy. Recall \IJE,Q; is the message from the v-th variable node to the c-th check
node at the ¢-th iteration and <1>£"2, is the message from the c-th check node to the v-th variable
node at the ¢-th iteration.

Once a primitive element of GL(mg,Fam,) is fixed, each symbol in GL(m3,Foms) is repre-
sented as the m-bits. We assume that the codewords are transmitted over the 2™*-MS channels
such that my | m. Then, each symbol x; of the codeword (1,2, ...,xy) is represented as mq
channel inputs to the 2™1-SC channel, where ma = m/m;. We denote the channel outputs by
(Y1.1,Y1.25 -+ s YN.my) € YN™2.

In the case for m; = 1, the 2™'-MS channels represent the MBIOS channels.

Initialization

Set £ = 0. For v € [1, N], let C, = (Cy(7))2eGL(ma,Fym,) denotes the initial message of the v-th
variable node, where (Cy(%))zeGL(ms,F,m,) 18 the vector of length 2™. For v € GL(mg3, Fama),

the element of initial message C,(7) is given by the channel outputs as follows:

mo
Co(y) = [T (Wi | (0;(0))jeimai—1)+1.m11)-
=1

Set for all ¢ € [1, M] and v € Nc(c),

Iteration

Tteratively perform the following actions for £ =1,2,....

17



Variable node action The message \I/g)C is given by the component-wise multiplication of

the initial message C, and the incoming messages @gg)v from check nodes whose positions ¢’ are

in N, (v), L.e., for z € F;2,

V@) =0 ) [ eV, (),
c'eNy(v)\{c}

where ( is the normalization factor such that 1 =3 _pms \Ilge)c(m)
2™m4

Check node action The convolution of two vectors ¥; and ¥, is given by

(U1 @ Ws](z) = Z 1 (y)¥a(z),

Y,z E]F;nﬁél x=y+z

where Zy7zeF%4w:y+z Uy (y)Pa(z) is the sum of ¥y (y)Ua(z) over all y,z € F2, such that
xr = y + z. To simplify the notation, we define @ie{l 2.k} U, =0, Uy --- DY, The

D)

message is given as, for z € F.2,

¥ (@) = W (hoha),

o= P,
v EN(O\ (v}

el (@) = DY (he).

c,v

Decision

Define

argmax ¥ := {z | Vy € F3;3, U (z) > U(y)},

ms
z€F2m4

and for z € Fo.2,

DO () 1= ¢ Oy (@) Toens () 240 (@),

where ¢ is the normalization factor such that 1 = _pms D" (x). For v € [1,N], let 2 be

omy

the decoding output of the v-th variable node. Define

DY) = argmax D ().

mg
2E€F iy

If |D1(,Z)| =1, the decoding output im(f) is the element of Dl(,e). If |Dy)\ > 1, the decoder chooses
2 € DY with probability 1/|D].

Example 6 In the case for non-binary LDPC code defined over general linear group GL(3,F5),
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the messages are represented by vectors of length 23 as follows:
C, = (C,(000), C,(100), C,(010), C,(110), C,(001), C,(101), C,(011), C,(111)).

In the case for non-binary LDPC code defined over Galois field Fas, the messages are represented

by vectors of length 22 as follows:

where « is a primitive element of Fys.

2.5.4 Peeling Decoder for Non-Binary LDPC Codes

We assume transmitted over the BEC. The peeling decoder assigns a set of candidate symbols
for the decoding result to each variable node. Such a set is referred to as state of the v-th
variable node and denoted by E,, where F, C Fom. Initially, for all v € [1, N], the peeling

decoder assigns the state
E, ={y €Fam | bi(y) =0 (for i s.t. y,;, = 0),b;(y) =1 (for i s.t. y,; = 1),
bj(y) € {0,1} (for j s.t. y,; =7)} (2.1)

to the v-th variable node. In words, the peeling decoder assigns the states corresponding to the

channel outputs to the variable nodes. For any subsets Ay, As, ..., A C Fom, we denote
k k
> A= {Za laj € Aj (j = 1,2,...,k)}.
i=1 i=1

To simplify the notation, for v € Fam and E C Fom, we define vE := {ye | e € E}. If
E, N hc_}} (ZieM(c)\{v} hc,iEZ-) is a proper subset of F,, then (v,c) is said to be an active pair.

The peeling decoder involves the following 3 steps:

1. Initially the peeling decoder assigns the states corresponding to the channel outputs to the

variable nodes.

2. The peeling decoder chooses an active pair (v, ¢) uniformly at random. The peeling decoder

assigns F, «— FE, N hc_% (ZZ—GNC(C)\{U} hmEi) to the v-th variable node.
3. If there is no active pair, then the peeling decoder stops. Otherwise repeat step 2.

Note that the cardinality of the states of the variable nodes do not increase as decoding proceeds.

Discussion 4 All the nonzero entries in a message arising in the BP decoder are equal [16,
Lemma 2]. For the BEC and sufficiently large number of iterations, the BP decoder stops in a
fixed point of decoding. In [17], Rathi et al. proved that the BP decoder and the peeling decoder
stop in the same fixed point of decoding. More precisely, {DQ(,Z)}”E[L ) for sufficiently large £ is
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equal to {Ey}ve[L N7 in the same channel outputs. Thus, if we analyze the fixed point of peeling

decoder, we are able to analyze the condition of successful decoding under BP decoding.

2.6 Analysis of Decoders

2.6.1 All-zero Codeword Assumption

For binary LDPC codes over the MBIOS channel under BP decoding, the bit error probability is
independent of the transmitted codeword. Hence we are able to assume that all-zero codewords
are sent without loss of generality to analyze the decoding error rate [6] for binary LDPC codes
over the MBIOS channel under BP decoding. This assumption is referred to as the all-zero
codeword assumption. In the case for non-binary LDPC codes over the MBIOS channel under
BP decoding, all-zero codeword assumption also holds [16, Lemma 1].

In this section, we prove that all-zero codeword assumption also holds for non-binary LDPC
codes defined over GL(mg, Fams) transmitted over the 2™ -MS channel under BP decoding.

Lemma 1 For non-binary LDPC codes over GL(ms3, Fom, ) transmitted over the 2-MS chan-
nel under BP decoding, the symbol error probability is independent of the transmitted code-
word. In other words, all-zero codeword assumption holds for non-binary LDPC codes defined
over GL(mg,Fam,) over the 2™1-MS channel under BP decoding.

The proof of Lemma 1 is in Appendix 2.A.

2.6.2 Decoding Failure

Firstly, we consider the non-binary case. Recall that we are able to assume that all-zero code-
words are sent without loss of generality. The v-th symbol is eventually correct [18] if there
exists L, such that for all £ > L,, :ES)E) = 0. The block is eventually correct if and only if all
the symbols are eventually correct. The i-th bit in the v-th symbol is eventually correct if there
exists L, such that for all £ > L,, b;(v) =0 for all v € D). The block erasure rate, the symbol
erasure rate and the bit erasure rate are defined by the fraction of the blocks, the symbols and
the bits which are not eventually correct, respectively.

Next, we consider the binary case. The v-th bit is eventually correct if there exists L, such
that for all £ > L,, ig) = 0. The bit error rate is defined by the fraction of the bits error bits

which are not eventually correct.

2.6.3 State of Non-binary Peeling Decoder
Closure under Linear Subspace for State

Recall that we are able to assume that all-zero codewords are sent without loss of generality. The

states of peeling decoder for non-binary LDPC codes are represented by linear subspaces [16,

20



Lemma 2], [19, Lemma 2] as follows:
{b(w) eFF | w € E, C Fam}

In other words, the set of the m-bit representations for the indices corresponding to nonzero
entries of a message arising in the BP decoder forms a linear subspace of F35* [16, Lemma
2], [19, Lemma 2].

Closure under Additive of Galois Field for State

The states are the subsets in Fam which are closed under the addition in Fam. From (2.1),
initially, the states are subset in Fom which is closed under the addition in Fom. We claim that if
the subset E C Faon is closed under the addition, the subset vE is also closed under the addition
for v € Fom \ {0}. For all e}, e € vE, there exist e1,ea € E such that e} = ey and e}, = 7yes.
For all €}, e, € vE, we see that

€] + ey =ver +yea = y(er + e2) € YE.

Hence, the subset vE C Fom is closed under the addition if £ C Fom is closed under the addition.
We claim that the subset E41 N Ey C Fam is closed under the addition if the subsets E, Eo C Fam
are closed under the addition. For all ey, eo € E1 N FEy, we see that e; +e2 € E7 and ey +eg € Fo
since e1,es € Fy and ey, ey € Es. Since e; + e2 € E1 N Ey, the subset By N Ey C Faom is closed
under the addition if the subsets E1, Fs C Fym are closed under the addition. Obviously, if
the subsets Fq, Es, ..., Er € Fom are closed under the addition, Zle F is closed under the
addition. Hence E, N hc_}} (ZieM(c)\{v} hc,iEi) is closed under the addition, if F; is closed under
the addition for 7 € Nc(c) \ {v}. Recall that initially the states are subset in Fom which is closed

under the addition in Fom. Thus, all the states are closed under the addition in Fom.

2.7 Tools for Performance Analysis

2.7.1 Threshold and Density Evolution

In this section, we review the BP threshold and density evolution for the binary LDPC codes.

For a < b, define [a,b] :={z € R|a <z < b} and (a,b] :={z € R|a <z < b}. Let Pz(e,N) be
the block erasure probability under BP decoding for channel erasure probability ¢ and the bit
code length V. The BP threshold is defined by

€Bp := sup { lim Pg(e, N) = O},
e€lo,1] T

and characterized via density evolution [3] as follows:

egp = sup {y=1—p(1l —eX(y)) has no solution y € (0,1]}.
e€(0,1]
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Figure 2.5: An example of stopping set.

2.7.2 Waterfall Region and Error Floor Region

The block error probability is represented by the sum of two contributions, the decoding error of
large weight (of order O(N)) and the decoding error of small weight (of order o(N)). The curve
of the block error probability for finite length LDPC codes is divided two regions which called
waterfall region and error floor region. In the waterfall region, the block error probability drops
off steeply as the function of channel parameter. The curve of the block error probability in the

waterfall region is represented by @-function, where

Q) = V%? /:o exp {—Q;] da.

The waterfall region is mainly caused by the decoding erasures of large weights (of order O(N)).
In the error floor region, the block erasure probability has a gentle slope. The curve of the block
error probability in the error floor region is represented by a polynomial. The error floor region

is mainly caused by the decoding erasures of small weights (of order o(V)).

2.7.3 Stopping Set

A stopping set S is a set of variable nodes such that all the neighbors of S are connected to S at
least twice. With some abuse of notation, we make no distinction between the set of the variable

nodes and the set of the position of the variable nodes.

Example 7 Figure 2.5 shows an example of stopping set. The 5th, 7th and 9th variable nodes
forms a stopping set since all the neighbors of those variable nodes are connected to those variable

nodes at least twice.

For the binary LDPC code over the BEC, the stopping sets are the fixed points of the BP
decoder. It is known that BP decoding is failure if a stopping set is included in the set of
position i € [1, N] such that the channel output y; =?. Hence, the stopping sets are important

to characterize the decoding erasures.
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Since the definition of stopping sets depends only on structure of a Tanner graph, we extend

the definition of the stopping set for the non-binary LDPC codes.

2.7.4 Stopping Constellation

Definition 2 [17] A stopping constellation { E,},cp1,n) is defined as an assignment of the states
such that

E,Choy | > heiEi |, (2.2)
i€ENc()\{v}

for any v € [1, N] and all the check nodes connecting to the v-th variable node.

It is known that stopping constellations are fixed points of the peeling decoder and the BP
decoder [17]. In this chapter for a given stopping constellation we refer to the number of states

whose dimensions are not equal to 0 as the weight of the stopping constellation.

2.7.5 Stopping Constellation and Stopping Set

In this section, we show the relationship between the stopping constellation and the stopping
set. For a given stopping constellation {E, },e[1,n], let S be the set of variable nodes such that

the dimensions of the corresponding states are not 0, i.e.,
S:={ve[l,N]| E, #{0}}.

Lemma 2 For a fixed G € LDPC(N, GL(mg3, Fama), A, p) and a given stopping constellation, the

set of variable nodes S for the stopping constellation forms a stopping set.

proof: If there exists a check node in ¢ which connects to S once, then for the variable node in
v € S such that E, # {0} and hoy > ieNi(e)\{o} NeiBi = {0}. Hence, the assignment of the
states { E, }oe[1,n] is not a stopping constellation if there exists a check node which connects to
S once. Thus, all the neighbors of S are connected to S at least twice. Therefore, the set of

variable nodes S for the stopping constellation forms a stopping set. (Q.E.D.)

Lemma 3 For a fixed G € LDPC(N, GL(mg, Fams ), A, p) and a given stopping set S, there exist

at least one stopping constellation with the set of variable nodes S such that S = S.

proof: For a given stopping set S, the assignment of state { E, },¢[1,n] such that E, = F3' for all
veSand E, = {0} for all v € [1, N]\ S is a stopping constellation. (Q.E.D.)

The stopping constellations of small weight degrade the decoding erasure rates of non-binary
LDPC codes. From those lemmas, we see that in order to get a code which does not contain the

stopping constellation of small weight, we need to eliminate the stopping sets of small weight.
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2.8 Summary

In this chapter, we have reviewed LDPC codes and basic facts related to this dissertation. We
have also introduced some notations used throughout this dissertation. We have proved the
all-zero codeword assumption for non-binary LDPC codes over the ¢-MS channel under BP
decoding. Moreover, we have shown the relationship between the stopping sets and stopping

constellations.

Appendix 2.A Proof of Lemma 1

proof: Fix a Tanner graph G of a LDPC code over GL(mg, Fom,s ). We will compare the decoding
process when the all-zero codeword and a codeword & # 0 are transmitted. We assume that
the noise realizations are the same in the both all-zero codeword and a codeword « case. To
simplify the notation, we denote Y, = (bj (7)) jelmy(i-1)+1,me4) and 2y, ; 7= (Tv5) je[my (i—1)+1,m14)
for i € [1,mq] and v € [1, N]. From the channel symmetry for the ¢-MS channel, the same noise

realizations are for v € [1, N] and i € [1,mg]

P(Yv,i | 0) = p(2v,i | 0),
PYoi | 2,0) = P(T (20,0520 5) | 2y 4)-

Let CU,QS;Q,\I!,(J{)C,DU be the messages in the BP decoder for all-zero codeword and
C‘v7 @qu),, Qge)ﬁ Dv be the messages in the BP decoder for the codeword .

Initial Message For the codeword x, the initial message under BP decoding is Cv(v) =
H;’flp(/f(zvm%,i) | L‘)? for v € [1, N] and v € F5;2,. Hence, we get for v € F5.3,,

€ = TTp (o0 12,) = TLP(T oz 12, + 22,) = Cola 2., (2.3)
i=1 =1

Iteration We derive the following equations by mathematical induction for all ¢, v € Fs.2,
and v € [1, N]:

() =¥ (v + ), (2.4)
O (y) =500y + hewa), (2.5)
) (v) =D (v + he ), (2.6)
o) (v) =) (v + ) (2.7)

Firstly, we consider the basis of the mathematical induction. In the variable node action, the

meSSageS are
PO () =Co(v),  TO) = Co(m),
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for v € F3:3,, v € [1,N] and ¢ € N,(v). Hence, from (2.3), we get the basis of (2.4) for £ = 0,
v € F5, and v € [1,N]. The messages ¥ and U are given as \IJSPZ( ) = \I/(U?Z(h;},fy) and
\ifg,o):( )= \Ilg,og(hc +7), respectively, for v € F5:2,, v € [1, N] and ¢ € N, (v). Hence, we have

T (y) =00 (h 1)

=T (hty + 20) = Uy + he ). (2.8)
This leads the basis of (2.5). The message <I>¢(:1)) is given as

®(1)(7) = ) T 0w (2.9)
YE{ (Vo) v’ eNe (e {0} ] v €Ne(e)\{v}
V=20 eNe(\ {0} Vo

The message <i>92, is transformed as follows:

- < (0
o) () = > | | 2D
YE{ (Vo v’ eNe(e)\ {w} ] v €Nc(e)\{v}

V=0 eNe(\ fv} Vo' T

< (0
= Z H \I/q(}/?c(’j/vl —+ hc,'u’xv’)
YE{ (Vo) o’ eNe()\ {w} ] v’ €EN(e)\{v}
’Y:ZU/ENC(C)\{v} Yol

(i)l(xll)) (ry + Zv reN c)\{v}hc v/ Ty’ )
:(i)g,lv (’Y + hc,vxv)y

where in the second equality we use (2.8), in the third equality we use (2.9) and in the fourth
equality we use the parity check constraint h. .z, = ZU TENL(O\fu} heo . Hence, we get the
basis of (2.6). The message <I>£1), is written as <I>(1)( )= <I>(1)(hC »7)- Hence, the message <I>C o 1s

represented as
(I)g,lg ('Y) = (i)g,lg(hc,v'Y) = ‘i’ﬁ,lv (hc,v'Y + hc,vxv) = (I)g,lv (v + 20).

This derive the basis of (2.7).

Next, we consider the induction step of the mathematical induction. By using induction

hypothesis (2.7) for ¢ = ¢/, the message q)ﬁf% is represented as

@
T () = eenionig Pew()
@
ZWEF;% Il reN(e)\{c} Py, ()

HC 'eN:(e)\{c} (I)E" (7 =+ xv)
o Z
ZweFZir% eenone ‘I’c/ (v + )
_\I,(Z )(7 + ).

Hence, we get (2.4) for £ = ¢'. The following three statements are derived from a way similar to
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the basis steps:
1. If (2.4) holds for ¢ = ¢, (2.5) holds for £ = ¢'.
2. If (2.5) holds for ¢ = ¢', (2.6) holds for £ = ¢' + 1.

3. If (2.6) holds for £ = ¢/ + 1, (2.7) holds for £ = ¢ 4 1.

Decision For v € F3:2, and v € [1, N], we have

¥4
. Cﬂ (’Y) HCENV(U) (P&,EJ(’Y)
YA
TL,cems. Co() Teens o) ®0(7)

2Mm4

: »
Co(y + 20) Toens (o) B0 (7 + 20)
- . . Z
H’YGFWS Cv(fY‘i‘xU)HceM(v) @gﬂ);(’}/‘i‘xv)

274

Hence, there is a bijection from the message Dy) (7) to the message Df,é)('y). Thus, both
decoding have the same number of errors. Therefore, the symbol error probability is independent
of the transmitted codeword. (Q.E.D.)
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Chapter 3

Analytical Solution of Covariance

Evolution for Irregular Binary LDPC
Codes

The scaling law developed by Amraoui et al. is a powerful method to estimate the block erasure
probabilities in the waterfall regions of finite-length LDPC codes. Solving a system of differen-
tial equations called covariance evolution, one can obtain the scaling parameter. However, the
covariance evolution has not been analytically solved. In this chapter, we present the analytical

solutions of the covariance evolution for the irregular LDPC code ensembles.

3.1 Introduction

The scaling law developed by Amraoui et al. [7] is a powerful method to estimate the block and
bit erasure probabilities in the waterfall regions of finite length LDPC codes transmitted over
the BEC. Let 7; and [; be random variables representing the number of edges connecting to the
check nodes of degree i and to the variable nodes of degree j, respectively, in the residual graph.
Then, the scaling parameter is obtained from the mean and the variance of 1. The means of r;
and [; are determined from a system of differential equations which was derived and analytically
solved by Luby et al. [15]. The covariances of r; and [; also satisfy a system of differential
equations called covariance evolution which was derived by Amraoui et al. [7]. However, the
analytical solution of the covariance evolution has not been known. Therefore, one had to resort
to numerical computation to solve the covariance evolution.

In [20], Amraoui et al. proposed an alternative way to determine the variance of 71, though
only at the decoding threshold. Thereby they have given the analytic expression for the scaling
parameters without using the covariance evolution. They used BP decoding instead of the PA.
This method was applied to irregular repeat-accumulate codes [21] and to turbo-like codes [22]
and was extended to the binary memoryless symmetric channels [23,24].

Denote by ¢ the total number of edges in the Tanner graph. For i = 1,2,...,&, let p;
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be the random variable which is 1 if the edge ¢ conveys an erasure message from a variable
node to a check node, and 0 otherwise, in BP decoding. In [20], Amaroui et al. analyzed the
random variable Zle 1; in decoding and derived the analytical expression for the variance of
this random variable. Finally, they made an unproved assumption that the random variable
r1 —E[r1] in the PA is proportional to the random variable Ele i —]E[Zle ;] in BP decoding
and under this assumption they have given the analytical solution for the variance of ry.
However, no such assumption is needed if the covariance evolution is solved analytically.
Moreover, we obtain the variance of r; at any channel erasure probability. In this chapter. we
present the analytical solution of the covariance evolution for irregular LDPC code ensembles.
This chapter is organized as follows. In Section 3.2, we recall some basic facts on the finite
length analysis of LDPC codes under iterative decoding. In Section 3.3, we present the analytical
solution of the covariance evolution for the irregular LDPC code ensembles. In Section 3.4, we

analytically solve the covariance evolution for the irregular LDPC code ensembles.

3.2 Residual Graph and Finite-Length Scaling

In this section, we recall the analysis of the residual graphs and the finite-length scaling for
the irregular LDPC code ensembles. We also introduce some notations used throughout this

chapter.

3.2.1 Analysis of Residual Graph

Denote the iteration round of the PA by ¢. Let I, and r; o denote random variables representing
the number of edges connecting to the variable nodes of degree k and to the check nodes of degree
i, respectively, in the residual graph at the iteration round ¢. Let d. be the maximum degree of
check nodes. We define R := {1,2,...,d. — 1}. We also define a set of random variables

Dy = {lk’g | ke E} @] {rk}f | ke 'ﬁ'}

Since the total number of edges connecting to variable nodes is equal to the total number of

edges connecting to check nodes in each residual graph, we have

ZZM = Z Tje-

i€l jERU{d.}

This equation gives

Td, 0 = E lio — E T

ieL JER

Hence, we see that the random variable 74, , depends on the random variables in D,. Hence, we

drop rq_ ¢ as in [25]. To simplify the notation, we drop the subscript £.

28



For X € DU {rq }, we define the normalized expectation of X as

¢ .- EX]
X==F

Let e be the expectation of the fraction of the edges in the residual graph, i.e.,

€ = ZZZ

i€l
We define
¢
T = —. 3.1
¢ (3.1)

Define a parameter y such that y =1 at 7 =0 and

dy _ y

dr e’

Hence, we see that the iteration round ¢ is parameterized by y.

Let Iy be the indicator function which is 1 if the condition inside the braces is fulfilled and

0 otherwise. Define
1 e
a:= - Z il;.
i€L
Fori € £ and j € RU {d.} in the limit of large block length, Luby et al. [15] showed that X (y)

satisfies the following system of differential equations

dL Al 'LL d'F Alrs Ly _ a—1
EZf( ”)Z—?7 T;Zf(’) =31 = 15)—— = L=y

We define the binomial coefficient [26] for non-negative integer n, k as

’ 0 k>n.

Recall that the channel erasure probability is e. By using the parameter y, for ¢ € £ and

j €42,...,d.}, this system of differential equation are solved as:
. . . i1\ ) N
L) = () = Zpi(. - 1>m i ) = aly— 1+ p(@)),
ier M
where z := eA(y) and Z := 1 — x. Define 2’ := dz/dy. From this result, we see that

/

Ty +x
e

e = xy, a=
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For XY € D, we define the normalized covariance of X and Y by

SXY) . Cov[X,Y]
=

Unless otherwise specified, we drop y to simplify the notation. In [7,25], Amraoui et al. showed

that §(X-Y) satisfies the following system of differential equations for the irregular LDPC code

ensembles in the limit of large block length:

d65Y)
dy

afX) af) .
_ 917 svizy L 9T " s(x,2) | _ , f(X.Y) 9
o3 (S5 2 o), 32)
ZeD
and this system of the differential equation is referred to as the covariance evolution. Define
2" = d?z/dy? and
J(Tj1 =75/ JER,
Gjly) = o .
—doFq. [x j=d..
The terms in the covariance evolution are given by the following for k,s € £ , i € R and

jEﬁ'\{dc_l}

af(ls) sl_s S 8.}2:(['5)
— :7_-[{]«:3}77 — :0;
ol e? e or;
dfr) 2a—k—1G, aft) a—1
Ol - e j7 or; - JT(I{i:jﬂLl} - I{i:j})’
F(rac—1) -1 2a — k —1 _
e _ (g et 20k 1Gao
ol € € Y
af(TdC—l) a—1
“or = —(de—1) c (1 + I{i:dcfl})’

and for k,s € Land i,j € R

2 I, ls
Flls) = ps® (I{k—s} - )
e (&

" kli, G;
f(lk,m) — (a _ k)lg’
ey
o x//x_(x/)2 ”x/ - ~ ~ ~
foroms) = TGZGJ' +U?{I{z‘=j}(7"j+1 +75) = Timj1yTi — I{j=i+1}7"j}'

Initial conditions of the covariance evolution are also given by Amraoui et al. [7,25]. For

i,j € R and k, s € L, the initial conditions of the covariance evolution are derived as follows:

§(lk’ls)(1) :[{kzs}eg)\kk,
5(lk,7‘i)(1) = — €€Aksz(1)7
o) (1) =Igigyirs(1) = Vi (1) + €€ (1)Gi(1)G5(1),
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Table 3.1: Summary of intermediate variables defined in Section 3.2.1.
x = e\(y)

¥ =dx/dy = e\ (y)

g’ =dPx/dy® =€y, (i —1)(i —2)\y' ™3

r=1—z
E=1—c¢
a= eflzieﬁil} =(@'y+x)/z

G;y

—~

- J(Fi—75)/z JER
7dcfdc/$ 7 =d.

s=1\[(s—1\ ;i osici .. .=
Vz‘,j(y):Zpss(i_1>(j_1)x”:v2 74, e RU{d:}

SER

Table 3.2: Summary of notations in Section 3.2.1.

The expectation of the fraction of the edges connecting to the

variable nodes of degree i in the residual graph

_— Z <z — 1>xj:%i_j The expectation of the fraction of the edges connecting to the
J pi j— check nodes of degree j € {2,...,d.} in the residual graph

li = ehy'

iER

The expectation of the fraction of the edges connecting to the
check nodes of degree 1 in the residual graph
e=> icrli=my The expectation of the fraction of the edges in the residual graph

r=z(y — 1+ p(2))

where € :=1 — € and

s—1\/s—1\ .. . .
a o i+ m25—i—
Vit = S es(( 7)) (2 et

SER

The summary of intermediate variables and notations are in Table 3.1 and Table 3.2, respec-

tively.

3.2.2 Scaling Law

The scaling law is a method which allows us to estimate the decoding erasure probability caused
by the decoding erasures of large weight. In other words, the scaling law is a method to estimate

the waterfall region. The scaling law is based on the analysis of the residual graphs.

In [7], the block erasure probability Pg(N,¢) is given by

PB(N7E):Q +0(1)a

VN (PP —¢)
!
where « is slope scaling parameter depending on the ensemble and the Q-function is defined as

Qz) = Jlﬂ/m exp[—ﬂdx.
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In [20], the slope scaling parameter is derived as

ory -t
“= _\/Aave glriry) ‘eBP;y* (86 eBP~y*> (33)

where y* is the nonzero solution of 71 (y) = 0 at the threshold, i.e., define y* such that y* =
L—p(1—€A(y")).

3.3 Main Results

We show, in the following theorem, the analytical solution of the covariance evolution, for the

irregular LDPC code ensembles. The proof shall be given in Section 3.4.

Theorem 1 Consider the irregular binary LDPC code ensemble E(N, A, p) transmitted over the
BEC with channel erasure probability €. Let 7 be the normalized iteration round of the PA as
defined in (3.1). A parameter y is defined by dy/dr = —1/(eA(y)) and y = 1 at 7 = 0. The
intermediate variables are defined in Table 3.1 and Table 3.2. For the irregular LDPC code
ensemble, i,j € R and k,s € £, in the limit of the bit length N, we obtain the following.

kslyly elpls -
sliols) — _ %F + Z . {k (y°—1)+s (yk — 1)} + L=y Rl (1 — ey™), (3.4)
Loy _ [ 5 7o ' sls , (F'+x i
(ri,m5) a’ a’ z' 2 25—2 2
) i) = F ;Gifl{izl} ;Gj *I{jzl} +G7;Gj ;F —€ ;ﬁx\ssy +x
F—z N
Vi + (I{j=1}Gi + I{z’:l}Gj) z(e—x) — 5 + I{i:j}“‘i
+Iimjmny (e — )%, (3.6)
where
Ai i 2 i
F;:27{62(y —1)’4e(y _1)}, (3.7)
ieL
dF ,
F’ ::@ = 2¢? Z Ay (1 = 26)2. (3.8)

€L

Using Theorem 1, we obtain the following corollary.

Corollary 1 Let P be the threshold of the ensemble under BP decoding, N be the symbol
code length and £ be the total number of edges in the original graph. Denote the nonzero solution
of 71(y) = 0 at the threshold, by y*. Define z* := ¢*A\(y*) and &* := 1 — z*. For the irregular
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LDPC code ensembles E(N, A, p), the slope scaling parameter « is given by

oo p(i*)z _ p(‘%* ) _ :c*Qp’( ) N 1— 23:*,0(.%*)
p'(z*)? p'(z*)

(3.9)

@A) @) Ve

=0, we see that

proof: Since 71| zp.,. = 0 and o, v
i -

Oy

Loy = (@), PPN () = 1.
Combining those equations, we have from (3.6),

§lrir)

:x*2(p(56*)2 o j*Zp/(ng) o p( )) +1’*2pl( )(1 o 2$*p(5*))

+ (x*p/(i,*))Z(xaoQ _ 6*2y*2>\/(y*2) _ 6*2)\(y*2)).

€BP 1y

Recall that 7 = z(y — 1 + p(Z)). We see that

L =),

eBP y*

From (3.3), we obtain (3.9). (Q.E.D.)
The result of Corollary 1 coincides with the result in [20] for the irregular LDPC code
ensembles. We rigorously obtain the slope scaling parameter. Hence, we can optimize the pair

of degree distributions without any assumptions by this result.

3.4 Lemmas and Proofs

In this section, we prove Theorem 1. To prove Theorem 1, we state three lemmas. We use
Lemma 4, 5 and 6 to prove (3.4), (3.5) and (3.6), respectively.

From the covariance evolution (3.2), we have the following equations for k, s € £ and i,j € R:

dssls) o f ) afs) .
— ZI s 2 sCale) ) g £UkL) 3.10
dy ‘"”Z( a; T A (310)
i€L
dori) af(lk) af( f(“ N
—_ ZJ sUsm) ssle) | §5Wesri) _ g flksri) 11
0 xz oL 0 + o —— xz a7, i—xf , (3.11)
seL JER
dotriors) S S sy 4 O s > O™ st af 01T ruurs
dy = Ol Ol by OT}, OFp,
— g frimi), (3.12)

To simplify the notation, we drop some subscripts in this paragraph. Those equations assert
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Table 3.3: Definitions of intermediate variables used in Section 3.4.1.

1 1

Ut =~ _§lle) — = _§lal) g p
(Kly)? (sls)?

5ids) . — Seer §5Ukls) kel

e The differential equations %(5(”) only involve 51
e The differential equations d%d(l”") involve 60 and §(7)
e The differential equations %6(”’) involve §¢>") and §(")

Since the differential equation %5(170 only involves 69| firstly, we solve () in Section 3.4.1.
If 51 is known function, we are able to solve the differential equation d%(s(lﬂ. Hence, secondly,
we solve 6(>") in Section 3.4.2. Similarly, if 6¢*") is known function, we are able to solve the

differential equation -=§("") . Thus, finally, we give 6("") in Section 3.4.3.
dy

3.4.1 Lemma and Proof of (3.4)

In this section, we give a lemma to prove (3.4) and we prove (3.4). Table 3.3 gives the definitions

of intermediate variables which are used in this section.

Lemma to Prove (3.4)

Lemma 4 We define U#3ls) ag in Table 3.3. The intermediate variables are defined in Table
3.1. For k,s € L, we have the following equations.

6(lk7ls) _ Ai
Z = GEZ = (3.13)
k,seLl €L
SUeks)  sili)  5(sils) b —1 eyt —1
P A—— - - Tinzsn, 3.14
kslds  (MR)? (s1)2 ( A ) 7 10
. F1 ey —1 2e(yF—1 9y —1
7 ils) — _y - =€ _ ) 3.15
kly + sl + e k s (3.15)

proof: Define 6(*!=) as in Table 3.3. From (3.10), we get

dsesls) B 7%5(%’[2) o @5(15,12)

dy ey ey

4 RS s pet), (3.16)

Proof of (3.13) From (3.16), we have the following equation:

1 déUests)
ks dy

k,seL
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From the initial conditions, we obtain

> gt ey A

k,seLl €L

This leads to (3.13).

Proof of (3.14) Obviously, the left hand side of (3.14) is equal to 0 for k = s. Hence, we get
(3.14) for k = s. Next, we consider the case for k # s. From (3.16), we have

d (5(zk,ls)> L do™)  kts g

dy \ ksl - kslply  dy B kslilsy
f‘(lk,ls) 5(lk7l2) 5(15,12)
= — _ _ - . 3.17
I(kslkls T e T e (3:.17)

For k # s, (3.17) gives the following equation:

d 5(lk7l5) 6(lk7lk) 5(l57l5) ij(lkvl-?) xf(lkylk) xf(ls»ls) 1 1 1
dy | ks, R0)?  GLE | T hslid, 22 22 y<zk+ z)
The solution of this differential equation is
§Uksls) §Ckoli) §Usils) 1 1

22— ————=—— - — + (]
kslels,  (Klp)2  (sly)? W sl e

where Cj, ;, is a constant determined from the initial conditions. The initial conditions gives

1
kX sAg

Cipi, =

Thus, we have for k # s

5(lk,ls) 6(lk7lk‘) 5(l5,ls) eyk _ 1 Eys _ 1
22— = = = —.
kslely,  (Klp)2  (sly)? Kl sy

Hence, we obtain (3.14).

Proof of (3.15) The equation (3.14) is rewritten for all k,s € £

sl

ki, Ls
sils) — 7(€yk _ 1) + 7’6(63/3 — 1)}1{1@;&5} + Sts

klj,
6(lk7lk‘) 776@37[5).
2kly, + 2sl

The sum of this equation over all s € £ is written as follows:

§5s.ls)
28l

(leds) _ €0k _ ]i_k s 1) — kI, k_ A€ (gl 7
5 S (e = 1)+ SEZL(ey 1) = (e = 1) + 5,70 Jrklk;
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Combining (3.17) with this equation, we have

|

d | 6k:te) f(lk,lk) SUisls)
_ _ R 2
dy | (k)2 e klrey
a §k:lx) 1 s 1 §ssls)
S ACEI R 5 I D
y (klx) ey sEL ey ser S's
where

Fli,lk) a 2
KOt = g Fo1) 4+ = (ey® - 1).
Ty gl -

From this equation and the definition of U(**+) in Table 3.3, we have
— Keli) _ gsils) EU(lk;lS)_ (3.18)

|

|

AU Wesils) d | §elx) d | §Usils)
dy — dy| (Kk)? | dy | (sL)? y
Note that

/ gcly =lne.
Yy

Since (3.18) is a first order differential equation, it is solved as follows:

: 1 1
Ulsits) = - /e(K(l’“lk) — K(ls’ls)>dy + = Clis

with a constant Cj, ;. which is determined from the initial conditions. The integration of the

part of this equation is

'y — (k-1 1

Yy ( )x+2€yk71—*dy
Y

/ el dy :/ {_x/ZAH K
k k
e l; 2ey
- Ay Y
KA +i€ZLkl;€ {izh}y T~ =Y
eyt —1 2eyF — 1 1
= — = e — 1ny.
ki k 4

Hence, we get

ey —1 1/2yF—1 2ey°—1

Y - +< Y 2y +CWS>.
e k s

U ists) — _Eykf_ 1
kl sls

From the initial conditions, we have

. el 1 1
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Hence, the constant Cj, ,;, is derived as

1—2¢ 1-—2¢

Ci, =
ksts k s

Therefore, we have

kik SZS e k

k s k
. -1 -1 2 -1
U eils) — _ %Y €y + ¢ <y _

Thus, (3.15) holds. (Q.E.D.)

Proof of (3.4)

y -1

S

)

Here, by using Lemma 4, we prove (3.4). Firstly, we consider §(='s). By transforming U(t#ils)]

we have
Ik (slg)? [ oWete) .
Y g(tsits) — \Sls )
e e k2, "

The sum of this equation over all k € L is written as follows:

2
Z l_kU(lk:,ls) .

sUete) (sl
K2,

7\2
(o) (8ls)
g - 5

kel kel

(3.19)

Now, we consider the first term of (3.19). By transforming (3.14), we see that for all k,s € £

1 l_alklk +1 lk_(gl ) — 5(lk»ls)_

2 k20, 2 52, ks 2

The sum of this equation over all k, s € L is written as follows:

+Zlk—€ 6y —1

§(lk ls)

kel k,s€L kel
Combining (3.20) with (3.13), we have
§ksle)

Z kzlk _EEZ)\k Zlk—eey —].

kel kel

Next, we consider the second term of (3.19). From (3.15), we have

Iy eyt —1
s I _r
k {k#s}

. -1 e —1 2= L(yF—1)
> Ut = (y—l)—?e -3 - +€ZT'

kel kel

Combining (3.19) with (3.21) and (3.22), we obtain

12

§llats) = — (Si) F+2¢° (= 1) +sl(1—ey”).
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Table 3.4: Definitions of intermediate variables used in Section 3.4.2.

55 = 5, 5(lr) ieR
§leors) = Sier o) kel
§leorac) .— sUrils) _ 5k rs) kel
A(lEWj) = Zie[,i_lé(li7rj) j S 7?,

Als,rs) .— Zjeﬁ AUsr5)
Alsrae) .= Sier i—150irae)

Gllislsirs) . .i_(;(li,rj) _ i_(;(lsﬂ) i,s€L,jER
il; sl
Slislsirs) . — Zjeﬁ Sislairy) i,s €L
Glislsirag) . %§(li’rdc) — %5(1577”%) i, s €L
(273 Slg
(e lssls) 1 (ki) 1 (Us,l5) ;
Glliolasli) . = sUmili) = 5(sils k,s, i€ L
kly slg
S(lk,ls;lz) — Eieﬁ S(lkvls§li) k, S € L

‘ Gy = Zje?i Gj = x_l(dcfdc — 6)
/
. A 1
DUksTs) . 2£Glj6(lk»lz) _ xf(lkfj) _ 72Gj Z(l _ 1)5(lk,lq,) kel,jeR
€ Yy €L
DUksrs) . — Zjeﬁ Dkr5) kel

Secondly, we consider §(x:ls) for k # s. From (3.14), we see that for k # s

s — Sls st n Kl s1,0.) n et -1 e -1
Uil 251, 251, 2%l

Combining this equation with (3.23), we obtain (3.4) for k,s € L.

3.4.2 Lemma and Proof of (3.5)

In this section, we introduce a lemma to prove (3.5) and we prove (3.5). The definitions of

intermediate variables used in this section are summarized in Table 3.4.

Lemma to Prove (3.5)

Lemma 5 We define A(=73) A=) - glilsirs) - §ilsits) and Gy, as in Table 3.4. The in-
termediate variables are defined in Table 3.1. For j € R and k,s € £, we have the following

equations.
Alsirs) — eg(x/Gz _ 1) Z ﬁ(yl — 1) — éxGx (3.24)
x — ’
€L
!
Ao -
A= 65(26‘]- - I{j=1}) > S —1) —ad, (3.25)
€L
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) / k _ 1 s _ 1
Sleidsir=) — _€<ZG2 - 1) (y P Y . ) +eGe (Y =y, (3.26)

. ' F1 gy —1 _ .
Slidsims) = —e(ij - I{H}) (y - Y ) +eGi(y" T =y, (3.27)

S

We use (3.24) and (3.26) to prove the basis of the mathematical induction in the proof of (3.25)
and (3.27), respectively.

proof: We will derive the differential equations. Firstly, we consider A=) for j € R. We define
§U=mi) - §Ukrs) and §(kTae) as in Table 3.4. From (3.11) we have for j € R and k € £

LT 7
M — pUkirs) _ kilk(;(lzvrj) + k

Zsers) jil ((5(lkvrj+1) — 5(%#.7)) (3.28)
dy ey Yy x ’

where a known function D(*75) is defined as for k € £ and j € R

Dt = 9T gstnts) s - SIS gt
€L

From (3.28), we have for k € R

dAI=75) 1 d§(ers) DUkirs) '
il — - — _ 52 Alsyrit1) _ pAUsry)
dy A A=), (3.29)

kel keL

From this equation, we see that AU=75) is solved if AU=7i+1) is a known function. Moreover, we

see that AU=ra-1) ig solved if A="=) is a known function.

Secondly, we consider A!=7=) The sum of (3.29) over all j € R gives d%A(lE’TE) as follows:

dA(s.rs) DUksrs) ’ 1 /
=Y T (A=) Y ) d A, (3.30)
Yy kel kel

Since this equation is a first order differential equation and the first and second terms of this
equation are known function, we are able to solve this equation. The derivation of A=) ig

written in Section 3.4.2.

Next, we derive the differential equation of SU#ti7s) for k, s € £ and j € R. By using (3.28),

we get
i (5(11177'1') _ idé(lk,rj) B ié‘(lkﬂ"j)
dy kly Kkl dy lky
DWers) 1 j
= — — —gUmri) L 2 (g _ 5(beri) ) 3.31
e eyl klkx( J ) (3.31)

Define S(ktsirs) - §llsili) and §(k-lsil=) ag in Table 3.4. From (3.31), we have

lic,lsr; li,rj ls,rj
dS( ; ) _ D(k’; 3) B D(Z ) B 'i(S(lkvls?rjﬁ-l) _ S(lk,ls;rj))’ (332)
Y k Sts
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for k,s € £ and j € R. From this equation, we see that we obtain S(*ts73) if the function
SUk:lsimi41) ig known. Moreover, we see that we obtain S(%lsi7de-1) if the function SU#:1=7=) jg
known.

Finally, we consider S(#%7=)  From the sum of (3.32) over all j € R, we obtain

4§ Uklsirs) DUksrs) DUsrs)

e v e — (de — )SW L S(lk’l”E) (3.33)
k Sls

Since this equation is a first order of differential equation, we are able to solve this equation. we

will derive SUr:lsi=) in Section 3.4.2.

Proof of (3.24)  Since (3.30) is a first order differential equation, it is solved as follows!:

1 Dkrs) 7z §e:ls)

(Isyrs) — pde _ _ 1\ d,
Atwrs) =g [ lz (e = )Y Sy o Gy
kel kel
-~ CL’I )\k k -~ dc

= €€ ;Gz—l ];ﬁ?(y —1)+exy+ClE7rza: ,

with a constant Cg, ,;, which is derived from the initial conditions. From the initial conditions,

we see that
A1) = (1= e pg.de).

From this equation, we determine Cjy, ., = —dcpq. €. Thus, we find

(e A _
Allzrs) — ee(sz - 1) Ig; fk(yk —1) - &aGs.

Hence, we have (3.24).

Proof of (3.25) Since (3.29) is a first order differential equation, the solution of (3.29) is

1 Dksr;5) / )
All=rs) = o7 / (Z - —jix““”””)dy+clz,mx% (3.34)

x]
kel

where C}y, -, is a constant derived from the initial conditions.
We solve (3.34) by mathematical induction for j € R\ {1}. Firstly, we derive A(="dc-1),
Using (3.4), (3.24) and the definition of A(=74) and A=) we have
5(ll’l2) — 5(l1,’l"): l“lz)

A(lz’rdc)zz *Z Allzrs) *ee—Gd Z (y" — 1) — &Gy,

€L €L €L

(3.35)

1In a way similar to the derivation of Al=rac) we perform this calculation in Section 3.4.2. More precisely,
we use integration by parts to integrate (3.30).
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Note that for j € R\ {1}

DUkrs)

Z P =G+ ee G; Z - 266 G, Z (3.36)

kel €L €L

The combination of (3.34), (3.35) and (3.36) gives

DUkirde—1)

1 !/
AUwrl):xdc*l/xdc_lZ k dy—xdc*l/%(dc—1)A<lz7rdc>dy+clz,mcxdrl

motot [ Gt L TV S Ny 1)}dy

i€l
+ gde1 /ee—Gd 1 Z y — 1
zGL'
et [t -0 G e, T
€L
xl
+ g1 /€(dc — 1) =7 Gady + Clygrg, 2% (3.37)

Using integration by parts, the second term of (3.37) is written as follows:

Hence, we have

!
_| Ga.- Ais g
xdc*l/ee—Gd _12 y —1 dy—!—m /ee{;j;cl ZT(Q —1)} x'dy

zEL‘, €L

= ee—Gd 1 Z (y' —1). (3.38)

€L

Since G; = —j%GjH +(j— 1)%6']» for j € R\ {1}, the second term of left hand side of (3.38)

are transformed as follows:

/
gde=t /6 {G;dl Z )\T(Z/Z - 1)} z'dy

€L
[ G @) A
’ 1/xd—1{ § -2 2 ZT( 1) pdy
i€L
- N
—asdc_l/ee(dC )(d J)rlGd Z ; (y' —1)dy.
i€l

The first and second terms of this equation coincide with the first and third term of (3.37),
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respectively. In other words, the sum of the first three terms of (3.37) is equal to the right hand
side of (3.38). The fourth term of (3.37) is transformed as follows:

1 21
/Wﬁ(dc — 1)$/Gdcdy = —€WGC[C_1.

Thus, we obtain

x i
Alsrac—1) — e€€—Gq.—1 Z —Z(yl — 1) —eéxGg,—1+ C’lz)”cflxdc_l.
z €L ¢

The initial conditions give
All=rac=1) (1) = —eeG4(1).

rao—1 = 0. Thus, we show that Al=rac—1) fulfills (3.25). Now, we consider the
induction step. In other words, we show that if A(=7i+1) fulfills (3.25), then A(=73) also fulfills
(3.25). Using the induction hypothesis, the first term of (3.34) is written as follows:

) 1 D(lk7r.7) _Jj/ e
SRR *A g
kel
jz y—l}dy+mj/ 16 Ny 1)

. 1 (.
:xj/f ea:Gj—2ee
xJ
i€l €L
/

—wj/ g+1z (v’ —1) dy+x3/enyg+1dy
G,

Hence, we get Cjy,

€L

x!
€€— —1) — éxG;j.
29 x T
€L
Here, the last step is derived from a similar way to A(=7d.-1) Hence, we get

4 . .
A(lz’rj) = ng;Gj Z %(y’ - ].) — g.’EGj + Clg,rjl'j

i€L

From the initial conditions, we have
A=T)(1) = —eeGy(1).
Hence, we have Ciy, ;, = 0. Thus, we find

A(lz’”)*ee— JZ (y' 71 — exGj.
ieL

This leads to (3.25) for j € R\ {1}.
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Next, we consider A=), Since A=) = A=) _ E?cz—zl AU=:75) e have

/
>\i 7 ~
A(lz,Tl) — Gg(iGl — ]_) Z 7(y — 1) —ex(y.

i€L

Hence, we obtain (3.25).

Proof of (3.26)  Since (3.33) is a first order differential equation, it is solved as follows:

1 [DUrrs)  plUsirs) 2!
Gllislsirs) — dc/ _ _ _ —(d. — 1) = 8k:lsile) | g C . de
x e kl}, sl ( C )x Y+ Cuylgre®

Note that

DUrrs)  plsirs)
kl_k B Sl_s

— (de — 1)£/S(lk7ls§l):) = gWers) _ K(lsﬂ'z),
T

where

2($/)2 —x'r yk -1
x? k

!/
K0m) = Gy, {_229“1 + (k=1 +

A
+e(dcfl); v T k

By using integration by parts, we have

1 ! b1
zde - K(l’“rz)dy = e(xGE — 1) Y + eGyyPL.
T k

xre

Thus, we have

4 z’ Fo1 gy -1 _ .
S(l’“ls’rz) = — E(xGE — 1) (y k — y s ) +€GZ (yk 1 Yy 1) + Clk,lsﬁ”zxdc

The initial covariance leads SU+!s"=)(1) = 0 and Cj, ;. = 0. Hence (3.26) holds.

Proof of (3.27) In a way similar to Section 3.4.2, i.e., by mathematical induction for j € R\ {1}
and SUktsir) = Glklsirs) Zf;;l Selsiri) e obtain (3.27). (Q.E.D.)

Proof of (3.5)

From definitions of S(s+75) and A(=73) | we see that

5(l3,7‘j) :% (A(lz,rj) _ Z st(lk,ls;rj))
€

kel

sl = x sls F+x
=|—F —€l.(v° =1 — G — Iy ° G - S,
[ c elé(y )} <x G] { 1}> G] < 5 €Ty )

e
Thus, we obtain (3.5).
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Table 3.5: Definitions of intermediate variables used in Section 3.4.3.

5(Tj’r>:) = Zkeﬁ 5(""]‘;7%) j c R
6(TE7TE) = Z]G’ﬁ’, §(Tj7T2)

§rag:ms) .— §Us,ry) _ §(rs,ry) jER

Dars) =3 oy~ (2a — k — 1) (6D Gy + §UerIGy) — xfUor) G jeR

prirs) .— Zjefz DTirs) 1€ER
D(TZ)TZ) = Z

i€R Dlrors)

3.4.3 Lemma and Proof of (3.6)

In this section, we introduce a lemma to prove (3.6) and we prove (3.6). Table 3.5 gives the

definitions of intermediate variables which are used in this section.

Lemma to Prove (3.6)

Lemma 6 Define §("7"=) and §("="=) as in Table 3.5. The intermediate variables are defined

in Table 3.1. Define F and F’ as in (3.7) and (3.8). For j € R, the following equations hold.

/ 2 ’
§lr=rs) — F(”;GE - 1> + F'Gy, (“;GE - 1) — EGEY  Niy® T+ diry,

ieL
—Vi..d. (3.39)
5(7.j77.2) —_F x—/Gz -1 aiG _ I{ 1) + F'G; E/GE -1 = 62G2G'Z>\iiy2i—2
T x . Nz ’ ieL
F—x
+dera Gy + Via. + —5— (G5 = I(j=1Gs) + [jj=13deTa (e — ). (3.40)

We use (3.39) to prove of the basis for the mathematical induction in the proof of (3.40).
Similarly, we use (3.40) to prove of the basis for the mathematical induction in the proof of
(3.6).

proof: Firstly, we derive the differential equations. We define §("%"3) as in Table 3.5. From
(3.12), we get

ds(risrs) /
i = _ % i5(rit1.ms) +j5(rj+17m) — (i Jrj)(;(n'm')] + D(TMJ')7 (3.41)

where D(":73) is defined in Table 3.5. From this equation, we have §("73) if §(ri+1:73) and §(rimi+1)
are known functions. Moreover, to solve §(""ic=1) we need to obtain 6(""=) and §("i+1:mde-1),

From the sum of this equation over all j € R, the differential equation for §("+"=) is written as
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follows:

d(;(n',?”):) __ 1‘7/ [ia(rHl,rg) _ (dc +Z')6(T‘7j77'z])i| _ "I’;l(dc _ 1>5(l>3,n-) + D(m,rz).
dy x x

Similarly, we see that to solve 6("#"=)  we need to obtain 6("+17=), Moreover, if we obtain
§(r=m2) we are able to solve 6("4~172)  The sum of this equation over all i € R is written as

follows:

7‘”(:@ — 2% [(d, = 1)50=m®) _ ggr)] 4 plrere), (3.42)
Y X

Proof of (3.39) The solution of (3.42) is given by

1 !/
§Orsre) _p2de / pore {D(T}:,r}:) — Q(dC — 1)%5(12,T2)}dy + xQdCCTEJ”E

’ 2 /
=— F(ZGE - 1) +Gx (iGz —~ 1) F'— &G idy® 2 + Oy 2™,
€L

where Cl, 5, is a constant determined from the initial conditions. The initial conditions give

g (1) =eeN (1)(e% ™ pg de — 1) + e& — 2¢%Epa,de + ¢ pa,de — % pa.de

and Chy, = p3_d2 — pg.dc. Thus, we obtain

/ 2 /
§ir=re) = F<ZG2 - 1) +Gs (iag - 1) F' =G> Ny 2 +d2ri. — Va.a..
€L

This leads to (3.39).
Proof of (3.40) In a way similar to Section 3.4.2, we find (3.40). (Q.E.D.)

Proof of (3.6)

(3.41) is solved as follows:

x (3.43)

075

§er) it / x% <D<Wj> - i%’cs(”“’”) - jié(”’”“))dy +Cr

This equation is solved by mathematical induction for i, j € R\ {1}. Firstly, we consider & (rj.rac)
for j € R\ {1}. From (3.5), 6(=") is given by

! 1 1
ot=ri) — a%FGj - F'Gy (a — 2> — §ij + €3G} Z Assy?> !
seLl
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Combining with this equation, the definition of §("4>") and (3.40), we have

N2 !/
§lrimac) = gl=ri) _ §(r=mi) — LGy, |~ (:”2) F+ip—e S Asy* P4 a? | = Vg,
x x
seL
for j € R\ {1}. Hence, in the case for §("dc-1"4c~1) (3.43) is transformed to
1 /
gl =gt / 222 Dlrac-vrae-dy — 2(d, — 1)a?%? / xziﬂé(rd“m“l)di‘/
+CVT’dcflﬂ’dcfl‘T2d672
)2 z! a
=G3_, —(I—Q)F + ;F’ — ¢ ;Assy% 24a? — Vi 14

+ (dC - 1)ch*1 + Crdc—lyrdc—lxgdC_Q'

The initial condition gives Cy, ., , = 0. Thus, we see that §(Tac—1-7ac=1) fulfills (3.6). We
show that if all the elements in {§("#73) | i, j € R\ {1},i+j = k + 1} fulfill (3.6), then all the
elements in {§("73) | i, j € R\ {1},i+j = k} fulfill (3.6). Using the induction hypothesis, we

solve (3.43) as follows:

s = iy |- E ”i/F’—eQZA sy* Tt at| = Vi
= GG, 2 p sSY i,
seLl
_1 o AN , L
+ Li—jyi Z Ps (j 1) {x%s_l — (S ; Z) xz(—x)z} + Cpy @'

SER
The constant C., ;. is derived from the initial condition and given by
) s—1\(s—1 i
Cr,;,rj = I{i:j}Z Z Ps i—1 i (71) .
SER

Thus, we have (3.6) for 4,5 € R\ {1}.
Since §(rim) = §rirs) — S29e 71 5(rirs) e show that 6"+ fulfills (3.6) for i € R. Hence

j=2
we obtain (3.6).

3.5 Summary

In this chapter, we have analytically solved the covariance evolution for irregular LDPC code

ensembles. We have also obtained the slope scaling parameter without assumptions.
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Chapter 4

Analysis of Error Floors of Non-Binary
LDPC Codes over Binary Erasure

Channels

In this chapter, we investigate the error floors of the non-binary LDPC codes transmitted over
the BEC under BP decoding. We propose a method to improve the decoding erasure rates in the
error floors by optimizing labels in zigzag cycles in the Tanner graphs of codes. Furthermore,
we give lower bounds on the bit and the symbol erasure rates in the error floors. The simulation
results show that the presented lower bounds are tight for the codes designed by the proposed
method.

4.1 Introduction

The error floors of non-binary LDPC codes decoded by the BP decoder are mainly caused by
nonzero codewords or stopping constellations of small weight. We focus on nonzero codewords
at first. A zigzag cycle is a cycle such that the degrees of all the variable nodes in the cycle are
two. A zigzag cycle of weight w consists of w variable nodes of degree two. It is known that the
set of variable nodes in a zigzag cycle forms a stopping set. For the binary LDPC codes, small
zigzag cycles always yield nonzero codewords which result in serious degradation of the decoding
performance. On the other hand, zigzag cycles in the non-binary codes do not always yield
nonzero codewords. Let H(gw) denote the submatrix over I, corresponding to a zigzag cycle of
weight w with labels hy 1, h1 2, ..., hww, hw,1 in the Tanner graph. For example, the submatrix

Hé4) is written as

h171 hl’g 0 0
g _ | 0 2 s 0
q =
0 0 h3’3 h3,4

h4 1 0 0 h4)4

)
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To simplify notation, we define Ay 41 := hy,1. The zigzag cycle corresponding to Héw) yields

nonzero codeword iff Héw) is singular, i.e.,

w w
det H(gw) = H hiﬂ‘ + H hz‘,i—i—l =0,

i=1 i=1

which is equivalent to
w
X ‘= HhZilhi+l,i =1.
i=1

It can be seen that zigzag cycles in the Tanner graphs for the binary LDPC codes always yield

“) = 0. On the other hand, for the non-binary case, zigzag

nonzero codewords since det H,
cycles in the Tanner graphs do not yield nonzero codewords if the corresponding submatrices

are nonsingular.

To lower the error floors of codes under maximum likelihood decoding, Poulliat et al. pro-
posed cycle cancellation [27]). The cycle cancellation is a method to design the edge labels in
zigzag cycles so that the corresponding submatrices are nonsingular. We see that from the sim-
ulation result [27] the resulting codes have lower error floors under BP decoding. However, it
is found in our analyses that some zigzag cycles, even if their submatrices are nonsingular, can
cause decoding failures under BP decoding over the BEC, i.e., some zigzag cycles yield stopping

constellations.

In this chapter, we analyze nonsingular zigzag cycles which cause the decoding failures under
BP decoding. We clarify that the condition for successful decoding of zigzag cycles over the BEC
depends on the parameter xy. More precisely, if the parameter x is not a nonzero element of
proper subfields of F,, the zigzag cycles do not yield stopping constellations. Based on this fact,
we propose a design method of selecting labels so as to eliminate small zigzag cycles which yield

stopping constellations.

For the binary LDPC code ensembles over the BEC, a closed-form expression for the bit
erasure rate in the error floors was given in [5, p. 155]. However, for the non-binary LDPC code
ensembles, no closed-form expressions or bounds for the bit and the symbol erasure rates in the
error floors have been given. In this chapter, we give lower bounds on the bit and the symbol
erasure rates in the error floors for the non-binary LDPC code ensembles. More precisely, those
lower bounds are derived from the decoding erasures caused by the zigzag cycles. Furthermore,
the simulation results show that the lower bounds on the bit and the symbol erasure rates are

tight for the expurgated ensemble constructed by our proposed method over the BEC.

This chapter is organized as follows. In Section 4.2, we investigate BP decoding of zigzag
cycles over the BEC and propose the improved cycle cancellation. In Section 4.3, we give lower

bounds on the bit and the symbol erasure rates in the error floors for expurgated ensembles.
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Figure 4.1: A zigzag cycle of weight w with labels ki 1,h21,. .., Rww; Puw,1-

4.2 Zigzag Cycle Code Analysis

A zigzag cycle is a cycle such that the degrees of all the variable nodes in the cycle are two. The
zigzag cycle code is defined by a Tanner graph which forms a single zigzag cycle as shown in
Fig. 4.1. In this section, we investigate the zigzag cycle codes to clarify a condition for decoding
failures on the zigzag cycles in Tanner graphs. We also show the decoding performance for zigzag

cycle codes under BP decoding.

4.2.1 Condition for Successful Decoding

In the following theorem, we clarify a necessary condition for successful decoding of the zigzag
cycle codes over the BEC by the BP decoder.

Theorem 2 Consider zigzag cycle codes of length w with labels hi1,h12,.. ., hww, w1 €
Fom \ {0} over the BEC. Let o be the primitive element of Fom. Define

= U {0 isoa Ly o), (4.1)

m

r>0:r|m,r#m

All the symbols in a zigzag cycle code are correct unless all the bits are erased, if

w

H h;11+1hi,i =x ¢ H;,.
i=1

Specifically, {1} = H;;, C Fom for a prime m.

The proof of Theorem 2 shall be shown in Appendix 4.A. Note that {a’Z"~D/C"=1 | § =
0,1,...,2" —2} forms the set of the nonzero elements of the proper subfield of order 2" for r | m.
In other words, H}, consists of the nonzero elements of the proper subfields of Fom.

We refer to x as the cycle parameter of the zigzag cycle code. Theorem 2 shows that the
condition of successful decoding under BP decoding for the zigzag cycle codes over the BEC
depends on the cycle parameter x. In Table 4.1, we list the cycle parameters in H};, C Fam for

m = 4,6,8 and 9. It follows from Theorem 2 that it is desired to avoid the zigzag cycle codes
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Table 4.1: The elements of H}, over Fom for m =4,6,8,9.
Field | The elements of H},
10

5
F24 1,0{ ,

IFQG 17 0497 0118, 0421 27 36 42 45 54

]FQB 17 a17’ a34 51 .68 .85 102 119 136 153 170 187 204 221 _ 238
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Figure 4.2: The block erasure rates for zigzag cycle codes with the cycle parameter x =

1,08 a'”, a'?® over the BEC under BP decoding. The zigzag cycle codes are of weight 6

over IFys. Let € be the channel erasure probability. The solid curve shows the theoretical block
erasure rate €*® of zigzag cycle codes with the cycle parameter x ¢ Hj.

*
m>

with the cycle parameter x € H* , since those codes can cause decoding failures even if not all

the bits are erased.

We propose an improved cycle cancellation to get lower error floors. The improved cycle
cancellation is a method to design the labels in Tanner graphs so that zigzag cycles of small
weight satisfy x ¢ H),. The zigzag cycles designed by the improved cycle cancellation are
successfully decoded under BP decoding unless all the bits are erased. Hence, zigzag cycles
designed by the improved cycle cancellation recover more erasures than those designed by the

cycle cancellation [27].

We compare the block erasure rates of zigzag cycle codes designed by the improved cycle

cancellation with that of zigzag cycle codes satisfying x € H}, in Section 4.2.2.
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Figure 4.3: The block erasure rates for zigzag cycle codes over the BEC with channel erasure
probability 0.7 under BP decoding. The zigzag cycle codes are weight 3 over Fos. We see that
the zigzag cycle codes with the cycle parameter x ¢ Hj exhibit good decoding performance,
where Hj = {1,a%,a!8, 0?1, 0?7, 030 a2 a® a5t}

4.2.2 Simulation Results

Figure 4.2 shows the block erasure rates of zigzag cycle codes over the BEC under BP decoding.
Each curve of x = o in Fig. 4.2 shows the block erasure rates of zigzag cycle codes of weight 6
over Fys with the cycle parameter y = 1,a!7,a® € Hj. The circles in Fig. 4.2 show the block
erasure rate of zigzag cycles with the cycle parameter y = a'?® ¢ Hj.

The solid curve in Fig. 4.2 shows the theoretical block erasure rate of zigzag cycle codes
with the cycle parameter x ¢ Hj. A zigzag cycle code is recoverable if all the symbols in
the zigzag cycle code are correct by the BP decoder. The zigzag cycle codes with the cycle
parameter x ¢ Hg§ are recoverable unless all the bits are erased. All the bits are erased with
probability €*® for the BEC with channel erasure probability € since the bit code length is 6
symbols or equivalently 6x8=48 bits. Hence, the theoretical block erasure rate of zigzag cycle
codes designed by the improved cycle cancellation is given by €*8.

The cycle cancellation avoids only the zigzag cycles with the cycle parameter y = 1. In other
words, the cycle cancellation cannot avoid the zigzag cycles with the cycle parameter y = a'”
and x = a®. On the other hand, the improved cycle cancellation avoids the zigzag cycles with
the cycle parameter not only x = 1 but also y = a!” and x = o® since 1,a!7,a® € Hj.

The smallest stopping state is defined in Appendix 4.A.3. The smallest stopping state con-
taining 1 for x = a®® is given by {0,1,a%°, a'™}. Then, the cardinality of this stopping state

17 is given by

is 4. On the other hand, the smallest stopping state containing 1 for x = «
{0y u{a!™ |i=0,1,...,14}. Then, the cardinality of this stopping state is 16. We see that
from Fig. 4.2 the block erasure rate increases as the cardinality of the smallest stopping state
decreases.

Figure 4.3 shows the block erasure rates of zigzag cycle codes over the BEC with channel
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erasure probability 0.7 under BP decoding. The zigzag cycle codes are weight 3 over Fos. From
Fig. 4.3, we see that the zigzag cycle codes with the cycle parameter x ¢ H{ exhibit good

decoding performance.

4.3 FError Floor Analysis

From Theorem 2, we see that no zigzag cycles designed by the improved cycle cancellation are
recoverable iff all the bits in the zigzag cycles are erased. From Appendix 4.A.2, we see that
all the zigzag cycles are not recoverable if all the bits are erased. By using this result, in this
section, we give lower bounds on the bit and the symbol erasure rates under BP decoding for
an expurgated ensembles. More precisely, those lower bounds are derived from the decoding
erasures caused by the zigzag cycles. Simulation results show that those lower bounds are tight
bounds on the bit and the symbol erasure rates in the error floors for the expurgated ensembles

designed by our proposed method.

4.3.1 Code Ensemble

Since all the neighbors of the set Z of the variable nodes in a zigzag cycle are connected to Z
exactly twice, the set Z of the variable nodes in a zigzag cycle forms a stopping set.
To analyze the bit and the symbol erasure rates in the error floors of the non-binary LDPC

codes, we consider the following expurgated ensemble.

Definition 3 Recall that EGF(N,Fam, A, p) denote the non-binary LDPC code ensemble
over Fom. Let wy, € N\ {1} be an expurgation parameter. The expurgated ensem-
ble ELDPC(N,Fom, A, p,wy) consists of the subset of codes in EGF(N,Fam, A, p) which con-
tain no stopping sets of size in {1,...,wg — 1}. Note that the expurgated ensemble
ELDPC(N,Fam, A, p, 1) is equivalent to EGF(N,Fam, A, p). Let w. € N be an expurgation
parameter for labeling in the Tanner graph, where wy < w.. Define expurgated ensemble
ELDPC(N,Fam, A, p, ws, we, H) as the subset of codes in ELDPC(N,Fam, A, p, wg) which con-

tain no zigzag cycles of weight in {wyg, ..., we — 1} with the cycle parameter x € H.

Since the sets of the variable nodes in zigzag cycles form stopping sets, the codes in the expur-

gated ensemble ELDPC(N,m, A, p, wg) contain no zigzag cycles of weight in {1,2,...,ws — 1}.

Example 8 The codes in the expurgated ensemble ELDPC(N,Fam, A, p, wg, we, {1}) contain
no stopping sets of size in {1,2,...,wy — 1} and no zigzag cycles with the cycle param-
eter x = 1 of weight in {wg,...,w; — 1}. In other words, the expurgated ensemble
ELDPC(N,Fam, A, p, ws, we, {1}) is constructed by the cycle cancellation. Since the sets of the
variable nodes in zigzag cycles form stopping sets, the codes in ELDPC(N,Fam, A, p, wg, we, {1})
contain no zigzag cycles of weight in {1,2,...,wg — 1}.

Recall that H}, is defined as in (4.1). Similarly, the expurgated ensemble
ELDPC(N,Fam, A, p, wg, we, H,) is constructed by the improved cycle cancellation.
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4.3.2 Analysis of Error Floors

The following theorem gives lower bounds on the bit and the symbol erasure rates under BP
decoding for the expurgated ensemble ELDPC(N, Faom, A, p, wg, we, H}, ).

Theorem 3 Let  P,(N,Fom, A, p, wg, we, HY,,€)  and  Py(N,Fom, A, p, wg, we, HY,,€)  be
the bit and the symbol erasure rates, respectively, for the expurgated ensemble
ELDPC(N,Fam, A, p, wg, we, H},) by the BP decoder over the BEC with channel erasure
probability e. Define u := N (0)p/(1) and

. L, p<1,
€, 1= ) (4.2)
pom, o > 1

For sufficiently large IV, the bit and the symbol erasure rates for p > 0 and € < €}, are bounded
by

1 (pem)vs 1
Po(N, Fom, A, p, we, we, HY, €) >—HE ) -, 43
b( yLom, A, P, We, W Hm 6) 2N1[LL€m+O<N) ( )
1 (pemyws 1
PS N7]Fm7)\, ’ » e :nv > ar ) 44
( 2 pwgw H 6) 2N1_u€m+0<N) ( )

proof: First, we will consider the symbol erasure rate. The symbol erasure rate is repre-
sented by the sum of two contributions, the symbol erasures caused by the stopping constel-
lations from the zigzag cycles and from the stopping sets other than the zigzag cycles!. Let
PZ(N, Fom, A, p, wge, we, H},, €) and ]5SS(N7 Fom, A, p, wg, we, Hy,,€) be the contributions of the
zigzag cycles and of the stopping sets other than the zigzag cycles, respectively, for the sym-
bol erasure rates of the ensemble ELDPC(N, Fom, A, p, wg, we, H},) over the BEC with channel

erasure probability e. Then, we have

PS(N, FQm,)\, P, wg,wC,H:n,E)
=P,(N,Fam, )\, p, We, We, Hoy, €) + Py(N,Fom, \, p, We, We, Hoy,, €)
ZPZ(Na Fzm, Avpv wgawCaH:na 6)'

In words, the symbol erasure rate is lower bounded by the contribution of the zigzag cycles for
the symbol erasure rate.

We will consider JBZ(N,IFgm,)\,p7wg,wc,7'(;';1,e). Let Pl(N,w,Fgm,)\,p,wg,wc,H,ﬁl,e)
be the symbol erasure rate caused by the stopping constellations from zigzag cycles
of weight w under BP decoding over the BEC with channel erasure probability e for
ELDPC(N,Faom, A, p, wg, we, H},). From Definition 3, codes in the expurgated ensemble
ELDPC(N,Fam, A, p, wg, we, HY:,) contain no zigzag cycles of weight in {1,2,...,w; —1}. Hence,

we consider the symbol erasure rate caused by stopping constellation from zigzag cycles of weight

1For a fixed Tanner graph and a given stopping set S, there exist at least one stopping constellation
{Euv}vepi,nyy such that the set of variable nodes in {v | Ey # {0}} is S from Lemma 3. In this proof, we
refer to those stopping constellations as stopping constellations from stopping set S.
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at least wg. If we fix a finite W and let IV tend to infinity, the zigzag cycles of weight at most
W become asymptotically non-overlapping with high probability [5, p. 155]. Thus, for a fixed
W and sufficiently large N we have

w
PZ(Na FQ”La/\vpv wgawCaH:Lae) > Z Pl(N7w7F2ma)‘7p7 wngch:nve)'

W=Wg

In Section 4.2.2, zigzag cycle codes designed by the improved cycle cancellation can not be
recovered iff all the bits are erased. From this result, we see that zigzag cycles with the cycle
parameter x ¢ H} in a Tanner graph can not be recovered iff all the bits in the cycle are
erased, which happens with probability €. In other words, symbols in zigzag cycles of weight
w € {wg,...,w.— 1} are not recovered with probability €”*. From Appendix 4.A.2, no symbols
in the zigzag cycle of weight w with the cycle parameter x € H}, are correct if all the bits in
the zigzag cycle are erased. Hence, all the zigzag cycles are not recovered with probability at
least €™, In other words, the zigzag cycles of weight w € {we,..., W} are not recovered with
probability at least €™*. By [5, C. 37] for a fixed W, the expectation of the number of zigzag
cycles of weight w < W in the expurgated ensemble ELDPC(N, Fom, A, p, $g, 8¢, H3,) is given by

for sufficiently large N. From Appendix 4.A.3, if all the bits in the zigzag cycle are erased,
no symbols in zigzag cycle are correct. Hence, iff all the bits in the zigzag cycle of weight
w are erased, the zigzag cycle causes w symbol erasures. Since w symbols are in the zigzag
cycles of weight w, the zigzag cycles of weight w cause a symbol erasure rate of w/N if the
bits in the zigzag cycles of weight w are erased. Therefore, for sufficiently large N, we have for

w € {wg,...,we — 1},

- 1 1
Pl(vaaFQT”a /\apv wgawCaH:nae) = ﬁ#wemw +o0 <) )

and for w € {w,...,W}

~ 1 1
P (N Fom, A - *’ > w _muw i
l( , W, fom, A, P, Wg, W, Hm 6)_2N,LL € +O<N)

Thus, we have

P(Na FQ"") )‘7/)7 wgawCaH;kna 6) >

[~
M=

€ 0] —_— .
s N

g
If e < €, for sufficiently large N and W, we see that

w

I
S

~ 1 (‘LLGm)sg 1
P(N, Fym, A GHE ) > M) —).
(N, Foms A, p, g, e, o, €) 2N1uew+O<N)
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Hence, for sufficiently large N, the symbol decoding erasure rate is bounded by

myw
Py(N,Fom, X, p,g s we, Hypy €) > ;V(luiu)ej +o (]1[) )

We will consider the bit erasure rate. The proof is similar to the proof for the symbol erasure
rate. From Appendix 4.A.3, if all the bits in the zigzag cycle are erased, all the states of the
variable nodes in the zigzag cycle are equal to Fom. Hence, if all the bits in the zigzag cycle are
erased, no bits in the zigzag cycle are correct. Note that the bit code length is Nm. Since mw
bits are in the zigzag cycles of weight w, the zigzag cycles of weight w cause a bit erasure rate of
w/N if all the bits in the zigzag cycles of weight w are erased. Thus, the bit erasure rate caused

by zigzag cycles is lower bounded by

1 & 1
oy o ()
wW=wg
By using this result, we obtain a lower bound on the bit erasure rate for the expurgated ensemble
similarly. (Q.E.D.)

Discussion 5 Since the symbol and the bit erasure rates of all the zigzag cycles of weight w are
lower bounded by €™" the bit and the symbol erasure rates do not depend on the parameter wc
and the subset H,. Hence, (4.3) and (4.4) do not depend on the parameter w. and the subset
Hr,.

4.3.3 Simulation Results

Figure 4.4 compares the symbol erasure rate for the expurgated ensemble constructed by the im-
proved cycle cancellation ELDPC(315, Fos, 2, 22, 1,8, H}) with that for the expurgated ensemble
constructed by the cycle cancellation ELDPC(315, Fos, x, 22, 1,8, {1}), where H} = {1,a°, a'?}.
It can be seen that our proposed codes exhibit a better decoding performance than codes de-
signed by the cycle cancellation. Figure 4.4 also shows the lower bound on the symbol erasure
rate which is given by (4.4). We see that (4.4) is a tight lower bound on the symbol erasure rate
for the expurgated ensemble ELDPC(315, Fys, z, 2%, 1,8, H4*) in the error floor.

Figure 4.5 compares the symbol erasure rate for the expurgated ensemble constructed by
the improved cycle cancellation ELDPC(600, Fou, 2, 22,2,12, H}) with that for the expurgated
ensemble constructed by the cycle cancellation ELDPC(600, Fos, 2, 22,2,12,{1}). The lower
bound on the symbol erasure rate is given by (4.4). This is the case for wgy > 2. Figure 4.6
compares the symbol erasure rate for the expurgated ensemble constructed by the improved cycle
cancellation ELDPC(2000,Fa4, A, p, 1,8, H}) with that for the expurgated ensemble constructed
by the cycle cancellation ELDPC(2000,Fys, ), p, 1,8,{1}) where A = 0.5z + 0.52% and p =
0.52% 4+ 0.52°. The lower bound on the symbol erasure rate is given by (4.4). This is the case
for an irregular non-binary LDPC code ensemble. From Fig. 4.5 and 4.6, we see that (4.4) is

a tight lower bound on the symbol erasure rate of the expurgated ensemble constructed by the
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Figure 4.4: Comparison of the symbol erasure rate for the expurgated ensem-

ble ELDPC(315,Fos,2,22,1,8,’H;) (proposed) with that for the expurgated ensemble
ELDPC(315,Fa1, 2,22,1,8,{1}) (cycle cancellation). The lower bound is given by (4.4). Tt
can be seen that our proposed codes exhibit a better decoding performance than the cycle can-
cellation. It can be seen that (4.4) is a tight lower bound on the symbol erasure rate for the
expurgated ensemble ELDPC(315,Fgs, 2, 2%,1,8,H}) for small e.

improved cycle cancellation in the error floor and our proposed codes exhibit a better decoding
performance than codes designed by the cycle cancellation.

Figure 4.7 compares the bit erasure rate for the expurgated ensemble constructed by the im-
proved cycle cancellation ELDPC(315, Fos, 2, 22, 1,8, H}) with that for the expurgated ensemble
constructed by the cycle cancellation ELDPC(315,Fgs,x, 2%, 1,8,{1}). It can be seen that our
proposed codes exhibit a better decoding performance than codes designed by the cycle cancel-
lation. Figure 4.7 also shows the lower bound on the bit erasure rate which is given by (4.3).
We see that (4.3) is a tight lower bound on the bit erasure rate for the expurgated ensemble
ELDPC(315,Fa4, z,22,1,8, H}) in the error floor.

4.3.4 Monotonicity of Error Floor

In Section 4.3.3, we see that the lower bound given by (4.3) is a tight lower bound on the
bit erasure rate in the error floor for the expurgated ensemble constructed by the improved
cycle cancellation. It is empirically known that the error floors for the non-binary LDPC codes
decrease as the size of Galois field increases [13]. In this subsection, we show the monotonicity
of the error floor by using the lower bound given by (4.3).

Let n be the bit code length, i.e., n = mN. From (4.3), we have

lim nPb(n7F2m7Aapa Wg, wC7H:n7 6) > = f(m7€7wg)' (45)

n—oo

m (pe™)"
21— pem
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Figure 4.5: Comparison of the symbol erasure rate for the expurgated ensem-

ble ELDPC(600,Fqs,z,2%,2,12, H%) (proposed) with that for the expurgated ensemble
ELDPC(600, Fou, 2, 22,2,12,{1}) (cycle cancellation). The lower bound is given by (4.4). This
is the case for wy > 1.

The following lemma shows that for a fixed large bit code length, the lower bound on the bit

erasure rate is decreasing in m, i.e., f(m,€, wy) is decreasing in m.

Lemma 7 Define f(m, e, wg) as in (4.5). Define €, as in (4.2). Then f(m,e,wg) > f(m +

1,e,wg) for > 1 and 0 < e < min{e};,, e 1} =€,
Proof: From (4.5), we have

(ue™)sg(m, €, wg)
2(1 — pem+1)(1 — pem)’

f(m7€7wg) - f(m+ 1,6,'U)g) =
where
glm, e, wg) i= m(1 — pe™ ) = (m + 1)evs (1 = pue™.

For € < €},, g(m, €, wg) is increasing in w,. Hence, we have g(m, €, wg) > g(m,¢,1). For € < €,
g(m, e, 1) is decreasing in e. Note that min{e} €, 1} < p~ . Thus, we see that for e < p~m

and u>1
g(m, e, wg) > g(m,e,1) > g(m, p~m,1) = m(l — =) > 0.

Therefore, we have f(m 4 1,e,wg) — f(m,e,wg) < 0 for p > 1 and 0 < € < min{e};,, €5}

(Q.E.D)
Figure 4.8 shows curves given by (4.5) for p = 2, wy =1 and m = 1,2,...,9. We see that

the lower bound decreases as the order of the Galois field increases.
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Figure 4.6:  Comparison of the symbol erasure rate for the expurgated ensem-

ble ELDPC(2000,F54, A, p, 1,8, H}) (proposed) with that for the expurgated ensemble
ELDPC(2000, Fya, A, p, 1,8, {1}) (cycle cancellation), where A = 0.5z + 0.52% and p = 0.52°% +
0.52°. The lower bound is given by (4.4). This is the case for an irregular LDPC code ensemble
case.

4.4 Summary

In this chapter, we have proposed a method to improve the error floors for the non-binary LDPC
codes which contain the variable nodes of degree two over the BEC under BP decoding. We
have derived lower bounds on the bit and the symbol erasure rates in the error floors for the
expurgated ensembles under BP decoding. From the simulation results, the lower bounds are
tight for the bit and the symbol erasure rates for the expurgated ensembles constructed by the

proposed method over the BEC under BP decoding.

Appendix 4.A Proof of Theorem 2

In this section, we prove Theorem 2. To prove Theorem 2, we give several lemmas in the following

sections.

4.A.1 Analysis of Stopping Constellation for Zigzag Cycle Codes

Consider zigzag cycle codes of weight w with labels hi 1,h12,. .., hyw, hw,1 € Fam \ {0} as
depicted in Fig. 4.1. Let Eq,..., E,, C Fam be the states of the variable nodes.

Lemma 8 For any zigzag cycles of weight w with labels hq 1, k1,2, .., Ry w; hw1 € Fam \ {0},

an assignment of states {F;}¥; forms a stopping constellation if and only if for i =1,...,w:

—1 —1
E; =h;;hit1:Eitq, E;=h_" ;hi—1i-1E;1,

i—1,1
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Figure 4.7: Comparison of the bit erasure rate for the expurgated ensemble
ELDPC(315,Fos,2,22,1,8,'H;) (proposed) with that for the expurgated ensemble
ELDPC(315,Fos, z,22,1,8,{1}) (cycle cancellation). The lower bound is given by (4.3).
It can be seen that our proposed codes exhibit a better decoding performance than the cycle

cancellation. It can be seen that (4.3) is a tight lower bound on the symbol erasure rate for the
expurgated ensemble ELDPC(315, Fos, 2, 22, 1,8, H}) for small e.

where

Ey:=FE,, FEu1:=E, ho,o = hw,w hO,l = hw,1~

Proof: From the definition of stopping constellation, it holds that for ¢ =1,... w

~1 -1
E; Chijhiv1iEit, E; ChZ hic1i1Ei 1.

1—1,2
From those equations, we have
By C hl_&hQ,lEQ - hiih2,1h2_éh3,2E3 C..- Cxk. (4.6)

Similarly, we have E; C " 'E;. Note that F; C x~'E; iff YE, C F1, and we have yE; C E; C
xF1. Thus, we have

From (4.6) and (4.7), we get By = hyhy B>, Similarly, we have E; = hy'hiy1:Fi41 and
E; = h! hi—1,i—1E;—1 fori=1,2,...,w. The converse is clear from the definition. (Q.E.D.)

i—1,2
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Figure 4.8: Curves given by (4.5) for 4 =2, wg =1 and m =1,2,...,9.

4.A.2 The Condition of Successful Decoding for Zigzag Cycle Codes

From Lemma 8, for all the stopping constellations {E;}}"; of zigzag cycle codes, we see that E;

for j =2,...,w depends only on FEj, i.e.,
Jj—1
Ej = [T hiithisriEn
i=1

for j = 2,...,w. Hence, in order to clarify the stopping constellation for zigzag cycle codes,
without loss of generality, we may focus on analyzing the state £;. From Lemma 8, we see that
Ey = xE1. A stopping state for x € Fam \ {0} is defined as a subset E C Fom such that

E = xE.

Let &, denote the set of all the stopping states for x.

A zigzag cycle code is recoverable if all the symbol in the zigzag cycle code are correct by the
BP decoder. From the definition, it is clear that the assignment of states such that E; = Fom
for i = 1,2,...,w forms a stopping constellation for any zigzag cycle code of weight w. Note
that Fom is a subset of Fom. Thus, no zigzag cycle codes over the BEC are recoverable if all the
bits are erased, i.e., Fom € &, for all x € Fom \ {0}. More precisely, if all the bits are erased,
no symbols and no bits in the zigzag cycle are correct. Similarly, the assignment of states such
that E; = {0} for i = 1,2,...,w also forms a stopping constellation for any zigzag cycle code of
weight w, i.e., {0} € &, for all x € Fom \ {0}. Such a stopping constellation corresponds to the
case that all the bits are correct by the BP decoder.

Hence, the zigzag cycle codes with labels hi 1,h12,. .., hy.w, hw,1 are recoverable unless all
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the bits are erased if &, = {{0}, Fom }. In other words, whether the zigzag cycle codes with labels
hi1,h1,2,. .., hww, hw,1 are recoverable unless all the bits are erased, depends only on the cycle

w o -1
parameter x = [[._, hiihisi

4.A.3 Analysis of Stopping States

In this subsection, we clarify the condition of x such that &, = {{0}, Fam }.

For x € Fam \ {0}, let 5§ai) denote the set of the stopping states containing o, i.e., o' € E
for all £ € &((ai). The smallest stopping state containing o' for y, denoted by E&ai), is the
stopping state for x such that E)(fvi) C E forall E € 5)((&) and o' € E;ai). It is clear E;ai)

equals

N E (4.8)

Bee(™)

Since o’ € E for all E € 5}({&)7 we have o is in (4.8). We show the closure of (4.8) under the
addition. If 41,7 are in (4.8), v1,72 are in F for all E € 6}((&1).
E ¢ 5)((&), Y1+ isin E forall E € &gab). Hence 1 + 2 is in (4.8). Obviously (4.8) is a subset

of E for all E € &((oﬁ). Note that

XﬂEZH)(E:ﬂE.

Eeel”) Ecel™) Ecel™”)

Since 71,72 are in F for all

Therefore, E&ai) is the smallest stopping state containing o for x.

Next, we show the uniqueness of the smallest stopping state containing of for y. Let E*
be another smallest stopping state for y containing o?. The existence of a stopping state E*
contradicts the definition of (4.8), since the intersection of E* and (4.8) contains o' and is a

stopping state for .
Lemma 9 The smallest stopping state containing a® = 1 for y € Fom \ {0} is a subfield of Fom.

Proof: For all F € &((1), since 1 € F and F = xE, we have y € E. Hence, we have x € E>(<1).
Recursively, x/ € E;l) for j = 0,1,...,0 — 1, where o is the order of x, i.e, o is the smallest
positive integer such that xy“ = 1. Since E,(Cl) is closed under the addition, we have Z;’;Ol ajx’ €

E&ai), where ag, a1,...,a,—1 € {0,1}. Hence, we have
o—1

E)(<1) QA: Zajxj |a07a17"';aa'71 6{071}
=0

Note that A = xA and A is closed under the addition. Thus, we have E;l) =A.
We claim that E;l) is a subfield of Fom. Obviously, we have the closure of E>(<1) under
addition and multiplication. The additive identity is 0 and the multiplicative identity is 1. The

additive inverse for v € ES) is v. For v € ES), ¥ =2 is in E,(Cl) since the closure of E>(<1) under
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multiplication. The multiplicative inverse for v € E;l) \ {0} is 42" 2 (Note that v € Fom \ {0}).
We are able to check that all field axioms are satisfied. Therefore, ES) is a subfield of Fom.
(QED.)

Lemma 10 Define 1}, as in (4.1). If x ¢ HZ, U {0}, it holds that E{) = Fym.

Proof: From Lemma 9, E>(<1) is a subfield of Fom. Note that the order of proper subfield of Fom

is 2" [28, p. 45], where r is a positive integer such that r | m and r # m. We will prove E;l) is

not equal to any proper subfields of order 2". Define g := 2-=L. From y ¢ H}, \ {0}, we have
X = a9t where j € {1,2,...,9 — 1}. If x is a member of the proper subfield of order 2", then

x? — x =0 [28, p. 45]. However,
X2T -—x = X(aj(y—l) _ 1) £0.

Hence, x is not a member of the proper subfield of order 2". Thus, we have ES) is not equal to
the proper subfield of order 2" for any positive integer r such that r | m and r # m. Therefore,
we obtain E&l) =TFym. (Q.E.D.)

Lemma 11 Let &, denote the set of stopping states for x. Define H}, as in (4.1). If &, \
{{0},F2nz} # @, then X € H:n

Proof: Let E be an element of &, \ {{0},Fom}. Note that o'E € &, \ {{0},Fam} for i =
0,1,...,2™ — 2. If E contains o', then 1 is an element of a*F € &, \ {{0},Fam}. Hence,
without loss of generality, we assume that E € &, \ {{0},Fam} and 1 is an element of E, i.e.,
E e 6')((1). Since E;l) # Fom and x # 0, we have x € H}, from Lemma 10. (Q.E.D.)

Lemma 12 Define H}, as in (4.1). If x € H}, then &, \ {{0},Fom } # 0.

Proof: If x € HZ,, there exists a positive integer r such that r» | m, r # m and x €
{7 =D/R"=1) 1§ =0,1,...,2" — 2}. Then, a stopping state for x is written as the following:

Ezz{O}U{o?@m_”“y_U|j::0,L.“,2T—2},

in fact £ = xF and E is a subfield of Fom of order 2". Hence, we have E € &, \ {{0},Fom } # 0.
(Q.E.D.)

4.A.4 Proof of Theorem 2

Note that {{0},Fom} C &, for all x € Fom \ {0}. Hence, we have &, = {{0},Fom} iff &, \
{{0},Fam} = 0. Define H;, as in (4.1). From Lemma 11 and 12, we have that x & H}, is
a necessary and sufficient condition for &, = {{0},Fom}. From Appendix 4.A.2, we see that
the zigzag cycle codes with labels hy 1,h21,. .., hy.w, hy,1 are recoverable unless all the bits
are erased if £, = {{0},Fam}, where x = [[;"; h; 'hit1i. Hence, we obtain that the zigzag
cycle codes with labels hi1,h12,. .., hww, hw,1 are recoverable unless all the bits are erased, if

X & Ho,-
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Chapter 5

Analysis of Error Floors of GGeneralized
Non-Binary LDPC Codes over Binary
and Non-Binary Memoryless Symmetric

Channels

In this chapter, we investigate the error floors of non-binary LDPC codes over GL(ms,Fom,)
transmitted over the ¢-MS channels. We provide a necessary and sufficient condition for suc-
cessful decoding of zigzag cycle codes over the ¢-MS channel by the BP decoder. We consider
an expurgated ensemble of non-binary LDPC codes by using the above necessary and sufficient
condition, and hence exhibit lower error floors. Next, we show lower bounds of the error floors
for the expurgated LDPC code ensembles over the g-MS channels. Moreover, we compare the
decoding error rates in the error floors for non-binary LDPC codes over the general linear group
with those for non-binary LDPC codes over finite field transmitted over the ¢-MS channel under
BP decoding. In this analysis, we see that the optimized non-binary LDPC codes defined over
general linear group have the same decoding performance in the error floors as those defined

over finite field.

5.1 Introduction

In this chapter, we extend to the results in Chapter 4 to the non-binary LDPC codes defined
over GL(mg,Fams) transmitted over the ¢-MS channels.

More precisely, we analyze a condition for successful decoding of zigzag cycles under BP
decoding over the ¢-MS channel. Based on this condition, we propose a design method of selecting
labels so as to eliminate small zigzag cycles which degrade decoding performance. Moreover,
we analyze the error floors of non-binary LDPC codes over the ¢-MS channel. In other words,
we show lower bounds for the symbol error rates in the error floors of the expurgated LDPC

code ensembles over the ¢-MS channel. More precisely, those lower bounds are derived from
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the decoding errors caused by the zigzag cycles. Furthermore, simulation results show that the
lower bounds on symbol error rates are tight for the expurgated ensembles constructed by our
proposed method over the ¢-MS channels.

It is known that the decoding complexity of non-binary LDPC codes over general linear
group GL(m,Fs) is larger than that of non-binary LDPC codes over finite field Fom for m > 2.
On the other hand, the decoding error rates in the waterfall region for optimized non-binary
LDPC codes over general linear group is lower than those for optimized non-binary LDPC codes
over finite field [29]. However, no methods to lower the decoding error rates in error floors for
non-binary LDPC codes over general linear group have been proposed. Moreover, the decoding
error rates in the error floor region for optimized non-binary LDPC codes over general linear
group have not been compared with those for optimized non-binary LDPC codes over finite field.

In this chapter, we define non-binary LDPC codes over general linear group GL(m3,Fom,)
and decoding algorithm to analyze the non-binary LDPC code over both finite field Fom and
general linear group GL(m, Fz). We assume the ¢-MS channels [14] for the generality. We extend
the optimization and analysis method in Chapter 4 to the non-binary LDPC codes over general
linear group transmitted over the ¢-MS channels. More precisely, firstly, we derive the condition
for successful decoding of zigzag cycle code. Next, we propose a method to lower the decoding
error rates in the error floors for non-binary LDPC code over GL(ms,Fams). Moreover, we
show lower bounds on the symbol error rates in the error floors for non-binary LDPC code over
GL(ms,Fom,). Furthermore, some simulation results show that the lower bounds on symbol
error rates in the error floors are tight for the optimized non-binary LDPC codes.

This chapter is organized as follows: In Section 5.2, we propose a method to lower the error
floors by analyzing the zigzag cycles. In Section 5.3, we derive lower bounds for symbol error

rates in the error floors for non-binary LDPC codes.

5.2 Zigzag Cycle Code Analysis

A zigzag cycle is a cycle such that the degrees of all the variable nodes in the cycles are two.
A zigzag cycle of weight w consists of w variable nodes of degree two. The zigzag cycle code is
defined by a Tanner graph which forms a single zigzag cycle. Figure 4.1 shows a zigzag cycle
code of symbol code length w. In this section, we give a condition for successful decoding of the

zigzag cycle codes over the 2™1-MS channels under BP decoding.

5.2.1 Condition for Successful Decoding

We consider the zigzag cycle code of symbol code length w with labels hy 1, k1,2, ..., Ry w, Pw,1 €
GL(mg,Fama) \ {0} as shown in Fig. 4.1. For any ms x mg3 matrices A, A, ..., Ag, we define
[10_, Ay := A1 Az - Ay, We define x := hy1hi2hybhos - hiylyhwt € GL(mg, Fama) \ {0}

Definition 4 Let () be the cyclic subgroup generated by ¥, i.e., (x) == {x’ | j =0,1,2,...}.
The relation ~ on Fi.?, defined by = ~ y is an equivalence relation on F5.2,, if and only if

there exists g € (x) such that gz = y. The equivalence class of z € F5,3, under this relation is
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(x)x ={gz | g € (x)}, and is called the orbit of x under (x). The set of orbits of z € Fg.2, \ {0}
under (y) forms a partition of Fo.2, \ {0}, i.e., every element in F.3, \ {0} belongs exactly one
of equivalence classes. A set of class representatives Sy, is a subset of F5.%, \ {0} which contains

exactly one elements from each equivalent class.

The following lemma shows that the decoding error rates depend on a set of class representa-
tives Sy, i.e., the matrix x € GL(mg,Fams) \ {0}, for a fixed channel and weight of zigzag cycle

code.

Lemma 13 We consider a zigzag cycle code of symbol code length w labeled by
h11,h12,- - Py ws hw1 € GL(m3,Fams) \ {0} transmitted over the 2"!-MS channel. The ma-
trix x is given by x = hi1h12hy3hos - byl hw € GL(ms,Fama) \ {0}. Define v; = h; hi i
for ¢ € [1,w], where hy41, = h1,4. Define Sy as in Definition 4. In the limit of large ¢, all the
symbols in the zigzag cycle code are eventually correct under BP decoding if and only if for all

x € Sy,

[x)zl—1 w )z —1 w
[T Ieo> T I ().
t=0 s=1 t=0 s=1

Moreover, in the limit of large ¢, no symbols in the zigzag cycle code are eventually correct under

BP decoding if and only if there exists z € Sx such that

[(x)z|—

[Te.o< TI

=0

[(x)z|—

e (117.0) v

t=0

The proof of this lemma is in Appendix 5.A.

By Using Lemma 13, we have the following Theorem.

Theorem 4 Define S, as in Definition 4. For a fixed channel output, if the zigzag cycle with
the matrix x such that |S,| > 1 is successfully decoded, the zigzag cycle with the matrix x such

that |S,| =1 is also successfully decoded.

proof: We consider zigzag cycle of symbol code length w. Since the channel output is fixed, the
initial messages C; for i € [1,w] are also fixed. From Lemma 13, if the zigzag cycle with the

matrix x such that |Sy| > 1 is successfully decoded, for all z € S,

[(x)zl=1 w

[Texo®= > 1 TLe (I w)x).
k=1 t=0 s=1
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Since the set of the orbits (x)a forms a partition of F3i2, \ {0}, Uzes, (x)z = Fy:2, \ {0} holds.

From the product of the above equation over all z € S, we have

x)z|—-1 w
[T [Teco ™= T 11 e (1))
€Sy k=1 zeSy t=0 s=1
= [0 > I T]C - (5.1)
k=1 z€eF™3  s=1

24

Similarly, for the matrix x such that |S,| =1 and z € S,, (x)x = F3:,. Hence, from Lemma
13, if the zigzag cycle with the matrix x such that |5, | = 1 is successfully decoded,

w

[c02 "> ] Hc

s=1 tEFQ,,L4

Since this condition coincides with (5.1), the zigzag cycle with the matrix x such that |Sy| =1
is also successfully decoded. (Q.E.D.)

Theorem 4 shows a condition for lowering the error floor. The order o, of the matrix x is
the smallest positive integer such that x°x is mg x mg identity matrix. The following lemma
asserts that the condition for successful decoding in the case for |Sy| = 1 is simplified by the

order of the matrix x.
Lemma 14 The order of the matrix x is 2™+ — 1 if and only if |S,| = 1.

This lemma is proved in Appendix 5.B.

Discussion 6 By combining Theorem 4 and Lemma 14, we see that the zigzag cycles with the
matrix x such that the order of x is 234 — 1 have the best decoding performance. By using
this condition, we propose a method to lower the error floors for generalized non-binary LDPC
codes as follows: Designing the labels in the zigzag cycles of small weight as the order of x

satisfies 2M3™4 — 1,

Discussion 7 From Discussion 6, in the case for the non-binary LDPC codes over Galois field
Fom, the condition for the zigzag cycles which have the best decoding performance can be
simplified. We claim that for the non-binary LDPC codes over Fom the order of x is 2™ — 1 if
and only if x & H; ,,, where

Hl,m = U { i 71 ‘1—0 7’1}

0<r<2m—1:r|2m—1

Firstly, we show that the order of x is 2™ — 1 if x & Hj 4. For r < 2™ — 1, we define

.,r—l}.

(r i2
Hl,m = {a
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Table 5.1: The elements in H; 4, for m =2,3,...,9.
Field | The elements of H
Foy2 1
Fys 1
For | 1,02, 0%, a5, a°, a0, ot?
Foys 1
Fye 103,05, a7,a°% a2, o, a’® al8 o a2t a5 a?", a8, a3, a3, a3, a3 039 a2,
A% 18 049 Bl 0B 56 05T (60
Fyr 1
103,05, 05,0 a0 a'2, a5 al7 a8 020, o2l o24 a2 27 030, o33 o34 o35 36,
a9 010 012 15 o8 080 (1 BL 055 0BT 060 (63 (65 (66 (68 469 TO (T2 75
a8, 080 81 o84 o085 087 090 093 95 o9 099 100 102 105 4108 110 111
Foe alld Q15 Q117 (119 4120 (123 (125 (126 129 (130 (132 (135 136 138 (140
|4
a1 g4 o145 (147 4150 (153 (155 (156 159 160 (162 165 168 o170 o171
QlT4 o175 o177 o180 (183 (185 (186 (18T 189 (190 192 (195 198 200 201
Q204 0205 (207 (210 (213 (215 (216 (219 (220 (221 (222 (225 (4228 (230 (231
a3 0235 (23T (238 (240 (243 (245 (246 (249 (1250 252
Foyo 1

If x ¢ Hg?n, there exist integers ¢ € {0,1,...,r — 1} and j € {1,...,(2™ — 1)/r — 1} such that

om

x = " =D/m+i Hence, we have

X'r‘ — a{i(2m71)/r+j}7‘ — Oéjr.

Since jr < 2™ — 1, we get x = /" # 1. Thus, we have the order of y is not r if ¥ ¢ H ,

()
1,m-

Since the order of x is less than or equal to 2™ — 1 for x € Fam \ {0}, the order of y is 2™ — 1
if x & H1,m. Secondly, we show that x & H;i ., if the order of x is 2™ — 1. Obviously, the order

(r)

1,m

of x e H

is less than or equal to r. Hence, the order of x € H;y j, is less than 2™ — 1. From

the contraposition, x & H; ,, if the order of x is 2™ — 1. Therefore, we see that the order of x

is 2™ — 1 if and only if x & H1 m-

Thus, the zigzag cycles with the cycle parameter x & Hi ,, have the best decoding perfor-

mance. Note that {a’" =D/ | § = 0,...,7 — 1} represents a proper subgroup of Fom. Table

5.1 shows the elements in H; ,, for m = 2,3,...,9. Figure 5.1 shows the symbol error rate for

the zigzag cycle code define over Faa of symbol code length 3 over the BAWGN channel with

channel variance 02 = 1. From Figure 5.1, we see that the zigzag cycle codes with the cycle

parameter x & H; 4 have the best decoding performance.

The log-likelihood ratio for the 2™'-ary channels are defined in [30]. For v € F3'', let

Zy
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Figure 5.1: The symbol error rate for the zigzag cycle code defined over Fo4 of symbol code length
3 over the BAWGN channel with channel variance 02 = 1. The horizontal line corresponds to
the cycle parameter.

v-th variable node, i.e.,

p(yv,i ‘ 0) (52)

Zy,i(Yu,i,7) = log .
( ) pi(yv,i [ )

By using the log-likelihood ratio, the condition for successful decoding of the zigzag cycle
codes with the matrix x of the order 23”4 —1 over the 2™*-MS channel is given as the following

corollary.

Corollary 2 We consider the zigzag cycle codes of symbol code length w with the matrix x of
the order 2™3™+ — 1 over the 2™!-ary input memoryless symmetric channel. For v € Fy', let
Zy (Y i,y) define as in (5.2). In the limit of large ¢, no symbols in the zigzag cycle code are

eventually correct if and only if

w o ma

ZZ Z Zyi(Yoi,7) 0.

v=1i=1 yeF}"\{0}

Moreover, in the limit of large ¢, all the symbols in the zigzag cycle code are eventually correct

if and only if

>SNz >0

=1 i=1yeF""\{0}

[~
Il
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proof: The initial messages are represented as Cy(v) = [[/% p(yvi | 7,), where Y, =

(b (7)) jelmy (i—1)+1,mq) for v € F5i2,. Hence, we have for v € [1,w],

CU(O) = Hp(yv,i | 0)7
=1

H Co(v) = H H Py | )

ms

YEF ymiy i=1geF,"!

Hence, from Theorem 4, no symbols in the zigzag cycles are eventually correct if and only if

]w‘[cv(o)Q”—1 < ]w‘[ II ¢ @
v=1 v=1zeF,,3,\{0}

w o ma m—m1q

=TI T e <

v=1i=1 IEFng\{O} p(y”’i | I)

w  mao

— ZZ Z Z(Yyiyz) < 0.

v=1i=1 zeF"1\ {0}
Similarly, we have that all the symbols in the zigzag cycle code are eventually correct if and only
if

ZZ Z Z,i(Yy,i,7v) > 0.

v=1i=1 yeF]""\{0}

This concludes the proof. (Q.E.D.)

5.2.2 Bhattacharyya Functional and Error Probability

We define distributions of log-likelihood ratios associated with 2”1 -ary channels as follows:

. p(Y [0)
L= ), gy
y€F; T\ {0}

Let a denote the conditional probability density function of the random variable L(Y") given that
the corresponding channel input is zero. We refer the function a as L-density. Note that in the
case for the MBIOS channels, i.e., m; = 1, L-density defined in the above gives the definition of
the L-density in [5, p. 178].

Definition 5 For a L-density a, the Bhattacharyya functional B(a) is defined as

B(a) := /OO a(z) exp[—z/2]dx.

— 00

In this definition, we assume not only symmetric L-density [5] but also asymmetric L-density.
In the case for the MBIOS channel, Definition 5 holds [5, Definition 4.61]. The following facts
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show the properties of the Bhattacharyya functional.

Fact 1 For L-density a; and az, B(aj*az) = B(a;)B(az) holds, where * denotes the convolution,

ie.,

@ra)@) = [ aile =iy

—o0
Fact 2 Let Z denote the random variable with L-density a. Then,

Pr(Z < 0) < %B(a).

Corollary 2 gives the decoding error probability of zigzag cycle with the matrix x of the order

oy as the following corollary.

Corollary 3 Denote m = mims = mgmy. Let P,,(w,m,a) be the symbol error rate for
the zigzag cycle codes defined over GL(mg3,Fam,) of symbol code length w with the matrix x
such that o, = 2™ — 1, over the 2"'-MS channel with L-density a under BP decoding. Let
Z1,Z5,...,7Z) denote independent and identically distributed random variables with L-density
a. Define Z(®) = Zﬁlev. The Bhattacharyya functional is defined in Definition 5. We have

the symbol error rates of the zigzag cycle codes is given by

Pzz(w,m, a) = Pr(Z(wm2) < 0) < pwma (a)

proof: Corollary 2 implies that P,,(w,m,a) = Pr(Z(¥™2) <0). From Fact 1 and 2, we have
Pr(Z(wm2) <0) < B*™2(b). (Q.E.D.)

Corollary 3 shows that for a fixed weight w and m = mgmy, the decoding error rate of the
zigzag cycle code does not depend on mg or my4. In other words, the decoding error rate of the
zigzag cycle over general linear group is equal to that of the zigzag cycle over finite field for a

fixed weight w and m = mgmy.

Figure 5.2 shows the symbol error rate for the zigzag cycle code defined over Fas of symbol
code length 3 with the cycle parameter x & H; 4 over the BAWGN channel. The circles in
Figure 5.2 show the simulation results. The solid curve the theoretical symbol error rate. For
the BAWGN channel with channel variance o, the theoretical symbol error rate of the zigzag
cycle codes defined over Fos of symbol code length w with cycle parameter x & H; ., is given by

(V)

g

where Q(y) = \/% I exp[—Z]dz. From Figure 5.2, we see that the theoretical result gives the

symbol error rate of zigzag cycle code with the cycle parameter x & Hi m.-
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Figure 5.2: Symbol error rate of zigzag cycle codes defined over Fos of symbol code length 3
with cycle parameter x ¢ Hi 4. The solid curve shows the theoretical symbol error rate. The
circles show the simulation result.

5.3 Analysis of Error Floors

In the previous section, we give a condition for the decoding error to the zigzag cycle code. By
using this result, in this section, we give lower bounds of the symbol error rates in the error

floors of the non-binary LDPC code ensembles over the 2™1-MS channel under BP decoding.

Definition 6 Recall that LDPC(N, GL(mg3,Famas), A, p) denote the LDPC code ensemble of
symbol code length N over GL(ms3,Fom,) defined by Tanner graphs with a degree dis-
tribution pair (X,p) [5] over GL(mg3,Foms) \ {0}. Let wy € N\ {1} be an expurga-
tion parameter. The expurgated ensemble ELDPC(N, GL(mg,Fams), A, p, ws) consists of the
subset of codes in LDPC(N, GL(mg,Fama), A, p) which contain no stopping sets of weight
in {1,...,wg — 1}. Note that the expurgated ensemble ELDPC(N,GL(mg,Fami), A, p, 1)
is equivalent to LDPC(N,GL(m3,Fomi), A,p). Let w. € N be an expurgation pa-
rameter for labeling in the Tanner graph, where w, < we. Define the ex-
purgated ensemble ELDPC(N,GL(mg3,Foma), A, p, ws,we, H) as the subset of codes in
ELDPC(N, GL(mg,Fama), A, p, wg) which contain no zigzag cycles of weight in {w,...,w. — 1}
with the cycle parameter 3 € H.

Define
Himg,ma = {x € GL(mg3,Fomy) | 0y, < 2™3™4 — 1},

From Discussion 6, to lower the error floors, we need to avoid the zigzag cycles with the matrices
X € Hmsm,- Note that |H,, 1| > |Him|. Hence, the non-binary LDPC codes defined over
general linear group have more choices of the labels in the edges which satisfy the condition for

the optimization.
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5.3.1 Analysis of Error Floors

In this section, we analyze the symbol error rates in the error floors for the expurgated ensembles
defined in Definition 6. The following theorem gives a lower bound on the symbol error rate
under BP decoding for the expurgated ensemble ELDPC(N, GL(ms3, Fama), A, p, g, We, Himg my )-

Theorem 5 Let Pi(ELDPC,a,m ) be the symbol error rate of the expurgated ensemble
ELDPC(N, GL(m3,Foma), A, p, wg, We, Himy m,) over the 2™1-MS channel characterized by its
L-density a under BP decoding. Define m := msmy. Define Z*™ as in Corollary 3. For
sufficiently large N and %B(b) < u~'/™ the symbol error rate is bounded by

1 - w wm 1
P,(ELDPC,a,m;) > ﬁw;,) pPr(zm2) < 0) +0(N>. (5.3)

proof: From Corollary 3 show that the symbol error rates of the zigzag cycles of weight w with
the matrix x such that o, = 2™ — 1 are Pr(Z(U"”Z) < 0). Moreover, by combining Discussion
6 and Corollary 3, we see that the symbol error rates of the zigzag cycles of weight w with the
matrix x such that o, # 2™ — 1 are lower bounded by Pr(Z(“™2) < 0). By using technique in
the proof of Theorem 3, we have (5.3). From Corollary 3, we get

i uwPr(Z(wm2) <0) < i wB(b)m2.

W=Wg W=Wg

Thus, for sufficiently large N and B(b) < ~1/™, the left hand side of this inequality converges.
(Q.E.D.)

For a given channel and a fixed p, m, the decoding error rate for the non-binary LDPC code
over finite field Fom is same as that for the non-binary LDPC code over GL(msg, Fams) such that

m = m3zmay.

Corollary 4 Define

for p <1,

for p>1.

For the BSC with crossover probability € and € < €, the symbol error rate is lower bounded by

P,(ELDPC, a) > ;Vwi Y (”Zw> €mi(] — ) +o(zlv>. (5.4)

c i<mw/2

Corollary 5 Define

00 for p <1,
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For the BAWGN channel with channel variance 02 and o < o7,, the symbol error rate is lower
bounded by

P,(ELDPC, a) Tv i ( >+0(]1]> (5.5)

where Q(y) = \/% fyoo exp[—%&-]dz.
Let P, (ELDPC,a) be the the bit error rate for the non-binary LDPC code ensemble
ELDPC(N, GL(m3,Foma), A, p, Wg, We, Hing m,) over the MBIOS channel characterized by its

L-density a under BP decoding. The expected value the number of bit errors in a symbol which

mom—1
2m—1 °

is caused error is Let n be the bit code length, i.e., n = msm4N. Hence, the bit error

rate is bounded by

P, (ELDPC, a) > 21 gfm:ll i 1Q (\/ZW) +o<;f). (5.6)

w:wg

Discussion 8 Let I be the indicator function which is 1 if the condition inside the braces is
fulfilled and 0 otherwise. Consider the ¢-SC with channel error probability €, where ¢ = 2™.
From the definition of ¢-SC, the zigzag cycle cause the decoding error if the number of changed
symbols in zigzag cycle is more than ¢ — 1 times the number of the correct symbols in zigzag

cycle. Thus, we have that

w

w
Pr(Z") <0)=Y" <k) (1= €)% I 1y>kq)-

k=0

From Theorem 5, the symbol error rate of the expurgated LDPC code ensemble is given by
oo w o 1
P (ELDPC, a) Tv Z Z ( ) 1—€) e Iyspgy + 0 (N> :
w=

Note that Pr(Z(®) < 0) > €, and that equality holds if and only if w < ¢. For wg < g, We

have

1
w (w) <
P,(ELDPC, a) E wPr(Z 0)+0<N>

wwg

SN ol

1 ol X

“oN 2 HE N
w:wg

oL (ne)s — (o)t

—2N 1 — pe '

For sufficient large g, the left hand side of this equation is written as follows:
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Figure 5.3: The symbol error rates for the expurgated ensemble ELDPC(315,
GL(m3,Fams), 2,22, 1,8, H) transmitted over the BAWGN channel for ms = 1,my = 4, H = {1}
(Cycle cancellation), for mg = 1,m4 = 4, H = Hy,4 (Fas Proposed), for ms =4,my =1, H = {}
(GL(4,F2) Random) and for mg =4, my = 1, H = H41 (GL(4,F3) Proposed). The lower bound
is given by (5.5).

5.3.2 Monotonicity of Error floors for MBIOS Channel

We denote the lower bound of decoding error rate for the expurgated ensemble
ELDPC(N, GL(m3, Foma), A, p, Wg, We, Hing m,) by f(m,wg), ie.,

1 m2m—1 & Jmw
Flm.wg) = 55 3 u”Q( Z“”) (5.8)

The following lemma shows that for a fixed large bit code length, the lower bound on the bit
error rate is decreasing in m, i.e., f(m,wg) is decreasing in m.

Lemma 15 Define f(m,wg) as in (5.8). Then f(m,wg) > f(m + 1,wg) for p = N(0)p'(1) > 1

1
2lnp”

and 0 < o <

The proof of this lemma is in Appendix 5.C.

5.3.3 Simulation Results

In this section, we compare the symbol error rate in the error floor for the expurgated ensemble
constructed by our proposed method with (i) that constructed by the cycle cancellation [27] and
non-optimized ensemble, and (ii) that constructed by the combination of the cycle cancellation

and the stopping set mitigation [27].

BAWGN Channel Case

Figure 5.3 shows the symbol error rates for the expurgated ensemble ELDPC(315,
GL(m3,Foms),z,2%,1,8,H) transmitted over the BAWGN channel for ms = 1,my = 4, H = {1}
(Cycle cancellation), for mg = 1,m4 = 4, H = Hy 4 (F24), for mg =4,my = 1,’H = {} (GL(4, F2)
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Figure 5.4: The symbol error rates for the expurgated ensemble

ELDPC(1000, GL(mg, Foms ), A\, p, 1,8, H) transmitted over the BAWGN channel for
mg = 1,my = 4,H = {1} (Cycle cancellation), for ms = 1,my = 4,H = Hi4 (Fas Pro-
posed), for mz = 4,my = 1, H = {} (GL(4,F3) Random) and for mg = 4,ms = 1,’H = Ha;
(GL(4,F3) Proposed). The lower bound is given by (5.5).

Random) and for m3 = 4,my = 1,H = Hj; GL(4,F2) Proposed). Figure 5.4 shows that
the symbol error rates for the expurgated ensemble ELDPC(1000, GL(ms,Fama), A, p,1,8,H)
transmitted over the BAWGN channel for ms = 1,my = 4, H = {1} (Cycle cancellation), for
ms =1,mq =4, H = Hy 4 (Faa Proposed), for ms = 4,my = 1, H = {} (GL(4,F3) Random) and
for mg = 4,mq = 1,’H = Ha1 (GL(4,F2) Proposed). The lower bounds in Figure 5.3 and 5.4
are derived from (5.5). Figure 5.3 and 5.4 show that the proposed codes exhibit better decoding
performance than the codes designed cycle cancellation and non-optimized codes. We see that
the lower bounds (5.5) give tight lower bounds for the symbol error rates to the proposed codes.
Moreover, the decoding performance in the error floors for optimized LDPC codes over general
linear group is the same as that for optimized LDPC codes over Galois field.

Figure 5.5 shows bit error rates of ELDPC(N,Fam,z,2%,1,6,H1,,) for (N,m) =
(2520, 1), (1260, 2), (630,4). The bit code length n of those ensemble is 2520. The lower bounds
are given by (5.6). We see that (5.6) gives tight lower bound for bit error rate of the expurgated
ensemble ELDPC(N,Fom,z,2%,1,6,H1 ;). Moreover, Figure 5.5 implies that for a fixed bit

code length n, the bit error rate decreases as the order of field increases.

BSC Case

Figure 5.6 shows the symbol error rates for the expurgated ensemble ELDPC(315,
GL(m3,Foms),x,2%,1,8,H) transmitted over the BSC for mz = 1,my = 4,H = {1} (Cycle
cancellation), for ms = 1,mq =4, H = Hy 4 (Faa), for mg =4,ms = 1,’H = {} (GL(4,F2) Ran-
dom) and for m3 = 4,my4 = 1,H = Ha1 (GL(4,F2) Proposed). For the expurgated ensemble
with the expurgated parameter wg = 1, predominant contributions to the symbol error rate are
caused by zigzag cycles of weight 1. For the BSC, the decoding error rate for zigzag cycle codes

of symbol code over Fas with length 1 is the same for all cycle parameter x. Hence, the decoding
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Figure 5.5: Bit error rates of ELDPC(N,Fam,z,22,1,6,H1,,) for (N,m) =
(2520, 1), (1260, 2), (630,4). The bit code length n of those ensemble is 2520. The lower
bounds are given by (5.6).

performance in the error floor for the code designed by our proposed method is same as that
in the error floor for the code designed by cycle cancellation in Figure 5.6. The lower bound
in Figure 5.6 is given by (5.4). We see that (5.4) gives tight lower bounds for the symbol error

rates to the expurgated ensembles constructed by our proposed method in the error floor.

Figure 5.6 shows the symbol error rates for the expurgated ensemble with s; > 1. More
precisely, Figure 5.6 shows the symbol error rates for the expurgated ensemble ELDPC(315,
GL(m3,Famy), 2,22, 2,8, H) transmitted over the BSC for mz = 1,m4 = 4,H = {1} (Cycle
cancellation), for mg = 1,my = 4, H = Hy 4 (Fos), for mg = 4,ms = 1,’H = {} (GL(4,F2)
Random) and for mg = 4,my = 1,H = Hy41 (GL(4,F3) Proposed). The lower bounds for
the symbol error rates are given by (5.4). From Figure 5.7, we see that our proposed codes
exhibit better decoding performance than codes designed by the cycle cancellation. Moreover
the decoding error rate in the error floor for the optimized code over general linear group is same

as that for the optimized code over Galois field.

2m.SC Case

Figure 5.8 shows the symbol error rates for the expurgated ensemble
ELDPC(315, GL(mg3, Foms ), z, 2%, 2,8, H) transmitted over the 24-SC for m3 = 1,my4 = 4,H =
{} (F2s Random), for mg = 1,m4 = 4, H = Hy 4 (Fa4 Proposed), for ms = 4,my = 1, H = {}
(GL(4,F2) Random) and for mg =4, m4 = 1, H = Ha,1 (GL(4,F2) Proposed). The lower bound
is given by (5.7). From Figure 5.8, we see that the proposed codes exhibit better decoding
performance than non-optimized code. The lower bound (5.7) gives tight lower bounds for the
symbol error rates to the proposed codes. Moreover, we see that the decoding performance in

the error floors for optimized codes depend only on the size of mzmy.
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Figure 5.6: The symbol error rates for the expurgated ensemble ELDPC(315,
GL(m3,Fams), , 2%, 1,8, H) transmitted over the BSC for ms = 1,m4 = 4,H = {1} (Cycle
cancellation), for mg = 1,my = 4,4 = Hy1 4 (Fas Proposed), for mg = 4,mqy = 1,H = {}
(GL(4,F2) Random) and for mg = 4,my = 1, H = Ha1 (GL(4,F3) Proposed). The lower bound
is given by (5.4).

Comparison with Stopping Set Mitigation

In [27], Poulliat et al. also proposed the stopping set mitigation. To lower the error floor further,
Poulliat et al. proposed to use both the cycle cancellation and the stopping set mitigation. We
refer to the Hamming weight of the binary represented non-binary codeword as binary weight.
The stopping set mitigation is a method to design the labels on the edges, which are connecting
to the nodes in the smallest stopping set, so that the binary minimum distance in the stopping
sets takes the maximum value.

Figure 5.9 compares the symbol error rate for the codes designed by the proposed method
and the codes designed by the method which uses both the cycle cancellation and the stopping
set mitigation [27]. In order to make the stopping set mitigation work effectively, we employ as
the base codes the codes whose Tanner graphs include many small stopping sets. For example,
this condition is met by the code ensemble ELDPC(60, Fos, z, 2%, 3). By applying our proposed
method and the method which uses both the cycle cancellation and stopping set mitigation, we
get resulting codes which are the subsets of ELDPC(60,Fqys,z,2%,3). We see Figure 5.9 that
the symbol error rate for our proposed method is lower than that for the method using both the

cycle cancellation and the stopping set mitigation.

5.4 Summary

We prove the relation between the orbit and the order of general linear group. In this chapter,
we propose a method to lower the error floors for non-binary LDPC codes. The decoding error

rates of the optimized codes is lower than that of the code optimized by cycle cancellation. We
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Figure 5.7: The symbol error rates for the expurgated ensemble ELDPC(315,
GL(m3,Famy), 2, 2%,2,8,H) transmitted over the BSC for mz = 1,m4 = 4,H = {1} (Cycle
cancellation), for mg = 1,my = 4,H = Hi14 (Fas Proposed), for mg = 4,my = 1, H = {}
(GL(4,F2) Random) and for mg =4, my = 1, H = Ha1 (GL(4,F3) Proposed). The lower bound
is given by (5.4).

have shown lower bounds of the error floors for the expurgated LDPC code ensembles over the
g¢-MS channel. In this analysis, we see that the optimized non-binary LDPC codes defined over
general linear group exhibits have the same decoding performance in the error floors as those
defined over finite field. The non-binary LDPC codes defined over general linear group have

more choices of the labels in the edges which satisfy the condition for the optimization.

Appendix 5.A Proof of Lemma 13

proof: First, we write the messages DI(,Z) by the initial messages C, for the zigzag cycle code
(6)

of symbol code length w with the matrix yx. Let \ilv,c be the unnormalized message from the
v-th variable node to the c-th check node at the ¢-th iteration. To simplify the notations, we
define ¢; := h;, z+1h for ¢ € [1,w], where hyt1,5 = h1. For all z € F5.3, and ¢ € [1,w], the
unnormalized message for the zigzag cycle code of symbol code length w is written as follows:

A0

7,2—1

\I;(O)( )= Cy(x), \11(41{*1)(55) = Cy(w )‘I’EZ)Li—l(Li*lx)v

B,

D(Hl)(l’) = Ci(x)q/z('e—)l,i—l(”—lz)\ij%-)l z( 7,_1‘T)’

7

(@)= Ci(a), B (@) = Cul@) Y, (i71e),

1,2—1

where @ffé = qlgf,)w; \If() \Ilq(fzrl w = \WZD, \Ilgf)ﬂ wil = 0! )1 and 7o = Yw. Then, for the
zigzag cycle code, the message Dg ) are written as follows:
= (e
__ W)
¢
Suerys, D (@)
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Figure 5.8: The symbol error rates for the expurgated ensemble ELDPC(315,
GL(m3,Famy ), 2,22, 2,8, H) transmitted over the 24-SC for mz = 1,my = 4, H = {} (Fz1« Ran-
dom), for ms = 1,my = 4,H = Hiy 4 (Fos Proposed), for mg = 4,my = 1, H = {} (GL(4,F3)
Random) and for mg = 4,my = 1,’H = Ha,1 (GL(4,F2) Proposed). The lower bound is given
by (5.7).

From the definition, we have

D) = (o) TT{Con (Tiitinsr ) ) Con (TMziti i) ) (5.9)
k=1
where Ciiny(z) = Ci(x) and Yiqynw = v for n = 0,£1,.... For x € F5.2,, (5.9) gives the

following equation

B70) = 500) [L{Coon (Tstsssns) 2) Conn (i) ) b (510

k=1

where o, is the order of the matrix ¥, i.e., oy is the smallest positive integer such that x?x is

ms X mg identity matrix. The the production of (5.10) are transformed as follows:

U}UX

HC’Fk ((Hlebiﬂ;kq) x) Citk ((H?:ﬂ;—lﬁk) w)
k=1
S e (e (1501
Note that B(k;x) = B(k;2’) holds for Va € S,,Va' € (x)x. Define

1 1=1

i—1 .
szlbj 1=2,3,...,w
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Figure 5.9: Comparison of the symbol error rate for the codes designed by the proposed method
and the codes designed by the method which uses both the cycle cancellation and the stopping
set mitigation. The base code ensemble is ELDPC(60, Fqs,z, 2%, 3). The solid curve (proposed)
shows the symbol error rate for the codes designed by our proposed method. The dotted curve
(ssm) shows the symbol error rate for the codes designed by the method which uses both the
cycle cancellation and the stopping set mitigation.

and for z € S,

x)r|=1 w

[{x)
B(x) = H H C, ((H;“U:S Lj)xtx) .
t=0 s=1
Then, (5.9) are rewritten as for x € S, and ¢ € [1,w]
A (l+woy) o ) 205 /[{x)z] 75 ()
D, (z) = B(k;z) D;”(z).
For Vz € S, ,Va' € (x)z, B(k;,x) = B(k;2’) holds. By using this equation, we have

D{"(0)

(lea +Z2)
D, 0) =
0 o 2o 100%]
D! )(0)+ersx{31é(o))}

i

Hence, we have limy_, Dy) (0) =1 for all ¢ € [1,w], i.e., the decoding is successful, if B(0) >
B(z) for all z € S,,.

Similarly, we have limy_, oo Dy) (0) for all i € [1,w], i.e., no symbols are eventually correct,

=0
if there exists « € S, such that B(0) < B(xz)

Finally, we claim that no symbols are eventually correct, if there exists x € Sy such that
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B(0) = B(x). Note that for all ¢ > 1, z € S, and i € [1,w],

Dgwo'xél) (Kf1x> —B(x)?0ox/ 10l g (Ki—1x>7

3

B (7 18) =Bl 01, (1) B

Hence for 1 > 1 andi€1,2,...,w

DI (o) DT () = By o107

_ B(0)4£10X/|(X):c| :Dgwaxfl)(o)bgwaxélfl) (O) (5.11)

The i-th symbol is eventually correct if there exist L such that DZ@(O) > Dl@ (z) for £ > L and
z € Fyi2 \ {0}. However, from (5.11), for all i € [1,w], if Dgwoxel_l)(O) > ﬁgwoxel_l)(/ijlx),
then Dgwa"el)(O) < Dgw"xel)(/{;lx). Thus, no symbols are eventually correct. (Q.E.D.)

Appendix 5.B Proof of Lemma 14

We use the following lemma in order to prove Lemma 14.

Lemma 16 The characteristic polynomial f, (x) of the matrix x € GL(mg, Fams) is defined by
det(xI — x) with I being ms X ms identity matrix over Fom,. For polynomials f(x) over Fom,
such that f(0) # 0, the least positive integer e for which f(x) divides ¢ — 1 is called the order
of polynomial f(x) and is denoted by ord(f). If the order o, of the matrix y is 2™#™4~1 then

the order ord(f,) of the characteristic polynomial f, () is also 2msm4—1,

proof: Since x is m3 x mg nonsingular matrix, f,(0) # 0. By the Cayley-Hamilton theorem,
fx(x) = 0. The definition of the order ord(f,) of polynomial f, gives f, () | 22" — 1. Since
(0 | x4 — 1 and f,(x) = 0, we have x°4(/x) — 1 = 0. Hence, we get o, | ord(fy). Since
ord(fy) < 2™s™4 — 1 by using [28, Corollary 3.4], ord(fy) = 2™ — 1 if o, = 2"s™4 — 1.
(QE.D.)
By using this lemma, the proof of Lemma 14 is given as follows.

proof of Lemma 14: Firstly, we assume | S| = 1. We denote the first column of x7, by X{. Since
|Sx‘ =1,

o, \ {0} ={x?(1,0,0,...,0)T | j =0,1,...,2ms™s — 2}
={x] 7 =0,1,...,2mams _ 2},

This equation asserts that x} # X{ for i # j and 4,5 € [0,2™3™4 — 2]. Hence, for i # j and
i,j € [0,2m3m1 — 2] ¥ # xJ. Thus, the order of y is equal to or greater than 2™+ — 1. For
Vx € GL(mg,Fama ), the order of x is equal to or lower than 234 — 1, i.e., o, < 273™4 —1 [31,
Corollary 2]. Therefore, o, = 2m3™+ — 1 if |5, | = 1.

Secondly, we assume o, = 2™3™+~1_ By Lemma 16, the order of characteristic polynomial
fx(z) is 2m3™4 — 1. Since ord(fy) = 2™3™4 — 1, f(0) # 0 and f(x) is monic polynomial 28,
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Definition 1.49], the characteristic polynomial f, () is a primitive polynomial [28, Theorem
3.16]. Hence, the field Famsm, is represented in {0} U {x* | i = 0,1,...,2™3™+ — 2} Thus,
if Vi,j € [0,2m3™4 — 2] and i # j, there exists a k € [0,2™3™4 — 2] such that x* + 7 = x*.
This implies that yi # x{ if Vi,j € [0,2m3™+ — 2] and ¢ # j. Therefore, |Sy| = 1 since
Fo2, \ {0} = (x)(1,0,...,0)T. (Q.E.D.)

Appendix 5.C Proof of Lemma 15

proof: The Q-function is represented as follows [32]:

1 [2 z?
S SR )
Q@) w/o eXp[ 2811120}

By using this equation, (5.8) is rewritten by

m2m =1 & z muw
f(m,wg) = mom 1 wZ 1 7/ exp [—2} de

202 sin” 6

To simplify notation, we define the following substitution:

1
Tgo = €xXp |—————5—| -
¢ P [ 202 sin’ 9}
Note that
< ! <1
Too S pexp | —— ,
HT0.0 S Pexp | =5
since 0 < 11 m holds for m = 1,2,.... This substitution simplifies f(m,wg) as

oo

1 m2m—1! o
flm,wg) =5-oo— Z / 0 g

1 m2m=11 [% w
:%zmq;/o Zu T dg

W=wWg

1 m2m=11 [% per,.®

ziLf/ Mo 49
2n2m —1mw Jo 1—prf
This equation leads the following:
1 s /’5 2m= 1T;ngwg g(m,wg, T9,5)
m,wg) — f(m+ 1, we) = — — de,
ut g) — £ 5) 2n w Jo (2m—-1)(1 - uTg:”U) (2m+l —1)(1 — qujl)

where
g(m,wg, 7o.0) 1= m(2"T = 1)(1 — prgsth) — 2(m + 1)7% (2™ — 1)(1 — prg?,).
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Note that (1—,ur(;7jl) > 0 and (1—,m'g?g) > 0, since 7g,, < 1 and 79, < 1. Since g(m, wg, 7,5)

—1/m
)

increases in wg, g(m,wg, T9,5) > g(m, 1,79 ) holds. For 7 < p g(m, 1,79 ) decreases in

To,o. Hence, the function g(m, wg) is bounded as
g(m, we, T9.0) > g(m, 1,79 5) > g(m, Lp V™) =m@™H — 1)1 —p~Y™) > 0.

Thus, we get f(m,wg) > f(m+1,wg). (Q.E.D.)
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Chapter 6

Analysis of Stopping Constellation

Distribution for Irregular Non-Binary
LDPC Code Ensemble

The fixed points of the belief propagation decoder for non-binary LDPC codes are referred to
as stopping constellations. In this chapter, we give the stopping constellation distributions for
the irregular non-binary LDPC code ensembles defined over the general linear group. Moreover,
we derive the exponential growth rate of the average stopping constellation distributions in the

limit of large codelength.

6.1 Introduction

In this chapter, we consider the non-binary LDPC codes defined over general linear group. It is
known that LDPC codes defined over the general linear groups outperform LDPC codes defined
over finite fields in terms of the decoding performance [29].

The block and the bit erasure probabilities for binary LDPC codes over the BEC are de-
termined by the size of the maximal stopping set [33]. The fixed points of the BP decoder for
non-binary LDPC codes are referred to as stopping constellations [17]. Hence, the stopping
constellations for the non-binary LDPC codes correspond to the stopping sets for the binary
LDPC codes. To analyze the decoding erasure probabilities of the non-binary LDPC codes over
the BEC by the BP decoder, we need to analyze the stopping constellation. In this chapter,
Moreover, we derive the stopping constellation distribution. In this chapter, we also give the
exponential growth rates of the average stopping constellation distributions in the limit of large
code length.

The remainder of this chapter is organized as follows. In Section 6.2, we derive the stopping
constellation distributions for irregular non-binary LDPC code ensembles. In Section 6.3, we
derive the exponential growth rates of the average stopping constellation distributions in the

limit of large code length. In Section 6.4, we show the numerical examples for the exponential
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growth rates of the average number of stopping constellation distributions.

6.2 Stopping Constellation Distribution for Non-Binary
LDPC Codes

In this section, we derive the stopping constellation distributions for irregular non-binary LDPC
code ensembles. We give some lemmas to count constellations of the linear subspaces satisfying

the stopping constellation constraints (2.2) for check nodes.

6.2.1 Number of Linear Subspaces

It is known that the number of distinct subspaces of dimension k of the vector space 3" is given
by the Gaussian binomial coefficient [11, p. 443]. The Gaussian binomial coefficient [T] is given
by

where [m] is defined in Section 2.1.2. We denote the dimension of V;, by dim V;. The following
lemma gives the number of the sets of linear subspaces {V;}%_, for a given condition for the

dimension of {V;}X_,.

Lemma 17 Assume that two non-negative integers k,m are given. For a given set of non-
negative integers ay = {ax(S5)}sci,k such that > gc(y 4y ar(S) =m, let By(ax) be the number

of the sets of linear subspaces {V;}*_; in FJ* which satisfy

dim (ﬂ V;) = ] Z ak(g), (6.1)
SC|

ieS 1,k]:5C8

where > acp p:5c3 ar(S) is the sum of ax(S) over all § C [1,k] such that S € S. Then, we

have

[m] 9T

Beles) = 1 m®)”

(6.2)

where

Tk = = E ak(Sl)ak(Sg).
S1,52C[1,k]:
S51¢52,51 252

The proof of this lemma is in Appendix 6.A.

Lemma 18 Assume that two non-negative integers k, m are given. Define By (ay) as in (6.2).

For a given set of non-negative integers v = {v;}¥_; where v; € [0,m] for all i € [1, k], we denote
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the number of the sets of linear subspaces {V;}¥_, such that V; D Ny Vi and dimV; = v;
for all i € [1,k], by hi(v), ie.,

hy(v) := #{{Vi}f_l (Vi () V;Vie Lk, dimV; = Vie [1,k]}.
JEMLK\{i}

Then,

hi(v) = Y Bi(a),

ay GVV,’c

where

Wi = {ak | Z ar(S) =dimV; Vie [1,k], Z ag(S) =m,

S:ies SC[1,k]

N

ap([LE\ {i}) =0 Vie [l,k]}.

The proof is in Appendix 6.B.

Discussion 9 Assume that two non-negative integers k,m are given. For a given d =
(do,...,dm) such that Y7 d; = k and d; > 0 for i € [0,m], we denote the number of the
sets of linear subspaces {V;}%_, such that V; D Mjerr gy Vi for all i € [1, k] and the number of

subspaces in {V;}¥_, with dimension m — i is d;, by hy(d), i.e.,

hi(d) == #{{Vj}ﬁ_l Vi2 () Vivie LKL #{i]dimV=j} =d; V)€ [Lm]}-
JE1,k\{i}

There are (do dlk... dm) choices to the dimensions of {V;}¥_,, where
k ) k! -
= m 3 k= dia
<d0,d1,...,dm [I:Z, di! ;

is known as the multinomial coefficient [34]. From Lemma 18, we have for any permutation =

on k and {v;}F_,

hi({v:}iz1) = P ({omi Yooy).
For j € [1,m], let p; be the smallest integer such that j < >t d;. Hence, we get

k

hy(d) =(d0’d1’.Mdm)?zk({vi}f_l),

87



where v; = m — p; for all i € [¢,k]. Thus, we obtain
hi(d) = ) > Bilax)
g B d07d17~~-7dm MRS
ap Wi
where

Wy, = {ak S an(S)=m—pi Vie[Lk, Y a(S)=m,

S:ies SC[1,k]

ar([1,k]\ {i}) =0 Vie [1,k]}.

We denote d > 0 if d; > 0 for all ¢ € [0, m]. The generator function of hy(d) is written as follows:

m

felw):i= > hy(d) H . (6.3)

d>0:3m  di=k

Since dy depends on dy,da, ..., dm, i.e., dy =k —>..* | d;, we drop ug from (6.3).

6.2.2 Stopping Constellation Distributions for Non-Binary LDPC
Codes

Recall that for a given stopping constellation we refer to the number of the states whose dimen-
sions are not equal to 0 as the weight of the stopping constellation. For a given Tanner graph
G € EGL(N,m, A, p), we denote the number of stopping constellations of weight w in G by Qf(w).
For the ensemble EGL(N,m, \, p), let Q(w) be the average stopping constellations of weight w.
Since each code is chosen with equal probability from EGL(N,m, A, p), we get

05 (w)
)= D EGLM. o)
GEEGL(N,m,\,p)

The following theorem gives the average stopping constellations for irregular non-binary
LDPC code ensembles.

Theorem 6 Define fi(u) as in (6.3). The average stopping constellations Q(w) of weight w for
the non-binary LDPC code ensemble EGL(N, m, A, p) is given by

oy =y (@) L, )

: b , (6.4)
b>0:3""  bi=¢ (bg,bl,...,bm) Hk:l [k}
m L;
Qs.t) := H{th [’ﬂs?} :
JEL =1
P(u) = [T {fr(u)} 0",
kER
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where coef(g(s, t,u), t* [/, s?ul") is the coefficient of the term t* [/, s?u’ in the polyno-

mial g(s,t,u).

proof: First, we count constellations of the linear subspaces satisfying the stopping constellation
constraint (2.2) for all check nodes. Consider a check node ¢ of degree k. We say that the check

node c satisfies the decoding failure criterion with respect to the state assignment {E,}yey if

By Chgl > heiEi |, YveN(e).
i€Nc(c)\{v}

Substituting E; = he,;E; to this, we have

EV - Z Ei R Vv € /\/:;(C)
i€Nc()\{v}

For a linear subspace V, denote its dual subspace by V=, i.e.,
Vii={8](a,p) =0VaeV}

where (a, 3) denotes the inner product of o and 8. Using the dual subspaces, we have

D) ﬂ E+|, wveMNl(e).
i€EN()\{v}

We refer to the edges adjacent to the variable node assigned to state of dimension ¢ as the edges
of dimension i. Let d; be the number of edges of dimension 7 which are adjacent to the check
node c. From Discussion 9, for a given (do,...,d,,) such that > ;" ' d; = k and d; > 0 for all
i € [0,m], the number of the constellations that satisfy the decoding failure criterion for the

check node c is written as

coef (fk(u), ﬁ uf) .
i=1

Let b; be the total number of edges of dimension 4. Since there are R;(1 — )N check nodes of
degree k, the number of the constellations that satisfy the stopping constellation constraints for
the N(1 —r) check nodes for a given b = (by, ..., by,) such that " b, = & and b; > 0 for all
i €[0,m], is

coef (H (fk(u))R’“(l’“)N,ﬁu?i> . (6.5)
keR i=1

Secondly, we count constellations of linear subspaces satisfying the constraints of the variable
nodes. Consider a variable node v of degree k. If the variable node v is assigned to state of

dimension ¢, the k edges adjacent to v are of dimension i¢. Define the parameter w as 1 if the
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dimension of the state of the variable node v is not 0, and otherwise 0. Denote the number
of edges of dimension ¢ adjacent to the variable node v, by d;. For a given w € {0,1} and
d = (dy,...,dn) such that > ;" /d; =k and d; > 0 for all i € [0,m], let gi(w, d) be the number
of constellations of linear subspaces satisfying a constraint of variable node of degree k. Since

the number of states of dimension i is [T], we have

1 ’wZO,do:k‘,dj:OVjE[l,m],
ge(w,d) =< "] w=1,d; =k,d; =0Vj€[0,m]\{i},

0 otherwise.

The generator function of gi(w, d) is written as follows:

ng(w, d)t” ﬁsf =1+ ti [m] sk
w,d i=1 i=1 v

Since there are Ly N variable nodes of degree k, for a given w and b such that ZZ’;O b; =& and
b; > 0 for all ¢ € [0, m], the number of constellations of linear subspaces satisfying constraints of

the N variable nodes is given by

m LyN m
coef H <1 +t Z [Tﬂ sf) Y H shi ). (6.6)
i=1 i=1

kel

Thirdly, we count the edge permutation and the edge labels which satisfy the constellation.
For a given b such that ) ;" b, = £ and b; > 0 for all ¢ € [0,m], the number of permutations of
edges is given by []/",b;! and the number of edge labels is equal to ]/~ ([m — 4][i])*. Hence,
for a given b such that Y_:" b; = ¢ and b; > 0 for all ¢ € [0,m], the number of choices for the

permutations of edges and edge labels is

ﬁm!([m . (6.7)

Finally, the number of Tanner graphs in EGL(N, m, ), p) is given by &![m]¢. From (6.5), (6.6)
and (6.7) and the number of Tanner graphs, the average stopping constellation distribution for

a given w and b such that > ;" b; = & and b; > 0 for all i € [1,m], is given by

coef((Q(s, tP(w)N, v T, si’lufl)
Q(w, b) = .

b>0:57 bi=¢
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we get Theorem 6. (Q.E.D.)

6.3 Asymptotic Analysis

In this section, we investigate the asymptotic behavior of the average stopping constellation
distributions of non-binary LDPC code ensembles in the limit of large code length. Define the
normalized weight w by w := w/N. We define

1
I'p(w) :== lim N10g2Q(u}N)7

N—oo

and refer to this as the exponential growth rate or simply growth rate of the average stopping

constellation distribution. To simplify the notation, we denote logarithms to base 2 as log.

With the growth rate, we can roughly estimate the number of stopping constellations by
Q(wN) ~ 2Fm@N

where any ~ by means that impy_, o % log ‘;—x =

The number of the terms in (6.4) is at most (£ + 1)™. Hence, from (6.4) we have

Q(w,b) < Alw) < ™ Q(w, b).
b0 X, (w,b) < A(w) < (§+1) b0 8, (w,b)

Therefore, we get

1 1
]\}me N log Q(w) = A}gnoo N log bgo:gi}; be Q(w, b).

To calculate this equation, we introduce the following lemma.

Lemma 19 [35, Theorem 2] Let v > 0 be some rational number and let p(z1, xa,...,2m,) be a
function such that p(x1,xa, ..., %, )7 is a multivariate polynomial with non-negative coefficients.

Let ag > 0 be some rational numbers for k € [1,m] and let n; be the series of all indices j such

that j/v is an integer and coef(p(z1, ..., 2m )7,z - 2%m7) # 0. Then
lim ilog coef (p(z1 T )™ (- xpm)™) = inf 1og]M
oo n; gy dm ) 1 m T1yeees o >0 1.?1 x%m .
A point (z1,...,,,) achieves the minimum of the function

P(T1, . )
(@ ap)

if and only if it satisfies the following equation for all k& € [1,m]:

op(x1,. .. xm)?

. —yapp(x1, ..., xm)? = 0.

Ty
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Define §; := b;/N for i € [0,m]. Note that Ayve = §/N. We denote s > 0 if s; > 0 for all

€ [1,m]. From Theorem 6 and Lemma 19, we obtain the following theorem.

Theorem 7 The growth rate I',(w) of the average stopping constellation distributions for the
irregular non-binary LDPC code ensemble EGL(N,m, A, p) is given by

>0: 5>0,t>0
Z'{rr (’)Bﬁz:Aa . 'u>0
i— v

Ip(w) = sup inf {log Q(s,t) —wlogt+log P(u Zﬁl log [ ]

+ Zﬂz log Aﬂ } (6.8)

=: sup inf Fm(w,ﬁ,s,t,U)
B>0:1 Bi=Aaye 57 0:£>0,u>0

=: sup m(w, B).
B>0: 57 Bi=Aave

A point (u,t, s) which achieves the minimum of the function . (w, B, s,t,u) is given in a solution

of the following equations for all ¢ € [1,m]:

S; 3Q
=57 = Z

4 N (6.9)

t 8@ tZ’H’L [m S
Y% _ L. i _ 6.10
R s S NP (6.10)
7ui oP - B Ujg 8fk
B; =P ou = > Ri(1-7) AOLR (6.11)

where

= Y ()il T s

Uu
b d20:Y di=k ap€Dy

The point 8 which gives the maximum of T',,, (w, 3) needs to satisfy the stationary condition

SkUE |:’r];l:| <Aave - Zﬁz) = B, (6'12)
=1

fork=1,2,....,m

Lemma 20 For a given degree distribution pair (), p), we have I';,, (w) > I'1 (w).
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proof: We consider a fixed w. Define §* such that I'y (w) = I (w, 3*). Note that

J 5 (1)
I'y(w,B%) 91>161£>0 [Zlog(letsl)L n Zlog{f,ﬁl)(m)}R 1

u1>0 JEL JER

ave — 3° _ﬁ* log Slul( ave ﬂ*)

+ Aave log Aavc /8*

— wlog t] ) (6.13)

where f,gl)(ul) = {(1 4+ u1)? — jus}. For m > 1, define 8™ (8) := (4,...,8,3* — (m — 1)8). For
any 0 > 0, we have

L (w) > T (w, B (5)).

Now, we consider I',(w, 3™ (6)) for § — 0. For § — 0, we have s; — 0 and u; — 0 for
i € [1,m — 1] from (6.9) and (6.11). Note that fi.(u) = (1 + um)* — ku, = ,gl)(um) for u; — 0

Vi € [1,m — 1]. Hence we have
tim £ (0. 87(9)

= sm;gft> {Zlog(l +ts? )Lj n Z log{f(l)(um)}Rj(l—r)

Uy, >0 jeL JER

+ Aave 1Og

Aove — B° * Smum(Aave - 6*)
I —wl .
A — (% log 3 wlogt

This equation coincides with (6.13). Hence, we have I'), (w) > T'1(w). (Q.E.D.)

Lemma 21 For ¢ such that ¢ > 0, (6.9), (6.10) and (6.11) hold, we have

dl, (w)
= —logt.
dw 8
dF,n(w)
proof: Consider =25-=. From (6.8), we have
dl (W) 1dP w dt 1dQ <X Bids; B; duy;
m2=—Int4 - @4 & .
dw t+Pd t dw de Zsl Zul

— df;
2!
i=1
From (6.12), we have

S (L LA
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From (6.11), we have

1oP 1 OP du; zm: & dﬁ
P ow P 8ui dw

— u; dw ’
Similarly, from (6.9) and (6.10), we get

10Q wdt <= pB;ds
Q0w tderZsidw'

Hence, we have

dl (W)
dw

= —logt.

This concludes the proof. (Q.E.D.)

The following theorem shows the growth rate of the average stopping constellation distribu-

tions for small w.

Theorem 8 For the irregular non-binary LDPC code ensemble EGL(N,m, A, p) with \'(0) > 0,
the growth rate of the average stopping constellation distributions of normalized weight w, in

the limit of large symbol code length for w — 0, is given by

D) = log[ (0)p' (1)]w + o(w).

proof: From the definition of stopping constellation, we get Q(0) = 1 and I',,,(0) = 0. From

Lemma 21, we have for w — 0
I'(w) = —wlogt(w) + o(w).
Recall that t satisfies (6.8), (6.9), (6.10) and (6.11). From (6.10), for w — 0, it holds that

tisg — 0 for i € [1,m] and j € L. By using this and (6.9), we have 3; — 0 for i € [1,m]. Note
that

fk(U)HZm:(];)[ ]u +o0 (Zul>2 . (6.14)

i=1

Since ; — 0 for ¢ € [1,m], from (6.11) we have u; — 0 for ¢ € [1,m]. From (6.11) and (6.14) we

:%Rk(l—rﬂ(;ﬂ)[ ]u +o (Zu)
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Substituting this equation into (6.12), we have

S; Zuip/(l) +o0 (Z uz> . (6.15)
=1

Since u; — 0 for i € [1,m], we get s; — 0 for ¢ € [1,m]. From (6.9), it holds that

m 2
m
;= 2L ts? > s
’ z[i]sﬁo (i_f)

Substituting this equation into (6.12), we get

u; = N (0)ts; + o <§: sl> . (6.16)

From (6.15) and (6.16), we have for w — 0
1= N(O)p (1)(w).
Hence, we obtain this theorem. (Q.E.D.)

Discussion 10 From Theorem 8, the growth rate for w — 0 does not depend on m. The result
of Theorem 8 coincides with the result for the weight distribution of non-binary LDPC code
ensemble [36]. More precisely, the growth rates of the stopping constellation distributions and
that of the weight distributions are the same for w — 0. The techniques used in the proofs of

Theorem 8 and Lemma 21 are originally developed in [37].

Define the critical exponent stopping ratio [9] as

O

=inf{w > 0|y, (w) >0}, for m=1,2,....
From Lemma 20 and Theorem 8, we have the following corollary.

Corollary 6 For a given degree distribution pair (A, p) which satisfies A’'(0)p’(1) < 1, the critical

exponent stopping ratio 6; is larger than others, namely, 67 > 0}, for m > 1.

Recall that the average stopping constellation of weight wN is approximated by Q(wN) ~
2lm(@IN Since T, (w) < 0 for w € (0,67,), there are exponentially few stopping constellations
of weight wN for w € (0, 0,). It is known that the decoding erasure rate for the BEC with small
channel erasure probability is caused by the stopping constellations of small weight. Therefore
among LDPC codes with the degree distribution pair (A, p) such that A’'(0)p’(1) < 1 over the
BEC, we see from Corollary 6 that the binary (m = 1) LDPC code ensemble is the best in the
sense that there are exponentially few stopping constellations of weight w/N for w within the

widest range (0,67) 2 (0,605)).
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Figure 6.1: The growth rates of the average stopping constellation distributions for the (2,4)-
regular non-binary LDPC code ensembles defined over GL(m, Fs), where m = 1,2, 3, 4.
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Figure 6.2: The growth rates for w € [0,5 x 10~7] of the average stopping constellation distri-
butions for the (2,4)-regular non-binary LDPC code ensembles defined over GL(m,F3), where
m=1,2,3,4.

6.4 Numerical Examples

In this section, we give some numerical examples of growth rate which illustrate the statement

of Theorem 8 and Corollary 6.

Figure 6.1 and 6.2 show the growth rates of the average number of stopping constellations for
the (2,4)-regular non-binary LDPC code ensembles defined over GL(m,Fs), where m = 1,2,3, 4.
From these figures, especially from Figure 6.2, we see that the growth rate for small w does not
depend on the dimension m. Moreover, we see that the gradient of the growth rate for small
w is log 3. Similarly, Figure 6.3 and 6.4 show the growth rates for the (3,6)-regular non-binary
LDPC code ensembles. From these figures, especially from Figure 6.4, we see that the growth

rate for small w does not depend on the dimension m even if \'(0) = 0.

Figure 6.5 shows the critical exponent stopping ratio for the (3,6)-regular non-binary LDPC
code ensembles defined over GL(m,Fy), where m = 1,2,3,4,5. We see that the critical exponent

stopping ratio monotonically decreases as the dimension m increases.
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Figure 6.3: The growth rates of the average stopping constellation distributions for the (3,6)-
regular non-binary LDPC code ensembles defined over GL(m,Fs), where m = 1,2, 3, 4.
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Figure 6.4: The growth rates for w € [0,0.02] of the average stopping constellation distributions
for the (3,6)-regular non-binary LDPC code ensembles defined over GL(m,F3), where m =
1,2,3,4.

6.5 Summary

In this chapter, we have derived the stopping constellation distribution and growth rate for
non-binary LDPC code ensembles over general linear groups. We have shown that the growth
rate does not depend on the dimension of the general linear group for small normalized weight.
Moreover, we have shown that the binary LDPC code ensemble is the best in terms of the critical

exponent ratio for N (0)p'(1) < 1.

Appendix 6.A Proof of Lemma 17

To prove Lemma 17, we use mathematical induction. For k = 1, we see that dimV; = aq({1})
and T, = 0. The number of distinct subspaces V; of dimension a;({1}) = dim V; is equal to
— [m] —
[alg?l})] = m. Hence, (62) holds for £ = 1.
We will show that if (6.2) holds for k = k¥’ — 1, then (6.2) also holds for k¥ = k’. From the
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Figure 6.5: The critical exponent stopping ratio of the average stopping constellation distri-
butions for the (3,6)-regular non-binary LDPC code ensembles defined over GL(m,F3), where
m=1,23,4,5.

induction hypothesis, we have

By ({ak/ (S) + aw (SU {k/})}sgu,k'—u)
[m]

= Tyr 1
_Hsg[l,k'—l] [ar (S) + ap (S U{k'})] 2 ’ (6.17)

where

1
Tk/71 = 5 Z (ak/(Sl) + ak/(Sl U {k/}))(ak/(Sg) + ak/(Sg U {k/}))
S1732g[17k/_1]:
S1¢Z852,51252

If we fix A (S"U{k'}) for all S” D S, then the number of Ay (S U {k'}) is given by

[ak/(S) + ag (S U {k/}):| 2Tk,(S), (618)

ap (SU{K'})

where

Ti (S) = ap (S U {k'}) > ar (S).

SC1,k'—1]:528

From (6.17) and (6.18), By (ay) is given by

[m] 9T { ar (S) 9Ty 41(S)
[Lscpplar (S)] ar+1(S U {k +1})

— [m] 2Tk'—1+ng[1,k/71] Tk’(s).
HSg[l,k’] [a (S)]

SC[1,k']
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The exponential part is written as follows:

1 -
Thr—1 + Z T (S) =Thr—1 + 3 Z ap (S U{K'}) 2 ar (S)
SC[1,k 1] SC[1,k" 1] 5:528

1 -
+5 > aw(8) 2 aw(Su {k'})
SC[1,k"—1] 3:5¢S

:Tk/ .

This concludes the proof.

Appendix 6.B Proof of Lemma 18

From (6.1), we have 3¢ cqar(S) = dim Vi and 3 gy ax(S) = m. From (6.1), we have

dim ﬂ ([1, k)
JE[1,k]

dim( N Vj) = a([L, k]) + a([L, K]\ {i})
j€[LEN\ {7}

€[1,k]

and

for i € [1, k]. From those equations, we have

€[1,k] J€[1,k]

dim( N )—dun( N V)+ ([1, K]\ {i}). (6.19)
JEMLR\{3}

Since a([1, k] \ {i}) > 0, we have

dim( N Vj) <dim< N Vj) : (6.20)
JELKN\ (i} JE[LK]

First, we claim that for all i € [1k], Vi 2 (;cpap iy Vi if a([1, K]\ {i}) = 0. Since
ar([1,k])\ {i}) = 0, we have

dim( N vj) dim( N Vj),
JELR\{i} JE[LK]

from (6.19). If Vi 2 N;ep ap iy Vi then

dim( N Vj) >dim< N Vj).
JE[LKN\ {3} JE[LK)
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By using this equation and (6.20), we see that Vi 2 ;e i iy V5 if
dim (| Vi|=dim| )V
JE[LEN{} JE[Lk]

Thus, for all i € [1, k], Vi 2 ;e up g4y Vi 3 an([L K]\ {i}) =0.
Next, we claim that for all ¢ € [1, k], ax([1, k] \ {i}) = 03 Vi 2 cpap gy Voo I ar([L, K]\
{i}) # 0, we have

dim( N Vj) >dim< N Vj>
JELKN\{} JElLK)

from (6.19). If Vi 2 ;e ap iy Vi then

dim (N Vi|=dm| )V
JELKN\{} JE[LK)

By using this equation and (6.20), we see that Vi 2 ;e pp iy Vi if

dim( N Vj) >dim< N Vj>.
JEMLRNi} JEMLK]

Thus, for all i € [1,k], Vi 2 Njep gy V5 if a([1, k] \ {¢}) # 0. Therefore, we have for all
i € [L k], ap([1, K]\ {i}) = 0if Vi 2 e\ Vi~ Thus, this concludes the proof.

100



Chapter 7

Conclusions

To make codes which have good decoding performance, it is important to analyze the decoding
error rate for LDPC codes. In this dissertation, we have analyzed the decoding error probability
for finite length LDPC codes.

In Chapter 2, we have proved the all-zero codeword assumption for no-binary LDPC codes
over the ¢-MS channel under BP decoding. Moreover, we have shown the relationship between
the stopping sets and stopping constellations. The relationship between the stopping sets and
stopping sets implies that a way to optimize the non-binary LDPC codes.

In Chapter 3, we have analyzed the decoding erasure probability in the waterfall region for
binary LDPC code ensemble over the BEC. We have analytically solved the covariance evolution
for the binary irregular LDPC code ensemble. We have also obtained the slope scaling parameter
without assumptions.

In Chapter 4, we have analyzed the decoding erasure probability in the error floor region for
the non-binary LDPC codes which contain the variable nodes of degree two over the BEC under
BP decoding. We have shown that the decoding performances of the zigzag cycles only depend
on the cycle parameter. For the non-binary LDPC code over Fom we have also shown that
cycle parameters which have bad decoding performances are in the proper subfields of the field
Fom. We have proposed a method to improve the error floors for the non-binary LDPC codes
which contain the variable nodes of degree two over the BEC under BP decoding. The codes
which optimized by proposed method are outperform the existing design methods. Moreover,
we have derived lower bounds on the bit and the symbol erasure rates in the error floors for the
expurgated ensembles under BP decoding. Simulation results have shown that the lower bounds
are tight for the bit and the symbol erasure rates for the expurgated ensembles. Furthermore,
we show that this tight lower bound monotonically decrease, as the order of Galois field of
non-binary LDPC code increase in the case for the BEC.

In chapter 5, we have extended the results in Chapter 4 to the generalized non-binary LDPC
codes over the ¢-MS channels. For the non-binary LDPC code defined over GL(ms, Fom,) over
the ¢-MS channels, we have shown that the cycles which have bad decoding performances are
characterized by the matrices defined by the labels in the cycles. Furthermore, we show that this

tight lower bound monotonically decrease, as the order of Galois field of non-binary LDPC code
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increase in the case for the BEC and BAWGN channel. Moreover, we compare the decoding error
rates in the error floors for non-binary LDPC codes over the general linear group with those for
non-binary LDPC codes over finite field transmitted over the ¢-MS channel under BP decoding.
In this analysis, we see that the optimized non-binary LDPC codes defined over general linear
group have the same decoding performance in the error floors as those defined over finite field.

In Chapter 6, we have derived the stopping constellation distribution and growth rate for
non-binary LDPC code ensembles over general linear groups. We have shown that the growth
rate does not depend on the dimension of the general linear group for small normalized weight.
Moreover, we have shown that the binary LDPC code ensemble is the best in terms of the critical
exponent ratio for A'(0)p’(1) < 1.

By results in the dissertation, (i) we rigorously analyze the waterfall regions for binary
LDPC codes and (ii) we are able to optimize the non-binary LDPC codes. The result (i) gives
the optimized degree distribution pair without any assumptions and another method to obtain
the scaling parameter. If we can extend this result to multi-edge type LDPC code [5], we can
optimize the multi-edge type LDPC codes by solving the covariance evolution [38]. The result
(ii) help us to make a good performance non-binary LDPC codes.

As a future work, we will analyze the decoding error rate in the water fall region for non-
binary LDPC code. More precisely, we will derive the scaling parameters for non-binary LDPC
codes. By combining the this result, we will optimized the non-binary LDPC codes. Moreover,
we will analyze the decoding error rates for the binary and non-binary multi-edge type LDPC

codes.
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