T2R2 rIgA2US-FURIMY

Tokyo Tech Research Repository

OO0 /0000
Article / Book Information
aood(@no) oboooooooooon
oty | Asuyonbroadeostencypion
Err— sooo

OoOoOoooOod
OoOoOoooOod

Citation(English) Degree:Doctor (Engineering),

Conferring organization: Tokyo Institute of Technology,
Report number:[J [0 50400,

Conferred date:2002/3/26,

Degree Type:Course doctor,

Examiner:

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)


http://t2r2.star.titech.ac.jp/

A Study on Broadcast Encryption

Takuya Yoshida

Department of Electrical and Electronic Engineering,
Graduate School of Science and Engineering,
Tokyo Institute of Technology
takuya@ss.titech.ac. jp

Advisor: Professor Kaoru Kurosawa
Associate Professor Wakaha Ogata

January 2002



Contents

1 Introduction 1

2 Some Bounds and a Construction for Secure Conditional Ac-

cess Schemes 5
2.1 Introduction . . . . . .. .. ... ... 5
2.2 Mathematical models [11,58] . . .. .. .. ... ... ... 7
2.2.1 Key predistribution . . . . ... ... .. L. 7
2.2.2  One-time Broadcast Encryption . . . . ... ... ... 8
2.2.3 Conventional notation . . .. ... ... ... ..... 9
23 Knownresults . . . ... .. ... 10
2.3.1 A (t, < w)-KPS (The Blundo et al. scheme) . ... .. 10
2.3.2 A (€ n,<w)-KPS (The Fiat-Naor scheme) . .. ... 11
2.3.3 The (< n, < n)-KPS (The Desmedt-Viswanathan scheme) 12
2.3.4 Lower bounds for (¢, < w)-OTCASs . . . . .. ... .. 12
2.4 New lower boundson U] .. ... ... ... .. .. .. ... 13
2.4.1 Equivalence between KPS and OTCAS . . . . ... .. 13
2.4.2 Lower bounds for OTCASs. . . . . ... ... .. ... 13
2.4.3 A general lower boundon |U;| . . . . ... ..., 14
2.5 Multiple use broadcast encryption . . . . . . .. ... ... .. 16
2.5.1 A proposed construction for (P, F)-MCAS . . . . . .. 16
252 Security . . ... ... 17
2.5.3 Simulatable (P, F)-KPSs. . . ... ... ... ... .. 18
2.5.4 Generalization of our MCAS . . . . . .. ... .. ... 21
3 Revocation Scheme with Small Overhead and Large Trace-
ability 23
3.1 Imtroduction . . . . . . ... ... 23

3.2

Previous works . . . . . . . . ... 25



3.3 Relationship among cover free family, Revocation Scheme and
traceability scheme . . . . . ... ... ..o

3.4 Proposed constructions of cover free families . . . . . . . ...
3.4.1 Construction using ASU hash families . .. ... ...
3.4.2 Construction using t-designs . . . . . . . .. ... ...

3.5 Proof of Theorem 3.4.2 . . . . . . . .. .. .. .. ... ....

Linear Code Implies Public-Key Traitor Tracing
4.1 Introduction . . . . . . . . . . . ..
4.2 Preliminaries . . . . . . . . . 0o oo e e e
421 Notation . . . . . . . . . . ..
4.2.2 DDH Assumption . . . . . .. .. ...
4.2.3 Model of Traitor Tracing . . . . . ... ... ... ...
4.3 Previous Public-Key (w, n) Traceability Schemes . . . . . . . .
4.3.1 Corrected Kurosawa-Desmedt Scheme . . . . . . . . ..
4.3.2 Boneh-Franklin Scheme . . . . . .. ... ... ... ..
4.4 Linear Code Implies Public-Key Traitor Tracing . . . . . . . .
4.41 LC-KDScheme . . ... ... .. ... ... ......
4.42 LC-BF Scheme . . ... ... . ... .. .......
443 LC-KD'Scheme . . . .. ... . .. ... ...
4.5 Relationship with the Original Schemes . . . . . . . . .. ...
4.5.1 Corrected KD Scheme . . ... . ... ... ......
452 BF Scheme . ... ... .. ... ... ... ...
4.5.3 Modified KD Scheme . . . . . . .. ... ... ... ..
46 Equivalence . . . . ... .. ... oo
4.6.1 LC-BF Scheme = LC-KD' Scheme . . ... ... ...
4.6.2 BF Scheme = Modified KD Scheme . . . . . .. . ...
4.6.3 Comparison . . . . . . . . .0
4.7 Secrecy and Traceability . . . .. ... ... .. ... .....
4.7.1 Secrecy of LC-KD Scheme . . . . ... ... ......
4.7.2 Black Box Tracing Algorithm for LC-KD Scheme
4.7.3 Validity of Our Tracing Algorithm . . ... ... ...
4.7.4 Secrecy and Traceability of LC-KD' Scheme . . . . . .
4.7.5 Secrecy and Traceability of LC-BF Scheme . . . . . . .
4.7.6 Proof of Theorem4.7.3 . . . . . .. .. ... .. .. ..
4.7.7 Proof of Theorem 4.7.4 . . . . . . . . . . .. ... ...
4.7.8 Proof of Theorem 4.7.5 . . . . . . . .. . ... ... ..
4.7.9 Proof of Theorem 4.7.8 . . . . . . . .. . .. ... ...

i



4.8 Black Box Full Traceability of Proposed Tracing Algorithm . .
4.8.1 Black Box Full Traceability . . ... ... .... ...
4.8.2 Error Probabilities . . . . .. .. ... ... .

5 How to Break Some Revocation and Tracing Schemes
5.1 Introduction . . . . . . . .. ...
5.2 Attack on NNL Schemes . . . . . .. .. ... ... ......
5.3 CFN Scheme Cannot Have Full Traceability . . .. ... ...
5.4 Attack on MAM Scheme . . . . . .. ... L.
5.4.1 AMM-NP Scheme [2,51] . . ... ... ... .. ...
5.4.2 MAM Scheme [47) . . .. ... ... .
5.4.3 Attacks on MAM scheme . . . . . . ... ... .. ...
5.5 Attack on YF Scheme and TT Scheme . . ... ... ... ..
5.5.1 Attack on YF Tracing Algorithm . . ... ... .. ..
5.5.2 Attackon TTscheme. . . .. .. .. ... .......

6 Universal Hasing and Identification Codes via Channels
6.1 Introduction . . . . . . . . ... ... Lo
6.2 Binary constant weight code and IT code [62] . . . . ... ..

6.2.1 Binary constant weight code . . . . . .. .. ... ...
6.2.2 Previous construction (I) . . . . .. ... ... .....
6.2.3 Previous construction (II) . . . .. ... ... .. ...
6.3 Universal hash functions . . . ... ... ... .. ... ....
6.4 Proposed construction of binary constant weight codes ..
6.4.1 eASU implies binary constant weight code . . . . . . .
6.4.2 Proposed construction (I) . . . ... ... .......
6.4.3 Proposed construction (II) . . . . .. ... ... ....
6.5 Practical IT codeand IDcode . . . . . .. ... ... ... ..
6.5.1 Practical ITcode . . . .. .. ... ... ... ....
6.5.2 PracticalIDcode . . . . . .. ... ... L.

7 Conclusion
Acknowledgements
Bibliography

Author’s Contributions

iii

o7
o7
99

63
63
64
66
68
68
68
70
73
73
74

77
77
80
80
81
82
83
86
86
87
87
88
88
89

91

93

95

103



Chapter 1

Introduction

As wide bandwidth broadcast channels such as broadband internet connec-
tions and digital satellite broadcasts are coming into wide use, in addition
to large capacity digital media such as CD-ROM and DVD-ROM are be-
coming cheaper and more available, distribution of large digital data is be-
coming much more popular. Among typical applications are pay TV, online
databases, group telecommunication and secure distribution of copyright-
protected materials such as music or video clips. In these applications, data
should only be available to authorized users. To prevent unauthorized users
from accessing data, the data supplier first provides the authorized users
with decryption keys when they join the system. The data supplier then
encrypts and broadcasts the data. Broadcast Encryption provides a secure
and efficient solution to this problem and so has been drawing wide attention
recently.

Within this thesis, we deal with three different aspects of broadcast en-
cryption which include, Conditional Access Scheme, Traitor Tracing Scheme
and Identification via Channels.

Conditional Access Scheme (CAS)

It is often desirable for the data supplier to broadcast data in such a
way that only members of a subset of authorized users have access to it,
while non-members of the subset cannot obtain any information on the data
even if they have their own decryption keys. It is also important that the
data supplier can determine the privileged subset dynamically and without
affecting any decryption keys because re-distribution of secret keys comes at
a significant cost. Consider an application to pay TV as an example. When
an authorized user does not pay the fee for sometime or cancels a subscription



for the service, then the service to the user is revoked and his decryption key
has to be made ineffective for decryption. If the data supplier provides two or
more channels, users may subscribe to different channels according to their
own preferences; Some users may want to watch a sports channel and others
may not, for instance. Thus, the set of subscribers varies channel by channel.

The obvious solution to this problem is to give every user an independent
key and transmit individually encrypted data to every member of the privi-
leged class. This requires a very long transmission (the number of members
in the class times the length of the massage). Still, another simple solution
may be to provide every possible subset of users with a key, that is, give
every user the keys corresponding to the subsets it belongs to. However, this
requires every user to store a large number of keys.

The goal of conditional access schemes (CAS) is to provide solutions which
are efficient in both transmission length and key size, while aiming to have
schemes that are computationally efficient. The notion of conditional access
schemes was first formally introduced by Fiat and Naor[27] as “Broadcast
Encryption Scheme.” However, we will use the terminology “Conditional
Access Scheme” throughout this thesis in order to clarify the functionality
of the scheme and to avoid confusion between other broadcast schemes such
as the Traitor Tracing Scheme.

Traitor Tracing Scheme

A set of malicious authorized users called traitors may conspire to con-
struct a pirate decoder which decrypt encrypted broadcast data then du-
plicate and distribute them illegally. If a decryption key is implemented as
software, it is easy to construct such a pirate decoder Even if it is provided as
hardware, it may be possible via reverse engineering or due to sloppy man-
ufacturing of the device. When this piracy happens, it is highly desirable
to trace traitors from the pirate decoders in order to discourage this type of
illegal act.

Chor, Fiat and Naor have shown the first solution to this problem by
introducing the first Traitor Tracing Scheme in [19]. Upon confiscating a
pirate decoder, a traitor tracing scheme enables the data supplier to identify
at least one of the traitors who constructed the decoder. It is also desirable
for a traitor tracing scheme to be efficient from the point of transmission, the
size of its keys and the Computation of encryption, decryption and tracing
procedures.



. Identification via Channels

When a user receives data transmitted through a broadcast channel, the
data may be valuable for or intended to only a few authorized users. Hence,
to reduce redundant decryption computation on the users’ side, it is desirable
that users are able to determine if they want to decrypt it. Identification via
Channels, proposed by Ahlswede and Dweck, has beneficial properties for
this problem.

A conventional transmission code is suitable in situations where a recipi-
ent wants to know what event occurred. On the other hand, if a recipient is
only interested in verifying whether or not a certain event e; occurred, then
identification coding is suitable. An identification code employs a random-
ized encoding procedure in contrast to the deterministic encoding procedure
of conventional transmission codes. The recipient is allowed to select a list of
events allowing to determine whether the event e; is in it or not. The most
remarkable property is that the number of events that can be reliably iden-
tified using an identification code is exponentially larger than a conventional
transmission code.

Organization

In Chapter 2, we first present two tight lower bounds on the size of the
secret keys of each user in an unconditionally secure one-time use conditional
access scheme (OTCAS). We then show how to construct a computationally
secure multiple-use conditional access scheme (MCAS) from a key predistri-
bution scheme (KPS) by using the ElGamal cryptosystem. We prove that our
MCAS is secure against chosen (message, privileged subset of users) attacks
if the ElGamal cryptosystem is secure and if the original KPS is simulated.
This is the first MCAS with security that is proven formally.

In Chapter 3, we show an efficient construction of a class of conditional ac-
cess schemes. We say that a conditional access scheme is a (w, n)-revocation
scheme if a center can exclude w or less users among n users. In this chapter,
we present efficient (w,n)-revocation schemes such that pr = O(w!*¢) and
pr = 1 + € for any € > 0 where transmission rate pr is defined as

» the length of a ciphtertext
PT = Tthe length of a plaintext

by showing new constructions of cover free families. We also show a con-
struction of cover free families which yields a (w, n)-revocation scheme such
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that not only pr = O(w?) but it can also be used as a w-resilient traceability
scheme.

In Chapter 4, we first show that three public-key (k, n)-traceability schemes
can be derived from a [n,u,d]-linear code C such that d > 2k + 1. The
previous schemes are obtained as special cases. This observation provides
more freedom and new insight into this field. For example, we demonstrate
that Boneh-Franklin scheme[14] is equivalent to a slight modification of the
corrected Kurosawa-Desmedt scheme[39]. This means that BF scheme is re-
dundant or overdesigned because the modified KD scheme is much simpler.
It is also shown that the corrected KD scheme is the best among them. In
addition, we show a tracing algorithm which can detect all traitors by using a
confiscated pirate decoder as a black box. This algorithm is applicable to all
the public-key traceability schemes discussed in this chapter and the trivial
scheme. This is the first black box full tracing algorithm with traceability
that is formally proven.

In Chapter 5 we provide attacks and comments on some of the revoca-
tion and tracing schemes. They include Chor, Fiat and Naor(CFN) trace-
ability scheme[19, 20], Naor, Naor and Lotspiech(NNL) revocation schemes
with traceability[48], Matsuzaki, Anzai and Matsumoto(MAM) revocation
scheme[47], Yoshida and Fujiwara(YF) revocation scheme with traceability[65]
and Tzeng and Tzeng(TT) revocation scheme with traceability[61]. For ex-
ample, Naor, Naor and Lotspiech showed two revocation schemes and a
traitor tracing algorithm for them at Crypto 2001[48]. However, we illus-
trate that NNL revocation schemes cannot be traceable.

Finally, in Chapter 6, we show that e-almost strongly universal classes of
hash functions can yield better explicit constructions of identification codes
via channels (ID codes) and identification plus transmission codes (IT codes)
than the previous explicit constructions of Verdd and Wei.



Chapter 2

Some Bounds and a
Construction for Secure
Conditional Access Schemes

2.1 Introduction

Secure broadcast encryption is one of the central problems in communica-
tion and network security. In this chapter we link One-Time use Conditional
Access Schemes (OTCASs) [27, 4, 58] with Key Predistribution Schemes
(KPS)[46]. Both schemes are closely related but they have a different struc-
ture. In a KPS, a Trusted Authority (TA) distributes secret information to
a set of users such that, each member of a privileged subset P of users can
compute a specified key kp, but no coalition F' (forbidden subset) is able
to recover any information on the key kp that it is not supposed to know.
In an OTCAS, the TA distributes secret information to a set of users and
then broadcasts a ciphertext cp over a network. The secret information is
such that each member of a particular subset P of users can decrypt cp, but
no coalition F' (forbidden subset) is able to recover any information on the
plaintext mp of cp that it is not supposed to know.

A natural way to construct an OTCAS from a KPS is to use a key kp of
the KPS to encrypt the message mp, that is

cp =kp +mp. (2.1)

Stinson et al. [11, 58] have shown that there is a tradeoff between |Cp| and
[U;| in OTCASs, where Cp is the set of ciphertexts cp and U; is the set of

)



secrets of user 4. That is, |Cp| can be decreased by increasing |U;| and vice
versa.

A (P, F)-KPS is a KPS for which P = {P | P is a privileged subset} and
Fe {F | F is a forbidden subset}. In particular,

e A (t,< w)-KPSisa (P,F)-KPSwith P={P | |P|=t}, F={F|
|F| < w},

e A (<n,<w)KPSisa (P,F)-KPS with P =2 F ={F||F| <w},
where U is the set of users and n £ U|.

We define (P, F)-OTCASs, (t, < w)-OTCASs and (< n, < w)-OTCASs in a
similar way. Below we list some of the known KPSs and OTCASs.

Key Predistribution Schemes. Blom obtained a (2, < w)-KPS in [8] by
using MDS codes (also see [46]). Blundo et al. obtained a (¢, < w)-KPS in [9]
by using symmetric polynomials. Fiat and Naor presented a (< n, < w)-KPS
in [27). Blundo et al. found tight lower bounds on |U;| for (¢, < w)-KPSs
[9] and for (< n, < w)-KPSs [10].! Recently, Luby and Staddon found some
bounds and constructions for some classes of (n — w, < w)-OTCASs [45].
However, there is a gap between their bounds and the constructions.

One-Time use Conditional Access Schemes. Stinson et al. gave con-
structions for (¢, < w)-OTCASs [11] and (< n,< w)-OTCASs [58] which
can realize the tradeoff between |Cp| and |U;|. Blundo, Mattos and Stinson
found a lower bound on |Cp| and |Uj| for (¢, < w)-OTCASs which reflects the
tradeoff [11]. Recently, Desmedt and Viswanathan presented a (< n,< n)-
KPS [22]. This can be considered as a complement of the Fiat and Naor
(< n,< n)-KPS.

In this chapter, we first prove that a (P, F)-KPS is equivalent to a (P, F)-
OTCAS when |Cp| = |M|, where M denotes the set of messages (Theorems
2.4.1, 2.4.2). Then, by using the bounds in [9, 10] for KPSs we get directly a
lower bound on |U;| for (< n, < w)-OTCASs and a lower bound for (¢, < w)-
OTCASs. The former is the first lower bound for (< n,< w)-OTCASs.
The latter is tighter than the bound of Blundo, Mattos and Stinson for
|Cp| = |M]|. Both bounds are tight because the natural schemes which use

1The model for broadcast encryption in [10, 27] corresponds to our model for KPSs.
So, for example, the bounds in [10] hold only for KPSs, and not for OTCASs.
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(2.1) meet the equalities of our bounds. We also present a general lower
bound on |U;| for KPSs which includes all the previous known bounds as
special cases (Theorem 2.4.3).

Next, we show how to construct a computationally secure (P, F)-Multiple
use Conditional Access Scheme ((P, F)-MCAS) from a (P, F)-KPS by using
the ElGamal cryptosystem. We prove (Theorem 2.5.1) that our (P,F)-
MCAS is secure against chosen (message, privileged subset of users) attacks
(Definition 2.5.1) if the ElGamal cryptosystem is secure and if the original
(P, F)-KPS is simulatable (Definition 2.5.3).

We then show that the Blundo ef al. scheme, the Fiat-Naor scheme
and the Desmedt-Viswanathan scheme are all simulatable (Theorems 2.5.2,
2.5.3). By combining this result with our earlier construction we get (P, F)-
MCASs for (P,F) = (¢t,< w) and (< n,< w) whose security is proven
formally.

The proposed construction is the first MCAS whose security is proven
formally (Corollary 2.5.1). Furthermore, our technique can be generalized
to many of the OTCASs in [58], and our argument holds for Multiple use
(P, F)-KPSs.

2.2 Mathematical models [11, 58]

Our model for key distribution and broadcast encryption consists of a Trusted
Authority (TA) and a set of users f = {1,2,...,n}.

2.2.1 Key predistribution

In a key pre-distribution scheme, the TA generates and distributes secret
information to each user. The information given to user ¢ is denoted by u;
and must be distributed “off-band” (i.e., not using the network) in a secure
manner. This secret information will enable various privileged subsets to
compute keys.

Let 2“4 denote the set of all subsets of users. P C 2¥ will denote the
collection of all privileged subsets to which the TA distributes keys. F C 2¥
will denote the collection of all possible coalitions (called forbidden subsets)
against which each key is to remain secure.

Once the secret information is distributed, each user ¢ in a privileged set
P should be able to compute the key kp associated with P. On the other
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hand, no forbidden set F € F disjoint from P should be able to compute
any information about kp.

Let Kp denote the set of possible keys associated with P. We assume
that Kp = K for each P € P.

For 1 < i < n, let U; denote the set of all possible secret values that
might be distributed to user ¢ by the TA. For any subset of users X C U, let
Ux denote the cartesian product U;, X --- x Uy, where X = {i1,...,4;} and
iy < -+- < 1;. We assume that there is a probability distribution on Uy, and
that the TA chooses uy € Uy according to this probability distribution.

We say that the scheme is a (P, F)-Key Predistribution Scheme ((P, F)-KPS)
if the following conditions are satisfied:

1. Each user i in any privileged set P can compute kp:
Vie P,VP € P, Vu; € U, dkp € Kp s.t.,

PI‘[KP = kp | Ul =u,] =1.

2. No forbidden subset F' disjoint from any privileged subset P has any
information on kp:
VP € P,Vkp € Kp,VF € Fst. PNF =0, Vup € Ur s.t. Pr(Ur =
up) > 0,
PI’[KP = k‘p I UF = UF] = PI‘[KP = ktp] (22)

We denote a (P, F)-KPS by (Uy,...,Uys, K).

2.2.2 One-time Broadcast Encryption

We will use the notation from Section 2.2.1. We assume that the network is
a broadcast channel, i.e., it is insecure, and that any information transmitted
by the TA will be received by every user.

In a set-up stage, the TA generates and distributes secret information u;
to each user i off-band. At a later time, the TA will want to broadcast a
message to a privileged subset P. The particular privileged subset P is, in
general, not known ahead of time.

P C 24 will denote the collection of all privileged subsets to which the
TA might want to broadcast a message. F C 2¥ will denote the collection
of all possible coalitions (forbidden subsets) against which a broadcast is to
remain secure.



Now, suppose that the TA wants to broadcast a message to a given priv-
ileged set P € P at a later time. (The particular privileged set P is not
known when the scheme is set up, except for the restriction that P € P.)
Let Mp denote the set of possible messages that might be broadcast to P.
We assume that Mp = M for each P € P. Furthermore, we assume that
there is a probability distribution on M, and that the TA chooses a message
(i.e., a plaintext) mp € M according to this probability distribution. Then
the broadcast cp (which is an element of a specified set Cp) is computed as
a function of mp and up.

Once cp is broadcast, each user ¢ € P should be able to decrypt cp and
obtain mp. On the other hand, no forbidden set F' € F disjoint from P
should be able to compute any information about mp.

The security of the scheme is in terms of a single broadcast, so we call the
scheme one-time. We say that the scheme is a (P, F)-One-Time Conditional
Access Scheme ((P, F)-OTCAS) if the following conditions are satisfied:

1. Without knowing the broadcast cp, no subset of users has any informa-
tion about the message mp, even if given all the secret information Uy,:
VP € P,Vmp € Mp, Yuy € Uy s.t. PI‘[Uu = Uu] > 0,

PI‘[Mp =mp | UU = UU] = PI‘[MP = mp]. (23)

2. The message for a privileged user is uniquely determined by the broad-
cast message and the user’s secret information:
Yie P,VP € P,Vu; € U;, Vep € Cp, Amp € Mp s.t.,

Pr[Mpsz | Ui=ui,Cp=Cp] = 1. (24)

3. After receiving the broadcast message, no forbidden subset F' disjoint
from P has any information on mp:
VP € P,VF € F s.t. PﬂF=@, Vmp € Mp, Vup € Up, Vep € Cp,

PI‘[MPZmP | UF=UF,CP=CP] = PI‘[Mp=mP]. (25)
We denote a (P, F)-OTCAS by (Us,...,Un, M,{Cp}).

2.2.3 Conventional notation

We first consider key predistribution schemes. If P consists of all t-subsets
of U, then we will write (¢, F)-KPS. Similarly, if P consists of all subsets of

9



U of size at most ¢, we write (< ¢, F)-KPS. An analogous notation will be
used for F. Thus, for example, a (< n,1)-KPS is a KPS for which there is
a key associated with any subset of users (i.e., P = 24) and no key kp can
be computed by any individual user ¢ ¢ P. Note that in any (P, F)-KPS, if
F € Fand F' C F, then F' € F. Hence, a (P, < w)-KPSisa (P, < w)-KPS.
The same notation is used for one-time use conditional access schemes.

2.3 Known results

For a random variable X, H(X) denotes the entropy of X. Generally,
0 < H(X) <log, | X|, where X £ {z | Pr[X =z] > 0}.
In particular, H(X) = log, |X| iff X is uniformly distributed.

2.3.1 A (t,< w)-KPS (The Blundo et al. scheme)

Blom presented a (2, < w)-KPS in [8]. This was generalized to a (¢, < w)-
KPS by Blundo et al. as follows [9]. Let ¢ be a prime such that ¢ > n
(the number of users). The TA chooses a random symmetric polynomial in
t variables over GF(g) in which the degree of any variable is at most w, that
is, a polynomial

w w
f@y,oom) =D ) a2l Tl

i1=0 =0
where, a;,..;, = Qr(j,..i,) for any permutation 7 on (éy,...,4;). The TA com-
putes u; as u; = f(i, 2, ..., ;) and gives u; to user 2 secretly for 1 < i < n.

The key associated with the t-subset P = {t1,...,%} is kp = f(i1,...,%).
Each user j € P can compute kp from u; easily. In this scheme, |Kp| = ¢ =
|K| and
t -1
log |Uy| = ( t ) log |K|.
This scheme is optimum because Blundo et al. have shown that the following
lower bound on |U;| applies.

Proposition 2.3.1 [9] In a (t,< w)-KPS,

t+w-—1
t—1

Y G )
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Beimel and Chor gave a combinatorial proof of Proposition 2.3.1 [4].
Blundo and Cresti obtained the following more general lower bound.

Proposition 2.3.2 [10] In a (P, F)-KPS with {1,2,---,n}\ P € F for all
PeP,
IOg |Uz| > TiH(K),

where ; = |{P € P | i € P}

Note that Proposition 2.3.1 is obtained from Proposition 2.3.2 by letting
n=t+uw.

2.3.2 A (<n,<w)-KPS (The Fiat-Naor scheme)

Fiat and Naor presented the following (< n,< w)-KPS [27]. Let g be any
positive integer. For every subset F' C U of cardinality at most w, the TA
chooses a random value sp € Z, and gives sp to every member of U \ F as
the secret information. Then the key associated with a privileged set P is
defined to be

kP = Z SF (mOdq),

F:FeF,FOP=0

Here is a small example for illustration. Take n = 3, ¢ = 17 and w = 1, and
suppose that the TA chooses the values,

sp =11, sy =28, s =3, sp=2_8
The secret information of the users is,
uy = {sp, 542}, 53}, u2 = {Se,501), g3}, us = {59, 501}, 523 }-
The keys determined by this information are,
k{1,2) = sp + sz = 2mod 17, ... ,k{1,23) = sp = 11 mod 17.

In this scheme, |Kp| = g = |K| and
2 fn—1
ot = (" 1) e 1.
§=0 J

This scheme is optimum because Blundo and Cresti have shown the following
Proposition and Corollary.
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Proposition 2.3.3 [10/ In a (< n, F)-KPS,
log |U;| > v; H(K)
where v; = [{F € F |i ¢ F}|.

Corollary 2.3.1 [10] In a (< n, < w)-KPS,

log |U;| > ; ("; I)H(K).

2.3.3 The (< n,< n)-KPS (The Desmedt-Viswanathan
scheme)

Desmedt and Viswanathan presented a (< n, < n)-KPS [22]. This scheme
can viewed as a complement of the Fiat-Naor (< n,< n)-KPS. The TA ini-
tially generates 2" —n—1 independent keys, i.e., one for each P C {1,2,...,n}
such that |P| > 2. Each user 4 receives from the TA the keys of those subsets
for which i € P. Hence, each user gets 2”1 —1 keys. This scheme is optimum
because of the following lower bound which follows from Corollary 2.3.1.

Corollary 2.3.2 In a (< n,< n)-KPS,

log |U3] > (2" — 1) H(K).

(Desmedt and Viswanathan gave another direct proof [22].)

2.3.4 Lower bounds for (¢, < w)-OTCASs

Blundo, Mattos and Stinson obtained the following lower bound for (¢, < w)-
OTCASs [11],

Proposition 2.3.4 In any (t, < w)-OTCAS witht > w+ 1,

Jj=1

for any P € P.

12



2.4 New lower bounds on |Uj|

In this section we first prove that a (P, F)-KPS is equivalent to a (P, F)-
OTCAS when |Cp| = |M|. Then, by using the bounds in [9, 10] for KPSs,
we get directly a lower bound on |U;| for (< n,< w)-OTCASs and a lower
bound for (¢, < w)-OTCASs. The former is the first lower bound presented
for (< n,< w)-OTCASs. The latter is tighter than the bound of Blundo,
Mattos and Stinson for |Cp| = |M|. Our bounds are both tight. We also
present a general lower bound on |U;| for KPSs which includes all the previous
bounds as special cases.

2.4.1 Equivalence between KPS and OTCAS

Theorem 2.4.1 If there exists a (P,F)-KPS (Ui,...,U,, K), then there
exists a (P, F)-OTCAS (Uy,...,Un, M,{Cp}) with |Cp| = |M| = |K]| for
all P P.

(Proof) Use a key kp of the (P, F)-KPS to encrypt a message mp, that is
cp = kp + mp,

and broadcast cp. We then get a (P, F)-OTCAS. 0

Theorem 2.4.2 If there exists a (P, F)-OTCAS (Us,...,U,, M,{Cp}) such

that |Cp| = |M| for all P € P, then there exists a (P, F)-KPS (Uy,...,U,, K)

such that |K| = |M| and H(K) = H(M).

(Proof) From a (P,F)-OTCAS construct a KPS as follows. Fix cp € Cp
arbitrarily for all P € P. Since |Cp| = |M], there is a bijection from Cp to

M for any (uy,...,u,). Then there is an p € M such that each member
of P decrypts the cp as mp for any (uy,...,u,). Now take kp = Mmp in
our KPS. It is easy to see that we get a (P,F)-KPS with |K| = |M| and
H(K) = H(M). O

2.4.2 Lower bounds for OTCASs

From Theorem 2.4.2, Proposition 2.3.1, and Corollary 2.3.1, we obtain im-
mediately the following lower bounds on |U;| for OTCASs.

13



Corollary 2.4.1 In a (t,< w)-OTCAS, if |Cp| = |M]| for all P € P, then
t+w-—1

o )H(M).

Corollary 2.4.2 In a (< n,< w)-OTCAS, if |Cp| = |M]| for all P € P,
then

log IU,| Z (

log U] > 3 ("; 1)H(M).

=0

These bounds are tight because the construction in the proof of Theorem
2.4.1 meets the equalities if we use the KPSs of Section 3.1 and Section 3.2.

2.4.3 A general lower bound on |U}]
In this subsection, We generalize Proposition 2.3.1.

Lemma 2.4.1 Let P and Q be distinct subsets of {1,2,...,n}.
Let F£{1,2,...,n}\ Q. If |Q| < |P|, then

FNP#(
(Proof) First, suppose that |@Q| < |P|. If FN P =, then
n>|FUP|=|F|+|P|=n—|Q|+|P| > n.

This is a contradiction. Therefore, F'N P # ().
Next, suppose that |Q| = |P|. If FN P = {, then

|IFUP|=|F|+|P|=n—|Q|+|P|=n.

Therefore,
F={1,2,...,n}\P.

This means that P = Q = {1,2,...,n} \ P. This is a contradiction. Hence,
FNP#0Q.
O

Theorem 2.4.3 In a (P,F)-KPS,
log |U1| Z (Si log IKl,
where

b={PliePeP, {L,2,....,n}\P € F}|.

14



Our proof is a generalization of the proof in [4, Theorem 3.1]. (Proof) For
simplicity, we give a proof for |U;|. Take

PE{P|1ePeP, {1,2,....n}\P e F}.

Let { =6, = |P|and let P = {P}, P,,..., B}, where |P,| > |Py| > - > |By.
Let @ = (uy, ..., u,) be a vector of secret information of the users such that

PI‘[UU = ﬁ] > 0.

We define ip similarly.
For all k; € Kp,, for all F' such that P, N F; = @ and for all i,

PI‘[[(}:'1 =k | Ur = ﬁp] = PI‘[f(p1 = kl] > 0,

from (2.2). Therefore, for all k; € Kp, there is a @ = (uy,...,u,) such that
the key of P, reconstructed from @ is k;. Now let k = (k1,...,k) be any
vector in Kp, X --+ x Kp,. We claim that there is a @ such that the key of P,
reconstructed from i is k; for 1 <3z < [.

Suppose that our claim is false. Let h(< ) be the maximum index such
that the keys of { P} are (ki,...,kn_1,k}, ..., k) by some @, where kj, # k.
Then 2 < h from our discussion. Let

F,2{1,2,...,n}\ P.
Then from Lemma 2.4.1 (let Q = P, and P = P),
Fo,NP#0 for1<i<h-1. (2.6)

Let @, be a subvector of & which corresponds to Fj,. Then @, can compute
ki,...,kn—1 from (2.6). Suppose that

PI‘[KPh = khlUFh = ﬁFh] > 0.

This means that there exists a @ such that the keys are ki, ..., kn_;, ky. This
contradicts the maximality of h. Therefore,

PI‘[KPh = khIUFh = ﬁph] = (0.
However, this is against (2.2).

15



Hence, for any ke K p, X -+ x Kp, there exists a & such that the keys
are k. Remember that user 1 is included in any P; from our definition of P.
It follows that u; must be distinct for each k. Therefore,

‘Ull > |KP1| XX |KP1| = lKll

Hence,
log|U1| > llog |K| = 6;log | K.

~ O

Note that Proposition 2.3.3 is also obtained as a corollary from Theorem
2.4.3. Indeed, all the previous bounds for KPSs are obtained as corollaries
to Theorem 2.4.3.

From Theorem 2.4.2 and Theorem 2.4.3, we get the following corollary.
Corollary 2.4.3 In a (P,F)-OTCAS, if |Cp| = |M| for all P € P, then
log |U;| > é;log | M|,

where 6; = |{P |ie Pe P, {L,2,...,n}\P € F}|

2.5 Multiple use broadcast encryption

In this section we first show how to construct a computationally secure
(P, F)-Multiple use Conditional Access Scheme ((P, F)-MCAS) from a (P, F)-
KPS by using the ElGamal cryptosystem. We then prove that our (P, F)-
MCAS is secure against chosen (message, privileged subset of users) attacks
if the ElGamal cryptosystem is secure and if the original (P, F)-KPS is
simulatable. We also show that all the KPSs considered in Section 2.3 are
simulatable. This construction is the first (P,F)-MCAS whose security is
proved formally. Furthermore, our technique can be generalized to many of
the OTCAS presented in [58].

2.5.1 A proposed construction for (P, F)-MCAS

Let (Uy,...,Uy,, K) be a (P, F)-KPS. The TA distributes secret information
U1,. .., U, to the users in the same way as for the (P, F)-KPS. Let @ be a
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prime power such that |K| | @ — 1. Let g be a primitive |K|-th root of unity
over GF(Q). All the participants agree on @ and g. Let

M—é—(g>={m|m=ngorsomex}

If the TA wishes to send a message m, € M to a privileged set P € P, then

the TA broadcasts

Cp = (gT, mPgrkP)a

where kp is the key of the (P, F)-KPS for P and r is a random number. Each
member of P can decrypt cp by using kp with the ElGamal cryptosystem.

2.5.2 Security

Let @r be a tp € Up with PrlUp = dp] > 0. We will show that the
proposed construction is secure against chosen message attacks, in which the
adversary can target privileged subsets of users adaptively. Informally these
attacks are defined as follows. Fix a forbidden subset F' (under the control
of the adversary) arbitrarily. Suppose that F' has obtained a broadcast cp of
a privileged subset P, PN F = (). Then F chooses several privileged subsets
P; and messages mp, adaptively, and can obtain from the TA, by using it as
an oracle, the broadcast cp,, 21 =1,2,....

Definition 2.5.1 A (P,F)-MCAS is secure against chosen (message, priv-
ileged subset of users) attacks if there is no probabilistic polynomial time
algorithm (adversary) Ao such as follows. Give as input to Ay:

Qag)ﬁef,ﬁﬁ,Pep,CpECP

with FNP = 0. Ag then chooses P; € P and m; € M adaptively, and sends
these to the TA as a query fori = 1,2,...,l. The TA gives back cp, € Cp,
to Ag. Finally, Ag outputs mp with non-neglighble probability for all (F', P).

Definition 2.5.2 We say that the ElGamal cryptosystem is secure if there is
no probabilistic polynomial time algorithm A, which on input (Q, g,y, g", my")
outputs m with non-negligible probability, where r is a random number and

Yy € (9)-

17



Definition 2.5.3 We say that a (P, F)-KPS is simulatable if there is a prob-
abilistic polynomial time algorithm (the simulator) B for which the following
holds. On input (Q,q,y,P € P.F e F) with PN F=49¢ B outputs U,
g*r, ..., g*Pn with probability

PI‘[KPl =k‘p1,...,Kph ZkPh’uﬁ‘:ﬁﬁ‘ | KP:ICP],
where y = g¥7 and {Py,..., Py} = {P,| P, € P,P, # P,P,NF = {}.

Theorem 2.5.1 Suppose that a (P, F)-KPS is simulatable. Then the (P, F)-
MCAS obtained by using this KPS in our construction is secure against cho-
sen (message, privileged subset of users) attacks if the ElGamal cryptosystem
18 secure.

(Proof) Suppose that a (P, F)-KPS is simulatable and that the proposed
(P, F)-MCAS is not secure against chosen (message, privileged subset of
users) attacks. Then there is a simulator B for the (P, F)-KPS, and an
adversary Ao which breaks cp for P € P by controlling F € F for some
PNnF =0

We will describe a probabilistic polynomial time algorithm A; which
breaks the ElGamal cryptosystem by using Ay and B as subroutines. Let
the input to A; be (Q,g,y,9",my"). Then there is a kp such that y = gks.
A; works as follows.

1. A; gives (@, 9,v, P, F) to B. Then B outputs @z, g*71, ..., gk,
2. A, gives (Q, g, F, ﬁp,ﬁ, 9", my") to Ao.

3. Since A; has g*7, ..., g*P, A; can answer any query of Ag.

4. Finally, Ay outputs m with non-negligible probability.

Then A; can output m with non-negligible probability. This is a contradic-
tion. 0

2.5.3 Simulatable (P, F)-KPSs

In what follows, we assume that (H;’i’l_l) is polynomial in the length of @ for

the Blundo et al. scheme, that Y~} , (";1) is polynomial in the length of @
for the Fiat-Naor scheme, and that 2"~! — 1 is polynomial in the length of Q
for the Desmedt-Viswanathan scheme.
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Theorem 2.5.2 The Fiat-Naor scheme and the Desmedt- Viswanathan scheme
are simulatable.

(Proof) We give a proof for the Fiat-Naor scheme. The proof for the
Desmedt-Viswanathan scheme is obtained in a similar way.

We shall describe a simulator B whose input is (Q, g, y, P, F ), where PN
F = 0. B chooses s, randomly for all F; € F. From the {sg,}, B can obtain
@p. Note that sz € ©z. On the other hand,

kp = Z sp = Sp + Z sr (modgq — 1)
F:|F|<w,FNP=0 F:F#£F,|F|<w,FNP=0
Therefore,
y = gkp — gsir ) gZF:F;éﬁ‘,[ﬂgw,FﬁP:ﬂ SF’
goF = y/gEF;F;&ﬁ',]F[gw,FnP:ﬂ 8F

Thus B can compute g°# which is consistent with kp such that y = g’”’ . Then
B can compute g*% for all P, € P because B knows {sp | F # F,F € F}
and g°F. ad

Definition 2.5.4 Let A = {a;,..45, | 0 €< i1 < w,...,0 <4 < w}. We
say that A is symmetric if for any a;,.., € A : Gi.i;, = Qn(iy.y) for all
permutations ™ of (iy---4;). Furthermore, let

w w
f@n . z) =3 3 anqah o
11=0 it=0

We say that f(x1,...,x;) is symmetric if {ai,...,} 15 symmetric.

Lemma 2.5.1 For given D= {c;..;, |1<jii<w+1,...,1 <5 <w+1},

let
A w+1 w+1
Ajq-iy — Z see Z le...jt’wj‘lil .. -wj”-t,
Jj1=1 J=1
8 -1
where [w;;) = C~' and
1 1 1
1 2 w+1
ce|’ )
1 2% oo (w+1)
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Then
=0  i=0
Furthermore, if D is symmetric, then {a;,...,} is symmetric.
Theorem 2.5.3 The Blundo et al. scheme is simulatable.
(Proof) For simplicity, suppose that the input to the simulator B is
F={1,2,...,w}, P={v,...,u}, y=g", Q, g.

B first chooses a (dummy) symmetric polynomial

w w
flzy,...,z) = Z Z @iy iy TP -z,

11=0 1:=0
randomly. Then @z = (f(1,22,...,2¢),---, f(w,T2,...,7)). Next we con-
sider a (real) symmetric polynomial
w w . .
fc($1, PN ,$t) = Z s Z dil...itx’f e CE? (27)
i1=0  i=0

such that f.(3,Z9,...,%;) = f(i, 2, ..., 3¢) for 1 <i < wand fe(vy,...,v) =
kp. We first show that there exists such a polynomial f.. Let

J={(Gr ) |1<i<w+1,..1<i<w+ 1\ {(w+1---w+ 1}

Then B can compute c¢j,...;, = fe(j1,. .., i) for all (j1---j;) € J by using up.
Let c = f.(w+1,...,w+ 1), where c is an unknown variable. From Lemma
2.5.1, B can compute {d;,..;,} from {c¢;,..; } and c. Further, it is easy to see
that @;,..;, has the form

ig.ody = Qiyoniy + Big i s (2.8)
for some constants o, ..;, and G;,..;,. Then from (2.7), we have
kp = fo(v1,...,v) = eg+ eic
for some constants eq and e;. This means that there exists such an f.. Now
y =g = g (¢°)"".
Then g¢ = (y/g®)"/¢'. Therefore B can compute {g%: -} from (2.8). Finally
B can compute g*7 for all P, € P by using (2.7) and {g%1~#}. 0
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Corollary 2.5.1 Suppose that the ElGamal cryptosystem is secure. The
MCASs obtained from the Blundo et al. scheme, the Fiat-Naor scheme and
the Desmedt- Viswanathan scheme by using our construction, are all secure
against chosen (message, privileged subset of users) attacks.

2.5.4 Generalization of our MCAS

We can generalize the MCASs in Corollary 2.5.1 so that anyone can do broad-
cast encryption. In the Fiat-Naor based MCAS, make each ¢*F public. In the
Blundo et al. based MCAS, make each g* public, where a; is the coefficient
of the symmetric polynomial f. Finally in the Desmedt-Viswanathan based
MCAS, make each g*? public.
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Chapter 3

Revocation Scheme with Small
Overhead and Large
Traceability

3.1 Introduction

In such applications, as pay TV, CD-ROM distribution and online databases,
data should only be available to authorized users. To prevent unauthorized
users from accessing data, the data supplier will encrypt data and provide
only the authorized users with personal keys to decrypt it. However, some
unauthorized users (pirates) may obtain some decryption keys from a group
of one or more authorized users (traitors). Then the pirate users can decrypt
data that they are not entitled to. To prevent this, Chor, Fiat and Naor [19]
proposed w-resilient traceability schemes which reveal at least one traitor
when a pirate decoder is confiscated if there are at most w traitors (CFN
schemes). Their schemes are, however, non constructive. Recently, Stinson
and Wei showed some explicit constructions by using combinatorial designs
[59]. Although their constructions may not be as good asymptotically as
those in [19], they are often better for small values of w and n.

On the other hand, it is often desirable for the center to be able to exclude
certain users from recovering the message that is broadcast in encrypted form
[27, 38]. We say that a broadcast encryption scheme is a (w, n)-revocation
scheme if a center can exclude w or less users among n users. It was recently
shown that a (w, n)-revocation scheme is obtained from a cover free family
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by Kumar et al. [38] and the authors [66] independently. Kumar et al. also
presented a construction of cover free families such that

Pr = O(w2)a
which is independent of n, by using algebraic geometry codes, where

pr & (the length of a ciphertext)/(the length of a plaintext).

In this chapter, we present a construction of cover free families such that
not only pr = O{(w?) but also they can be used as w-resilient traceability
schemes. We also show an efficient (w, n)-revocation scheme such that

pr = O(w'*)

for any € > 0. The proposed constructions of cover free families use almost
strongly universal hash functions. Our constructions are conceptually much
simpler and much easier than that of Kumar et al. [38], which uses algebraic
geometry codes.

The notion of universal classes of hash functions was introduced by Carter
and Wegman [18]. It has found numerous applications in cryptography, com-
plexity theory and other areas [18, 63, 57, 56, 7, 41] (see the Introduction
in [57]). In particular, e-almost strongly universal (e-ASU) classes of hash
functions have been studied and used for authentication codes [56]. The e-
ASU hash functions were also used for construction of identification codes
via channels [41].

Throughout this chapter, we assume that there exist secure block ciphers.

Related works: Kurosawa and Desmedt found lower bounds on the size of keys
and the size of ciphertexts of traceability schemes [39]. They also proposed
two schemes, a one-time use (w,n)-traceability scheme (the KD one-time
traceability scheme) which meets these bounds and a public key variant for
multiple use (the KD public key traceability scheme) [39]. However, Stinson
and Wei showed that the tracing algorithm of the KD schemes is subject
to a linear attack [60]. Finally, Kurosawa et al. presented a proven secure
tracing algorithm for their schemes [43]. However, their multiple use scheme
assumes the difficulty of the discrete log problem, not the existence of secure
block ciphers.
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3.2 Previous works

A set system is a pair (X, B), where X = {1,2,...,v} and B is a set of blocks
B; C X withi=1,2,...,n. We consider a set system such that |B;| = k for
1=1,2,...,n.

Definition 3.2.1 [25] We say that { X, B} is a (v, n, k, w, D)-cover free fam-
iy if
'Bio\ U Blg' >D

=1

forVB,,,...,VB;, and forVBy, € {By,...,Bi,}.

Kumar et al. presented a construction of cover free families such that pr =
O(w?), which is independent of n, by using algebraic geometry codes.

On the other hand, a broadcast encryption scheme is said to have w-
traceability if when a set of at most w authorized users (who are not nec-
essarily excluded) pool their keys together to construct a “pirate decoder”,
at least one of the users (a traitor) involved can be identified from the de-
coder [19]. Stinson and Wei proposed a w-traceability scheme based on the
following set system.

Definition 3.2.2 [59] We say that (X, B) is a w-(v,n, k) traceable set sys-
tem if forVB;,,...,VB;, and forVB;, & {Bi,,...,B:,},

|FF'N B;y| < Zax |F'N By, (3.1)
for any F C UjL, By, such that |F| =k.

In their w-traceability scheme, B; corresponds to the key of user ¢ and
F' corresponds to the pirate key as follows. Let V = {ry,...,7,} be a set of

base keys, where r; is a random element of GF(p). Let A; £ {(4,75) | 7 € Bi}
be the secret key of an authorized user 7 for 1 < i < n.

The data supplier T' chooses a random polynomial f(x) over GF(p) such
that deg f(z) < k and f(0) = s, where s is a secret to be sent. Then T
broadcasts the ciphertext

C={f@i)+r|iecX}
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Each authorized user ¢ can compute the secret s from the ciphertext C by
using A; because deg f(z) < k.

A pirate key e, generated by w traitors @1, ..., %, must be e, C UiL1 A
such that |e,| > k. Now if (3.1) is satisfied, then a traitor is detected by
computing max; |F N B;|.

3.3 Relationship among cover free family, Re-
vocation Scheme and traceability scheme

In [38, page 614], it was remarked that cover free families could be used to
construct traceability schemes. Actually, we can prove the following theorem.

Theorem 3.3.1 If there exists a (v,n, k, w, D)-cover free family, then there
exists a (w, n)-revocation scheme such that py < v/D. Further, if

k<D+[D/w], (3.2)
then it can be used as a w-traceability scheme as well.

(Proof) Let {X,B} be a (v,n, k,w, D)-cover free family. First, we show a
(w, n)-revocation scheme such that pr < v/D. Let V = {r1,...,m7} be a

set of base keys, where r; is a random element of GF(p). Let A; 2 {G, ) |
J € B;} be the secret key of an authorized user i for 1 <% < n. Let
(mo,---,mp_1) be a plaintext to be sent, where m; € GF(p). A center T
constructs a polynomial f(z) over GF(p) such that

fle)=mo+miz+---mp_12°.
Suppose that w users 4y, - - -, 4,, should be excluded. Then T broadcasts
C={f@®)+rlie X\ JBy}
j=1

Each user 4o & {¢1, -+, 4, } can compute at least D values of f(@) from C by
using A; because

,B'iO\UBijI ZD

j=1
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Then he can compute the plaintext (mg,- -, mp_;) because deg f(z) < D.
On the other hand, the users iy, - - -, 4, have no information on (mq,---,mp_1)
because each r; with i € X \4 € X \Uj_, By, } is a random number. Finally,
it is clear that pr < v/D.

We next show that the {X, B} can be used as a w-traceability scheme as
well. We consider Stinson-Wei w-traceability scheme such that deg f(z) < D
instead of deg f(z) < k. In this case, a pirate key e, generated by w traitors
i1, . ., must be e, C UjL, A;; such that |e,| > D. In other words, a pirate
key corresponds to F' C Uj_, B;; such that |F| > D. For any such F, it is

clear that
max |FN By, | > [D/w].

1<j<w
Further, for any io & {i1,- -, %y}, we have that
|FN By, <k—D.
because F' C U;_; B;; and

| Biy \ U B;,| > D.
j=1

On the other hand, from (3.2),
k— D < [D/w].
Hence, it holds that

|FNB;,| <k—-D< [D/w] < max |FNB;|.
1<j<w 7

Therefore, at least one traitor is detected by computing max; |e, N 4;|. O

3.4 Proposed constructions of cover free fam-
ilies

In this section, we present three constructions of cover free families. The first

construction yeilds w-revocation schemes such that not only pr = O(w?) but

also can be used as w-resilient traceability schemes. The second construction
yeilds w-revocation schemes with pr = O(w'*®) for any € > 0. And the
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third construction yeilds w-revocation schemes such that pr = 1 + € for any
€ > 0 and the size of decryption keys is much smaller than the lower bound
for w-revocation schemes with pr = 1 obtained in Chapter 2. The first two
proposed constructions use almost strongly universal hash functions and the
third construction uses t-designs. Our constructions are conceptually much
simpler and much easier than that of Kumar et al. [38], which uses algebraic
geometry codes.

3.4.1 Construction using ASU hash families

Let S and T be finite sets such that |S| > |T'|. Let H be a set of functions
such that h: S — T for each h € H. Let |H| =v, |S| =m, |T| = N.

Definition 3.4.1 [18] We say that H is an e-almost strongly universal (e-
ASU(v,m,N)) hash function family provided that the following two condi-
tions are satisfied:

1. for any s € S and any t € T, there exist exactly |H|/|T| functions
h € H such that h(s) =t.

2. for any two distinct elements s1, sy € S and for any two (not necessarily
distinct) elements t1,ty € T, there exist at most €|H|/|S| functions
h € H such that h(s;) =t;, i = 1,2.

Theorem 3.4.1 If there exists an e-ASU(v,m, N) hash function family H,
then there exists a (v,n, k,w, D)-cover free family such that n = mN, k =
v/N and

D= %(1 — We).

(Proof) Let a universe X be H. Index each block B € B by (s,t) € S x T
and define A
By = {h € H | h(s) =t}

Then it is clear that the number of blocks is n = mN. From the definition
of e-ASU hash families, we have

k= |Byl = |H|/|T| = v/N,
|B(s,ty N Bier 41y| < €k
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Finally, for any B, B;,,..., B,

€ B,
|Bi0 N (n Bij)| S Z |lgi0 N Bl,' S wek.
j=1 j=1

Therefore,

| Big \ (ﬂ B;)| >k —wek = —N(l — we).

7j=1
O

Theorem 3.4.2 There exists a e-ASU(v,m,N) hash function family such
thatv = ¢*2, N =¢q, m = ¢ and

for 1 <Vt < VI < Vq = prime power.
The proof is given in the following section.

Corollary 3.4.1 There ezists a (v,n,k,w, D)-cover free family such that
v = ql+2’ n = qlqt+1} k= ql+1 and D = ql+1 _ w(lql +qt+1 _ q) f07‘ 1<Vt <
VI < Vq = prime power.

(Proof) From Theorem 3.4.1 and Theorem 3.4.2. O

Corollary 3.4.2 There exists a (¢*, ¢*", ¢%,w, D)-cover free family such
that
D=¢ —w(3¢" —q)

for Vq = prime power.
(Proof) In Corollary 3.4.1, let I =2 and ¢t = 1. O

Theorem 3.4.3 There exists a (w,n)-revocation scheme such that pr =
O(w'*€) for any € > 0.
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(Proof) Consider the (g*, g9, ¢, w, D)-cover free family such that
D=q"-w(3q¢" —q)

of Corollary 3.4.2, where ¢ is a prime power. For given ¢ > 0, let 7 be such
that
1-7=1/(1+¢).

Let g be large enough so that

qg —3>4q"/2.
Let w = |¢'™"|. Then we have
q— 3q1—’r
ql—‘r(q‘r _ 3)
¢ "(q"/2)
q/2.

q— 3w

Vv

Il

v

i

Therefore,

D = ¢-wlP+4¢ -9
> ¢® — 3wq?
> ¢°/2.

Hence from Theorem 3.3.1, there exists a (w, n)-revocation scheme such that
pr <v/D < ¢*/(¢*/2) = 2¢ = O(w"""7) = O(w'*).

a

Theorem 3.4.4 Let q be a prime power and let w = |,/q/2]. Then there
exists a (w,n)-revocation scheme such that pr = O(w?). Further, it can be
used as a w-traceability scheme as well.

(Proof) Consider the (¢*, ¢°7™!, ¢, w, D)-cover free family such that
D=¢" - w(3¢’ —q)

of Corollary 3.4.2. Suppose that ¢ > 12. Then as in the proof of Theorem
3.4.3, we can show that
D > ¢*/2.
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Hence from Theorem 3.3.1, there exists a (w, n)-revocation scheme such that
pr <v/D < ¢*/(¢*/2) = 29 = O(w?).

We next show that it can be used as a w-traceability scheme as well. It
is enough to show (3.2) from Theorem 3.3.1. Since ¢ > 12, it holds that

Va/2-3>0.

Since
D > ¢® — 3wg?,
we have
D+ [D/w]l—k > (¢’ -3wg®) + (¢*/w—3¢*) - ¢*
= ¢*(—3w+q/w—3)
> ¢*(-3y4/2+2,/q-3)
= ¢*(vq/2-3)
> 0.
Therefore, (3.2) is satisfied. O

3.4.2 Construction using t-designs

In this section, we show a construction of cover free families which yeild
w-revocation schemes such that pr = 1 + € for any € > 0 and the size
of decryption keys is much smaller than the lower bound for w-revocation
schemes with pr = 1 obtained in Chapter 2. This implies that the key size
can be significantly reduced is the transmission overhead is sligtly larger than
optimal.

Definition 3.4.2 A t-(n,m, \) design is a pair (X, A) where X is an n-
element set of points and A is a collection of m-element subsets of X (blocks)
with the property that every t-element subset of X is contained in exactly \
blocks.

Proposition 3.4.1 In a t-(n,m, \)-design (X, .A),

A=)
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Proposition 3.4.2 If (X, A) is a t-(n,m, ) design and S is any s-element
subset of X, with 0 < s < t, then the number of blocks containing S is

by=|{A€ A|SC A} =A(’t’:j>/(m‘s>.

t—s

Now we show our construction of superimposed distance families from a
t-(n,m, A) design (X, A). Let

()

Let X ={1,2,...,n} and let A= {4, A,,...,A,}. Define
Bi={j|i¢ A;}

for1 <i<n.

Example 3.4.1 Consider a 2-(9,3,1) design (BIBD) such that

A = {1, 2?'3}1 Ay = {1a47 7}’ Az = {1’5’9},
A4 == {1,6, 8}, A5 == {2,4, 9}, Aﬁ - {2, 5, 8},
A7 = {2a6a 7}a AS = {3a41 8}, AQ = {37 57 7}7
Apw = {3,6,9}, An = {4,5,6}, A = {7,8,9}.

Then the following (12,9,4,1,3)-cover free family is obtained.

B, = {5,6,7,8,9,10,11,12},
= {2,3,4,8,9,10,11,12},
By = {2,3,4,5,6,7,11,12},
B: = {1,3,4,6,7,9,10,12},
Bs = {1,2,4,5,7,8,10,12},
Bs = {1,2,3,5,6,8,9,12},

B; = {1,3,4,5,6,8,10,11},
{1,2,3,5,7,9,10, 11},
By = {1,2,4,6,7,8,9,11}.

&
|

&
I
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Theorem 3.4.5 The {By, By, ..., By} of the above construction is a (v, n, k, t—
1, D)-cover free family such that

o= L)

n—1 n—m 1
o (t_1>'A' m Y

t—1

n—m

D = A
m—t+1

(Proof) From Proposition 3.4.1,

From Proposition 3.4.2,

E = |{jli¢ A}
|A| = [{j | i€ A;}|

SR A [ ()
_ C:})a.";m.@;)

VB;,...,VB,,, from Proposition 3.4.2 and the definition of ¢-design,

For VB;

0

D= = Hilio € A\ UG g 43}

B;, \ U Biz
=1

= Julngan (Qu1ne )
{5 [0 & A3\ {5 | {i, .- i1} C Aj}°

{5 | io & Aj, {i1, .- -1 2e-1} C A5}

g | {31, i1} © A3\ AT | {d0,%1,. - - 51} C© Aj}
= 5| {i,- sde1} S A H = {7 | {oo, 01, 31} C© Ay}
= AMn—-t+1)/(m—t+1)—-A

I
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Corollary 3.4.3 Ifthere exists at-(n,m, \) design, then there exists a (v, n, k,t—
1, D)-cover free family such that v, k and D are given by Theorem 3.4.5.

We next show this construction yeilds w-revocation schemes such that
pr = 1+e¢ for any € > 0 and the size of decryption keys is much smaller than

the lower bound for w-revocation schemes with pr = 1 obtained in Chapter
2.

Theorem 3.4.6 If there exists a t-(n,m,\) design, then there exists a w-
revocation scheme such that

w = t-—1,
n—w
pPr = )
n—m

Pr = (n;l)m;w.(ml_l)

o the length of a decryption key
pr= :

where

the length of a plaintext
(Proof) From Theorem 3.3.1 and Corollary 3.4.3,

_k_(n-T\m-w 1
pI_B_(w> m '(m‘l)'

w

Next, from our construction and Proposition 3.4.2,

(9.

= |Dl{jliz € A}
= i l{i, .- i} C A}

il
m—w
Therefore,
_ULB)] n-w
pr = D T n—m

Now from Theorem 3.4.6, we see that :
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1. pr=1lifn> wand n>m.

2. It alwasy holds that p; < (";1) because t < m and hence w < m — 1.

This means that the size of decryption keys can be much smaller than the
bound for w-revocation schemes with pr = 1 obtained in Chapter 2 if n > w
and n > m. There exist such ¢-designs for any ¢ [21, p.51]. Further, p; <

("_1) if t <K'm.

w

3.5 Proof of Theorem 3.4.2

Stinson showed a composition construction of an e-ASU class of hash func-
tions such as follows [56, Theorem 5.5].

Definition 3.5.1 Let C = (n,|C|,d) be an error correcting code over an
alphabet S. Let H be an €-ASU class of hash functions from S to T. Then
for all ¢ with 1 < i < n and Vh € H, define a hash function g;p) :
{1,2,...,|C|} = T by the rule

9,p)(x) = h(the ith symbol of the xth codeword of C).

Let A
H * C = {g(i,h)}-

Proposition 3.5.1 [56, Theorem 5.5/ Hc S£HxC (defined as above) is an
é-ASU(n|H|,|C|,|T|) class of hash functions from {1,2,...,|C|} to B such
that p

E=€e+1——,
n

Remark.  In [56, Theorem 5.5}, Stinson used the term AU class of hash
functions. Bierbraur pointed out that it is equivalent to an error correcting
code [7].

Let g be a prime power and let 1 < k < q. Let

A2 {(ay,...,a) | @i € GF(q)}.

B {the elements of GF(q)}.

In [23], den Boer described the following e-ASU class of hash functions from
A to B.
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Definition 3.5.2 For V(eo, e1) such that eg,e; € GF(q), let
Riegen(ar, ... ar) = €o +aje; + -+ + ake’f.

Let
A

G(q? k) = {h(eo,el)}‘

Proposition 3.5.2 [23] The above G(q, k) is a (k/q)-ASU(¢%, ¢*, q) class of
hash functions from A to B such that |G(q, k)| = ¢*.

Then the following corollary is obtained from Proposition 3.5.1.

Corollary 3.5.1 Let G(q,k) be a (k/q)-ASU class of hash functions from A
to B defined as above. Let C = (n,|C|,d) be an error correcting code over
GF(q*). Then

G(g, k)c £ G(g,k) xC

is an €-ASU(ng?,|C|, q) class of hash functions from {1,2,...,|C|} to B such
that

.k d

e=241-2
q n

|G(Q1 k)CI = qu2.

A [¢¥, ¢!] Reed-Solomon code is a code over GF(q*) such that the length
of a codeword is n = ¢, the number of codewords is |C| = (¢*)¢ and the
minimum Hamming distance is d = ¢* — ¢* + 1. Finally, from Corollary 3.5.1,
we obtain Theorem 3.4.2.

36



Chapter 4

Linear Code Implies
Public-Key Traitor Tracing

4.1 Introduction

In such applications as pay TV, CD-ROM distribution and online databases,
data should only be available to authorized users. To prevent unauthorized
users from accessing data, the data supplier will encrypt data and provide
only the authorized users with personal keys to decrypt it. However, some
authorized users (traitors) may create a pirate decoder.

A (w, n)-traceability scheme is a scheme in which at least one traitor is de-
tected from a confiscated pirate decoder if there are at most w traitors among
n authorized users. Chor, Fiat and Naor [19] introduced the first (w,n)-
traceability scheme. Their scheme is, however, non-constructive. Stinson
and Wei showed some explicit constructions by using combinatorial designs
[59]. In the above two schemes, a private-key encryption scheme is used to
encrypt a session key.

On the other hand, the first public-key (w,n)-traceability scheme was
shown by Kurosawa and Desmedt [39, section 5]. That is, anyone can
broadcast encrypted data to authorized users. Although Shamir’s (w+1,n)-
threshold secret sharing scheme was used in their original scheme, we should
use Shamir’s (2w — 1,n)-threshold secret sharing scheme to avoid a linear
attack given by [60]. We call such a corrected scheme the corrected KD
scheme.

After that, Boneh and Franklin presented another public-key (w, n)-traceability

37



scheme [14]. Only the above two schemes are known as public-key (w,n)-
traceability schemes currently.

In this chapter, we first show that three public-key (w,n)-traceability
schemes can be derived from an [n, u, d]-linear code C such that d > 2w + 1.
We call them linear coded KD scheme (LC-KD scheme), linear coded BF
scheme (LC-BF scheme) and linear coded KD’ scheme (LC-KD’ scheme),
respectively. The previous schemes are obtained as special cases. This ob-
servation gives a more freedom and a new insight to the study of this field.

For example, we show that Boneh-Franklin scheme (BF scheme) is equiva-
lent to a slight modification of the corrected KD scheme. (We call it modified
KD scheme. It will be given in Section 4.5.3. ) This means that BF scheme is
redundant or overdesigned because modified KD scheme is much simpler. In-
deed, BF scheme must use a public code matrix I and 2w additional secret
random numbers (i, - -, B2, which modified KD scheme does not require.
More generally, we prove the equivalence between LC-BF scheme and LC-

KD’ scheme.

We also show that LC-KD scheme is better than LC-KD’ scheme from a
view point of key generation. This implies that the corrected KD scheme is
better than modified KD scheme from a view point of key generation. Since
modified KD scheme is better than BF scheme as shown above, we see that
the corrected KD scheme is the best among them.

We finally prove the secrecy and the black box traceability of LC-KD
scheme under the decision Deffie-Hellman assumption. Those of LC-KD’
scheme and LC-BF scheme are proved similarly. The tracing algorithm of
BF scheme for any pirate decoder is obtained as a special case. (It is not
written clearly in the original paper [14]. It is not written at all in their latest

version [15].)

Generalized Scheme Original Scheme
LC-KD scheme corrected KD scheme
LC-KD' scheme modified KD scheme
LC-BF scheme BF scheme
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4.2 Preliminaries

4.2.1 Notation

An [n,u,d]-linear code is a linear code of length n, dimension u and the
minimum Hamming distance d.

Let ¢ > n be a prime. Let G, be a group of prime order q. Let g € G,
be a generator of G,. For example, G, is a subgroup of Z, of order g, where
q | p— 1. Alternatively, we can use an elliptic curve over a finite field.

- denotes the inner product of two vectors over GF(q).

4.2.2 DDH Assumption

The decision Diffie-Hellman assumption (DDH) assumption says that no
polynomial statistical test can distinguish with non negligible advantage be-
tween the two distributions D = (g,9",y,9") and R = (g,4",y,v), where
9,9, v are chosen at random from G, and r is chosen at random in Z,.

4.2.3 Model of Traitor Tracing

In the model of traceability schemes, there are a data supplier T, a set of n
authorized users and a pirate user. Some authorized users are malicious and
they are called traitors. The traitors create a pirate key e,. The pirate key
is used in a pirate decoder.

Suppose that there are at most w traitors. Then a (w,n)-traceability
scheme is a scheme such that at least one traitor is detected from a confiscated
pirate decoder. A (w,n)-traceability scheme has four components.

Key generation: The key generation algorithm K is a probabilistic poly-
nomial time algorithm that outputs (er, e, --,e,) on input 1°, where
l is the security parameter. er is the broadcast encryption key of the
data supplier T" and e; is the personal decryption key of authorized user
i.

T runs K and sends e; to authorized user i secretly.
Encryption: The encryption algorithm & is a probabilistic polynomial time

algorithm that takes an encryption key er and a session key s to return
a header h; we write



The data m is encrypted by using a secure symmetric encryption func-
tion F with the session key s as E;(m). Finally, T broadcasts (h, Es;(m)).

Decryption: Then decryption algorithm D is a deterministic algorithm that
takes the personal decryption key e; and a header h to return the session
key s; we write

s «— e;(h).

Each authorized user 7 can recover s from h by using his personal key
e; and then decrypt E (m) to obtain the data m.

Tracing: T can detect at least one traitor from a pirate key e, by using a
tracing algorithm.

We have black bor traceability if the pirate decoder can only be used as an
oracle. That is, the tracing algorithm cannot examine the pirate key e,. For
black box tracing, we shall assume that the pirate decoder is resettable to
its initial state, as in [20].

In what follows, a session key s is chosen from Gj,.

4.3 Previous Public-Key (w,n) Traceability Schemes

4.3.1 Corrected Kurosawa-Desmedt Scheme

Key generation: The data supplier 7" chooses a uniformly random polynomial
f(x) = ap + a1z + -+ + agy-_17%*"! over GF(q). Then T gives to
each authorized user ¢ the personal decryption key e; = f(i), where
t=1,2,...,n. He next publishes g and yy = g%, y; = g™, ..., Youw_1 =
g*»-1 as the public key.

Encryption: For a session key s € G4, T computes a header as
h=1(9",sy5, 4], ,Y5,_1), Wwhere 7 is a random number. T broadcasts
h.

Decryption: Each user ¢ computes s from h as follows by using f(¢).
2w-1

s=U/(g")/®, where U = sy II (y;)’J
j=1
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4.3.2 Boneh-Franklin Scheme

BF scheme makes use of a public code matrix I' defined as follows. Consider
the following (n — 2w) X n matrix G:

( 1 1 1 ‘e 1 \
1 2 3 ‘e n
12 22 32 ‘e n?
G= 13 93 33 . n3 (mod q)
\ 1n—éw—1 2n—éw—1 3n—éw—1 . nn—.2w—1 /
Let wy, ..., wq, be a basis of the linear space of vectors satisfying
Gx = 0 mod gq. (4.1)

Viewing these 2w vectors as the columns of a matrix, we obtain an n x 2w
matrix I | | | |

I'= wp W Wz -+ Woy
[ |

Define the code as the set of rows of the matrix . Hence, it consists of n
codewords each of length 2w.

Key Generation: For ¢ = 1,...,2w, the data supplier chooses a random
a; € Z; and compute y; = ¢g*. Then T computes z = 12 yf" for
random (1, ..., B € Z, and publishes 2, y,. .., Y2, as the public key.
The personal decryption key of user ¢ is computed as

2w 2w
0; = (D_a;8)/(Q_a;v;) (mod g),
j=1 j=1
where Y = (v1,...,72) € I' is the i’th codeword of T.

Encryption: For a session key s € G, T computes a header as
h = (sz",4,...,45,), where r is a random number. T broadcasts h.
Decryption: Each user ¢ computes s from h as follows by using 6;.

2w
s =s2"JU%, where U = [T
=1

J
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Remark. In the key generation, aq,- - -, ag, must be chosen so that
Y a;v; #£0 (mod g) for i =1,---,n. This was overlooked in [14].

4.4 Linear Code Implies Public-Key Traitor
Tracing

This section shows that if there exists an [n, u, d]-linear code C such that d >
2w+ 1, then three public-key (w, n)-traceability schemes are derived. We call
them linear coded KD scheme (LC-KD scheme), linear coded BF scheme (L.C-
BF scheme) and linear coded KD’ scheme (LC-KD' scheme), respectively.
The corrected KD scheme and the original BF scheme are obtained as special
cases.

Let H be a parity check matrix of an [n, u, d]-linear code over GF(q) such
that d > 2w + 1. Any 2w columns of H are linearly independent because
d > 2w + 1. This property plays a central role in the proof of traceability of
our schemes.

We assume that H is publicly known. Note that H is an (n —u) x n
matrix over GF(q). Let the ith column of H be b; = (b1;,ba4, -+, bn_u;)7.

4.4.1 LC-KD Scheme
Assume that the first row of H is (1,---,1).

Key Generation: The data supplier T chooses (ay,- - -, a,—_,,) uniformly at
random Let (e1,---,e,) = (a1,---,an_y)H. T gives e; to authorized
user ¢ as the personal decryption key for ¢ = 1,2,...,n. He next

publishes y; = g%, y2 = g*2,...,Yn—u = g*»* as the public key.

Encryption: For a session key s € G, T' computes a header as

h=(g",sy],y5,...,9._,), where r is a random number. T broadcasts
h.
Decryption: Each user ¢ computes s from h as follows by using e;.
n—u y
s=U/(g")%, where U = syj [] (¥})7. (4.2)
j=2

The tracing algorithm will be given in Section 4.7.
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4.4.2 LC-BF Scheme

Key Generation: The data supplier T' chooses (ai, -« -, ay—,) uniformly at
random in such a way that (aj,---,a,_y)-b; #0fori=1,--- n. Let
y; = g%. Then T computes z = [[7- yf" for random By, ..., 08—y € Z,
and publishes z,y1, .. ., Yn_. as the public key. The personal decryption
key of user i is computed as

01' = ((11, Ce. ,an_u) . (ﬂl» e ,ﬂn_u)/(al, s ,an_u) . bi- (43)

Encryption: For a session key s € GG, T computes a header as
h = (sz",y},...,y._,), where r is a random number. T broadcasts h.

Decryption: Each user ¢ computes s from A as follows by using 6;.

n-—-u
s = sz" /U%, where U = [] (y)>". (4.4)
j=1
4.4.3 LC-KD’ Scheme
This is a slight modification of LC-KD scheme.
Key Generation: The data supplier T' chooses (a1, - - -, an_,) uniformly at
random in such a way that (a1, --,ap-)-b; #0fori=1,--- n. Let

(e1,---,en) = (a1, +-,an_y)H. (Note that e; # 0 for i = 1,---,n.)
T gives e; to authorized user ¢ as the personal decryption key for i =
1,2,...,n. He next publishes y; = ¢*,y2 = ¢%,...,Ypn_u = ¢g*** as
the public key.

Encryption: For a session key s € GGy, T computes a header as
h=(s¢", 97,95, ...,Yh_,), where r is a random number. T broadcasts
h.

Decryption: Each user ¢ computes s from h as follows.

s =sg"/UY, where U = [] (})". (4.5)

=1

Remark. 1In h, s is multiplied to g" in LC-KD’ scheme while it is multiplied
to y] in LC-KD scheme.
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4.5 Relationship with the Original Schemes

4.5.1 Corrected KD Scheme

Let C be an [n,n — 2w, d]-Reed Solomon code over GF(q), where d = 2w+ 1.
Then it is clear that the corrected KD scheme is obtained from LC-KD
scheme as a special case.

4.5.2 BF Scheme

In BF scheme, note that G (shown in Section 4.3.2) is a generator matrix of an
[n, n — 2w, d] Reed-Solomon code over GF(q). Further we see that G-TI" = O
from (4.1). Hence I'T is a parity check matrix of the Reed-Solomon code C.
This implies that the original BF scheme is obtained from LC-BF scheme as
a special case.

4.5.3 Modified KD Scheme

In LC-KD' scheme, let C be an [n,n — 2w, d]-Reed Solomon code over GF(q),
where d = 2w+1. Then the following scheme is obtained. We call it modified
KD scheme because it is a slight modification of the corrected KD scheme.

Key Generation: The data supplier T chooses a uniformly random polynomial
f(z) =ao+ a1z + -+ ag_12**"! over GF(q) such that f(i) # 0 for

i =1,---,n. Then T gives f(i) to authorized user ¢ as the personal
decryption key for ¢ = 1,2,...,n. He next publishes yo = ¢g*,y; =
gala e Y1 = gGZw—l‘

Encryption: For a session key s € G, T computes a header as
h=(s9",y5y5,... ,Y5,_1), where r is a random number. T broadcasts
h.

Decryption: Each user ¢ computes s from h as follows by using f(2).

2w—1 .
s =sg"/UYT) where U = [] ;)" (4.6)

J=0

Remark. In A, s is multiplied to ¢" in modified KD scheme while it is
multiplied to y] in the corrected KD scheme.

44



4.6 Equivalence

4.6.1 LC-BF Scheme = LC-KD' Scheme

LC-BF scheme is more complicated than LC-KD’ scheme because it uses
secret random numbers f(i,---, 8,-, which LC-KD’ scheme does not use.
Nevertheless, we show that they are equivalent. This means that LC-BF
scheme is redundant or overdesigned.

Public-key equivalence: In the key generation of LC-BF scheme, let

n—u

c= Z a,ﬂi.

=1

For any fixed (ai,---,an ), it is easy to see that Pr[c # 0] = 1 — (1/q).
Therefore, we assume that ¢ # 0 in what follows.

The public key of LC-BF scheme is pk = (z,91,...,yn_s). First since ¢
is a prime and z € G,, z is a generator of G,. Next note that

n—u n—u
=T =T o -
=1 i=1

Let a} = a;/c. Then we have
Yi = gai — zai/c = z“é_

Now it is clear that (a1, -,an—y) - b; # 0 if and only if (af,-- -, a,_,) b; #
0, where ¢ = 1,-.-,n. Therefore, the public key pk of LC-BF scheme is
equivalent to that of LC-KD’ scheme.
Header equivalence: Clear.
Decryption equivalence: In LC-BF scheme, from (4.3), we obtain that

1/6; = (a1,...,0n-4) - by/c=(a}, -+, a,_,)b;.
On the other hand, in LC-KD’ scheme,

€ = (al, e ,an_u) . bz

Therefore, 1/6; of LC-BF scheme is equivalent to e; of LC-KD’ scheme.
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Secrecy equivalence: The same public key and the same header are used
in both schemes. Therefore, the secrecy of LC-BF scheme against outside
enemies is equivalent to that of LC-KD’ scheme.

Traceability equivalence: Suppose that there exists a pirate decoder M,
for LC-BF scheme which is not (black box) traceable. Then we show that
there exists a pirate decoder M; for LC-KD' scheme which is not (black box)
traceable. Let w traitors be iy, - -, 4, in both schemes.

Consider LC-KD’ scheme in which a public key is pk = (g,%1, "+, Yn—u)
and the private key of user ¢ is e;. From the above equivalence, the same pk
is used and the private key of user ¢ is 6; = 1/e; in LC-BF scheme.

From our assumption, there exists an algorithm B which creates an un-
traceable pirate decoder My from pk and 6, ,---,6;, for LC-BF scheme.

Now in LC-KD’ scheme, our traitors first create My by running B on
input pk and 1/e;,,---,1/e;,. They then use M; as their pirate decoder M.

Finally it is easy to show that if there is a tracing algorithm which de-
tects some traitor from M, then M, is also traceable. This contradicts our
assumption. Hence, M; is not traceable.

The converse part is proved similarly.

Now we have proved the following theorem.

Theorem 4.6.1 LC-BF scheme is equivalent to LC-KID' scheme.

4.6.2 BF Scheme = Modified KD Scheme
From Theorem 4.6.1, we have the following equivalence.
Corollary 4.6.1 BF scheme is equivalent to modified KD scheme.

However, BF scheme is more complicated than the modified KD scheme
because it must use a public code matrix I' and 2w additional secret random
numbers 3, -, Bay. This means that BF scheme is redundant or overde-
signed.

4.6.3 Comparison

We compare three schemes, LC-KD scheme, LC-BF scheme and LC-KD’
scheme. We have seen that LC-BF scheme is equivalent to LC-KD’ scheme,
and hence redundant.
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Now in LC-KD' scheme, a4, - -, a,_, must be chosen in such a way that
e; # 0 for i = 1,---,n, which LC-KD scheme does not require. This check
is very inefficient if n is large. Therefore. LC-KD scheme is better than
LC-KD' scheme from a view point of key generation.

Similarly, the corrected KD scheme is better than modified KD scheme
from a view point of key generation. Further, modified KD scheme is better
than BF scheme as shown in Section 4.6.2. As a conclusion, we see that the
corrected KD scheme is the best among them.

4.7 Secrecy and Traceability

In this section, we prove the secrecy and the traceability of LC-KD scheme,
LC-KD' scheme and LC-BF scheme.

Note that any 2w columns of H are linearly independent because d >
2w+ 1.

4.7.1 Secrecy of LC-KD Scheme

Theorem 4.7.1 LC-KD scheme is indistinguishably secure against chosen
plaintext attack under the DDH assumption.

(Proof) Similarly to the proof of [39, Theorem 14], we can show that the
secrecy of LC-KD scheme is reduced to that of ElGamal encryption scheme.
It is well known that ElGamal encryption scheme is indistinguishably secure
against chosen plaintext attack under the DDH assumption. ad

4.7.2 Black Box Tracing Algorithm for LC-KD Scheme

Let BAD be the set of at most w traitors who created a confiscated pirate
decoder. Let A be a subset of at most w users. We first describe a procedure
TEST which checks whether AN BAD # {).

Suppose that (er,e;,---,e,) is being used as the key. For a random
encryption key e = (af,---,al,_,,), let the corresponding private decryption
keys be (e}, --,el,) = (a},---,a,,_,)H. We say that e} matches with A if

e; =e; for alli € A.

TEST(A)
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Step 1. T chooses e which matches A randomly. (We can do this because
any 2w columns of H are linearly independent.) He chooses a random
session key s’ and computes an illegal header

R
h' & e (s). (4.7)
Step 2. T gives h' to the pirate decoder. Let the output of the pirate decoder
be s A-
Output:

1 ifsyg=4¢
0 otherwise

TEST(A) = {

We next describe a procedure TEST2(A, m) which runs TEST(A) m
times independently, where m is a sufficiently large positive integer.

TEST2(A, m)
Set counter :=0. For i =1,2,...,m, do

Step 1. Run TEST(A) randomly.
Step 2. Let counter := counter + TEST(A). Reset the pirate decoder.

Output: TEST2(A, m), the final value of counter.

We say that a set of users A is marked if TEST2(A,m) = m. We now
present our tracing algorithm.

Black box tracing algorithm
Find a marked set A = {iy,%,,...,%,} by exhaustive search. Suppose that
11 <29<---<4y Forj=12,...,w, do:

Step 1. Let B := A\ {i1,4s,...,%;}. Run TEST2(B,m).
Step 2. Let m; = TEST2(B, m).

Output: 4; such that m;_; — m; is the maximum. (If there are more than
one such j, choose one of them arbitrarily.)

User i; is a traitor.
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4.7.3 Validity of Our Tracing Algorithm

We can show the validity of our tracing algorithm by using the following
three test conditions.

(1) If A D BAD, then Pr[TEST(A) = 1] is overwhelming.
(2) If AN BAD = 0, then Pr[TEST(A) = 1] is negligible.
(3) f ANBAD # () and A\ BAD # (), then for any i € A\ BAD,
| Prt[TEST(A) = 1] — Pr[TEST(A\ {i}) = 1]|
is negligible.

Theorem 4.7.2 If the above three conditions are satisfied, then our black
boz tracing algorithm succeeds with overwhelming probability. That is user i;
18 a traitor.

(Proof) If A D BAD, then TEST2(A, m) = m with overwhelming proba-
bility from (1). Therefore, there exists at least one marked A. On the other
hand, from (2), if AN BAD = §, then TEST2(A, m) < m. This means that
if A is marked, then AN BAD # 0.

Now suppose that A is marked. Let my = m. It is easy to see that
my = 0. If mj_; — m; is the maximum, then m;_; — m; > m/w. On the
other hand, if j € A\ BAD, then m;_; —m; < m/w from (3). Therefore, if
m;_1 — m; is the maximum, then i; € BAD. 0

We finally show that LC-KD scheme satisfies the above three test condi-
tions under the DDH assumption. We assume that a pirate decoder decrypts
valid headers with overwhelming probability.

Theorem 4.7.3 (Test Condition (1)) In LC-KD scheme, if A O BAD,
then Pr[TEST(A) = 1] is overwhelming under the DDH assumption.

Theorem 4.7.4 (Test Condition (2)) In LC-KD scheme, if ANBAD =
0, then Pr[TEST(A) = 1] is negligible under the DDH assumption.

Theorem 4.7.5 (Test Condition (3)) In LC-KD scheme, if ANBAD #
@ and A\ BAD # 0, then for anyi € A\ BAD,

|Pr[TEST(A) = 1] — Pr[TEST(A\ {i}) = 1]|
is negligible under the DDH assumption.

The proofs will be given in the following sections.
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4.7.4 Secrecy and Traceability of LC-KD' Scheme
The secrecy and the traceability of LC-KD’ Scheme are proved similarly.

Theorem 4.7.6 LC-KD' scheme is indistinguishably secure against chosen
plaintext attack under the DDH assumption.

Theorem 4.7.7 (Test Condition (1)) In LC-KD' scheme, if A D BAD,
then Pr[TEST(A) = 1} is overwhelming under the DDH assumption.

Theorem 4.7.8 (Test Condition (2)) In LC-KD' scheme, if ANBAD =
@, then Pr[TEST(A) = 1] is negligible under the DDH assumption.

Theorem 4.7.9 (Test Condition (3)) In LC-KD' scheme, if ANBAD #
@ and A\ BAD # 0, then for anyi € A\ BAD,

|Pr[TEST(A) = 1] — Pr[TEST(A\ {i}) = 1]|
is negligible under the DDH assumption.

We show the proof of Theorem 4.7.8 in the following section. The other
theorems are proved similarly to those of LC-KD scheme.

4.7.5 Secrecy and Traceability of LC-BF Scheme

The secrecy and the traceability of LC-BF Scheme are equivalent to those of
LC-KD' scheme as shown in Section 4.6.1.

4.7.6 Proof of Theorem 4.7.3

By extending the result of Stadler [55, in the proof of Proposition 1] and Naor
and Reingold [49, lemma 3.2}, Bellare et al. proved the following proposition

[5]-

Proposition 4.7.1 [5] There is a probabilistic algorithm ¥ such that on
input g%, g%, g°, & outputs g¥, g¢, where V' is random and

;| ablmodp ifc=abmodp
random if ¢ # abmod p

Y runs in O(T%P) time, where TP is the time needed to perform an expo-
nentiation.
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Now we show that

po = |Pr[P decrypts valid headers correctly] — Pr[TEST(A) = 1]|

is negligible for any pirate decoder P.

Suppose that p; > € for some nonnegligible probability . Then we show
that there exists a probabilistic polynomial time Turing machine M which
can distinguish D = (g, ¢% vy,¥*) and R = (g, g%, y,v) with nonnegligible
probability, where g,y, v are chosen at random from G, and a is chosen at
random in Z,.

From our assumption, there is an algorithm B which creates a pirate
decoder such that py > € from a public key pk = (g,91, -, ¥20) and the
private keys of BAD.

Now on input d = (g, 9"y, y’), M works as follows.

1.
2.

Choose e; at random for each ¢ € A and let e = e; for each i € A.

Let OUT = {i1,1s,...,%,} be a w-subset of users such that OUTNA =
0.

For j = 1,2,...,w, M runs ¥ of Proposition 4.7.1 w times indepen-
e

dently on input d = (g,¢’,y,y’). Let the output of ¥ be ¢*4, (¢') .
Compute g™, g*2,..., g% from {g% | i € OUT U A}, where
(e1,°,€n) = (a1, *,an—o)H.

Each a; is written as a linear combination of {e; | ¢ € AUBAD} because
any 2w columns of H are linearly independent and |A U BAD| < 2w.
Therefore, we can do this.

Compute (¢')%, (g')%, ..., (¢')%-+ from {(g')% | i € OUT U A}, where

(ella T ’e;z) = (allv Tt ’a:z—u)H'

Select a random session key s’ and compute b’ as follows.

/

R =(g,5'(9)%, (g)%, .., (¢)").

Create a pirate decoder P by running B on input a public key
(g,9°,9%,...,9% ) and the private keys of BAD, {e; | i € BAD}.
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8. Give A’ to the pirate decoder P. Let the output of P be sy4.

9. Finally M outputs 1 if s4 = ¢’ or 0 otherwise.

For OUT = {iy,%2,...,%y}, it holds that

y _J &, modp ifd—D
% — ] random ifd — R.

from Proposition 4.7.1. Therefore, if d is chosen from D, k' is a legal header.
On the other hand, if d is chosen from R, A’ is an illegal header used in
TEST(A). Hence, we have

IPr{M(d) =1|d € D] - Pt{M,(d) = 1| d € R]|

Do
€.

v

from our assumption.
This means that M can distinguish D and R with nonnegligible proba-
bility.

4.7.7 Proof of Theorem 4.7.4

Suppose that Pr[TEST(A) = 1] > € for some nonnegligible probability e.
Then we show that there exists a probabilistic polynomial time Turing ma-
chine M which can distinguish D = (g, ¢%,¥,%*) and R = (g, ¢%,y,v) with
nonnegligible probability, where g,y, v are chosen at random from G, and a
is chosen at random in Z,.

From our assumption, there is an algorithm B which creates a pirate de-
coder P such that Pr[TEST(A) = 1] > e from a public key pk = (g, 1, -, Yow)
and the private keys of BAD.

Now on input d = (g,¢',vy,y’), M works as follows.

1. Choose @}, ..., a,, , at random. Let a} be such that g% = y.
2. Select a random session key s’ and compute h’ as follows.
W= (g, sy, y%,y%, ... y*s),
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7.

/ s ' ’ ! !
Compute g1, g%, ..., g% from g%, g%,..., g% =, where
/ / / /
(61, B en) = (al? e ’a‘n—u)H'

Choose e; at random for each i € BAD. Let g% = g% for each i € A.

From {g% | i € AU BAD}, compute g*, g%, ..., g**, where
(el,"',en) = (a17"'7a’n—u)'H

Each a; is written as a linear combination of {e; | i € AUBAD} because
any 2w columns of H are linearly independent and |[A U BAD| < 2w.
Therefore, we can do this.

Create a pirate decoder P by running B on input a public key
(g,9%,9%,...,g9° ) and the private keys of BAD, {e; | i € BAD}.

Give h’ to the pirate decoder P. Let the output of P be s4.

Finally M outputs 1 if s, = s’ or 0 otherwise.

Then we obtain that

|PriM(d) =1|d « D] —Pr[M(d) =1|d « R]|
= |Pr[sa=s"|d—D]—Pr[sy=5|d—R]|

First we see that Pr[s' = s | d < R|] is negligible because 3’ is random. Next
it is easy to see that if d is chosen from D, then A’ is a testing header used
in TEST(A). Therefore,

Prisa =5 |d— D] = Pr[TEST(A) =1] >¢

from our assumption.

This means that M can distinguishes D and R with nonnegligible prob-

ability.

4.7.8 Proof of Theorem 4.7.5
Suppose that

| Pr[TEST(A) = 1) — Pr[TEST(A\ {i}) = 1]| > ¢
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for some nonnegligible probability €. Then we show that there exists a prob-
abilistic polynomial time Turing machine M which can distinguish D =
(9,9",9,¥") and R = (g, ¢",y, v) with nonnegligible probability, where g,y,v
are chosen at random from G and r is chosen at random from Z,.

From our assumption, there is an algorithm B which creates a pirate
decoder P such that

| Pr[TEST(A) = 1) — Pr[TEST(A\ {i}) = 1]| > ¢

from a public key pk = (g, 1, - .-, Yn—u) and the private keys of BAD.
Now on input d = (g,¢',v,v"), M works as follows.

1.

2.

Choose e; for each i € BAD U (A \ {1}). Let e; be such that g% = y.

Compute g%, g%, ..., g% from {¢% | ¢ € BAD U A}, where

(617 n 'aen) = (al, n 'aan—u)H-

Create a pirate decoder P by running B on input a public key
(9,9™,9%,...,9% ) and the private keys of BAD, {e; | i € BAD}.

Next let ) = e; for each i € A\ {i} and e: be such that Y& =y
Compute y®,y%,...,y%« from {y% | i € BAD U A}, where

(6,1’ . -,6;) = (all’ o "an—u)H'

Select a random session key s’ and compute h’ as follows.

’

B = (g,’ Slyallayalz, ey Ytnu),
Give h' to the pirate decoder P. Let the output of P be sy4.

Finally M outputs 1 if s4 = s’ or 0 otherwise.

It is easy to see that if d is chosen from D, then A’ is an illegal header
used in TEST(A). On the other hand, if d is chosen from R, then A’ is an
illegal header used in TEST(A\ {¢}).
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Therefore,

[Pr[M(d) =1|d — D] - Pr[M(d) = 1| d — R]|
= |Pr[TEST(A) = 1] - Pt{TEST(A\ {i}) = 1]|
> €

from our assumption.
This means that M can distinguish D and R with nonnegligible proba-
bility.

4.7.9 Proof of Theorem 4.7.8

Suppose that Pr[TEST(A) = 1] > ¢ for some nonnegligible probability e.
Then we show that there exists a probabilistic polynomial time Turing ma-
chine M which can distinguish D = (9,9%%,4°) and R = (g, g%, v, v) with
nonnegligible probability, where ¢, y, v are chosen at random from G, and a
is chosen at random in Zy.

From our assumption, there is an algorithm B which creates a pirate de-
coder such that Pr[TEST(A) = 1] > € from a public key pk = (9 v1,*, Yow)
and the private keys of BAD.

Now on input d = (g, ¢, v, y'), M works as follows.

1. Choose e; at random for each i € BAD.

2. For each i € A, choose t; at random and compute y%. Define e; as
gei — yti~

3. From {¢% | i € AU BAD}, compute 9%, 9%, ..., g%+ where

(e1,...,6,) = (al,---,an_u)-H.

4. Create a pirate decoder P by running B on input a public key
(9,9%,9%,...,9% ) and the private keys of BAD, {e; | i € BAD}.

5. For each i € A, compute g, = (¢')%. For each i € BAD, choose a
random element f3;.

6. Suppose that 3’ = y". Define ¢} as 3; = g™ for each i € (AU BAD).
1
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7. From {B; | i € AU BAD}, compute g"®,g"%, ..., g"%«, where §; =
g™ and
(€l,...,e,) = (al},--,a,_,) - H.

8. Select a random session key s’ and compute A’ as follows.
W=(sg g, g%, ... g% ).
Give h' to the pirate decoder P. Let the output of P be s4.

9. Finally M outputs 1 if s4 = &’ or 0 otherwise.

Then we obtain that

|Pr{M(d) =1|d « D] — Pr[M(d) =1]|d < R]|
= |Pr[sy=5|d—D]—-Pr[sy=5|d—R]|

First we see that Pr[s’ = s | d < R] is negligible because ¢’ is random.

Next we will show that if d is chosen from D, then A’ is an illegal header
used in TEST(A). In this case, ¥y’ = y" and ¢’ = g" for some r. We need to
show that e = e; for each i € A. Assume that y = g*. Then

1. e; = zt; since yt = g°.

2. On the other hand,

=B =) =y =g"h
Therefore, e, = zt;.

Hence, €, = e;. Therefore, i’ is an illegal header used in TEST(A). Conse-
quently,
Pr[sy =s|d— D] = Pr[TEST(A) =1] > ¢

from our assumption.
This means that M can distinguishes D and R with nonnegligible prob-
ability.
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4.8 Black Box Full Traceability of Proposed
Tracing Algorithm

In this section, we generalize the proposed tracing algorithm of Section 4.7.2
and discuss its traceability and error probabilities in detail.
We first introduce a few notations.

Definition 4.8.1 C(m, A) is a set of ciphertexts given which the decryption
algorithm outputs m if the decryption key of a member of A is used as a
key while no algorithm can obtain any information on m without any of the
decryption keys of A.

pa for a pirate decoder is the probability that given a ciphertext ¢ €
C(m, A) the decoder outputs m. The probability is taken over the choices
of m, ¢ and the random tape of the pirate decoder.

Before describing the generalized tracing algorithm, we will restate the
test conditions using the above notations.

Test Condition (1)
If AD BAD, then |py — pal is negligible where U is the set of all users.
Note that py is not necessarily overwhelming.

Test Condition (2)
If AN BAD = {), then p, is negligible.

Test Condition (3)

If ANBAD # 0 and A\BAD # 0, then for any i € A\BAD, |ps—pa\(3|
is negligible.

Then the tracing algorithm of Section 4.7.2 is generalized as follows.

Black Box Tracing Algorithm
Find all 4 such that |ps — pa\}| is non-negligible for some set of users A.

We discuss the traceability and error probabilities of this algorithm in the
following sections. '

4.8.1 Black Box Full Traceability

In this section, we prove the proposed black box tracing algorithm can trace
all the traitors whose keys are actively used to construct a pirate decoder if
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it is used in any of the six public key (w, n)-traceability schemes discussed
in previous sections. Note that it also works in the trivial scheme.

Even though a traitor provides his decryption key for constructing a pirate
decoder, it is difficult to trace the traitor if his key is not effectively used in
the decoder. Therefore, we consider an active set of traitors. For a pirate
decoder, the active set of traitors is defined as a minimal set of traitors who
can construct the same pirate decoder. We aim to trace all members of the
active set.

It is obvious that tracing all traitors is impossible if there exist two or
more active sets which can construct the confiscated pirate decoder. Hence,
we first need to prove the following theorem.

Theorem 4.8.1 The active set is uniquely determined from a confiscated
pirate decoder.

(Proof) Suppose there exist two active sets of traitors BAD; and BAD:..
We demonstrate BAD; N BAD, can construct the same pirate decoder as
the confiscated pirate decoder and therefore contradicts the minimality of
the active sets.

BAD; N BAD, can construct the following pirate decoder.

1. Given an input ¢ € C(m, A), determine AN BAD; N BAD, as follows.

Decrypt the input using every keys of BAD; N BAD, and let AN
BAD; N BAD, be the set of users from whose keys the same message
is obtained.

It is easy to see this step works correctly with high probability. More-
over, the probability can be increased if MAC or signature of m is
attached to the ciphertext.

2. Output the message with probability pansap,nBaD,-

We then prove that the above decoder correctly simulates the confiscated
pirate decoder by showing ps = panap,nBaD, for any A. Since the test
conditions hold, from view point of BAD;, pa = pansap,- On the other
hand, from view point of BADj, panBaDp, = P(ANBAD1)NBAD,- O

We now state the main result on black box full traceability.

Theorem 4.8.2 The proposed tracing algorithm can trace all members of
active set.
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(Proof) We first prove that users detected by the tracing algorithm are
members of the active set. Let BAD be the active set. Suppose the tracing
algorithm detects user i ¢ BAD as a traitor. This implies there exists A
such that |p4 — payg|- This contradicts Test Condition (3).

We then prove that users who were not detected by the algorithm are
not members of the active set. Let BAD be the active set. Suppose the
tracing algorithm does not detect user i+ € BAD as a traitor. This means
lpA—pa\(| is negligible for any A. Hence, BAD\ {i} can construct the same
pirate decoder in a similar way to the construction in the proof of Theorem
4.8.1. O

4.8.2 Error Probabilities

In this section, we deal with two error probabilities of the proposed tracing
algorithm. They include the probability that the algorithm outputs innocent
users as traitors and the probability that the algorithm cannot trace members
of the active set.

~ If the tracer has unlimited computational power, then the value of p4 for
any A can be explicitly computed and therefore both probabilities are zero.
However, there usually is a limit on computational resources and the tracing
algorithm can get only approximate values of p,.

We evaluate the error probabilities when the number of ciphertexts that
the algorithm is allowed to give to the confiscated pirate decoder is t for
each A. Let the approximate value 4 of p4 be the number that the pirate
decoder outputs m given a ciphertext ¢ € C(m, A) divided by ¢. If the tracing
algorithm considers |p4 — pa\ (i3] is negligible if and only if [Pa —DPariip] <
for some probability a. Then the error probabilities are bounded by the
following theorems.

Theorem 4.8.3 For any A, i and any probabilities a and €,

R R 2
Pr(lpa —paviiy] > a : |pa —pay| <€ < (a— et

Theorem 4.8.4 For any A, i and any probabilities o and 6 > a,

R . 2
Pr[lpA _pA\{i}l <a : |pa —pA\{i}l > 4] < m-

We first derive a lemma to prove the above thereoms.
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Proposition 4.8.1 (Chebyshev’s inequality) Let X be a random vari-
able with mean p = E(X) and variance % = Var(X). Then for any A > 0,

1
Pr(|X — p| > Ag] < ek
Lemma 4.8.1 For any A and X > 0,

Ay/pa(l — pa) 1
Pr{|pas — < —,
r(|pa — pal > i <5

Moreover,
Pr|p | > 4 ] < :
r — —| < —=.

(Proof) In binomial distribution, E(X) = t0 and ¢*(X) = t6(1 — 0). Apply
proposition 4.8.1. Then since ps(1 — pa) < i for any probability pa, the
second inequality is obtained. O

(Proof) [Theorem 4.8.3]

Pr(|pa — Paiy] > o ¢ |pa —pagy| < €

. a—€ . o—€
< Pr(|pa —pal > —5 V [Pagy — pagiy| = — |Pa — pav(iy| < €
. oa—€
< Pr{|pa—pa| > — lpa — paviy] < €]
) a—€
+Prllfavy —pail 2 —5— ¢ Ipa—paa] <¢
1
< 2x 5— (From Lemma 4.8.1)
4(239)
_ 2
 (a—e)%
0
(Proof) [Theorem 4.8.4]
Prlpa —paviyl <@ : [pa—pay| > 9]
R b—a . 60—«
< Prflpa—pal > —— Viba - paviyl > —5— + lpa—pa@l > J
R 0 —«
< Pr{|ps — pal > 5 [pa — pavgiy| > 0]
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VAN

+Pr([paviy — Pavip| >

1
2 X

2
(6 — a)2t

2

t

0—a
2
(From Lemma 4.8.1)

: pa—pavy| > 9]
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Chapter 5

How to Break Some Revocation
and Tracing Schemes

5.1 Introduction

In such applications as pay TV, CD-ROM distribution and online databases,
data should only be available to authorized users. To prevent unauthorized
users from accessing data, the data supplier will encrypt data and provide
only the authorized users with personal keys to decrypt it. However, some
authorized users (traitors) may create a pirate decoder.

A (w,n)-traceability scheme is a scheme in which at least one traitor is
detected from a confiscated pirate decoder if there are at most w traitors
among n authorized users. Chor, Fiat and Naor [19] introduced the first
(w, n)-traceability scheme. The data supplier also wants to exclude some
subset of users time to time. Such a broadcast encryption scheme is called a
revocation scheme.

Let U be the set of users such that || = n and let R € U be a group of
|R| = r users whose decryption privileges should be revoked. The goal of a
revocation scheme is to allow a center to transmit a message M to all users
such that any user u € Y \ R can decrypt the message correctly, while even
a coalition consisting of all members of R cannot decrypt it.

In this chapter, we show attacks and comments on some of revocation
and tracing schemes. They include Chor, Fiat and Naor(CFN) traceabil-
ity scheme[19, 20}, Naor, Naor and Lotspiech(NNL) revocation schemes with
traceability[48), Matsuzaki, Anzai and Matsumoto(MAM) revocation scheme[47],
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M. Yoshida and Fujiwara(YF) revocation scheme with traceability[65] and
Tzeng and Tzeng(TT) revocation scheme with traceability[61].

For example, Naor, Naor and Lotspiech showed two revocation schemes
and a traitor tracing algorithm for them at Crypto 2001[48]. However, we
show that NNL revocation schemes cannot be traceable.

5.2 Attack on NNL Schemes

At Crypto 2001, Naor, Naor and Lotspiech proposed two revocation schemes
which can revoke any subset of users [48]. The authors call the two schemes
the complete subtree scheme and the subset difference scheme. They also
provided a traitor tracing algorithm for each revocation scheme.

In this section, however, we show that none of these schemes has trace-
ability. Our attack succeeds not only in the sense of black box traceability,
but also in the sense of weak traceability, i.e. there exists a strategy of
traitors to create a pirate key from which no traitor is correctly detected.

Their complete subtree revocation scheme is described as follows. Let E;
denote a symmetric cryptosystem keyed with L. For simplicity, assume that
n is a power of 2. Imagine the users as the leaves in a rooted full binary tree
T with n leaves.

Key Generation: Assign an independently and random long-lived key L;
to every node v; of the complete tree 7. The transmission key er is
the set of all L;.

The personal decryption key of user u is the set of logyn + 1 keys
assigned to the nodes along the path from the root to leaf u, i.e.

dy = {L; | v; is a node on the path from the root to the leaf u}.

Encryption: For a given set R of revoked users, let Siy...,S;,, be the
maximal subtrees of T which hang off R. That is, the set of the leaves
of Siys..., S, is equal to U \ R. We use i; to denote the identity of
the root of subtree Si;.

The center then chooses a session key s and broadcast a header

H= (?:1, e ,’im, ELil (8), Ceey Eszm (8))
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Decryption: For each user u € R, there exists exactly one ancestor ¢ €
{#1,-..,%m}. Hence, user u can compute s from H by using d,.

Tracing algorithm: See [48].

Example

Suppose that the set of user is U = {1,2,3,4,5,6,7,8} and the center
uses the complete tree described below.

Then er = {Ly, Lo, ..., L5} and the personal decryption keys are d; =
{Ll, Lg, L13, L15}, dg = {Lg, Lg, L13, Lls}, d3 = {L3, L10> L13, L15} and so on.

When the center wants to exclude R = {5, 6}, the header is

h= (12,13, Er,,(s), EL13(8))'

Given the header, each of the valid users can compute s because he has ei-
ther L5 or L13. On the contrary, user 5 and 6 cannot obtain any information
on s.

1 2 3 4 5 6 7 8

Fig.1. The complete subtree scheme.

We now show that the complete subtree scheme cannot be traceable al-
though the authors showed a traitor tracing algorithm for it. Therefore, their
tracing algorithm is broken.

Theorem 5.2.1 The complete subtree scheme has no traceability.
(Proof) Suppose user u is a traitor. He constructs a pirate key d, such that

dp = dy \ {Lu}
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where L, is the key assigned to leaf u. Let u be a sibling leaf of u. (For
example, u = 1 and %' = 2 in Fig.1.) Then dp can decrypt headers if u ¢ R
and v € R.

However, given the pirate key dp, no tracing algorithm can determine if
user u is a traitor or user v’ is a traitor. O

Theorem 5.2.2 The subset difference method has no traceability.

(Proof) The proof is given similarly. O

9.3 CFN Scheme Cannot Have Full Trace-
ability

Chor, Fiat and Naor showed the first traceability scheme. In their scheme,
at least one traitor is detected from a confiscated pirate decoder. In this
section, we show that their scheme cannot have full traceability, i.e., it is
impossible to trace all traitors.

CFN scheme (19, 20] is described as follows.

Key Generation Algorithm: A g X N sub-key matrix A is chosen at

random.
Q11 12 - A1
@21 Q22 -+ Qg4
A= . .
aN,1 an2 - ang

A set of N hash functions h;, ha, ..., hy is chosen. Each hash function
h; maps {1,2,...,n} into {1,2,... ,q}. The encryption key e is the
entire sub-key matrix A and the personal decryption key of user u is
the sub-key vector

du = (@1,hy(u)s A2 ha(u)s - - - » ANy ()

Encryption Algorithm: Given a session key s, split it into N shares
51, 82,...,8n with an (N, N)-threshold secret sharing scheme. For each
J=12,...,N, s; is encrypted under a secure symmetric encryption
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scheme FE using each sub-key of jth row of A as a key. Then the center
broadcasts the header

Eal,l (81) Ea1,2(81) e Eﬂ],q (51)

Eaz,l (82) Eaz,z (52) e Ea2,q (82)
H= . )

EaN,1(5N) EaN,z (SN) e EaN,q(SN)

Decryption Algorithm: Each authorized user has one sub-key from every
row of A, and can decrypt sy, So, ..., Sy, and thus compute s.

Tracing Algorithm: See [19, 20].
Theorem 5.3.1 CFN Scheme cannot have full traceability.

(Proof) Suppose user v and user ' are traitors and construct a pirate decoder
d, as follows.
Let the personal decryption keys of u and u’ are

du - (al,hl(u)a a?,hz(u)’ s )aN,hN(’u))

and
dy = (a1,h1(u'), A2 ho(u)y aN,hN(u’))

respectively. Let j be the position such that a;s;wy # @jn,@)- Note that
such j always exists, otherwise the personal decryption keys of u and ' are
identical and tracing traitors is impossible.

The pirate key d, is

dp = (al,hl(u)a a’2,h2(u)’ v ,a’j—l,hj_.l(’u), a’j,hj(’u’)’ aj+1,h,-+1(u)v cee )aN,hN(u))'

As it contains one sub-key from each row of the key matrix, decryption can
be performed correctly using the pirate key d, User u alone cannot construct
d, and neither can user v'. Thus {u,v'} is an active set with respect to the
pirate decoder d,. Since user u' contributes in constructing d, only by giving
a sub-key a;n, (), ¥ cannot be traced from other information but a; ;-
However, in general , there exist users who have the same sub-key of A as
@by (')

Therefore, no tracing algorithm can accuse v’ as a traitor. O
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5.4 Attack on MAM Scheme

Anzai, Matsuzaki and Matsumoto[2] and Naor and Pinkas[51] independently
proposed a revocation scheme (AMM-NP scheme) which can revoke up to
w out of n users. This scheme is more efficient than any of NNL schemes
because the size of revocable users is limited to up to w while NNL schemes
can revoke any subset of users.

Matsuzaki, Anzai and Matsumoto [47] recently showed an improved scheme
(MAM scheme) of their original AMM-NP revocation scheme [2, 51].

In this section, however, we show some attacks on MAM scheme.

5.4.1 AMM-NP Scheme [2, 51]

AMM-NP revocation scheme [2, 51] is described as follows.
Let ¢ > n be a prime. Let G, be a group of prime order q. Let g € G,
be a generator of 4. Let s be a session key to be broadcast.

Key Generation Algorithm: The center chooses a random polynomial
f(z) = Yo a2’ over GF(q). The transmission key is er = f(z) and
the personal decryption key of user u is dy, = (u, f(u)).

Encryption Algorithm: Suppose that ¢ < w users should be excluded,
say R = {j1,---,j:}- Choose another w — ¢t random points
(Ge+1, f(Je+1))s s - -+ s (Juwy f(Jw)) which are not assigned to any user.

The center then chooses a random number r and broadcasts a header
H=(sg", 9", (j1,9""M), (42, g79)), . .., (jur g"FO»)).

Decryption Algorithm: Only an unrevoked authorized user can compute
g"* by performing Lagrange interpolation formula for f(z) implicitly
in the exponent of g". Then he can decrypt the session key s.

5.4.2 MAM Scheme [47]

In practical applications such as pay-TV, a set of users whom the center
wants to exclude may change time after time. For example, the center wants
to exclude users who did not pay the fee for the contents for a certain period.
Hence the center needs to change the excluded set and broadcast session keys
for each round.
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In the original AMM-NP revocation scheme [2, 51|, the center can arbi-
trarily select up to w excluded users independently of the round.

On the contrary, in MAM scheme, once a user is excluded at a certain
round, he is to be excluded after the round during the lifetime of the system
and his personal decryption key cannot be reused. If the center allows ex-
cluded users to compute a new session key, the center needs to assign a pair
of new ID and corresponding personal decryption key to each of such users
[47, section 7].

Nevertheless, MAM scheme is computationally much lighter than the
original scheme. Further, the center can add any w — 1 users to the set of
excluded users each round. As a result, the center can eventually exclude
all users while in AMM-NP scheme, the center can exclude up to w users in
each round.

In order to clarify a round number, we will specify the number by putting
it to superscript. For example, s® is the session key of round ¢, R¢~Y is a
set of revoked users in round £ — 1 and so on.

MAM revocation scheme is described as follows.

Key Generation: Let p and ¢ be large prime powers where ¢|p — 1 and
g be a primitive gth root of unity in Z,. These parameters are public
knowledge.

The center chooses two uniformly random polynomials F((z) = YY1} a;2*
and G(z) = Y4 bzt over GF(q).

The transmission key is er = (F(z),G(z)). The personal decryption
key of user u is d, = (F(u), g¢®/F®),

Encryption: Suppose the center wants to exclude a set of users A® from
round ¢, where each member of A®) was not excluded in the last round
t — 1 and |A®)| < w. The center computes and broadcasts a header
H® as follows.

The center chooses a random number 7® € Z, and 6 C {n + w x
(t—1)+1,...,n+w x t} so that |A®| + |00 = w.

The header of the round is
H® = Eyu-n(g"” mod p, {(, M") | j € A® uO®})

69



where
M](t) =r® x F(j) + G(j) mod q

and E(-) is an encryption with a secure symmetric encryption scheme
E under key s.

The session key of the round is s® = g’(t)xa"“’" and the set of all
excluded users R® in round ¢ is
RO = | JAO.
i<t

A® corresponds to the set of users who were valid in round ¢ — 1 and
are excluded in round ¢ and thereafter.

Decryption: Each valid users v € R® can compute the session key s®
from the session key of the last round s~1, his secret decryption key
d,,, and the header H® of round ¢ as follows.

First, u decrypts the header H® with the key s~V and obtains g
and {(J, M}t)) | € A® UOW®}. He then compute

()

s = (g7 x gFWIFENW x %2 mod p

where

W, = F(u) x L(u) mod g,
W = 3 (M x L(j)) mod g

jeAUB®

and L is a Lagrange’s interpolation polynomial

L(5) = 11 t/(t - j)-

teAMOue®Mu{ul\{j}

5.4.3 Attacks on MAM scheme

MAM scheme is designed so that only valid users can compute the session
keys. Hence, an attack is considered to succeed if someone who is not a valid
user can get the session keys. At first, we will show in this section that there
is a serious flaw in MAM scheme. Then, we will present four attacks on the
scheme. The first two attacks are considered in [47] and the authors claim
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that the scheme is secure against these attacks. However, we will show that
it is incorrect. The later two attacks are not considered in [47] but they are
very likely to happen in many practical applications.

The flaw
We show a flaw which makes the system vulnerable not only in a few
rounds but during the lifetime of the system.

Theorem 5.4.1 Suppose that user u is excluded in round t, i.e. u € R®,
Then anyone who knows s® Y gnd dy can compute all of the session keys
after round t.

(Proof) It is obvious that anyone can obtain the session key s from s(t-1),
d, and H® by performing the same computation as a valid user does (Re-
member that anyone can get H® because it is broadcast).
Next, consider round t+1. u € R® implies u € A®) for some round ¢ (<
t). Therefore, u ¢ AttDUOE+D) because A®) AT+ — 0 and UNOED = ¢,
He thus can compute s**+V from s®, d, and H+D.
Similarly, he can compute all of the session keys after round ¢ by himself.
a

The attacks
As a result of the above theorem, the following attacks are possible.

Secret publishing attack

Some malicious users may publish their personal decryption keys to de-
struct the system. We will discuss the security of MAM scheme in this case.

The authors analyzed the security in [47, section 4.2 and section 6]. They
claim that any valid user cannot compute the system secret aqy even if all of
the excluded users publish their personal decryption keys.

However, their security analysis is not sufficient. The goal of an attack
is not to obtain the system secret but to obtain the session keys. In fact,
MAM scheme is not secure when one user (valid or excluded) publishes his
personal decryption key. The detail is as follows.

Suppose an excluded user u publishes his personal decryption key d,, in
round ¢. It is straightforward from Theorem 5.4.1 that any valid user in
round ¢ — 1 can compute all of the session keys even after he is excluded. If
a valid user u publishes his personal decryption key d,, in round ¢, then he
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should be excluded from the next round ¢ + 1 Hence, the attack succeeds by
the similar argument as above.

Rejoining attack

Consider the case when the center allows users who were excluded in
previous rounds to join the system again. For example, it happens in practical
settings when some users did not pay for a while but start to pay the fee again.

In [47], the authors considered this case in section 7. As mentioned earlier,
a set of excluded users is increasing and the personal decryption keys of
excluded users cannot be reused in MAM scheme. They deal with this issue
by assigning a pair of new ID and corresponding personal decryption key to
each of those users who want to join again.

However, if the center allows an excluded user to join again, the user can
get session keys even after he is excluded again.

Suppose a user u is once excluded before round ¢. He requests to join
again from round ¢, so the center gives him the session key s® (or some
information to compute it).

Now he has s® and d,, where u € R®. Hence, he can compute all of the
succeeding session keys even after he is excluded again.

Temporary leakage of a session key

Here, we consider the security of MAM scheme when the session key of
some round is leaked to an excluded user. Even though this scenario is not
discussed in [47}, it is very likely to happen in many practical applications.
For example, if the key management of some valid user is not strict enough,
an excluded user may be able to obtain a session key or some malicious
user may publish a session key before he is excluded. It is desirable that
even if excluded users get some of the session keys, they cannot obtain any
information about other session keys.

However, in MAM scheme, if one session key is leaked, then any excluded
user can compute all of the succeeding session keys by himself.

It is easy to see from Theorem 5.4.1 that if a session key s® is leaked,
then any excluded user u € R®) can compute all of the succeeding session
keys.

A coalition of users who are excluded in different rounds
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Some malicious users may conspire to get session keys which they are
not supposed to have. Even though it is not explicitly mentioned in [47]
if this type of conspiracy is allowed or not, it is very likely to happen. In
fact, if users who are not excluded conspire and withdraw from the system
in different rounds, this conspiracy can be easily made.

As mentioned in [47, section 3], since it is obvious that a coalition can
obtain the session keys while at least one member of the coalition is not
excluded, it is worthless to consider the security against this attack. However,
we should consider the security if the coalition can get session keys even after
all members of the coalition are excluded.

We will show that MAM scheme is not secure against this conspiracy.

For simplicity, we assume the number of colluders is two. Suppose that
user u; and uy are colluders and u; and u, are excluded from round ¢; and
to (> t;) respectively. u, can compute st1) because he is a valid user in
round ;. He gives s to uy. Then from Theorem 5.4.1, 4; can compute the
session keys even after round ¢; by himself. Consequently, u; can give st2)
to ug in round t,. Now u, can get the session keys after the round.

Note that between two colluders, only one session key is sent for each
direction. Each of them can obtain the session keys by himself and does not
need to work together except two rounds.

5.5 Attack on YF Scheme and TT Scheme

For the AMM-NP revocation scheme shown in Section 5.4.1, M. Yoshida and
Fujiwara [65] and then Tzeng and Tzeng [61] showed a black box tracing
algorithm.

In this section, however, we show that their tracing algorithms are broken.

5.5.1 Attack on YF Tracing Algorithm

For AMM-NP revocation scheme, M. Yoshida and Fujiwara showed black
box tracing algorithm as follows.

For every possible t-subset of users R = {uy,us, ..., u:} (¢t < w), compute
a testing header

H = (s’g”‘o,gr, (ul’grf(ul)), e (ut,grf(“t)), (jt+1,g’f(j’“)), e (jw,grf(jW))).
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Feed H' to the confiscated pirate decoder. If the decoder does not output
the correct s', set R as a possible set of traitors. Output the smallest of all
possible sets of traitors found in Step 4.

We now show our attack on the above black box tracing algorithm. Sup-
pose that user u is a traitor. He chooses an innocent user »' randomly. He
then creates a pirate decoder P such as follows. On input a header H, P can
find the set of revoked users R from H. P then outputs Dy (H) where D is
the decryption algorithm if and only if u € R and v’ ¢ R. Then the tracing
algorithm cannot determine if user u is a traitor or user ' is a traitor.

Our attack is generalized as follows.

Theorem 5.5.1 In a traitor tracing scheme, let D be the decryption algo-
rithm. If there exists a pair of users u and u' each of whom can determine
whether Dg,(H) = Dy ,(H) with overwhelming probability for any (valid or
invalid) header H, then the scheme does not have black box traceability.

(Proof) Suppose user u constructed a pirate decoder D which outputs
Dy, (H) if and only if Dg,(H) = Dy ,(H).

Then no black box tracing algorithm can accuse u as a traitor since o’
can also construct a pirate decoder which behaves same as D. ]

5.5.2 Attack on TT scheme

TT scheme [61] is the same as YF scheme except that deg f(z) = z > 2w—1.
They presented two tracing algorithms and the first one is the same as that
of YF scheme. Hence, our attack succeeds for their first tracing algorithms.

We next show an attack on their second tracing algorithm.

Their second tracing algorithm is as follows.

If S = {uy,...,um}, m < w are suspects, choose a random polynomial
f'(z) = Y7 ,dix" such that f'(u) = f(u) for each u € S. Then compute a
testing header

H = (s'g",¢", (j1,9"" ), ..., (G, g" U2))

where {71, ...,7.} are indices other than {u,...,un,}.
Feed H' to the confiscated pirate decoder. If the decoder outputs the
correct ', S are traitors.
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It is possible for traitors to compute the correct s’ if at least one traitor
is in the suspect set 8. Therefore, this algorithm may accuse innocent users
as traitors.

Moreover, even though their proof of the traceability of TT scheme is
based on the following lemma[61, Lemma 1}, it does not apply if the suspect
set S does not include the set of traitors BAD.

Lemma 1 of [61] For polynomials f(x) and f'(x) of degree z, the distri-
butions of the headers constructed by f(z) and f'(z) are computationally
indistinguishable assuming that the DDH problem is hard.

As a matter of fact, BAD can detect whether the input is a valid or
a testing header. BAD first decrypts the input using each of the personal
decryption keys of BAD and compares the results. The input is deduce to be
a valid header if all of the results are the same or a testing header otherwise.
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Chapter 6

Universal Hasing and
Identification Codes via
Channels

6.1 Introduction

Suppose that a transmitter sends a message a to a receiver through a com-
munication channel with Shannon capacity Cs by encoding message a. An
(n, W, A1) transmission code is a code which satisfies

Pr(a is selected | a is transmitted] > 1 — Ay, (6.1)

for each message a, where each codeword has length n and there are W
messages. The rate of the transmission code is defined as

R 2 log W/n.

Shannon proved that max R; is equal to Cg for any arbitrarily small ;. This
model implicitly assumes that:

1. A bijection from messages to codewords exists (deterministic encoding).

2. Also, the decoding regions of messages are disjoint and the receiver
selects one message after receiving a noisy version of the transmitted
codeword.
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Ahlswede and Dueck [1] introduced a new model called identification
codes via channels (ID codes). In this model:

1. There are many codewords for each message and the transmitter chooses
a codeword from among them probabilistically (probabilistic encoding).

2. The decoding regions of messages are not disjoint and the receiver
chooses a list of messages after receiving a noisy version of the trans-
mitted codeword.

An (n, M, A1, A2) ID code is a code which satisfies (6.1) and
Pr[b is selected | a is transmitted ] < Ay for all b # a, (6.2)

for each message a, where each codeword has length n and there are M
messages. The probabilities are taken over the coin tosses of the transmitter
(to choose a codeword) as well as over the noise of the channel. The rate of
an ID code is defined as

R, 2 loglog M/n

(which is a double log !!). It was proven that max R, is equal to Cy for any
arbitrarily small (A;, A2) (1, 31, 32].

Han and Verdu subsequently introduced the model of identification plus
transmission codes (IT codes) [31], where a central station wishes to transmit
one of W messages to one of M terminals. Upon receiving a codeword, each
terminal decides whether it is the intended recipient of the message and if so
it decodes the message. The decoding reliability is measured by (A1, A2) as
follows:

1. For each terminal i,

E[Pr(c is selected by i | ¢ is transmitted to )] > 1 — ;. (6.3)

2. For any pair of terminals j # 4,

E[Pr(j decides that it is the intended recipient

| ¢ is transmitted to )] < As. (6.4)

78



E is taken over all codewords ¢ for terminal ¢ in both equations. An (n, M, W, A1, A2)
IT code is a code which satisfies (6.3) and (6.4), where each codeword has
length n and there are W codewords and M terminals. The rate pair of an

IT code is defined as

(R1, Ry) £ (log W/n, loglog M/n).

Han and Verdd proved that (Cg,Cs) is the maximum achievable rate pair
for any arbitrarily small (A1, A2) [31]. This is a noticeable improvement over
encoding the address and the message separately.

Explicit constructions of IT codes and ID codes which achieve the above
limits were given by Verdd and Wei [62]. They first showed that an IT code
is obtained by concatenating a transmission code with a binary constant
weight code. (An (n, M, A, X2) ID code is obtained from an (n, M, W, A, Az)
IT code easily.) They then showed explicit constructions of a sequence of
binary constant weight codes which is optimum for identification (a SBCOI).

Their basic idea of constructing a binary constant weight code is to con-
catenate an error correcting code C over GF(q) with a [g] PPM code. Then
their first explicit construction of SBCOIs is obtained by using an algebraic
geometry code AG [35] as C. Algebraic geometry codes, however, require
a nontrivial background on algebraic geometry and may not be directly ac-
cessible to most readers. Therefore, they then showed their second explicit
construction of SBCOIs which uses a two-layer Reed-Solomon code. This is
a conceptually simpler, more practical and even more explicit construction.

On the other hand, the notion of universal classes of hash functions was
introduced by Carter and Wegman [18]. It has found numerous applications
in cryptography, complexity theory and other areas [18, 63, 57, 56, 7] (see
the Introduction in [57]). In particular, e-almost strongly universal (e-ASU)
classes of hash functions have been studied and used for authentication codes
[56].

This chapter shows that e-ASU classes of hash functions can yield better
explicit constructions of SBCOIs than the previous explicit constructions of
Verdd and Wei. We first show that the incidence matrix of an e-ASU class
of hash functions naturally yields a binary constant weight code. Then we
show two explicit constructions of SBCOIs. Our first explicit construction
combines the algebraic geometry code AG with an e-ASU class of hash func-
tions. This yields a better SBCOI than the first construction of Verdu and
Wei. Our second explicit construction combines a Reed Solomon code with
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an e-ASU class of hash functions. This construction is not only as practical
as the second construction of Verdd and Wei but also yields a better SBCOL.
After all, e-ASU classes of hash functions enable us to obtain better explicit
constructions of I'T codes and ID codes.

This chapter is organized as follows. The previous constructions of SB-
COIs are summarized in Section 6.2. The background of e-ASU classes of
hash functions is given in Section 6.3. In Section 6.4, we show our explicit
constructions of SBCOIs using e-ASU classes of hash functions. In Section
6.5, we illustrate how to construct a practical I'T code and a practical ID code
by combining a Reed Solomon code with an e-ASU class of hash functions.

6.2 Binary constant weight code and IT code
[62]

6.2.1 Binary constant weight code

Definition 6.2.1 An (L, M, W, K) binary constant weight code is a set of
binary constant weight codewords such that

e the length of each codeword is L,
e the number of codewords is M,
e the Hamming weight of each codeword is W and

e the overlap (the number of coincident 1s) of any pair of codewords is
at most K.

Define
BElogW/logL, p£loglogM/logL, u2 K/W. (6.5)

0 is called the weight factor, p is called the second order rate and u is called
the overlap factor of the binary constant weight code.

Verdd and Wei showed that an IT code can be obtained by concatenating
a transmission code with a binary constant weight code [62].

Proposition 6.2.1 Suppose that there exists an (L, M, W, uW) binary con-
stant weight code and an (n, L, \) transmission code. Then there ezists an
(n, M, W, A\, X + p) IT code with the rate pair (3R, pR), where R is the rate
of the transmission code.
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It holds that [62]
<1 p<Ll

To make (BR, pR) approach (Cs,Cs), R needs to approach Cs and (8, p)
approach (1,1). To make Ay = A + u small, z needs to approach zero. This
motivates the following definition.

Definition 6.2.2 Consider a sequence {C;}, where C; is a (L;, M;, W;, K;)
binary constant weight code with weight factor (3;, second order rate p;, and
pairwise overlap fraction p;. We say that the sequence of codes {C;} is opti-
mal for identification if

ﬂi_)]"
Pi_*l,
pi — 0.

(6 and p should be as large as possible and p should be as small as
possible.)

6.2.2 Previous construction (I)

A binary constant weight code is obtained by concatenating an error correct-
ing code with a PPM code.

Definition 6.2.3 We denote an error correcting code by C = (n,|C|,d),
where n is the length of a codeword, |C| is the number of codewords and d is
the minimum Hamming distance.

Definition 6.2.4 Let Cl = (n1,|C1|,d1) and 02 = (n2,|02|,d2) be error
correcting codes with alphabets A; and A, respectively, such that |As| = |C,].
Then C = Cy0C;, denotes a concatenated code (nyns, |Cyl,d12) with alphabet
A; such that

C= {(h(yl)v tee ’h(ynz)) | (yl, s aynz) € C2}a

where h s a bijection from A, to C.

Definition 6.2.5 A (g,¢,1,0) binary constant weight code (which consists
of all binary q-vectors of unit weight) is called a [q) PPM code.
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Proposition 6.2.2 For an error correcting code C = (n, |C|,d) with alpha-
bet size q and a [¢] PPM code Cy, C; o C is an (ng,|C|,n,n — d) binary
constant weight code.

Verdd and Wei [62] showed that a sequence of binary constant weight
codes which is optimum for identification (see Definition 6.2.2) is obtained by
using a sequence of algebraic geometry codes {AG;} of the following Propo-
sition as C' of Proposition 6.2.2.

Proposition 6.2.3 [35] Let ¢ = ¢2™ where qo is a prime. Suppose that
R=1-(¢2-1)1-6>0.

Then, for any € > 0, there exists a sequence of q-ary codes of { AG;} increas-
ing length whose asymptotic rate is greater than or equal to R — € and whose
asymptotic ratio of minimum (Hamming)distance to length is greater than or
equal to & — €.

6.2.3 Previous construction (II)

The above construction, however, requires a nontrivial background on alge-
braic geometry and may not be directly accessible to most readers. Verdi and
Wei [62] next presented a conceptually simpler, more practical and even more
explicit construction of a sequence of binary constant weight codes which is
optimum for identification. It can be understood without much background.
This construction uses a two layer Reed-Solomon code as C of Proposition
6.2.2.

Definition 6.2.6 Let q be a prime power and denote the elements of GF(q)
by {as,...,aq}. A [g,k] Reed-Solomon code (k < q) is the set of g-vectors
over GF(q):

{(p(a1),...,p(aq)) | p(z) is a polynomial of degree < k
with coefficients from GF(q)}.

In a [g, k] Reed-Solomon code, the blocklength is ¢, the number of code-
words is ¢*, and the minimum distance is g—k+ 1 because if two polynomials

of degree < k coincide at k£ or more places, then they are identical.
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Proposition 6.2.4 The [q,k,t] three layer concatenated code C; o Cs 0 Cs,
with Cy = [q] PPM, Cy = [g,k] Reed-Solomon and Cs = [¢*,q"] Reed-
Solomon, with t < k < g = prime power is a (¢**2, g*¢*, gk+1 kq* + g+t
binary constant weight code.

Proposition 6.2.5 Let C; be a [q;, ki, t;] three layer concatenated code as in
Proposition 6.2.4. The sequence of codes {C;} is optimal for wdentification if
ti=1, ki =1+ 1, and q; any increasing sequence of prime powers.

6.3 Universal hash functions

Let X and Y be finite sets such that [X| > |[Y|. Let H be a set of hash
functions such that h: X — Y for each h € H.

Definition 6.3.1 [56/ We say that H is an e-almost strongly universal (e-
ASU) class of hash functions provided that the following two conditions are
satisfied:

1. for any x € X and any y € Y, there ezists exactly |H|/ Y| functions
h € H such that h(z) = y.

2. for any two distinct elements x1,x, € X and for any two (not necessar-
iy distinct) elements y,y, € Y, there exists at most ¢|H|/ Y| functions
h € H such that h(z;) = y;, i = 1, 2.

Stinson showed a composition construction of an e-ASU class of hash
functions such as follows [56, Theorem 5.5].

Definition 6.3.2 Let C = (n,|C|,d) be an error correcting code over an
alphabet X. Let H be an e-ASU class of hash functions from X toY. Then
for1 < Vi <n andVh € H, define a hash function asn :{1,2,...,|C|} - Y
by the rule

96,y () = h(the ith symbol of the zth codeword of C)

Let .
HxC={g4n}
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Proposition 6.3.1 [56, Theorem 5.5] Let C = (n,|C|,d) be an error cor-
recting code over an alphabet X. Let H be an e-ASU class of hash functions
from X toY. Then H¢ S HxC (defined as above) is an €-ASU class of
hash functions from {1,2,...,|C|} to Y such that

d
E=€¢+1——,
n
|He| = n|H|.

(Remark) In [56, Theorem 5.5], Stinson used the term AU class of hash
functions. Bierbraur pointed out that it is equivalent to an error correcting
code [7].

Let g be a prime power and let 1 < k < q. Let

X £ {(ay,...,a) | a: € GF(q)}.

y 2 {the elements of GF(q)}.

Boer showed a e-ASU class of hash functions from X to Y such as follows
[23].

Definition 6.3.3 For V(eg, e,) such that eg,e; € GF(q), let
hieoen(at, -, ax) = eo + azer +-- - + ake’f.

Let A
G(Qa k) = {h(eo,el)}'

Proposition 6.3.2 [23] The above G(q,k) is a (k/q)-ASU class of hash
functions from X to'Y such that |G(q, k)| = ¢>.

Then the following corollary is obtained from Proposition 6.3.1.

Corollary 6.3.1 Let G(q,k) be a (k/q)-ASU class of hash functions from
X toY defined as above. Let C = (n,|C|,d) be an error correcting code over
GF(q*). Then G(q,k)¢ = G(q,k) * C is an €-ASU class of hash functions
from {1,2,...,|C|} to Y such that

.k d

=412
q n

'G(qv k)Cl = nq2'
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(Proof) Let g(ieq.e,) be a hash function of G(g, k)¢, where 1 < ¢ < n and
eo, €1 € GF(q). Let the xth codeword of C over GF(g*) be (A, ..., A,). Let
the vector representation of A; € GF(g*) be (ay, ..., ax), where Va; € GF(q).
Then

Gieoer)(T) = MNieger)(the ith symbol of the xth codeword of C)

h’(eo,el)(ah v )ak)
= eg4are; + - +aget.

Fix z € {1,2,...,|C|} and y € Y arbitrarily. Let’s compute the number N
of g(i,eq,e;) Such that g(i,eo,el)(g;) =y. That is,

eo+aer +- - +agef = y. (6.6)

Choose (i,e;) arbitrarily. Then there exists unique ey which satisfies (6.6).

Therefore
|G(q, k)C |
q

Next, fix 21,29 € {1,2,...,|C|} such that z; # z5 and y1,ys € Y arbitrarily.
Let’s compute the number N; of g(; ¢y.¢;) Such that

No = [{(4,€0)}| = ng =

g(i,eo,el)(xl) = ylv g(i,eo,el)(-TQ) = y?.'

Let the vector representation of the ith symbol of the x;th codeword of C
be (a,...,ax) and that of xoth codeword be (by,...,b;). Then

€0+(1161+"'+ak€’f=y1,
eo + bier + -+ - + brek = ys.
Now we have
(ak — b)et + -+ - + (a1 — bi)er + (y2 — 31) = 0. (6.7)

First suppose that y; # y2. Then (6.7) has at most k solutions on e;. There-

fore,
Nl S |{(Z,61}| = ’ﬂk

Next, suppose that y; = yo. There are at most n — d positions ¢ such that
(ay,...,a,) = (b1,...,b) since the minimum Hamming distance of C is
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d. For such i, (6.7) is satisfied by any e;. For i such that (ay,...,a;) #
(b1, ..., bx), (6.7) is satisfied by at most (k — 1) e;. Therefore,

Ny < (n—d)g+n(k—1).
In each case, N, is upper bounded by
N < (n—d)g+nk

k d
= ng|{—+1-—
q n

— (S +1-— g) -|G(g, k)cl/q

6.4 Proposed construction of binary constant
weight codes

In this section, we show explicit constructions of a sequence of binary con-
stant weight codes which is optimum for identification (a SBCOI for short)
by using e-ASU class of hash functions. The proposed constructions give
better binary SBCOIs than the previous constructions.

6.4.1 ASU implies binary constant weight code

Let H be an e-ASU class of hash function from X to Y. The incidence matrix
of H is a [H| x | X||Y| binary matrix such that each row is indexed by h € H
and each column is indexed by (z,y) € X x Y as follows.

|1 ifh(z)=y
(h, (z,y)) = { 0 otherwise

Theorem 6.4.1 Let H be an e-ASU class of hash functions from X to Y.
Then the set of column vectors of the incidence matriz of H is
o (|H|,| XY, |H|/Y|,e|H|/|Y|) binary constant weight code.

(Proof) It is clear that the length of each codeword is |H| and the number
of codewords is | X||Y|. The last two parameters come from Definition 6.3.1.
0
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Then from Corollary 6.3.1, we obtain the following explicit construction
of a binary constant weight code.

Corollary 6.4.1 Suppose that there exists an error correcting code C' =
(n,|C|,d) over GF(qF). Then there ezists a (nq2,q|C],nq,nq(§ +1— 2y
binary constant weight code. This is obtained as the set of column vectors
of the incidence matriz of G(q,k)c = Glq,k) x C. (See Definition 6.3.3 for
G(q,k) and see Definition 6.3.2 for G(q,k) *C.).

6.4.2 Proposed construction (I)

We show that Corollary 6.4.1 yields a better binary constant weight code
than Proposition 6.2.2 from the same error correcting code C over GF(g*).
Let 31, p1 and p; be the weight factor, the second order rate and the overlap
factor, respectively, of the binary constant weight code of Corollary 6.4.1.
Then

log ng loglog|Clq d k
= = — =1—-—+4+-.
Let (32, p2 and uo be those of Proposition 6.2.2. Then
B, = logn _ loglog |C] _q d
2 = IOg nq’“’ 2 = ].Og nqk 3 H2 = na

Consider small fixed k such that k > 2 (For example, k& = 2). Then for
sufficiently large g, we have

P1> B2, p1>p2, R o (6.8)

This shows that Corollary 6.4.1 yields a better binary constant weight code
than Proposition 6.2.2 because  and p should be as large as possible.

Therefore, a SBCOI is obtained if we use a sequence of the algebraic
geometry codes { AG;} of Proposition 6.2.3. This SBCOI is better than that
of Section 6.2.2 from (6.8).

6.4.3 Proposed construction (II)

A [¢*, ¢'] Reed-Solomon code is a code over GF(g*) such that the length
of a codeword is n = ¢¥, the number of codewords is |C| = (¢*)¢" and the
minimum Hamming distance is d = ¢* — ¢* + 1. Then from Corollary 6.4.1,
we have the following corollary.
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Corollary 6.4.2 There exists a (¢"2, ¢+, ¢*+1 k¥ + ¢+t —q) binary con-
stant weight code, where t < k < q = prime.

We denote the above binary constant weight code by RB(q,k,t).
Let B3, p3 and p3 be the weight factor, second order rate and the overlap
factor, respectively, of the binary constant weight code of RB(q, k,t). Then

log ¢*+1 log log gka'+! k 1 1
BT log gt BT Thoggm 0 Tt (69)

Let B4, ps and 4 be those of the [q, k,t] three layer concatenated code of
Proposition 6.2.4. Then

_ logg**! ) _ loglog g*¢ p=ty
4 log gk+2’ 4 log gF+2 4 g ' gkt

Therefore,
Bs=04 p3>ps, 3 < pa

This shows that RB(q, k,t) is a better binary constant weight code than the
lg, k, t] three layer concatenated code of Proposition 6.2.4 because p should
be as large as possible and y should be as small as possible.

Therefore, the sequence of binary constant weight codes {RB(g;, ki, t;)} is
optimal for identification if t; =4, k; =4 + 1, and ¢ any increasing sequence
of prime powers from Proposition 6.2.5. This is a better SBCOI than the
SBCOI obtained from the [g, k, t] three layer concatenated code.

6.5 Practical IT code and ID code

By using Corollary 6.4.2, we can construct a practical IT-code and a practical
ID-code. Suppose that there exists an (n, ¢**2, \) transmission code. Index
each codeword of this code by (y, ey, e;), where y is an element of GF(q"),
eo and e; are elements of GF(q).

6.5.1 Practical IT code

By combining Corollary 6.4.2 with Proposition 6.2.1, we can construct a
practical IT-code such as follows.
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Corollary 6.5.1 Suppose that there exists an (n, ¢**2, \) transmission code.
Then there erists an (n,qkd'+1 gk+l 3 ) 4 p3) IT-code with the rate pair
(B3R, p3R), where R is the rate of the transmission code, t < k < g = prime
and 3, p3, 3 are defined by (6.9).

This IT code is described as follows. Suppose that there are M 2 gre+1
terminals and the size of messages is W 2 gt

1. Index each terminal by (f(z),a), where f(z) is a polynomial over
GF(q*) such that deg f(z) < ¢t and « is an element of GF(q).

2. Index each message by (y, e;), where y is an element of GF(q*) and e,
is an element of GF(q).

Now suppose that a central station 7' wishes to transmit the (y,e1)th
message to the (f(z), a)th terminal. Then T first computes f(y). Let the
vector representation of f(y) € GF(¢*) be (ai, ..., a), where g, is an element
of GF(q). Next T computes e such that

eo+aje; + - +aref = a, (6.10)

Finally, T broadcasts the (y, €0, e1)th codeword of the transmission code.

6.5.2 Practical ID code

From the sentences between Theorem 2 and Definition 5 of [62], we can
construct a practical ID-code such as follows.

Corollary 6.5.2 Suppose that there exists an (n, ¢**2, \) transmission code.
Then there exists an (n, g*7't1 ), A+us) ID-code with the rate pair (B3R, psR),
where R is the rate of the transmission code, t < k < q = prime and [, 03,
ps are defined by (6.9).

This ID code is described as follows. Suppose that there are M 2 gka'+1
messages. Index each message by (f(z), ), where f(z) is a polynomial over
GF(q*) such that deg f(z) < ¢* and « is an element of GF(q).

Now suppose that a transmitter 7 wishes to transmit the (f(z), a)th
message to a receiver. Then T first chooses (y, e;) at random, where y is an
element of GF(g*) and e, is an element of GF(g). Then T computes f(y).
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Let the vector representation of f(y) € GF(¢*) be (ay,...,ax), where a; is
an element of GF(g). Next T computes ey such that
eo+alel+---+ake’f=a.

Finally, T transmits the (y, g, €1 )th codeword of the transmission code.
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Chapter 7

Conclusion

In this chapter, we summarize the results we have obtained in this work. and
provide suggestions for future research.

In Chapter 2, we first presented two tight lower bounds on the size of the
secret keys of each user in an unconditionally secure one-time use conditional
access scheme (OTCAS). Then we have shown how to construct a compu-
tationally secure multiple-use conditional access scheme (MCAS) from a key
predistribution scheme (KPS) by using the ElGamal cryptosystem. We have
proven that our MCAS is secure against chosen (message, privileged subset of
users) attacks if the ElGamal cryptosystem is secure and if the original KPS
is simulated. This is the first MCAS with security that is proven formally.

In Chapter 3, we have shown an efficient construction of a class of condi-
tional access schemes. We say that a conditional access scheme is a (w,n)-
revocation scheme if a center can exclude w or less users among n users. In
this chapter, we have presented efficient (w, n)-revocation schemes such that
pr = O(w't¢) and pr = 1 + € for any € > 0 where transmission rate pr is

defined as
4 the length of a ciphtertext

pr = the length of a plaintext

by showing new constructions of cover free families. We have also shown a
construction of cover free families which yields a (w, n)-revocation scheme
such that not only pr = O(w?) but it can also be used as a w-resilient
traceability scheme.

In Chapter 4, we have shown that three public-key (k,n)-traceability
schemes can be derived from a [n,u, d]-linear code C such that d > 2k + 1.
The previous schemes are obtained as special cases. This observation pro-
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vides more freedom and new insight into this field. For example, we have
demonstrated that Boneh-Franklin scheme[14] is equivalent to a slight mod-
ification of the corrected Kurosawa-Desmedt scheme[39]. This means that
BF scheme is redundant or overdesigned because the modified KD scheme
is much simpler. It was also shown that the corrected KD scheme is the
best among them. In addition, we have shown a tracing algorithm which can
detect all traitors by using a confiscated pirate decoder as a black box. This
algorithm is applicable to all the public-key traceability schemes discussed
in this chapter and the trivial scheme. This is the first black box full tracing
algorithm with traceability that is formally proven.

In Chapter 5 we have provided attacks and comments on some of the revo-
cation and tracing schemes. They include Chor, Fiat and Naor(CFN) trace-
ability scheme[19, 20], Naor, Naor and Lotspiech(NNL) revocation schemes
with traceability[48], Matsuzaki, Anzai and Matsumoto(MAM) revocation
scheme[47], Yoshida and Fujiwara(YF) revocation scheme with traceability[65]
and Tzeng and Tzeng(TT) revocation scheme with traceability[61]. For ex-
ample, Naor, Naor and Lotspiech showed two revocation schemes and a
traitor tracing algorithm for them at Crypto 2001{48]. However, we have
illustrated that NNL revocation schemes cannot be traceable.

In Chapter 6, we have shown that e-almost strongly universal classes of
hash functions can yield better explicit constructions of identification codes
via channels (ID codes) and identification plus transmission codes (IT codes)
than the previous explicit constructions of Verdu and Wei.

Finally, we provide suggestions for future research. We have proposed
an efficient conditional access scheme with traceability. However, not many
such schemes are known so far. In particular, conditional access schemes
with black box traceability should be studied further. We have introduced
the first black box full tracing algorithm with traceability that is formally
proven. However, it is not efficient and improvement of the algorithm must
be considered. There may or may not exist better algorithms. But ex-
plicit description of better algorithms or the proof that there exists no better
algorithm should be provided. In all of the previous works on black box
traceability, it is assumed that pirate decoders are “resettable.” Whether or
not this assumption is essential is still open. Although it seems to be critical
in black box full traceability, it will be interesting to consider if it is possible
to weaken the assumption.
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