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Abstract

Low-density parity-check (LDPC) codes are linear codes defined by sparse parity check matrices.

Due to the sparseness of the parity check matrices, LDPC codes are efficiently decoded by the

belief propagation (BP) decoder. It is known that non-binary LDPC codes can outperform

binary ones. However, the decoding complexity grows with the size of non-binary alphabets.

Hence, there is a trade-off between performance and complexity. In this dissertation, we focus

on both binary and non-binary LDPC codes.

We analyze the decoding error probability for finite length LDPC codes under BP decoding.

The curve of the decoding error probability for finite length LDPC codes, as a function of channel

error probability, is divided into two regions called waterfall region and error floor region. We

analyze the decoding error probability in the waterfall region for binary LDPC codes and in the

error floor region for non-binary LDPC codes.

The main results of this dissertation are summarized as follows:

• We analyze the decoding erasure probabilities of waterfall regions for binary LDPC codes

over binary erasure channels (BECs) without any assumptions by analytically solving the

covariance evolution.

• We propose a method to lower the decoding error rates in the error floors of non-binary

LDPC codes defined over Galois field and general linear group transmitted over the BEC,

the memoryless binary-input output-symmetric (MBIOS) channel and q-ary memoryless

symmetric (q-MS) channel. Simulation results show that the decoding error rates of the

codes designed by the proposed method outperform those of the codes designed by the

conventional method proposed by Poulliat et al.

• We give lower bounds of decoding error rates in the error floor regions for non-binary

LDPC codes over the BEC, MBIOS channel and q-MS channel. Simulation results show

that those lower bounds are tight. Moreover, we show that the decoding error rates for

non-binary LDPC codes defined over general linear group have same decoding performance

in the error floor regions with that for non-binary LDPC codes defined over Galois field.

Furthermore, we show that this tight lower bound monotonically decreases, as the order

of Galois field of non-binary LDPC code increases in the BEC and binary additive white

Gaussian noise channel.
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• We derive the weight distribution of the decoding error patterns in the BP decoder for

non-binary LDPC codes defined over general linear group transmitted over the BEC.
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Symbols and Abbreviations

R the set of real number

N the set of natural number including 0 (non-negative integer)

F field

F2m the finite field of order 2m

GL(m, F) general linear group of degree m over F

FM×N the set of M ×N matrices over F

#A the number of elements in (cardinality of) the set A

|A| the number of elements in (cardinality of) the set A

E[X] mean (expected value) of random variable X

Cov[X, Y ] covariance of X and Y

LDPC low-density parity-check (code)

BP belief propagation

PA peeling algorithm

CE covariance evolution

BEC binary erasure channel

BSC binary symmetric channel

BAWGN binary additive white Gaussian noise (channel)

MBIOS memoryless binary-input output-symmetric (channel)

q-SC q-ary symmetric channel

q-MS q-ary memoryless symmetric (channel)
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Chapter 1

Introduction

1.1 Background

Reliable communications can be possible by channel codes or error correcting codes. In channel

coding, an appropriate amount of redundancy is added to the information bits to protect them

against the errors or the erasures in the channel. Then, the receiver decodes the received bits

to determine the information bits. Shannon’s channel coding theorem [1] asserts the existence

of a maximum rate, called the channel capacity or simply capacity, at which information can be

transmitted with vanishing error probability over a given channel.

A Linear code is an error correcting code such that any linear combination of codewords is

a codeword of the code. Each linear code is defined by Tanner graphs or a parity check matrix.

More precisely, a Tanner graph represents a parity check matrix and a parity check matrix defines

a linear code. For a given N and M , a linear code over a finite field Fq is defined by an M ×N

matrix H = (hi,j), called parity check matrix, as follows:

{
x ∈ FN

q | HxT = 0T ∈ FM
q

}
,

where xT represents the transpose of row vector x = (x1, x2, . . . , xN ). A Tanner graph for a

binary linear code, i.e., a linear code over F2, is represented by a bipartite graph with variable

nodes and check nodes. If the v-th variable node and the c-ch check node are connected, then

hc,v = 1, otherwise hc,v = 0. For a non-binary linear code, i.e., a linear code over Fq where

q > 2, the Tanner graph is represented by a bipartite graph with variable nodes, check nodes

and labeled edges. If the v-th variable node and the c-ch check node are connected with an edge

labeled hc,v ∈ Fq \ {0}, then hc,v 6= 0.

Low-density parity-check (LDPC) codes, invented by Gallager [2], are linear codes defined by

sparse parity check matrices. Due to the sparseness of the parity check matrices, LDPC codes are

efficiently decoded by the belief propagation (BP) decoder. Optimized LDPC codes can exhibit

performance very close to the Shannon limit [3]. Davey and MacKay [4] found that non-binary

LDPC codes can outperform binary ones. However, it is known that the decoding complexity

grows with the non-binary alphabet size [5]. Hence, there is a trade-off between performance
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Figure 1.1: Block erasure rates for the (3,6)-regular binary LDPC code ensembles of code length
256, 512, 1024,∞.

and complexity. In this dissertation, we focus on both binary and non-binary LDPC codes.

To construct codes which have good decoding performances, it is important to analyze the

decoding error rates of LDPC codes. It is known that the decoding error probability of the

individual elements of an ensemble close to ensemble average with high probability [6]. More

precisely, all except an exponentially small fraction of codes behave within an arbitrarily small

value from the ensemble average. Hence, in this dissertation, we analyze the ensemble average

of decoding error probability.

The LDPC codes defined by Tanner graphs with the variable nodes of degree dv and the

check nodes of degree dc are called (dv, dc)-regular LDPC codes. Figure 1.1 shows that the

decoding erasure rates1 for (3,6)-regular binary LDPC code ensembles over the binary erasure

channel (BEC) under BP decoding.

The BP threshold is denoted by εBP in Figure 1.1. For the BEC, the BP threshold is defined

by the supremum of the channel erasure probability such that the decoding error probability is

equal to 0. For the LDPC codes of infinite code length, the decoding erasure probabilities are

determined by the BP threshold. The BP threshold is analyzed by the density evolution [3].

On the other hand, there is room for further research for the LDPC codes of finite code

length, or simply finite length LDPC codes. Hence, we analyze the decoding error probability

for finite length LDPC codes. The curve of the decoding error probability for finite length

LDPC codes is divided into two regions which called waterfall region and error floor region. In

the waterfall region, the decoding error probability drops off steeply as the function of channel

error probability as in Figure 1.1. The waterfall region is mainly caused by the decoding errors

of large weights. In the error floor region, the decoding error probability has a gentle slope as in

Figure 1.1. The error floor region is mainly caused by the decoding errors of small weights. In

the analysis of decoding error rate for finite length LDPC codes, we analyze both the waterfall
1For the BEC, the error rate in the decoding is called decoding erasure rate.
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Table 1.1: Dissertation contribution.
Waterfall region Error floor region

Finite-length
scaling

Rigorous
derivation
of scaling
parameter

Error floor
analysis

Stopping
constellation (set)
distribution

Binary LDPC
code ensemble

Amraoui et al. [7] Chapter 3 Di et al. [8] Orlitsky et al. [9]

Non-binary LDPC
code ensemble

Kasai et al. [10] Chapter 4,5 Chapter 6

region and the error floor region.

1.2 Objectives of Dissertation

Table 1.1 shows that the works about analysis of decoding error probability for finite-length

LDPC code ensembles. The first and second columns represent the analysis of the waterfall

regions. Finite-length scaling is a method to analyze the waterfall regions. By the finite-length

scaling, the decoding erasure probabilities in the waterfall regions for binary and non-binary

LDPC code ensembles were analyzed by Amraoui et al. [7] and Kasai et al. [10], respectively.

However, those analyze use unproved assumptions. Hence, we should analyze the waterfall re-

gions without assumptions. The third and fourth columns represent the analysis of the error

floor regions. For the binary case, decoding error probability of error floors and weight distri-

bution of decoding error patterns (stopping set distributions) are derived by Di et al. [8] and

Orlitsky et al. [9]. However, the error floors for non-binary LDPC codes has not been done so

far.

Thus, we should solve the following problems to analyze the decoding error probabilities.

1. Rigorous derivation of scaling parameter for binary LDPC code ensembles

2. Rigorous derivation of scaling parameter for non-binary LDPC code ensembles

3. Analysis of decoding error probability in the error floors for non-binary LDPC code en-

sembles

4. Analysis of weight distribution of decoding error patterns (stopping constellation distribu-

tions)

The dissertation solves the problems 1, 3 and 4 in Chapter 3, Chapter 4,5 and Chapter 6,

respectively. The Dissertation does not deal the problem 2. This problem will be solved in

future works.
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1.3 Main Results and Organization of Dissertation

The main contributions of this dissertation are analysis of decoding error rate for finite-length

LDPC code ensembles. The contributions and Organization of the dissertation are the following:

Preliminaries

Chapter 2 We introduce several definitions and basic facts on finite length LDPC codes.

Rigorous derivation of scaling parameter for binary LDPC code ensemble

Chapter 3 We derive the scaling parameter rigorously for the binary irregular LDPC code

ensembles.

Error floor analysis for non-binary LDPC code ensemble

Chapter 4 We give lower bounds of bit and symbol error rates in the error floor regions for

the non-binary regular and irregular LDPC code ensembles over the BEC. Furthermore,

we propose a design method to lower the error floors for the non-binary irregular LDPC

code ensembles over the BEC.

Chapter 5 We extends the results in Chapter 4 to the generalized non-binary LDPC codes

over the q-ary memoryless symmetric (q-MS) channels. We give lower bounds of symbol

error rates in the error floor regions for the non-binary regular and irregular LDPC code

ensembles over the q-MS channel. Next, we propose a design method to lower the error

floors for the non-binary LDPC codes over the q-MS channel. Moreover, we compare the

decoding error rates in the error floors for non-binary LDPC codes over the general linear

group with those for non-binary LDPC codes over finite field transmitted over the q-MS

channel under BP decoding.

Stopping constellation distribution for the non-binary LDPC code ensembles

Chapter 6 We derive the stopping constellation distributions for the non-binary regular and

irregular LDPC code ensembles.

Conclusion

Chapter 7 We conclude the dissertation.
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Chapter 2

Preliminaries

In this chapter, we review LDPC codes and basic facts related to this dissertation. We also

introduce some notations used throughout this dissertation.

2.1 Mathematical Preliminaries

2.1.1 Finite Field of Order 2m

A finite field or Galois field is a field that contains a finite number of elements. The number of

elements in a finite field is called its order. Denote a finite field of order 2m, by F2m .

Let α be a primitive element of F2m . Once a primitive element α of F2m is fixed, each symbol

is given by an m-bit (vector) representation [11, p. 110]. We denote the m-bit representation of

γ ∈ F2m , by b(γ). We denote the i-th bit of b(γ), by bi(γ).

Example 1 With a primitive element α ∈ F23 such that α3 + α + 1 = 0, each symbol is

represented as b(0) = (0, 0, 0), b(1) = (1, 0, 0), b(α) = (0, 1, 0), b(α2) = (0, 0, 1), b(α3) = (1, 1, 0),

b(α4) = (0, 1, 1), b(α5) = (1, 1, 1) and b(α6) = (1, 0, 1).

2.1.2 General Linear Group

For an non-negative integer m and a field F, the set of m ×m invertible matrices over F, i.e.,

Fm×m, is called the general linear group over F and is denoted by GL(m, F). In this dissertation,

we consider GL(m3, F2m4 ). The number of elements in GL(m3, F2m4 ) is given by

[m3]2m4 :=

1 m3 = 0,∏m3
i=1(2

im4 − 1) m3 ≥ 1.

In particular, the number of elements in GL(m, F2) is

[m]2 :=

1 m = 0,∏m
i=1(2

i − 1) m ≥ 1.

7



To simplify the notation, we denote the number of elements in GL(m, F2), by [m].

2.2 LDPC Codes

Gallager invented LDPC codes [2]. Binary and non-binary LDPC codes are defined by M ×N

sparse parity check matrices. For the binary LDPC codes, each entry of parity check matrices is

an element in F2. For the non-binary LDPC codes over group (or field) G, each entry of parity

check matrices is an element in G.

The Tanner graph for a binary LDPC code is represented by a bipartite graph with variable

nodes, check nodes and edges. For the non-binary LDPC codes over group (or field) G, the

Tanner graphs are represented by bipartite graphs with variable nodes, check nodes and edges

labeled by non-zero elements in G.

The details are in the following sections.

2.2.1 Binary LDPC Code

A binary LDPC code is defined by the null space of an M × N sparse parity check matrix

H = (hi,j) ∈ FM×N
2 as follows:

{
x ∈ FN

2 | HxT = 0T ∈ FM
2

}
.

Note that N is called bit code length or simply code length. The parity check matrices are

represented by Tanner graphs as the following: If the v-th variable node and the c-th check node

are connected with an edge, hc,v = 1, otherwise hc,v = 0.

Example 2 Figure 2.1 shows an example of Tanner graph. The circles and squares in the

Tanner graph represent variable nodes and check nodes, respectively. Tanner graph in Fig. 2.1

represents the following matrix:

H =


1 1 1 0 0 0

1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1

 .

2.2.2 Non-Binary LDPC Code over Galois Field

A non-binary LDPC code defined over Galois field F2m is defined by the null space of an M ×N

sparse parity check matrix H = (hi,j) ∈ FM×N
2m as follows:

{
x ∈ FN

2m | HxT = 0T ∈ FM
2m

}
.
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Figure 2.1: An example of Tanner graph. The circles and squares represent variable nodes and
check nodes, respectively.

Note that N is called symbol code length. The bit code length n is given by mN . The parity check

matrices for non-binary LDPC codes are also represented by Tanner graphs as the following:

If the v-th variable node and the c-th check node are connected with an edge labeled hc,v ∈
F2m \ {0}, hc,v 6= 0 hc,v = 1, otherwise hc,v = 0.

2.2.3 Non-Binary LDPC Code over General Linear Group

A non-binary LDPC code defined over general linear group GL(m, F2) is defined by the null

space of an M ×N sparse parity check matrix H = (hi,j) ∈ GL(m, F2)M×N as follows:(x1,x2, . . . , xN ) ∈ (Fm
2 )N |

N∑
j=1

hi,jx
T
j = 0T ∈ Fm

2 ∀i ∈ [1, M ]

 ,

where we denote [k1, k2] := {k ∈ N | k1 ≤ k ≤ k2} for k1 ≤ k2. The bit code length n is given

by mN . The parity check matrices for non-binary LDPC codes are also represented by Tanner

graphs as the following: If the v-th variable node and the c-th check node are connected with

an edge labeled hc,v ∈ GL(m, F2) \ {0}, hc,v 6= 0, otherwise hc,v = 0.

2.2.4 Generalized Non-Binary LDPC Code

In the similar way, we define the non-binary LDPC codes over general linear group GL(m3, F2m4 ).

Non-binary LDPC codes over general linear group GL(m3, F2m4 ) are defined by the null space

of M ×N sparse parity check matrix H = (hi,j) ∈ GL(m3, F2m4 )M×N as follows:(x1,x2, . . . , xN ) ∈ (Fm3
2m4 )N |

N∑
j=1

hi,jx
T
j = 0T ∈ Fm3

2m4 ∀i ∈ [1, M ]

 .

We refer the number of variable node N , as symbol code length of non-binary LDPC code over

GL(m3, F2m4 ). The bit code length is m3m4N . The parity check matrices for non-binary LDPC

codes are also represented by Tanner graphs as the following: If the v-th variable node and

the c-th check node are connected with an edge labeled hc,v ∈ GL(m3, F2m4 ) \ {0}, hc,v 6= 0,
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otherwise hc,v = 0.

Since the non-binary LDPC codes over F2m = GL(1, F2m) and over GL(m, F2) are special

cases for the non-binary LDPC codes over GL(m3, F2m4 ), we refer the non-binary LDPC codes

over GL(m3, F2m4 ) as generalized non-binary LDPC codes.

2.3 LDPC Code Ensembles

It is known that the decoding error probability of the individual elements of an ensemble close

to ensemble average with high probability [6]. More precisely, all except an exponentially small

fraction of codes behave within an arbitrarily small value from the ensemble average. Hence, in

this dissertation, we analyze the ensemble average of decoding error probability.

2.3.1 Binary Irregular LDPC Code Ensemble

Let λi and ρi be the fractions of the edges connected to variable nodes and check nodes of

degree i, respectively. Let L and R be the sets of degrees of variable nodes and check nodes,

i.e. L := {i | λi 6= 0} and R := {i | ρi 6= 0}, respectively. Each irregular LDPC code ensemble

[12] is characterized with the number of variable nodes N and a pair of degree distribution,

λ(x) =
∑

i∈L λix
i−1 and ρ(x) =

∑
i∈R ρix

i−1.

The total number of edges in the Tanner graph is

ξ :=
N∫ 1

0
λ(x)dx

.

Let Li and Rj be the fraction of the variable nodes of degree i and the check nodes of degree j,

respectively, i.e.,

Li :=
λi

i
∫ 1

0
λ(x)dx

, Rj :=
ρj

j
∫ 1

0
ρ(x)dx

.

Define the design rate r as follows:

r := 1−
∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

.

The number of check node M is M = (1− r)N . The average variable node degree is expressed

as

Λave :=
1∫ 1

0
λ(x)dx

.

Assume that the number of variable nodes N and the degree distribution pair λ(x), ρ(x) are

given. A binary irregular LDPC code ensemble E(N,λ, ρ) is defined in the following way. There

exist LiN variable nodes of degree i and RjN(1− r) check nodes of degree j. A node of degree

i has i sockets for its connected edges. Consider a permutation π on the number of edges ξ.

10
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Figure 2.2: The irregular binary LDPC code ensemble E(9, λ, ρ), where λ(x) = 3
14x+ 3

14x2 + 4
7x3

and ρ(x) = 4
7x3 + 3

7x5.

Join the i-th socket on the variable node side to the π(i)-th socket on the check node side. The

bipartite graphs are chosen with equal probability from all the permutations on the number of

edges.

Example 3 Figure 2.2 shows the irregular LDPC codes ensemble E(9, λ, ρ), where

λ(x) =
3
14

x +
3
14

x2 +
4
7
x3, ρ(x) =

4
7
x3 +

3
7
x5.

The number of variable nodes is N = 6. The sets of degrees of variable nodes and check nodes

are L = {2, 3, 4} and R = {4, 6}. The total number of edges is ξ = 28. The fraction of the

variable nodes and check nodes are

L2 =
1
3
, L3 =

2
9
, L4 =

4
9
, R4 =

2
3
, R6 =

1
3
.

The design rate is r = 1
3 . The number of check nodes is given by M = 4.

Discussion 1 A (dv, dc)-regular LDPC code is a binary LDPC code such that every variable

node has degree dv and every check node has degree dc. Figure 2.1 shows a (2,3)-regular LDPC

code. The (dv, dc)-regular LDPC code ensemble is denoted by E(N, xdv−1, xdc−1).

2.3.2 Non-Binary Irregular LDPC Code Ensemble

The non-binary LDPC code ensembles are defined in an analogous way as in the binary case.

Firstly, we define the non-binary irregular LDPC code ensemble defined over GL(m3, F2m4 ). For

a given number of variable nodes N , Galois field F2m and degree distribution pair λ(x), ρ(x), a

non-binary irregular LDPC code ensemble LDPC(N, GL(m3, F2m4 ), λ, ρ) is defined in the follow-

ing way. There exist LiN variable nodes of degree i and RjN(1− r) check nodes of degree j. A

node of degree i has i sockets for its connected edges. Consider a permutation π on the number

of edges. Join the i-th socket on the variable node side to the π(i)-th socket on the check node
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side. The bipartite graphs are chosen with equal probability from all the permutations on the

number of edges. Each label in an edge is chosen as an element from GL(m3, F2m4 ) \ {0} with

equal probability.

To simplify the notation, we denote the non-binary LDPC code ensemble over GL(m, F2)

and over F2m , by EGL(N,m, λ, ρ) and EGF(N, F2m , λ, ρ), respectively.

Discussion 2 The regular non-binary LDPC code ensemble is defined in a way similar

to the binary case. The (dv, dc)-regular non-binary LDPC code ensemble is denoted by

LDPC(N, GL(m3, F2m4 ), xdv−1 , xdc−1 , ρ).

For the non-binary defined over Galois field case, it is empirically known that (2, dc)-regular

non-binary LDPC codes exhibit good decoding performance among other LDPC codes for m ≥ 6

[13]. However, this is not the case for m < 6. In this dissertation, we consider the irregular

non-binary LDPC codes which contain variable nodes of degree two for the generality of code

ensemble.

2.4 Channel Models

In this section, we introduce channel models used in this dissertation.

To simplify the notation, the input alphabet is {+1,−1} indeed of {0, 1}. The mapping is

the following:

0←→+ 1,

1←→− 1.

With some abuse of notation, we make no distinction between {+1,−1} and {0, 1}.
We regard the codewords in the non-binary LDPC codes as binary codewords (x1, x2, . . . , xN ),

i.e., the codewords x are represented by (x1,1, x1,2, . . . , xN,m), where xi,j = bj(xi) for i ∈
[1, N ], j ∈ [1,m]. Hence, the codewords in the non-binary LDPC codes can be transmitted

by binary channels. We denote the received word as (y1,1, y1,2, . . . , yN,m).

2.4.1 Binary Erasure Channel (BEC)

Let X and Y be the channel input and the channel output, respectively. For the BEC, the

channel input and channel output take value in the alphabet X ∈ {+1,−1} and Y ∈ {+1,−1, ?},
respectively, where ? indicates an erasure. Each channel input is either erased with probability ε

or received correctly with probability 1− ε, where ε is referred to as channel erasure probability.

Figure 2.3 depicts the BEC with channel erasure probability ε.

2.4.2 Binary Symmetric Channel (BSC)

For the BSC, the channel input and channel output take value in the alphabet {+1,−1}. Each

channel input is either error with probability ε or received correctly with probability 1−ε, where

ε is referred to as crossover probability. Figure 2.4 depicts the BSC with crossover probability ε.

12



Figure 2.3: The BEC with channel erasure probability ε.

Figure 2.4: The BSC with crossover probability ε.

2.4.3 Binary Additive White Gaussian Noise (BAWGN) Channel

Each channel inputs and channel outputs of the BAWGN channel are X ∈ {+1,−1} and Y ∈ R,

respectively, where R is the set of real number. More precisely, Y = X + Z, where Z is a

Gaussian random variable with zero mean and variance σ2. In other words, the transition

probability density function for the BAWGN channel with noise variance σ2 is written as

pY |X(y | x) =
1√

2πσ2
exp

[
− (y − x)2

2σ2

]
,

where exp[x] is the exponential function. The signal to noise ratio (SNR) of the BAWGN channel

with noise variance σ2 is σ−2.

2.4.4 Memoryless Binary-Input Output-Symmetric (MBIOS) Channel

For the binary channel, we denote the channel input x := (x1,1, x1,2, . . . , xN,m−1, xN,m) and the

channel output y = (y1,1, y1,2, . . . , yN,m−1, yN,m). A channel is called memoryless binary-input

channel if

p(y | x) =
N∏

i=1

m∏
j=1

p(yi,j | xi,j).

A memoryless binary-input channel is called output-symmetric if

p(y | x) = p(−y | −x).

The MBIOS channels are characterized by its L-density a [5]. Examples of the MBIOS channels

include the BEC, the BSC and the BAWGN channel.
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2.4.5 q-ary Memoryless Symmetric (q-MS) Channel

The cardinality of an input alphabet X of a q-ary channel is q i.e., |X | = q. For the q-ary

channel, we denote the channel input x := (x1,1, x1,2, . . . , xN,m2−1, xN,m2) and the channel

output y = (y1,1, y1,2, . . . , yN,m2−1, yN,m2) for a fixed positive integer m2. A q-ary channel is

called memoryless if

p(y | x) =
N∏

i=1

m2∏
j=1

p(yi,j | xi,j).

The channel symmetry for a q-ary memoryless channel is given in the following definition.

Definition 1 [14, Definition 1] A q-ary memoryless channel which is characterized by a tran-

sition probability p(· | ·), an input alphabet X , and an output alphabet Y is symmetric if there

exists a function T : Y × X → Y which satisfies the following properties.

1. For every x ∈ X , the function T (·, x) : Y → Y is bijective.

2. For every x1, x2 ∈ X and y ∈ Y, the following equality holds:

p(y | x1) = p(T (y, x2 − x1) | x2)

3. For channels whose output alphabet Y is continuous, the mapping T is that its Jacobian

is equal to 1.

Example 4 The q-ary symmetric channel (q-SC) is an example of the q-MS channel. We

consider 2m-SC in this dissertation. The input alphabet is X = F2m and the output alphabet is

Y = F2m for the 2m-SC. The transition probability function is

p(y | x) =

1− ε x = y,

ε/(2m − 1) x 6= y.

If we set X = F2m , Y = F2m and

T (y, x) = y + x,

then Definition 1 holds the 2m-SC.

Example 5 The MBIOS channel is also an example of the q-MS channel. If we set the input

alphabet X = F2, the output alphabet is Y and

T (y, x) =

y x = 0,

−y x = 1,

then Definition 1 holds the MBIOS channel.
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2.5 Decoding Algorithms

In this section, we review decoding algorithms and several properties about decoding algorithms.

2.5.1 Belief Propagation Decoder for Binary LDPC Codes

BP decoding proceeds by sending messages along the edges in the Tanner graph. The messages

arising in the BP decoder for binary LDPC codes are vectors of length 2. Let Ψ(`)
v,c be the message

from the v-th variable node to the c-th check node at the `-th iteration. Let Φ(`)
c,v be the message

from the c-th check node to the v-th variable node at the `-th iteration.

Initialization

Set ` = 0. Recall that N and M are the number of variable nodes and check nodes in a Tanner

graph, respectively. For v ∈ [1, N ], let Cv = (Cv(0), Cv(1)) denote the initial message of the v-th

variable node. The initial message Cv is given from the channel outputs as follows:

Cv(0) =Pr
(
Yv = yv | Xv = 0

)
,

Cv(1) =Pr
(
Yv = yv | Xv = 1

)
.

Let Nc(c) be the set of the indices of the variable nodes connecting to the c-th check node. Set

for all c = [1, M ] and v ∈ Nc(c),

Φ(0)
c,v =

(
1
2
,
1
2

)
.

Iteration

Iteratively perform the following actions for ` = 1, 2, . . . .

Variable node action Let Nv(v) be the set of the indices of the check nodes connected to

the v-th variable node. The message Ψ(`)
v,c is given by the component-wise multiplication of the

initial message Cv and the incoming messages Φ(`)
c′,v from check nodes whose indices c′ are in

Nv(v) \ {c}, i.e., for x ∈ F2

Ψ(`)
v,c(x) =

1
ζ
Cv(x)

∏
c′∈Nv(v)\{c}

Φ(`)
c′,v(x),

where ζ is the normalization factor such that 1 = Ψ(`)
v,c(0) + Ψ(`)

v,c(1).

Check node action The convolution of two vectors Ψ1 and Ψ2 is given by

[Ψ1 ⊕Ψ2](x) =
∑

y,z∈F2:x=y+z

Ψ1(y)Ψ2(z),
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where
∑

y,z∈F2:x=y+z Ψ1(y)Ψ2(z) is the sum of Ψ1(y)Ψ2(z) over all y, z ∈ F2 such that x = y+z.

To simplify the notation, we define

⊕
i∈{1,2,...,k}

Ψi := Ψ1 ⊕Ψ2 ⊕ · · · ⊕Ψk.

The message Φ(`+1)
c,v is given as, for x ∈ F2

Φ(`+1)
c,v =

⊕
v′∈Nc(c)\{v}

Ψ(`)
v′,c.

Decision

For x ∈ F2

D(`)
v (x) :=

1
ζ
Cv(x)

∏
c∈Nv(v)

Φ(`)
c,v(x),

where ζ is the normalization factor such that 1 = D
(`)
v (0) + D

(`)
v (1). The decoding output x̂

(`)
v

given as the following:

x̂(`)
v =


0 D

(`)
v (0) > D

(`)
v (1),

1 D
(`)
v (0) < D

(`)
v (1),

? D
(`)
v (0) = D

(`)
v (1),

where ? represents that the v-th symbol is not recovered.

2.5.2 Peeling Decoder for Binary LDPC Codes

The peeling algorithm [15] is a sequential iterative decoding algorithm for the BEC. As the PA

proceeds, edges and nodes are progressively removed from the original Tanner graph and the

so-called residual graph is left at each iteration. The residual graph at each iteration consists

of the variable nodes that are still unknown and the check nodes and the edges connecting to

those variable nodes. The decoding process successfully stops if and only if the residual graph

vanishes.

Peeling decoding proceeds as follows.

Initialization Variable nodes receive the channel outputs. The variable nodes receiving the

known values send their values to the check nodes connected to them. Then the variable nodes

sending their values and edges connecting to those variable nodes are removed from the graph.

Iteration The decoder uniformly chooses a check node of degree one in the residual graph. The

chosen check node sends the value computed from the received values to the adjacent variable
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node. The variable node propagates this value to all adjacent check nodes. The variable node is

removed together with its edges.

Decision If the decoder does not find any check nodes of degree one in the residual graph, then

the decoding process stops. If the residual graph is empty, then the decoding process succeeds,

otherwise it fails.

Discussion 3 For the BEC and sufficiently large number of iterations, the BP decoder stops in

a fixed point of decoding. It is known that the BP decoder and the peeling decoder stop in the

same decoding results [15]. Hence, we are able to analyze the decoding performance under BP

decoding by analyzing peeling decoder.

2.5.3 BP Decoder for Non-Binary LDPC Codes

The BP decoder for the non-binary LDPC codes is an extension of the BP decoder for binary

LDPC codes. BP decoding proceeds by sending messages along the edges in the Tanner graph.

The messages arising in the BP decoder for LDPC codes over GL(m3, F2m4 ) are vectors of length

2m, where m = m3m4. Recall Ψ(`)
v,c is the message from the v-th variable node to the c-th check

node at the `-th iteration and Φ(`)
c,v is the message from the c-th check node to the v-th variable

node at the `-th iteration.

Once a primitive element of GL(m3, F2m4 ) is fixed, each symbol in GL(m3, F2m4 ) is repre-

sented as the m-bits. We assume that the codewords are transmitted over the 2m1 -MS channels

such that m1 | m. Then, each symbol xi of the codeword (x1, x2, . . . , xN ) is represented as m2

channel inputs to the 2m1-SC channel, where m2 = m/m1. We denote the channel outputs by

(y1,1, y1,2, . . . , yN,m2) ∈ YNm2 .

In the case for m1 = 1, the 2m1-MS channels represent the MBIOS channels.

Initialization

Set ` = 0. For v ∈ [1, N ], let Cv = (Cv(x))x∈GL(m3,F2m4 ) denotes the initial message of the v-th

variable node, where (Cv(x))x∈GL(m3,F2m4 ) is the vector of length 2m. For γ ∈ GL(m3, F2m4 ),

the element of initial message Cv(γ) is given by the channel outputs as follows:

Cv(γ) =
m2∏
i=1

p
(
yv,i | (bj(γ))j∈[m1(i−1)+1,m1i]

)
.

Set for all c ∈ [1,M ] and v ∈ Nc(c),

Φ(0)
c,v =

(
1

2m
,

1
2m

, . . . ,
1

2m

)
.

Iteration

Iteratively perform the following actions for ` = 1, 2, . . . .
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Variable node action The message Ψ(`)
v,c is given by the component-wise multiplication of

the initial message Cv and the incoming messages Φ(`)
c′,v from check nodes whose positions c′ are

in Nv(v), i.e., for x ∈ Fm3
2m4

Ψ(`)
v,c(x) = ζ−1Cv(x)

∏
c′∈Nv(v)\{c}

Φ(`)
c′,v(x),

where ζ is the normalization factor such that 1 =
∑

x∈Fm3
2m4

Ψ(`)
v,c(x).

Check node action The convolution of two vectors Ψ1 and Ψ2 is given by

[Ψ1 ⊕Ψ2](x) =
∑

y,z∈Fm3
2m4 :x=y+z

Ψ1(y)Ψ2(z),

where
∑

y,z∈Fm3
2m4 :x=y+z Ψ1(y)Ψ2(z) is the sum of Ψ1(y)Ψ2(z) over all y, z ∈ Fm3

2m4 such that

x = y + z. To simplify the notation, we define
⊕

i∈{1,2,...,k} Ψi := Ψ1 ⊕ Ψ2 ⊕ · · · ⊕ Ψk. The

message Φ(`+1)
c,v is given as, for x ∈ Fm3

2m4

Ψ̌(`)
v,c(x) = Ψ(`)

v,c

(
h−1

c,vx
)
,

Φ̌(`+1)
c,v =

⊕
v′∈Nc(c)\{v}

Ψ̌(`)
v′,c,

Φ(`+1)
c,v (x) = Φ̌(`+1)

c,v (hc,vx).

Decision

Define

arg max
x∈Fm3

2m4

Ψ :=
{
x | ∀y ∈ Fm3

2m4 , Ψ(x) ≥ Ψ(y)
}
,

and for x ∈ Fm3
2m4

D(`)
v (x) := ζ−1Cv(x)

∏
c∈Nv(v)Φ

(`)
c,v(x),

where ζ is the normalization factor such that 1 =
∑

x∈Fm3
2m4

D
(`)
v (x). For v ∈ [1, N ], let x̂

(`)
v be

the decoding output of the v-th variable node. Define

D(`)
v := arg max

x∈Fm3
2m4

D(`)
v (x).

If |D(`)
v | = 1, the decoding output x̂

(`)
v is the element of D(`)

v . If |D(`)
v | > 1, the decoder chooses

x̂
(`)
v ∈ D(`)

v with probability 1/|D(`)
v |.

Example 6 In the case for non-binary LDPC code defined over general linear group GL(3, F2),
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the messages are represented by vectors of length 23 as follows:

Cv = (Cv(000), Cv(100), Cv(010), Cv(110), Cv(001), Cv(101), Cv(011), Cv(111)).

In the case for non-binary LDPC code defined over Galois field F23 , the messages are represented

by vectors of length 23 as follows:

Cv =
(
Cv(0), Cv(1), Cv

(
α1
)
, Cv

(
α2
)
, Cv

(
α3
)
, Cv

(
α4
)
, Cv

(
α5
)
, Cv

(
α6
))

,

where α is a primitive element of F23 .

2.5.4 Peeling Decoder for Non-Binary LDPC Codes

We assume transmitted over the BEC. The peeling decoder assigns a set of candidate symbols

for the decoding result to each variable node. Such a set is referred to as state of the v-th

variable node and denoted by Ev, where Ev ⊆ F2m . Initially, for all v ∈ [1, N ], the peeling

decoder assigns the state

Ev = {γ ∈ F2m | bi(γ) = 0 (for i s.t. yv,i = 0), bi(γ) = 1 (for i s.t. yv,i = 1),

bj(γ) ∈ {0, 1} (for j s.t. yv,j =?)} (2.1)

to the v-th variable node. In words, the peeling decoder assigns the states corresponding to the

channel outputs to the variable nodes. For any subsets A1, A2, . . . , Ak ⊆ F2m , we denote

k∑
i=1

Ai :=

{
k∑

i=1

ai | aj ∈ Aj (j = 1, 2, . . . , k)

}
.

To simplify the notation, for γ ∈ F2m and E ⊆ F2m , we define γE := {γe | e ∈ E}. If

Ev ∩ h−1
c,v

(∑
i∈Nc(c)\{v} hc,iEi

)
is a proper subset of Ev, then (v, c) is said to be an active pair.

The peeling decoder involves the following 3 steps:

1. Initially the peeling decoder assigns the states corresponding to the channel outputs to the

variable nodes.

2. The peeling decoder chooses an active pair (v, c) uniformly at random. The peeling decoder

assigns Ev ← Ev ∩ h−1
c,v

(∑
i∈Nc(c)\{v} hc,iEi

)
to the v-th variable node.

3. If there is no active pair, then the peeling decoder stops. Otherwise repeat step 2.

Note that the cardinality of the states of the variable nodes do not increase as decoding proceeds.

Discussion 4 All the nonzero entries in a message arising in the BP decoder are equal [16,

Lemma 2]. For the BEC and sufficiently large number of iterations, the BP decoder stops in a

fixed point of decoding. In [17], Rathi et al. proved that the BP decoder and the peeling decoder

stop in the same fixed point of decoding. More precisely, {D(`)
v }v∈[1,N ] for sufficiently large ` is
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equal to {Ev}v∈[1,N ] in the same channel outputs. Thus, if we analyze the fixed point of peeling

decoder, we are able to analyze the condition of successful decoding under BP decoding.

2.6 Analysis of Decoders

2.6.1 All-zero Codeword Assumption

For binary LDPC codes over the MBIOS channel under BP decoding, the bit error probability is

independent of the transmitted codeword. Hence we are able to assume that all-zero codewords

are sent without loss of generality to analyze the decoding error rate [6] for binary LDPC codes

over the MBIOS channel under BP decoding. This assumption is referred to as the all-zero

codeword assumption. In the case for non-binary LDPC codes over the MBIOS channel under

BP decoding, all-zero codeword assumption also holds [16, Lemma 1].

In this section, we prove that all-zero codeword assumption also holds for non-binary LDPC

codes defined over GL(m3, F2m4 ) transmitted over the 2m1 -MS channel under BP decoding.

Lemma 1 For non-binary LDPC codes over GL(m3, F2m4 ) transmitted over the 2m1-MS chan-

nel under BP decoding, the symbol error probability is independent of the transmitted code-

word. In other words, all-zero codeword assumption holds for non-binary LDPC codes defined

over GL(m3, F2m4 ) over the 2m1 -MS channel under BP decoding.

The proof of Lemma 1 is in Appendix 2.A.

2.6.2 Decoding Failure

Firstly, we consider the non-binary case. Recall that we are able to assume that all-zero code-

words are sent without loss of generality. The v-th symbol is eventually correct [18] if there

exists Lv such that for all ` > Lv, x̂
(`)
v = 0. The block is eventually correct if and only if all

the symbols are eventually correct. The i-th bit in the v-th symbol is eventually correct if there

exists Lv such that for all ` > Lv, bi(γ) = 0 for all γ ∈ D(`)
v . The block erasure rate, the symbol

erasure rate and the bit erasure rate are defined by the fraction of the blocks, the symbols and

the bits which are not eventually correct, respectively.

Next, we consider the binary case. The v-th bit is eventually correct if there exists Lv such

that for all ` > Lv, x̂
(`)
v = 0. The bit error rate is defined by the fraction of the bits error bits

which are not eventually correct.

2.6.3 State of Non-binary Peeling Decoder

Closure under Linear Subspace for State

Recall that we are able to assume that all-zero codewords are sent without loss of generality. The

states of peeling decoder for non-binary LDPC codes are represented by linear subspaces [16,
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Lemma 2], [19, Lemma 2] as follows:

{b(w) ∈ Fm
2 | w ∈ Ev ⊂ F2m}

In other words, the set of the m-bit representations for the indices corresponding to nonzero

entries of a message arising in the BP decoder forms a linear subspace of Fm
2 [16, Lemma

2], [19, Lemma 2].

Closure under Additive of Galois Field for State

The states are the subsets in F2m which are closed under the addition in F2m . From (2.1),

initially, the states are subset in F2m which is closed under the addition in F2m . We claim that if

the subset E ⊆ F2m is closed under the addition, the subset γE is also closed under the addition

for γ ∈ F2m \ {0}. For all e′1, e
′
2 ∈ γE, there exist e1, e2 ∈ E such that e′1 = γe1 and e′2 = γe2.

For all e′1, e
′
2 ∈ γE, we see that

e′1 + e′2 = γe1 + γe2 = γ(e1 + e2) ∈ γE.

Hence, the subset γE ⊆ F2m is closed under the addition if E ⊆ F2m is closed under the addition.

We claim that the subset E1∩E2 ⊆ F2m is closed under the addition if the subsets E1, E2 ⊆ F2m

are closed under the addition. For all e1, e2 ∈ E1∩E2, we see that e1 +e2 ∈ E1 and e1 +e2 ∈ E2

since e1, e2 ∈ E1 and e1, e2 ∈ E2. Since e1 + e2 ∈ E1 ∩ E2, the subset E1 ∩ E2 ⊆ F2m is closed

under the addition if the subsets E1, E2 ⊆ F2m are closed under the addition. Obviously, if

the subsets E1, E2, . . . , Ek ∈ F2m are closed under the addition,
∑k

i=1 E1 is closed under the

addition. Hence Ev ∩h−1
c,v

(∑
i∈Nc(c)\{v} hc,iEi

)
is closed under the addition, if Ei is closed under

the addition for i ∈ Nc(c) \ {v}. Recall that initially the states are subset in F2m which is closed

under the addition in F2m . Thus, all the states are closed under the addition in F2m .

2.7 Tools for Performance Analysis

2.7.1 Threshold and Density Evolution

In this section, we review the BP threshold and density evolution for the binary LDPC codes.

For a < b, define [a, b] := {x ∈ R | a ≤ x ≤ b} and (a, b] := {x ∈ R | a < x ≤ b}. Let PB(ε, N) be

the block erasure probability under BP decoding for channel erasure probability ε and the bit

code length N . The BP threshold is defined by

εBP := sup
ε∈[0,1]

{
lim

N→∞
PB(ε,N) = 0

}
,

and characterized via density evolution [3] as follows:

εBP = sup
ε∈(0,1]

{y = 1− ρ(1− ελ(y)) has no solution y ∈ (0, 1]} .
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Figure 2.5: An example of stopping set.

2.7.2 Waterfall Region and Error Floor Region

The block error probability is represented by the sum of two contributions, the decoding error of

large weight (of order O(N)) and the decoding error of small weight (of order o(N)). The curve

of the block error probability for finite length LDPC codes is divided two regions which called

waterfall region and error floor region. In the waterfall region, the block error probability drops

off steeply as the function of channel parameter. The curve of the block error probability in the

waterfall region is represented by Q-function, where

Q(z) =
1√
2π

∫ ∞

z

exp
[
−x2

2

]
dx.

The waterfall region is mainly caused by the decoding erasures of large weights (of order O(N)).

In the error floor region, the block erasure probability has a gentle slope. The curve of the block

error probability in the error floor region is represented by a polynomial. The error floor region

is mainly caused by the decoding erasures of small weights (of order o(N)).

2.7.3 Stopping Set

A stopping set S is a set of variable nodes such that all the neighbors of S are connected to S at

least twice. With some abuse of notation, we make no distinction between the set of the variable

nodes and the set of the position of the variable nodes.

Example 7 Figure 2.5 shows an example of stopping set. The 5th, 7th and 9th variable nodes

forms a stopping set since all the neighbors of those variable nodes are connected to those variable

nodes at least twice.

For the binary LDPC code over the BEC, the stopping sets are the fixed points of the BP

decoder. It is known that BP decoding is failure if a stopping set is included in the set of

position i ∈ [1, N ] such that the channel output yi =?. Hence, the stopping sets are important

to characterize the decoding erasures.
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Since the definition of stopping sets depends only on structure of a Tanner graph, we extend

the definition of the stopping set for the non-binary LDPC codes.

2.7.4 Stopping Constellation

Definition 2 [17] A stopping constellation {Ev}v∈[1,N ] is defined as an assignment of the states

such that

Ev ⊆ h−1
c,v

 ∑
i∈Nc(c)\{v}

hc,iEi

 , (2.2)

for any v ∈ [1, N ] and all the check nodes connecting to the v-th variable node.

It is known that stopping constellations are fixed points of the peeling decoder and the BP

decoder [17]. In this chapter for a given stopping constellation we refer to the number of states

whose dimensions are not equal to 0 as the weight of the stopping constellation.

2.7.5 Stopping Constellation and Stopping Set

In this section, we show the relationship between the stopping constellation and the stopping

set. For a given stopping constellation {Ev}v∈[1,N ], let S̃ be the set of variable nodes such that

the dimensions of the corresponding states are not 0, i.e.,

S̃ := {v ∈ [1, N ] | Ev 6= {0}}.

Lemma 2 For a fixed G ∈ LDPC(N, GL(m3, F2m4 ), λ, ρ) and a given stopping constellation, the

set of variable nodes S̃ for the stopping constellation forms a stopping set.

proof: If there exists a check node in c which connects to S̃ once, then for the variable node in

v ∈ S̃ such that Ev 6= {0} and h−1
c,v

∑
i∈Nc(c)\{v} hc,iEi = {0}. Hence, the assignment of the

states {Ev}v∈[1,N ] is not a stopping constellation if there exists a check node which connects to

S̃ once. Thus, all the neighbors of S̃ are connected to S̃ at least twice. Therefore, the set of

variable nodes S̃ for the stopping constellation forms a stopping set. (Q.E.D.)

Lemma 3 For a fixed G ∈ LDPC(N, GL(m3, F2m4 ), λ, ρ) and a given stopping set S, there exist

at least one stopping constellation with the set of variable nodes S̃ such that S̃ = S.

proof: For a given stopping set S, the assignment of state {Ev}v∈[1,N ] such that Ev = Fm
2 for all

v ∈ S and Ev = {0} for all v ∈ [1, N ] \ S is a stopping constellation. (Q.E.D.)

The stopping constellations of small weight degrade the decoding erasure rates of non-binary

LDPC codes. From those lemmas, we see that in order to get a code which does not contain the

stopping constellation of small weight, we need to eliminate the stopping sets of small weight.
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2.8 Summary

In this chapter, we have reviewed LDPC codes and basic facts related to this dissertation. We

have also introduced some notations used throughout this dissertation. We have proved the

all-zero codeword assumption for non-binary LDPC codes over the q-MS channel under BP

decoding. Moreover, we have shown the relationship between the stopping sets and stopping

constellations.

Appendix 2.A Proof of Lemma 1

proof: Fix a Tanner graph G of a LDPC code over GL(m3, F2m4 ). We will compare the decoding

process when the all-zero codeword and a codeword x 6= 0 are transmitted. We assume that

the noise realizations are the same in the both all-zero codeword and a codeword x case. To

simplify the notation, we denote γ
i
:= (bj(γ))j∈[m1(i−1)+1,m1i] and xv,i := (xv,j)j∈[m1(i−1)+1,m1i]

for i ∈ [1,m2] and v ∈ [1, N ]. From the channel symmetry for the q-MS channel, the same noise

realizations are for v ∈ [1, N ] and i ∈ [1,m2]

p(yv,i | 0) = p(zv,i | 0),

p(yv,i | xv,i) = p(T (zv,i, xv,i) | xv,i).

Let Cv, Φ(`)
c,v, Ψ(`)

v,c, Dv be the messages in the BP decoder for all-zero codeword and

Ċv, Φ̇(`)
c,v, Ψ̇(`)

v,c, Ḋv be the messages in the BP decoder for the codeword x.

Initial Message For the codeword x, the initial message under BP decoding is Ċv(γ) =∏m2
i=1p

(
T (zv,i, xv,i) | γi

)
, for v ∈ [1, N ] and γ ∈ Fm3

2m4 . Hence, we get for γ ∈ Fm3
2m4 ,

Cv(γ) =
m2∏
i=1

p
(
zv,i | γi

)
=

m2∏
i=1

p
(
T (zv,i, xv,i) | γi

+ xv,i

)
= Ċv(γ + xv). (2.3)

Iteration We derive the following equations by mathematical induction for all `, γ ∈ Fm3
2m4

and v ∈ [1, N ]:

Ψ(`)
v,c(γ) =Ψ̇(`)

v,c(γ + xv), (2.4)

Ψ̌(`)
v,c(γ) = ˙̌Ψ(`)

v,c(γ + hc,vxv), (2.5)

Φ̌(`)
c,v(γ) = ˙̌Φ(`)

c,v(γ + hc,vxv), (2.6)

Φ(`)
c,v(γ) =Φ̇(`)

c,v(γ + xv). (2.7)

Firstly, we consider the basis of the mathematical induction. In the variable node action, the

messages are

Ψ(0)
v,c(γ) =Cv(γ), Ψ̇(0)

v,c(γ) = Ċv(γ),
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for γ ∈ Fm3
2m4 , v ∈ [1, N ] and c ∈ Nv(v). Hence, from (2.3), we get the basis of (2.4) for ` = 0,

γ ∈ Fm3
2m4 and v ∈ [1, N ]. The messages Ψ̌ and ˙̌Ψ are given as Ψ̌(0)

v,c(γ) = Ψ(0)
v,c(h−1

c,vγ) and
˙̌Ψ(0)

v,c(γ) = Ψ̇(0)
v,c(h−1

c,vγ), respectively, for γ ∈ Fm3
2m4 , v ∈ [1, N ] and c ∈ Nv(v). Hence, we have

Ψ̌(0)
v,c(γ) =Ψ(0)

v,c(h
−1
c,vγ)

=Ψ̇(0)
v,c(h

−1
c,vγ + xv) = ˙̌Ψ(0)

v,c(γ + hc,vxv). (2.8)

This leads the basis of (2.5). The message ˙̌Φ(1)
c,v is given as

˙̌Φ(1)
c,v(γ) =

∑
γ∈{(γv′ )v′∈Nc(c)\{v}|

γ=
P

v′∈Nc(c)\{v} γv′}

∏
v′∈Nc(c)\{v}

˙̌Ψ(0)
v′,c(γv′) (2.9)

The message Φ̌(1)
c,v is transformed as follows:

Φ̌(1)
c,v(γ) =

∑
γ∈{(γv′ )v′∈Nc(c)\{v}|

γ=
P

v′∈Nc(c)\{v} γv′}

∏
v′∈Nc(c)\{v}

Ψ̌(0)
v′,c(γv′)

=
∑

γ∈{(γv′ )v′∈Nc(c)\{v}|
γ=

P

v′∈Nc(c)\{v} γv′}

∏
v′∈Nc(c)\{v}

˙̌Ψ(0)
v′,c(γv′ + hc,v′xv′)

= ˙̌Φ(1)
c,v

(
γ +

∑
v′∈Nc(c)\{v}hc,v′xv′

)
= ˙̌Φ(1)

c,v(γ + hc,vxv),

where in the second equality we use (2.8), in the third equality we use (2.9) and in the fourth

equality we use the parity check constraint hc,vxv =
∑

v′∈Nc(c)\{v} hc,v′xv′ . Hence, we get the

basis of (2.6). The message Φ̇(1)
c,v is written as Φ̇(1)

c,v(γ) = ˙̌Φ(1)
c,v(hc,vγ). Hence, the message Φ(1)

c,v is

represented as

Φ(1)
c,v(γ)=Φ̌(1)

c,v(hc,vγ)= ˙̌Φ(1)
c,v(hc,vγ + hc,vxv)=Φ̇(1)

c,v(γ + xv).

This derive the basis of (2.7).

Next, we consider the induction step of the mathematical induction. By using induction

hypothesis (2.7) for ` = `′, the message Φ(`)
c,v is represented as

Ψ(`′)
v,c (γ) =

∏
c′∈Nc(c)\{c} Φ(`′)

c′,v(γ)∑
γ∈Fm3

2m4

∏
c′∈Nc(c)\{c} Φ(`′)

c′,v(γ)

=

∏
c′∈Nc(c)\{c} Φ̇(`′)

c′,v(γ + xv)∑
γ∈Fm3

2m4

∏
c′∈Nc(c)\{c} Φ̇(`′)

c′,v(γ + xv)

=Ψ̇(`′)
v,c (γ + xv).

Hence, we get (2.4) for ` = `′. The following three statements are derived from a way similar to
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the basis steps:

1. If (2.4) holds for ` = `′, (2.5) holds for ` = `′.

2. If (2.5) holds for ` = `′, (2.6) holds for ` = `′ + 1.

3. If (2.6) holds for ` = `′ + 1, (2.7) holds for ` = `′ + 1.

Decision For γ ∈ Fm3
2m4 and v ∈ [1, N ], we have

D(`)
v (γ) =

Cv(γ)
∏

c∈Nv(v) Φ(`)
c,v(γ)∏

γ∈Fm3
2m4

Cv(γ)
∏

c∈Nv(v) Φ(`)
c,v(γ)

=
Ċv(γ + xv)

∏
c∈Nv(v) Φ̇(`)

c,v(γ + xv)∏
γ∈Fm3

2m4
Ċv(γ + xv)

∏
c∈Nv(v) Φ̇(`)

c,v(γ + xv)

=Ḋ(`)
v (γ + xv).

Hence, there is a bijection from the message D
(`)
v (γ) to the message Ḋ

(`)
v (γ). Thus, both

decoding have the same number of errors. Therefore, the symbol error probability is independent

of the transmitted codeword. (Q.E.D.)
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Chapter 3

Analytical Solution of Covariance

Evolution for Irregular Binary LDPC

Codes

The scaling law developed by Amraoui et al. is a powerful method to estimate the block erasure

probabilities in the waterfall regions of finite-length LDPC codes. Solving a system of differen-

tial equations called covariance evolution, one can obtain the scaling parameter. However, the

covariance evolution has not been analytically solved. In this chapter, we present the analytical

solutions of the covariance evolution for the irregular LDPC code ensembles.

3.1 Introduction

The scaling law developed by Amraoui et al. [7] is a powerful method to estimate the block and

bit erasure probabilities in the waterfall regions of finite length LDPC codes transmitted over

the BEC. Let ri and lj be random variables representing the number of edges connecting to the

check nodes of degree i and to the variable nodes of degree j, respectively, in the residual graph.

Then, the scaling parameter is obtained from the mean and the variance of r1. The means of ri

and lj are determined from a system of differential equations which was derived and analytically

solved by Luby et al. [15]. The covariances of ri and lj also satisfy a system of differential

equations called covariance evolution which was derived by Amraoui et al. [7]. However, the

analytical solution of the covariance evolution has not been known. Therefore, one had to resort

to numerical computation to solve the covariance evolution.

In [20], Amraoui et al. proposed an alternative way to determine the variance of r1, though

only at the decoding threshold. Thereby they have given the analytic expression for the scaling

parameters without using the covariance evolution. They used BP decoding instead of the PA.

This method was applied to irregular repeat-accumulate codes [21] and to turbo-like codes [22]

and was extended to the binary memoryless symmetric channels [23,24].

Denote by ξ the total number of edges in the Tanner graph. For i = 1, 2, . . . , ξ, let µi

27



be the random variable which is 1 if the edge i conveys an erasure message from a variable

node to a check node, and 0 otherwise, in BP decoding. In [20], Amaroui et al. analyzed the

random variable
∑ξ

i=1 µi in decoding and derived the analytical expression for the variance of

this random variable. Finally, they made an unproved assumption that the random variable

r1−E[r1] in the PA is proportional to the random variable
∑ξ

i=1 µi−E[
∑ξ

i=1 µi] in BP decoding

and under this assumption they have given the analytical solution for the variance of r1.

However, no such assumption is needed if the covariance evolution is solved analytically.

Moreover, we obtain the variance of r1 at any channel erasure probability. In this chapter. we

present the analytical solution of the covariance evolution for irregular LDPC code ensembles.

This chapter is organized as follows. In Section 3.2, we recall some basic facts on the finite

length analysis of LDPC codes under iterative decoding. In Section 3.3, we present the analytical

solution of the covariance evolution for the irregular LDPC code ensembles. In Section 3.4, we

analytically solve the covariance evolution for the irregular LDPC code ensembles.

3.2 Residual Graph and Finite-Length Scaling

In this section, we recall the analysis of the residual graphs and the finite-length scaling for

the irregular LDPC code ensembles. We also introduce some notations used throughout this

chapter.

3.2.1 Analysis of Residual Graph

Denote the iteration round of the PA by `. Let lk,` and ri,` denote random variables representing

the number of edges connecting to the variable nodes of degree k and to the check nodes of degree

i, respectively, in the residual graph at the iteration round `. Let dc be the maximum degree of

check nodes. We define R̄ := {1, 2, . . . , dc − 1}. We also define a set of random variables

D` := {lk,` | k ∈ L} ∪ {rk,` | k ∈ R̄}.

Since the total number of edges connecting to variable nodes is equal to the total number of

edges connecting to check nodes in each residual graph, we have

∑
i∈L

li,` =
∑

j∈R̄∪{dc}

rj,`.

This equation gives

rdc,` =
∑
i∈L

li,` −
∑
j∈R̄

rj,`.

Hence, we see that the random variable rdc,` depends on the random variables in D`. Hence, we

drop rdc,` as in [25]. To simplify the notation, we drop the subscript `.
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For X ∈ D ∪ {rdc}, we define the normalized expectation of X as

X̄ :=
E[X]

ξ
.

Let e be the expectation of the fraction of the edges in the residual graph, i.e.,

e :=
∑
i∈L

l̄i.

We define

τ :=
`

ξ
. (3.1)

Define a parameter y such that y = 1 at τ = 0 and

dy

dτ
= −y

e
.

Hence, we see that the iteration round ` is parameterized by y.

Let I{·} be the indicator function which is 1 if the condition inside the braces is fulfilled and

0 otherwise. Define

a :=
1
e

∑
i∈L

il̄i.

For i ∈ L and j ∈ R̄ ∪ {dc} in the limit of large block length, Luby et al. [15] showed that X̄(y)

satisfies the following system of differential equations

dl̄i
dτ

= f̂ (li) = − il̄i
e

,
dr̄j

dτ
= f̂ (rj) = j(r̄j+1 − r̄j)

a− 1
e
− I{j=1}.

We define the binomial coefficient [26] for non-negative integer n, k as

(
n

k

)
:=

 n!
k!(n−k)! 0 ≤ k ≤ n,

0 k > n.

Recall that the channel erasure probability is ε. By using the parameter y, for i ∈ L and

j ∈ {2, . . . , dc}, this system of differential equation are solved as:

l̄i(y) = ελiy
i, r̄j(y) =

∑
i∈R

ρi

(
i− 1
j − 1

)
xj x̃i−j , r̄1(y) = x(y − 1 + ρ(x̃)),

where x := ελ(y) and x̃ := 1− x. Define x′ := dx/dy. From this result, we see that

e = xy, a =
x′y + x

x
.
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For X,Y ∈ D, we define the normalized covariance of X and Y by

δ(X,Y ) :=
Cov[X, Y ]

ξ
.

Unless otherwise specified, we drop y to simplify the notation. In [7,25], Amraoui et al. showed

that δ(X,Y ) satisfies the following system of differential equations for the irregular LDPC code

ensembles in the limit of large block length:

dδ(X,Y )

dy
=− x

∑
Z∈D

(
∂f̂ (X)

∂Z̄
δ(Y,Z) +

∂f̂ (Y )

∂Z̄
δ(X,Z)

)
− xf̂ (X,Y ), (3.2)

and this system of the differential equation is referred to as the covariance evolution. Define

x′′ := d2x/dy2 and

Gj(y) :=

j(r̄j+1 − r̄j)/x j ∈ R̄,

−dcr̄dc/x j = dc.

The terms in the covariance evolution are given by the following for k, s ∈ L , i ∈ R̄ and

j ∈ R̄ \ {dc − 1}

∂f̂ (ls)

∂l̄k
=

sl̄s
e2
− I{k=s}

s

e
,

∂f̂ (ls)

∂r̄i
= 0,

∂f̂ (rj)

∂l̄k
= − 2a− k − 1

e

Gj

y
,

∂f̂ (rj)

∂r̄i
= j

a− 1
e

(
I{i=j+1} − I{i=j}

)
,

∂f̂ (rdc−1)

∂l̄k
= (dc − 1)

a− 1
e
− 2a− k − 1

e

Gdc−1

y
,

∂f̂ (rdc−1)

∂r̄i
= − (dc − 1)

a− 1
e

(
1 + I{i=dc−1}

)
,

and for k, s ∈ L and i, j ∈ R̄

f̂ (lk,ls) = ks
l̄k
e

(
I{k=s} −

l̄s
e

)
,

f̂ (lk,ri) = (a− k)
kl̄k
e

Gi

y
,

f̂ (ri,rj) =
x′′x− (x′)2

x2
GiGj + ij

x′

x2

{
I{i=j}(r̄j+1 + r̄j)− I{i=j+1}r̄i − I{j=i+1}r̄j

}
.

Initial conditions of the covariance evolution are also given by Amraoui et al. [7, 25]. For

i, j ∈ R̄ and k, s ∈ L, the initial conditions of the covariance evolution are derived as follows:

δ(lk,ls)(1) =I{k=s}εε̃λkk,

δ(lk,ri)(1) =− εε̃λkkGi(1),

δ(ri,rj)(1) =I{i=j}ir̄i(1)− Vi,j(1) + εε̃λ′(1)Gi(1)Gj(1),
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Table 3.1: Summary of intermediate variables defined in Section 3.2.1.
x = ελ(y)
x′ = dx/dy = ελ′(y)
x′′ = d2x/dy2 = ε

∑
i∈L(i− 1)(i− 2)λiy

i−3

x̃ = 1− x

ε̃ = 1− ε

a = e−1∑
i∈Lil̄i = (x′y + x)/x

Gj(y) =

{
j(r̄j+1 − r̄j)/x j ∈ R̄
−dcr̄dc/x j = dc

Vi,j(y) =
∑
s∈R

ρss

(
s− 1
i− 1

)(
s− 1
j − 1

)
xi+j x̃2s−i−j i, j ∈ R̄ ∪ {dc}

Table 3.2: Summary of notations in Section 3.2.1.

l̄i = ελiy
i The expectation of the fraction of the edges connecting to the

variable nodes of degree i in the residual graph

r̄j =
∑
i∈R

ρi

(
i− 1
j − 1

)
xj x̃i−j The expectation of the fraction of the edges connecting to the

check nodes of degree j ∈ {2, . . . , dc} in the residual graph

r̄1 = x(y − 1 + ρ(x̃)) The expectation of the fraction of the edges connecting to the
check nodes of degree 1 in the residual graph

e =
∑

i∈L l̄i = xy The expectation of the fraction of the edges in the residual graph

where ε̃ := 1− ε and

Vi,j(y) :=
∑
s∈R

ρss

(
s− 1
i− 1

)(
s− 1
j − 1

)
xi+j x̃2s−i−j .

The summary of intermediate variables and notations are in Table 3.1 and Table 3.2, respec-

tively.

3.2.2 Scaling Law

The scaling law is a method which allows us to estimate the decoding erasure probability caused

by the decoding erasures of large weight. In other words, the scaling law is a method to estimate

the waterfall region. The scaling law is based on the analysis of the residual graphs.

In [7], the block erasure probability PB(N, ε) is given by

PB(N, ε) = Q

(√
N(εBP − ε)

α

)
+ o(1),

where α is slope scaling parameter depending on the ensemble and the Q-function is defined as

Q(z) :=
1√
2π

∫ ∞

z

exp
[
−x2

2

]
dx.
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In [20], the slope scaling parameter is derived as

α = −
√

Λave δ(r1,r1)
∣∣
εBP;y∗

(
∂r̄1

∂ε

∣∣∣∣
εBP;y∗

)−1

(3.3)

where y∗ is the nonzero solution of r̄1(y) = 0 at the threshold, i.e., define y∗ such that y∗ =

1− ρ(1− ε∗λ(y∗)).

3.3 Main Results

We show, in the following theorem, the analytical solution of the covariance evolution, for the

irregular LDPC code ensembles. The proof shall be given in Section 3.4.

Theorem 1 Consider the irregular binary LDPC code ensemble E(N, λ, ρ) transmitted over the

BEC with channel erasure probability ε. Let τ be the normalized iteration round of the PA as

defined in (3.1). A parameter y is defined by dy/dτ = −1/(ελ(y)) and y = 1 at τ = 0. The

intermediate variables are defined in Table 3.1 and Table 3.2. For the irregular LDPC code

ensemble, i, j ∈ R̄ and k, s ∈ L, in the limit of the bit length N , we obtain the following.

δ(lk,ls) =− ksl̄k l̄s
e2

F +
εl̄k l̄s

e

{
k (ys − 1) + s

(
yk − 1

)}
+ I{k=s}kl̄k(1− εyk), (3.4)

δ(ls,rj) =
{

sl̄s
e

F − εl̄s (ys − 1)
}(

x′

x
Gj − I{j=1}

)
− sl̄s

e
Gj

(
F ′ + x

2
− εxys

)
, (3.5)

δ(ri,rj) =− F

(
x′

x
Gi − I{i=1}

)(
x′

x
Gj − I{j=1}

)
+ GiGj

(
x′

x
F ′ − ε2

∑
s∈L

λssy
2s−2 + x2

)
− Vi,j +

(
I{j=1}Gi + I{i=1}Gj

){
x(e− x)− F ′ − x

2

}
+ I{i=j}ir̄i

+ I{i=j=1}(e− x)2, (3.6)

where

F :=
∑
i∈L

λi

i

{
ε2
(
yi − 1

)2
+ ε
(
yi − 1

)}
, (3.7)

F ′ :=
dF

dy
= 2ε2

∑
i∈L

λiy
2i−1 + (1− 2ε)x. (3.8)

Using Theorem 1, we obtain the following corollary.

Corollary 1 Let εBP be the threshold of the ensemble under BP decoding, N be the symbol

code length and ξ be the total number of edges in the original graph. Denote the nonzero solution

of r̄1(y) = 0 at the threshold, by y∗. Define x∗ := ε∗λ(y∗) and x̃∗ := 1 − x∗. For the irregular
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LDPC code ensembles E(N, λ, ρ), the slope scaling parameter α is given by

α =

{
ρ(x̃∗)2 − ρ

(
x̃∗2)− x̃∗2ρ′

(
x̃∗2)

ρ′(x̃∗)2
+

1− 2x∗ρ(x̃∗)
ρ′(x̃∗)

+ x∗2 −
(
εBP
)2

λ
(
y∗2)− (εBP

)2
y∗2λ′(y∗2)} 1

2√
Λave

1
λ(y∗)

. (3.9)

proof: Since r̄1|εBP;y∗ = 0 and ∂r̄1
∂y

∣∣∣
εBP;y∗

= 0, we see that

1− y∗ = ρ(x̃∗), εBPλ′(y∗)ρ′(x̃∗) = 1.

Combining those equations, we have from (3.6),

δ(r1,r1)
∣∣∣
εBP;y∗

=x∗2(ρ(x̃∗)2 − x̃∗2ρ′
(
x̃∗2)− ρ

(
x̃∗2))+ x∗2ρ′(x̃∗)(1− 2x∗ρ(x̃∗))

+ (x∗ρ′(x̃∗))2
(
x∗2 − ε∗2y∗2λ′(y∗2)− ε∗2λ

(
y∗2)).

Recall that r̄1 = x(y − 1 + ρ(x̃)). We see that

∂r̄1

∂ε

∣∣∣∣
εBP;y∗

= −x∗λ(y∗)ρ′(x̃∗).

From (3.3), we obtain (3.9). (Q.E.D.)

The result of Corollary 1 coincides with the result in [20] for the irregular LDPC code

ensembles. We rigorously obtain the slope scaling parameter. Hence, we can optimize the pair

of degree distributions without any assumptions by this result.

3.4 Lemmas and Proofs

In this section, we prove Theorem 1. To prove Theorem 1, we state three lemmas. We use

Lemma 4, 5 and 6 to prove (3.4), (3.5) and (3.6), respectively.

From the covariance evolution (3.2), we have the following equations for k, s ∈ L and i, j ∈ R̄:

dδ(lk,ls)

dy
=−x

∑
i∈L

(
∂f̂ (lk)

∂l̄i
δ(li,ls) +

∂f̂ (ls)

∂l̄i
δ(li,lk)

)
− xf̂ (lk,ls), (3.10)

dδ(lk,ri)

dy
=−x

∑
s∈L

(
∂f̂ (lk)

∂l̄s
δ(ls,ri) +

∂f̂ (ri)

∂l̄s
δ(ls,lk)

)
−x

∑
j∈R̄

∂f̂ (ri)

∂r̄j
δ(lk,rj) − xf̂ (lk,ri), (3.11)

dδ(ri,rj)

dy
=−x

∑
s∈L

(
∂f̂ (ri)

∂l̄s
δ(ls,rj) +

∂f̂ (rj)

∂l̄s
δ(ls,ri)

)
−x

∑
k∈R̄

(
∂f̂ (ri)

∂r̄k
δ(rk,rj) +

∂f̂ (rj)

∂r̄k
δ(rk,ri)

)
− xf̂ (ri,rj). (3.12)

To simplify the notation, we drop some subscripts in this paragraph. Those equations assert

33



Table 3.3: Definitions of intermediate variables used in Section 3.4.1.

U (lk;ls) :=
1

(kl̄k)2
δ(lk,lk) − 1

(sl̄s)2
δ(ls,ls) k, s ∈ L

δ(lk,lΣ) :=
∑

s∈L δ(lk,ls) k ∈ L

• The differential equations d
dy δ(l,l) only involve δ(l,l)

• The differential equations d
dy δ(l,r) involve δ(l,l) and δ(l,r)

• The differential equations d
dy δ(r,r) involve δ(l,r) and δ(r,r)

Since the differential equation d
dy δ(l,l) only involves δ(l,l), firstly, we solve δ(l,l) in Section 3.4.1.

If δ(l,l) is known function, we are able to solve the differential equation d
dy δ(l,r). Hence, secondly,

we solve δ(l,r) in Section 3.4.2. Similarly, if δ(l,r) is known function, we are able to solve the

differential equation d
dy δ(r,r). Thus, finally, we give δ(r,r) in Section 3.4.3.

3.4.1 Lemma and Proof of (3.4)

In this section, we give a lemma to prove (3.4) and we prove (3.4). Table 3.3 gives the definitions

of intermediate variables which are used in this section.

Lemma to Prove (3.4)

Lemma 4 We define U (lk;ls) as in Table 3.3. The intermediate variables are defined in Table

3.1. For k, s ∈ L, we have the following equations.

∑
k,s∈L

δ(lk,ls)

ks
= εε̃

∑
i∈L

λi

i
, (3.13)

2
δ(lk,ls)

ksl̄k l̄s
− δ(lk,lk)

(kl̄k)2
− δ(ls,ls)

(sl̄s)2
=
(

εyk − 1
kl̄k

+
εys − 1

sl̄s

)
I{k 6=s}, (3.14)

U (lk;ls) = −εyk − 1
kl̄k

+
εys − 1

sl̄s
+

2ε

e

(
yk − 1

k
− ys − 1

s

)
. (3.15)

proof: Define δ(lk,lΣ) as in Table 3.3. From (3.10), we get

dδ(lk,ls)

dy
= −sl̄s

ey
δ(lk,lΣ) − kl̄k

ey
δ(ls,lΣ) +

k + s

y
δ(lk,ls) − xf̂ (lk,ls). (3.16)

Proof of (3.13) From (3.16), we have the following equation:

∑
k,s∈L

1
ks

dδ(lk,ls)

dy
= 0.
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From the initial conditions, we obtain

∑
k,s∈L

1
ks

δ(lk,ls) = εε̃
∑
i∈L

λi

i
.

This leads to (3.13).

Proof of (3.14) Obviously, the left hand side of (3.14) is equal to 0 for k = s. Hence, we get

(3.14) for k = s. Next, we consider the case for k 6= s. From (3.16), we have

d

dy

(
δ(lk,ls)

ksl̄k l̄s

)
=

1
ksl̄k l̄s

dδ(lk,ls)

dy
− k + s

ksl̄k l̄sy
δ(lk,ls)

= −x

(
f̂ (lk,ls)

ksl̄k l̄s
+

δ(lk,lΣ)

kl̄ke2
+

δ(ls,lΣ)

sl̄se2

)
. (3.17)

For k 6= s, (3.17) gives the following equation:

d

dy

[
2
δ(lk,ls)

ksl̄k l̄s
− δ(lk,lk)

(kl̄k)2
− δ(ls,ls)

(sl̄s)2

]
= −2

xf̂ (lk,ls)

ksl̄k l̄s
+

xf̂ (lk,lk)

k2 l̄2k
+

xf̂ (ls,ls)

s2 l̄2s
=

1
y

(
1
l̄k

+
1
l̄s

)
.

The solution of this differential equation is

2
δ(lk,ls)

ksl̄k l̄s
− δ(lk,lk)

(kl̄k)2
− δ(ls,ls)

(sl̄s)2
= − 1

kl̄k
− 1

sl̄s
+ Clk,ls ,

where Clk,ls is a constant determined from the initial conditions. The initial conditions gives

Clk,ls =
1

kλk
+

1
sλs

.

Thus, we have for k 6= s

2
δ(lk,ls)

ksl̄k l̄s
− δ(lk,lk)

(kl̄k)2
− δ(ls,ls)

(sl̄s)2
=

εyk − 1
kl̄k

+
εys − 1

sl̄s
.

Hence, we obtain (3.14).

Proof of (3.15) The equation (3.14) is rewritten for all k, s ∈ L

δ(lk,ls) =
[
sl̄s
2
(
εyk − 1

)
+

kl̄k
2
(
εys − 1

)]
I{k 6=s} +

sl̄s
2kl̄k

δ(lk,lk) +
kl̄k
2sl̄s

δ(ls,ls).

The sum of this equation over all s ∈ L is written as follows:

δ(lk,lΣ) =
ae

2
(
εyk − 1

)
+

kl̄k
2

∑
s∈L

(
εys − 1

)
− kl̄k

(
εyk − 1

)
+

ae

2kl̄k
δ(lk,lk) + kl̄k

∑
s∈L

δ(ls,ls)

2sl̄s
.

35



Combining (3.17) with this equation, we have

d

dy

[
δ(lk,lk)

(kl̄k)2

]
=− x

f̂ (lk,lk)

k2 l̄2k
− 2

δ(lk,lΣ)

kl̄key

=K(lk,lk) − a

y

δ(lk,lk)

(kl̄k)2
− 1

ey

∑
s∈L

(εys − 1)− 1
ey

∑
s∈L

δ(ls,ls)

sl̄s
,

where

K(lk,lk) := −x
f̂ (lk,lk)

(kl̄k)2
− a

kl̄ky

(
εyk − 1

)
+

2
ey

(
εyk − 1

)
.

From this equation and the definition of U (lk;ls) in Table 3.3, we have

dU (lk;ls)

dy
=

d

dy

[
δ(lk,lk)

(kl̄k)2

]
− d

dy

[
δ(ls,ls)

(sl̄s)2

]
= K(lk,lk) −K(ls,ls) − a

y
U (lk;ls). (3.18)

Note that∫
a

y
dy = ln e.

Since (3.18) is a first order differential equation, it is solved as follows:

U (lk;ls) =
1
e

∫
e
(
K(lk,lk) −K(ls,ls)

)
dy +

1
e
Clk;ls ,

with a constant Clk;ls which is determined from the initial conditions. The integration of the

part of this equation is∫
eK(lk,lk)dy =

∫ [
−x′y + x

kλk
+

x′y − (k − 1)x
kl̄k

+ 2εyk−1 − 1
y

]
dy

=− e

kλk
+
∑
i∈L

l̄i
kl̄k

I{i 6=k} +
2εyk

k
− ln y

=− εyk − 1
kl̄k

e +
2εyk − 1

k
− ln y.

Hence, we get

U (lk;ls) = −εyk − 1
kl̄k

+
εys − 1

sl̄s
+

1
e

(
2εyk − 1

k
− 2εys − 1

s
+ Clk;ls

)
.

From the initial conditions, we have

U (lk;ls)(1) =
ε̃

ε

(
1

kλk
− 1

sλs

)
.
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Hence, the constant Clk;ls is derived as

Clk;ls =
1− 2ε

k
− 1− 2ε

s
.

Therefore, we have

U (lk;ls) = −εyk − 1
kl̄k

+
εys − 1

sl̄s
+

2ε

e

(
yk − 1

k
− ys − 1

s

)
.

Thus, (3.15) holds. (Q.E.D.)

Proof of (3.4)

Here, by using Lemma 4, we prove (3.4). Firstly, we consider δ(ls,ls). By transforming U (lk;ls),

we have

l̄k
e

δ(ls,ls) =
(sl̄s)2

e

(
δ(lk,lk)

k2 l̄k
− l̄kU (lk;ls)

)
.

The sum of this equation over all k ∈ L is written as follows:

δ(ls,ls) =
(sl̄s)2

e

∑
k∈L

δ(lk,lk)

k2 l̄k
− (sl̄s)2

e

∑
k∈L

l̄kU (lk;ls). (3.19)

Now, we consider the first term of (3.19). By transforming (3.14), we see that for all k, s ∈ L

1
2

l̄s
k2 l̄k

δ(lk,lk) +
1
2

l̄k
s2 l̄s

δ(ls,ls) =
1
ks

δ(lk,ls) − l̄s
2

εyk − 1
k

I{k 6=s} −
l̄k
2

εys − 1
s

I{k 6=s}.

The sum of this equation over all k, s ∈ L is written as follows:

e
∑
k∈L

δ(lk,lk)

k2 l̄k
=
∑

k,s∈L

δ(lk,ls)

ks
+
∑
k∈L

(l̄k − e)
εyk − 1

k
. (3.20)

Combining (3.20) with (3.13), we have

∑
k∈L

δ(lk,lk)

k2 l̄k
=

εε̃

e

∑
k∈L

λk

k
+
∑
k∈L

l̄k − e

e

εyk − 1
k

. (3.21)

Next, we consider the second term of (3.19). From (3.15), we have

∑
k∈L

l̄kU (lk;ls) =
e

sl̄s

(
εys − 1

)
− 2ε

ys − 1
s
−
∑
k∈L

εyk − 1
k

+
2ε

e

∑
k∈L

l̄k
(
yk − 1

)
k

. (3.22)

Combining (3.19) with (3.21) and (3.22), we obtain

δ(ls,ls) = − (sl̄s)2

e2
F + 2ε

sl̄2s
e

(
ys − 1

)
+ sl̄s

(
1− εys

)
. (3.23)
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Table 3.4: Definitions of intermediate variables used in Section 3.4.2.
δ(lΣ,rj) :=

∑
k∈L δ(lk,rj) j ∈ R̄

δ(lk,rΣ) :=
∑

j∈R̄ δ(lk,rj) k ∈ L
δ(lk,rdc ) := δ(lk,lΣ) − δ(lk,rΣ) k ∈ L

A(lΣ,rj) :=
∑

i∈L i−1δ(li,rj) j ∈ R̄
A(lΣ,rΣ) :=

∑
j∈R̄ A(lΣ,rj)

A(lΣ,rdc ) :=
∑

i∈L i−1δ(li,rdc )

S(li,ls;rj) :=
1
il̄i

δ(li,rj) − 1
sl̄s

δ(ls,rj) i, s ∈ L, j ∈ R̄

S(li,ls;rΣ) :=
∑

j∈R̄ S(li,ls;rj) i, s ∈ L

S(li,ls;rdc ) :=
1
il̄i

δ(li,rdc ) − 1
sl̄s

δ(ls,rdc ) i, s ∈ L

S(lk,ls;li) :=
1

kl̄k
δ(lk,li) − 1

sl̄s
δ(ls,li) k, s, i ∈ L

S(lk,ls;lΣ) :=
∑

i∈L S(lk,ls;li) k, s ∈ L

GΣ :=
∑

j∈R̄ Gj = x−1(dcr̄dc − e)

D(lk,rj) := 2
x′

e
Gjδ

(lk,lΣ) − xf̂ (lk,rj) − 1
y2

Gj

∑
i∈L

(i− 1)δ(lk,li) k ∈ L, j ∈ R

D(lk,rΣ) :=
∑

j∈R̄ D(lk,rj) k ∈ L

Secondly, we consider δ(lk,ls) for k 6= s. From (3.14), we see that for k 6= s

δ(lk,ls) =
sl̄s
2kl̄k

δ(lk,lk) +
kl̄k
2sl̄s

δ(ls,ls) +
εyk − 1

2sl̄s
+

εys − 1
2kl̄k

.

Combining this equation with (3.23), we obtain (3.4) for k, s ∈ L.

3.4.2 Lemma and Proof of (3.5)

In this section, we introduce a lemma to prove (3.5) and we prove (3.5). The definitions of

intermediate variables used in this section are summarized in Table 3.4.

Lemma to Prove (3.5)

Lemma 5 We define A(lΣ,rj), A(lΣ,rΣ), S(li,ls;rj), S(li,ls;rΣ) and GΣ as in Table 3.4. The in-

termediate variables are defined in Table 3.1. For j ∈ R̄ and k, s ∈ L, we have the following

equations.

A(lΣ,rΣ) = εε̃

(
x′

x
GΣ − 1

)∑
i∈L

λi

i

(
yi − 1

)
− ε̃xGΣ, (3.24)

A(lΣ,rj) = εε̃

(
x′

x
Gj − I{j=1}

)∑
i∈L

λi

i

(
yi − 1

)
− ε̃xGj , (3.25)
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S(lk,ls;rΣ) = −ε

(
x′

x
GΣ − 1

)(
yk − 1

k
− ys − 1

s

)
+ εGΣ

(
yk−1 − ys−1

)
, (3.26)

S(lk,ls;rj) = −ε

(
x′

x
Gj − I{j=1}

)(
yk − 1

k
− ys − 1

s

)
+ εGj

(
yk−1 − ys−1

)
. (3.27)

We use (3.24) and (3.26) to prove the basis of the mathematical induction in the proof of (3.25)

and (3.27), respectively.

proof: We will derive the differential equations. Firstly, we consider A(lΣ,rj) for j ∈ R̄. We define

δ(lΣ,rj), δ(lk,rΣ) and δ(lk,rdc ) as in Table 3.4. From (3.11) we have for j ∈ R̄ and k ∈ L

dδ(lk,rj)

dy
= D(lk,rj) − kl̄k

ey
δ(lΣ,rj) +

k

y
δ(lk,rj) − j

x′

x

(
δ(lk,rj+1) − δ(lk,rj)

)
, (3.28)

where a known function D(lk,rj) is defined as for k ∈ L and j ∈ R

D(lk,rj) := 2
x′

e
Gjδ

(lk,lΣ) − xf̂ (lk,rj) − Gj

y2

∑
i∈L

(i− 1)δ(lk,li).

From (3.28), we have for k ∈ R̄

dA(lΣ,rj)

dy
=
∑
k∈L

1
k

dδ(lk,rj)

dy
=
∑
k∈L

D(lk,rj)

k
− j

x′

x

(
A(lΣ,rj+1) −A(lΣ,rj)

)
. (3.29)

From this equation, we see that A(lΣ,rj) is solved if A(lΣ,rj+1) is a known function. Moreover, we

see that A(lΣ,rdc−1) is solved if A(lΣ,rΣ) is a known function.

Secondly, we consider A(lΣ,rΣ). The sum of (3.29) over all j ∈ R̄ gives d
dy A(lΣ,rΣ) as follows:

dA(lΣ,rΣ)

dy
=
∑
k∈L

D(lk,rΣ)

k
− (dc − 1)

x′

x

∑
k∈L

1
k

δ(lk,lΣ) + dc
x′

x
A(lΣ,rΣ). (3.30)

Since this equation is a first order differential equation and the first and second terms of this

equation are known function, we are able to solve this equation. The derivation of A(lΣ,rΣ) is

written in Section 3.4.2.

Next, we derive the differential equation of S(lk,ls;rj) for k, s ∈ L and j ∈ R̄. By using (3.28),

we get

d

dy

(
δ(lk,rj)

kl̄k

)
=

1
kl̄k

dδ(lk,rj)

dy
− 1

l̄ky
δ(lk,rj)

=
D(lk,rj)

kl̄k
− 1

ey
δ(lΣ,rj) − j

kl̄k

x′

x

(
δ(lk,rj+1) − δ(lk,rj)

)
. (3.31)

Define S(lk,ls;rj), S(lk,ls;li) and S(lk,ls;lΣ) as in Table 3.4. From (3.31), we have

dS(lk,ls;rj)

dy
=

D(lk,rj)

kl̄k
− D(ls,rj)

sl̄s
− j

x′

x

(
S(lk,ls;rj+1) − S(lk,ls;rj)

)
, (3.32)
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for k, s ∈ L and j ∈ R̄. From this equation, we see that we obtain S(lk,ls;rj) if the function

S(lk,ls;rj+1) is known. Moreover, we see that we obtain S(lk,ls;rdc−1) if the function S(lk,ls;rΣ) is

known.

Finally, we consider S(lk,ls;rΣ). From the sum of (3.32) over all j ∈ R̄, we obtain

dS(lk,ls;rΣ)

dy
=

D(lk,rΣ)

kl̄k
− D(ls,rΣ)

sl̄s
− (dc − 1)

x′

x
S(lk,ls;lΣ) + dc

x′

x
S(lk,ls;rΣ). (3.33)

Since this equation is a first order of differential equation, we are able to solve this equation. we

will derive S(lk,ls;rΣ) in Section 3.4.2.

Proof of (3.24) Since (3.30) is a first order differential equation, it is solved as follows1:

A(lΣ,rΣ) = xdc

∫
1

xdc

[∑
k∈L

D(lk,rΣ)

k
− (dc − 1)

x′

x

∑
k∈L

δ(lk,lΣ)

k

]
dy + ClΣ,rΣxdc

= εε̃

(
x′

x
GΣ − 1

)∑
k∈L

λk

k

(
yk − 1

)
+ ε̃xy + ClΣ,rΣxdc ,

with a constant ClΣ,rΣ which is derived from the initial conditions. From the initial conditions,

we see that

A(lΣ,rΣ)(1) = εε̃
(
1− εdc−1ρdcdc

)
.

From this equation, we determine ClΣ,rΣ = −dcρdc ε̃. Thus, we find

A(lΣ,rΣ) = εε̃

(
x′

x
GΣ − 1

)∑
k∈L

λk

k

(
yk − 1

)
− ε̃xGΣ.

Hence, we have (3.24).

Proof of (3.25) Since (3.29) is a first order differential equation, the solution of (3.29) is

A(lΣ,rj) = xj

∫
1
xj

(∑
k∈L

D(lk,rj)

k
− j

x′

x
A(lΣ,rj+1)

)
dy + ClΣ,rj x

j , (3.34)

where ClΣ,rj is a constant derived from the initial conditions.

We solve (3.34) by mathematical induction for j ∈ R̄ \ {1}. Firstly, we derive A(lΣ,rdc−1).

Using (3.4), (3.24) and the definition of A(lΣ,rdc ) and A(lΣ,rΣ), we have

A(lΣ,rdc ) =
∑
i∈L

δ(li,lΣ) − δ(li,rΣ)

i
=
∑
i∈L

δ(li,lΣ)

i
−A(lΣ,rΣ) =εε̃

x′

x
Gdc

∑
i∈L

λi

i
(yi − 1)− ε̃xGdc .

(3.35)

1In a way similar to the derivation of A(lΣ,rdc ) we perform this calculation in Section 3.4.2. More precisely,
we use integration by parts to integrate (3.30).
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Note that for j ∈ R̄ \ {1}

∑
k∈L

D(lk,rj)

k
= ε̃x′Gj + εε̃

x′′

x
Gj

∑
i∈L

λi

i

(
yi − 1

)
− 2εε̃

(x′)2

x2
Gj

∑
i∈L

λi

i

(
yi − 1

)
. (3.36)

The combination of (3.34), (3.35) and (3.36) gives

A(lΣ,rdc−1) = xdc−1

∫
1

xdc−1

∑
k∈L

D(lk,rdc−1)

k
dy−xdc−1

∫
x′

xdc
(dc − 1)A(lΣ,rdc )dy+ClΣ,rdc

xdc−1

=xdc−1

∫
Gdc−1

xdc−1

{
ε̃x′ − 2εε̃

(x′)2

x2

∑
i∈L

λi

i

(
yi − 1

)}
dy

+ xdc−1

∫
εε̃

x′′

xdc
Gdc−1

∑
i∈L

λi

i

(
yi − 1

)
dy

− xdc−1

∫
εε̃(dc − 1)

(x′)2

xdc+1
Gdc

∑
i∈L

λi

i

(
yi − 1

)
dy

+ xdc−1

∫
ε̃(dc − 1)

x′

xdc−1
Gdcdy + ClΣ,rdc−1x

dc−1. (3.37)

Using integration by parts, the second term of (3.37) is written as follows:

xdc−1

∫
εε̃

x′′

xdc
Gdc−1

∑
i∈L

λi

i

(
yi − 1

)
dy

= εε̃
x′

x
Gdc−1

∑
i∈L

λi

i

(
yi − 1

)
− xdc−1

∫
εε̃

{
Gdc−1

xdc

∑
i∈L

λi

i

(
yi − 1

)}′

x′dy.

Hence, we have

xdc−1

∫
εε̃

x′′

xdc
Gdc−1

∑
i∈L

λi

i

(
yi − 1

)
dy + xdc−1

∫
εε̃

{
Gdc−1

xdc

∑
i∈L

λi

i

(
yi − 1

)}′

x′dy

= εε̃
x′

x
Gdc−1

∑
i∈L

λi

i

(
yi − 1

)
. (3.38)

Since G′
j = −j x′

x Gj+1 + (j − 1)x′

x Gj for j ∈ R̄ \ {1}, the second term of left hand side of (3.38)

are transformed as follows:

xdc−1

∫
εε̃

{
Gdc−1

xdc

∑
i∈L

λi

i

(
yi − 1

)}′

x′dy

= xdc−1

∫
Gdc−1

xdc−1

{
ε̃x′ − 2εε̃

(x′)2

x2

∑
i∈L

λi

i

(
yi − 1

)}
dy

− xdc−1

∫
εε̃(dc − 1)

(x′)2

xdc+1
Gdc

∑
i∈L

λi

i

(
yi − 1

)
dy.

The first and second terms of this equation coincide with the first and third term of (3.37),
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respectively. In other words, the sum of the first three terms of (3.37) is equal to the right hand

side of (3.38). The fourth term of (3.37) is transformed as follows:∫
1

xdc−1
ε̃(dc − 1)x′Gdcdy = −ε̃

1
xdc−2

Gdc−1.

Thus, we obtain

A(lΣ,rdc−1) = εε̃
x′

x
Gdc−1

∑
i∈L

λi

i

(
yi − 1

)
− ε̃xGdc−1 + ClΣ,rdc−1x

dc−1.

The initial conditions give

A(lΣ,rdc−1)(1) = −εε̃Gj(1).

Hence, we get ClΣ,rdc−1 = 0. Thus, we show that A(lΣ,rdc−1) fulfills (3.25). Now, we consider the

induction step. In other words, we show that if A(lΣ,rj+1) fulfills (3.25), then A(lΣ,rj) also fulfills

(3.25). Using the induction hypothesis, the first term of (3.34) is written as follows:

xj

∫
1
xj

(∑
k∈L

D(lk,rj)

k
− j

x′

x
A(lΣ,rj+1)

)
dy

= xj

∫
1
xj

{
ε̃x′Gj − 2εε̃

(x′)2

x2
Gj

∑
i∈L

λi

i

(
yi − 1

)}
dy + xj

∫
εε̃

x′′

xj+1
Gj

∑
i∈L

λi

i

(
yi − 1

)
dy

− xj

∫
εε̃j

(x′)2

xj+2
Gj+1

∑
i∈L

λi

i

(
yi − 1

)
dy + xj

∫
ε̃j

x′

xj
Gj+1dy

= εε̃
x′

x
Gj

∑
i∈L

λi

i

(
yi − 1

)
− ε̃xGj .

Here, the last step is derived from a similar way to A(lΣ,rdc−1). Hence, we get

A(lΣ,rj) = εε̃
x′

x
Gj

∑
i∈L

λi

i

(
yi − 1

)
− ε̃xGj + ClΣ,rj x

j .

From the initial conditions, we have

A(lΣ,rj)(1) = −εε̃Gj(1).

Hence, we have ClΣ,rj = 0. Thus, we find

A(lΣ,rj) = εε̃
x′

x
Gj

∑
i∈L

λi

i

(
yi − 1

)
− ε̃xGj .

This leads to (3.25) for j ∈ R̄ \ {1}.
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Next, we consider A(lΣ,r1). Since A(lΣ,r1) = A(lΣ,rΣ) −
∑dc−1

j=2 A(lΣ,rj), we have

A(lΣ,r1) = εε̃

(
x′

x
G1 − 1

)∑
i∈L

λi

i

(
yi − 1

)
− ε̃xG1.

Hence, we obtain (3.25).

Proof of (3.26) Since (3.33) is a first order differential equation, it is solved as follows:

S(lk,ls;rΣ) = xdc

∫
1

xdc

[
D(lk,rΣ)

kl̄k
− D(ls,rΣ)

sl̄s
− (dc − 1)

x′

x
S(lk,ls;lΣ)

]
dy + Clk,ls;rΣxdc .

Note that

D(lk,rΣ)

kl̄k
− D(ls,rΣ)

sl̄s
− (dc − 1)

x′

x
S(lk,ls;lΣ) = K(lk,rΣ) −K(ls,rΣ),

where

K(lk,rΣ) = εGΣ

[
−2

x′

x
yk−1 + (k − 1)yk−2 +

2(x′)2 − x′′x

x2

yk − 1
k

]
+ ε(dc − 1)

x′

x

(
yk − x′y + x

x

yk − 1
k

)
.

By using integration by parts, we have

xdc

∫
1

xdc
K(lk,rΣ)dy = −ε

(
x′

x
GΣ − 1

)
yk − 1

k
+ εGΣyk−1.

Thus, we have

S(lk,ls;rΣ) =− ε

(
x′

x
GΣ − 1

)(
yk − 1

k
− ys − 1

s

)
+ εGΣ

(
yk−1 − ys−1

)
+ Clk,ls;rΣxdc .

The initial covariance leads S(li,ls;rΣ)(1) = 0 and Clk,ls;rΣ = 0. Hence (3.26) holds.

Proof of (3.27) In a way similar to Section 3.4.2, i.e., by mathematical induction for j ∈ R̄\{1}
and S(lk,ls;r1) = S(lk,ls;rΣ) −

∑dc−1
i=2 S(lk,ls;ri), we obtain (3.27). (Q.E.D.)

Proof of (3.5)

From definitions of S(lk,ls;rj) and A(lΣ,rj), we see that

δ(ls,rj) =
sl̄s
e

(
A(lΣ,rj) −

∑
k∈L

l̄kS(lk,ls;rj)

)

=
[
sl̄s
e

F − εl̄s(ys − 1)
](

x′

x
Gj − I{j=1}

)
− sl̄s

e
Gj

(
F ′ + x

2
− εxys

)
.

Thus, we obtain (3.5).
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Table 3.5: Definitions of intermediate variables used in Section 3.4.3.

δ(rj ,rΣ) :=
∑

k∈R̄ δ(rj ,rk) j ∈ R̄

δ(rΣ,rΣ) :=
∑

j∈R̄ δ(rj ,rΣ)

δ(rdc ,rj) := δ(lΣ,rj) − δ(rΣ,rj) j ∈ R̄

D(ri,rj) :=
∑

k∈L y−2(2a− k − 1)
(
δ(lk,rj)Gi + δ(lk,ri)Gj

)
− xf̂ (ri,rj) i, j ∈ R̄

D(ri,rΣ) :=
∑

j∈R̄ D(ri,rj) i ∈ R

D(rΣ,rΣ) :=
∑

i∈R̄ D(ri,rΣ)

3.4.3 Lemma and Proof of (3.6)

In this section, we introduce a lemma to prove (3.6) and we prove (3.6). Table 3.5 gives the

definitions of intermediate variables which are used in this section.

Lemma to Prove (3.6)

Lemma 6 Define δ(rj ,rΣ) and δ(rΣ,rΣ) as in Table 3.5. The intermediate variables are defined

in Table 3.1. Define F and F ′ as in (3.7) and (3.8). For j ∈ R̄, the following equations hold.

δ(rΣ,rΣ) =− F

(
x′

x
GΣ − 1

)2

+ F ′GΣ

(
x′

x
GΣ − 1

)
− ε2G2

Σ

∑
i∈L

λiiy
2i−2 + d2

c r̄
2
dc

− Vdc,dc , (3.39)

δ(rj ,rΣ) =− F

(
x′

x
GΣ − 1

)(
x′

x
Gj − I{j=1}

)
+ F ′Gj

(
x′

x
GΣ − 1

)
− ε2GΣGj

∑
i∈L

λiiy
2i−2

+ dcr̄dcxGj + Vj,dc +
F ′ − x

2
(
Gj − I{j=1}GΣ

)
+ I{j=1}dcr̄dc(e− x). (3.40)

We use (3.39) to prove of the basis for the mathematical induction in the proof of (3.40).

Similarly, we use (3.40) to prove of the basis for the mathematical induction in the proof of

(3.6).

proof: Firstly, we derive the differential equations. We define δ(rdc ,rj) as in Table 3.5. From

(3.12), we get

dδ(ri,rj)

dy
=− x′

x

[
iδ(ri+1,rj) + jδ(rj+1,ri) − (i + j)δ(rj ,ri)

]
+ D(ri,rj), (3.41)

where D(ri,rj) is defined in Table 3.5. From this equation, we have δ(ri,rj) if δ(ri+1,rj) and δ(ri,rj+1)

are known functions. Moreover, to solve δ(ri,rdc−1), we need to obtain δ(ri,rΣ) and δ(ri+1,rdc−1).

From the sum of this equation over all j ∈ R̄, the differential equation for δ(ri,rΣ) is written as
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follows:

dδ(ri,rΣ)

dy
=− x′

x

[
iδ(ri+1,rΣ) − (dc + i)δ(ri,rΣ)

]
− x′

x
(dc − 1)δ(lΣ,ri) + D(ri,rΣ).

Similarly, we see that to solve δ(ri,rΣ), we need to obtain δ(ri+1,rΣ). Moreover, if we obtain

δ(rΣ,rΣ), we are able to solve δ(rdc−1,rΣ). The sum of this equation over all i ∈ R̄ is written as

follows:

dδ(rΣ,rΣ)

dy
=− 2

x′

x

[
(dc − 1)δ(lΣ,rΣ) − dcδ

(rΣ,rΣ)
]
+ D(rΣ,rΣ). (3.42)

Proof of (3.39) The solution of (3.42) is given by

δ(rΣ,rΣ) =x2dc

∫
1

x2dc

[
D(rΣ,rΣ) − 2(dc − 1)

x′

x
δ(lΣ,rΣ)

]
dy + x2dcCrΣ,rΣ

=− F

(
x′

x
GΣ − 1

)2

+ GΣ

(
x′

x
GΣ − 1

)
F ′ − ε2G2

Σ

∑
i∈L

iλiy
2i−2 + CrΣ,rΣx2dc ,

where CrΣ,rΣ is a constant determined from the initial conditions. The initial conditions give

δ(rΣ,rΣ)(1) =εε̃λ′(1)(εdc−1ρdcdc − 1)2 + εε̃− 2εdc ε̃ρdcdc + εdcρdcdc − ε2dcρdcdc

and CrΣ,rΣ = ρ2
dc

d2
c − ρdcdc. Thus, we obtain

δ(rΣ,rΣ) =− F

(
x′

x
GΣ − 1

)2

+ GΣ

(
x′

x
GΣ − 1

)
F ′ − ε2G2

Σ

∑
i∈L

λiiy
2i−2 + d2

cr
2
dc
− Vdc,dc .

This leads to (3.39).

Proof of (3.40) In a way similar to Section 3.4.2, we find (3.40). (Q.E.D.)

Proof of (3.6)

(3.41) is solved as follows:

δ(ri,rj) = xi+j

∫
1

xi+j

(
D(ri,rj) − i

x′

x
δ(ri+1,rj) − j

x′

x
δ(ri,rj+1)

)
dy + Cri,rj x

i+j . (3.43)

This equation is solved by mathematical induction for i, j ∈ R̄\{1}. Firstly, we consider δ(rj ,rdc )

for j ∈ R̄ \ {1}. From (3.5), δ(lΣ,rj) is given by

δ(lΣ,rj) = a
x′

x
FGj − F ′Gj

(
a− 1

2

)
− 1

2
xGj + ε2Gj

∑
s∈L

λssy
2s−1
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Combining with this equation, the definition of δ(rdc ,rj) and (3.40), we have

δ(rj ,rdc ) = δ(lΣ,rj) − δ(rΣ,rj) = GjGdc

[
− (x′)2

x2
F +

x′

x
F ′ − ε2

∑
s∈L

λssy
2s−2 + x2

]
− Vj,dc ,

for j ∈ R̄ \ {1}. Hence, in the case for δ(rdc−1,rdc−1), (3.43) is transformed to

δ(rdc−1,rdc−1) = x2dc−2

∫
1

x2dc−2
D(rdc−1,rdc−1)dy − 2(dc − 1)x2dc−2

∫
x′

x2dc−1
δ(rdc ,rdc−1)dy

+ Crdc−1,rdc−1x
2dc−2

= G2
dc−1

[
− (x′)2

x2
F +

x′

x
F ′ − ε2

∑
s∈L

λssy
2s−2 + x2

]
− Vdc−1,dc−1

+ (dc − 1)r̄dc−1 + Crdc−1,rdc−1x
2dc−2.

The initial condition gives Crdc−1,rdc−1 = 0. Thus, we see that δ(rdc−1,rdc−1) fulfills (3.6). We

show that if all the elements in {δ(ri,rj) | i, j ∈ R̄ \ {1}, i + j = k + 1} fulfill (3.6), then all the

elements in {δ(ri,rj) | i, j ∈ R̄ \ {1}, i + j = k} fulfill (3.6). Using the induction hypothesis, we

solve (3.43) as follows:

δ(ri,rj) = GiGj

[
− (x′)2

x2
F +

x′

x
F ′ − ε2

∑
s∈L

λssy
2s−2 + x2

]
− Vi,j

+ I{i=j}i
∑
s∈R

ρs

(
s− 1
i− 1

)[
xix̃s−i −

(
s− i

i

)
xi(−x)i

]
+ Cri,rj x

i+j .

The constant Cri,rj is derived from the initial condition and given by

Cri,rj = I{i=j}i
∑
s∈R

ρs

(
s− 1
i− 1

)(
s− i

i

)
(−1)i.

Thus, we have (3.6) for i, j ∈ R̄ \ {1}.
Since δ(ri,r1) = δ(ri,rΣ) −

∑dc−1
j=2 δ(ri,rj), we show that δ(ri,r1) fulfills (3.6) for i ∈ R̄. Hence

we obtain (3.6).

3.5 Summary

In this chapter, we have analytically solved the covariance evolution for irregular LDPC code

ensembles. We have also obtained the slope scaling parameter without assumptions.
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Chapter 4

Analysis of Error Floors of Non-Binary

LDPC Codes over Binary Erasure

Channels

In this chapter, we investigate the error floors of the non-binary LDPC codes transmitted over

the BEC under BP decoding. We propose a method to improve the decoding erasure rates in the

error floors by optimizing labels in zigzag cycles in the Tanner graphs of codes. Furthermore,

we give lower bounds on the bit and the symbol erasure rates in the error floors. The simulation

results show that the presented lower bounds are tight for the codes designed by the proposed

method.

4.1 Introduction

The error floors of non-binary LDPC codes decoded by the BP decoder are mainly caused by

nonzero codewords or stopping constellations of small weight. We focus on nonzero codewords

at first. A zigzag cycle is a cycle such that the degrees of all the variable nodes in the cycle are

two. A zigzag cycle of weight w consists of w variable nodes of degree two. It is known that the

set of variable nodes in a zigzag cycle forms a stopping set. For the binary LDPC codes, small

zigzag cycles always yield nonzero codewords which result in serious degradation of the decoding

performance. On the other hand, zigzag cycles in the non-binary codes do not always yield

nonzero codewords. Let H
(w)
q denote the submatrix over Fq corresponding to a zigzag cycle of

weight w with labels h1,1, h1,2, . . . , hw,w, hw,1 in the Tanner graph. For example, the submatrix

H
(4)
q is written as

H(4)
q =


h1,1 h1,2 0 0

0 h2,2 h2,3 0

0 0 h3,3 h3,4

h4,1 0 0 h4,4

 .
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To simplify notation, we define hw,w+1 := hw,1. The zigzag cycle corresponding to H
(w)
q yields

nonzero codeword iff H
(w)
q is singular, i.e.,

detH(w)
q =

w∏
i=1

hi,i +
w∏

i=1

hi,i+1 = 0,

which is equivalent to

χ :=
w∏

i=1

h−1
i,i hi+1,i = 1.

It can be seen that zigzag cycles in the Tanner graphs for the binary LDPC codes always yield

nonzero codewords since detH
(w)
2 = 0. On the other hand, for the non-binary case, zigzag

cycles in the Tanner graphs do not yield nonzero codewords if the corresponding submatrices

are nonsingular.

To lower the error floors of codes under maximum likelihood decoding, Poulliat et al. pro-

posed cycle cancellation [27]. The cycle cancellation is a method to design the edge labels in

zigzag cycles so that the corresponding submatrices are nonsingular. We see that from the sim-

ulation result [27] the resulting codes have lower error floors under BP decoding. However, it

is found in our analyses that some zigzag cycles, even if their submatrices are nonsingular, can

cause decoding failures under BP decoding over the BEC, i.e., some zigzag cycles yield stopping

constellations.

In this chapter, we analyze nonsingular zigzag cycles which cause the decoding failures under

BP decoding. We clarify that the condition for successful decoding of zigzag cycles over the BEC

depends on the parameter χ. More precisely, if the parameter χ is not a nonzero element of

proper subfields of Fq, the zigzag cycles do not yield stopping constellations. Based on this fact,

we propose a design method of selecting labels so as to eliminate small zigzag cycles which yield

stopping constellations.

For the binary LDPC code ensembles over the BEC, a closed-form expression for the bit

erasure rate in the error floors was given in [5, p. 155]. However, for the non-binary LDPC code

ensembles, no closed-form expressions or bounds for the bit and the symbol erasure rates in the

error floors have been given. In this chapter, we give lower bounds on the bit and the symbol

erasure rates in the error floors for the non-binary LDPC code ensembles. More precisely, those

lower bounds are derived from the decoding erasures caused by the zigzag cycles. Furthermore,

the simulation results show that the lower bounds on the bit and the symbol erasure rates are

tight for the expurgated ensemble constructed by our proposed method over the BEC.

This chapter is organized as follows. In Section 4.2, we investigate BP decoding of zigzag

cycles over the BEC and propose the improved cycle cancellation. In Section 4.3, we give lower

bounds on the bit and the symbol erasure rates in the error floors for expurgated ensembles.
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Figure 4.1: A zigzag cycle of weight w with labels h1,1, h2,1, . . . , hw,w, hw,1.

4.2 Zigzag Cycle Code Analysis

A zigzag cycle is a cycle such that the degrees of all the variable nodes in the cycle are two. The

zigzag cycle code is defined by a Tanner graph which forms a single zigzag cycle as shown in

Fig. 4.1. In this section, we investigate the zigzag cycle codes to clarify a condition for decoding

failures on the zigzag cycles in Tanner graphs. We also show the decoding performance for zigzag

cycle codes under BP decoding.

4.2.1 Condition for Successful Decoding

In the following theorem, we clarify a necessary condition for successful decoding of the zigzag

cycle codes over the BEC by the BP decoder.

Theorem 2 Consider zigzag cycle codes of length w with labels h1,1, h1,2, . . . , hw,w, hw,1 ∈
F2m \ {0} over the BEC. Let α be the primitive element of F2m . Define

H∗
m :=

∪
r>0:r|m,r 6=m

{
αi(2m−1)/(2r−1) | i = 0, 1, . . . , 2r − 2

}
. (4.1)

All the symbols in a zigzag cycle code are correct unless all the bits are erased, if

w∏
i=1

h−1
i,i+1hi,i = χ /∈ H∗

m.

Specifically, {1} = H∗
m ⊆ F2m for a prime m.

The proof of Theorem 2 shall be shown in Appendix 4.A. Note that {αi(2m−1)/(2r−1) | i =

0, 1, . . . , 2r−2} forms the set of the nonzero elements of the proper subfield of order 2r for r | m.

In other words, H∗
m consists of the nonzero elements of the proper subfields of F2m .

We refer to χ as the cycle parameter of the zigzag cycle code. Theorem 2 shows that the

condition of successful decoding under BP decoding for the zigzag cycle codes over the BEC

depends on the cycle parameter χ. In Table 4.1, we list the cycle parameters in H∗
m ⊆ F2m for

m = 4,6,8 and 9. It follows from Theorem 2 that it is desired to avoid the zigzag cycle codes
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Table 4.1: The elements of H∗
m over F2m for m = 4, 6, 8, 9.

Field The elements of H∗
m

F24 1, α5, α10

F26 1, α9, α18, α21, α27, α36, α42, α45, α54

F28 1, α17, α34, α51, α68, α85, α102, α119, α136, α153, α170, α187, α204, α221, α238

F29 1, α73, α146, α219, α292, α365, α438
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Figure 4.2: The block erasure rates for zigzag cycle codes with the cycle parameter χ =
1, α85, α17, α128 over the BEC under BP decoding. The zigzag cycle codes are of weight 6
over F28 . Let ε be the channel erasure probability. The solid curve shows the theoretical block
erasure rate ε48 of zigzag cycle codes with the cycle parameter χ /∈ H∗

8.

with the cycle parameter χ ∈ H∗
m, since those codes can cause decoding failures even if not all

the bits are erased.

We propose an improved cycle cancellation to get lower error floors. The improved cycle

cancellation is a method to design the labels in Tanner graphs so that zigzag cycles of small

weight satisfy χ 6∈ H∗
m. The zigzag cycles designed by the improved cycle cancellation are

successfully decoded under BP decoding unless all the bits are erased. Hence, zigzag cycles

designed by the improved cycle cancellation recover more erasures than those designed by the

cycle cancellation [27].

We compare the block erasure rates of zigzag cycle codes designed by the improved cycle

cancellation with that of zigzag cycle codes satisfying χ ∈ H∗
m in Section 4.2.2.
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Figure 4.3: The block erasure rates for zigzag cycle codes over the BEC with channel erasure
probability 0.7 under BP decoding. The zigzag cycle codes are weight 3 over F26 . We see that
the zigzag cycle codes with the cycle parameter χ 6∈ H∗

6 exhibit good decoding performance,
where H∗

6 = {1, α9, α18, α21, α27, α36, α42, α45, α54}.

4.2.2 Simulation Results

Figure 4.2 shows the block erasure rates of zigzag cycle codes over the BEC under BP decoding.

Each curve of χ = αj in Fig. 4.2 shows the block erasure rates of zigzag cycle codes of weight 6

over F28 with the cycle parameter χ = 1, α17, α85 ∈ H∗
8. The circles in Fig. 4.2 show the block

erasure rate of zigzag cycles with the cycle parameter χ = α128 6∈ H∗
8.

The solid curve in Fig. 4.2 shows the theoretical block erasure rate of zigzag cycle codes

with the cycle parameter χ 6∈ H∗
8. A zigzag cycle code is recoverable if all the symbols in

the zigzag cycle code are correct by the BP decoder. The zigzag cycle codes with the cycle

parameter χ 6∈ H∗
8 are recoverable unless all the bits are erased. All the bits are erased with

probability ε48 for the BEC with channel erasure probability ε since the bit code length is 6

symbols or equivalently 6×8=48 bits. Hence, the theoretical block erasure rate of zigzag cycle

codes designed by the improved cycle cancellation is given by ε48.

The cycle cancellation avoids only the zigzag cycles with the cycle parameter χ = 1. In other

words, the cycle cancellation cannot avoid the zigzag cycles with the cycle parameter χ = α17

and χ = α85. On the other hand, the improved cycle cancellation avoids the zigzag cycles with

the cycle parameter not only χ = 1 but also χ = α17 and χ = α85 since 1, α17, α85 ∈ H∗
8.

The smallest stopping state is defined in Appendix 4.A.3. The smallest stopping state con-

taining 1 for χ = α85 is given by {0, 1, α85, α170}. Then, the cardinality of this stopping state

is 4. On the other hand, the smallest stopping state containing 1 for χ = α17 is given by

{0} ∪ {α17i | i = 0, 1, . . . , 14}. Then, the cardinality of this stopping state is 16. We see that

from Fig. 4.2 the block erasure rate increases as the cardinality of the smallest stopping state

decreases.

Figure 4.3 shows the block erasure rates of zigzag cycle codes over the BEC with channel
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erasure probability 0.7 under BP decoding. The zigzag cycle codes are weight 3 over F26 . From

Fig. 4.3, we see that the zigzag cycle codes with the cycle parameter χ 6∈ H∗
6 exhibit good

decoding performance.

4.3 Error Floor Analysis

From Theorem 2, we see that no zigzag cycles designed by the improved cycle cancellation are

recoverable iff all the bits in the zigzag cycles are erased. From Appendix 4.A.2, we see that

all the zigzag cycles are not recoverable if all the bits are erased. By using this result, in this

section, we give lower bounds on the bit and the symbol erasure rates under BP decoding for

an expurgated ensembles. More precisely, those lower bounds are derived from the decoding

erasures caused by the zigzag cycles. Simulation results show that those lower bounds are tight

bounds on the bit and the symbol erasure rates in the error floors for the expurgated ensembles

designed by our proposed method.

4.3.1 Code Ensemble

Since all the neighbors of the set Z of the variable nodes in a zigzag cycle are connected to Z
exactly twice, the set Z of the variable nodes in a zigzag cycle forms a stopping set.

To analyze the bit and the symbol erasure rates in the error floors of the non-binary LDPC

codes, we consider the following expurgated ensemble.

Definition 3 Recall that EGF(N, F2m , λ, ρ) denote the non-binary LDPC code ensemble

over F2m . Let wg ∈ N \ {1} be an expurgation parameter. The expurgated ensem-

ble ELDPC(N, F2m , λ, ρ, wg) consists of the subset of codes in EGF(N, F2m , λ, ρ) which con-

tain no stopping sets of size in {1, . . . , wg − 1}. Note that the expurgated ensemble

ELDPC(N, F2m , λ, ρ, 1) is equivalent to EGF(N, F2m , λ, ρ). Let wc ∈ N be an expurgation

parameter for labeling in the Tanner graph, where wg < wc. Define expurgated ensemble

ELDPC(N, F2m , λ, ρ, wg, wc,H) as the subset of codes in ELDPC(N, F2m , λ, ρ, wg) which con-

tain no zigzag cycles of weight in {wg, . . . , wc − 1} with the cycle parameter χ ∈ H.

Since the sets of the variable nodes in zigzag cycles form stopping sets, the codes in the expur-

gated ensemble ELDPC(N, m, λ, ρ, wg) contain no zigzag cycles of weight in {1, 2, . . . , wg − 1}.

Example 8 The codes in the expurgated ensemble ELDPC(N, F2m , λ, ρ, wg, wc, {1}) contain

no stopping sets of size in {1, 2, . . . , wg − 1} and no zigzag cycles with the cycle param-

eter χ = 1 of weight in {wg, . . . , wc − 1}. In other words, the expurgated ensemble

ELDPC(N, F2m , λ, ρ, wg, wc, {1}) is constructed by the cycle cancellation. Since the sets of the

variable nodes in zigzag cycles form stopping sets, the codes in ELDPC(N, F2m , λ, ρ, wg, wc, {1})
contain no zigzag cycles of weight in {1, 2, . . . , wg − 1}.

Recall that H∗
m is defined as in (4.1). Similarly, the expurgated ensemble

ELDPC(N, F2m , λ, ρ, wg, wc,H∗
m) is constructed by the improved cycle cancellation.
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4.3.2 Analysis of Error Floors

The following theorem gives lower bounds on the bit and the symbol erasure rates under BP

decoding for the expurgated ensemble ELDPC(N, F2m , λ, ρ, wg, wc,H∗
m).

Theorem 3 Let Pb(N, F2m , λ, ρ, wg, wc,H∗
m, ε) and Ps(N, F2m , λ, ρ, wg, wc,H∗

m, ε) be

the bit and the symbol erasure rates, respectively, for the expurgated ensemble

ELDPC(N, F2m , λ, ρ, wg, wc,H∗
m) by the BP decoder over the BEC with channel erasure

probability ε. Define µ := λ′(0)ρ′(1) and

ε∗m :=

1, µ ≤ 1,

µ− 1
m , µ > 1.

(4.2)

For sufficiently large N , the bit and the symbol erasure rates for µ > 0 and ε < ε∗m are bounded

by

Pb(N, F2m , λ, ρ, wg, wc,H∗
m, ε) ≥ 1

2N

(µεm)wg

1− µεm
+ o

(
1
N

)
, (4.3)

Ps(N, F2m , λ, ρ, wg, wc,H∗
m, ε) ≥ 1

2N

(µεm)wg

1− µεm
+ o

(
1
N

)
. (4.4)

proof : First, we will consider the symbol erasure rate. The symbol erasure rate is repre-

sented by the sum of two contributions, the symbol erasures caused by the stopping constel-

lations from the zigzag cycles and from the stopping sets other than the zigzag cycles1. Let

P̃z(N, F2m , λ, ρ, wg, wc,H∗
m, ε) and P̃ss(N, F2m , λ, ρ, wg, wc,H∗

m, ε) be the contributions of the

zigzag cycles and of the stopping sets other than the zigzag cycles, respectively, for the sym-

bol erasure rates of the ensemble ELDPC(N, F2m , λ, ρ, wg, wc,H∗
m) over the BEC with channel

erasure probability ε. Then, we have

Ps(N, F2m ,λ, ρ, wg, wc,H∗
m, ε)

=P̃z(N, F2m , λ, ρ, wg, wc,H∗
m, ε) + P̃ss(N, F2m , λ, ρ, wg, wc,H∗

m, ε)

≥P̃z(N, F2m , λ, ρ, wg, wc,H∗
m, ε).

In words, the symbol erasure rate is lower bounded by the contribution of the zigzag cycles for

the symbol erasure rate.

We will consider P̃z(N, F2m , λ, ρ, wg, wc,H∗
m, ε). Let P̃1(N, w, F2m , λ, ρ, wg, wc,H∗

m, ε)

be the symbol erasure rate caused by the stopping constellations from zigzag cycles

of weight w under BP decoding over the BEC with channel erasure probability ε for

ELDPC(N, F2m , λ, ρ, wg, wc,H∗
m). From Definition 3, codes in the expurgated ensemble

ELDPC(N, F2m , λ, ρ, wg, wc,H∗
m) contain no zigzag cycles of weight in {1, 2, . . . , wg−1}. Hence,

we consider the symbol erasure rate caused by stopping constellation from zigzag cycles of weight
1For a fixed Tanner graph and a given stopping set S, there exist at least one stopping constellation

{Ev}v∈[1,N ]} such that the set of variable nodes in {v | Ev 6= {0}} is S from Lemma 3. In this proof, we
refer to those stopping constellations as stopping constellations from stopping set S.
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at least wg. If we fix a finite W and let N tend to infinity, the zigzag cycles of weight at most

W become asymptotically non-overlapping with high probability [5, p. 155]. Thus, for a fixed

W and sufficiently large N we have

P̃z(N, F2m , λ, ρ, wg, wc,H∗
m, ε) ≥

W∑
w=wg

P̃1(N,w, F2m , λ, ρ, wg, wc,H∗
m, ε).

In Section 4.2.2, zigzag cycle codes designed by the improved cycle cancellation can not be

recovered iff all the bits are erased. From this result, we see that zigzag cycles with the cycle

parameter χ 6∈ H∗
m in a Tanner graph can not be recovered iff all the bits in the cycle are

erased, which happens with probability εmw. In other words, symbols in zigzag cycles of weight

w ∈ {wg, . . . , wc−1} are not recovered with probability εmw. From Appendix 4.A.2, no symbols

in the zigzag cycle of weight w with the cycle parameter χ ∈ H∗
m are correct if all the bits in

the zigzag cycle are erased. Hence, all the zigzag cycles are not recovered with probability at

least εmw. In other words, the zigzag cycles of weight w ∈ {wc, . . . ,W} are not recovered with

probability at least εmw. By [5, C. 37] for a fixed W , the expectation of the number of zigzag

cycles of weight w ≤W in the expurgated ensemble ELDPC(N, F2m , λ, ρ, sg, sc,H∗
m) is given by

µw

2w
,

for sufficiently large N . From Appendix 4.A.3, if all the bits in the zigzag cycle are erased,

no symbols in zigzag cycle are correct. Hence, iff all the bits in the zigzag cycle of weight

w are erased, the zigzag cycle causes w symbol erasures. Since w symbols are in the zigzag

cycles of weight w, the zigzag cycles of weight w cause a symbol erasure rate of w/N if the

bits in the zigzag cycles of weight w are erased. Therefore, for sufficiently large N , we have for

w ∈ {wg, . . . , wc − 1},

P̃1(N,w, F2m , λ, ρ, wg, wc,H∗
m, ε) =

1
2N

µwεmw + o

(
1
N

)
,

and for w ∈ {wc, . . . , W}

P̃1(N,w, F2m , λ, ρ, wg, wc,H∗
m, ε) ≥ 1

2N
µwεmw + o

(
1
N

)
.

Thus, we have

P̃ (N, F2m , λ, ρ, wg, wc,H∗
m, ε) ≥ 1

2N

W∑
w=wg

µwεmw + o

(
1
N

)
.

If ε < ε∗m, for sufficiently large N and W , we see that

P̃ (N, F2m , λ, ρ, wg, wc,H∗
m, ε) ≥ 1

2N

(µεm)sg

1− µεw
+ o

(
1
N

)
.
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Hence, for sufficiently large N , the symbol decoding erasure rate is bounded by

Ps(N, F2m , λ, ρ,g , wc,H∗
m, ε) ≥ 1

2N

(µεm)wg

1− µεw
+ o

(
1
N

)
.

We will consider the bit erasure rate. The proof is similar to the proof for the symbol erasure

rate. From Appendix 4.A.3, if all the bits in the zigzag cycle are erased, all the states of the

variable nodes in the zigzag cycle are equal to F2m . Hence, if all the bits in the zigzag cycle are

erased, no bits in the zigzag cycle are correct. Note that the bit code length is Nm. Since mw

bits are in the zigzag cycles of weight w, the zigzag cycles of weight w cause a bit erasure rate of

w/N if all the bits in the zigzag cycles of weight w are erased. Thus, the bit erasure rate caused

by zigzag cycles is lower bounded by

1
2N

W∑
w=wg

µwεmw + o

(
1
N

)
.

By using this result, we obtain a lower bound on the bit erasure rate for the expurgated ensemble

similarly. (Q.E.D.)

Discussion 5 Since the symbol and the bit erasure rates of all the zigzag cycles of weight w are

lower bounded by εmw, the bit and the symbol erasure rates do not depend on the parameter wc

and the subset H∗
m. Hence, (4.3) and (4.4) do not depend on the parameter wc and the subset

H∗
m.

4.3.3 Simulation Results

Figure 4.4 compares the symbol erasure rate for the expurgated ensemble constructed by the im-

proved cycle cancellation ELDPC(315, F24 , x, x2, 1, 8,H∗
4) with that for the expurgated ensemble

constructed by the cycle cancellation ELDPC(315, F24 , x, x2, 1, 8, {1}), where H∗
4 = {1, α5, α10}.

It can be seen that our proposed codes exhibit a better decoding performance than codes de-

signed by the cycle cancellation. Figure 4.4 also shows the lower bound on the symbol erasure

rate which is given by (4.4). We see that (4.4) is a tight lower bound on the symbol erasure rate

for the expurgated ensemble ELDPC(315, F24 , x, x2, 1, 8,H4
∗) in the error floor.

Figure 4.5 compares the symbol erasure rate for the expurgated ensemble constructed by

the improved cycle cancellation ELDPC(600, F24 , x, x2, 2, 12,H∗
4) with that for the expurgated

ensemble constructed by the cycle cancellation ELDPC(600, F24 , x, x2, 2, 12, {1}). The lower

bound on the symbol erasure rate is given by (4.4). This is the case for wg ≥ 2. Figure 4.6

compares the symbol erasure rate for the expurgated ensemble constructed by the improved cycle

cancellation ELDPC(2000, F24 , λ, ρ, 1, 8,H∗
4) with that for the expurgated ensemble constructed

by the cycle cancellation ELDPC(2000, F24 , λ, ρ, 1, 8, {1}) where λ = 0.5x + 0.5x2 and ρ =

0.5x3 + 0.5x5. The lower bound on the symbol erasure rate is given by (4.4). This is the case

for an irregular non-binary LDPC code ensemble. From Fig. 4.5 and 4.6, we see that (4.4) is

a tight lower bound on the symbol erasure rate of the expurgated ensemble constructed by the

55



10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Sy
m

bo
l e

ra
su

re
 r

at
e

Channel erasure probability

Cycle cancellation
Proposed

Lower bound

Figure 4.4: Comparison of the symbol erasure rate for the expurgated ensem-
ble ELDPC(315, F24 , x, x2, 1, 8,H∗

4) (proposed) with that for the expurgated ensemble
ELDPC(315, F24 , x, x2, 1, 8, {1}) (cycle cancellation). The lower bound is given by (4.4). It
can be seen that our proposed codes exhibit a better decoding performance than the cycle can-
cellation. It can be seen that (4.4) is a tight lower bound on the symbol erasure rate for the
expurgated ensemble ELDPC(315, F24 , x, x2, 1, 8,H∗

4) for small ε.

improved cycle cancellation in the error floor and our proposed codes exhibit a better decoding

performance than codes designed by the cycle cancellation.

Figure 4.7 compares the bit erasure rate for the expurgated ensemble constructed by the im-

proved cycle cancellation ELDPC(315, F24 , x, x2, 1, 8,H∗
4) with that for the expurgated ensemble

constructed by the cycle cancellation ELDPC(315, F24 , x, x2, 1, 8, {1}). It can be seen that our

proposed codes exhibit a better decoding performance than codes designed by the cycle cancel-

lation. Figure 4.7 also shows the lower bound on the bit erasure rate which is given by (4.3).

We see that (4.3) is a tight lower bound on the bit erasure rate for the expurgated ensemble

ELDPC(315, F24 , x, x2, 1, 8,H∗
4) in the error floor.

4.3.4 Monotonicity of Error Floor

In Section 4.3.3, we see that the lower bound given by (4.3) is a tight lower bound on the

bit erasure rate in the error floor for the expurgated ensemble constructed by the improved

cycle cancellation. It is empirically known that the error floors for the non-binary LDPC codes

decrease as the size of Galois field increases [13]. In this subsection, we show the monotonicity

of the error floor by using the lower bound given by (4.3).

Let n be the bit code length, i.e., n = mN . From (4.3), we have

lim
n→∞

nPb(n, F2m , λ, ρ, wg, wc,H∗
m, ε) ≥m

2
(µεm)wg

1− µεm
=: f(m, ε, wg). (4.5)
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Figure 4.5: Comparison of the symbol erasure rate for the expurgated ensem-
ble ELDPC(600, F24 , x, x2, 2, 12,H∗

4) (proposed) with that for the expurgated ensemble
ELDPC(600, F24 , x, x2, 2, 12, {1}) (cycle cancellation). The lower bound is given by (4.4). This
is the case for wg > 1.

The following lemma shows that for a fixed large bit code length, the lower bound on the bit

erasure rate is decreasing in m, i.e., f(m, ε, wg) is decreasing in m.

Lemma 7 Define f(m, ε, wg) as in (4.5). Define ε∗m as in (4.2). Then f(m, ε, wg) > f(m +

1, ε, wg) for µ ≥ 1 and 0 < ε < min{ε∗m, ε∗m+1} = ε∗m.

Proof : From (4.5), we have

f(m, ε, wg)− f(m + 1, ε, wg) =
(µεm)wgg(m, ε, wg)

2(1− µεm+1)(1− µεm)
,

where

g(m, ε, wg) := m(1− µεm+1)− (m + 1)εwg(1− µεm).

For ε < ε∗m, g(m, ε, wg) is increasing in wg. Hence, we have g(m, ε, wg) ≥ g(m, ε, 1). For ε < ε∗m,

g(m, ε, 1) is decreasing in ε. Note that min{ε∗m, ε∗m+1} < µ− 1
m . Thus, we see that for ε < µ− 1

m

and µ ≥ 1

g(m, ε, wg) ≥ g(m, ε, 1) > g(m,µ− 1
m , 1) = m(1− µ− 1

m ) > 0.

Therefore, we have f(m + 1, ε, wg) − f(m, ε, wg) < 0 for µ ≥ 1 and 0 < ε < min{ε∗m, ε∗m+1}.
(Q.E.D)

Figure 4.8 shows curves given by (4.5) for µ = 2, wg = 1 and m = 1, 2, . . . , 9. We see that

the lower bound decreases as the order of the Galois field increases.
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Figure 4.6: Comparison of the symbol erasure rate for the expurgated ensem-
ble ELDPC(2000, F24 , λ, ρ, 1, 8,H∗

4) (proposed) with that for the expurgated ensemble
ELDPC(2000, F24 , λ, ρ, 1, 8, {1}) (cycle cancellation), where λ = 0.5x + 0.5x2 and ρ = 0.5x3 +
0.5x5. The lower bound is given by (4.4). This is the case for an irregular LDPC code ensemble
case.

4.4 Summary

In this chapter, we have proposed a method to improve the error floors for the non-binary LDPC

codes which contain the variable nodes of degree two over the BEC under BP decoding. We

have derived lower bounds on the bit and the symbol erasure rates in the error floors for the

expurgated ensembles under BP decoding. From the simulation results, the lower bounds are

tight for the bit and the symbol erasure rates for the expurgated ensembles constructed by the

proposed method over the BEC under BP decoding.

Appendix 4.A Proof of Theorem 2

In this section, we prove Theorem 2. To prove Theorem 2, we give several lemmas in the following

sections.

4.A.1 Analysis of Stopping Constellation for Zigzag Cycle Codes

Consider zigzag cycle codes of weight w with labels h1,1, h1,2, . . . , hw,w, hw,1 ∈ F2m \ {0} as

depicted in Fig. 4.1. Let E1, . . . , Ew ⊆ F2m be the states of the variable nodes.

Lemma 8 For any zigzag cycles of weight w with labels h1,1, h1,2, . . . , hw,w, hw,1 ∈ F2m \ {0},
an assignment of states {Ei}wi=1 forms a stopping constellation if and only if for i = 1, . . . , w:

Ei = h−1
i,i hi+1,iEi+1, Ei = h−1

i−1,ihi−1,i−1Ei−1,
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Figure 4.7: Comparison of the bit erasure rate for the expurgated ensemble
ELDPC(315, F24 , x, x2, 1, 8,H∗

4) (proposed) with that for the expurgated ensemble
ELDPC(315, F24 , x, x2, 1, 8, {1}) (cycle cancellation). The lower bound is given by (4.3).
It can be seen that our proposed codes exhibit a better decoding performance than the cycle
cancellation. It can be seen that (4.3) is a tight lower bound on the symbol erasure rate for the
expurgated ensemble ELDPC(315, F24 , x, x2, 1, 8,H∗

4) for small ε.

where

E0 := Ew, Ew+1 := E1, h0,0 := hw,w h0,1 := hw,1.

Proof : From the definition of stopping constellation, it holds that for i = 1, . . . , w

Ei ⊆ h−1
i,i hi+1,iEi+1, Ei ⊆ h−1

i−1,ihi−1,i−1Ei−1.

From those equations, we have

E1 ⊆ h−1
1,1h2,1E2 ⊆ h−1

1,1h2,1h
−1
2,2h3,2E3 ⊆ · · · ⊆ χE1. (4.6)

Similarly, we have E1 ⊆ χ−1E1. Note that E1 ⊆ χ−1E1 iff χE1 ⊆ E1, and we have χE1 ⊆ E1 ⊆
χE1. Thus, we have

E1 = χE1. (4.7)

From (4.6) and (4.7), we get E1 = h−1
1,1h2,1E2. Similarly, we have Ei = h−1

i,i hi+1,iEi+1 and

Ei = h−1
i−1,ihi−1,i−1Ei−1 for i = 1, 2, . . . , w. The converse is clear from the definition. (Q.E.D.)
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Figure 4.8: Curves given by (4.5) for µ = 2, wg = 1 and m = 1, 2, . . . , 9.

4.A.2 The Condition of Successful Decoding for Zigzag Cycle Codes

From Lemma 8, for all the stopping constellations {Ei}wi=1 of zigzag cycle codes, we see that Ej

for j = 2, . . . , w depends only on E1, i.e.,

Ej =
j−1∏
i=1

h−1
i,i hi+1,iE1

for j = 2, . . . , w. Hence, in order to clarify the stopping constellation for zigzag cycle codes,

without loss of generality, we may focus on analyzing the state E1. From Lemma 8, we see that

E1 = χE1. A stopping state for χ ∈ F2m \ {0} is defined as a subset E ⊆ F2m such that

E = χE.

Let Eχ denote the set of all the stopping states for χ.

A zigzag cycle code is recoverable if all the symbol in the zigzag cycle code are correct by the

BP decoder. From the definition, it is clear that the assignment of states such that Ei = F2m

for i = 1, 2, . . . , w forms a stopping constellation for any zigzag cycle code of weight w. Note

that F2m is a subset of F2m . Thus, no zigzag cycle codes over the BEC are recoverable if all the

bits are erased, i.e., F2m ∈ Eχ for all χ ∈ F2m \ {0}. More precisely, if all the bits are erased,

no symbols and no bits in the zigzag cycle are correct. Similarly, the assignment of states such

that Ei = {0} for i = 1, 2, . . . , w also forms a stopping constellation for any zigzag cycle code of

weight w, i.e., {0} ∈ Eχ for all χ ∈ F2m \ {0}. Such a stopping constellation corresponds to the

case that all the bits are correct by the BP decoder.

Hence, the zigzag cycle codes with labels h1,1, h1,2, . . . , hw,w, hw,1 are recoverable unless all
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the bits are erased if Eχ = {{0}, F2m}. In other words, whether the zigzag cycle codes with labels

h1,1, h1,2, . . . , hw,w, hw,1 are recoverable unless all the bits are erased, depends only on the cycle

parameter χ =
∏w

i=1 h−1
i,i hi+1,i.

4.A.3 Analysis of Stopping States

In this subsection, we clarify the condition of χ such that Eχ = {{0}, F2m}.
For χ ∈ F2m \ {0}, let E(αi)

χ denote the set of the stopping states containing αi, i.e., αi ∈ E

for all E ∈ E(αi)
χ . The smallest stopping state containing αi for χ, denoted by E

(αi)
χ , is the

stopping state for χ such that E
(αi)
χ ⊆ E for all E ∈ E(αi)

χ and αi ∈ E
(αi)
χ . It is clear E

(αi)
χ

equals

∩
E∈E(αi)

χ

E. (4.8)

Since αi ∈ E for all E ∈ E(αi)
χ , we have αi is in (4.8). We show the closure of (4.8) under the

addition. If γ1, γ2 are in (4.8), γ1, γ2 are in E for all E ∈ E(αi)
χ . Since γ1, γ2 are in E for all

E ∈ E(αi)
χ , γ1 + γ2 is in E for all E ∈ E(αi)

χ . Hence γ1 + γ2 is in (4.8). Obviously (4.8) is a subset

of E for all E ∈ E(αi)
χ . Note that

χ
∩

E∈E(αi)
χ

E =
∩

E∈E(αi)
χ

χE =
∩

E∈E(αi)
χ

E.

Therefore, E
(αi)
χ is the smallest stopping state containing αi for χ.

Next, we show the uniqueness of the smallest stopping state containing αi for χ. Let E∗

be another smallest stopping state for χ containing αi. The existence of a stopping state E∗

contradicts the definition of (4.8), since the intersection of E∗ and (4.8) contains αi and is a

stopping state for χ.

Lemma 9 The smallest stopping state containing α0 = 1 for χ ∈ F2m \ {0} is a subfield of F2m .

Proof : For all E ∈ E(1)
χ , since 1 ∈ E and E = χE, we have χ ∈ E. Hence, we have χ ∈ E

(1)
χ .

Recursively, χj ∈ E
(1)
χ for j = 0, 1, . . . , σ − 1, where σ is the order of χ, i.e, σ is the smallest

positive integer such that χσ = 1. Since E
(1)
χ is closed under the addition, we have

∑σ−1
j=0 ajχ

j ∈
E

(αi)
χ , where a0, a1, . . . , aσ−1 ∈ {0, 1}. Hence, we have

E(1)
χ ⊇ A :=


σ−1∑
j=0

ajχ
j | a0, a1, . . . , aσ−1 ∈ {0, 1}

 .

Note that A = χA and A is closed under the addition. Thus, we have E
(1)
χ = A.

We claim that E
(1)
χ is a subfield of F2m . Obviously, we have the closure of E

(1)
χ under

addition and multiplication. The additive identity is 0 and the multiplicative identity is 1. The

additive inverse for γ ∈ E
(1)
χ is γ. For γ ∈ E

(1)
χ , γ2m−2 is in E

(1)
χ since the closure of E

(1)
χ under
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multiplication. The multiplicative inverse for γ ∈ E
(1)
χ \ {0} is γ2m−2 (Note that γ ∈ F2m \ {0}).

We are able to check that all field axioms are satisfied. Therefore, E
(1)
χ is a subfield of F2m .

(Q.E.D.)

Lemma 10 Define H∗
m as in (4.1). If χ /∈ H∗

m ∪ {0}, it holds that E
(1)
χ = F2m .

Proof : From Lemma 9, E
(1)
χ is a subfield of F2m . Note that the order of proper subfield of F2m

is 2r [28, p. 45], where r is a positive integer such that r | m and r 6= m. We will prove E
(1)
χ is

not equal to any proper subfields of order 2r. Define g := 2m−1
2r−1 . From χ 6∈ H∗

m \ {0}, we have

χ = αig+j , where j ∈ {1, 2, . . . , g − 1}. If χ is a member of the proper subfield of order 2r, then

χ2r − χ = 0 [28, p. 45]. However,

χ2r

− χ = χ(αj(2r−1) − 1) 6= 0.

Hence, χ is not a member of the proper subfield of order 2r. Thus, we have E
(1)
χ is not equal to

the proper subfield of order 2r for any positive integer r such that r | m and r 6= m. Therefore,

we obtain E
(1)
χ = F2m . (Q.E.D.)

Lemma 11 Let Eχ denote the set of stopping states for χ. Define H∗
m as in (4.1). If Eχ \

{{0}, F2m} 6= ∅, then χ ∈ H∗
m.

Proof : Let E be an element of Eχ \ {{0}, F2m}. Note that αiE ∈ Eχ \ {{0}, F2m} for i =

0, 1, . . . , 2m − 2. If E contains αi, then 1 is an element of α−iE ∈ Eχ \ {{0}, F2m}. Hence,

without loss of generality, we assume that E ∈ Eχ \ {{0}, F2m} and 1 is an element of E, i.e.,

E ∈ E(1)
χ . Since E

(1)
χ 6= F2m and χ 6= 0, we have χ ∈ H∗

m from Lemma 10. (Q.E.D.)

Lemma 12 Define H∗
m as in (4.1). If χ ∈ H∗

m then Eχ \ {{0}, F2m} 6= ∅.

Proof : If χ ∈ H∗
m, there exists a positive integer r such that r | m, r 6= m and χ ∈

{αi(2m−1)/(2r−1) | i = 0, 1, . . . , 2r − 2}. Then, a stopping state for χ is written as the following:

E = {0} ∪
{

αj(2m−1)/(2r−1) | j = 0, 1, . . . , 2r − 2
}

,

in fact E = χE and E is a subfield of F2m of order 2r. Hence, we have E ∈ Eχ \ {{0}, F2m} 6= ∅.
(Q.E.D.)

4.A.4 Proof of Theorem 2

Note that {{0}, F2m} ⊆ Eχ for all χ ∈ F2m \ {0}. Hence, we have Eχ = {{0}, F2m} iff Eχ \
{{0}, F2m} = ∅. Define H∗

m as in (4.1). From Lemma 11 and 12, we have that χ 6∈ H∗
m is

a necessary and sufficient condition for Eχ = {{0}, F2m}. From Appendix 4.A.2, we see that

the zigzag cycle codes with labels h1,1, h2,1, . . . , hw,w, hw,1 are recoverable unless all the bits

are erased if Eχ = {{0}, F2m}, where χ =
∏w

i=1 h−1
i,i hi+1,i. Hence, we obtain that the zigzag

cycle codes with labels h1,1, h1,2, . . . , hw,w, hw,1 are recoverable unless all the bits are erased, if

χ 6∈ H∗
m.
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Chapter 5

Analysis of Error Floors of Generalized

Non-Binary LDPC Codes over Binary

and Non-Binary Memoryless Symmetric

Channels

In this chapter, we investigate the error floors of non-binary LDPC codes over GL(m3, F2m4 )

transmitted over the q-MS channels. We provide a necessary and sufficient condition for suc-

cessful decoding of zigzag cycle codes over the q-MS channel by the BP decoder. We consider

an expurgated ensemble of non-binary LDPC codes by using the above necessary and sufficient

condition, and hence exhibit lower error floors. Next, we show lower bounds of the error floors

for the expurgated LDPC code ensembles over the q-MS channels. Moreover, we compare the

decoding error rates in the error floors for non-binary LDPC codes over the general linear group

with those for non-binary LDPC codes over finite field transmitted over the q-MS channel under

BP decoding. In this analysis, we see that the optimized non-binary LDPC codes defined over

general linear group have the same decoding performance in the error floors as those defined

over finite field.

5.1 Introduction

In this chapter, we extend to the results in Chapter 4 to the non-binary LDPC codes defined

over GL(m3, F2m4 ) transmitted over the q-MS channels.

More precisely, we analyze a condition for successful decoding of zigzag cycles under BP

decoding over the q-MS channel. Based on this condition, we propose a design method of selecting

labels so as to eliminate small zigzag cycles which degrade decoding performance. Moreover,

we analyze the error floors of non-binary LDPC codes over the q-MS channel. In other words,

we show lower bounds for the symbol error rates in the error floors of the expurgated LDPC

code ensembles over the q-MS channel. More precisely, those lower bounds are derived from
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the decoding errors caused by the zigzag cycles. Furthermore, simulation results show that the

lower bounds on symbol error rates are tight for the expurgated ensembles constructed by our

proposed method over the q-MS channels.

It is known that the decoding complexity of non-binary LDPC codes over general linear

group GL(m, F2) is larger than that of non-binary LDPC codes over finite field F2m for m ≥ 2.

On the other hand, the decoding error rates in the waterfall region for optimized non-binary

LDPC codes over general linear group is lower than those for optimized non-binary LDPC codes

over finite field [29]. However, no methods to lower the decoding error rates in error floors for

non-binary LDPC codes over general linear group have been proposed. Moreover, the decoding

error rates in the error floor region for optimized non-binary LDPC codes over general linear

group have not been compared with those for optimized non-binary LDPC codes over finite field.

In this chapter, we define non-binary LDPC codes over general linear group GL(m3, F2m4 )

and decoding algorithm to analyze the non-binary LDPC code over both finite field F2m and

general linear group GL(m, F2). We assume the q-MS channels [14] for the generality. We extend

the optimization and analysis method in Chapter 4 to the non-binary LDPC codes over general

linear group transmitted over the q-MS channels. More precisely, firstly, we derive the condition

for successful decoding of zigzag cycle code. Next, we propose a method to lower the decoding

error rates in the error floors for non-binary LDPC code over GL(m3, F2m4 ). Moreover, we

show lower bounds on the symbol error rates in the error floors for non-binary LDPC code over

GL(m3, F2m4 ). Furthermore, some simulation results show that the lower bounds on symbol

error rates in the error floors are tight for the optimized non-binary LDPC codes.

This chapter is organized as follows: In Section 5.2, we propose a method to lower the error

floors by analyzing the zigzag cycles. In Section 5.3, we derive lower bounds for symbol error

rates in the error floors for non-binary LDPC codes.

5.2 Zigzag Cycle Code Analysis

A zigzag cycle is a cycle such that the degrees of all the variable nodes in the cycles are two.

A zigzag cycle of weight w consists of w variable nodes of degree two. The zigzag cycle code is

defined by a Tanner graph which forms a single zigzag cycle. Figure 4.1 shows a zigzag cycle

code of symbol code length w. In this section, we give a condition for successful decoding of the

zigzag cycle codes over the 2m1 -MS channels under BP decoding.

5.2.1 Condition for Successful Decoding

We consider the zigzag cycle code of symbol code length w with labels h1,1, h1,2, . . . , hw,w, hw,1 ∈
GL(m3, F2m4 ) \ {0} as shown in Fig. 4.1. For any m3 ×m3 matrices A1, A2, . . . , Ak, we define∏k

i=1 Ak := A1A2 · · ·Ak. We define χ := h−1
1,1h1,2h

−1
2,2h2,3 · · ·h−1

w,whw,1 ∈ GL(m3, F2m4 ) \ {0}.

Definition 4 Let 〈χ〉 be the cyclic subgroup generated by χ, i.e., 〈χ〉 := {χj | j = 0, 1, 2, . . . }.
The relation ∼ on Fm3

2m4 defined by x ∼ y is an equivalence relation on Fm3
2m4 , if and only if

there exists g ∈ 〈χ〉 such that gx = y. The equivalence class of x ∈ Fm3
2m4 under this relation is
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〈χ〉x = {gx | g ∈ 〈χ〉}, and is called the orbit of x under 〈χ〉. The set of orbits of x ∈ Fm3
2m4 \ {0}

under 〈χ〉 forms a partition of Fm3
2m4 \ {0}, i.e., every element in Fm3

2m4 \ {0} belongs exactly one

of equivalence classes. A set of class representatives Sχ is a subset of Fm3
2m4 \ {0} which contains

exactly one elements from each equivalent class.

The following lemma shows that the decoding error rates depend on a set of class representa-

tives Sχ, i.e., the matrix χ ∈ GL(m3, F2m4 ) \ {0}, for a fixed channel and weight of zigzag cycle

code.

Lemma 13 We consider a zigzag cycle code of symbol code length w labeled by

h1,1, h1,2, . . . , hw,w, hw,1 ∈ GL(m3, F2m4 ) \ {0} transmitted over the 2m1 -MS channel. The ma-

trix χ is given by χ = h−1
1,1h1,2h

−1
2,2h2,3 · · ·h−1

w,whw,1 ∈ GL(m3, F2m4 ) \ {0}. Define ιi = h−1
i,i hi,i+1

for i ∈ [1, w], where hw+1,w = h1,w. Define Sχ as in Definition 4. In the limit of large `, all the

symbols in the zigzag cycle code are eventually correct under BP decoding if and only if for all

x ∈ Sχ,

|〈χ〉x|−1∏
t=0

w∏
s=1

Cs(0) >

|〈χ〉x|−1∏
t=0

w∏
s=1

Cs

((∏w
j=s ιj

)
χtx
)

.

Moreover, in the limit of large `, no symbols in the zigzag cycle code are eventually correct under

BP decoding if and only if there exists x ∈ S̃χ such that

|〈χ〉x|−1∏
t=0

w∏
s=1

Cs(0) ≤
|〈χ〉x|−1∏

t=0

w∏
s=1

Cs

((∏w
j=s ιj

)
χtx
)

The proof of this lemma is in Appendix 5.A.

By Using Lemma 13, we have the following Theorem.

Theorem 4 Define Sχ as in Definition 4. For a fixed channel output, if the zigzag cycle with

the matrix χ such that |Sχ| > 1 is successfully decoded, the zigzag cycle with the matrix χ such

that |Sχ| = 1 is also successfully decoded.

proof: We consider zigzag cycle of symbol code length w. Since the channel output is fixed, the

initial messages Ci for i ∈ [1, w] are also fixed. From Lemma 13, if the zigzag cycle with the

matrix χ such that |Sχ| > 1 is successfully decoded, for all x ∈ Sχ

w∏
k=1

Ck(0)|〈χ〉x| >

|〈χ〉x|−1∏
t=0

w∏
s=1

Cs

((∏w
j=s ιj

)
χtx
)

.
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Since the set of the orbits 〈χ〉x forms a partition of Fm3
2m4 \ {0}, ∪x∈Sχ〈χ〉x = Fm3

2m4 \ {0} holds.

From the product of the above equation over all x ∈ Sχ, we have

∏
x∈Sχ

w∏
k=1

Ck(0)|〈χ〉x| >
∏

x∈Sχ

|〈χ〉x|−1∏
t=0

w∏
s=1

Cs

((∏w
j=s ιj

)
χtx
)

⇐⇒
w∏

k=1

Ck(0)2
m3m4−1 >

∏
x∈Fm3

2m4

w∏
s=1

Cs (x) . (5.1)

Similarly, for the matrix χ such that |Sχ| = 1 and x ∈ Sχ, 〈χ〉x = Fm3
2m4 . Hence, from Lemma

13, if the zigzag cycle with the matrix χ such that |Sχ| = 1 is successfully decoded,

w∏
s=1

Cs(0)2
m3m4−1 >

∏
x∈Fm3

2m4

w∏
s=1

Cs (x) .

Since this condition coincides with (5.1), the zigzag cycle with the matrix χ such that |Sχ| = 1

is also successfully decoded. (Q.E.D.)

Theorem 4 shows a condition for lowering the error floor. The order σχ of the matrix χ is

the smallest positive integer such that χσχ is m3 × m3 identity matrix. The following lemma

asserts that the condition for successful decoding in the case for |Sχ| = 1 is simplified by the

order of the matrix χ.

Lemma 14 The order of the matrix χ is 2m3m4 − 1 if and only if |Sχ| = 1.

This lemma is proved in Appendix 5.B.

Discussion 6 By combining Theorem 4 and Lemma 14, we see that the zigzag cycles with the

matrix χ such that the order of χ is 2m3m4 − 1 have the best decoding performance. By using

this condition, we propose a method to lower the error floors for generalized non-binary LDPC

codes as follows: Designing the labels in the zigzag cycles of small weight as the order of χ

satisfies 2m3m4 − 1.

Discussion 7 From Discussion 6, in the case for the non-binary LDPC codes over Galois field

F2m , the condition for the zigzag cycles which have the best decoding performance can be

simplified. We claim that for the non-binary LDPC codes over F2m the order of χ is 2m − 1 if

and only if χ 6∈ H1,m, where

H1,m :=
∪

0<r<2m−1:r|2m−1

{
αi 2m−1

r | i = 0, . . . , r − 1
}

.

Firstly, we show that the order of χ is 2m − 1 if χ 6∈ H1,m. For r < 2m − 1, we define

H(r)
1,m :=

{
αi 2m−1

r | i = 0, . . . , r − 1
}

.
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Table 5.1: The elements in H1,m for m = 2, 3, . . . , 9.
Field The elements of H1,m

F22 1

F23 1

F24 1, α3, α5, α6, α9, α10, α12

F25 1

F26
1, α3, α6, α7, α9, α12, α14, α15, α18, α21, α24, α25, α27, α28, α30, α33, α35, α36, α39, α42,
α45, α48, α49, α51, α54, α56, α57, α60

F27 1

F28

1, α3, α5, α6, α9, α10, α12, α15, α17, α18, α20, α21, α24, α25, α27, α30, α33, α34, α35, α36,
α39, α40, α42, α45, α48, α50, α51, α54, α55, α57, α60, α63, α65, α66, α68, α69, α70, α72, α75,
α78, α80, α81, α84, α85, α87, α90, α93, α95, α96, α99, α100, α102, α105, α108, α110, α111,
α114, α115, α117, α119, α120, α123, α125, α126, α129, α130, α132, α135, α136, α138, α140,
α141, α144, α145, α147, α150, α153, α155, α156, α159, α160, α162, α165, α168, α170, α171,
α174, α175, α177, α180, α183, α185, α186, α187, α189, α190, α192, α195, α198, α200, α201,
α204, α205, α207, α210, α213, α215, α216, α219, α220, α221, α222, α225, α228, α230, α231,
α234, α235, α237, α238, α240, α243, α245, α246, α249, α250, α252

F29 1

If χ 6∈ H(r)
1,m, there exist integers i ∈ {0, 1, . . . , r − 1} and j ∈ {1, . . . , (2m − 1)/r − 1} such that

χ = αi(2m−1)/r+j . Hence, we have

χr = α{i(2m−1)/r+j}r = αjr.

Since jr < 2m − 1, we get χ = αjr 6= 1. Thus, we have the order of χ is not r if χ 6∈ H(r)
1,m.

Since the order of χ is less than or equal to 2m − 1 for χ ∈ F2m \ {0}, the order of χ is 2m − 1

if χ 6∈ H1,m. Secondly, we show that χ 6∈ H1,m if the order of χ is 2m − 1. Obviously, the order

of χ ∈ H(r)
1,m is less than or equal to r. Hence, the order of χ ∈ H1,m is less than 2m − 1. From

the contraposition, χ 6∈ H1,m if the order of χ is 2m − 1. Therefore, we see that the order of χ

is 2m − 1 if and only if χ 6∈ H1,m.

Thus, the zigzag cycles with the cycle parameter χ 6∈ H1,m have the best decoding perfor-

mance. Note that {αi(2m−1)/r | i = 0, . . . , r − 1} represents a proper subgroup of F2m . Table

5.1 shows the elements in H1,m for m = 2, 3, . . . , 9. Figure 5.1 shows the symbol error rate for

the zigzag cycle code define over F24 of symbol code length 3 over the BAWGN channel with

channel variance σ2 = 1. From Figure 5.1, we see that the zigzag cycle codes with the cycle

parameter χ 6∈ H1,4 have the best decoding performance.

The log-likelihood ratio for the 2m1 -ary channels are defined in [30]. For γ ∈ Fm1
2 , let

Zv,i(Yv,i, γ) denote the log-likelihood ratio corresponding to the i-th channel output yv,i in the
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Figure 5.1: The symbol error rate for the zigzag cycle code defined over F24 of symbol code length
3 over the BAWGN channel with channel variance σ2 = 1. The horizontal line corresponds to
the cycle parameter.

v-th variable node, i.e.,

Zv,i(yv,i, γ) := log
p(yv,i | 0)
pi(yv,i | γ)

. (5.2)

By using the log-likelihood ratio, the condition for successful decoding of the zigzag cycle

codes with the matrix χ of the order 2m3m4−1 over the 2m1-MS channel is given as the following

corollary.

Corollary 2 We consider the zigzag cycle codes of symbol code length w with the matrix χ of

the order 2m3m4 − 1 over the 2m1-ary input memoryless symmetric channel. For γ ∈ Fm1
2 , let

Zv,i(Yv,i, γ) define as in (5.2). In the limit of large `, no symbols in the zigzag cycle code are

eventually correct if and only if

w∑
v=1

m2∑
i=1

∑
γ∈Fm1

2 \{0}

Zv,i(Yv,i, γ) ≤ 0.

Moreover, in the limit of large `, all the symbols in the zigzag cycle code are eventually correct

if and only if

w∑
v=1

m∑
i=1

∑
γ∈Fm1

2 \{0}

Zv,i(Yv,i, γ) > 0.
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proof: The initial messages are represented as Cv(γ) =
∏m2

i=1 p
(
yv,i | γ

i

)
, where γ

i
:=

(bj(γ))j∈[m1(i−1)+1,m1i] for γ ∈ Fm3
2m4 . Hence, we have for v ∈ [1, w],

Cv(0) =
m2∏
i=1

p(yv,i | 0),

∏
γ∈Fm3

2m4

Cv(γ) =
m2∏
i=1

∏
x∈Fm1

2

p(yv,i | x)2
m−m1

.

Hence, from Theorem 4, no symbols in the zigzag cycles are eventually correct if and only if

w∏
v=1

Cv(0)2
m−1 ≤

w∏
v=1

∏
x∈Fm3

2m4 \{0}

Cv (x)

⇐⇒
w∏

v=1

m2∏
i=1

∏
x∈Fm1

2 \{0}

p(yv,i | 0)2
m−m1

p(yv,i | x)2m−m1
≤ 1

⇐⇒
w∑

v=1

m2∑
i=1

∑
x∈Fm1

2 \{0}

Z(yv,i, x) ≤ 0.

Similarly, we have that all the symbols in the zigzag cycle code are eventually correct if and only

if

w∑
v=1

m∑
i=1

∑
γ∈Fm1

2 \{0}

Zv,i(Yv,i, γ) > 0.

This concludes the proof. (Q.E.D.)

5.2.2 Bhattacharyya Functional and Error Probability

We define distributions of log-likelihood ratios associated with 2m1-ary channels as follows:

L(Y ) :=
∑

γ∈Fm1
2 \{0}

log
p(Y | 0)
p(Y | γ)

.

Let a denote the conditional probability density function of the random variable L(Y ) given that

the corresponding channel input is zero. We refer the function a as L-density. Note that in the

case for the MBIOS channels, i.e., m1 = 1, L-density defined in the above gives the definition of

the L-density in [5, p. 178].

Definition 5 For a L-density a, the Bhattacharyya functional B(a) is defined as

B(a) :=
∫ ∞

−∞
a(x) exp[−x/2]dx.

In this definition, we assume not only symmetric L-density [5] but also asymmetric L-density.

In the case for the MBIOS channel, Definition 5 holds [5, Definition 4.61]. The following facts
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show the properties of the Bhattacharyya functional.

Fact 1 For L-density a1 and a2, B(a1∗a2) = B(a1)B(a2) holds, where ∗ denotes the convolution,

i.e.,

(a1 ∗ a2)(x) :=
∫ ∞

−∞
a1(x− y)a2(y)dy.

Fact 2 Let Z denote the random variable with L-density a. Then,

Pr(Z ≤ 0) ≤ B(a).

Corollary 2 gives the decoding error probability of zigzag cycle with the matrix χ of the order

σχ as the following corollary.

Corollary 3 Denote m = m1m2 = m3m4. Let Pzz(w, m, a) be the symbol error rate for

the zigzag cycle codes defined over GL(m3, F2m4 ) of symbol code length w with the matrix χ

such that σχ = 2m − 1, over the 2m1 -MS channel with L-density a under BP decoding. Let

Z1, Z2, . . . , Zk denote independent and identically distributed random variables with L-density

a. Define Z(k) :=
∑k

v=1Zv. The Bhattacharyya functional is defined in Definition 5. We have

the symbol error rates of the zigzag cycle codes is given by

Pzz(w,m, a) = Pr
(
Z(wm2) ≤ 0

)
≤ Bwm2(a).

proof: Corollary 2 implies that Pzz(w, m, a) = Pr(Z(wm2) ≤ 0). From Fact 1 and 2, we have

Pr(Z(wm2)≤0) ≤ Bwm2(b). (Q.E.D.)

Corollary 3 shows that for a fixed weight w and m = m3m4, the decoding error rate of the

zigzag cycle code does not depend on m3 or m4. In other words, the decoding error rate of the

zigzag cycle over general linear group is equal to that of the zigzag cycle over finite field for a

fixed weight w and m = m3m4.

Figure 5.2 shows the symbol error rate for the zigzag cycle code defined over F24 of symbol

code length 3 with the cycle parameter χ 6∈ H1,4 over the BAWGN channel. The circles in

Figure 5.2 show the simulation results. The solid curve the theoretical symbol error rate. For

the BAWGN channel with channel variance σ, the theoretical symbol error rate of the zigzag

cycle codes defined over F24 of symbol code length w with cycle parameter χ 6∈ H1,m is given by

Q

(√
mw

σ

)
,

where Q(y) = 1√
2π

∫∞
y

exp[−x2

2 ]dx. From Figure 5.2, we see that the theoretical result gives the

symbol error rate of zigzag cycle code with the cycle parameter χ 6∈ H1,m.
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Figure 5.2: Symbol error rate of zigzag cycle codes defined over F24 of symbol code length 3
with cycle parameter χ 6∈ H1,4. The solid curve shows the theoretical symbol error rate. The
circles show the simulation result.

5.3 Analysis of Error Floors

In the previous section, we give a condition for the decoding error to the zigzag cycle code. By

using this result, in this section, we give lower bounds of the symbol error rates in the error

floors of the non-binary LDPC code ensembles over the 2m1 -MS channel under BP decoding.

Definition 6 Recall that LDPC(N, GL(m3, F2m4 ), λ, ρ) denote the LDPC code ensemble of

symbol code length N over GL(m3, F2m4 ) defined by Tanner graphs with a degree dis-

tribution pair (λ, ρ) [5] over GL(m3, F2m4 ) \ {0}. Let wg ∈ N \ {1} be an expurga-

tion parameter. The expurgated ensemble ELDPC(N, GL(m3, F2m4 ), λ, ρ, wg) consists of the

subset of codes in LDPC(N, GL(m3, F2m4 ), λ, ρ) which contain no stopping sets of weight

in {1, . . . , wg − 1}. Note that the expurgated ensemble ELDPC(N, GL(m3, F2m4 ), λ, ρ, 1)

is equivalent to LDPC(N, GL(m3, F2m4 ), λ, ρ). Let wc ∈ N be an expurgation pa-

rameter for labeling in the Tanner graph, where wg < wc. Define the ex-

purgated ensemble ELDPC(N, GL(m3, F2m4 ), λ, ρ, wg, wc,H) as the subset of codes in

ELDPC(N, GL(m3, F2m4 ), λ, ρ, wg) which contain no zigzag cycles of weight in {wg, . . . , wc − 1}
with the cycle parameter β ∈ H.

Define

Hm3,m4 := {χ ∈ GL(m3, F2m4 ) | σχ < 2m3m4 − 1}.

From Discussion 6, to lower the error floors, we need to avoid the zigzag cycles with the matrices

χ ∈ Hm3,m4 . Note that |Hm,1| ≥ |H1,m|. Hence, the non-binary LDPC codes defined over

general linear group have more choices of the labels in the edges which satisfy the condition for

the optimization.
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5.3.1 Analysis of Error Floors

In this section, we analyze the symbol error rates in the error floors for the expurgated ensembles

defined in Definition 6. The following theorem gives a lower bound on the symbol error rate

under BP decoding for the expurgated ensemble ELDPC(N, GL(m3, F2m4 ), λ, ρ, wg, wc,Hm3,m4).

Theorem 5 Let Ps(ELDPC, a,m1) be the symbol error rate of the expurgated ensemble

ELDPC(N, GL(m3, F2m4 ), λ, ρ, wg, wc,Hm3,m4) over the 2m1-MS channel characterized by its

L-density a under BP decoding. Define m := m3m4. Define Z(km) as in Corollary 3. For

sufficiently large N and B(b) < µ−1/m the symbol error rate is bounded by

Ps(ELDPC, a, m1) ≥
1

2N

∞∑
w=wg

µwPr
(
Z(wm2) ≤ 0

)
+ o

(
1
N

)
. (5.3)

proof: From Corollary 3 show that the symbol error rates of the zigzag cycles of weight w with

the matrix χ such that σχ = 2m − 1 are Pr(Z(wm2) ≤ 0). Moreover, by combining Discussion

6 and Corollary 3, we see that the symbol error rates of the zigzag cycles of weight w with the

matrix χ such that σχ 6= 2m − 1 are lower bounded by Pr(Z(wm2) ≤ 0). By using technique in

the proof of Theorem 3, we have (5.3). From Corollary 3, we get

∞∑
w=wg

µwPr
(
Z(wm2) ≤ 0

)
≤

∞∑
w=wg

µwB(b)wm2 .

Thus, for sufficiently large N and B(b) < µ−1/m, the left hand side of this inequality converges.

(Q.E.D.)

For a given channel and a fixed µ,m, the decoding error rate for the non-binary LDPC code

over finite field F2m is same as that for the non-binary LDPC code over GL(m3, F2m4 ) such that

m = m3m4.

Corollary 4 Define

ε∗m :=


1
2 for µ ≤ 1,

1−
√

1−µ−2/m

2 for µ > 1.

For the BSC with crossover probability ε and ε < ε∗m, the symbol error rate is lower bounded by

Ps(ELDPC, a) ≥ 1
2N

∞∑
w=wc

µw
∑

i≤mw/2

(
mw

i

)
εmw−i(1− ε)i + o

(
1
N

)
. (5.4)

Corollary 5 Define

σ∗
m :=

∞ for µ ≤ 1,√
m

2 ln µ for µ > 1.
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For the BAWGN channel with channel variance σ2 and σ < σ∗
m, the symbol error rate is lower

bounded by

Ps(ELDPC, a) ≥ 1
2N

∞∑
w=wg

µwQ

(√
mw

σ

)
+ o

(
1
N

)
, (5.5)

where Q(y) = 1√
2π

∫∞
y

exp[−x2

2 ]dx.

Let Pb(ELDPC, a) be the the bit error rate for the non-binary LDPC code ensemble

ELDPC(N, GL(m3, F2m4 ), λ, ρ, wg, wc,Hm3,m4) over the MBIOS channel characterized by its

L-density a under BP decoding. The expected value the number of bit errors in a symbol which

is caused error is m2m−1

2m−1 . Let n be the bit code length, i.e., n = m3m4N . Hence, the bit error

rate is bounded by

Pb(ELDPC, a) ≥ 1
2n

m2m−1

2m − 1

∞∑
w=wg

µwQ

(√
mw

σ

)
+ o

(
1
N

)
. (5.6)

Discussion 8 Let I{·} be the indicator function which is 1 if the condition inside the braces is

fulfilled and 0 otherwise. Consider the q-SC with channel error probability ε, where q = 2m.

From the definition of q-SC, the zigzag cycle cause the decoding error if the number of changed

symbols in zigzag cycle is more than q − 1 times the number of the correct symbols in zigzag

cycle. Thus, we have that

Pr(Z(w) ≤ 0) =
w∑

k=0

(
w

k

)
(1− ε)kεw−kI{w≥kq}.

From Theorem 5, the symbol error rate of the expurgated LDPC code ensemble is given by

Ps(ELDPC, a) ≥ 1
2N

∞∑
w=wg

µw
w∑

k=0

(
w

k

)
(1− ε)kεw−kI{w≥kq} + o

(
1
N

)
.

Note that Pr(Z(w) ≤ 0) ≥ εw, and that equality holds if and only if w ≤ q. For wg < q, we

have

Ps(ELDPC, a) ≥ 1
2N

∞∑
w=wg

µwPr(Z(w) ≤ 0) + o

(
1
N

)

≥ 1
2N

q∑
w=wg

µwεw + o

(
1
N

)

≥ 1
2N

(µε)wg − (µε)q+1

1− µε
.

For sufficient large q, the left hand side of this equation is written as follows:

1
2N

(µε)wg

1− µε
. (5.7)
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Figure 5.3: The symbol error rates for the expurgated ensemble ELDPC(315,
GL(m3, F2m4 ), x, x2, 1, 8,H) transmitted over the BAWGN channel for m3 = 1,m4 = 4,H = {1}
(Cycle cancellation), for m3 = 1,m4 = 4,H = H1,4 (F24 Proposed), for m3 = 4,m4 = 1,H = {}
(GL(4, F2) Random) and for m3 = 4,m4 = 1,H = H4,1 (GL(4, F2) Proposed). The lower bound
is given by (5.5).

5.3.2 Monotonicity of Error floors for MBIOS Channel

We denote the lower bound of decoding error rate for the expurgated ensemble

ELDPC(N, GL(m3, F2m4 ), λ, ρ, wg, wc,Hm3,m4) by f(m,wg), i.e.,

f(m,wg) :=
1
2n

m2m−1

2m − 1

∞∑
w=wg

µwQ

(√
mw

σ

)
. (5.8)

The following lemma shows that for a fixed large bit code length, the lower bound on the bit

error rate is decreasing in m, i.e., f(m,wg) is decreasing in m.

Lemma 15 Define f(m, wg) as in (5.8). Then f(m,wg) > f(m + 1, wg) for µ = λ′(0)ρ′(1) > 1

and 0 < σ <
√

1
2 ln µ .

The proof of this lemma is in Appendix 5.C.

5.3.3 Simulation Results

In this section, we compare the symbol error rate in the error floor for the expurgated ensemble

constructed by our proposed method with (i) that constructed by the cycle cancellation [27] and

non-optimized ensemble, and (ii) that constructed by the combination of the cycle cancellation

and the stopping set mitigation [27].

BAWGN Channel Case

Figure 5.3 shows the symbol error rates for the expurgated ensemble ELDPC(315,

GL(m3, F2m4 ), x, x2, 1, 8,H) transmitted over the BAWGN channel for m3 = 1,m4 = 4,H = {1}
(Cycle cancellation), for m3 = 1,m4 = 4,H = H1,4 (F24), for m3 = 4,m4 = 1,H = {} (GL(4, F2)
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Figure 5.4: The symbol error rates for the expurgated ensemble
ELDPC(1000, GL(m3, F2m4 ), λ, ρ, 1, 8,H) transmitted over the BAWGN channel for
m3 = 1,m4 = 4,H = {1} (Cycle cancellation), for m3 = 1,m4 = 4,H = H1,4 (F24 Pro-
posed), for m3 = 4, m4 = 1,H = {} (GL(4, F2) Random) and for m3 = 4, m4 = 1,H = H4,1

(GL(4, F2) Proposed). The lower bound is given by (5.5).

Random) and for m3 = 4,m4 = 1,H = H∗
4,1 GL(4, F2) Proposed). Figure 5.4 shows that

the symbol error rates for the expurgated ensemble ELDPC(1000,GL(m3, F2m4 ), λ, ρ, 1, 8,H)

transmitted over the BAWGN channel for m3 = 1,m4 = 4,H = {1} (Cycle cancellation), for

m3 = 1,m4 = 4,H = H1,4 (F24 Proposed), for m3 = 4,m4 = 1,H = {} (GL(4, F2) Random) and

for m3 = 4,m4 = 1,H = H4,1 (GL(4, F2) Proposed). The lower bounds in Figure 5.3 and 5.4

are derived from (5.5). Figure 5.3 and 5.4 show that the proposed codes exhibit better decoding

performance than the codes designed cycle cancellation and non-optimized codes. We see that

the lower bounds (5.5) give tight lower bounds for the symbol error rates to the proposed codes.

Moreover, the decoding performance in the error floors for optimized LDPC codes over general

linear group is the same as that for optimized LDPC codes over Galois field.

Figure 5.5 shows bit error rates of ELDPC(N, F2m , x, x2, 1, 6,H1,m) for (N, m) =

(2520, 1), (1260, 2), (630, 4). The bit code length n of those ensemble is 2520. The lower bounds

are given by (5.6). We see that (5.6) gives tight lower bound for bit error rate of the expurgated

ensemble ELDPC(N, F2m , x, x2, 1, 6,H1,m). Moreover, Figure 5.5 implies that for a fixed bit

code length n, the bit error rate decreases as the order of field increases.

BSC Case

Figure 5.6 shows the symbol error rates for the expurgated ensemble ELDPC(315,

GL(m3, F2m4 ), x, x2, 1, 8,H) transmitted over the BSC for m3 = 1,m4 = 4,H = {1} (Cycle

cancellation), for m3 = 1, m4 = 4,H = H1,4 (F24), for m3 = 4,m4 = 1,H = {} (GL(4, F2) Ran-

dom) and for m3 = 4,m4 = 1,H = H4,1 (GL(4, F2) Proposed). For the expurgated ensemble

with the expurgated parameter wg = 1, predominant contributions to the symbol error rate are

caused by zigzag cycles of weight 1. For the BSC, the decoding error rate for zigzag cycle codes

of symbol code over F24 with length 1 is the same for all cycle parameter χ. Hence, the decoding
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Figure 5.5: Bit error rates of ELDPC(N, F2m , x, x2, 1, 6,H1,m) for (N, m) =
(2520, 1), (1260, 2), (630, 4). The bit code length n of those ensemble is 2520. The lower
bounds are given by (5.6).

performance in the error floor for the code designed by our proposed method is same as that

in the error floor for the code designed by cycle cancellation in Figure 5.6. The lower bound

in Figure 5.6 is given by (5.4). We see that (5.4) gives tight lower bounds for the symbol error

rates to the expurgated ensembles constructed by our proposed method in the error floor.

Figure 5.6 shows the symbol error rates for the expurgated ensemble with sg > 1. More

precisely, Figure 5.6 shows the symbol error rates for the expurgated ensemble ELDPC(315,

GL(m3, F2m4 ), x, x2, 2, 8,H) transmitted over the BSC for m3 = 1,m4 = 4,H = {1} (Cycle

cancellation), for m3 = 1, m4 = 4,H = H1,4 (F24), for m3 = 4,m4 = 1,H = {} (GL(4, F2)

Random) and for m3 = 4,m4 = 1,H = H4,1 (GL(4, F2) Proposed). The lower bounds for

the symbol error rates are given by (5.4). From Figure 5.7, we see that our proposed codes

exhibit better decoding performance than codes designed by the cycle cancellation. Moreover

the decoding error rate in the error floor for the optimized code over general linear group is same

as that for the optimized code over Galois field.

2m-SC Case

Figure 5.8 shows the symbol error rates for the expurgated ensemble

ELDPC(315, GL(m3, F2m4 ), x, x2, 2, 8,H) transmitted over the 24-SC for m3 = 1,m4 = 4,H =

{} (F24 Random), for m3 = 1,m4 = 4,H = H1,4 (F24 Proposed), for m3 = 4,m4 = 1,H = {}
(GL(4, F2) Random) and for m3 = 4,m4 = 1,H = H4,1 (GL(4, F2) Proposed). The lower bound

is given by (5.7). From Figure 5.8, we see that the proposed codes exhibit better decoding

performance than non-optimized code. The lower bound (5.7) gives tight lower bounds for the

symbol error rates to the proposed codes. Moreover, we see that the decoding performance in

the error floors for optimized codes depend only on the size of m3m4.
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Figure 5.6: The symbol error rates for the expurgated ensemble ELDPC(315,
GL(m3, F2m4 ), x, x2, 1, 8,H) transmitted over the BSC for m3 = 1,m4 = 4,H = {1} (Cycle
cancellation), for m3 = 1,m4 = 4,H = H1,4 (F24 Proposed), for m3 = 4,m4 = 1,H = {}
(GL(4, F2) Random) and for m3 = 4, m4 = 1,H = H4,1 (GL(4, F2) Proposed). The lower bound
is given by (5.4).

Comparison with Stopping Set Mitigation

In [27], Poulliat et al. also proposed the stopping set mitigation. To lower the error floor further,

Poulliat et al. proposed to use both the cycle cancellation and the stopping set mitigation. We

refer to the Hamming weight of the binary represented non-binary codeword as binary weight.

The stopping set mitigation is a method to design the labels on the edges, which are connecting

to the nodes in the smallest stopping set, so that the binary minimum distance in the stopping

sets takes the maximum value.

Figure 5.9 compares the symbol error rate for the codes designed by the proposed method

and the codes designed by the method which uses both the cycle cancellation and the stopping

set mitigation [27]. In order to make the stopping set mitigation work effectively, we employ as

the base codes the codes whose Tanner graphs include many small stopping sets. For example,

this condition is met by the code ensemble ELDPC(60, F24 , x, x3, 3). By applying our proposed

method and the method which uses both the cycle cancellation and stopping set mitigation, we

get resulting codes which are the subsets of ELDPC(60, F24 , x, x3, 3). We see Figure 5.9 that

the symbol error rate for our proposed method is lower than that for the method using both the

cycle cancellation and the stopping set mitigation.

5.4 Summary

We prove the relation between the orbit and the order of general linear group. In this chapter,

we propose a method to lower the error floors for non-binary LDPC codes. The decoding error

rates of the optimized codes is lower than that of the code optimized by cycle cancellation. We
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Figure 5.7: The symbol error rates for the expurgated ensemble ELDPC(315,
GL(m3, F2m4 ), x, x2, 2, 8,H) transmitted over the BSC for m3 = 1,m4 = 4,H = {1} (Cycle
cancellation), for m3 = 1,m4 = 4,H = H1,4 (F24 Proposed), for m3 = 4,m4 = 1,H = {}
(GL(4, F2) Random) and for m3 = 4,m4 = 1,H = H4,1 (GL(4, F2) Proposed). The lower bound
is given by (5.4).

have shown lower bounds of the error floors for the expurgated LDPC code ensembles over the

q-MS channel. In this analysis, we see that the optimized non-binary LDPC codes defined over

general linear group exhibits have the same decoding performance in the error floors as those

defined over finite field. The non-binary LDPC codes defined over general linear group have

more choices of the labels in the edges which satisfy the condition for the optimization.

Appendix 5.A Proof of Lemma 13

proof: First, we write the messages D
(`)
v by the initial messages Cv for the zigzag cycle code

of symbol code length w with the matrix χ. Let Ψ̃(`)
v,c be the unnormalized message from the

v-th variable node to the c-th check node at the `-th iteration. To simplify the notations, we

define ιi := hi,i+1h
−1
i,i for i ∈ [1, w], where hw+1,w = h1,w. For all x ∈ Fm3

2m4 and i ∈ [1, w], the

unnormalized message for the zigzag cycle code of symbol code length w is written as follows:

Ψ̃(0)
i,i−1(x) := Ci(x), Ψ̃(`+1)

i,i−1 (x) := Ci(x)Ψ̃(`)
i+1,i

(
ι−1
i x

)
,

Ψ̃(0)
i,i (x) := Ci(x), Ψ̃(`+1)

i,i (x) := Ci(x)Ψ̃(`)
i−1,i−1

(
ιi−1x

)
,

D̃
(`+1)
i (x) := Ci(x)Ψ̃(`)

i−1,i−1

(
ιi−1x

)
Ψ̃(`)

i+1,i

(
ι−1
i x

)
,

where Ψ̃(`)
0,0 = Ψ̃(`)

w,w, Ψ̃(`)
1,0 = Ψ̃(`)

w+1,w = Ψ̃(`)
1,w, Ψ̃(`)

w+1,w+1 = Ψ̃(`)
1,1 and γ0 = γw. Then, for the

zigzag cycle code, the message D
(`)
i are written as follows:

D
(`)
i (x) =

D̃
(`)
i (x)∑

x′∈Fm3
2m4

D̃
(`)
i (x′)

.
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Figure 5.8: The symbol error rates for the expurgated ensemble ELDPC(315,
GL(m3, F2m4 ), x, x2, 2, 8,H) transmitted over the 24-SC for m3 = 1,m4 = 4,H = {} (F24 Ran-
dom), for m3 = 1,m4 = 4,H = H1,4 (F24 Proposed), for m3 = 4,m4 = 1,H = {} (GL(4, F2)
Random) and for m3 = 4,m4 = 1,H = H4,1 (GL(4, F2) Proposed). The lower bound is given
by (5.7).

From the definition, we have

D̃
(`)
i (x) = Ci(x)

∏̀
k=1

{
Ci−k

((∏k
j=1ιi+j−k−1

)
x
)

Ci+k

((∏k
j=1ι

−1
i−j+k

)
x
)}

, (5.9)

where Ci+nw(x) = Ci(x) and γi+nw = γi for n = 0,±1, . . . . For x ∈ Fm3
2m4 , (5.9) gives the

following equation

D̃
(`+wσχ)
i (x) = D̃

(`)
i (x)

wσχ∏
k=1

{
Ci−k

((∏k
j=1ιi+j−k−1

)
x
)

Ci+k

((∏k
j=1ι

−1
i−j+k

)
x
)}

. (5.10)

where σχ is the order of the matrix χ, i.e., σχ is the smallest positive integer such that χσχ is

m3 ×m3 identity matrix. The the production of (5.10) are transformed as follows:

wσχ∏
k=1

Ci−k

((∏k
j=1ιi+j−k−1

)
x
)

Ci+k

((∏k
j=1ι

−1
i−j+k

)
x
)

=
σχ−1∏
t=0

w∏
s=1

Cs

((∏w
j=s ιj

)
χtι−1

w

(∏i−1
j=0 ιj

)
x
)2

.

Note that B(κix) = B(κix
′) holds for ∀x ∈ Sχ,∀x′ ∈ 〈χ〉x. Define

κi =

1 i = 1∏i−1
j=1 ιj i = 2, 3, . . . , w

,
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Figure 5.9: Comparison of the symbol error rate for the codes designed by the proposed method
and the codes designed by the method which uses both the cycle cancellation and the stopping
set mitigation. The base code ensemble is ELDPC(60, F24 , x, x3, 3). The solid curve (proposed)
shows the symbol error rate for the codes designed by our proposed method. The dotted curve
(ssm) shows the symbol error rate for the codes designed by the method which uses both the
cycle cancellation and the stopping set mitigation.

and for x ∈ Sχ

B(x) :=
|〈χ〉x|−1∏

t=0

w∏
s=1

Cs

((∏w
j=s ιj

)
χtx
)

.

Then, (5.9) are rewritten as for x ∈ Sχ and i ∈ [1, w]

D̃
(`+wσχ)
i (x) = B

(
κix
)2σχ/|〈χ〉x|

D̃
(`)
i (x).

For ∀x ∈ Sχ, ∀x′ ∈ 〈χ〉x, B(κix) = B(κix
′) holds. By using this equation, we have

D
(`1sσχ+`2)
i (0) =

D̃
(`2)
i (0)

D̃
(`2)
i (0) +

∑
x∈Sχ

{
B(κix)
B(0)

}2`1σχ/|〈χ〉x|∑
x′∈〈χ〉x D̃

(`2)
i (x′)

.

Hence, we have lim`→∞ D
(`)
i (0) = 1 for all i ∈ [1, w], i.e., the decoding is successful, if B(0) >

B(x) for all x ∈ Sχ.

Similarly, we have lim`→∞ D
(`)
i (0) = 0 for all i ∈ [1, w], i.e., no symbols are eventually correct,

if there exists x ∈ Sχ such that B(0) < B(x)

Finally, we claim that no symbols are eventually correct, if there exists x ∈ Sχ such that
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B(0) = B(x). Note that for all `1 ≥ 1, x ∈ Sχ and i ∈ [1, w],

D̃
(wσχ`1)
i

(
κ−1

i x
)

=B(x)2`1σχ/|〈χ〉x|Ci

(
κ−1

i x
)
,

D̃
(wσχ`1−1)
i

(
κ−1

i x
)

=B(x)2`1σχ/|〈χ〉x|Ci

(
κ−1

i x
)−1

.

Hence for `1 ≥ 1 and i ∈ 1, 2, . . . , w

D̃
(wσχ`1)
i

(
κ−1

i x
)
D̃

(wσχ`1−1)
i

(
κ−1

i x
)

= B(x)4`1σχ/|〈χ〉x|

= B(0)4`1σχ/|〈χ〉x|=D̃
(wσχ`1)
i (0)D̃(wσχ`1−1)

i (0). (5.11)

The i-th symbol is eventually correct if there exist L such that D̃
(`)
i (0) > D̃

(`)
i (x) for ` > L and

x ∈ Fm3
2m
4
\ {0}. However, from (5.11), for all i ∈ [1, w], if D̃

(wσχ`1−1)
i (0) > D̃

(wσχ`1−1)
i (κ−1

i x),

then D̃
(wσχ`1)
i (0) < D̃

(wσχ`1)
i (κ−1

i x). Thus, no symbols are eventually correct. (Q.E.D.)

Appendix 5.B Proof of Lemma 14

We use the following lemma in order to prove Lemma 14.

Lemma 16 The characteristic polynomial fχ(x) of the matrix χ ∈ GL(m3, F2m4 ) is defined by

det(xI − χ) with I being m3 ×m3 identity matrix over F2m4 . For polynomials f(x) over F2m4

such that f(0) 6= 0, the least positive integer e for which f(x) divides xe − 1 is called the order

of polynomial f(x) and is denoted by ord(f). If the order σχ of the matrix χ is 2m3m4−1, then

the order ord(fχ) of the characteristic polynomial fχ(x) is also 2m3m4−1.

proof: Since χ is m3 × m3 nonsingular matrix, fχ(0) 6= 0. By the Cayley-Hamilton theorem,

fχ(χ) = 0. The definition of the order ord(fχ) of polynomial fχ gives fχ(x) | xord(fχ) − 1. Since

fχ(χ) | χord(fχ) − 1 and fχ(χ) = 0, we have χord(fχ) − 1 = 0. Hence, we get σχ | ord(fχ). Since

ord(fχ) ≤ 2m3m4 − 1 by using [28, Corollary 3.4], ord(fχ) = 2m3m4 − 1 if σχ = 2m3m4 − 1.

(Q.E.D.)

By using this lemma, the proof of Lemma 14 is given as follows.

proof of Lemma 14: Firstly, we assume |Sχ| = 1. We denote the first column of χj , by χj
1. Since

|Sχ| = 1,

Fm3
2m4 \ {0} ={χj(1, 0, 0, . . . , 0)T | j = 0, 1, . . . , 2m3m4 − 2}

={χj
1 | j = 0, 1, . . . , 2m3m4 − 2}.

This equation asserts that χi
1 6= χj

1 for i 6= j and i, j ∈ [0, 2m3m4 − 2]. Hence, for i 6= j and

i, j ∈ [0, 2m3m4 − 2], χi 6= χj . Thus, the order of χ is equal to or greater than 2m3m4 − 1. For

∀χ ∈ GL(m3, F2m4 ), the order of χ is equal to or lower than 2m3m4 − 1, i.e., σχ ≤ 2m3m4 − 1 [31,

Corollary 2]. Therefore, σχ = 2m3m4 − 1 if |Sχ| = 1.

Secondly, we assume σχ = 2m3m4−1. By Lemma 16, the order of characteristic polynomial

fχ(x) is 2m3m4 − 1. Since ord(fχ) = 2m3m4 − 1, f(0) 6= 0 and f(x) is monic polynomial [28,
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Definition 1.49], the characteristic polynomial fχ(x) is a primitive polynomial [28, Theorem

3.16]. Hence, the field F2m3m4 is represented in {0} ∪ {χi | i = 0, 1, . . . , 2m3m4 − 2}. Thus,

if ∀i, j ∈ [0, 2m3m4 − 2] and i 6= j, there exists a k ∈ [0, 2m3m4 − 2] such that χi + χj = χk.

This implies that χi
1 6= χj

1 if ∀i, j ∈ [0, 2m3m4 − 2] and i 6= j. Therefore, |Sχ| = 1 since

Fm3
2m4 \ {0} = 〈χ〉(1, 0, . . . , 0)T . (Q.E.D.)

Appendix 5.C Proof of Lemma 15

proof: The Q-function is represented as follows [32]:

Q(x) =
1
π

∫ π
2

0

exp
[
− x2

2 sin2 θ

]
dθ.

By using this equation, (5.8) is rewritten by

f(m,wg) =
1
2n

m2m−1

2m − 1

∞∑
w=wg

µw 1
π

∫ π
2

0

exp
[
− mw

2σ2 sin2 θ

]
dθ.

To simplify notation, we define the following substitution:

τθ,σ := exp
[
− 1

2σ2 sin2 θ

]
.

Note that

µτθ,σ ≤ µ exp
[
− 1

2σ2

]
< 1,

since σ <
√

1
2 ln µ holds for m = 1, 2, . . . . This substitution simplifies f(m,wg) as

f(m,wg) =
1
2n

m2m−1

2m − 1

∞∑
w=wg

µw 1
π

∫ π
2

0

τmw
θ,σ dθ

=
1
2n

m2m−1

2m − 1
1
π

∫ π
2

0

∞∑
w=wg

µwτmw
θ,σ dθ

=
1
2n

m2m−1

2m − 1
1
π

∫ π
2

0

µwgτ
mwg

θ,σ

1− µτm
θ,σ

dθ.

This equation leads the following:

f(m,wg)− f(m + 1, wg) =
1
2n

µwg

π

∫ π
2

0

2m−1τ
mwg

θ,σ

(2m − 1)(1− µτm
θ,σ)

g(m, wg, τθ,σ)
(2m+1 − 1)(1− µτm+1

θ,σ )
dθ,

where

g(m,wg, τθ,σ) := m(2m+1 − 1)(1− µτm+1
θ,σ )− 2(m + 1)τwg

θ,σ(2m − 1)(1− µτm
θ,σ).
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Note that (1−µτm+1
θ,σ ) > 0 and (1−µτm

θ,σ) > 0, since τθ,σ < 1 and µτθ,σ < 1. Since g(m,wg, τθ,σ)

increases in wg, g(m,wg, τθ,σ) > g(m, 1, τθ,σ) holds. For τ < µ−1/m, g(m, 1, τθ,σ) decreases in

τθ,σ. Hence, the function g(m,wg) is bounded as

g(m,wg, τθ,σ) ≥ g(m, 1, τθ,σ) > g(m, 1, µ−1/m) = m(2m+1 − 1)(1− µ−1/m) > 0.

Thus, we get f(m,wg) > f(m + 1, wg). (Q.E.D.)
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Chapter 6

Analysis of Stopping Constellation

Distribution for Irregular Non-Binary

LDPC Code Ensemble

The fixed points of the belief propagation decoder for non-binary LDPC codes are referred to

as stopping constellations. In this chapter, we give the stopping constellation distributions for

the irregular non-binary LDPC code ensembles defined over the general linear group. Moreover,

we derive the exponential growth rate of the average stopping constellation distributions in the

limit of large codelength.

6.1 Introduction

In this chapter, we consider the non-binary LDPC codes defined over general linear group. It is

known that LDPC codes defined over the general linear groups outperform LDPC codes defined

over finite fields in terms of the decoding performance [29].

The block and the bit erasure probabilities for binary LDPC codes over the BEC are de-

termined by the size of the maximal stopping set [33]. The fixed points of the BP decoder for

non-binary LDPC codes are referred to as stopping constellations [17]. Hence, the stopping

constellations for the non-binary LDPC codes correspond to the stopping sets for the binary

LDPC codes. To analyze the decoding erasure probabilities of the non-binary LDPC codes over

the BEC by the BP decoder, we need to analyze the stopping constellation. In this chapter,

Moreover, we derive the stopping constellation distribution. In this chapter, we also give the

exponential growth rates of the average stopping constellation distributions in the limit of large

code length.

The remainder of this chapter is organized as follows. In Section 6.2, we derive the stopping

constellation distributions for irregular non-binary LDPC code ensembles. In Section 6.3, we

derive the exponential growth rates of the average stopping constellation distributions in the

limit of large code length. In Section 6.4, we show the numerical examples for the exponential
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growth rates of the average number of stopping constellation distributions.

6.2 Stopping Constellation Distribution for Non-Binary

LDPC Codes

In this section, we derive the stopping constellation distributions for irregular non-binary LDPC

code ensembles. We give some lemmas to count constellations of the linear subspaces satisfying

the stopping constellation constraints (2.2) for check nodes.

6.2.1 Number of Linear Subspaces

It is known that the number of distinct subspaces of dimension k of the vector space Fm
2 is given

by the Gaussian binomial coefficient [11, p. 443]. The Gaussian binomial coefficient
[
m
k

]
is given

by [
m

k

]
=

[m]
[m− k][k]

,

where [m] is defined in Section 2.1.2. We denote the dimension of Vi, by dim Vi. The following

lemma gives the number of the sets of linear subspaces {Vi}ki=1 for a given condition for the

dimension of {Vi}ki=1.

Lemma 17 Assume that two non-negative integers k, m are given. For a given set of non-

negative integers ak = {ak(S)}S⊆[1,k] such that
∑

S⊆[1,k] ak(S) = m, let Bk(ak) be the number

of the sets of linear subspaces {Vi}ki=1 in Fm
2 which satisfy

dim

(∩
i∈S

Vi

)
=

∑
S̃⊆[1,k]:S⊆S̃

ak(S̃), (6.1)

where
∑

S̃⊆[1,k]:S⊆S̃ ak(S̃) is the sum of ak(S̃) over all S̃ ⊆ [1, k] such that S ⊆ S̃. Then, we

have

Bk(ak) =
[m]∏

S⊆[1,k][ak(S)]
2Tk , (6.2)

where

Tk :=
1
2

∑
S1,S2⊆[1,k]:

S1 6⊆S2,S1 6⊇S2

ak(S1)ak(S2).

The proof of this lemma is in Appendix 6.A.

Lemma 18 Assume that two non-negative integers k,m are given. Define Bk(ak) as in (6.2).

For a given set of non-negative integers v = {vi}ki=1 where vi ∈ [0,m] for all i ∈ [1, k], we denote
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the number of the sets of linear subspaces {Vi}ki=1 such that Vi ⊇
∩

j∈[1,k]\{i} Vj and dim Vi = vi

for all i ∈ [1, k], by h̃k(v), i.e.,

h̃k(v) := #

{
{Vi}ki=1 | Vi ⊇

∩
j∈[1,k]\{i}

Vj ∀i ∈ [1, k], dimVi = vi ∀i ∈ [1, k]

}
.

Then,

h̃k(v) =
∑

ak∈W′
k

Bk(ak),

where

W ′
k :=

{
ak |

∑
S:i∈S

ak(S) = dim Vi ∀i ∈ [1, k],
∑

S⊆[1,k]

ak(S) = m,

ak([1, k] \ {i}) = 0 ∀i ∈ [1, k]

}
.

The proof is in Appendix 6.B.

Discussion 9 Assume that two non-negative integers k, m are given. For a given d =

(d0, . . . , dm) such that
∑m

i=0 di = k and di ≥ 0 for i ∈ [0,m], we denote the number of the

sets of linear subspaces {Vi}ki=1 such that Vi ⊇
∩

j∈[1,k]\{i} Vj for all i ∈ [1, k] and the number of

subspaces in {Vj}kj=1 with dimension m− i is di, by hk(d), i.e.,

hk(d) := #

{
{Vj}kj=1 | Vi ⊇

∩
j∈[1,k]\{i}

Vj ∀i ∈ [1, k], #{i | dimVi = j} = dj ∀j ∈ [1,m]

}
.

There are
(

k
d0,d1,...,dm

)
choices to the dimensions of {Vi}ki=1, where

(
k

d0, d1, . . . , dm

)
:=

k!∏m
i=0 di!

, k =
m∑

i=0

di,

is known as the multinomial coefficient [34]. From Lemma 18, we have for any permutation π

on k and {vi}ki=1

h̃k({vi}ki=1) = h̃k({vπ(i)}ki=1).

For j ∈ [1,m], let pj be the smallest integer such that j ≤
∑pj

i=0 di. Hence, we get

hk(d) =
(

k

d0, d1, . . . , dm

)
h̃k({vi}ki=1),
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where vi = m− pi for all i ∈ [i, k]. Thus, we obtain

hk(d) =
(

k

d0, d1, . . . , dm

) ∑
ak∈Wk

Bk(ak),

where

Wk :=

{
ak |

∑
S:i∈S

ak(S) = m− pi ∀i ∈ [1, k],
∑

S⊆[1,k]

ak(S) = m,

ak([1, k] \ {i}) = 0 ∀i ∈ [1, k]

}
.

We denote d ≥ 0 if di ≥ 0 for all i ∈ [0,m]. The generator function of hk(d) is written as follows:

fk(u) :=
∑

d≥0:
Pm

i=0 di=k

hk(d)
m∏

i=1

udi
i . (6.3)

Since d0 depends on d1, d2, . . . , dm, i.e., d0 = k −
∑m

i=1 di, we drop u0 from (6.3).

6.2.2 Stopping Constellation Distributions for Non-Binary LDPC

Codes

Recall that for a given stopping constellation we refer to the number of the states whose dimen-

sions are not equal to 0 as the weight of the stopping constellation. For a given Tanner graph

G ∈ EGL(N,m, λ, ρ), we denote the number of stopping constellations of weight w in G by ΩG(w).

For the ensemble EGL(N, m, λ, ρ), let Ω(w) be the average stopping constellations of weight w.

Since each code is chosen with equal probability from EGL(N,m, λ, ρ), we get

Ω(w) =
∑

G∈EGL(N,m,λ,ρ)

ΩG(w)
|EGL(N, m, λ, ρ)|

.

The following theorem gives the average stopping constellations for irregular non-binary

LDPC code ensembles.

Theorem 6 Define fk(u) as in (6.3). The average stopping constellations Ω(w) of weight w for

the non-binary LDPC code ensemble EGL(N,m, λ, ρ) is given by

Ω(w) =
∑

b≥0:
Pm

i=0 bi=ξ

coef
(
(Q(s, t)P (u))N , tw

∏m
i=1 sbi

i ubi
i

)(
ξ

b0,b1,...,bm

)∏m
k=1

[
m
k

]bk
, (6.4)

Q(s, t) :=
∏
j∈L

{
1 + t

m∑
i=1

[
m
i

]
sj

i

}Lj

,

P (u) :=
∏
k∈R

{fk(u)}Rk(1−r),
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where coef(g(s, t, u), tw
∏m

i=1 sbi
i ubi

i ) is the coefficient of the term tw
∏m

i=1 sbi
i ubi

i in the polyno-

mial g(s, t, u).

proof: First, we count constellations of the linear subspaces satisfying the stopping constellation

constraint (2.2) for all check nodes. Consider a check node c of degree k. We say that the check

node c satisfies the decoding failure criterion with respect to the state assignment {Ev}v∈V if

Ev ⊆ h−1
c,v

 ∑
i∈Nc(c)\{v}

hc,iEi

 , ∀v ∈ Nc(c).

Substituting Ẽi = hc,iEi to this, we have

Ẽv ⊆

 ∑
i∈Nc(c)\{v}

Ẽi

 , ∀v ∈ Nc(c).

For a linear subspace V , denote its dual subspace by V ⊥, i.e.,

V ⊥ := {β | 〈α, β〉 = 0 ∀α ∈ V },

where 〈α, β〉 denotes the inner product of α and β. Using the dual subspaces, we have

Ẽ⊥
v ⊇

 ∩
i∈Nc(c)\{v}

Ẽ⊥
i

 , ∀v ∈ Nc(c).

We refer to the edges adjacent to the variable node assigned to state of dimension i as the edges

of dimension i. Let di be the number of edges of dimension i which are adjacent to the check

node c. From Discussion 9, for a given (d0, . . . , dm) such that
∑m

i=0 di = k and di ≥ 0 for all

i ∈ [0,m], the number of the constellations that satisfy the decoding failure criterion for the

check node c is written as

coef

(
fk(u),

m∏
i=1

udi
i

)
.

Let bi be the total number of edges of dimension i. Since there are Rk(1− r)N check nodes of

degree k, the number of the constellations that satisfy the stopping constellation constraints for

the N(1 − r) check nodes for a given b = (b0, . . . , bm) such that
∑m

i=0 bi = ξ and bi ≥ 0 for all

i ∈ [0,m], is

coef

(∏
k∈R

(fk(u))Rk(1−r)N ,

m∏
i=1

ubi
i

)
. (6.5)

Secondly, we count constellations of linear subspaces satisfying the constraints of the variable

nodes. Consider a variable node v of degree k. If the variable node v is assigned to state of

dimension i, the k edges adjacent to v are of dimension i. Define the parameter w as 1 if the
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dimension of the state of the variable node v is not 0, and otherwise 0. Denote the number

of edges of dimension i adjacent to the variable node v, by di. For a given w ∈ {0, 1} and

d = (d0, . . . , dm) such that
∑m

i=0 di = k and di ≥ 0 for all i ∈ [0, m], let gk(w, d) be the number

of constellations of linear subspaces satisfying a constraint of variable node of degree k. Since

the number of states of dimension i is
[
m
i

]
, we have

gk(w, d) =


1 w = 0, d0 = k, dj = 0 ∀j ∈ [1,m],[
m
i

]
w = 1, di = k, dj = 0 ∀j ∈ [0, m] \ {i},

0 otherwise.

The generator function of gk(w, d) is written as follows:

∑
w,d

gk(w, d)tw
m∏

i=1

sdi
i = 1 + t

m∑
i=1

[
m

i

]
sk

i .

Since there are LkN variable nodes of degree k, for a given w and b such that
∑m

i=0 bi = ξ and

bi ≥ 0 for all i ∈ [0, m], the number of constellations of linear subspaces satisfying constraints of

the N variable nodes is given by

coef

∏
k∈L

(
1 + t

m∑
i=1

[
m

i

]
sk

i

)LkN

, tw
m∏

i=1

sbi
i

 . (6.6)

Thirdly, we count the edge permutation and the edge labels which satisfy the constellation.

For a given b such that
∑m

i=0 bi = ξ and bi ≥ 0 for all i ∈ [0,m], the number of permutations of

edges is given by
∏m

i=0 bi! and the number of edge labels is equal to
∏m

i=0([m − i][i])bi . Hence,

for a given b such that
∑m

i=0 bi = ξ and bi ≥ 0 for all i ∈ [0,m], the number of choices for the

permutations of edges and edge labels is

m∏
i=0

bi!([m− i][i])bi . (6.7)

Finally, the number of Tanner graphs in EGL(N,m, λ, ρ) is given by ξ![m]ξ. From (6.5), (6.6)

and (6.7) and the number of Tanner graphs, the average stopping constellation distribution for

a given w and b such that
∑m

i=0 bi = ξ and bi ≥ 0 for all i ∈ [1,m], is given by

Ω(w, b) =
coef

(
(Q(s, t)P (u))N , tw

∏m
i=1 sbi

i ubi
i

)
(

ξ
b0,b1,...,bm

)∏m
k=1

[
m
k

]bk
.

Since

Ω(w) =
∑

b≥0:
Pm

i=0 bi=ξ

Ω(w, b),
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we get Theorem 6. (Q.E.D.)

6.3 Asymptotic Analysis

In this section, we investigate the asymptotic behavior of the average stopping constellation

distributions of non-binary LDPC code ensembles in the limit of large code length. Define the

normalized weight ω by ω := w/N . We define

Γm(ω) := lim
N→∞

1
N

log2 Ω(ωN),

and refer to this as the exponential growth rate or simply growth rate of the average stopping

constellation distribution. To simplify the notation, we denote logarithms to base 2 as log.

With the growth rate, we can roughly estimate the number of stopping constellations by

Ω(ωN) ∼ 2Γm(ω)N ,

where aN ∼ bN means that limN→∞
1
N log aN

bN
= 0.

The number of the terms in (6.4) is at most (ξ + 1)m. Hence, from (6.4) we have

max
b≥0:

Pm
i=0 bi=ξ

Ω(w, b) ≤ A(w) ≤ (ξ + 1)m max
b≥0:

Pm
i=0 bi=ξ

Ω(w, b).

Therefore, we get

lim
N→∞

1
N

log Ω(w) = lim
N→∞

1
N

log max
b≥0:

Pm
i=0 bi=ξ

Ω(w, b).

To calculate this equation, we introduce the following lemma.

Lemma 19 [35, Theorem 2] Let γ > 0 be some rational number and let p(x1, x2, . . . , xm) be a

function such that p(x1, x2, . . . , xm)γ is a multivariate polynomial with non-negative coefficients.

Let αk > 0 be some rational numbers for k ∈ [1,m] and let ni be the series of all indices j such

that j/γ is an integer and coef(p(x1, . . . , xm)j , xα1j
1 · · ·xαmj

m ) 6= 0. Then

lim
i→∞

1
ni

log coef(p(x1, . . . , xm)ni , (xα1
1 · · ·xαm

m )ni) = inf
x1,...,xm>0

log
p(x1, . . . , xm)
xα1

1 · · ·x
αm
m

.

A point (x1, . . . , xm) achieves the minimum of the function

p(x1, . . . , xm)
(xα1

1 . . . xαm
m )

,

if and only if it satisfies the following equation for all k ∈ [1,m]:

xk
∂p(x1, . . . , xm)γ

∂xk
− γαkp(x1, . . . , xm)γ = 0.

91



Define βi := bi/N for i ∈ [0,m]. Note that Λave = ξ/N . We denote s > 0 if si > 0 for all

i ∈ [1,m]. From Theorem 6 and Lemma 19, we obtain the following theorem.

Theorem 7 The growth rate Γm(ω) of the average stopping constellation distributions for the

irregular non-binary LDPC code ensemble EGL(N,m, λ, ρ) is given by

Γm(ω) = sup
β>0:

Pm
i=0 βi=Λave

inf
s>0,t>0,

u>0

{
log Q(s, t)− ω log t + log P (u)−

m∑
i=1

βi log
[
m

i

]
siui

+
m∑

i=0

βi log
βi

Λave

}
(6.8)

=: sup
β>0:

Pm
i=0 βi=Λave

inf
s>0,t>0,u>0

Γ̂m(ω, β, s, t, u)

=: sup
β>0:

Pm
i=0 βi=Λave

Γ̃m(ω, β).

A point (u, t, s) which achieves the minimum of the function Γ̂m(ω, β, s, t, u) is given in a solution

of the following equations for all i ∈ [1,m]:

βi =
si

Q

∂Q

∂si
=
∑
j∈L

Lj

j
[
m
i

]
tsj

i

1 + t
∑m

k=1

[
m
k

]
sj

k

, (6.9)

ω =
t

Q

∂Q

∂t
=
∑
j∈L

Lj

t
∑m

i=1

[
m
i

]
sj

i

1 + t
∑m

k=1

[
m
k

]
sj

k

, (6.10)

βi =
ui

P

∂P

∂ui
=
∑
k∈R

Rk(1− r)
ui

fk(u)
∂fk

∂ui
, (6.11)

where

∂fk

∂ui
=

∑
d≥0:

P

j dj=k

(
k

d0, . . . , dk

)
di

ui

m∏
j=1

u
dj

j

∑
ak∈Dk

Bk(ak).

The point β which gives the maximum of Γm(ω, β) needs to satisfy the stationary condition

skuk

[
m

k

](
Λave −

m∑
i=1

βi

)
= βk, (6.12)

for k = 1, 2, . . . , m.

Lemma 20 For a given degree distribution pair (λ, ρ), we have Γm(ω) ≥ Γ1(ω).
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proof: We consider a fixed ω. Define β∗ such that Γ1(ω) = Γ̃1(ω, β∗). Note that

Γ̃1(ω, β∗) = inf
s1>0,t>0,

u1>0

[∑
j∈L

log
(
1 + tsj

1

)Lj

+
∑
j∈R

log
{

f̃
(1)
k (u1)

}Rj(1−r)

+ Λave log
Λave − β∗

Λave
− β∗ log

s1u1(Λave − β∗)
β∗ − ω log t

]
, (6.13)

where f̃
(1)
k (u1) = {(1 + u1)j − ju1}. For m > 1, define β(m)(δ) := (δ, . . . , δ, β∗ − (m− 1)δ). For

any δ > 0, we have

Γm(ω) ≥ Γ̃m

(
ω, β(m)(δ)

)
.

Now, we consider Γ̃m(ω, β(m)(δ)) for δ → 0. For δ → 0, we have si → 0 and ui → 0 for

i ∈ [1,m− 1] from (6.9) and (6.11). Note that fk(u) = (1 + um)k − kum = f
(1)
k (um) for ui → 0

∀i ∈ [1,m− 1]. Hence we have

lim
δ→0

Γ̃m(ω, β(m)(δ))

= inf
sm>0,t>0,

um>0

{∑
j∈L

log
(
1 + tsj

m

)Lj

+
∑
j∈R

log
{

f̃ (1)(um)
}Rj(1−r)

+ Λave log
Λave − β∗

Λave
− β∗ log

smum(Λave − β∗)
β∗ − ω log t

}
.

This equation coincides with (6.13). Hence, we have Γm(ω) ≥ Γ1(ω). (Q.E.D.)

Lemma 21 For t such that t > 0, (6.9), (6.10) and (6.11) hold, we have

dΓm(ω)
dω

= − log t.

proof: Consider dΓm(ω)
dω . From (6.8), we have

dΓm(ω)
dω

ln 2 =− ln t +
1
P

dP

dω
− ω

t

dt

dω
+

1
Q

dQ

dω
−

m∑
i=1

βi

si

dsi

dω
−

m∑
i=1

βi

ui

dui

dω

−
m∑

i=1

dβi

dω
ln siui

[
m

i

]
Λave −

∑m
i=1 βi

βi
.

From (6.12), we have

ln
{

siui

[
m

i

]
Λave −

∑m
i=1 βi

βi

}
= 0.
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From (6.11), we have

1
P

∂P

∂ω
=

1
P

m∑
i=1

∂P

∂ui

dui

dω
=

m∑
i=1

βj

uj

duj

dω
.

Similarly, from (6.9) and (6.10), we get

1
Q

∂Q

∂ω
=

ω

t

dt

dω
+

m∑
i=1

βi

si

dsi

dω
.

Hence, we have

dΓm(ω)
dω

= − log t.

This concludes the proof. (Q.E.D.)

The following theorem shows the growth rate of the average stopping constellation distribu-

tions for small ω.

Theorem 8 For the irregular non-binary LDPC code ensemble EGL(N,m, λ, ρ) with λ′(0) > 0,

the growth rate of the average stopping constellation distributions of normalized weight ω, in

the limit of large symbol code length for ω → 0, is given by

Γm(ω) = log[λ′(0)ρ′(1)]ω + o(ω).

proof: From the definition of stopping constellation, we get Ω(0) = 1 and Γm(0) = 0. From

Lemma 21, we have for ω → 0

Γm(ω) = −ω log t(ω) + o(ω).

Recall that t satisfies (6.8), (6.9), (6.10) and (6.11). From (6.10), for ω → 0, it holds that

tis
j
i → 0 for i ∈ [1,m] and j ∈ L. By using this and (6.9), we have βi → 0 for i ∈ [1,m]. Note

that

fk(u) = 1 +
m∑

i=1

(
k

2

)[
m

i

]
u2

i + o

( m∑
i=1

ui

)2
 . (6.14)

Since βi → 0 for i ∈ [1,m], from (6.11) we have ui → 0 for i ∈ [1, m]. From (6.11) and (6.14) we

get

βi =
∑
k∈R

Rk(1− r)2
(

k

2

)[
m

i

]
u2

i + o

( m∑
i=1

ui

)2
 .
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Substituting this equation into (6.12), we have

si =uiρ
′(1) + o

(
m∑

i=1

ui

)
. (6.15)

Since ui → 0 for i ∈ [1, m], we get si → 0 for i ∈ [1,m]. From (6.9), it holds that

βi = 2L2

[
m

i

]
ts2

i + o

( m∑
i=1

si

)2
 .

Substituting this equation into (6.12), we get

ui = λ′(0)tsi + o

(
m∑

i=1

si

)
. (6.16)

From (6.15) and (6.16), we have for ω → 0

1 = λ′(0)ρ′(1)t(ω).

Hence, we obtain this theorem. (Q.E.D.)

Discussion 10 From Theorem 8, the growth rate for ω → 0 does not depend on m. The result

of Theorem 8 coincides with the result for the weight distribution of non-binary LDPC code

ensemble [36]. More precisely, the growth rates of the stopping constellation distributions and

that of the weight distributions are the same for ω → 0. The techniques used in the proofs of

Theorem 8 and Lemma 21 are originally developed in [37].

Define the critical exponent stopping ratio [9] as

θ∗m := inf{ω > 0 | Γm(ω) ≥ 0}, for m = 1, 2, . . . .

From Lemma 20 and Theorem 8, we have the following corollary.

Corollary 6 For a given degree distribution pair (λ, ρ) which satisfies λ′(0)ρ′(1) < 1, the critical

exponent stopping ratio θ∗1 is larger than others, namely, θ∗1 ≥ θ∗m for m > 1.

Recall that the average stopping constellation of weight ωN is approximated by Ω(ωN) ∼
2Γm(ω)N . Since Γm(ω) < 0 for ω ∈ (0, θ∗m), there are exponentially few stopping constellations

of weight ωN for ω ∈ (0, θ∗m). It is known that the decoding erasure rate for the BEC with small

channel erasure probability is caused by the stopping constellations of small weight. Therefore

among LDPC codes with the degree distribution pair (λ, ρ) such that λ′(0)ρ′(1) < 1 over the

BEC, we see from Corollary 6 that the binary (m = 1) LDPC code ensemble is the best in the

sense that there are exponentially few stopping constellations of weight ωN for ω within the

widest range (0, θ∗1) ⊇ (0, θ∗m).
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Figure 6.1: The growth rates of the average stopping constellation distributions for the (2,4)-
regular non-binary LDPC code ensembles defined over GL(m, F2), where m = 1, 2, 3, 4.
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Figure 6.2: The growth rates for ω ∈ [0, 5 × 10−7] of the average stopping constellation distri-
butions for the (2,4)-regular non-binary LDPC code ensembles defined over GL(m, F2), where
m = 1, 2, 3, 4.

6.4 Numerical Examples

In this section, we give some numerical examples of growth rate which illustrate the statement

of Theorem 8 and Corollary 6.

Figure 6.1 and 6.2 show the growth rates of the average number of stopping constellations for

the (2,4)-regular non-binary LDPC code ensembles defined over GL(m, F2), where m = 1, 2, 3, 4.

From these figures, especially from Figure 6.2, we see that the growth rate for small ω does not

depend on the dimension m. Moreover, we see that the gradient of the growth rate for small

ω is log 3. Similarly, Figure 6.3 and 6.4 show the growth rates for the (3,6)-regular non-binary

LDPC code ensembles. From these figures, especially from Figure 6.4, we see that the growth

rate for small ω does not depend on the dimension m even if λ′(0) = 0.

Figure 6.5 shows the critical exponent stopping ratio for the (3,6)-regular non-binary LDPC

code ensembles defined over GL(m, F2), where m = 1, 2, 3, 4, 5. We see that the critical exponent

stopping ratio monotonically decreases as the dimension m increases.
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Figure 6.3: The growth rates of the average stopping constellation distributions for the (3,6)-
regular non-binary LDPC code ensembles defined over GL(m, F2), where m = 1, 2, 3, 4.
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Figure 6.4: The growth rates for ω ∈ [0, 0.02] of the average stopping constellation distributions
for the (3,6)-regular non-binary LDPC code ensembles defined over GL(m, F2), where m =
1, 2, 3, 4.

6.5 Summary

In this chapter, we have derived the stopping constellation distribution and growth rate for

non-binary LDPC code ensembles over general linear groups. We have shown that the growth

rate does not depend on the dimension of the general linear group for small normalized weight.

Moreover, we have shown that the binary LDPC code ensemble is the best in terms of the critical

exponent ratio for λ′(0)ρ′(1) < 1.

Appendix 6.A Proof of Lemma 17

To prove Lemma 17, we use mathematical induction. For k = 1, we see that dim V1 = a1({1})
and Tk = 0. The number of distinct subspaces V1 of dimension a1({1}) = dim V1 is equal to[

m
a1({1})

]
= [m]

[a1({1})][a1({})] . Hence, (6.2) holds for k = 1.

We will show that if (6.2) holds for k = k′ − 1, then (6.2) also holds for k = k′. From the
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induction hypothesis, we have

Bk′−1

({
ak′(S) + ak′(S ∪ {k′})

}
S⊆[1,k′−1]

)
=

[m]∏
S⊆[1,k′−1][ak′(S) + ak′(S ∪ {k′})]

2Tk′−1 , (6.17)

where

Tk′−1 =
1
2

∑
S1,S2⊆[1,k′−1]:
S1 6⊆S2,S1 6⊇S2

(ak′(S1) + ak′(S1 ∪ {k′}))(ak′(S2) + ak′(S2 ∪ {k′})).

If we fix Ak′(S′ ∪ {k′}) for all S′ ) S, then the number of Ak′(S ∪ {k′}) is given by[
ak′(S) + ak′(S ∪ {k′})

ak′(S ∪ {k′})

]
2Tk′ (S), (6.18)

where

Tk′(S) = ak′(S ∪ {k′})
∑

S̃⊆[1,k′−1]:S̃)S

ak′(S̃).

From (6.17) and (6.18), Bk′(ak′) is given by

[m]∏
S⊂[1,k′][ak′(S)]

2Tk

∏
S⊂[1,k′]

[
ak′(S)

ak′+1(S ∪ {k′ + 1})

]
2Tk′+1(S)

=
[m]∏

S⊆[1,k′][ak′(S)]
2Tk′−1+

P

S⊆[1,k′−1] Tk′ (S).
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The exponential part is written as follows:

Tk′−1 +
∑

S⊆[1,k′−1]

Tk′(S) =Tk′−1 +
1
2

∑
S⊆[1,k′−1]

ak′(S ∪ {k′})
∑

S̃:S̃)S

ak′(S̃)

+
1
2

∑
S⊆[1,k′−1]

ak′(S)
∑

S̃:S̃(S

ak′(S̃ ∪ {k′})

=Tk′ .

This concludes the proof.

Appendix 6.B Proof of Lemma 18

From (6.1), we have
∑

S:i∈S ak(S) = dim Vi and
∑

S⊆[1,k] ak(S) = m. From (6.1), we have

dim

 ∩
j∈[1,k]

Vj

 = a([1, k])

and

dim

 ∩
j∈[1,k]\{i}

Vj

 = a([1, k]) + a([1, k] \ {i})

for i ∈ [1, k]. From those equations, we have

dim

 ∩
j∈[1,k]\{i}

Vj

 = dim

 ∩
j∈[1,k]

Vj

+ a([1, k] \ {i}). (6.19)

Since a([1, k] \ {i}) ≥ 0, we have

dim

 ∩
j∈[1,k]\{i}

Vj

 ≤ dim

 ∩
j∈[1,k]

Vj

 . (6.20)

First, we claim that for all i ∈ [1, k], Vi ⊇
∩

j∈[1,k]\{i} Vj if ak([1, k] \ {i}) = 0. Since

ak([1, k] \ {i}) = 0, we have

dim

 ∩
j∈[1,k]\{i}

Vj

 = dim

 ∩
j∈[1,k]

Vj

 ,

from (6.19). If Vi 6⊇
∩

j∈[1,k]\{i} Vj , then

dim

 ∩
j∈[1,k]\{i}

Vj

 > dim

 ∩
j∈[1,k]

Vj

 .
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By using this equation and (6.20), we see that Vi ⊇
∩

j∈[1,k]\{i} Vj if

dim

 ∩
j∈[1,k]\{i}

Vj

 = dim

 ∩
j∈[1,k]

Vj

 .

Thus, for all i ∈ [1, k], Vi ⊇
∩

j∈[1,k]\{i} Vj if ak([1, k] \ {i}) = 0.

Next, we claim that for all i ∈ [1, k], ak([1, k] \ {i}) = 0 if Vi ⊇
∩

j∈[1,k]\{i} Vj . If ak([1, k] \
{i}) 6= 0, we have

dim

 ∩
j∈[1,k]\{i}

Vj

 > dim

 ∩
j∈[1,k]

Vj


from (6.19). If Vi ⊇

∩
j∈[1,k]\{i} Vj , then

dim

 ∩
j∈[1,k]\{i}

Vj

 = dim

 ∩
j∈[1,k]

Vj

 .

By using this equation and (6.20), we see that Vi 6⊇
∩

j∈[1,k]\{i} Vj if

dim

 ∩
j∈[1,k]\{i}

Vj

 > dim

 ∩
j∈[1,k]

Vj

 .

Thus, for all i ∈ [1, k], Vi 6⊇
∩

j∈[1,k]\{i} Vj if ak([1, k] \ {i}) 6= 0. Therefore, we have for all

i ∈ [1, k], ak([1, k] \ {i}) = 0 if Vi ⊇
∩

j∈[1,k]\{i} Vj . Thus, this concludes the proof.
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Chapter 7

Conclusions

To make codes which have good decoding performance, it is important to analyze the decoding

error rate for LDPC codes. In this dissertation, we have analyzed the decoding error probability

for finite length LDPC codes.

In Chapter 2, we have proved the all-zero codeword assumption for no-binary LDPC codes

over the q-MS channel under BP decoding. Moreover, we have shown the relationship between

the stopping sets and stopping constellations. The relationship between the stopping sets and

stopping sets implies that a way to optimize the non-binary LDPC codes.

In Chapter 3, we have analyzed the decoding erasure probability in the waterfall region for

binary LDPC code ensemble over the BEC. We have analytically solved the covariance evolution

for the binary irregular LDPC code ensemble. We have also obtained the slope scaling parameter

without assumptions.

In Chapter 4, we have analyzed the decoding erasure probability in the error floor region for

the non-binary LDPC codes which contain the variable nodes of degree two over the BEC under

BP decoding. We have shown that the decoding performances of the zigzag cycles only depend

on the cycle parameter. For the non-binary LDPC code over F2m we have also shown that

cycle parameters which have bad decoding performances are in the proper subfields of the field

F2m . We have proposed a method to improve the error floors for the non-binary LDPC codes

which contain the variable nodes of degree two over the BEC under BP decoding. The codes

which optimized by proposed method are outperform the existing design methods. Moreover,

we have derived lower bounds on the bit and the symbol erasure rates in the error floors for the

expurgated ensembles under BP decoding. Simulation results have shown that the lower bounds

are tight for the bit and the symbol erasure rates for the expurgated ensembles. Furthermore,

we show that this tight lower bound monotonically decrease, as the order of Galois field of

non-binary LDPC code increase in the case for the BEC.

In chapter 5, we have extended the results in Chapter 4 to the generalized non-binary LDPC

codes over the q-MS channels. For the non-binary LDPC code defined over GL(m3, F2m4 ) over

the q-MS channels, we have shown that the cycles which have bad decoding performances are

characterized by the matrices defined by the labels in the cycles. Furthermore, we show that this

tight lower bound monotonically decrease, as the order of Galois field of non-binary LDPC code
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increase in the case for the BEC and BAWGN channel. Moreover, we compare the decoding error

rates in the error floors for non-binary LDPC codes over the general linear group with those for

non-binary LDPC codes over finite field transmitted over the q-MS channel under BP decoding.

In this analysis, we see that the optimized non-binary LDPC codes defined over general linear

group have the same decoding performance in the error floors as those defined over finite field.

In Chapter 6, we have derived the stopping constellation distribution and growth rate for

non-binary LDPC code ensembles over general linear groups. We have shown that the growth

rate does not depend on the dimension of the general linear group for small normalized weight.

Moreover, we have shown that the binary LDPC code ensemble is the best in terms of the critical

exponent ratio for λ′(0)ρ′(1) < 1.

By results in the dissertation, (i) we rigorously analyze the waterfall regions for binary

LDPC codes and (ii) we are able to optimize the non-binary LDPC codes. The result (i) gives

the optimized degree distribution pair without any assumptions and another method to obtain

the scaling parameter. If we can extend this result to multi-edge type LDPC code [5], we can

optimize the multi-edge type LDPC codes by solving the covariance evolution [38]. The result

(ii) help us to make a good performance non-binary LDPC codes.

As a future work, we will analyze the decoding error rate in the water fall region for non-

binary LDPC code. More precisely, we will derive the scaling parameters for non-binary LDPC

codes. By combining the this result, we will optimized the non-binary LDPC codes. Moreover,

we will analyze the decoding error rates for the binary and non-binary multi-edge type LDPC

codes.
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