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Abstract

The finite dimensional linear time invariant (FDLTI) H, control theory establishes one of ‘the most
powerful robust control. Though tractability of the FDLTI H., is superior, its suitability with real
modeling error is poor. Therefore, the resulting system performance is conservative if we directly
apply the Ho, control theory in practice. To reduce the conservativeness, FDLTI H,, control scheme
with minor feedback have been examined in this thesis. The approach used here gains suitability of
- FDLTI H, control without losing its tractability.

Since the minor feedback loop changes both the nominal plant and the uncertainty models, we
cannot conclude immediately that it improves system performances even if the magnitude of uncer-
tainty model is reduced. A disturbance rejection problem is introduced to investigate the effect of the
minor feedback and a sufficient condition is derived on which the minor feedback improves system
performance. Experimental results for a pressure control system will confirm the correctness of the
sufficient condition.

Feedback linearization is a useful minor feedback control for nonlinear systems. However, the
original formulation is not suitable for pneumatic control systems. In this thesis, its reformulation
is proposed so that the linearized plant coincides with the linear approximated plant of the original
nonlinear plant. According to this reformulation, it is easily concluded that feedback linearization
improves system performance if nonlinearity of the real plant occupies dominant part of uncertainty
model. In addition, a class of feedback linearizable plants is derived and linearization control with
disturbance rejection is proposed. These results gain suitability of feedback linearization for pneumatic
systems. Effectiveness of these results are verified experimentally for a pneumatic actuator systems
with a rubber artificial muscle.

Under real parametric uncertainty, minor feedback should satisfy an H,, norm constraint to im-
prove system performance subject to the uncertainty. A norm bound test for real parametric perturbed
systems is given based on sign definite condition. Frequency restricted norm (FRN), a generalization
of the Ho, norm, is proposed and a special class of real parametric perturbed systems, such that their
FRNs are bounded by the FRNs of fixed systems is derived. Based on these results, a design method
of minor feedback controller against real parametric uncertainty is given by using parameter space

design method.
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Chapter 1

Introduction

The purpose of controller design is to determine a controller for a given real plant to satisfy given
control objectives. Most of the design methods are based on a mathematical model of a real plant,
called destgn model, where a controller is determined by using mathematical manipulation based on
the model. Design model had been assumed to be a fized plant, called nominal plant. A controller
designed based on a nominal plant might fail in practice if it does not consider the modeling error
between the nominal plant and the real plant. The property to absorb the modeling error is an
important design objective and it is called robustness.

We review the literature on robust control briefly: vIn so-called classical control, robustness has been
considered implicitly. For example, gain and phase margins have been used as indices of robustness
and controller has been designed guided by experience and rule of thumb.

On robustness for real parametric uncertainty, Kharitonov has investigated the Hurwitz-stability
of plants for which the characteristic polynomials are interval polynomials. He has shown that only
four fixed special extremal polynomials determine the stability of the interval plant[Kharitonov 1978].
Motivated by this result, some analogous results had been obtained for other design objectives, e.g.,
[Chapellat 1990][Kimura 1994]. These results are useful in analysis but not directly applicable to
controller design.

Recently, finite dimensional linear time invariant (FDLTTI) H,, control has been proposed[Doyle 1992]
where design model is characterized as nominal plant + model uncertainty. Based on the FDLTI H
control, some extensions have been proposed. For example, nonlinear H., control[Imura 1994] for

nonlinear plants and real p-synthesis[Doyle 1982] for real parametric perturbed plants.

‘We here recall two fundamental requirements for the controller design methods, namely, they

should be

e suitable for treating given real plant and control objectives



o tractable in computing controller.

If an FDLTI H,, control design method meets these requirements, we claim that it is one of the
most powerful design methods for robust control. This claim is due to its superiority of suitability and
tractability. The former is based on the fact that we can treat the modeling error in higher frequency
range naturally in the H,, control and the latter is on the fact that the H, controller is determined
by solving two Riccati equations.

The uncertainty model used in the H,, control is norm bounded, while real modeling error between
the real plant and an FDLTI nominal plant is not. Therefore, the determination of the uncertainty
model is conservative in particular applications. Fig. 1.0.1 illustrates the situation. Hence, by applying

the H,, control to real applications directly, resulting system performance might be conservative.

modeling error

nominal plant

norm bounded representation
of modeling error

Figure 1.0.1: image of conservativeness of norm bounded representation

To reduce the conservativeness, nonlinear H., control[lmura 1994] has been proposed to treat
nonlinearity of the plant and real p-synthesis[Doyle 1982] has been proposed to treat real parametric
uncertainty. These approaches, however, do not fully succeeded so far because design scheme of the
both theories are not tractable. _

Throughout this thesis, we investigate a robust control design with minor feedback to reduce the
conservativeness based on the FDLTI H,, control. The approach used here gains suitability of the
FDLTI H,, control without losing its tractability. An image of reduction of conservativeness with
minor feedback is depicted in Fig. 1.0.2.

We see examples of this idea in several areas of control engineering. Modification of the nom-
inal plant with minor feedback is commonly used in practice. For position control system with
pneumatic actuator, pressure control loop is used as a minor feedback to make the pressure con-
trol loop fast so that its dynamics can be neglected. In addition to the loop, position control loop is

designed[Kawakami 1993]. For flexible structure systems, direct velocity feedback (DVFB) is applied



modified modeling error
with minor feedback

modified nominal plant
with minor feedback

norm bounded representation
of modified modeling error

Figure 1.0.2: image of reduction of conservativeness with minor feedback

at first as a minor feedback to gain the stiffness of the systems and then, robust controller is design
based on the modified plant. However, less attention is paid for modification of the uncertainty. Only
a partial result for first and second order plants has been found in [Fukuda 1994].

A typical example of reducing the uncertainty model with minor feedback can be seen in feedback
linearization[Su 1982]. The effectiveness of the feedback linearization has been confirmed by several
applications, e.g., [Takagi 1993][Sugie 1993]. However, there had been few application of feedback lin-
earization for pneumatic systems. We are aware of only one application in [Bouhal 1993]. Moreover,
original linearization control is not compatible for pneumatic systems. For example, its linearizabil-
ity has not been clarified yet. To deal with the problems, reformulation of linearizing control law,
linearizability, and linearization with disturbance rejection are investigated in this thesis to gain the
suitability of feedback linearization with pneumatic systems. We examine the effectiveness of the
minor feedback linearization based on these results.

For real parametric uncertainty, the parameter space design method is tractable if the number of
controller parameters is small. Since simple controller is preferable for the minor feedback, we here

apply the method to design a minor feedback controller considering real parametric uncertainty.
This thesis is divided into seven chapters.'v A summary is given as follows:

Chapter 2: Robust Control Synthesis with Minor Feedback The basic idea of robust control
with minor feedback is proposed to reduce the conservativeness of robust control. Disturbance
rejection problem is introduced to investigate the effect of the minor feedback. A sufficient

condition is derived under which the minor feedback improves a system performance.

Chapter 3: Minor Feedback Linearization First, a modified linearizing control is proposed to

preserve the property of the first order approximated system. Next, a class of feedback lineariz-



able systems is derived. Last, linearization control with disturbance rejection is proposed. These

are especially useful for pneumatic actuator systems.

Chapter 4: Minor Feedback Synthesis considering Real Parametric Uncertainty Asdescribed
in Chapter 2, the minor feedback should satisfy a robust H, norm constraint subject to the
real parametric uncertainty in order to system performance. This chapter presents an H,. norm
bounds test for plants with real parametric uncertainty. The test is based on Sign Definite
Condition. In addition, bounds of frequency restricted norm, a generalization of H., norm, is
examined. A design example of PI-type controller for a parametric perturbed plant is illustrated

based on parameter space design method.

Chapter 5: Application to Pressure Control System In this chapter, the proposed method is
applied to a pressure control system, the most simple pneumatic system. Experimental results

confirm the correctness of the method.

Chapter 6: Application to Pneumatic Actuator System In this chapter, the proposed meth-
ods are applied to a pneumatic actuator system with a rubber artificial muscle, which is more
complex system than the pressure control system in the previous chapter. Experimental results

shows that the proposed methods are also useful for the pneumatic actuator system.

Chapter 7: Conclusion We summarize the contribution of the thesis and point out some future

research issues.



Chapter 2

Robust Control Synthesis with Minor
Feedback

The basic idea for reducing of conservativeness of robust control with minor feedback is
introduced in this chapter. Since the minor feedback changes both nominal plant and
uncertainty model, we cannot conclude immediately that it improves system performance
even if the magnitude of uncertainty model is reduced. A disturbance rejection problem
is introduced to investigate the effect of the minor feedback and a sufficient condition is

derived on which the minor feedback improves the attenuation level.

2.1 Conservativeness of Robust Control

We here review the conservativeness of robust control based on finite dimensional linear time invariant
(FDLTI) Hy, control theory. Since we cannot obtain an exact-mathematical model of a real plant P,
the design methods should take the modeling error of the mathematical representation into account.
To deal with the modeling error, the design model used in the Hy, control is a set of plants rather
than a fixed one. The model is characterized by a FDLTI nominal plant combined with uncertainty
model which is assumed to be a set of norm bounded systems. This design model P can be expressed

as, e.g., in multiplicative perturbed form as
P :={P|P = Py(1+WrA), |All~x <1} (2.1.1)

where Wr refers to the magnitude of the uncertainty model. Fig. 2.1.1 shows the design model in the
multiplicative perturbed form. The magnitude of Wr is determined mainly in the frequency domain,

and hence it is called the frequency weight corresponding to the uncertainty model.

10



’—V Wop A
U Yy
1—0 Py —

Figure 2.1.1: model expression in robust control : uncertainty model WrA 4+ nominal plant R

The determination of uncertainty model corresponding to real modeling error should be tight in
order to achieve good system performance. However, the modeling error between the real plant and
the FDLTI nominal plant is not coincident with the norm bounded uncertainty in practice. Therefore,
the gap will make the magnitude of the uncertainty model large and this causes the conservativeness
in robust control design.

Furthermore, suppose that the variation of the modeling error over the frequency domain is large as
shown in Fig. 2.1.2-a. Then, the tighter evaluation requires the higher order weighting function, which
is undesirable in practice. In other words, we usually use a low order weighting function to represent
uncertainty model and thus the large variation of modeling error also leads to the conservativeness.

Fig. 2.1.2-a illustrates the situation.

uncertainty model
dB 1 g 1} modified uncertainty model

> w
— @ ®
.....-.." ,'._.'...‘ .:.._.-' .':....- :.:..‘. P‘ _______ -‘ ........ ’ ...... i _.
£l |
real model error modified real model error
a) without minor feedback b) with minor feedback

Figure 2.1.2: image of variation reduction with minor feedback

11



2.2 Reduction of Conservativeness with Minor Feedback

A design method with minor feedback is examined in order to reduce the conservativeness of robust
control. We first focus on robust stability. By applying a minor feedback F for a given real plant P,,
we consider the modified plant P defined by!

PF.=P./(1+ P.F) (2.2.1)

instead of P, itself (See Fig. 2.2.1.).

............................

Figure 2.2.1: modified real plant PF with minor feedback F

Here, we define a set of plants P¥ in the multiplicative perturbed form defined as
PF = {PFIPF = (1 + WF AP, [|A]lx <1} (22.2)

where

PF = (14 PF)7 P, (2.2.3)
Our aim is to determine PF, i.e., Wrﬁ so that
PEepr, i=1,...,N (2.2.4)

hold, where PE:

w3 ¢ =1,...,N are a series of plants experimentally identified for PF. If such PF is

determined with a margin, we may believe that PF € PFE. In other words, if an H, controller robustly
stabilizes P¥, we can conclude that it also stabilizes PF.

Therefore, if we can reduce the magnitude of W.f and/or the variation of the modeling error by
the minor feedback F', we may claim that the conservativeness is reduced and the performance is
improved. The reduction is illustrated in Figs. 2.1.2-b. and 2.2-b.

However, we cannot say whether the conjecture is true or false immediately, since the minor
feedback changes the nominal plant P(f as well as the bound of 'model uncertainty W:ﬁ' as already

mentioned.

!The symbol with superscript *¥ means the corresponding * modified by the minor feedback F from now on.

12



Figure 2.2.2: model expression in robust control : modified uncertainty WQE A + modified nominal

plant Pf

uncertainty model

dB 4 dB

uncertainty model

real model error

real model error

a) without minor feedback b) with minor feedback

Figure 2.2.3: image of gain reduction with minor feedback

A disturbance attenuation problem is investigated to tackle the problem in the next section.

2.3 Disturbance Attenuation Problem
We consider a disturbance attenuation problem with a multiplicative perturbation defined as follows.

Disturbance Attenuation Problem Find a stabilizing controller K which mazimizes the distur-

bance attenuation level q subject to
[Gawllec <1 (2.3.1)

13



where Gy denotes the closed-loop transfer function from w to z in Fig. 2.8.1.. The maximum value

is denoted by G(F).

21

Wi
z

23

qWps |—

yL

Figure 2.3.1: disturbance attenuation problem

Note that minimizing the gain of the closed-loop transfer function from w to 22, denoted by G,,w,
implies the disturbance @ttenuation from plant input to the plant output with frequency weight Wpg
of level q. Although the actual disturbance at plant input channel is d, not w, in Fig. 2.3.1, the
minimization of ||G,,wllce instead of |G, dll~ seems to have less physical meaning, where G, 4 refers

to the closed-loop transfer function from d to z3. However simple computation yields
Gzzw = Gzzd ) (232)

and this identity makes the disturbance attenuation problem meaningful.

2.4 Reduction of Conservativeness in Disturbance Attenuation Prob-

lem with Minor Feedback

We show that the conjecture in the preceding section is true for the disturbance attenuation
problem of maximizing the attenuation level g(F'), which is described in the following

proposition.

Proposition 2.4.1 Consider the disturbance attenuation problem where the plant Py s single input

multiple output system with size k expressed as
o T
Py = [p1---pil (2.4.1)
and the weighting function Wpg s a diagonal matriz.
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Suppose two minor feedback controllers F1 and Fy satisfy the following three conditions:

CO : 3M : unimodular over RH,, s.t P{* = MPOF2
Ct : |p/*Gw)| > P2 Gw)]; YweER andi=1,...,k. ' (2.4.2)
C2 i Wh(w) > WEGw)|; weR.
Then »
q(F1) < g(F) (2.4.3)
holds for any fixed weight Wpg.

The disturbance attenuation problem is equilibrate to the mixed sensitivity problem shown in Fig.

2.4.1 with Wg = ngPOF , and hence Proposition 2.4.1 is equilibrate to the following lemma:

21
> WQE b

w z
29
> qWSE S
U Yy
. | pF .
O—* B >

Figure 2.4.1: mixed sensitivity problem

Lemma 2.4.1 Consider the disturbance attenuation problem where the plant Py is single input mul-
tiple output system with size k expressed as (2.4.1) and the weighting function WSF 18 ‘a vector valued

weighting function denoted as
wi =l T (2.4.4)

Suppose two minor feedback controllers Fi and Fy satisfy the following three conditions:

CO0 : IM : unimodular over RH,, s.t Pfl = MP(}E‘2

CL : |[wl(w)| > |w® JLU|, VweR andVi=1,...,k (2.4.5)
C2 : Wi (w)| > [Wf(w)l; "weR.
then
q(F1) <q(F3) (2.4.6)
holds.

Hence, we prove the above lemma instead of the proposition based on the following preliminary

result:

15



Lemma 2.4.2 Let G be a generalized plant of an Hy, problem partitioned by

Gu G
G = 1 12 (2.4.7)
Ga1 G
and Yopt be the optimal attenuation level corresponding to G defined as
To(G) = jnk. | LFT(G, ) (2.4.8)

where K is a set of stabilizing controllers and LFT (G, K) is linear fractional transformation associated
with G and K defined by
LFT(G,K) := G11 + G12(I — KGa3) " 1Gay. (2.4.9)

Furthermore, let Gy be a generalized plant defined by

G G
Gu = t 12 (2.4.10)
MGo1 MGa
where M € RHy, is a unimodular function. Then,
7opt(G) = 'Yopt(GM) (2.4.11)

In other words, we can identify G with Gy in the sense of the Hy, problem.

this result can be proven based on the fact that the unimodular part in the measurement channel

can be cancelled out by the controller.
Proof of Lemma 2.4.2: First, we show that
1ot(C) < Yo (Cag). (24.12)
Let K, be a stabilizing controller for G which attains 701,t(G’)2 Then, defining K as
Ky:=KM™! (2.4.13)

yields
LFT(Gy,Ky) = LFT(G,K) (2.4.14)

since stable pole-zero cancelation is allowed in the H,, problem. Therefore, we have (2.4.12).

The opposite of the inequality (2.4.12)

')’opt(G) 2 7opt(GM) (2.4.15)

%if such K,p+ dose not exist, we can carry out the proof in the same way by considering a series of controllers K,

t =1,...,n which satisfies |LFT(G, Ki)||ox = Yopt (G) as n — oc.

16



can be shown in the same way so we conclude

70})t(G) = 7()1)t(GM> (2416)

Proof of Lemma 2.4.1:

By viture of the condition C0), we identify POF ! with P{ ? as a consequence of Lemma 2.4.2. Namely
we replace P(f? * as P(f' . In addition, let K™ be an stabilizing controller which attains the maximum
g(F1). Then, we have

TR TP

R (2.4.17)

where TF and SF denote the complementary sensitivity function and the sensitivity function with a
minor feedback F', respectively.
Furthermore, the relations
1 > |Gl

1

= sup Aglax(sz (jw)*sz (]w))

weR A (2.4.18)
= Sug(lWﬁ(jw)TF(jW)lz +¢* ) |wf (jw) ST (jw)|?)
we i=1

yield
1 — [Wz (ju) T (jw)|?

(F) = inf — (2.4.19)
. . 2
37w (jw) ST (jw)|?
i=1
Hence, knowing that the inequality
IWETF |l < 1 , (2.4.20)
is satisfied for robust stability and taking account of the conditions C1 and C2, we have
1 — [W2 (jw) TP (jw)|?
WE I .
2w () S (jw)
=1 .
_ Fo (3 NVTFL (50) ]2
- ingzlk Wr? (Gw)T™ (jw)| (2.4.22)
we i
>l (jw)$™ (jw)
=1
— Py Fi(; 2
3w (jw) ST (jw)
=1 -
= g(F) (2.4.24)



and this concludes the lemma.
O
We have the following more descriptive result based on the Proposition 2.4.1 if we restrict the class

of the plant.

Corollary 2.4.1 Consider the disturbance attenuation problem with an SIMO plant Py expressed as
(2,4.1). Suppose two minor feedback controllers Fy and Fs» satisfy the following three conditions:

Co : pfl and pf'z are stable

and they have the same unstable.zeros for Vi=1,... k

(2.4.25)
Cl : |pP(w)| > IpPGw); YweRand i=1,...,k.
C2 : |Wi(w)| > |Wf(w)|; YweR.
Then ‘
) <q(Fa) (2.4.26)
holds for any fixed weight Wpg.
Proof of Corollary 2.4.1:
First, assume that the components of P(f? ! and PUF ? can be factorized as
R &
hoT PsbUs (2.4.27)
p;’ = PsipUSi

foralli=1,...,k, where pgi , pgf € RH,, are unimodular functions and pyg; € RH., is a factor cor-
responds to the common unstable zeros. In this case, C0) in Corollary 2.4.1 implies C0) in Proposition
2.4.1 by defining

M=pgps ' (2.4.28)
and hence the corollary is true in this case. These factorizations are possible if the plants satisfy the

constraints of relative degree.

Next we confirm the generality of the assumption. Here we decompose the'pf over polynomials as

where the polynomials ng;(s) and nqe(s) are associated with stable and unstable zeros and d;(s) with

the stable poles. To satisfy the assumption, here we augment the plant P¥" as PF defined by

Py = [pg-pal" (2.4.30)

F nS’i(s)((sls + 1)7115 nusi(s)
;= 2.4.31
p(u. d7(8) . (528 + 1)1).2; ( )
=! PSwiPUSai» §=1,..,k (2.4.32)
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with sufficiently small §;-> 0 and 82 > 0, 61 # J2, where

order of d;(s) — order of n,;(s)

3
by
i

(2.4.33)
order of 74;($)

3
w
il

Obviously pgaz- _and PU i satisfy the condition C0) in Proposition 2.4.1. Furthermore, from the conti-
nuity of the H,, norm of a system with respect to its entries, the H,, norms of the closed-loop systems

are almost equal to each other, that is, for any given € > 0, there exist §; and 2 such that

’IIGF s = G2, ”oo' <e (2.4.34)

zw 2wda

'3

swe denotes the closed-loop transfer function form w

for an arbitrary stabilizing controller, where G
to z with the augmented plant P} in (2.4.31). Hence, the lemma is true for plants with any relative

degree. ' O

Remark : The conditions C1) and C2) in Proposition 2.4.1 mean that a minor feedback improves
the disturbance attenuation level if it reduces the magnitude of nominal plant and uncertainty model.
The former can be verified very easily from the nominal model. However, the latter cannot readily
be checked out, because it is a constraint on the unknown part of the plant. One way to check the
condition C2) is the experimental verification. We use this approach to the application of pneumatic
systems in Chapter 5 and 6.

Another way is to use a priori information. Let U and U¥ be the real modeling error and the
modified modeling error with minor feedback F' in multiplicative form. Then, simple computations

lead to the following relation
1
uf = U

—=U.
1+ PFP.F
Therefore, knowing (2.2.3), C1) and C2) are satisfied if the minor feedback controller F' satisfies the

robust sensitivity constraint

1
1+ P.F

This is a clue to design the minor feedback controller and based on this fact, minor feedback synthesis

<1. (2.4.36)

/90

for real parametric perturbed plants is investigated in Chapter 4.
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Chapter 3

Minor Feedback Linearization

Minor feedback linearization is one of the useful techniques to deal with nonlinearity of

plants. However, the original formulation summarized as Theorem 3.1.1 in the next section

is not suitable for practical plants. In this chapter, some useful results are proposed to

gain its suitability.

For notational convenience, the functions appearing this chapter are assumed to be suffi-

ciently smooth, that is, we can differentiate the functions as many times as we need. In

addition, arguments of functions are omitted if it is clear from the context, for example we

denote f(x) as f. The i-th component of a vector, say f, is represented with subscript ¢,

e.g., fi

3.1 Preliminary

First, we summarize a well-known result on the feedback linearization to clarify the discussion.

Theorem 3.1.1 [Su 1982] Consider a single input n-th order nonlinear plant expressed as

&= f(x) + g(z)d(z,u)

where the origin is an equilibrium point. Suppose this plant satisfies the following conditions:

p0) ¢(0,0) =0, 9¢/0u # 0

n—1

pl) {ad(}g,ad}g, -++,ady g} 4s linearly independent.

N2

p2) {ad(}g,ad}g,---,adf 29} is involutive.
Then there exists a non-singular coordinate transformation
§=T(x), T(0)=0

20
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which converts the plant (3.1.1) wnto

[ & ] & | [ oo ]
d E : : )
T = + (T~ (8),u) (3.1.3)
En—1 &, 0
R EGIEEEGE
Furthermore, the original nonlinear plant (3.1.1) becomes the following linear plant
010 - 0] [0 ]
001 - : 0
E=|: 11 . o|&+]| v (3.1.4)
000 --- 1 0
|0 0 0 -+ 0| 1]

by introducing a new input v and defining u as

u= ¢t (:1: ”-5&@) (3.1.5)

where ¢~ 1(x,-) denotes the inverse of ¢ with fired x. td

3.2 Feedback Linearization Preserving Characteristics of the Orig-

inal Plant

Feedback linearization controller is designed to cancel out the nonlinearity of a given real plant.
Therefore, by using this as minor feedback, the model error between the modified linearized real plant
and the modified nominal plant is smaller than that between the original real plant and a linear
approximated nominal plant if nonlinearity is dominant in the original model error for FDLTI H
control. That is, the magnitude of uncertainty model is reduced by the minor feedback linearization.

We here note that if we apply feedback linearization in [Su 1982] directly, the resulting linearized
plant (3.1.4) is the plant of Brnouvsky’s canonical form (3.1.4), which is not the linear approximated
model of the original nonlinear model at an equilibrium point. Hence, we cannot conclude immediately
that the resulting performance attained with the minor feedback linearization is better than that
without the linearization even if the magnitude of uncertainty model is reduced. In addition, the
linearized plant (3.1.4) does not reflect the structure of the original plant (3.1.1), in other words,
it may lose the physical meaning. Hence, it is not easy to design the outer loop controller for the

linearized plant.
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In this section, linearizing control is reformulated so that the resulting linearized plant coincides
with a linear approximated model of the original nonlinear model. By this reformulation, any existing
linear controller designed based on the linear approximated model can be used for the outer loop
controller without modification.

To do this, the input rearrangement given by

u = ¢_1(w, T + Flnl)
b
Ty = —
A(E) (3.2.1)
> aiti — a(€)
—  i=0
B B(E)

had been proposed to make the dynamics coincide with that of the linear approximated model in
[Takagi 1993][Sugie 1993], where a; : 4 =0,...,n — 1 and b are constants determined by the following

controllable canonical form of the linear approximated model (3.1.1):

0 1 - 0 0

= 0 0 et - (3.2.2)
0 0 - 1 0
ay air - Gp-1 b

Here we propose an additional coordinate transformation from £ to y defined by

_ (dT(O)>_1€ _ (dT_(O))_lT(w)

dx dx
= Ty(w)

(3.2.3)

which makes the measurement signals coincide with those of the linear approximated model.
Obviously y = x holds in small neighborhood of the equilibrium point * = 0. In addition,
relationship between v and y is linear since this transformation is linear. Therefore, by using the
reformulated linearizing control (3.2.1) and (3.2.3), the dynamics and the measurement signals of the
resulting linearized plant coincide with those of the linear approximated plant. According to this, we
can use controller design methods based on the linear approximated plant to determine the outer loop
controller. In other words, by this reformulation, an existing controller which is designed based on the
linear approximated plant can be used as an outer loop controller without any modification. Since the
most common control for the pneumatic actuator plants is linear control designed based on the linear
approximated model, this reformulation is useful in practice. The structure of the linearizing controller
is illustrated in Fig. 3.2.1, where Ty, F,; and Ty are input transformation, nonlinear feedback and

output transformation defined in (3.2.1) and (3.2.3), respectively.
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Figure 3.2.1: configuration of controller

In [Sampei 1993a][Sampei 1993b], a linearizing controller is designed such that the linear ap-
proximation of the overall controller involving the linearizing controller and a linear controller co-
incide with the linear controller designed based on the linear approximated model at an equilibrium
point. The proposed reformulation of linearizing control gives an interpretation of the method used in
[Sampei 1993a][Sampei 1993b] from the viewpoint of plants, which has been mainly conside‘red from

the viewpoint of controllers.

3.3 Feedback Linearizability

In general, nonlinear plants of order greater than or equal to three are not feedback linearizable.
However, the following proposition shows that the plant composed of a single input linearizable load
and a first order nonlinear actuator is linearizable even if the order of the entire plant is greater than

or equal to three.

Proposition 3.3.1 Consider a single input n-th order nonlinear load 2p gwen by

Dot ay = f(m,) +9,(@)v (3.3.1)
P
and a first order nonlinear actuator %, whose dynamics depends on the state of the load 3, expressed
as
Z . dza = f(l.(wallg) + gu(maug)qsa.(maug’ u) (3.3.2)
v = ha(maug) :

a

T 2,7, See Fig. 3.8.1

where Lang = [ccp
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v
u Eu, E]) \ -

Figure 3.3.1: structure of model

If the load 3, 1s input-state feedback linearizable, then the n+1-st order augmented plant involving
Xp and 32, defined by

Z . d’aug - fp(wp) +gp(37p)ha(e’l7aug) :! + |: 0 :| ¢a(33aug’u) (3.3.3)

aug fa(waug) ga(maug)

18 also input-state feedback linearizable.

Proof: Since }_,, is linearizable, there exists a non-singular coordinate transformation £ = T'(z;) such

that } i _ - ) -
&1 &2 0
d : : f
4 - + v =t £e(€) + ge(€)v (3.3.4)
dt 571,—1 517. 0 ¢ ‘
] €n i L ap(E) ] L ﬁp(é) ]

holds. For the augmented plant, let us define a new state variable &1 as

Eny1 = én = O‘p(é) + ﬂp(é)ha(waug)- (3.3.5)

Then, noting that T'(z,) is independent of z,, we see that the coordinate transformation T,y from

T ang INtO [£T €ns1]T defined by

T'(zy
Tg = { (@p) } (3.3.6)
ap(T (wp)) + ﬁp( (wp))h(l.(waug)
is non-singular.
In addition, knowing that the derivative of &, 4+1 can be expressed as
én-{-l = aaug(E, :Ba) + ﬁallg($>ma)¢(z(mimxlg,u) (337)

d d ' Ohyg Oh,

aaug(s,wa) = (% + d% ) (ff +gfh ) +/6p ( (fp +9p a) + %;fa.) y
Oh,

ﬁaug(&aa:a) = ﬁpa as
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we introduce a new input v and define u as

u=¢;" (wdg = “g> : (3.3.8)

ﬂ aug

Then, by applying the coordinate transformation (3.3.6) and the input transformation (3.3.8), the

augmented plant 3, . can be converted into the following linear form:

aug
31 & . 0
d : : :
o = + . (3.3.9)
£n fn—l—l 0
L €n+1 | | 0 § L 1 ]
This completes the proof. O

3.4 Feedback Linearization with Disturbance Rejection

Consider a single-input nonlinear plant affine in control signal u and disturbances d;(t), 1 =1,...,m

represented by

m

&= f(z)+g(x)p(z,u)+ Z hi(x)di(t). (3.4.1)

i=1
Suppose that we can measure not only the state variable  but also the disturbances d;, i = 1,...,m,
i.e., we consider the full information case. In addition, the disturbances are assumed to be step-type,
that is, $di(t) = 0,5 =1,...,m.
Though we postulate that the order of the plant is three for simplicity from now on, the result de-
scribed in this section can be extended to plants with any order. Moreover, we assuine that the nominal

plant of (3.4.1) is feedback linearizable. Namely, there exists a nonsingular coordinate transformation

¢ =T(x) (3.4.2)

such that
LyTy = LyLyT1 =0, LyL3Ty #0. (3.4.3)
Our aim is to find out a linearizing control law by using information of d;, « = 1,...,m. By

following the nominal coordinate transformation in (3.4.2) and knowing that the disturbances are

step-type, i.e., di(t) =0,i=1,...,m, let us define a new coordinate £ by

:([l = §1 =T ((L'),
él = 6(11 = Lf+2hi(liT1’ : (38.44)
gf()’l = -(?l = L%‘*‘E h.id,'Tl + ¢L(1LZ lid; I
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Note that we can compute the value of €%, since Ti(x) is a known function and  and d;, i =1,...,m
are measurable.

Under this coordinate transformation, the plant (3.4.1) can be expressed as

& = &
4 = ¢f (3.4.5)

gél = L:;-I—z h,‘d,‘T]' + d)LqL‘i-I-E IL,'ll,‘Tl + Lf‘l‘.(lﬁb‘f'z hid; (('ZSL(]LZ hid; Tl)

Here we assume

L_{]LE hi(liTl = 0 (3.4.6)

which leads to
68 = L3 5, T+ 0Lg L% 50T ' (34.7)

Then, introducing a new input v and defining u as

v — L3 . .Tl
U= ¢_1 &, L L2f+Z]ld,T b (348)
Iy hidi
the original plant (3.4.1) can be converted into a linear plant
i = o
d = ¢d (3.4.9)
4=

under the new coordinate £¢ defined in (3.4.4). A sufficient condition for (3.4.6) is given by

dTi(x .
;i )hi(a:) =0,i=1,...,m (3.4.10)

By summarizing the discussion, we have the following proposition.

Proposition 3.4.1 Consider a disturbed nonlinear plant (3.4.1) and assume that the disturbances
are measurable and step-type. Then, if the matching condition (8.4.10) is satisfied, we can reject the

disturbances d;, 1 = 1,...,m by using the coordinate transformation (3.4.4) and the input modification

(8.4.8).
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Chapter 4

Minor Feedback Synthesis considering

Real Parametric Uncertainty

In this chapter, we consider linear time-invariant models having transfer function coef-
ficients subject to perturbations, where we can not exactly determine the parameters of
the models. These parametric perturbed descriptions are more suitable to real application

than transfer function descriptions with fixed coefficients.

A minor feedback synthesis method considering such real parametric uncertainty is pro-

posed based on a parameter space design method.

4.1 Introduction

In this chapter, we consider real parametric perturbed plants whose transfer function description has
coefficients varying independently in a prescribed range. Such plants are called interval plants.

As stated in Section 2.4, minor feedback controller should be designed to satisfy a robust H
norm bound constraint (2.4.36) in the disturbance attenuation problem to improve the attenuation
level with minor feedback.

It has been shown that the worst case H,,-norm bounds of such interval plants can be determined
by H-norm bounds for a finite number of segment plants{Chapellat 1990}, where a segment plant is
a one-parameter plant. The treatment of one-parameter plants is not so easy in general. In fact, if
we allow continuous variations of the parameter, the perturbed plant may be characterized as infinite
sets. Therefore, applying a simple-minded direct strategy, the determination of the H., norm bounds
could only be carried out by checking an uncountably many systems and this is obviously infeasible.

In Section 4.2.4, a feasible and useful test based on Sign Definite Condition is proposed to determine
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the H,, norm bounds of interval plants.

For interval plants, Kharitonov has investigated the Hurwitz-stability and shown that only four
fixed special extremal polynomials determine the stability of the interval polynomial [Kharitonov 1978].
Similar results have been obtained for the H.,-norm bounds of the interval plants, i.e., the bounds
can be determined by the H.,-norm bounds of a finite number of fixed systems if the interval plant
has a special structure. Therefore, the H, -norm bounds of interval systems can be checked by tests
for fixed plants [Boyd 1989] [Hara 1991] in this case.

Motivated by these results, we consider the frequency restricted norm (FRN) bounds for SISO in-
terval plants, where the FRN is defined as a generalization of the H -norm in [Boyd 1989] [Hara 1991].
In spite of the fact that the worst case H.-norm of interlval plants is bounded by those of some fixed
plants for the special class of the plant, the counter example shows that this does not happen in
general if we use the FRN instead of the Hy-norm. A special class of interval plants such that the
FRNs are bounded by those of the fixed plants is derived. The entries of this class are expressed as a
reciprocal of an interval polynomial with a first order weight. Given that FRN constraints for fixed
plants can be easily checked, the FRN bounds of the interval plants in this class are computed in a
finite number of steps, even if these interval plants are characterized as infinite sets.

A minor feedback synthesis method considering such real parametric uncertainty is proposed based
on a parameter space design method.

Based on these results, a design example of minor feedback against parametric uncertainty is

presented in Section 4.4.

4.2 H, Norm Bounds Test based on Sign Definite Condition

4.2.1 Preliminaries

Definition 4.2.1 (Sign Definite Condition) : A function f(z): Ry, — R is sign definite in the
interval ¢ € [a,b],a < b (denoted by f(z) € Nyla,b] from now on), if f(z) preserves its sign in the

interval, or it does not cross zero in the interval (see Fig. 4.2.1).

If f(z) is a polynomial in z, then the SDC, f(z) € No[a, b], can be checked by Strum’s Theorem|Takagi 192
In particular, if the interval is [0, co], the criterion for the SDC is simplified to a Routh-Hurwitz type

criterion on the basis of the following lemma.

Lemma 4.2.1 [Siljak 1971] : An n-th order polynomial f(x) with real coefficients is sign definite in
z € [0,00], if and only if the following equality holds: V

Vif(z)]=n (4.2.1)
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Figure 4.2.1: an image of SDC, f(z) € Ny]a, b]

where V' ts the number of the sign changes in the most left column of the Modified Routh Table defined

as
(_1)nfn ('—1)"—1]"“_1 o =f1 fo
(=1)*nfn (=" Yn=Dfo1 - —f1
(4.2.2)
fo

Note that an equivalent Hurwitz type criterion can also be stated [Siljak 1971].
Since the sign definite condition defined over a general interval, say f(z) € Nyla,b], can be trans-

formed to an equivalent condition on f(z) € Ny[0, c0] by the bilinear transformation

z = —(z—a)/(z—0b) if |al, |b] < 0o
z = z—a if la| < co,b=00 (4.2.3)
z = —(z—0b) if a = —00,]b| < o0

we can check the SDC over a general interval [a,b] by the Routh-Hurwitz type criterion represented

by Lemma 4.2.1.

4.2.2 Problem Formulation

Consider a unity feedback system composed of a fixed SISO controller C(s) and a parametric perturbed

plant P defined by

P :=n(s)/d(s)
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ny
n(s) = st", n; € [n;,mi]; 1=0,...,m
i=0

d(s) = Zd,‘,si, di € [d;,di]; i=0,...,n
=0
m < n.

We denote the four Kharitonov polynomials associated with n(s) as

(s)
k;');(S) = ﬁ0+218+ﬂ282+ﬁ333+... (4 24)
():=Eo+ﬁ18+—ﬁ282+ﬂ333+... e
ki(s) = ny +nys + Figs? + fagsd + - -

Let K,, be the set of four Kharitonov polynomials associated with n(s) defined by

Ko = {ku(s), Ki(s), kn(s), ku(s)} (4.2.5)
Also we denote the four Kharitonov segment polynomials associated with n(s) as
n(s) =
;
4

(s :

i

8 — )kl (s) + tk2(s)
s — 1)k (s) + tk3(s)
— 1) (

(

. (4.2.6)

t)k2(s) + thi(s)
— )k3(s) + tki(s)

sn(s)
su(8)
where t € [0,1]. Let S, be the set of four Kharitonov segment polynomials associated with n(s)
defined by '

1
1
1
1

(
(
(
(

Sux={sp(s), sh(s), su(s), sn(s)} | (4.2.7)
Similarly, associated with d(s), we refer to the Kharitonov polynomials, the set of Kharitonov polyno-
mials, the Kharitonov segments and the set of Kharitonov segments as k(s) ;i = 1,...,4, Kq, s4(s)
;¢ =1,...,4 and Sy, respectively. Finally, following [Keel 1991], let Pcp be the CB-system of P
defined by
Pcp = {n(s)/d(s) |

(n(s) € K,, and d(s) € Sy) (4.2.8)

or (n(s) € S, and d(s) € Kg)}.
Theorem 4.2.1 (Theorem 4.1 in [Chapellat 1990]) Given an interval family P of strictly proper
plants and a fized stabilizing controller c(s), the inequality

W (s)

m ———|leo < 4.2.9
e e 1 <7 (29)
holds if and only if '

max —W—ﬂ——llw <7y (4.2.10)

p(s)€PcB | 1+ p(s)e(s)
holds, where W (s) is a fized proper weighting function.
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Therefore, determination of H, -norm bounds of these parametric perturbed systems can be carried
out by checking the H-norm bounds of the corresponding C B-systems.

Since a CB-system p(s) is characterized by one varying parameter, for example,

kn(s)
= - 2.11
PO = TR + 3 (4.211)
the stable closed-loop segment system associated with Peop
e(s)
g9(s) = p(s) € Pep (4.2.12)

~ 1+p(s)e(s)’
may be written in the form g(s) = B(s,t)/a(s,t) ; t € [0,1], where a(s,t) and B(s,t) are both first
order polynomials with respect to . Hence, from Theorem 4.2.1 and the next lemma, we obtain the

following proposition:

Lemma 4.2.2 A stable system g(s) = n(s)/d(s) satisfies Hy -norm constraint with level y if and only
if

IG(00)] < 7 (4.2.13)
and
fw) = n(jwn(-jw) = y?d(jw)d(-jw) (4.2.14)
€ NO['—OO’OO]'

Proposition 4.2.1 A segment system g(s) defined by (4.2.12) satisfies H, -norm constraint with the
level v if and only if
ft(w,t) #0 forallw € R, t € [0,1] (4.2.15)

where
ft(w’t) = ﬂ(jwat)ﬁ(_jwat) )

(4.2.16)
—v2a(jw, tya(—jw, t).

In general, it is very hard to check the SDC with two variables. However, considering the fact that

the order of fi(w,t) with respect to t is 2, we have the following theorem.

4.2.3 SDC test

Theorem 4.2.2 Consider a double variate polynomial f(w,u), where the order with respect to u 1s 2

and express it as

flw,u) =: a(w)u? + b(w)u + c(w). (4.2.17)

Here we assume that a(w) and b(w) are not simultaneously equal to 0. Then,
Pi1: f(w,u)# 0 foralweR, ué0,00]
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holds, if and only if the following three conditions are satisfied:
01) f(O’u) € NU[O,OO]

C2) c(w) € Ny[—o00, 0]

C3-1) b (w) — 4a(w)c(w) € Ny[—o0, 0]

or
63—2) awu € R s.t. b?‘(wO) - 4a(w0)c(w()) =0
= b(wy) < 0.

Proof:
For simplicity, we assume a(w) # 0 Yw € R. (This will be removed in later.)

Then, the constraint P1 is equivalent to

P2: fo(w,u) = u?+p(w)u+qw)#0
for allw € R, u € [0,00]

where
pw) =bw)/a(w), q(w):=c(w)/alw).

(We omit w from p(w) and g(w) for convenience from now on.)

We readily see that the constraint P2 is satisfied if and only if
g>0and (p>0orp?—q<0) (4.2.18)

hold. In p-q plane, (4.2.18) means that the point (p(w),g(w)) is in the doted area II. (See Fig. 4.2.2.)
The condition C1) implies that the point (p(0),¢(0)) is in the admissible area II. Varying w from 0
to oo, C2) and C3-1,2) imply that (p(w),g(w)) does not touch the boundary JII. Therefore we can
conclude that the conditions C1),02) and C3-1,2) are sufficient for P2, or equivalently for P1.

From these discussions, the proof of necessity is almost obvious and omitted here.

/] ! P

Figure 4,2.2: Admissible region in p-q plane
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Next, we investigate the singular case: Suppose 3

wp s.t. a(wg) = 0. Then, at this wy, the parabola
fo(w,u) changes its shape into a line b(wp)u + c¢(wp). We confirm the validity of the theorem by
investigating the following two cases:

case 1) If the multiplicity of zeros associated with a(w) is odd, a(w) changes its sign when w passes
through wg. Then, from the continuity, the parabola changes its concavity and we verify that there

exists wx so that the constraint P1 is violated. (See Fig. 4.2.3.)

S

Figure 4.2.3: Change of the concavity (case 1)

case 2) If the multiplicity of zeros associated with a(w) is even, a(w) preserves its sign (although it
becomes zero) when w passes through wy. Then, from the continuity, the parabola does not change

its concavity. Therefore we verify that the the theorem is valid in the singular case. (See Fig. 4.2.4.)

C
S
[/} u
Figure 4.2.4: Change of the concavity (case 2)
4.2.4 Numerical Example
Example 1{Chapellat 1990]
Consider a segment system defined by
3(1 - s+ M52+ %)
= 4.2.19
ri(s) 1435+ XAgs? + A3sd + s¢ ( )
A1 = (1—t)3.4+1t5 .
ho = (1—t)24+1t4 (4.2.20)
Az = (1—t)44+1t6
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and check whether r;(s) satisfies the norm constraint |[r(s)||~ < 35 for all ¢ € [0,1]. We have

ft(w7t) =
(~3112.96w* — 3136.w0)t>+
(3891.2w? + 2449.92w* — 13328.w0)t+ (4.2.21)

(—1216. — 5197.2w? 4 22956.w*
~17827.w0% — 1225w?),

and by transforming the interval ¢ € [0, 1] to u € [0,00] by u := t/(1 — t), we obtain

fw,u) = a(w)u? + blw)u +c (4.2.22)
a(w) = —1216.— 1306.w? + 22293.w*
~34291.w0 — 1225u8
b(w) = —2432.—6503.2w? + 48362.w*
—48982.w% — 2450w°
c(w) = —1216. - 5197.2w? + 22956.w*

~17827.w° — 1225w8.
The Modified Routh Array associated with f,(0,u) is given as

— 1216, —2432, 2432, —-1824, —1216. (4.2.23)

Thus we conclude f,,(0,u) € N[0, co] from SDC test (Lemma 4.2.1).
Also we know that

e(w) € Ny[—o0, 0] (4.2.24)
by the SDC test. This can also be verified by seeing that the zeros of c¢(w) are

—0.820145 + 0.006043973,
6.19972 10~22 £ 0.373107},

) (4.2.25)
7.66034 10715 £ 3.969723,
0.820145 & 0.006043973.
Furthermore, we know that
D(w) = b*(w) — 4a(w)c(w) € Ny[—o0, x] ' (4.2.26)
from its SDC test. Then, the zeros of D(w) are
+0.899129, +0.812302,
—1.99765 10~15 4 1.628653,
J (4.2.27)

07 0) 0’ 07 07
1.94206 10715 +1.673643,
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and we have

b(+0.899129) = 3008.5
b(£0.812302) = 203.069 (4.2.28)
b(0) = 2432.
Hence, from Theorem 4.2.2, we can conclude that this segment system satisfies the H,-norm

constraint with level v = 35.

Example 2
Again consider the parametric perturbed system (4.2.19) with H. -norm constraint level v = 34.

Then, we see that the corresponding c(w) is such that
c(w) & Ny[—o00, 0] (4.2.29)

since its zeros are

+0.822801, +0.817622,
—~5.57062 1017 & 3.969713, (4.2.30)
6.18731 10722 4 0.372989;.

Hence, from Theorem 4.2.2, we can conclude that this CB-system does not satisfy the H.,-norm

constraint with level v = 34. Note that the exact upper bound of the H.,-norm is 34.14.

4.3 Frequency Restricted Norm Bounds for Real Parametric Per-
turbed Plants

First, we introduce the frequency restricted norm (FRN) [Boyd 1989}[Hara 1991], a generalization of
the Hy,-norm, for a stable rational transfer matrix G(s). The FRN of G(s) is defined as ‘

IG()wpw) = sup_ F(G(jw)). (4.3.1)

LwrSwlwy

The FRN constraint results in alternative ways to shape the gain characteristics of feedback systems
by specifying the gains in several frequency domain intervals. Hence, the FRN is one of the useful
performance criteria for control system design.

Consider an SISO interval rational function G(s) expressed as
G(s) =b(s)/a(s) ‘ (4.3.2)

where a(s) and b(s) are interval polynomials with coefficients varying independently in a prescribed
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range, i.e., a(s) and b(s) are given by

a(s) = Zaisi i ai € la,a] (=0,1,...,n)
) m<n (4.3.3)

b(s) = Y bis’ ;bj€lb,b] (i=01,...,m)
=0

According to [Chapellat 1990], we can also define sixteen Kharitonov systems associated with the
interval system (4.3.2) as

Kij(s) =bi(s)/af(s); 1,5=1,2,3,4 (4.3.4)

where a¥(s);i=1,...,4 and bf(s) 773 =1,...,4 are the Kharitonov polynomials associated with a(s)
and b(s), respectively.

It has been shown in [Chapellat 1990] that the H-norm bounds of the interval system defined in
(4.3.2) are determined by the H, -norm of the associated sixteen Kharitonov systems. Unfortunately,
if we restrict the frequency bound, the norm bounds cannot be determined by the Kharitonov systems

as shown by the following counter example:

Example 1: Consider a stable interval system G(s) given by

098+ 3.60 x 10735 +2.025% + 4 x 10735° + s*

G ; 90,110]. 4.3.5
(s) a+4s + 10152 + 53 + s4 3 o €90, 110] ( )
We see from Fig. 4.3.1 that the following inequality holds in this case.

mese [[G(s) 08,102 < |G(1005)] 5 & = 101 (43.6)

a=90,110
This indeed implies that the maximum of the FRNs corresponding to the Kharitonov systems || K jliw, wp)
does not determine the FRN bound for interval systems ||G(s)||(; wy] in general.

Note that similar to the other frequency domain specifications investigated in [Bhattacharyya 1991]
and [Bhattacharyya 1992], a weighted FRNs of a closed-loop system with an interval plant and a
fixed controller can be determined by checking the corresponding FRNs of the CB-systems defined
in [Bhattacharyya 1991] and [Bhattacharyya 1992], where the CB-systems are segment systems. This
can be easily justified on the basis of the fact that by fixing the frequency, the sum of weighted interval
polynomials is contained in the polygon whose edges are corresponding to the CB-systems.

Hence, we now investigate some special cases where the Kharitonov systems determine the FRN
bound for the class of plants subject to parametric perturbations. We consider two types of interval
systems given by

G(s) = q(s)/a(s) | (4.3.7)
and

G(s) =1/a(s)q(s) (4.3.8)
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wlrad/sec]

Figure 4.3.1: Example 1 (a counter example)

where a(s) and q(s) are interval polynomials expressed as

n
a(s) = Zaisi i a; € [aa] (E=0,1,...,n)
i=0 (4.3.9)
q(s) = as+aqu g €lgpgl G=0,1).
In other words, a(s) is an interval polynomial of any order, while ¢(s) is a first order interval polynomial

or just an interval.

Let us now define the four Kharitonov polynomials k;(s) ; ¢ = 1,...,4 and the four segment
polynomials S;(s) ;7 =1,...,4 of the Kharitonov rectangle associated with a(s) as
ki(s) := o+ @15 + ags® +ags + - -
ka(s) = ay +ays + aps® + a3’ + - (4.3.10)
k3(s) := ag + @15 + s + ags® + - -
k4(s) := 0+g13+6232+6333+'-'
S1(s) = (1 = A)ka(s) + Aka(s)
ot — Ak Ak
2(s) i= (1~ Aki(s) + Aks(s) (4.3.11)
S3(s) := (1 — A)ka(s) + Aka(s)
Sa(s) = (1 — Nks(s) + Aka(s)
respectively, where A € [0,1]. We also define g(s) and g(s) as
( ) le + Q() 3 2(3) = le + Q[J (4312)
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where

o 0; 0¢€lg;,q]
—~ ) @ 3l > gl s :
i = _ ) Q=979 lal<lgl 3 =01 (4.3.13)
a; 1@l <lg,l _
a; @l 2 g,

Under these definitions, we enunciate the following theorems.

Theorem 4.3.1 The frequency restricted norm bounds of the stable interval systems G(s) defined by
(4.3.7) are given as follows:

min [lq(s)/ki(s)] < 1G(8) g o
i=1nd lwr wi] : (4.3.14)
< max | max [17(s)/ki(s)jw; wq) > Mwr), M (wh)
where
M(w) = [g(jw)l/ min S}"(w) (4.3.15)
S (w) = /\1611[(1)1!11]|S1;(Jw)|. (4.3.16)

Theorem 4.3.2 The frequency restricted norm bounds of the stable interval systems é(s) defined by
(4.3.8) are given as follows:

i, q(s)—i:z(sj o] < NG wn (4.3.17)
< max [j:lél)i; Hl/g(s)k,(s)l fwor wr] ,M(‘—UL)7M(WH)
where
M(w) = |1/q(jw)|/ min S}"(w) (4.3.18)

where S*(w) ;1=1,...,4 are defined in (4.3.16).

Proof) Since the proofs of Theorems 4.3.1 and 4.3.2 are carried out in the same manner, we here

prove Theorem 4.3.1 only.
1) Proof for the lower bound: We first notice that

1Q, +Q,iwl < lao + a1l < [@ + Tyl | (4.3.19)
holds for any w € R. Defining R(w) and I(w) as

R(w) = (ag+aqw+- ) — (agw? + agwb + )

) (4.3.20)
I(w) = (alw + agw?® + - - ) — (a3w3 -+ a,7w7 + - )
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then we have

a(jw) = R(w) + jI(w). (4.3.21)

Observing the structures of R(w) and I(w), we can readily verify that
ja(jw)| < max |ki(jw)] ; "w € R. (4.3.22)
Inequalities (4.3.19) and (4.3.22) lead to the lower bound of (4.3.14).

2) Proof for the upper bound: First we restrict our attention to the numerator ¢(s) in (4.3.7).
Inequality (4.3.19) leads to the fact that §(s) maximizes the value of ||G(s) ||, wy] for any a(s). Hence,
we can fix the numerator ¢(s) as g(s) from now on. ' '

Next we focus our attention on the denominator. Since the interval system G(s) is assumed to
be stable, |G(jw)| is bounded for all pararheter variations and w € [wp,wy]|. In other words there
exist parameters af(k = 0,1,...,n) and w# € [wy,wpy] which achieve the maximum of |G(jw)| in

w € wr,wgl, ie.,

IG* (w*)| > |G () lwpwn) 5 "G(s) €G (4.3.23)
holds, where .
G7(s) : eyl a”(s):=af +als+---als". (4.3.24)

G refers to the set of all systems defined by (4.3.7), i.e.,
G :={G(s) =q(s)/a(s) | a(s) € A} (4.3.25)
where .A denotes the set of all polynomial defined by (4.3.9), i.e.,
A:={a(s) | a; € [g;,a:i] ; 1=0,1,...,n} (4.3.26)

Note that the script # indicates the values associated with the maximum. In addition, we define V and
K as the set of the vertex polynomials associated with a(s) and the set of the Kharitonov polynomials

associated with a(s) respectively, i.e.,

V = {a(s) |ai=g;ora;i=0,1,...,n}

K = {ki(s), ka(s), ks(s), ka(s)}

(4.3.27)

In view of these definitions, the proof will be completed by using the following two claims:

Claim 1) Suppose that G#(s) = G(s)/a* (s) attains the maximum of the FRN at a frequency w* in
the open interval (wy,,wy) over all parameter variations. Then the denominator, a#(s), is a vertex
polynomial, i.e., if there exist a#(s) € A and w# € (wp,wp) such that |G¥ (jw?)| > NG () lwr wn)
holds for all G(s) € G, then a¥ (s) € V.
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Claim 2) Consider G¥ (s) = g(s)/a* (s) whose the denominator is a vertex polynomial, i.e., a#(s) € V.
If G#(s) attains the maximum of the FRN at a frequency w# in the open interval (wr,wp) over all
parameter variations, then the denominator a#(s) is a Kharitonov polynomial. In other words, if
there exist a¥(s) € V and w¥ € (w,wy) such that |G#(ju®)| > |G (8)l[w wpy holds for all G(s) € G,
then a¥#(s) € K.

The proofs of the claims are shown in Appendix A.
We conclude from Claims 1) and 2) that if the maximum of the FRN is achieved at w¥ € (wr,ws),
the upper bound is given by

q(s)
ki(s)

Other possibilities for attaining the upper bound of |G(8)|lf; wy] are |G(jwr)| and |G(jwyr)|. Let

max

max, > G (8)lpwy wr 5 "a(s) € A (4.3.28)

lwr wpr]

us remember that the interval polynomial a(jw) is contained in the Kharitonov rectangle for any fixed

w € R. This readily yields

1 l 1(]‘*’)’ v
- > max | — i ‘weER 4.3.29
IG(Jw) i=1~4 | gjw) ( )
and hence we have
. Zj(jw) v
< ) . -
G(jw)] < max Si(jw)1 ; weER (4.3.30)

where S;(s) ;2 =1,...,4 are the segment polynomials defined in (4.3.11). Therefore, from (4.3.28)
and (4.3.30), the ﬁpper bound (4.3.14) can be proved.
O

According to Example 1, the FRNs of interval systems are not bounded by the extremal systems
in general. In other words, we need to compute all FRNs corresponding to the whole systems subject
to all parameter variations to determine the bounds of the FRN associated with the general interval
systems defined by (4.3.2). Namely, we need to search over all the corresponding parameter space
expressed as a hypercube in R™1", where m and n refer to the order of the numeratér and that of the
denominator associated with the interval systems, respectively. Therefore, there is no direct efficient
method to compute FRN bounds for interval systems in general.

In contrast, the FRN bounds for the class of the systems given by (4.3.7) and (4.3.8) can be
computed by four FRNs corresponding to the four Kharitonov systems and the norms of the systems for
all parametric perturbations at two boundary frequencies wy, and wgy. Therefore, since the computation
of both FRN of a fixed system and the norm of the system for all parametric perturbations at a fixed
frequency can be computed by considering only one parameter variation, severai analytical /numerical
methods (e.g., bisection method) can be applied to compute the FRN bounds for these systems
[Hara 1991].
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We will show two simple examples to illustrate the theorems:

Example 2: Consider an interval system defined by

1

FT0issta’ 0L

G(s) =

and investigate the upper bound of the FRN of this system with frequency interval w € [0.1,1]. In
this case, we have two Kharitonov systems

1
s2 + 0.1153 + 0.2

Gy(s)
Ga(s)

s24+0.156+1.3

and two functions subject to the perturbation A € [0,1] at the boundary frequencies w = 1.0, 1.1,

namely,
1

G\ = :
1) s2+0.153+0.12(1 —A)+13)°

s=1.03

Gr(M)

. s=1.1j
240155 +02(1—A)+1.3x° °°

Our aim here is to determine the maximum of |G(jw)| over all (w,a) € [0.1,1] x [0.2,1.3] in R2.
Applying Theorem 4.3.1, we can compute the upper bound of the FRN of this parametric perturbed
system by searching not over all the rectangular [0.1,1] x [0.2,1.3] in R? but over two frequency edges,
ie,w€[0.1,1] and A = 0,1 and two edges associated with the parameter perturbation, i.e., w =0.1,1
and A € [0,1].

With simple algebra, the upper bound can be computed as follows:

5% 1G ()., = max{l|G1(s)lljp.r.1y > 1G2()llp.11) fosind |GL(M)] ot |Gr(M[}

= max{23.6[dB] , 9.49[dB], 14.4[dB], 16.5[dB]}
= 23.6[dB].

We see from these computations that the maximum is attained on the frequency edge.

Example 3: Consider an interval system defined by

1
== 0.1,6
GO) = ggerai @€l

and investigate the upper bound of the FRN of this system with frequency interval w € [1,2.5]. In

this case, we also have two Kharitonov systems

1
G = =
1(s) 4254011
G2s) = Fiasve
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and two systems at boundary frequencies w = 1.0 and 2.5 given by

1
s24+2s+0.1(1 = A)+6X"7
1

Gi(A) = s =1.0j

Gn(N) s=2.5j

2+ 254 0.1(L— A) 46X

where A € [0,1]. In the same way as in Example 2, by applying Theorem 4.3.1, we can compute the
upper bound of the FRN of this parametric perturbed system by searching over two frequency edges,
i.e., w € [1,2.5] and A = 0,1 and two edges associated with the parameter perturbation, i.e.,w =1,2.5

and X € {0,1] as follows:

max{[|G1(s)llp2s) » [1Ga(o)llinas > max G, e Gh(AI}

= max{—6.82[dB] , —13.0[dB] , —6.02[dB] , —14.0[dB]}
= —6.02[dB].

aEIEr[loafS] I1G()llj1,2.5

We can see from these computations that the maximum is attained on the parameter edge.

4.4 Design Example by a Parameter Space Approach

Consider a PI-type feedback control system shown in Fig. 4.4.1.

— C(s) P(s) -

Figure 4.4.1: PI type unity feedback system

By using the results in the previous section, we can design a robust PI type controller

K
K(s) = Z1Ft Kps (4.4.1)
s
for a parametric perturbed plant with constant numerator
b
P(s) = — (4.4.2)

if we apply a method of parameter space design in [Hara 1991], where a(s) is an interval polynomial.
Our objective here is to obtain the parameters K; and Kp which satisfy a robust stability property
under both parametric and unstructured perturbations. In other words the complementary sensitivity

function
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P(s)K (s)

T = T PHRE)

K1+ K (4.4.3)
ans P F T ars + (ag + bKy)s + bK;

must satisfy the FRN constraints
IT(WMwps i <% (E=1~Ek). (4.4.4)

Note that the PD type controller can be designed in a similar way.

We will show an illustrative design example. Consider a first order unstable plant given by

1

§—

P(s) =

; aclgal, a=1, a=45 (4.4.5)
where a denotes the parametric perturbation. We consider two FRN constraints

1T () lwrioe) <11 s 1T(8)[010) < 72 (4.4.6)

where wy = 20,y = —10[dB] and v, = 15[dB] and T'(s) is given by

K;+ Kps
s2+ (Kp—a)s+ K;’

T(s) = (4.4.7)

From Theorem 4.3.1, the two FRN constraints in (4.4.6) are satisfied under the parametric per-

turbations if and only if the following nine conditions hold.

(c0) the close loop system is stable for all & € [a, @]

() [T(Mjwroo) <713 =2
(€2) T <Ms =2
(c3) Mi(jw) <m
(c4) Mi(joo) <m

() IT()jpwy <¥2; a=a
(c6) IT(Mowny <7125 =«
(c7) M(j0) <72
(c8) M(jwr) <2
From the Kharitonov’s theorem, (c0) is satisfied if and only if Kp > @. In addition, since M ( joo)‘ =
0, M(j0) = 1, T(s) is strictly proper and v2 > 1, the conditions (c4) and (c7) are automatically
satisfied. Also note that (c3) leads to (c8) since 71 < 2. Hence, we can remove the conditions (c4),

(c7) and (c8). Though the details of the calculation are omitted here, we can obtain the admissible
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Figure 4.4.2: Admissible parameter regions. ( v; = —10[dB], y2 = 15[dB])

region in the Kp-K space as shown in Fig. 4.4.2 by using a computational module in a CAD system
CtriNet [Hara 1992]. Taking the parameters Kp and Kj in the intersection, e.g., Kp = 5.7 and
K =17.5, we can satisfy all the constraints (see Fig. 4.4.3).

Next, in order to attenuate the peak at w ~ 3, we reduce the constraint level of v2 = 15[dB] in
the lower frequency to v = 7[dB]. Unfortunately, there is no intersection through the original FRN
constraint in the higher frequency band with 1 = —10[dB]. Therefore, loosing the FRN constraint in
the higher frequency band as y; = —10[dB] — 1 = —7[dB], we can obtain a new admissible region
as shown in Fig. 4.4.4. Taking the parameters in the intersection, e.g., K, = 8.7 and K; = 5, we can
satisfy the new constraints (see Fig. 4.4.5). |

Note that the constraint in (c6) is satisfied in the whole plane with K, € [4,10] and K; € [0,20]
in Fig. 4.4.2 and Fig. 4.4.4.

4.5 Concluding Remarks

We have proposed an algebraic criterion for H,,-norm constraint of plants with one varying parame-
ter(Theorem 4.2.2). Since it has been shown that the norm bounds for the plant determine the norm
bounds for parametric perturbed plants [Chapellat 1990], we can check H,-norm constraints for the
parametric perturbed plant by the proposed method in a finite number of steps.

We have investigated the frequency restricted norm (FRN) bounds of interval plants. It has been
shown that the FRN for an interval plant is not bounded by FRNs of extremal plants in general. We

have also shown that the FRN of any reciprocal of an interval polynomial with a first order weight is
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Figure 4.4.3: Gain plots of T'(jw) for & =1,2,3,4,4.5. (y; = —10[dB], 2 = 15[dB])

bounded by the FRNs of the four extremal plants (Theorems 4.3.1 and 4.3.2). This implies that the
determination of the FRN bounds is feasible, since we are not required to compute the FRNs of the
whole plants to determine the bound.

Furthermore, an example of minor feedback synthesis considering such real parametric uncertainty
is proposed based on a parameter space design method.

One of the interesting topics to be investigated in the future is to show the relationship between our

result and a recent independent work on weighted Ho-norm bounds for interval plants [Hollot 1992].
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Figure 4.4.5: Gain plots of T'(jw) for o = 1,2,3,4,4.5. (y1 = —7[dB], y2 = 7[dB])
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Chapter 5

Application to Pressure Control

System

In the disturbance attenuation problem, minor feedback improves the attenuation level if
it reduces the magnitude of nominal plant and uncertainty model (Corollary 2.4.1). It
is shown that a pressure control system, the most simple pneumatic system, satisfies the
both conditions and experimental results verify that a minor pressure feedback improves

" the attenuation level.

— Notation —
R : gas constant

Vi ¢ volume of chamber

Oy : air temperature

P ¢ air pressure _

S, : the effective area whose inverse exists

fa @ nonlinear function due to air

5.1 Modeling

Fig. 5.1.1 shows the experimental apparatus: The valve is driven by the command voltage v so that
the inside pressure of the chamber is changed. The supply pressure p, and the inside pressure of the
chamber p are measured. The chamber is an isothermal chamber proposed in [Kawashima 1993], so
that we can neglect temperature change during experiment. Then, the dynamics is described as a

nonlinear differential equation

. ROy, 273
= 0 fe(pa, )y 28, 5.1.1
p= fa(p. p) o (v) ( )
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where

ifu>0
. 22'2vp(ps - p) (p/ps > 0-5)
folpu) = 11.1 (p/ps < 0.5)
P PiPa =% (5.1.2)
ifu<0
- 22.2 V pu.(,p - pa,) (pu./p > 05)
fG(p7u) -
11.1p, (pa/p < 0.5)
and
dow? +diu ifu>0
Se(u)=1{ e ’ (5.1.3)
d3u3 if u <0.
Note that the product
273
Gps,pyu) = f(ps;p) || 5= Se(v) (5.1.4)

gives the flow rate. We obtain a feedback linearizing controller by introducing a new input u and

defining the control voltage v as

v =8, (Au/f(ps,p))- (5.1.5)

It yields the following linear relation between v and p

R@O A’LL R@U
— f{ps, = Ay
Vo J(psrp) flps,p) Vo

where A is a constant determined by the linear approximation of the flow rate at an equilibrium point

p= (5.1.6)

Peq- We consider this linearized model (5.1.6) as a nominal plant, denoted as Py.

h 4

controller <

s

I@E,

mmm———n

:
¢ Y

3

Y

| valve chamber

S

Figure 5.1.1: experimental apparatus of pressure control system

5.2 Minor Feedback Controller Design

Comparison is made with the following two constant minor feedback controllers

F1=ea,ndF2=40
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with sufficiently small € > 0. Note that
q(e) ~q(0) (5.2.1)
holds in the disturbance attenuation problem for sufficiently small € > 0. Thus, we can consider g(e)
as the performance level attained by directly applying H,, control method without minor feedback.
Note that the nominal model P, of the pressure control system (5.1.6) satisfies conditions C0 and
C1 of Corollary 2.4.1 for constant minor feedback controllers with 0 < Fy; < Fy. Gain plots of the

nominal plant P with/without minor feedback are shown in Fig. 5.2.1; we see that condition C1 is

satisfied.

20 .
' without M.F
\ with M.F
Ot _
G
TN
[ia)
k=)
= -20 «
5 | N
-40 \\\\
|
-60 )
0.1 1 10 100
frequency [Hz]

Figure 5.2.1: gain plots of nominal plants with/without minor feedback

Condition C2 will be examined experimentally in the next section. If this is the .case, we can

improve the performance by minor feedback.

5.3 Experimental Results

The numerical values used here are
ps = 6 [kgf/em?], Vjy =170 [cm?), Peqg = 3.5 [kgf/cm?].

Frequency responses of various amplitudes at each frequency are measured to estimate the model
uncertainties. The weighting functions with/without minor feedback are determined based on these
data as shown in Fig. 5.3.1. Thanks to the minor feedback Fy, the magnitude of the model error
is reduced and its variation over frequency is also reduced. This means that C2 of Corollary 2.4.1 is

satisfied.
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Figure 5.3.1: model errors and corresponding weighting functions

Therefore, from Corollary 2.4.1, we conclude that disturbance attenuation level is improved by

using the minor feedback. Actually, we have
gle) = 4.0 < g(40) = 7.3, (5.3.1)

namely, the attenuation level is improved with approximately 5 [dB] according to the minor feedback.
This is verified experimentally: Fig. 5.3.2 shows the gain plots of frequency responses from the
disturbance to the output, where curves and points refer to simulation and experimental results,
respectively. In both case, gains are reduced in approximately 5[dB] over lower frequency range.

The pressure responses in time domain with the disturbance d = 8sin 2.5 - 2w are plotted in Fig.
5.3.3.

The disturbances of the above experiments are applied before the feedback linearizing control
law. That is, these disturbances are not applied in particular situation. Thus, we apply disturbances
before the feedback linearizing control law in order to investigate properness of the design method in
practice. The experimental results are shown in Fig. 5.3.4 and we see that effects of the disturbance is
reduced with the minor feedback. This result confirms the properness of the proposed design method

in practice.

5.4 Concluding Remarks

Experimental results for a pressure control system with an isothermal chamber have shown that a

minor feedback reduces the magnitude and the variation of the modified modeling error. over the
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Figure 5.3.2: gain plots from disturbance w to output y : experimental and simulation results

frequency domain. From the sufficient condition in Corollary 2.4.1, we conclude that the minor

feedback improves the disturbance attenuation level and this has been confirmed experimentally.

51



3.8} - without M.F. — ]
with M.F. -

0 02 04 06 08 1
time [secl
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Figure 5.3.4: disturbance responses at control input (experimental) applied before linearization
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Chapter 6

Application to Pneumatic Actuator

System

In this chapter, the design methods proposed in Chapters 2 and 3 are applied to a pneu-
matic actuator system with a rubber artificial muscle. First, the effectiveness of the minor
feedback linearization is verified experimentally. Next, it is shown that the pneumatic
actuator system satisfies the conditions of Proposition 2.4.1 with a minor pressure loop

and the attenuation level reduction is confirmed experimentally.

6.1 Introduction

Though a pneumatic actuator is widely used in industrial applications, it is not easy to control it due
to several nonlinearities; nl) the nonlinearity in the valve, n2) compliance variation and n3) generating
force. In practice, most common control for the pneumatic actuator systems is liriear control designed
based on the linear approximated model at an equilibrium point, e.g., [Matsushita 1993][Osuka 1990].
Using the linear control, when the state of the system is far from the equilibrium point, the nonlinear-
ities deteriorate the control performance. Gain scheduling controls for the compliance variation have
been proposed for air cylinder actuator system in [Miyata 1990] and [Pu 1993], which cancel out the
nonlinearity n2). However, effects of the other nonlinearities nl) and n3) have not been investigated
yet.

The method of feedback linearization is one of the useful techniques to cooperate with nonlinearity[Su 198%
and its validity has been verified experimentally in mechanical systems and electrical systems[Sampei 1993a][]
In contrast, there is a few applications of the feedback linearization in pneumatic systems. It has been
applied to an air tank system for pressure regulation in [Bouhal 1993]. However, there exists no ap-

plication for pneumatic actuator systems. This is due to the difficulty in constructing considerably

53



accurate mathematical models for the pneumatic systems, which are really required in the feedback
linearization.

Recently, there have been progress in analysis of pneumatic systems and some mathematical models
have been proposed for pneumatic actuator systems[Kagawa 1993]. In this chapter, we investigate
feedback linearizaton for pneumatic actuator systems based on the proposed model with a rubber
artificial muscle[Kagawa 1993]. Section 6.2 describes the model of the pneumatic actuator system.
Following [Kagawa 1993], we show that the model can be described as a third order nonlinear system
composed of a second order linear load driven by a first order nonlinear actuator whose dynamics
depends on the state of the load. According to Proposition 3.3.1, we show that these systems are
feedback linearizable.

Sections 6.3 and 6.4 are devoted to the experimental results. We verify that the proposed feedback
linearization method with disturbance rejection is useful in pneumatic systems. Furthermore, it is
shown that disturbance attenuation level of the pneumatic actuator system can be improved using

constant pressure feedback as minor loop as well as a pressure control system in Chapter 5.

— Notation —

Ly[m] : initial length of R.A.M.

z[m)] : displacement of R.A.M.

€ : relative displacement of R.A.M.(z/Ly)

p[Pa] : inside pressure of R.A.M.(abs.)

F[N] : generating force of R.A.M.

V[m3] : volume of R.A.M.

u[V] : control voltage for valve

Se[mm?] : effective area of valve

mlkg] : mass of load

¢[N - s/m)] : friction coefficient

g[m/s%] : gravity constant

R[J/(kg - K)] : gas constant

pa|Pa] : air pressure

©4[K] : temperature of the air

€0, €0, Fo : values of ¢, ¢, P at equilibrium point

a[N/Pa}, B[N/Pal],y[N] : coeff. of equation between ¢, P and F'
va[m?], v1[m3],vg[m?] : coeff. of equation between V and €

d1[m?/ V], d2[m?/V?), d3[m?/V3]: coeff. of equation between u and Se
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Figure 6.2.1: experimental apparatus

6.2 Modeling

We use a rubber artificial muscle (R.A.M.), as an actuator. An R.A.M. consists of a rubber tube
and a sleeve of interwoven fiber cord covering. When the pressure inside the R.A.M., p, is increased,
it contracts in a longitudinal direction and generates force F'. Fig. 6.2.1 shows the experimental
apparatus: The valve is driven by the command voltage u so that the air flows into or flows out of the
R.AM. Then, due to the flow rate G, the inside pressure of the R.A.M. P is changed and the R.A.M.
generates the force F'. The mass attached to the R.A.M. by a wire through a pulley moves up or down
associated with the generating force F' so that the displacement of the R.A.M., ¢, is determined. Here
we assume that the displacement ¢, the velocity é and the pressure P of the R.A.M. can be measured.

In order to derive a mathematical model, the following three assumptions A1)-A3) are made:

A1 The air is ideal gas.
A2 Change of the air is isothermal.

A3 The friction is linear.

Then, taking the state variables as deviation from an equilibrium point as

Se =€ — €, (Sé:zé—é(b 8p::p_p(]
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leads to the following nonlinear model[Kagawa 1993]:

d | de 0 1 de
2S5l
m,

0
1 v
p = *(5P+Po)m + ilti@—“G(&P,u)

(6.2.1)

o V(ée) = V(de)
@ v — F (8¢, fp) — mg — cLyég
mly
where
p=40&+po

F(3e,8) = (p ~ pa)(all - (e + «))? + ) +7
V (6€) = va(8e + €p)? + v1(Se + o) + vo
and G() is defined in (5.1.4). Note that the origin is an equilibrium point of the system. The first

order approximated model of the nonlinear model (6.2.1) at the origin is expressed as

& = Ax + Bu, = = [de §¢ ]

0 1 0 0

(6.2.2)
A= An Ay Ay |, B=| 0
0 Az O B3

Note that the system (6.2.1) is characterized as the nonlinear system composed of a single input
linear load 37, actuated by a first order nonlinear actuator 3°, whose dynamics depends on the state
variables of 3, (See Fig. 3.3.1).

In practice, there is static friction between the covering code and the rubber tube of the R.A.M.
This causes hysteresis characteristics among the generating force F', the inside pressure p and the
displacement €. Fig. 6.2.2 shows force—displacement hysteresis characteristics of the rubber artificial
muscle.

Thus, the inference of the hysteresis can be considered by the replacement
F(be,p) = F(be,ép) +d (6.2.3)

in (6.2.1), where d refers to the disturbance corresponding to the hysteresis characteristics. Note that
since the hysteresis of the R.A.M. is due to the static friction, this can be considered as a step-type

disturbance for the position control.

6.3 Minor Feedback Linearization with Disturbance Rejection

6.3.1 Controller Design

We see that the pneumatic actuator system (6.2.1) is in the class defined by (3.3.1) and (3.3.2) in
Proposition 3.3.1 by setting
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Figure 6.2.2: Force—Displacement Hysteresis Characteristics

KL
_|e = 6P,

9p = 1 y &g = 0, (6.3.1)
L V(be) _ RO,

Jo= 207G %= Ve

h, = F(5§,5P) —mg— cLoéO, —

mLyg
This implies that the plant (6.2.1) is feedback linearizable.

Pneumatic actuators satisfying the assumptions Al) and A2) can be modeled in the form of
(3.3.2). Therefore, Proposition 3.3.1 concludes that the system iﬁvolving a linearizable load driven by
a pneumatic actuator is linearizable.

Comparison is carried out by implementing the linear controller F' in the following three forms:

oE1 : No linearizing compensation
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The configuration of the overall controller is depicted in Fig. 3.2.1, where
$7 =1, Tu=1 Ty =1, Fy=0.

oE2 : Feedback linearization

According to (3.3.6), let the coordinate transformation T°*'(x) be

de

Texp(w) — Jé (632)
F(5€, 5P) —mg — CLU((SG. + éu)

mLyg

and by following (3.2.1), let the input u be

w= G (6P, T®v + Fy®
nl

YT u

where .
Tow =
B(de)
FOXP Y2 o aili — alde, §¢,8P)
nl ﬁ((;e)
Then, the relation between the new input v and the new coordinate y = T,;*"(z) is linear, where
exX dTexP (O) ! exXP
Ty%(w) = ——dw——) TP (x) .
a(Se,6¢,6P) = —= (F(&,‘SP) —mg — cLy(8é + 60))
" i ; (6.3.3)
1 <8F(5e,5P) 5¢ _OF(S¢,p) o+ )V(&) 3.
mLyg Oée dép Po V(e D)
)
B(5¢) 1 OF(8¢,6P) RO,

mLy 0P  V(8€)

The configuration of the overall controller is depicted in Fig. 3.2.1 where

k3 7

¢_1 = G_la Ty =T, T;J = T;xp’ Fu= F(i;q)’

The linear controller F' does not use the output ée¢, §¢ and dP of the plant P directly, but it uses
the modified values for d¢, 6¢ and 6P, by the coordinate transformation T}, which corresponds to the
values evaluated at the equilibrium point. The output of th'e linear controller F' is modulated by the
input transformation 7, and nonlinear feedback F),; is added to cancel the nonlinearity of the plant

P.

eE3 : Feedback linearization with disturbance rejection
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From the correspondence (6.3.1), the plant with hysteresis (6.2.3) is expressed as

0

b = | TP T @) | ° bul@angy ) + | —— | d (6.3.4)
ang — a\Laug 9.
f(z(maug) .‘]a(maug) mLy

0

Thus, the inference of the disturbance d to the system does not depend on the state. Moreover, the
first entry of the nominal coordinate transformation defined in (6.3.2) is linear in the state of the
plant. Therefore, we see that the plant satisfies a sufficient condition (3.4.10). Hence we can reject
the disturbance associated with the hysteresis of the R.A.M. if the disturbance d can be measured.
Though the disturbance d can not be measured directly, we can compute the value of d by measuring

the acceleration ¢ and the state e, Se and 6P as follows:
d = mLgé — F(8¢,6P) — mg — cLy(8¢ + éy) (6.3.5)
From (3.4.4) and (3.4.8), the configuration of the overall controller is shown in Fig. 3.2.1 where

¢$7 =G L= Ty, Ty = T Fu = FY

Y. nl,a

and .
dTe(0)\ -
exp —
I‘Z—zy'(l. dil: > Sa
gl.a de
£a = 52,(1, = | 8¢
53,0 €
FOP E?_—_O ai&i,a — Qg
N 70 ) OF (8¢, ép) / (8¢)
c. 1 OF(d¢,6P) _, F'(Se, V(de
0y = ~-n_z€+mL0 < D5 §é o5 (ép U)V(5e)>'

Since € can not be measured directly in our experimental setup, we use an estimated value € from
the position € through a second order filter.
6.3.2 Experimental Results

Since the maximum relative displacement of the rubber artificial muscle is 0.3, we determine the
equilibrium point as

€0 = 0.15, é =0, pg = 3.4 x 10°[Pa].
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The displacement and the pressure are measured and the velocity is calculated from the displacement

by numerical differentiation. The numerical values used in the experiment are as follows:

m = 11.3[kg], ¢ = 35.0[N - s/m], Ly = 0.3[m],

o = 4.92x1073[N/Pa], 8 = —1.87x1073[N/Pa],
v = —291.4[N], vz = —1.70x 10~ 3[m?],

v1 = 1.04x1073[m?], vy = 28.1x 107 [m?],

d; = 1.50x107[m2/V], dy = 1.66 x10~1[m?/V?],
d3 = 8.84x1073[m2/V?], ay = 0[1/5°],

a1 = —1247[1/s%, ag = —3.10[Pa/s"],
b=65.1[1/V-s3].

The simulation is carried out based on the linear approximated model (6.2.2) with the following values:

Agy = —468[1/s%], Azy = —3.10[1/s]Az3 = 5.00 x 10~4[1/Pa - s?,
Az = —1.57 x 10%[Pa)], B3 = 1.31 x 105[Pa/V].

In order to verify the validity of the minor feedback linearization with disturbance rejection, a
simple linear controller is used in the outer loop. Here we use constant state feedback controller as for
the linear controller F', which is designed by pole placement technique with closed-loop poles —2.5,
—2.6 + 337, —2.6 — 33;.

This is implemented as

u = —(F.b¢ + F:.5¢ + Fpép) + G, d¢, (6.3.6)
with values
F, =9.35[V], F: = —2.26[V -s], Fp = 3.54 x 107°[V/Pa], G, = 42.7[V]

where d¢, denotes the reference signal and G, is a constant selected so that the steady gain of the
closed loop system from de, to be is 1 for convenience of the comparison.

The following four step width in normalized displacement are used in the experiment:

2%  (0.14—0.16 )
5%  (0.125——0.175 )
10% (0.1—0.2)
20% (0.05—0.25 )

The results are normalized by step width in Fig. 6.3.1-6.3.4, i.e., the reference signal is 1 in the
figures. Note that the responses for the 10% case -are not plotted in Fig. 6.3.1-6.3.4, since they

resemble those for the 20% case.
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Figure 6.3.1: step responses (no linearizing compensation)

E1 : No linearizing compensation (Fig. 6.3.1)

In the 2% case, the difference between the simulation result and experimental one is large regardless
of the small effect of the nonlinearities. This can be caused by hysteresis of the rubber artificial muscle.
Increasing step width as 5%, 10% and 20%, the effect of the hysteresis becomes small against the step
width. However, the difference between the simulation result and experimental one are still large

because of the nonlinearity.

E2 : Feedback linearization (Fig. 6.3.2)

In the 2% case, the response is similar to that of the no linearization case, because the proposed
linearizing controller is less active in th\e neighborhood of the equilibrium point due to the modification
(3.2.1) and (3.2.3). Increasing step width as 5%, 10% and 20%, the effect of the hysteresis becomes
small against the step width and the nonlinearity is canceled out by the linearizing controller, so that
the liﬁearity is improved and hence the experiment results tend to match the simulation results.

However, the steady state error is large. This can be explained by considering the hysteresis
described as follows: By applying the nomin‘al linearizing control law to the disturbed system (6.3.4),

we obtain

0
gy=Ay+Bv+| 1 |d, y=T(a) . (6.3.7)

0

where A and B are constant matrices defined by the linear approximated model (6.2.2) and T, is

defined in (6.3.4). Hence, combining the outer loop linear control defined in (6.3.6) yields the resultant
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closed loop system

0 1 0 0 0
Y= Agy As Ags y+ 0 de, + | 1/mLy |d. (6.3.8)
—B3F, Agzy— B3F. —B3Fp B3G, 0

The steady state can be determined by equating right hand side of (6.3.8) to 0. Thus, we see that the

displacement at steady state, denoted e, is given by
Seno = —4.92 x 107 *d + Jec, (6.3.9)

Comparison of theoretical values determined by (6.3.9) and experimental values are illustrated in Fig.
6.3.3, where the steady displacement is normalized by the step width, that is, e, /de, is plotted, where
d is determined by considering the size of the force-displacement hysteresis loop in [Kimura 1993]. This

figure shows that the steady state error is mainly caused by the hysteresis.

normalized displacement

Figure 6.3.2: step responses (linearizing compensation)
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Figure 6.3.3: steady displacement vs. step width

E3 : Feedback linearization with disturbance rejection (Fig. 6.3.4)

When compared with the nominal feedback linearization case E2, all responses are improved by
the feedback linearization with disturbance rejection. Especially, steady state error caused by the
hysteresis described in the previous experiment E2 is reduced. Hence, we see that the proposed

linearizing control with disturbance rejection is carried out effectively.

=nemhemTT 20%

simulation 1
| L | )

normalized displacement

Figure 6.3.4: step responses (linearizing compensation with disturbance rejection)

The pressure responses for 10% step width is shown in Fig. 6.3.5. The linearizing control used here
compensates the pressure in such a way that the corresponding value of p evaluated at the equilibrium

point, denoted pey, varies linearly. We see from Fig. 6.3.5 that the linearizing control works well. Fur-
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thermore, in comparison with the nominal feedback linearization control, proposed linearizing control

with disturbance rejection can suppress the hysteresis characteristics so that linearity is improved.
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Figure 6.3.5: pressure responses for 10% step width

6.4 Disturbance Attenuation Level Reduction with Minor Feed-

back

6.4.1 Controller Design

In the previous section, it have been shown that minor feedback linearization with disturbance rejection
is effective for the pneumatic actuator system, that is, it greatly improves the linearity of the pneumatic
actuator system. In this section, we design a linear controller based on the disturbance attenuation
problem in Chapter 2 with minor feedback. Namely, linear H,, controller is designed based on the

linearized system (6.2.2) with a minor feedback loop. -

Comparison is carried out with the following two constant minor feedback controllers
F1 =[00 Fy]7 and Fo = [0 0 Fpp]”

where

Fpi=¢€cand Fpo =5

with sufficiently small € > 0. As well as in Chapter 5, the case with Fj refers to the case without minor

feedback. Here we note that the minor feedback controllers satisfies the conditions CO of Corollary
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2.4.1. From the gain plots of nominal plant modified by the minor feedback in Figs. 6.4.1 and 6.4.2,
we see that Cl of Corollary 2.4.1 is satisfied.
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Figure 6.4.1: gain plots of nominal plants : from input u to displacement ¢
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Figure 6.4.2: gain‘plots of nominal plants : from input  to pressure p

Therefore, if the minor feedback reduces the magnitude of uncertainty model, we can improve the
disturbance attenuation level. This is examined experimentally in the next section. If this is the case,

we can improve the performance by minor feedback same as the pressure control systems in Chapter

5.
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6.4.2 Experimental Results

Since this pneumatic actuator system is too fragile to measure the frequency responses, we here verify
the magnitude reduction of uncertainty model in the following way: Fist we design an H,, controller
with a weighting function of uncertainty model. If the resulting closed-loop system is unstable in
experiment, it implies that the real model error is not bounded by the uncertainty model. If not, it
bounds the model error. Therefore, we can estimate the magnitude of uncertainty model by changing
weighting function by iterating the procedure. l

An H,, controller is design based on the disturbance rejection problem shown in Fig. 2.3.1 with

the following weighting functions

Wr(s) = krWro(s) (6.4.1)
Wps(s) = diag{Wg(s),0,k,Wg(s)} (6.4.2)

where
Wiro(s) (s/2m + 1) (6.4.3)

(/27 x 103 + 1)2

33 §/2mrx5+1
WR(S) = 102 m (644)

0.1  (6.4.5)

Ol
=
Il

and k7 refers to the magnitude of the uncertainty model. The profiles of the weighting functions
Wy and Wpg are determined according to the corresponding closed loop transfer function with the
constant state feedback in the previous section. Step responses of displacement with kr = —8[dB] and

kr = —20[dB] are shown in Figs. 6.4.3 and 6.4.4, where 0 refers to the equilibrium point.
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In Fig. 6.4.3, both cases are stable and hence we see that the uncertainty is bounded by the
weighting function k7 Wrg(s) with kr = —8[dB]. In Fig. 6.4.4, step response without minor feedback is
unstable. This implies that the corresponding modeling error is not bounded by the weighting function
krWpo(s) with kr = —20[dB]. In contrast, step response with minor feedback is stable and this implies
the modified modeling error with minor feedback is bounded by the weighting function. Hence, we
can conclude that the magnitude of uncertainty is reduced with the minor feedback. According to
Proposition 2.4.1, we see that disturbance attenuation level is reduced with the minor feedback.

H,. controllers with/without minor feedback are designed with the same uncertainty magnitude
of .

kr = —8[dB] ' (6.4.6)

Actually, we have

0.18 = g(F1) < G(F3) = 0.63 (6.4.7)

namely, the attenuation level is improved with approximately 10[dB] according to the minor feedback.

This improvement is verified experimentally: Fig. 6.4.5 shows the gain plots of frequency responses
from the disturbance to the displacement where curves and points refer to simulation and experimental
results, respectively. In both case, gains are reduced in approximately 10[dB] over lower frequency

range.

o without M.F. | ——
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m) SR
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8, -45 \ ;
-50 ——
55| i \
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1
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Figure 6.4.5: gain plots of closed-loop transfer function from disturbance to displacement

Fig. 6.4.6 shows the experimental result of disturbance response in time domain with sinusoidal

disturbance input of d = sin 2.
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Gain profiles of the resulting closed-loop functions are depicted in Figs. 6.4.7 through 6.4.9. From

these figures, we see that the resulting closed-loop system satisfies given design specifications.

6.5 Concluding Remarks

We have applied a method of feedback linearization for a pneumatic actuator system to handle the
nonlinearity based on a nonlinear model in [Kagawa 1993], where a rubber artificial muscle is used
as an actuator. While conventional linear control can not treat the nonlinearities n1)-n3) in Sec-
tion 6.1 directly, the feedback linearization allows us to design a controller by taking account of the
nonlinearities.

Experimental results have led the following results: 1) It is verified that the linearizing control is
effective for pneumatic systems. 2) The model used here is appropriate for the linearizing control.
3) The proposed feedback linearization with disturbance rejection reduces a disturbance due to the
hysteresis of the R.A.M. effectively. 4) It has been confirmed that minor pressure feedback improves
the disturbance attenuation level as well as for the pressure control system in Chapter 5.

Finally, we wish to thank Mr. S. Ohno for his cooperation in the experiment and Bridgestone Co.

who provided the rubber artificial muscle used in the experiment.
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Figure 6.4.7: gain plots of complementary sensitivity function and its weighting function (inverse)
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Chapter 7

Conclusion

The finite dimensional linear time invariant (FDLTI) Hy control theory establishes one of the most
powerful robust control design methods. The uncertainty model used in the H,, control is norm
bounded, while real modeling error between the real plant and an FDLTI nominal plant is not. There-
fore, the determination of the uncertainty model is conservative in particular applications and hence,
resulting system performance might be conservative if we apply the H, control to real applications
directly. To reduce the conservativeness, FDLTI H,, control scheme with minor feedback has been
examined in this thesis. The approach used here gains suitability of FDLTIT H,, control without losing
its tractability.

We summarize the main contributions as follows.

e Since minor feedback changes both nominal plant and uncertainty model, we cannot conclude
immediately that it improves system performance, even if the magnitude of uncertainty model
is reduced. A disturbance attenuation problem was introduced to investigate the effect of the
minor feedback. A sufficient condition shows that minor feedback improves the disturbance

attenuation level if it reduces the magnitude of nominal plant and that of uncertainty model.

e Experimental results for a pressure control system have shown that a minor feedback reduces the
magnitude and the variation of modified modeling error over the frequency domain. From the
sufficient condition, we conclude that the minor feedback improves the disturbance attenuation

level and this has been confirmed experimentally.

e Feedback linearizing control was reformulated so that the linearized plant is coincident with
the linear approximated plant of the original nonlinear plant. According to this reformulation,
we can easily conclude that feedback linearization improves system performance if nonlinearity

of the real plant occupies dominant part of uncertainty model. In addition, a class of feedback
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linearizable plants has been derived and linearization control with disturbance rejection has been

proposed. These results gain suitability of feedback linearization for pneumatic systems.

e The minor feedback should satisfy an H, norm constraint to improve system performance
subject to the real parametric uncertainty. A norm bound test for real parametric perturbed
systems has been given based on sign definite condition. Frequency restricted norm (FRN),
a generalization of the H, norm, has been proposed and a special class of real parametric
perturbed systems has been derived such that their FRNs are bounded by the FRNs of fixed
systems. Based on these results, a design method of minor feedback controller against real

parametric uncertainty has been given by using parameter space design method.

e For a pneumatic actuator systems with a rubber artificial muscle, it has been verified experi-
mentally that the proposed linearizing control with disturbance rejection improves linearity. In
addition, it has been confirmed that minor pressure feedback improves disturbance attenuation

level.
We would like to point out some relevant future research topics.

e Performance improvement with minor feedback is guaranteed only for a disturbance attenuation

problem. It is necessary to find out improvement conditions in a more general framework.

¢ For pneumatic control systems, usage of position and velocity loops as minor feedback should

be clarified.
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Appendix A

A.1 The proofs of Claims 1) and 2) of Theorem 4.3.1

[The proofs of Claims 1) and 2)]

We only focus on agp(k = 0,1,2,...,[n/2]) here, since the proof associated with agi1(k =

0,1,2,...,[n/2]) can be carried out by the same technique as that associated with ag). Hence, we

fix the values of ag11(k = 0,1,2,...,[n/2]) as a3y, (k = 0,1,2,...,[n/2]) without loss of generality

from now on. Furthermore, we define the following four classes:

gr = {G(s) =q(s)/a(s) | a(s) € Ar}
Ar = {a(s) | azi € [ag;, @), aziq1 = a3y 3 1=0,1,...,[n/2]}
‘ (A1.1)

Vr = {a(s) ‘ a2; = Qqg; Or G2, A2i+1 = agﬂ_l ;1 =0,1,..., [n/?]}

Kr = {kri(s), kra(s)}
where
kri(s) = (g0+g434+~--)+(6232+5636+---)+(a’{+a§s5+---)+(a§+a$s7+-~:) (A12)
kra(s) = (@p+ass*+---) + (ags® +ags®+--) + (at + ags‘r’ + o)+ (a3 + a§s7 + ).

Consequently, we will prove the followings instead of proving Claims 1) and 2):

Claim 1°) If there exist a¥(s) € Ag and w# € (wg,wp) such that |G¥* (jw#)| > |G(5)llw; wx) holds
for all G(s) € Gr, then a™(s) € Vg. '

Claim 2°) If there exist a#(s) € Vg and w# € (wr,wy) such that |G#(ju#)| > |G ()|, wi holds
for all G(s) € G, then a#(s) € Kg.’

We will give the proof considering the following three cases:

case 1) R¥(w#) #0

case 2) R#(w#) = Q, ¢ (w*) # 0
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case 3) R¥(w#) =0, ¢"(w#)=0

where
a¥(jw) = R¥(w)+ jI* () (A.1.3)
#(w) —2 =2 2 —=2
) = TOQ ) - Ghurtw) (A1.4)

Remark: The proof of the Claim 1°) is executed by using contradiction and the proof of the Claim
2’) is almost same. The outline of the proof strategy for the Claim 1’) is described as follows.
We have already noted that the scripts # indicate the values associated with the maximum, in the

@

following discussions, we also use the scripts @ to indicate the values which will lead to a contradiction.

In the case 1, if a#(s) ¢ Vg, where a#(s) is the denominator of G¥#(s), we can find a coefficient

as = a#k +¢€, €50, || €1 so that the resulting system G(s) satisfies the inequality

G (jw#)| > |G* (ju?)| - (A-1.5)
where o

@ . QotTQw
and

R®w) = af +af (ju)*+ -

# s N2(k—1) 4 @ (x N2k # . \2(k+1) . Sofn/2] (A.1.7)
+U/2(k_1) (]w)d + a’_),'-k(]w)d + a’2(k+1) (]w) +t a2[n /2] (JUJ) )
This contradicts the maximality of G¥(s) in (4.3.23). Fig. A-1 illustrates the situation.
In the cases 2 and 3, we use the fact that |G#(w))| is partitioned into
IG* (jw)|?> = 1/(U* (w) + V#(w)) (A.1.8)
where 4 42
R#4(w I (w
U#(‘U) = :‘2—;2)—9 ) V#(UJ) = '_T——(_z—)z— (A.1.9)
Qo + Qw? Qo+ Qw
Here we note that —d%V#(w) is represented by :
# #
4 yiy) = W (A.1.10)
dw (Qo + Q1w?)?

where ¢#(w) is defined by (A.1.4).
In the case 2, we can see from (A.1.9) and (A.1.10) that U# (w) is zero at w = w¥ and dV# (w¥)/dw #
0. (suppose dV# (w#)/dw > 0 for example). Let us define U®(w) as

U w) := R (w)

SR . (A.1.11)
=2 =2
QO + Q1w2
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where R®(w) is defined by (A.1.7). If a#(s) & Vg, then we can find a coefficient a§} = a?ﬁ, + € so that
the resulting function U“(w) has zero at w*® := w# —¢,, €, > 0, |e,| < 1 with sufficiently small € > 0.
Since dV#{w#)/dw > 0 and U#(w#) = U®(w®) = 0, we have the inequality U#(w#) + V#(w#) >
U®(w®) + V#(w®). According to (A.1.8), this contradicts the maximality of G#(s) in (4.3.23). Fig.

A-2 illustrates this situation.

In the case 3, we have U#(w#) = 0 and dV# (w#)/dw = 0 from (A.1.9) and (A.1.10). Moreover,
from Lemma A.1.2 , we see that w¥ achieves a local maximum of V#(w). Therefore, as in the case 2,
we can find a coefficient a} := a#k—i-e, € #0, || € 1 so that U®(w) has zero at w® := w# —¢,, ¢, # 0,
le.,| < 1. with sufficiently small ¢ > 0. Therefore, since w# is a local maximum of dV #(w)/dw, we
obtain U#(w#)+V#(w#) > U®(w®)+V#(w®). According to (A.1.8), this contradicts the maximality
of G(s)# in (4.3.23). Fig. A-3 illustrates this situation.

Details of the proofs are stated as follows.

We note that we can assume Qy+Q jw* # 0, since Qy+Q;jw? = 0 implies G(s) = 0. Furthermore,
when w# = 0, the Theorem 4.3.1 is trivial. Thus, we will investigate the case w# # 0. In addition,

since G(jw) is symmetric w.r.t. w € R, we can assume w# > 0 from now on.

The proof of Claim 1°:

We first suppose that a¥(s) € Vg, i.e., there exists an integer k such that ar_ﬁ: € (agy, @2k)-

case 1) R¥(w¥) # 0:

Observing
—=2 —2 #2
s a2 Qo+ Qiw
GG = B+ ) (A.1.12)
yields
X L= 2 = 2

O (it = (~1)F2R* (WH)wt (@) + @, w??) i1s)
bagi N T T (BB ) 1 P *

Since this partial derivative is not equal to zero from the assumptions, if we take agi‘i, € (agy,or) as a

value in an e-neighborhood of afk such that

. i
af =al +e if aa—k|G#(jw#)|2 >0

. e (A.1.14)
ad =al —e if G* (w2 <0
2k 2k aa2k | (.7 )l
then the resulting transfer function G®(s) € Gr satisfies
|G¥ (jw™)] < |G (ju™)| (AL15)

for sufficiently small € > 0, where G® is defined by (A.1.6) with R®(w) defined in (A.1.7). This

contradicts (4.3.23) and we can conclude that a#,‘, = @, OF Gop, i.€., a™(s) € Vp.
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case 2) R¥(w#) = 0 and ¢%* (w¥) #£ 0:
According to the stability of a(s), we can assume
I*(w*) £ 0
and this implies
V# (W) #£0

and

dV#(w?)/dw # 0

In addition, we note that

dR(w™)/dw # 0

(A.1.16)

(A.1.17)

(A.1.18)

(A.1.19)

holds by Lemma A.1.1 in Appendix B. From (A.1.18) and (A.1.19), we first consider the case where

the following three conditions hold:
dV#(w¥)/dw >0, dR*(w¥)/dw >0, Fk is even.
Then, from Lemma A.1.3 in Appendix B, if we take a%, € (agp, o) as
o =al —e
then we can obtain w® € (wp,wg), w = w¥ —€,, €u > 0, |eu| € 1 so that
R®w®) =0
for sufficiently small € > 0, where R®(w) is defined by (A.1.7). This implies

U@(w@) =0

where U®(w) is defined by (A.1.11).
Since dV#(w#)/dw > 0, we see that

V#WH) > VW), w® <o

and hence we have
U (w#) + VF(W#) > U®w) + VW)

because U# (w#) = 0 and U®(w®) = 0. In general

If dV#(w?)/dw >0, dR¥(w#)/dw > 0(<0), kieven, take af) := afk

It s dR*(w#)/dw > 0(< 0), kiodd take ol :=al, +e¢
If dV#(w#)/dw <0, dR#(w#)/dw > 0(<0), kweven, take ag = a#k + e(—¢
If ’ dR# (w#)/dw > 0(< 0), kiodd take a% := a;ﬁ: -
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Then, in'the same way, we can find w'® € (wg,wy) so that the inequality (A.1.25) holds for sufficiently
small € > 0.
The inequality (A.1.25) implies
G# (ju?)] < |G ()| (A.1.27)

where G®(s) € Gp is defined by (A.1.6) and this contradicts the maximality of G#(s) in (4.3.23).

Hence, we conclude that az#k = @qy, OF Tog, i.e., a¥ (s) € Vi.

case 3) R¥(w#) = 0, % (w#) = 0:

The assumption ¢¥ (w#) = 0 yields
dV#(w#)
dw

- Furthermore, considering the assumption R#(w#) = 0, the Lemma A.1.2 in Appendix B leads to

=0 (A.1.28)

P2V #(w#)

— (A.1.29)

Therefore, from (A.1.28) and (A.1.29), we see that V#(w) has a local maximum at w = w#,
Since the variation of the zeros of U# (w) is continuous with respect to the variation of the coefficient
ag’:,, taking

€

Aoy, = afk +¢ (A.1.30)

leads to

U@(w@) =0, W o w#, |w@ — w#\ <1 (A.1.31)

for sufficiently small ¢, where U®(w) is defined by (A.1.11).

€

Hence, the selection of as;, in (A.1.30) yields
U () + V#(w?) > UW) + VF (") (A.1.32)

and this implies
IG* (jw®)] < 1G" (jw")] (A.133)

where G®(s) € Gr is defined by (A.1.6). This contradicts (4.3.23), and hence, we can conclude that
the maximum is not attained in the case 3.

Combining the cases 1), 2) and 3), we conclude Claim 1’. a

Proof of Claim 2’:
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Le‘t us assume a¥ (s) & Kp but a#(s) € Vp. This implies following four possibilities, namely, there

exist integers k and [, k # [ such that

a) R*(w) = (a#+afw4+---+g_2kw2’“+---+621w2l+---)— (a#wz—l—a#ws—i—---)
b) R#(Q) = (a#—[—afu“—{-:--)——(a#wQ+afw6+--'+g_2,\,w2k+--~+Eglw21+---)
) R*w) = (af +afwt+- +ayw? +-) ~(@fw’ +afwd + o+ g + )
d) R*(w) = (af +afwt+ - +agw® +--) - (afw? + afwb + - a4+

case 1) R¥(w#) + 0:

Let us first consider case a) and suppose R¥(w?) > 0. Then, taking aj), € [ag,,@2;] and af; €

[agy, @ai] as

@ .__ #
QAgp += Qop»

and defining

@

.
Qg = A9 — €

R@(w) = a(#)&+a92¢(jw)2+"'+a%,(jw)2k+'-'+a§i(jw)2l+---

= R#*¥(w#) — ew#?

lead to

|R# (w#)] > |[R® ()] -

for sufficiently small € > 0.

In general,

for case a):
If R*(w#) > 0(< 0), take al} := az#k
for case b):

@
Aoy

If R*(w#) > 0(< 0), take a5 = afk +€,a5

for case ¢):
If R*(w#) > 0(< 0), take af, = a;’*k
for case d):

If R#(w#) > 0(< 0), take O,%Dk = afk — € ,CL(% = aé’; (a(énk .

Then, the inequality (A.1.37) holds.
The inequality (A.1.37) yields

@

1 Qg

@

= az#l—e (any, :

e A @
=ay (agg

(]

= afl + ¢ (agy,

|G ()| < 1G®(jw®)

(A.1.34)

€@

(A.1.35)

(A.1.36)

(A.1.37)

(A.1.38)

where G®(s) is defined by (A.1.6) with R®(w) defined by (A.1.36) of which the coefficients are selected
above. This contradicts (4.3.23) and we conclude a#(s) € Kp.

-case 2) R*(w#) =0, ¢#(w#) £0:
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Again consider the cases a) ~ d). According to lemma A.1.1 in Appendix B, we have dR¥ (w#)/dw #
0. In the same argument in the case 3 of Claim 1’, Lemma A.1.3 in Appendix B leads to the fact that

we can select a5, € [aoy,@ok] and a%) € [ay, @2 so that
UH(w#) + V#(w?) > U (W) + VF#(w®) (A.1.39)
holds, where
U# (w?) = U (w®) =0 (A.1.40)
by the following selection with sufficiently small ¢ > 0:

for case a):
Q

OR#* (w#
If d—‘i—V# (w#) >0, —-&(f ) > 0(< 0), take agb'k = a;i , Gy 1= a,ﬁ; — € (agy, := a?ﬁ: +¢€,aq = aﬁ)

# (w# @ @ @ '
If %V# (w#) < 0, ———aRDLw ) s 0(< 0), take ag), := a#k +€,ag) = a;% (ag), == arj&,\: ,ay) = a;ﬁ —¢)

for case b):
# (w# (§) € (i q)
If %V#(w#) >0, —_____BROL(UW S 0(< 0), take agy, := a;’i,’ +€,ay = al) agy, = ait ,a(zz = a?;; - €)
i "
If a‘—id—V#(w#) <0, —6Rafuw S 0(< 0), take ag"k = afk y ) = a;ﬁ —€ (ag'i, = afk +e€,aq = aé’;)

for case c):
# (w# G @ G Q
If %V#(w#) > 0, E)R_agu__l > 0(< 0), take ag, := afk ,ag) = aé’f + ¢ (ag, == a;i +e,aq = aﬁ)
It Ly#(w# OR* (w#) @ ._ # @, # @ ._ # @ #
i wi) <0, 50— > 0(< 0), take aqy, := ajy + €,aq 1= aj; (agy, = al , Q500 + €)
for case d):
# (W @ Q@ Q
If %V#(w#) > 0, BR&(:J N 0(< 0), take ag), = a,ﬁ, —€,ay = af} (ag), = arfk ,ag) = arf; —¢€)

S - ~ .
If —(f—;V# (w#) <0, —OR&(:' S 0(< 0), take ag), := afk NOYRES a(ﬁ — € (agy, = a,z#,‘: —€,ap) = afl)

Therefore, (A.1.39) leads to the inequality
IG¥ ()| < 1G* ()] (A.141)
and this contradicts (4.3.23). Hence, we conclude a#(s) € Kp.

case 3) R#(w#) =0, ¢# (w#) = 0:
From the proof in the case 3 of Claim 1’, we see that the arbitrary sufficiently small variation of

a#k yields (A.1.31). Hence, we conclude that the maximum is not attained in the case 3.

Combining the cases 1),2) and 3), we conclude Claim 2.

Lemma A.1.1 Constder an n-th order stable interval polynomial a(s)
a(s) =ap+ais+ags+---+ans";  ay € |ag,ax (A.1.42)

83



and partition a(jw) as

a(jw) = R(w) + 3 (w) (A.1.43)

where
R(w) = (ap+agw*+ - +agw® +..) = (aow? + agw® + - - - + agppow® 2 4+ .. (A.1.44)
Hw) = (aqw+ asw® + -+ agwtttl 4 .. )= (a;;u.)3 +arw’ + -+ aguwtttS 4. ) -
Then #
dR
Rwh) =0 Cgc: ) 20 (A.1.45)

Proof) Since a(s) is stable, all roots of R(w) = 0 must be distinct each other. This leads to (A.1.45).

O
Lemma A.1.2 If there exists an w¥# € R satisfying
2T (W) b (o
REwH) =0 and -Ly#(wh) = _2(“’ _)f @) g (A.1.46)
dw (Qo + Qrw2)?
then we have ,
—V#w#) <0 (A.1.47)
dw?

Proof) Suppose the order of I#(w) is m. Then, %V#(w) = 0 has 2m + 1 roots. According to the
stability of G#(s), we have the following facts:

1) I#(w) = 0 has m distinct real roots, that is, V#(w) = 0 has m distinct double real roots.

2) I#(w#) # 0 holds, that is, V# (w#) # 0 holds.
Therefore, it is necessary for satisfying 1) and 2) that %V# (w) = 0 has the following 2m — 1 roots:

m  real roots so that V#(w) = 0 holds. (A.1.48)

2

Z

m—1 real roots so that V#(w) # 0 and dd V#(w) <0 (A.1.49)

w2
According to the stability of G#(s), we see that V#(w) = 0 implies R# (w) # 0. Hence, if w# coincides
to one of these 2m — 1 roots, we have the lemma. There are two roots left and let them refer as wy
and wy. If w1, wz € R, then V#(w) = V#(~w), Yw € R implies w1 = wy = 0 or wy = —wsq # 0.

If wi = wy = 0, we easily obtain V#(0) = 0, that is, R*(0) # 0. Furthermore, we see from
‘k(A.1.48) and (A.1.49) and the symmetry V#(w) = V#(—w), Yw € R that the case w; = —wg # 0
cannot happen. The above whole discussions lead to the lemma. F igure A-5 shows an illustrative

image connecting V (w) and R(w). O
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Lemma A.1.3 [Lemma 2 in [Mori 1986]] Consider an n-th order stable interval polynomial a(s)
defined in (A.1.42). Then, if a variation of aq, preserves Hurwitz-stability of a(s), the variation of
a zero w® of R(w®) s monotonic with respect to the variation of asy., where R(w) is the real part of

a(jw) defined by (A.1.44). More precisely,

0 dR 0
o0 | >0 of dR() >0 and k is even or d(: ) <0 and k s odd ( :
w A.1.50
0 0
9az | <o 4 dlz(“’ ) <0 and k is even or d—RE(“’—) >0 and k s odd
w
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