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Abstract

Relaxation problems for NP-hard optimization problems are often adopted as a subroutine of
optimization algorithms. In most of those situation, the relaxation problems are formulated
and/or solved as convex optimization problems since it is generally required that they should
be solved efficiently. In this thesis, we formulate and analyze a sort of relaxation problems.
However, our relaxation problems are not convex in general.

The convex relaxation problems can be solved efficiently. However, they have large gaps
to the original problem especially when the original problem is difficult. Therefore, the convex
relaxation problems can be not useful at all in constructing efficient algorithms to solve the
original problems.

On the other hand, nonconvex relaxation problems have at least a desirable property

“They are able to have less gaps to the original problem in comparison with the

convex relaxation problems,”

despite nonconvex relaxation problems are hardly considered as a set of tools for optimization.
The observation implies that nice properties embedded in nonconvex relaxation problems by
relaxing tend to provide tools directly useful for solving the original problems.

The contributions of this thesis are listed as follows.

e We formulate a sort of relaxation problems that have parameters representing the degree
of relaxation. As a consequence, the relaxation problems include the original problem and
the convex relaxation problem as two extreme cases. Therefore, the formulation allows
us to consider trade-off between desirable properties in computation and similarity to the

original problem.

e We reveal some fundamental properties of the proposed nonconvex relaxation problems.

They do not require convexity for being derived.

e We establish some links between our analytical results and known optimization algorithms,
and construct two heuristic algorithms. Additionally, we evaluate the performance of the

proposed optimization algorithms in numerical experiments.



The class of the original problems in this thesis is minimization of a quadratic function un-
der quadratic constraints. We formulate a sort of relaxation problems for the class of original
problems by generalizing each real scalar variables of the original problem to a hypercomplex
number. This formulation allows us to make a trade-off between tractability appears in the con-
vex relaxation problems and the precise description of requirements from applications described
as the original problems. We expect that we can construct new optimization algorithms and
optimize the performance of optimization algorithms by adjusting the degree of relaxation.

Firstly, we especially pay attention to the existence of a “monotone path”. Each monotone
path is a continuous curve in the feasible region of the relaxation problem having the following

property :

If we change the decision variables along the curve, the objective value monotonically
increases or decreases. Consequently, the decision variable can reach the global
optimum of the original problem from any other feasible solution by changing the

decision variables along the curve.

The existence of a monotone path does not require convexity of the relaxation problem. In
consequence, the relaxation problem nearest to the original problem among relaxations, which
guarantee the existence of a monotone path, is the relaxation problem in which each real variable
is generalized to a ordinary complex number.

Secondly, we restrict the original problems to the maximum cut problems and derive detailed
analytical results. Each element of a hypercomplex discrete space, which is a generalization of
set of corners of the hypercube, is always on a monotone path. Moreover, the relaxation does not
change the optimal value in spite the feasible region is expanded. Additionally, we can obtain a
feasible solution of the original problem from that of the relaxation problem without increasing
the value of the objective function. These results serve to generalize some known optimization
algorithms including Goemans and Williamson’s approximation algorithms for the maximum
cut problems. We also show that any local optima of the nonconvex relaxation problem to the
ordinary complex numbers gives a lower bound of the optimal value of the original problem for
certain classes of problem instances.

Finally, we construct two optimization algorithms for the maximum cut problems based on
our analytical results. One of the algorithms explicitly utilizes analytical results. The another
is based on the existence of a monotone path and some conjectures. Computational experi-
ments imply the availability of our approach. More concretely, the second proposed algorithm
showed the performance better than the tabu search algorithm. The performance of the another

proposed algorithm grew better as the dimension of hypercomplex number became higher.
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Chapter 1

Introduction

In this chapter we explain the motivation and ideas of the research described in this thesis.
Our objective is to provide a mathematical basis in constructing optimization algorithms for
optimization problems by using relaxation problems, which are not convex in general and have

less gaps to the original problems than the convex relaxation problems.

1.1 Background and Motivation

Many problems appear in engineering, economics, physics, and so on can be formulated as
optimization problems. In spite the problems under consideration may be from manifestly
different fields, common methods or ideas can be used in obtaining solutions for all of them.

Those optimization problems are generally formulated as
(P ) Minimize g(x) subjectto x € D.

Here, the set D called the feasible region and the function g : D — R called the objective
function are defined appropriately reflecting the requirements from applications.

Efficient methods or algorithms for solving P have been established for cases where g and
D are convex such as linear programming [1, 2] and semidefinite programming [3, 4, 5], and
cases where g and D have special combinatorial structures [6, 7] such as the problem of finding
a minimal spanning tree of a graph and several subclasses of the maximum cut problems. In

- principle, such P can be solved by the following procedure :

For given Z € D, solve the following optimization problem
(L) Minimize g(z) subjectto =€ DNN(Z)
repeatedly, where N(Z) is some neighborhood of .

In other words, only the local information is required for solving P. On the other hand, in

general, we need global information about g and D for solving P. Moreover, it is considered



that there is no algorithm for solving general classes of P efficiently in the sense that the time
complexity for solving P is bounded by a polynomial of the size of the data for describing P,
since P is NP-hard [8].

To handle such hard problems, “algorithms called heuristics [9, 10, 11, 12, 13, 15]” and
“relaxation problems for P [4, 16, 17, 18] 7 are often adopted. Heuristics can be understood
as a variety of local search algorithms, and often are strategies or algorithms that try to find
elements of D which are not necessarily optimal but are acceptable in real applications. The

following are examples of such algorithms.

Local Search [9] : Solve L repeatedly until & converges ; the whole procedure is also carried

out repeatedly.

Tabu Search [9, 12, 13, 14] : N(-) is updated during the repetitive computation of L using
the histories of g(z) and z.

Simulated Annealing [9, 11] : L is carried out repeatedly with a probabilistic mechanism

that gradually converges to a deterministic one.

Genetic Algorithms [9, 10, 15] : Solve Ls in parallel , and = of each L are copied, modified,

and/or deleted using information about whole zs and g(x)s.

Relaxation problems are optimization problems of which some constraints in P are relaxed.

In other words, the feasible region D of the original problem can be defined by
D=DNX (1.1

under an appropriate transformation of decision variables, where D’ is the feasible region of the
relaxation problem and & € X is the constraint relaxed in defining the relaxation problem.

Relaxation problems often are designed by transforming P in optimization problems that
can be solved efficiently in numerical computation. They are often used to obtain algorithms
with theoretically guaranteed performance {16, 17, 18, 19] and to reduce the effort in obtaining
the optimal solution of P [4, 21, 22, 23, 33, 34, 44]. In such situations, being convex is often
treated as if it is a part of definition of relaxation problems.

For relaxation problems, it is expected in usual that

o The optimal value of the relaxation problem is a good bound of the optimal value of the
original problem.

e We can solve the relaxation problem efficiently in numerical computation.

From these reasons, almost all relaxation problems for NP-hard optimization problems are for-
mulated and/or solved as convex optimization problems. The following properties are ensured

in the convex optimization problem from its definition.



l.ta+(1-t)beD for te(0,1] if a,beD.
2. g(ta+ (1 —t)b) <tgla) + (1 —t)g(b) forany a,beD and te]0,1]

The definition of convex optimization problems ensures very strong properties. Namely, e.g., any
local optimum of the problem is also a global optimum. Besides, polynomial time optimization
algorithms are available for solving convex optimization problems [1, 3, 4, 5]. Thereby, strate-
gies such as calculating the bound of the objective function and constructing polynomial time
approximation algorithms become available strategies. Here, the solutions of convex relaxation

problems are used as illustrated in the following :

(i) Let X € D' be a solution of the convex relaxation problem of P defined by
(P’ ) Minimize G(X) subjectto X €D’

Additionally, let £ : D' — D. Then, # = f(X) becomes a good approximation of the

solution of P.

(ii) Assume the feasible region D of P is represented as
D=D'UD*U---UD"

and D'NDJ = for i # j. Let an & be in D! and X € D'? be an optimal solution of the

convex relaxation problem for the original problem
(P?) Minimize g(x) subjectto z € D

Then we can conclude that the solution of P is not in D? if g(z) < G(X).

These observation allow to handle a variety of NP-hard problems by branch and bound methods.
More concretely, the fact (ii) shrinks the feasible region and the approximation in (i) gives the
better result.

On the contrary, in general, convex relaxation problems for difficult original problems have
large gaps to the original problems that we actually want to solve. The gaps appear as, for

example,

e The difference between the optimal value of the original problem and that of the convex

relaxation problem.

This means that g(Z) < G(X) hardly holds in (ii). Moreover, the gaps may appear as

e Theoretical guarantees on the approximation which do not match heuristics in real com-

putation.



That is, an algorithm which has the best theoretical guarantee is often worse than heuristics
when the theoretical guarantees are not vital.
In summary, the good properties found in convex relaxation problems is considered to be

useless for solving the original problem because of the large gaps to the original problem.

We consider that it is useful to formulate a sort of relaxation problems in which minimal
good properties are embedded by relaxing, and structures of the original problem are somewhat
preserved. Nonconvex relaxation problems can be better than convex relaxation problems in
the sense that it will have less gaps to the original problem compared to the convex relaxation
problems. We expect the following for using nonconvex relaxation problems which are closer to

the original problems :

¢ Generalizing or modifying optimization algorithms for the original problem will be available
in constructing optimization algorithms based on nonconvex relaxation problems when
they have structures resemble to the original one. Moreover, we will be able to enhance

the performance of the algorithms if the relaxation problems have certain nice properties.

e If any local optima of the nonconvex relaxation problems provide a lower bound for the
original problem under a formulation in which the relaxation problems connect the original
problem and the convex relaxation problem continuously, then the bound of the optimal

value never be worse than those given by the convex relaxations.

On these viewpoints, we define a sort of nonconvex relaxation problems for quadratically con-
strained minimization problems and analyze their fundamental properties.

The relaxation problems in this thesis are defined in such a way that each real variable
of the original problem is expanded to the space consists of hypercomplex numbers [24]. The
resulting relaxation problems are not convex in general, and contain the original problem and the
semidefinite programming(SDP) relaxation problem as two extreme cases as we show later. This
formulation allows us to make trade-off between tractability appears in the convex relaxation
problem and the precise description of requirements from real applications described as the

original problem.

The convex relaxation has been well studied. In particular, polynomial time approximation
algorithms and techniques for obtaining a lower bound of the optimal value are known for many
subclasses of P by using SDP relaxation developed in the last decade [16, 17, 18, 19]. Our ap-
proach in this thesis will connect such strategies using convex relaxation with strategies which
handle P directly. On the other hand, some researches based on mathematical representations,
which are partially similar to ours, are reported for combinatorial optimization [17, 18], associa-

tive memories [26, 27, 28], spin glasses [30], and communication [29]. However, the descriptions



are mainly for representing a set of information as one variable. Therefore, those problems or

approaches are different from ours.

1.2 Idea of Approach

The idea of our approach will be explained by using a simple example. Consider the following
optimization problem :

Minimize —z*z — 3(z + z*)

Subject to |z |<1,
where X in eq.(1.1) is set of real numbers R and * denotes the complex conjugate. If z € R,
then we can really see that the local optima of the problem are x = 1 and £ = —1. The unique
global optimum is x = 1 as depicted in Figure 1.1.

Let us now consider a relaxation problem where z € C. The problem is written as

Minimize : —{R(z)%+ S(z)?} — R(=z)

Subject to : R(z)?+(z)?-1<0.
We can see that any local optimum of the relaxation problem must satisfy

R(z)? + (=) -1=0,

since the Hessian matrix of the objective function with respect to the real and the imaginary

part of z is written as

-2 0
0 -2
; it is negative definite. Hence, the optimization problem is reduced to

Minimize : —1-—cosf

by replacing R(z) with cos . Consequently, the unique local optimum of the problem is z = 1,
which is coincident with the global optimum of the original problem. For this reason, the decision
variable can reach the global optimum of the original problem from any other feasible solution

of the original problem without increasing the objective value.

Note that the relaxation problem where z € C is still not convex. However the relaxation
problem has a desirable property “The problem does not have any local optimum except for
the global one.” Hence, we can obtain the global optimum of the original problem by a decent
type local search algorithm starting from an arbitrary feasible solution. On the other hand,
the original problem is equivalent to minimizing under the constraint z € {—1,+1} since the
objective function of the original problem is concave. Consider also another relaxation problem

in which the feasible region is generalized to

HS {_L +1a _ja +j}’



Figure 1.1: z € R(left) and z € C(right)

where j stands for imaginary unit. In this case, the optimal value of the relaxation problem
coincides with that of the original problem. In other words, the relaxation problem is equivalent
to the original problem in the sense that the optimal value does not change.

We can hardly expect that almost all nice properties derived from convexity to hold since
the relaxation problems in this thesis are not convex in general. Nevertheless, we can expect
some favorable properties to be revealed for certain classes of problems instances. Moreover,
those properties will be useful for constructing optimization algorithms for solving the original
problems since the gaps between the nonconvex relaxation problem and the original problem

will be less in comparison with the convex relaxation.

1.3 Outline of Thesis

This thesis is divided into 6 chapters. Through the analysis of nonconvex relaxation problems,
we show several nice properties we can obtain without relaxing the original problem to a convex
problem. Based on the analytical results, we will construct optimization algorithms and confirm
the effects of using the nonconvex relaxation through computational experiments.

The summaries of forthcoming chapters are given as follows.

Chapter 2 : Chapter 2 defines optimization problems to be analyzed in this thesis. The orig-
inal problem is minimization of indefinite quadratic function under nonconvex quadratic
constraints. The relaxation problems are defined in such a way that each real scalar de-

cision variable of the original problem is generalized to a hypercomplex number. The



precice descriptions of

requirements from applications

original problem

our interest
nonconvex relaxation |
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in numerical computation

Figure 1.2: location of nonconvex relaxation problems

relaxation problems introduce a concept “degree of relaxation”.

Chapter 3 : Chapters 3 and 4, which are the main parts of this thesis, are dedicated for
describing analytical results [35, 36]. In chapter 3, we derive fundamental properties
found in nonconvex relaxation problems of quadratically constrained original problems.
The relaxation problems include the oiiginal problem and the convex relaxation problem in
term of semidefinite programming as two extreme cases. Here, we especially pay attention
to whether the decision variable can reach the global optimum of the original problem with
changing the value of the objective function monotonically moving through the relaxed
feasible region. We show conditions for the existence of a continuous curve I(t). We call
the curve a monotone path, which is contained in the feasible region of the relaxation

problem and satisfies
(0)==z,l(1)=y and 1>s>t>0 & E(l(s)) < E(l(1),

where E(-) is the objective function, and & and y are arbitrary feasible solutions of the
original problem. We show the conditions about degree of relaxation for the existence
of a monotone path. In consequence, the existence of a monotone path does not require
convexity of the relaxation problem. We also derive some conditions for the local optimality
of feasible solutions in the nonconvex relaxation problem of which the dimension of the

expanded space is two.



Chapter 4 : Chapter 4 concentrates on a subclass of the the original problems where each
real variable takes value 41 or —1. We investigate detailed properties of the nonconvex

relaxation problems, and show that

¢ By applying the existence of a monotone path, some optimization algorithms designed
for the original problems, which includes Geomans and Williamson’s approximation
algorithm for the maximum cut problems, can be performed in the space consists of

hypercomplex numbers without changing the central ideas of the algorithms.
e For some classes of problem instances, any local optimum of a nonconvex relaxation

problem provides a lower bound of the optimal value of the original problem.

Chapter 5 : Chapter 5 provides two optimization algorithms which exploit analytical results
described in Chapters 3 and 4. We demonstrate some results of computational experiments
for the maximum cut problems. We confirm that the performance of one of the proposed

algorithms is better than the tabu search algorithm.

Chapter 6 : Chapter 6 summarizes the results in this thesis and mentions interesting future

research topics.

1.4 Symbols and Notation

We use the following symbols and notation.

Z : set of all integers

R ¢ set of all real numbers

C : set of all complex numbers

Fy set of all M-dimensional hypercomplex numbers with a definition of multipli-
cation

R(a) : real part of a complex or a hypercomplex number a

Xa) : imaginary part of a complex number a

J : imaginary unit of complex numbers

a* complex conjugate of a complex or hypercomplex number a

Sy : set of all N x N real symmetry matrices

SY : set of all N x N real symmetry matrices whose diagonal entries are all zero

AT : transpose of a vector or a matrix A

€; : the vector with ¢th entry 1, and 0 elsewhere

E;; :  the matrix having 4-jth entry 1, and 0 elsewhere

E;(¢) : the diagonal matrix having i-ith entry eJ ¢, and 1 at any other diagonal entries

E;(¢) : the diagonal matrix with ¢-ith entry 1, and eJ? at any other diagonal entries

0 1 the vector of all zero



[0 :  the square matrix of all zero

A>B : amatrix A~ B € Sy is positive semidefinite

Matrices W, A;, and A; and scalars M, K and € are used for representing parameters or data

of the original and the relaxation problems in whole parts of this thesis.

W :  coeflicient matrix of the quadratic objective function

A;, A, : coeflicient matrices of the quadratic constraints

dimension of hypercomplex numbers in relaxation problems
a positive parameter used for defining the feasible region of the relaxation

problems
a subset of natural numbers which defines feasible region of the original prob-

K

lems
Once they are defined, we will use them without stating explicitly.



Chapter 2

Problem Formulation

In this chapter, we formulate the class of original problems and their relaxation problems con-
sidered in this thesis. The original problem QP is minimization of indefinite quadratic function
under nonconvex quadratic constraints. This class is NP-hard and can capture a lot of applica-
tions in wide disciplines. The class of relaxation problems QP¢, is defined in such a way that
each real scalar variable of the original problem is generalized to a M-dimensional hypercomplex
number. The relaxation problems are not convex in general and have two parameters, namely,
the dimension M of hypercomplex numbers and stretch € of the feasible region in the directions
of imaginary axes. Moreover, the relaxation problems include the original problem as a special

case.

All original problems considered are minimizations of quadratic function under quadratic
constraints. The terminologies “feasible solution”, “local optimum”, “global optimum”, and so
on are defined here for minimization P of the objective function g(z) € R in the feasible region

D. The notation ||| appears in definitions is some appropriate norm of .
Definition 2.1 Z s a feasible solution of P if and only if & € D.

Definition 2.2 & € D is a local optimum of P if and only if there exists a real constant § > 0

satisfying
g(Z) < g(x) for all x € D such that ||z — Z| < 4.

Definition 2.3 & € D is a strict local optimum of P if and only if there exists a real constant

0 > 0 satisfying
g(z) < g(x) for all € D such that 0 # ||z — Z|| < 4.

Definition 2.4 & € D is a global optimum of P if and only if
9(@) < g(a) ; Vo € D.

We also call such an T a optimal solution of P.

10



Definition 2.5 A real scalar « is the optimal value of P if and only if

o= g(&),

where & is a global optimum of P.

2.1 Original Problem

Let KC {1,---,N}, W € 8y, b; € RV, and ¢; € R In addition, let A; be defined by

Ai = a b;r )
b, A;

where A; € Sy_1. We describe a class of minimization problems as QP.

Min. . E@) =Wz
zTAx <0 for i=1,---,L
Subj.to : z€Dap=cz€RY| z; € {~1,+1} for ie K

;’131:1

(QP)

The class QP is minimization of a quadratic function under quadratic constraints. In fact, the
constraint z; € {—1,+1} is redundant since it can be described by two quadratic inequality
constraints. However, we use this description of QP for simplicity of later analyses.

The 0-1 quadratic programming(or the maximum cut problems) is reduced to Py, a subclass
of QP with K = 0, by letting all diagonal entries of W be 0.

Min. . E@) =2z"Wz
(P1)

Subj. to mEDlz{meR

z;€[-1,+1] for i=1,---,N
331:1

Of course, the problem also can be defined as the case where A; = O and K = {1,---,N}. We
begin analyses with the case the original problem is in QP and present detailed results for the
special cases in chapter 4.

The class QP can capture a lot of applications, for example, optimal control problems of
hybrid systems [46, 47] and many problems appear in planning and location [32]. Even if QP is
restricted to Py, it covers problems appear in circuit layout design [31], statistical physics [30, 31],
and so on. Furthermore, P is NP-hard in spite its simple outcome [39].

IFKX=0, A > O, and W = O, then QP becomes a class of convex optimization problem.
Therefore, QP can be solved efficiently by polynomial time interior point algorithms [3] in those
cases. For some NP-hard subclasses of QP, optimization algorithms having average case time
complexity which is not so worse are known [41, 42]. However, in general, no efficient opti-
mization algorithm is known for the general class of QP, and the existence of a polynomial time

algorithm is considered to be hopeless. Therefore, heuristics like tabu search, genetic algorithms,

11



and simulated annealing are adopted in obtaining feasible solutions which are acceptable in real
applications. As well as this, strategies like branch and bound method are selected to reduce

the computational effort required to obtain the optimal solution of QP in many situations.

2.2 Nonconvex Relaxation Problem

Our formulation of relaxation problems is based on generalizing scalar decision variables to
higher dimensional numbers. We use terminology “hypercomplex number” for calling the multi-

dimensional numbers mainly because

o We want use properties such that a set of lower dimensional numbers can be defined as a

subset of higher dimensional numbers.
e Most of our analyses are described in term of the ordinary complex numbers.

We can simplify the definition of hypercomplex numbers as far as it is in our analyses though
there are freedoms in defining multiplication of imaginary units. Therefore, using the terminol-
ogy “hypercomplex numbers” helps to simplify our formulation of relaxation problems. For the

detail of hypercomplex numbers, see appendix A or reference [24].

2.2.1 Expanding the space of decision variables to the Space consists of Hy-

percomplex Numbers
At first, we generalize the real decision variable
= ( T1, e, TN )TeRN
of QP to the hypercomplex number
T = <x1 S XpN )TEIE‘%
x; = ( T - T ) € Fur,

where each x; is a hypercomplex number and z;;s are real variables. We call z;; the real part
of the hypercomplex number x; and represent the real part by R(x;). We use notation z® to
represent a vector consists of 1 — 1th imaginary part of = € ]F% In other words, (%) is defined
by

(0 T
2@ = ( £u Tn o+ TNi ) _ (2.1)
In addition, the complex conjugate x} of x; € Fys is defined by

E 3
X, = ( Tyl —Tiz T3 —TM ) € Fu.

12



In the same way, z* € IF% is defined by
T o
¥ = ( x1* x* - xnN* ) € Fy.
Secondly, we define some rules of multiplication of hypercomplex numbers. Let
The multiplication of hypercomplex numbers x and y in this thesis requires
xy = z1y1 + p(x,y) € Fy

and

M
x'x = Z ziz; € R,

=1
where, u(x,y) is the term depends on the definition of multiplication of the imaginary units.

We also require
x'y+y'xeR

Note that the real numbers, the ordinary complex numbers, and the quaternions satisfy the
above properties. In addition, they are written as F; = R, Fo = C, and Fy, respectively.

Additionally, we use notation

M
<xy>= 3 my

=1
for x,y € Fpr. We also use notation like x =1, z; = 3, 2, = ejt, x = cos(wt) + j sin(nt) for

cases such as x € R and z; € C. Moreover, we introduce norms for x € F; and = € IFAN4, namely,

(2.2)

(2.3)

where € is a positive constant. We will omit € if € = 1 hereafter.

Finally, note that there are relations R C C C Fy; (M > 2) under a consistent definition of

multiplication. In other words, elements of R, C, Fs,--- are represented as
(zm 0 0 0 --- 0 ) eRCC,
1 z9 0 0 .- 0 e CCF: ,
( ) 3 (2.4

( 1 9 3 0 --- 0 ) el CFy

13



2.2.2 Formulation of Nonconvex Relaxation Problem

Relaxation problems for QP to the space consists of hypercomplex numbers are defined as

P, using the definition of hypercomplex numbers in the previous subsection.
M g

Min. . E@)=z"TWe

P€
QP ) Subj.to : @€ DSy,

, Where D; 18 defined by

M
ARE. PO —15 Za:(j)TAim(j) <0 for i=1,-+-,L
€

D€M= mEFﬁ J=2
g |x;le=1 for i€ K

X1=l

The class QP is relaxation of QP since it coincides with QP if we impose constraints
z® =0 i=2--- M.

We can check this fact immediately from the definition of hypercomplex numbers. As well as
this, the relation D, C Dgp holds if A < B from eq.(2.4). For this reason, M is considered to
be representing the degree of relaxation of QPS§,.

In case the original problem is restricted to Py, then QP is represented simply as P§,

Min. . E@)=z""Wz

€
(Phr) Subj. to a:E’Dﬁwz{a:E}F%

|xile<1 for i=1,---,N }

X1=1

The class P§; is often used not only as examples for explaining properties of QP$,, but also for
investigating detailed properties in chapter 4..

The class QPS; is not convex in general. Hence, we cannot obtain a global optimum of
QPS5 in general as long we are using a simple decent type search algorithm. Therefore, strategies
that requires a global optimum of the relaxation problem are not applicable immediately. For
example, we cannot exploit QP§, in calculating a lower bound of the optimal value of QP in
branch and bound method immediately.

Nevertheless, the formulation QP has other advantages. The crucial properties of this

formulation of relaxation problems are listed as follows.
e The degree of relaxation is parametrized by M and .
e QPj, is not convex in general and includes the original problem as a special case.

These facts allow to consider relationship between the degree of relaxation and properties em-

bedded by relaxing the feasible region. In other words, we will be able to take into account

14



the trade-off between the precise description of the requirements from the real world applica-
tions and tractability in numerical computation. We consider that analyses according to this

viewpoint will result in :

- maximization of the performance of known optimization algorithms by adjusting the degree

of relaxation represented by M and €

- constructing optimization algorithms which require some desirable properties of problems

; the properties are not found in the original problem

Our approach will gain significance especially for situations in which convex relaxation problems

are too far from the original problem to be utilized in solving the original problems.
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Chapter 3

Properties of Nonconvex Relaxation

Problems

In this chapter, we describe fundamental properties of the relaxation problem QP defined
in the previous chapter. First, we see some properties derived directly from the definition of
QP$,;. The relaxation problem QP9, connects the original problem and the convex relaxation
problem in term of semidefinite programming(SDP) continuously with parameter €, and divide
problems between the original problem and SDP relaxation problem into some grades derived by
the parameter M. Next, we define a “monotone path” which plays a crucial role in this thesis.
It is a continuous curve in the feasible region Dgps- 1f we change the decision variables along the
curve, the value of the objective function changes monotonically. The existence of a monotone
path is considered to be one of the most fundamental properties in constructing optimization
algorithms. We show conditions about M and e for the existence of a monotone path. If M > 2
and € = 1, then a monotone path exists for any problem instance. We also show some conditions

for local optimality of feasible solutions of the relaxation problem of which M = 2 and € = 1.

3.1 Relationship among the Original Problem, the Nonconvex
Relaxation Problem and the Convex Relaxation Problem

As we have seen in the previous chapter, the feasible region of the relaxation problem to the

space consists of higher dimensional hypercomplex numbers includes that of lower dimensional

hypercomplex numbers for the same e. Moreover, we have the following proposition in case

Dy is convex.

Proposition 3.1 Let all A;s be positive semidefinite and let K = 0. Then Dgpr 18 convez for

any € and M.
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Proof : Let z be a real vector whose entries are defined by

z= ( Z12 Z13 -t TiMm oo T22 T23 v Tom > T32 T3y v vttt INM )T
for simplicity of notation. Then each quadratic constraint of QP$, about A; is written as

ai(z) =2"Biz+ flz+a; <0 (3.1)
by substituting the constraint x; = 1, where B; € Spyy (1) is a positive semidefinite block

diagonal matrix whose diagonal entries are A; or e%Ai' Therefore, a;(z) is a convex function.

Hence, its level set is convex. Consequently, their intersection Dg,, is convex. n

Moreover, the feasible region for large e includes that for small € if A;s are all positive

semidefinite and K = 0. Hence, the following corollary is derived immediately from eq.(3.1).

Corollary 3.1 Let 0 < v < € and K = 0, and let all A;s be positive semidefinite. Then
DgM C Dgpy holds.

In this sense, the parameter M and e represent the degree of relaxation. In addition, the degree
is understood as inclusion of the feasible regions.

Next, we consider the case M = N and ¢ = 1 together with the SDP relaxation problem
QPsdp'

Min. : trace (XW)

QP
(P ) hito - X € Dygp

The feasible region D4, is defined by

trace(X./L) <0 for i=1,---,L
X;=1for 1€k

X0

Xn=1

Dsdp: X €Sy

where X;; denotes ¢-jth entry of the real symmetry matrix X.

The constraint X > O yields that there are x;s satisfying
Xij =< X;, X5 >

for any ¢ and j. Therefore the value of the objective function is coincident with E(z) of QP .

Namely,

N N N N N N N
trace (XW) = Z Zwiniﬂ' = E Zwij <X, X5 >= Z Zwij Zﬂiikfﬁjk
i=1 j=1 i=1 j=1 i=1j=1 k=1
N [N N N
= z Z Z Wi TigTik | = Z w(k)TW:c(k)
k=1 \i=1 j=1 k=1

= "Wz = E(z)
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holds for e =1 and M = N. In addition, we obtain

M
trace (X A;) = Z eO7T A,20) (3.2)
j=1
in the same manner. -

The class QPyqp, is a class of semidefinite programming problems which can be solved in
polynomial time. Moreover, the transformation from positive semidefinite X € Sy to & € IE‘%
also can be done in polynomial time. In this sense, QP%,; with M = N and € = 1 is equivalent
to the convex relaxation problem QP g4y,

On the other hand, QP¢,; becomes QP when M = 1 as we have seen in the previous chapter.
In addition, if A;s are all positive semidefinite and D;M is bounded, then QP§, converges to
QP as € — +0 in the sense that £(9)(j # 1)s in the right hand side of eq.(3.2) must converge to

0 to keep « feasible. More precisely, we have the following proposition.

Proposition 3.2 Let all Ajs be positive semidefinite, Dipr be bounded for any € > 0, and
M e N. In addition, let 6 > 0 be an arbitrary positive number. Then there exists an € > 0 such
that

. @ € Dg,, implies |29 < 6 fori=2,---, M.
Proof : Let define
‘ T
ml(z) = ( To; X3 **° TN ) ERN_l (i=1,~~',M).

Let Ap(A;) and A, (A;) be the maximal and the minimal eigenvalues of A;, respectively. Then,
there are positive constants Kj;s such that

m/(i)TAjwl(i) <€2Kij < 00 (z'=2,--~,M)

for any @ € D), and j € {1,---, L}.
When ' is not included in the eigenspace of Am(A;) or all Ajs are positive definite, there
is a constant A% such that 0 < A% < A\pr(A;) and

' OT A;2'0) = ||2'® )20 = || |22 < @K, (i =2,---, M).
Hence, there is an € such that

lz9)? < eK =6% (i=2,---,M). (3.3)
for any 6 > 0, where K is defined by

K..
K = max —2.
i,j(i#1) AW
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In case ') is included in the eigenspace of Am(A;) and A; is not positive definite, similar

discussions to derive eq.(3.3) must hold for at least one other constraint. Otherwise,
ml(i)TAjml(i) — (k,ml(z)T)AJ(kml(z))

or | kx; |e= 1 must hold for any k € R and j € {2,---, L} since the linear terms with respect to

the imaginary parts vanish. This contradicts to the boundedness of Deys- |

Note that proposition 3.2 does not require X = . This leads us to the conclusion that the
formulation QP connects the original problem and the convex relaxation problem continuously
by the parameter €, and divides relaxation problems between two extreme case into some grades
defined by M. The relationship among QP, QP5,, and QPqp, is illustrated in Fig.3.1.

At the end of this section, we mention to two extreme cases of problem instances. There are

at least one problem instance of QP such that

e Ome of the nonconvex relaxation problem, which is not the original problem QP, has

exponentially many strict local optima.

e One of the nonconvex relaxation problem has infinitely many local optima even if the

number of local optima of the original problem is finite.

The concrete examples of the extreme cases are left for the next chapter since the proof requires

descriptions there.

original problem

M=1or (e — 40 and boundedness of D; M)

nonconvex relaxation

QPsdp

M=Nande=1

convex relaxation

Figure 3.1: relationship among QP, QPY,, and QPgqp
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Imaginary

Figure 3.2: monotone path ()

3.2 Monotone Path

In this section, we define a “monotone path” which plays a crucial role in the rest of this thesis
and analyze its properties.

We are interested in whether the decision variable  can move continuously to the global
optimum of the original problem without increasing the value of the objective function E(z)
from an arbitrary feasible solution of the original problem QP. If it is impossible, then no decent
type local search algorithm can find a global optimum of the original problem for some initial
solutions and problem data. Immediately from the discussions in previous section, it is possible
if QPS, is equivalent to the convex optimization problem QP.4p- On the contrary, there are
many problem instances for which it is not possible to move if QP is equivalent to the original
problem QP.

First, we define a monotone path as follows.

Definition 3.1 Let z,y € Dy1 and E(x) > E(y). Consider a continuous map 1 : [0,1] — 123y,
such that

(0)==

)=y

1>s>t>0 & E(l(s)) < E(I(2)).
We call

{l(t)]t o, 1]} C Deyg

a monotone path between x and y.

If a monotone path exists for any € Dy and y € Dy (E(y) # E(z)), and if it is always

easy to compute the monotone path, then obtaining a global optimum of QP seems to be easy.
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In other words, we can find a global optimum of QP by starting from an arbitrary feasible
solution of the original problem and selecting the direction of movement appropriately.

To analyze around the existence of a monotone path, let @', 2" € Dg1, E(z) # E(z"), and

T
c_:z:’%—m”m o +2l zh+ah zhy + 2
2 2 2 7 2
' i ! "o " ! n\T
r__a:-—él: . iEl"‘ﬂ:l ZEQ"‘".’L’Q L .'L’N'—.'L’N
2 2 ’ 2 ’ ’ 2 )

In addition, define

I(t) = ¢+ r(cos(wt) + Fsin(nt)) , 0<¢t <L (3.4)
From eq.(3.4), we can show that there are real constants o and ( such that

1(t)*TKI(t) = a + Bcos(nt) (3.5)

for any K € Sy. Immediately, we can say that E{(z) is monotone on I(t). Therefore, I(t) is a
monotone path between &’ and &” if it is contained in the feasible region. As a consequence, we

have the following proposition.

L
’ m// Real

Figure 3.3: the monotone path defined by eq.(3.4)

Proposition 3.3 Let I(t) be defined by eq.(3.4). Lete=1, M > 2 and ',&" € Dg1. Then
W) €Dy, 0t <1
holds. Additionally, if Dg1 is convez, then € > 1 and M > 2 implies I(t) € Di -

Proof : The left hand side of the quadratic inequality constraints are monotone on I(t) from
eq.(3.5). In addition, the constraint | x; |¢= 1 holds for any ¢. Hence, ¢ = 1 and M > 2
implies I(t) € Dy, From similar manner and from corollary 3.1, the relation I(t) € Dgy holds
if z',2" € Dy and € > 1. |
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Here, note that proposition 3.3 does not care about the problem data except for convexity of
the feasible region Dy;.

Proposition 3.3 is a sufficient condition about M and €. Next, we show a necessary condition.

Proposition 3.4 For any N(N > 4), €(0 <e <1) and M(M > 1), there ezist A;s, W € Sy,
and K such that there is no monotone path between certain two feasible solutions of QP having
distinct objective values(even if A; = O).

Proof : We will show an example for which no monotone path exists. Consider a matrix

W € 8% having entries

= - = = —1
Wi 21 = W34 = W43 (3.6)
Wiz = W31 = W14 = W41 = W3 = W3z = W4 = We = 0,
and other off-diagonal entries w;; = k. In other words, define W by
0 -1 & 46 Kk &
-1 0 &6 6§ Kk K
) -1 Kk &
W = 6 & -1 0 k& x ,
K kK K Kk 0 &
K kK K K kK 0
where § and x are constants satisfying
1 =
0<—6<§and0<—f<a<—ﬁ. (3.7)

Let A;=0and K={1,---,N} (orlet ¢; = —1,b; =0, A; = E;; and K = 0).
For the above problem instance, the objective function is represented as
E(:B) = —2<X,X2 > —2<X3,X4 >
20(< x1,x3 > 4+ < X1,X4 > + < X2,X3 > + < X9,%X4 >) + afz),

where | a(z) |< —6 holds for any x € Df,, from definition of § and . On the other hand, it is
easy to show that

et =(1,1,1,1,1,---, )7 and 2?=(1,1,-1,-1,1,---, )T
4 N-—-4 4 N-4

are strict local optima of QP. The value of the objective function at ' and @ are represented

as

E(xz!) = —4+85+a(z!)
E(x?) = —-4-86+a(z?).
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Moreover, ! is the unique global optimum of the original problem.
From the constraint x; = 1, we have z1; = 0(j # 1). Therefore, the objective function is

represented as
E(z) = —2291 — 2 < X3,X4 > +26(z31 + 241+ < Xo,X3 > + < X2,%X4 >) + a(x).

Additionally, there exists a feasible solution & satisfying x3; = 0 between 2! and 2 since z3; = 1

at z' and z3; = —1 at 2. The objective function at Z is written as
M M
E(@) = —2%9 -2 (Z igii‘4i> +26%41 + 26 <Z :T:gizigi) +20 < %9, %y > +a(B)
=2 =2
> —2 — 26% + 20 + 20€% 4 26 + o(&). (3.8)

Consequently, we have the following relation.
B = E(@)- E@?
> {-2-26+20+206* + 20 + (@)} — {~4+ 85 + a(z?)}
> 2 —2¢% 4+ §(14 + 2€%) (3.9)
For this reason, 8 > 0 implies
E(z) > E(z?) > E(z!) (3.10)

and eq.(3.10) means that that E(z) must increase at & when & moves from z! to z2.

If we define § so as to satisfy

2
e —1
0> — 3.11
-l (3.11)
then eq.(3.10) holds.
As a conclusion, there is no monotone path between @' and z? if § satisfies eq.(3.11). m

From propositions 3.3 and 3.4, the relaxation problem which is the nearest to the original
problem QP among relaxation problems that ensure the existence of a monotone path is QP.,,
that is, a relaxation problem in which M = 2 and € = 1. Here, note that QP, is not convex.

Therefore, convexity is not necessary for ensuring the existence of a monotone path.

3.3 Optimality Conditions

In this section, we derive conditions for local optimality of feasible solutions in the relaxation
problem QP,. As we have seen in the previous section, the relaxation problem in which € = 1
and M = 2 is the critical case of our nonconvex relaxation problems in the criterion for the
existence of a monotone path.

The conditions stated here utilize the fact that the feasible region is expanded towards the

directions of imaginary axes.
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Proposition 3.5 If z € Dy is a local optimum of QP,, then x is also a global optimum of the
original problem QP.

Proof : Let € D, be a local optimum of QP4 and let y € Dy; be any other feasible solution
of QP. Then we can define I(¢) by eq.(3.4) such that I(0) =  and I(1) = y.
The assumption that ¢ is a local optimum of QP, yields

M =0 and dzl(t) >0

In addition, E(y) > E(x) holds since E(I(t)) is monotone in ¢ € [0,1]. In other words, the

feasible solution @ is a global optimum of QP. |

Corollary 3.2 If QP, has only one local optimum, then the local optimum is a global optimum
of QP.
Proof : For any A € Sy,

z’TAz = 2T Az*

holds. Therefore, if the local optimum is unique, then £* = £ must hold for the local optimum
z. In other words, it must be in RY. The rest of the proof comes immediately from proposition
3.5. [

For some special instances, for example P, with W without positive entries, we can make
certain that the global optimum of QP is also a local optimum of Py. Consider an instance of

P, where all off-diagonal entries of W € Syq are negative. Then

z2=(11 - 1)T

is the unique global optimum and satisfies wyjz;2; = — | wy; | for any 4 and j. Therefore,
if ||z|| < N, then E(z) is greater than at Z. On the other hand, if z; ¢ R for some 4, then
R(wiiziz;) > — | wy; | holds. Hence, each such instances of P2 has a local optimum which is
also the unique global optimum of P;.

Proposition 3.5 can be understood as a necessary condition for local optimality of feasible
solutions in Dy; (C Dyz). On the other hand, the following proposition is a necessary condition

for the case © ¢ Dy;.

Proposition 3.6 Let W be defined by

1%% w
W = ( rlrl 12 - WT,
Wi, Wa

where W11 € Sk, Let x = (ml,a)Q)T € Dgo and x1 € CK. In addition, assume that

y = (@1,6d%29)T € Dyo (3.12)
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for any real number ¢ satisfying that | ¢ | is sufficiently small. Then x is a local optimum of
QP, only if

Alz) =2"Wiaze <0 forany Ke{l,--- N}.

Here, note that A(z) is not a real number in general.

Proof : The value of the objective function is written as
E(z) = En(cc) + Elg(m) + EQQ(.’L‘),

where E’ll(m) = :c’{TWHa:l y E12(£L’) = 2% (mTTWqu) 5 and EQQ((B) = m;TWQQUL'Q.

Consider a feasible solution
‘ T
y = ( ml e]¢a32 )
Then Eq1(x) = Eq11(y) and Eoz(x) = Egs(y) holds. The term Fj5(y) is represented as

Ep(y) = :n*l‘TWu:J:gej‘l5 + m;TW12$16_j¢ = CeJ0+4) | Ce=J(6+9)
= 2Ccos(f + ¢),
where A(z) = {TWisms = Cel? and C € R
If A(z) ¢ R, then 6 # 0(modn) holds. In addition, this implies

dE2(y) ’
i |4

Therefore, there is a feasible solution y such that E(x) > E(y). Hence,  is not a local optimum.

£ 0.

In case A(z) € R, the inequality A(z) > 0 implies
dE12(y)

SN =0
d¢ l¢:0
and
d2E15(y) ’ <0
P2

Hence, such an x is not a local optimum from the same reason.

Consequently, x is not a local optimum of Ps if A(z) < 0 does not hold. |

Note that sorting the order of indices of variables preserves proposition 3.6 for P, since the
assumption in eq.(3.12) is automatically satisfied. Therefore, we have the following corollary of

proposition 3.6.
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Corollary 3.3 Let T C Sy be the set of matrices having only one 1 in each column and each
row, and having entry 0 elsewhere. In addition, let W' be defined by T-TWT™! and &' be
defined by Tz, where T € T. Moreover, we represent W' as

WI — < /11 3.2 > — WIT
W Wi
where W', € Sk. Finally, let ' = (2, z})" € Dy and !} € C¥.
Then x is a local optimum of Ps only if

et TWiah <0 forany Ke{l,--,N} and TeT

Proposition 3.6 is not a sufficient condition for local optimality. Consider an instance of
P; and one of its local optima Z other than a global optimum. Then it is easy to show an
example Z which satisfies the condition in proposition 3.6 and does not satisfy the condition in

proposition 3.5. An example is represented as
0 —-10 1 1

w=| 1 0 b ,5:=(1111)T.

On the other hand, corollary 3.3 requires conditions more than the first order KKT con-
dition [38, 40] for Py. The first order KKT condition is equivalent to the presence of \; > 0

satisfying
2R(z1) 0 0
0 2§R(.’EQ)
: : 0
w O 0 0 2R
20 =2 zZ+ A + A + AN (en) =0,
o w 2%(z1) 0
0 2%(z9)
: 0
0 0 2%(zN)
where

2= (a0 2@ ) erN,

In fact, this condition is derived from the case of K =1 in corollary 3.3. Let

N
Uy = Z WijTyj.
j=1
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Then $(u;) = vipn and R(u;) = v; from definition of v. Moreover, the case K = 1 of corollary

3.3 is written as
Lu; + Lz} = Lu; — Lz = T.

Finally, this condition implies the presence of nonnegative A;s.
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Chapter 4

Relaxation Problem for 0-1

Quadratic Optimization

In this chapter we restrict our original problems to 0-1 quadratic optimization. For this class
of original problems, we can derive more strong properties. One of the results enables us to
generalize feasible region {—1,+1}¥ to discrete subset of the space of hypercomplex numbers
without affecting the optimal value of the problem. As a consequence, this property leads us to
generalizing some optimization algorithms which are designed directly for the original problem
or exploit the convex relaxation. We demonstrate the effect theoretically through Goemans
and Williamson’s approximation algorithm for the maximum cut problems (The demonstration
through experiments appears in chapter 5). In this chapter, we also show that for some classes
of problem instances, any local optima of the relaxation problem P give a lower bound of the

optimal value of the original problem in spite the relaxation problem is not convex.

4.1 Projection from Higher Dimensional Space to Lower Dimen-
' sional Space

The example of a monotone path defined by eq.(3.4) implies that if we know a feasible solution

z of Py, which satisfles some conditions, then we can obtain & € D; satisfying E(Z) < E(z),

immediately. Here, we show such a procedure.

Let define a set Dy C Fpy by
Dya={x €Fur | x € {~1,0, 41" | |x|=1 3 (4.1)
For example,
Dig ={-1,+1}
if M =1, and

D2d = {_1a +1a '—ja +J} .
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it M =2.

For the case M # 1, let @ and § be arbitrary natural numbers satisfying
1<a<M,2<<M and a#p.

Then we can define &', " € D}, in such a way that

x; = (251, Tipg) » X5 = (T30, Ting) > $E€{L,--, N} (4.2)
ml frmsaand (Xi, Y 7XIIV)T y m” prmmed (X{I./?' . ,XIZ/\I)T (4.3)

wgﬁzx%:() , 1€{1,---,N}

;

Tio =19 -1 if zp=+1 , i€{l,--,N}

Tiw if Zip =0

$;,Ia=< -1 if .Tzlgz—]_ , ZG{].,,N}

L ZTin if .’Eiﬁzo

, " i=1,---,N
Tij = Tig = Tij (4.4)
je{l,---,N}\{e, 8}

by using € D]]\VM. Then the following proposition holds.

Proposition 4.1 Let 2’ and " be defined from eq.(4.2) through eq.(4.4). Then

Ble) = 3B + B(=")] (4.5)
holds for any o, B, and = € DY,

Proof : Let identify

() T
T :<$1a Toq ¢ xNa)

as the real part (1) of z without loss of generality. By exchanging the indices of imaginary
part, we can define ' and =" as the start point 1(0) and the end point I(1) of the monotone
path defined as I(¢) in eq.(3.4) for any = € D}},. Then z coincides with the point 1(1/2) on the

monotone path. Therefore,
E(1(0) - E(1(1/2)) = E(1(1/2)) - E({(1)) (4.6)

holds since E(I(t)) is represented as eq.(3.4). Finally, eq. (4.6) is identical to eq.(4.5). |
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Next, we construct a procedure that exploits proposition 4.1. Let Prj(-) : DY, — DY, be
defined by

Pri(s) = { :1::/ if E(z')<E(=")

, (4.7
"  else

and let Shift(-) : DI, — DI, be
Shift(z) = (Prj()V, -, Prj(z) Y, Prj(@) Y, -, Pri(z) ™0, Prj(z)®)  (48)

by using notation in eq.(2.1). Then Shift(z) € DI}, can be represented as a hypercomplex
number whose dimension is less than M since each entry of Prj(z)® is zero.

For these reasons, by using given = € DJJXM, we can find a feasible solution Shift(x) where
the value of the objective function is no more than at E(x) and the minimal dimension of

hypercomplex numbers necessary to represent it is less than M. That is,
e E(x) > E(Shift(z))
e z € DY, = Shift(z) € DJ\]\/TI—l,d'

Moreover, we obtain a feasible solution of Py by using Shift(-) M — 1 times. Furthermore, the
definition of Shift(-) implies that many optimization algorithms or procedures will be generalized

from ¢ € Df; to x € DAA[[ 4+ We actually generalize an optimization algorithm in chapter 5.

It)=el™r  0<t<1

—J
Figure 4.1: Doy and monotone path I(t)

Here note that procedures described from eq.(4.2) through eq.(4.8) can be done in O(N?M),
that is, in polynomial time. This observation allows us to generalize a polynomial time approx-

imation algorithm in the following section.
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4.2 Improvement of Goemans and Williamson’s Approximation

Algorithm for the Maximum Cut Problems

In this section, we consider a polynomial time approximation algorithm for the maximum cut
problems. Goemans and Williamson’s approximation algorithm [16] is one of the approximation
algorithms for the maximum cut problems. The approximation rate is still the best known
one for the maximum cut problems though some generalizations for general classes of original
problems are reported [17, 18, 19].

Here, we generalize Goemans and Williamson’s algorithm to try to increase the approxima-
tion rate by using results in the previous section.

Note that we use “maximize” instead of “minimize” only in this section.

4.2.1 Goemans and Williamson’s Approximation Algorithm

We describe the maximum cut problems as M Cjy.

1
(MC;) Maximize F(z) = ZmTL:c , Subject to z € {~1,+1}"

In MCy, L is a given real symmetry and positive semidefinite matrix. Its entries are defined in

such a way that
e W = (w;;) €S% : a given matrix whose each off-diagonal entry is nonnegative.

o If i # j, then i-jth entry of L is —w;;.

N
e The i-ith entry of L equals to Z Wij.
j=1
If W is the adjacency matrix of a graph, then MC; coincides with the original definition of the
maximum cut problems, “Find a subset V' of vertices of a given graph which mazimize the sum
of weights of edges whose one endpoint is in V and the another is not’.
The approximation rate « of algorithm (A) for a maximization problem is defined by
_(p—-p)
T e-p
where p is the expected value of the objective function at a solution generated by (A). The
values p and p are supremum and infimum of the value of the objective function in the feasible
region, respectively. For MCy, it is easy to show p = 0 for any L. We assume p # 0 ; this is
equivalent to ||W|| # 0.
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Goemans and Williamson’s approximation algorithm achieves the rate o > 0.87856 for any

instances of MCj. In this algorithm, a relaxation problem MCigqp is used as a subroutine.

1
Maximize Ztrace (XL)
X=XT»-0
Xii?—l for 'i'—“l,---,N

( MCsdp) .
Subject to

The approximation algorithm is described as follows.

Goemans and Williamson’s Approximation Algorithm

1. Let X be an optimal solution of MCsqp.

2. Generate N vectors vy, .-, vy by
X=vVvT?
V: ( 1 -+ UN ),

The constraint X;; = 1 guarantees that each v; is on the origin cen-

tered unit sphere S.
3. Generate a vector h by uniform distribution on S.
4. Define feasible solution z; of MCj by a rule such that
1 if v]h>0
I’:{ 1 if WTh<0

Then the expectation of the value of the objective function is given by

1 N N N N Tz
E(F(z)) = E ZZZwij(l—xix] 2221% [ ZJ]

=1 j=1 i=1 j=1

l\Dr—-A

= Z ZwUPr [sign(v; - h) # sign(v; - h)]

1 arccos(v; - v;)
- el

This is also written as

=S g 13 S (1),

i=1 j=1 i=1 j=1

where 0;; is the angle between v; and v;, that is, arccos(v; - v;).
Note that the problem of maximizing E(F(z)) is a generalization of MC; and is also a

relaxation problem. In other words,

(i) If {(v1,---,vn) is a optimum of MCy, then E(F(x)) is coincident with the optimal value
D.
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(ii) The value E(F(z)) must be no more than p from the definition.

By the way, from the fact that

1
M > -2-a(1 —y), a>0.8756
T

at y € [—1,1](see [16]), we have

1 N N
E(F(cc)) > Za;;wzj(l - ;- 'vj) (4.10)

in case v;s are generated by Cholesky factorization of the solution of MCsyqp. Additionally, the

problem of maximizing the right hand side of eq.(4.10) is equivalent to MCsgqp. Therefore,
E(F(z)) > a x ( optimal value of MCqqgp) > ap

holds.

4.2.2 Improvement via Nonconvex Relaxation Approach

Let v;s be vectors on S. Let h; and kg be vectors generated by independent uniform distribution
on S. Then define z;s by

1 if  (vfhi>0)A(vThy>0)

2 — J i (IR >0)A(v]he <0) (4.11)
~j if  (v}hi <0)A(vFhy >0)
-1 if (vFhy <0)A(vThy <0)

Here, the second and third cases in eq.(4.11) are caused by hs which does not appear in the

original algorithm.

Consider a problem MCg together with eq.(4.11).

1
(MCz ) maximize F(z) = Zm*TLa: , st e {-1,+41,5,—5} = DY,

Based on the above definition, we have the following proposition. This means that we obtain

an algorithm whose approximation rate equals to Goemans and Williamson’s one.

Proposition 4.2 Let v;s in eq.({.11) be generated from the solution of MCgqp. Let z;s be
generated by eq.(4.11). Then the expectation of F(x) is represented as

(NN TR
E(F(z)) = Zzzwi]‘_E Zzzwijmzxj

N N N N
1 1 7w — 20;;
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Sol. of MCSdp

eq.(4.11)% ﬁ Shift

Figure 4.2: Goemans and Williamson’s approximation algorithm

Note that eq.(4.12) is coincident with the expectation of Goemans and Williamson’s approxi-

mation rate.
Proof : First, we have

T — 0;;

Pr[sign(v; - hy) = sign(v; - hy)] = -

Pr[sign(u: - hy) # sign(e; - hi)] = 2
for any 4, j and k(see [16] for detail). Next, for k = 1,2, we have
Pr(sign(v; - hy) = 1] = Prsign(v; - hg) = —1] = 0.5

from independency of v; and h;. Hence, we have

=05\

7r9” )
Pr [QS:LEJ = —l] =Pr [Z‘Z = —:cj] = (—f)

. . . ) 0;: T — 0
Priziz; = j]l =Prlziz; = —j] = (7]) <_7r—]>

from eq.(4.11) and eq.(4.13). Therefore,

BR(wyeiz)] = wy {1' (Ef—> ~eu- (%) 2}

= % (7r2 - 27r9ij) =

. (7(——292'j). .

holds. Finally, independency of summation of expectation yields eq.(4.12).

(4.13)

(4.14)

(4.15)

The proposition 4.2 means that changing the target of projection from ’D{Yi to Dé\fi does not

affect the expected value of the objective function. Until now, the projected solution is not a
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feasible solution of MC;. However, we can obtain a feasible solution of M(Cy by using Shift(-)
and the value of objective function does not become worse as we have seen in proposition 4.1. In
addition, the algorithm after generalization is also a polynomial time approximation algorithm
since Shift(-) can be done in polynomial time.

Proposition 4.3 yields the change of the expectation of the objective value caused by Shift(-).

Proposition 4.3 Let the inequality in eq.(4.7) be ”>”, here(since we are formulating the maz-

imum cut problems as a mazimization problem). Then F(Shift(z)) — F(z) is represented as

N N
1
F(Shift(z)) - F(z) = 5 |S >0 wiziz; (4.16)
i=1 j=i+1

Proof : Let x be given by eq.(4.11) and L be represented as W in proposition 3.6. In
addition, let @1 € {—1,+1}* and @y € {—j,+4}¥~K without loss of generality. Then the

objective function is represented as
1 * * * *
F(.’L’) = Z (iBiTLHlUl + $2TL22:E2 + ZBITL]_Q:BQ + .'Z}ZTL;Ple) .
The increase of the objective function by Shift(-) is represented as
1 ] *TL T l
2 Ty L2

since the operation Prj(-) multiplies j or —j to x3. Hence, we have eq.(4.16). [

Immediately from the result that eq.(4.16) is nonnegative, we have E(F(Shift(z))) > ap.
In this thesis, we do not try to check whether

, 1 L& I ga s 7 —26;
E[F(Shift(z))] > ZZZW ~ ZZZ@UU . (4.17)

. - - - ™
i=1 j=1 =1 j=1

In other words, we do not check whether the approximation rate is a constant strictly greater

than o = 0.878 - .- since any analysis with respect only to the effect of Shift(-) does not work
for checking eq.(4.17). ‘

The value E [F(Shift(z)) — F(x)] depends on v;s because we use eq.(4.11). For some v;s,
E[F(Shift(z)) — F(z)] = 0 (4.18)

holds. The optimum of MCj is an instance of such cases.

Note that eq.(4.18) does not mean
minE[F(z)| = minE [F(Shift(x
i [F ()] vin B [F(Shift (x))]

since E [F(z)] may be always larger than «p whenever F(Shift(z)) — F(x) is small.
Note also that Goemans and Williamson'’s approximation algorithm is the best known poly-

nomial time approximation algorithm in the sense of the presence of a theoretical guarantee
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about both of time complexity and approximation rate. On the contrary, it does not match to
many heuristics [37] in numerical experiments. Hence, evaluating eq.(4.18) in numerical compu-
tation does not seem to be attractive. In our computational experiments, the modified version
of Goemans and Williamson’s algorithm did not match to heuristics at all ; the original one did
not magtch, too.

On the other hand, of course, we can make M large in projection of eq.(4.11), and it may
yield an algorithm having better performance in practice. However, we do not have theoretical

guarantee except for M =1 and M = 2 yet.

4.3 Lower Bounds and Local Optima

In this section, we show that any local optimum of Py gives a lower bound of the optimal value
of P; for certain classes of W in spite P is not convex.

For general classes of W, we do not know whether any local optima of P3 give a lower bound.
However, if Py always gives a lower bound, then we can expect of Py to become a powerful tool

for calculating a lower bound since
- obtaining a local optimum is often easy even if the problem is not convex.

- the lower bound given at a local optimum is never worse than that given at a global
optimum. In addition, the lower bound by the global optimum of P is never worse than
that of the convex relaxation problem P .

4.3.1 Preliminaries

We describe lemmas used in the forthcoming discussions.
Let u := W, where each diagonal entry of W € Sy is zero. Define P; and its relaxation

problem P; by
(P7) Min a™Wa , st 2D} ={e€R"| s;e[-R,+R] and 21 =R, }
(P) Min "Wz , st mED?z{mECN‘ |z; |[<R; and z; =Ry }

, where R;s are positive constants. In addition, define sign;(-) : C\0 — R;e?® by
sign;(u) = %

In case R; = 1, we will dmit suffix . For u = ((uy,---,uy )T € {C\0}Y, sign(u) is defined by

sign(u) = ( sign; (w1), -+, signy (uy) )7

At the end of this subsection, we will show that sign(u) = —& must hold for any local optimum

of P; under an assumption that there is a j such that w;; # 0 for any <.

36



Let T be a diagonal matrix having diagonal entries 1 or —1, and 73; = 1. Consider instances
of PJ,

A)  Min E(z)=2"TWz |, st.zeD,
B) Min. F(y) =y*"W'y , st.ye Dy
C) Min. G(2) =2""Wz , st. zeDf

, where W and W is defined by @;; = w; (R;R;)"' and W' = TWT. In addition, let z; = R;z;
and y = Te.

Lemma 4.1 summarizes the relationship among A), B), and C).
Lemma 4.1 The following statements hold.
1. The decision variable z is feasible for C) if and only if « is feasible for A).
2. The relation E(x) = F(y) = G(z) holds for any x € Ds.
3. Maps g : D2 — D2 defined by
y=Tx
and f : Dy — DJ defined by
z = f(z) = Diag(Ry, -, Ry)z

are homeomorphic, where Diag(a) is the diagonal matriz which takes vector a as its

diagonal elements.

4. The decision variable y is a local(global) optimum of B) if and only if © is a local(global)
optimum of A).

5. The decision variable z is a local(global) optimum of C) if and only if = is a local(global)
optimum of A).

Proof : Immediately from simple arithmetic inspections. [

Lemma 4.2 Let z,y,z € {C\0}, £+ y # 0 and Lz = Zz(mod~). In addition, assume
sign(z) = +sign(z + y).

Then
Zz = Zy(modm)

holds.
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Proof : Let Zz = Zz = 0O(modm) without loss of generality. Assume Zz # Zy(modr).
Immediately, we have $(z) = 0, S(y) # 0 and S(z + y) # 0. Therefore, £z # Z(z + y)(modr).

This means sign(z) # +sign(z + y), and it contradicts to the assumption. |

Lemma 4.3 Let € Dy and u; # 0. Then x is a local optimum of Py only if

sign(u;) = —x;. (4.19)

Proof : First, ujyzy < 0 must hold from the case of K = N — 1 in proposition 3.6. This result
yields

zy #0 = sign(uy) = —sign(zy).

Thus, sign(uy) = —azxn holds for the case zy # 0 since uy is the gradient of E(z) in the
direction of z .
From the same reason, the case zy = 0 need not be considered. Finally, the lemma follows

from corollary 3.3. m

Lemma 4.4 Assume that w;; # 0 for some j. Then u; = 0 implies & is not a local optimum of
Ps.

Proof : First, we consider the cases 1 # 1. Let u; = 0. Then z; does not contribute to u;
and E(x) since E(x) is multilinear. Hence, u; = 0 holds at & + de; for any complex number
8. Moreover, u; changes as the decision variable moves from @ to = + de;. From the same
reason, u; # 0 at = + de;(6 # 0). Additionally, u; can change so as to break the relation in
eq.(4.19) for some §. Hence, the feasible solution z + de; is not a local optimum. In addition,
E(x) = E(x + de;) holds from u; = 0 and multilinearity of E(z). Hence, there exists a z such
that E(z) < E(z) in the neighborhood of z. Therefore, such an « is not a local optimum.

Next, we consider the case i = 1. If u; = 0, then any perturbation of z; does not contribute
to E(z). Hence, E(E1(¢)z) = E(z) holds, and is identical to E(z) = E(E{ (~¢)z). Let 4; be
the value of u; at B (—¢)x, that is, @; is defined by

. N
U = wj121 + e J¢ Z Wik Tk
k=2

From the fact wj;z1 € R\0 and lemma 4.2,
sign(@;) # —e"j¢:cj

holds for some ¢ if

N
Z WikTk 7é 0.

k=2
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On the other hand, %; = wj1z; € R holds if

N
Z WikTr = 0.
k=2

Hence, E{ (—¢)z is not a local optimum of Py for some ¢ from lemma 4.3. Finally, & is not a

local optimum since ¢ can be arbitrary small. [ |
Based on the above lemmas, we have the following necessary condition for local optimality.
Proposition 4.4 Assume that
Vi dj  such that wg; #0.
Then
sign(u) = —x
must hold at any local optimum of P;’.

Proof : Immediately from lemmas 4.1, 4.3 and 4.4. |

Note that the property in lemma 4.4 and proposition 4.4, i.e., | z; |= R; at any local optimum,

does not hold for the original problem Pi". Consider the case

0
W=|1 , Bi=Re=R3=1.
1

—_ O
(e

Thenz=(1 -1 0 )7 is alocal(and global) optimum of P;.

4.3.2 Instances of Problem Data for which Local Optima Gives Lower Bounds

In this subsection, we show that any local optimum of Py gives a lower bound for Py for certain
classes of problem instances even if the original and the relaxation problem have many local
optima.

We use the same notation in the previous subsection such as P{" and R;.

Lemma 4.5 Let s = (£R;,---,£Ry)T € {R\0}" and define W by
W =ss' - D. (4.20)

, where D is a diagonal matriz whose i-th diagonal entry is RE. Then

N
r=- Z R?
=1
is a lower bound of the optimal value of Py.
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Proof : The inequality T (W + D)z > 0 holds since ssT is positive semidefinite. Therefore,
zT(W + D)z = E(z) + 2" Dz > 0. Thus, E(z) > —2TDz > r at x € D;. [

Proposition 4.5 The value of the objective function at any local optimum of P5 is a lower
bound of the optimal value of Pf if W is defined by

W =k(ssT —I), kecR, se {1}V,

Proof : Let y be defined by

N
y= Z Xy
i=1

Case of y # 0 : When k£ =0, E(z) always equals to 0. Otherwise,
x = —sign(u) = —sign (k(ys — z)) (4.21)

must hold at any local optimum from proposition 4.4. In addition, we have y € R from lemma
4.2 and z; = 1. This implies ¢ € RY at any local optimum from lemma 4.2. Finally, from
proposition 3.5, the local optimum is a global optimum of PIL. Hence, it gives a lower bound of

the optimal value of Py .
Case of y=0: If £ < 0, then z is not a local optimum of PJ from eq.(4.21) and proposition
4.4. If k > 0, then the objective value is represented as

N
E(z)=—k> R},
=1
and is a lower bound from lemmas 4.1 and 4.5. |
Finally, we have proposition 4.6.

Proposition 4.6 Let W be defined by eq.(4.20). Then any local optimum of Py gives a lower
bound of the optimal value of P1.

Proof : Immediately from lemma 4.1 and proposition 4.5. |

Next, we consider the benchmark problem given by Pardalos et.al. [44]. It can be represented

in term of P;. The coefficient matrix of F(z) is represented as

0 et ot Wy, W
W=| —e €ESyy1 , A= oo (4.22)
0 A Wi, Wo
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, where Wy, € Sgg, e € {1}¥/2,0 € {0}/2, and N is even. The matrix A is real symmetry
and has diagonal entries 0, and N elsewhere. The unique global optimum of this problem is

z=( L=, 1T
N e’ s, i’

N N
T+l k3

and each feasible solution, at which exactly N/2 ;5 equal to —1 and others equal to 1, is a strict

local optimum.

Proposition 4.7 Let W in Py be defined by eq.(4.22). Then x is a local optimum of Py if and

only if & is a global optimum of P1.

Proof : Define sets of indices by

J—":{2,-~,§-+’1} andﬁ:{gm,m,z\fﬂ},

and let

TF = (m2,~--,m%+1)T and =z, = (m%;_%_z,m,wNH)T.

In addition, let y be defined by

N41

yzNZ%

=2

Then, E(x) is represented as

E(m):—-Q%(Zzi) -N > || +~§’—’-V——.

iEF 1EF,L

Additionally, we define u by We. Then we have
uy=-=Yx , u=-l+y—Nz; (i€F), and u;=
1EF
We split the rest of proof into three cases about y.

Caseof y(y—1) #0
We have

Ly =Lz = L(-1+y)(mod 7) (4,5 € F)

Lry = Lzy = Ly(mod 7) (i, € L)

y—Nz; (1€L).

(4.23)

(4.24)

(4.25)

(4.26)

at any local optimum from proposition 4.4 and lemma 4.2. From eq.(4.25), proposition 4.4 and

z1 = 1, we have Zz; = O(mod =) for any 1 € F. Additionally, we have Zy = 0(modn) from

lemma 4.2. Therefore, Zz; = 0(modnr) for all i € £ from eq.(4.26). This means z € D;. Hence,

x is a global optimum of P; from proposition 3.5 if such a local optimum exists.
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Caseof y =0
If y =0, then u; = —1 — Nz; for all i € F. Hence, z; € R for all i € F from proposition 4.4

and lemma 4.2. Then, immediately, we have

y-NY @;=-N> z;=N> z,€R (4.27)
i€F iEF €L
If 2, = 1 for all k € F, then 2; = —1 must hold for any [ € £ from eq.(4.27). In this case,
the local optimum is a global optimum. Hence, assume that an o € F exists such that To = —1,
hereafter.
Let eJ% denotes x;. Consider an operation that changes all z; = eJ%(i € F) satisfying
z; = —1 to eJ (0:+2)and does not change other zi(t € F)s. Then, the change of Y ier Ti 18
represented by p {(1 — cos A) — jsin A} , where p is the number of z;(i € F) with the value —1.
The condition y = 0 is preserved by the operation when the following equality hold.
Z {cos(6; + ;) + Fsin(0; + 6;)} — Z (cosb; + jsinb;)
€L €L (4.28)
= —p{(l —cosA)+FsinA}

, where eJ (0i+%) is the value of z;(¢ € L) after the operation. The left hand side of eq.(4.28) is

represented as

£(8) = > icr cosbi(cos §; — 1) — sinf; sin d;
Y icr Sinb;(cos §; — 1) + cos 6;sin §;

if we deal a complex number as a two dimensional vector. The partial derivative of fis

of < — cos #; sin d; — sin 6; cos §; )

86 \ —sin 6; sin 8; + cos 6; cos &;

The Jacobian matrix around § = 0 is

= ——Sinegf__w o —sin9N+1
cosf N cos On+1

If rank(J) = 2, there is a d satisfying eq.(4.28) around origin. Then the decision variable
after the operation reduces E(x) since y = 0 and | z; |= 1 are preserved, and =D icr R(=s)
decreases(see eq.(4.23)).

If rank(J) = 1, then Zz; = Zz;(4,5 € L)(modn) holds. Therefore, z; € R(E € L) or
> iec Ti = 0 holds from eq.(4.27). If z; € R(i € L), the feasible solution is a global optimum
of the original problem from proposition 3.5. If ... ; = 0, then > ier Zi = 0 from eq.(4.27).
Hence, u; = 0, and the feasible solution is not a local optimum from lemma 4.4.

Caseofy=1
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First, u; = 1 — Nz; for all ¢ € £. Thus, Zz; = 0(mod #)(: € £) holds from proposition 4.4

and lemma 4.2. Hence, we have
y=NY z;=1-N> z=N)» znecR
ieL €L i€F

If z, € R for all @ € F, then the local optimum is a global optimum from proposition.3.5.
Hence assume that o € F such that z, ¢ R exists, hereafter.

If zo = —1 for all & € £, then y cannot be 1 from the definition of y. Hence, let there exist
an o € L satisfying z, = 1.

Consider the operation that changes z;(i € L) satisfying z; = 1 to eJ%+2 and does not

change other z;(i € £)s. Then the rest of proof is same as the case of y = 0. ]

4.4 Extreme Instances
In this section, we present examples touched in section 3.1.

4.4.1 A Case QP, has infinite local optima

Here, we show an instance of problem data for which QP has infinitely many local optima.
Cousider Ps and define W by

0 -1 -1 1
3
W=sr-Y op0r=| Tt 0 Lo
— -1 1 0 -1
1 -1 -1 0

where v;s are defined by
T T T
u<1>:(1 111) v@=(11 21 —1) , oW =(1 11 1)
They are orthogonal one another. For this problem instance
. . AT
a:——-(l 1 ed® e.7¢>
becomes a local optimum of Ps for any ¢. This is proved as follows.

Let vi(¢ = 1,---,N) be vectors in CV that are orthogonal one another. Additionally, let
each of vy, -+, vk be in {eJ?}V. Define W by

K
W=KI-» vwT , I<K<N,

i=1
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and consider a feasible solution represented as

N
T = Z ki'Ui
i=1

and satisfies | z; |= 1.

In this case, we have

K K N
u = We= (MI—— va}‘T> = <MI— Z’uiv;T> Zkivi
i=1 i=1

i=1
K K
= MZki”i - ZNkz'Uz
i=1 i=1
If kxy1,--+,kn = 0, then we have u = (M — N)z. In addition, in general, F(z) is represented
as
K
E(@)=a*Tu=N(M - N)> _kik.
i=1
On the other hand, E(x) attains its minimum if and only if  can be represented as a linear
combination of vy, -+, v since
N
e =N kiki=N
i=1
holds.

Finally,
. . \T
:C=(1 1 ed? 639)
is a linear combination of v, vg, and v3. Namely,

1+ej9) (1—ej9)
7 1t

. . \T
(1 1 eJ? 6-79> =( vy + 0 - vs.

Thus, P2 for this problem instance has infinitely many local optima.
Next, we show that any local optimum of the original problem is also a global optimum. If
| z; |< 1 at a local optimum, then
OE(x)
0z;

must hold. For this reason, z3 — 24 = —1, £3 — 24 = 1 and 25 + 23 = 1 must hold for any local

=0

optimum satisfying | z2 |< 1, | 23 |< 1 and | z3 |< 1, respectively. This implies that

|z3|#1 or |zg|#1, if |zp|<1
|z2]#1 or |zal|#1, if |zzl<l1
|z2|#1 or |zs|#1, if |z4l<l
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Moreover, | z; |< 1 implies = is not a local optimum since each principal submatrix of the
Hessian matrix of E(z) is not positive semidefinite. Finally, the number of local optima is finite

for Pysince the number of feasible solutions satisfying

( To T3 T4 ) € {£1}?,

is finite.

4.4.2 A Case QP, has exponentially many strict local optima

We show an example for which QP, has exponentially many strict local optima.
Consider P5 and define W by

W=<0 E’:T>
e W.

using a block diagonal matrix

R _ _ 0 1
W=D1ag<W11 Wao - Waa) ) Wz'z‘=(1 0)'

Then P9 has 22 local optima. This fact is proved as follows.

From proposition 4.4, we only have to consider the case | z; |= 1.

First, define a vector & by

T
m=(1 R ya) : (4.29)
where
1_ V3 1, 3T 1, 23 1 v3 T
yz5{< —3=J% *5""]7) 7(“5"#.77 ) —5“.7—2—) }
Then such an & becomes a stationary point of
N N
T(O) = Z Zwij COS(QZ' - 93'),
i=1 j=1

where T'(6) is defined by replacing z; in E(x) with L Moreover, there are 2% such s from
definition of  and y.
On the other hand, Hessian matrix H(0) of T(8) has entries

hij <0 for any 4, j suchthat w; =1
hij =0 forany 4, j suchthat w;; =0

N
> hij=0
§=1
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at any @ represented as eq.(4.29). Therefore, for such H () ,
' N N
2ZTH(0)z==> ) hylz — 2)?
i=1 j=1

holds. This means that H () is positive semidefinite. Therefore, 2T Hz = 0 is satisfied only if
z; = z; for any 4 and j such that w;; # 0.
From the fact that there are o, 3, - -, such that

WiaWas Wy #0
for any ¢ # j, the above condition holds only if
z=ke
Finally, the directioﬁ z of @ is not feasible from the constraint z; = 1. Therefore, each  defined
by eq.(4.29) is a strict local optimum.
4.4.3 Discussions

In this section, we showed propositions only for the special classes of W. For general class of
W, we do not know whether any local optima of Py gives a lower bound. If P always gives a

lower bound, then Py may become a powerful tool for calculating a lower bound since
e obtaining a local optimum is often easy even if the problem is not convex.

® The lower bound given at a local optimum is never worse than that given at a global
optimum of Ps. In addition, a lower bound by global optimum of P, is never worse than

that by convex relaxation problem Py.
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Chapter 5

Optimization Algorithms

In this chapter, we consider optimization algorithms for the maximum cut problems based on
analytical results in the previous chapters and some conjectures. Computational experiments
show that the performance of one of the proposed algorithms is better than the tabu search’s

one. They also show the effects of expanding the space of decision variables.

5.1 Framework of Constructing Optimization Algorithms

This section will be dedicated to describe a framework or an idea of optimization algorithms
which make use of a monotone path. The description of algorithms here does not work alone
for QP as far as a monotone path cannot be calculated easily. However, for some cases, it is
expected that the framework is available by using properties given by specifying the class of the
original problems to P;.

If we can find and follow exactly the monotone path towards the global optimum, the global
optimum of the original problem P; will be found by a decent type search. Therefore, in
principle, it is sufficient to follow the monotone path with € = 1. However, we do not know any
algorithm to do so efficiently. Moreover, the existence of such algorithms seems to be hopeless
for NP-hard problems.

The aim of this chapter is to imply and demonstrate the availability of our approach by
e applying the analytical results in constructing optimization algorithms
e showing the performance of proposed algorithms through experiments

Algorithms having structures similar to those for the original problems are expected to
be available since the relaxation QP, has less gaps to QP. Algorithms to be proposed are
simple generalizations of a local search algorithm for the original problem. A local optimization

algorithm for the relaxation problem QP is conceptually formulated as follows.
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Consider the following optimization problem,
(LS) Minimizey G(d) , Subjectto z+de€GnDg,

The constraint « +d € G and the objective function G(d) specifies LS. By solving LS we
can obtain a new feasible solution of QP§. After & converged to a point at which LS has an
optimal solution d = 0, making ¢ small yields tighter relaxation. From definition of QP§; and
its fundamental properties described in chapter 3, the feasibility is kept at (! + jez® if Dgg is
convex. Moreover, if we can use properties like the operation Shift, then making M small also
keeps feasibility. Moreover, in cases we use Shift(-), the value of the objective function does not
increase.

Though covering class QP by such an algorithm is hard since the class is too large compared
to our analytical results, we expect for P; to have some good effects from our approach. In
other words, we expect that optimization algorithms analogous to that for the original problem

will be applicable to the relaxation problem.

5.2 Optimization Algorithms

Here, we derive special cases of the local search algorithm LS for P§,. They are generalizations

of an algorithm such that

( alg.0 : simple coordinate optimization )
Solve LS repeatedly with G(d) = E(z +d) and G = {~1,+1}".

5.2.1 Convergence to Real Number(alg.1)

We showed in proposition 4.4 that any local optimum of P, lies on edges of the feasible region.
Therefore the most important information about local optima lies on the edges of Dy . If we
restrict our discussion within feasible solutions on edges of D5, the objective function is written

as
. N N
E(x)=T(6) = Z Z wi; {cosf; cos b + € sinb; sinb; + jecos §; sinb; — esinb; cosb; }
i=1 =1
N N
= Z Zwij {cos6; cos§; + € sinf; sinb; }
=1 j=1

by replacing variables z; with cos8; + jesin8;. Immediately, we have

N
oT(0 . |
maéi ). QZ_;wz'j {—sinf;cos §; + ¢ cos b; sin6; }
2 N
8;529) = 232221% {—cos8; cos; — €?sinb; sin; }
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0°T(8)

2N 9w Lsin B sin B 4 €2 . _ .,
Sa,00, = 2 {sindisind; + & cosbicosdy} , (1 4 9),

where 0; is not the argument of a complex number when € # 1. The argument of a complex
variable z; is arctan(esiné;/ cos 6;).

Based on this description, local search algorithms like coordinate optimization and quasi-
Newton method are applicable for Po. Moreover, the gradient and the Hessian matrix are
computed by simply substituting 6;s. Moreover, the optimization problem has no constraint
except for §; = 0. Let H(@) stand for Hessian matrix of T/(@). Then, local optimality of
@ {—1,+1}" is equivalent to nonnegativity of diagonal entries of H(8) for P;. On the other
hand, it is nearly equivalent to ¢ = —sign(u) and H(@) = O for Py. In addition, —E(z)

coincides with the trace of H(8) when € = 1. From the relation
E(z) = —trace (H(0))

and the condition H (@) > O for local optimality, it is expected that a feasible solution & hardly
become a local optimum of Py when € is not too small and 7'(8) is greater than the optimal
value of the original problem.

From this observation, we expect alg.1 defined later will output a good feasible solution of
P; by keeping the decision variable away from local optima at which E(x) = —trace (H(0)) are
large.

The algorithm(alg.1) we used in experiments is defined as LS in which G(d) = E(z + d)

and

g={w+d

d; =0 except for an 1 }

The fundamental structure of alg.1 is understood as follows.
e add a bias to the search direction while LS is repeatedly solved.

In other words, we begin with the state in which the existence of a monotone path is guaranteed
and make the decision variables converge to real axis. We expect & to follow monotone paths
approximately.

The for loop begins at line 5) is the procedure for changing the decision variable  and
search local optimum for fixed €. At the if statement in line 10), the bias to the real axis is

incremented. Third if statement appears at line 11) is a criterion to terminate iterations.

( alg.1 : convergence to real azis )
1) givenxz € Do|z;|=1),y>0, R(1>R>0) and §(1 > 4§ > 0)

2) e:=1
3) xppi=w
4) while [1]
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5) for i(2<i < N)

6) U= =) WiT

7) u = R[u] + eSu]

8) if u£0, z;:=u/|u|.

9) end for

10) if ||z -] <7y, €:=Rxe.

11) if e<d, break while

12) Tpry (=T

13) end while

14) for i(2<i<N)

15) if R[z;] >0, z;:=1. else z;:=—1.
)

16) end for

Note that if “given « € Dy” is replaced with “given # € D;” in alg.1, then we obtain alg.0.
Note also that the following proposition holds.

Proposition 5.1 Let e = 1. In alg.1, E(x) decreases at line 8) if  changes.

Proof : Let [ be the index of the variable to be updated at line 8). Let z; and z] be the
value before updating and after updating, respectively. The change dFE of the objective value is

represented as
dE = —R (z]*u — z}u).
From the rule
U
Zi:i= 3
u |
we have

when z; # z;. This means dE is negative. B

5.2.2 Local Search in Discrete Subset of Hypercomplex Numbers(alg.2)
The following algorithm(alg.2) utilizes proposition 4.1. It is written as
Gd)=E(z+d) , G= {dlaz +deDY, and d;j =0 except fora j }

in term of G(-) and G.
The following is a high level description of alg.2.
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¢ a local search procedure is performed in DAA/’[ ¢ repeatedly with decreasing the dimension of

hypercomplex numbers by adopting proposition 4.1.

The for loop at line 5) is a coordinate optimization in D]]\\,Qd, where

N
u=- E Wi X4
j=1

is a decent direction of the objective function. The operator Shift(-) is same as defined in

chapter 4.

((alg.2 : a local search in discrete hypercomplex numbers )

1) given z € DY,

2) L=M

3) Tppi=ax

4) while [1]

5) for (2 <i < N)

6) u:i= — E]- Wi;X;
7) xi:zg,_r_g_@ylu—y[ , s.t. y€Drq
8) end for
9) if ©==xp,,
10) if L ==1, then break while.
11) else ¢ :=Shift(z) and L:=L-1.
12) end if
13) Tpry =T
)

14) end while

The operation arg miny in line 7) is defined as follows. Let S be the set of optimal solutions of

the following optimization problem.
min|u—y| subject to y € Drq4
Yy -

Let [ be the index of the variable to be updated in line 7) and x; be the value before updating.
Then, we define

an element of S if x, ¢S

aremin {u—vy |= .
“g—“‘yl | {xl if x,€8

The integer L in alg.2 is the dimension of hypercomplex numbers, and the minimization at

arg miny selects an element of Dp4. For alg.2, the following proposition holds.

Proposition 5.2 In alg.2, E(z) decreases at line 7) when © changes. In addition, E(z) never

increases until the algorithm terminates.
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Proof : Let the index of the hypercomplex variable to be updated be {. Let the feasible
solution before updating be & and after updating be z’. In addition, let the difference of the

objective value be dE. Then,

N N
dE = (" "Wa' —*TWa) = 2R [ > wy;x]"x; — Zwljxij = —R (x;"u — x{u)
j=1 j=1
ywhereu=(wu; - uy)andxy=(zy - =z )
From the definition of Dj;q4, only one of z;1, 29, - - -, ;3 does not equal to 0. Therefore, we

have
1 /

, where :v;p stands for the nonzero entry of x; and z;, is the nonzero entry of x;.

On the other hand, from | u — x} |[<| u — x; |, we have
(ug — 1,)* + u2 < ul + (up — zpp)°
ifx' ¢ S. Then
dE = —2ugx), + 2upty < 0

holds since m;q,xlp € {£1}. Therefore, if x; ¢ S, then the value of the objective function
decreases.
In case x; € S, the decision variable & does not change from the definition of arg miny.

Finally, the fact that Shift does not make E(x) larger follows the proposition. ]

5.3 Computational Experiments

We compared the performance of the proposed algorithms and some known algorithms in com-
putational experiments. All algorithms used are implemented in C++ and compiled by g++
version 2.95.x [49]. The tabu search algorithm was designed based on [9, 14] and tuned through
experiments.

The test problems are randomly generated 30 instances for each class of problems such as
unweighted maximum cut(U-MC), weighted maximum cut(W_MC), and maximum cut with
negative weight(N_MC). We formulated the maximum cut problems as minimization problems
and set the offset term of the objective function to zero, that is, all wys were set to 0. The
elements of coefficient W of the objective function are generated by integral uniform distribution

over [0,1000] for weighted maximum cut, and [—1000,1000] for maximum cut with negative
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weight. The sparsity of edges of the problem instances of unweighted maximum cut was set to

be 0.03, namely,
N N
>y
i=1 j=1

Table 5.1: algorithms used in experiments

algorithm implementation

tabu search | based on [9] and [14], and tuned through experiments

alg.0 alg.2 with M =1

alg.1 R=0.95,v=1.00 x107% and § = 0.1

alg.2(M = 2)

alg.2(M = 3) | selection of imaginary axes in Shift is fixed

Table 5.2: problem instances
class | dim. of @ | # of instances entries of W sparsity

U_MC 1000 30 {0,1} 0.03
W.MC 1000 30 [0,1000] N Z -
N_MC 1000 30 [—1000, 1000) N Z -

We performed the following procedure 20 times for each of the 5 algorithms and each of the

90 problem instances.

Procedure repeated 20 times for each instance of W and each algorithms
Run the algorithm repeatedly in 3 minutes on Ultra SPARC2(400MHz)

by changing the initial value of the decision variable . After 3 minutes

computation, output the minimal value of the objective function reported.

The time interval 3 minutes is determined as the time period in which alg.1 terminates at least
3 times on our machine and implementation.

Figures 5.1(U_MC), 5.2(W_MC), and 5.3(N_MC) show the average of the outputs of 20
times repeated computations. Figures 5.4(U_MC), 5.5(W_MC), and 5.6(N_MC) show the best
and worst case performance of the 20 outputs of alg.1 and the tabu search. The vertical axis
in each graph represents the value of the objective function and the horizontal axis represents

the indices(0 ~ 29) of the problem instances.
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5.3.1 Performance in Fixed Time Interval

In figures 5.1, 5.2 and 5.3, the thin solid line indicates alg.0 which is equivalent to the case
M =1 in alg.2, and also equivalent to the case initial solution is real in alg.1. The thin broken
line represents the tabu search. The thick broken and dotted lines represent alg.2 with M = 2
and M = 3, respectively. The thick solid line represents alg.1. '

In figures 5.4, 5.5 and 5.6, the thick lines indicate alg.1 and the thin lines indicate the tabu
search. For each pair of lines, the upper, middle, and lower lines indicate the best, average(broken

line depicted also in Figs. 5.1, 5.2 and 5.3), and worst case of outputs, respectively.

-3700
alg.0
-3750
alg.2
(M =2)
-3800
alg.2
(M =3)
_-3850
i
-3900
TS
-3950
-4000 alg.1

_4050 1 1 1 i} 1
0 5 10 15 20 25

Problem Instance

Figure 5.1: average performance : w;; € {0,1} (U-MC)

For almost all problem instances and criteria such as average case, the best case and the
worst case, alg.1 reported the best performance among the algorithms used. The worst case
performance of alg.1 nearly equals to the average performance of the tabu search.

By comparing alg.0 with the case M = 3 of alg.2, we can see that the performance of the
algorithms in same framework grew as the dimension of hypercomplex numbers became higher.
Here, note that the outputs for evaluation are not about each termination of the algorithms,
but about the fixed time interval. Therefore, the growth of time complexity caused by making
M larger has been already taken into account as the number of terminations of the algorithms

in 3 minutes.
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5.3.2 Performance in Each Termination of Algorithms

Figures 5.7, 5.8, and 5.9 are the average about each termination of alg.2, that is, not about the
fixed time interval. Each of the upper, middle and lower lines indicates the case M =1, M =2
and M = 3, respectively. As we can see, the feasible solution output by one time termination

became better as the dimension of hypercomplex numbers became higher.

5.3.3 Discussions

Algorithms evaluated in this chapter are prototypes of optimization algorithms which take ad-
vantage of the approach of nonconvex relaxation to the space consists of hypercomplex numbers.

In fact, there are many ways for evaluating the performance of algorithms. Moreover, our
experiments are not about the general class QP but about P;. Nevertheless, the significance of

these experimental results is on the following points.

o We applied a new approach that utilizes the nonconvex relaxation problems. In addition,

the algorithms can be implemented.

e The effects of expanding the space of decision variables were observed through experiments.
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e In our criteria, the performance of one of the proposed algorithms was better than a

well-known algorithm which is considered to be one of the best strategies.

alg.1 utilizes the existence of a monotone path guaranteed in Py and is also based on some
conjectures or hopes. In our experiments, alg.1 reported the performance better than the tabu
search. The time interval three minutes may be advantageous to alg.1, for example, in the

following sense.

alg.1 hardly terminates within one minute. It means that alg.1 hardly output
any acceptable feasible solution within one minute. On the other hand, the other

algorithms output some feasible solution within one minutes for almost all cases.

However, the observation does not mean that the results of experiments have no sense even
if we refer alg.1 to be an algorithm which fully utilizes the all properties of our relaxation
problem P5 since there are situations for which criteria similar to in our experiments are suitable.
Moreover, alg.1’s performance was better than an algorithm that is considered to be one of
the most effective heuristics. In addition, the performance of the proposed algorithms can be
enhanced through analyses of QPS,.

The performance of alg.2 became better as the dimension M of the hypercomplex number

became higher. The results imply that the operation Shift(-) has essential effects in alg.2.
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Therefore, applications of Shift(-) to other optimization algorithms are expected to result in
enhancements of the performance of some optimization algorithms. For example, Goemans and
Williamson’s approximation algorithm for the maximum cut problems is generalized through

Shift(-) as we have seen in section 4.2.
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Chapter 6
Conclusion

In this thesis, we considered nonconvex relaxation problems for quadratically constrained quadratic
minimization problems, especially, for the maximum cut problems. The relaxation problems
have the original problem and the SDP relaxation problem as two extreme cases. Moreover they
lead us to consideration of trade-off between similarity to the original problem and desirable
properties in numerical computation.

Based mainly on the existence of a monotone path, we analyzed properties embedded in
the nonconvex relaxation problems. We showed that some nice properties are obtained without

relaxing problem to a convex optimization problem. For example,

e The relaxation problem for the ordinary complex numbers ensures the existence of a mono-
tone path for any instance of problem data and any feasible solutions of the original prob-

lem, which have distinct objective values.

e Based on the analytical results around the monotone path, we can generalize some opti-
mization algorithms. The algorithms includes Goemans and Williamson’s approximation

algorithm for the maximum cut problems.

¢ Each local optimum of the complex valued relaxation problem gives a lower bound of the

optimal value of the original problem for some classes of problem instances.

We also proposed two optimization algorithms using the nonconvex formulation of relaxation
problems. Additionally, preliminary experiments implied availability of the algorithms and our

approach.

Constructing optimization algorithms based on nonconvex relaxation problems for general
classes of QP was not described in thesis, since the class QP is too large to construct optimiza-
tion algorithms by applying our current results. However, further analyses in our approach will

lead us to such algorithms.

The following problems have not been solved in this thesis.
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e whether any local optima of QP give lower bound for QP

e whether the approximation rate of the modified version of Geomans and Williamson’s

approximation algorithm for the maximum cut problems is strictly greater than 0.878- .-

Additionally , there will be some critical degrees of relaxation in some sense other than the

existence of a monotone path. For example,

- the degree where the relaxation problem becomes equivalent to the convex optimization

problem
- the degree where any local optimum gives a lower bound for the original problem
- the degree where the performance of an optimization algorithm is maximized

Mathematical and numerical studies to reveal such properties will make our approach a set of

new tools for constructing optimization algorithms.

Original Problem s

M > 2, monotone path exists

M >7 , any local optima gives a lower bound

M =7, maximize performance of an algorithm

can be solved

as a convex relaxation
M <7, limit for applying an algorithm for Q

QPsdp

SDP relaxation

Figure 6.1: Open Problems
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Appendix A

Hypercomplex Numbers

In this appendix, we summarize the definition of hypercomplex numbers based on [24]. Hy-
percomplex numbers are generalization of the ordinary complex numbers. Complex numbers,

quaternions, and so on are special cases of hypercomplex numbers.

A.1 Definition

Let M be a fixed natural number and a;s be real numbers. We call symbols j,s imaginary units.

Consider a set Fy; of numbers represented as
ap +a1j1 +agjo+ -+ amIpy-1-

For a and b in Fjs, equality a = b holds if and only if
a; =0b; forall i=0,---M— 1.

We define addition a + b and subtraction a — b by

M-1
a+b = ag+bo+ Y (ai+b)j;

=1
) M-1

a-b = ag—bo+ »_ (ai—b;)j;
i=1

Multiplication for elements of Fysis defined as follows.

Let p, g,; be real constants, and define multiplication of imaginary unit by

M-1
Jodg =DPapo+ Z Pa,8,id i (A1)

=1
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Then, multiplication of a € Fjs and b € Fyy is defined by substituting eq.(A.1) into

ab =

aoby + agbigy + agbaga + - + aobpr—1d a1

+a1bogi + a1b1j171 + a1bag g + - +arby_1515 01
tazbogq + azb1g1Js + aobogodo + -+ + a2bpr-179J 31 (A.2)
tap-1bod pro1 +am—101J o131 + anr-1bogpr1 30 + -

ot ap-1bv—1J p—1J pr—-1-

Together with the above rule of arithmetic operations, we call an element of Fj;a hypercom-

plex number. For example, an ordinary complex number is a special case of a hypercomplex

number where M = 2, p110 = —1, and p1,1,; = 0. Quaternion is defined as a special case where

M = 4, and p, g ;s are defined by

P1,10
P1,2,0
P1,3,0
D210
P2,2,0
D230
Db3,1,0
D320

P3,3,0

p11,1 P12 P13 -1
D121 P122 P1,2,3
P131 P132 DP1,33
b2,1,1 P2,12 P23
D221 D222 P23 | =1 -1

D231 P232 D233

O = O O O O O

D31 P3i2 P33

D321 D322 D323 0 -1

D331 P332 D333 -1 0

A.2 Fundamental Properties

For any definitions of p, g s, the following properties holds.

Proposition A.1 Consider a case where a € Fyy and b € Fy; are represented by

a=a0+0j1+0j2+"'+0j1\,[_1

b: bo +b10j1 +b2j2+ et +bM—1jM—1'

Then,

ab = ba = agby + aObljl + apbags + - + aobM_le_l

holds.

Proof : Immediately from the definition of multiplication. |

Corollary A.1 Multiplication of a hypercomplex number and a real number is commutative.
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Corollary A.2 The real number 1 is an identity of multiplication.
Proposition A.2 Leta € Fyr, b€ Fy, « € R and € R. Then, we have

(«a)(Bb) = (of)(ab)

Proof : From corollary A.1 and the definition of multiplication. B

Proposition A.3 Let a € Fur, b € Fyy and ¢ € Fyy. Then we have
1. a(b+c¢)=ab+ac

2. (a+bec=ac+be

Proof : From the definitions of addition and multiplication. |

Proposition A.4 Multiplication of hypercomplexr numbers is associative if and only if pag;s

satisfy

(jajﬁ)j'y = Ja(jﬂj'y) fOT’ all Cl,,B, a'nd Y- (A3)

Proof : If eq.(A.3) is satisfied, then multipiication becomes associative immediately from the

definition of multiplication. If eq.(A.3) does not hold, then we have
(ab)e = (4142)d3 # 31(4273) = a(be)

for the case
a=j;,b=j,, c=7s.

Therefore, multiplication of hypercomplex numbers whose imaginary units do not satisfy eq.(A.3)

is not associative. [

In some definition of hypercomplex numbers, associativity of multiplication is dealt as a part of
definition of hypercomplex numbers. But in this thesis and [24], associativity does not contained

in the definition.

Proposition A.5 Multiplication of hypercomplez numbers is commutative if and only if

Do = Pg,a; forall o,B and i. (A.4)

Proof : Ifeq.(A.4) does not hold, then for a = j, and b = jg,
ab # ba

for some ¢ and § from eq.(A.1).
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If eq.(A.4) holds, then eq.(A.1) holds. Substituting this fact into eq.(A.2) yields ab = ba for
any a € Fjy and b € Fyy. ]

For example, multiplication of hypercomplex numbers is commutative if

[0 ifazp
T ITY 1 ifa=p

This definition of multiplication is consistent with the definition of hypercomplex number in

chapter 2. In thesis, we described M dimensional hypercomplex number
ap+ a1y +azjo+ -+ am—13p—1

as
(ag,a1,02, -, apm-1)

for simplicity.

Finally, note that
e Commutativity and associativity of multiplication do not hold in general.

e Division cannot be defined except for cases M = 1,2,4,8. In other words, for u € Fy,
and v(v # 0) € Fy, the following simultaneous equations about x cannot have unique

solution for M # 1,2,4,8 and for some vs and us.
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