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Abstract

The variational Bayes method is widely applied to many practical problems.

This method not only solves an expensive computational cost of the Bayes

method, but also provides a good generalization performance. The varia-

tional posterior distribution is given by minimizing the variational Bayes

free energy under the condition of the mean field approximation. However

little is known about the theoretical properties on the influence which hyper-

parameters give to the variational Bayes free energy.

The purpose of this thesis is to clarify the relation between the variational

Bayes free energy and the hyperparameters, and to give the guideline for

design of the hyperparameters.

For this purpose, we firstly derive the asymptotic expansion of the vari-

ational Bayes free energy on the Bernoulli mixture. Then we show the ex-

istence of the phase transition phenomenon depending on hyperparameters

of both mixing ratio and the Bernoulli distribution. In addition, we exper-

imentally investigate the optimal setting of hyperparameters from the two

viewpoints of prediction and clustering.

Finally, we discuss the significance which the phase transition phenomenon

gives to the clustering problem and the learning theory.
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Chapter 1

Introduction

In this Chapter, we first explain the background and purpose of our research,

then an outline of this thesis is given.

1.1 Back Ground of Research

Technological advances of hardware and learning algorithm in recent years

enable us to use more complicated statistical models such as multi-layer per-

ceptron, graphical model and mixture model. Furthermore these advantages

create the new flow of data analysis called data mining by tying up to large

amounts of data. Mixture model, which is one of the generative models, has

been extensively studied as the probabilistic model which makes it possible

to analyze the latent structure of data. In particular, a multivariate Bernoulli

mixture model is widely applied to image analysis, text classification, and so

on, as a tool for analyzing binary data. In particular, a multivariate Bernoulli

mixture model is widely applied to image analysis, text classification, and so

on, as a tool for analyzing binary data[Bishop(2006), Juan & Vidal (2001,

2004)].

Among of its training algorithms, the variational Bayes learning is known

as the algorithm which provides both computational tractability and good

generalization performance for mixture models. In spite of wide range of

the applications, its properties have not yet been made clear enough. This

is because the mixture model is a non-regular model. A statistical model is

1



CHAPTER 1. INTRODUCTION

regular if and only if a set of conditions (referred to as“regularity conditions”)
that ensure the asymptotic normality of the maximum likelihood estimator

is satisfied. The regularity conditions are not satisfied for mixture models

because the parameters are not identifiable, in other words, the mapping

from parameters to probability distributions is not one-to-one.

In Bayesian learning, mathematical foundation for analyzing non-regular

models was established using algebraic geometry, and the asymptotic be-

haviors of Bayes marginal likelihood and Bayes generalization error in sin-

gular learning machines were clarified [Watanabe (2001, 2009, 2010)]. In

addition, the Bayesian stochastic complexities or the marginal likelihoods of

several non-regular models have been clarified in recent studies [Yamazaki

& Watanabe (2003a, b)]. In the Bayesian framework, the predictive distri-

bution is derived as an ensemble with respect to the posterior distribution

of parameters and provides better generalization performance in non-regular

models than the maximum likelihood method that tends to overfit the data.

However, it is hard to compute the exact Bayesian posterior in gen-

eral, therefore some approximations were proposed. Well-known approxi-

mate methods include Markov Chain Monte Carlo (MCMC) methods and

the Laplace approximation. The former attempts to find the exact pos-

terior distribution by using sampling methods but typically requires huge

computational resources. The latter approximates the posterior distribu-

tion by a Gaussian distribution, which is insufficient for models containing

hidden variables. The variational Bayesian framework was proposed as an-

other approximation using the mean field approximation for computations in

the models with hidden variables [Attias (1999), Ghahramani & Beal (2000),

Smidl & Quinn (2006), Beal (2003)]. This framework provides computation-

ally tractable posterior distributions over the hidden variables and the pa-

rameters with an iterative algorithm.

Although the properties of the variational Bayes learning, such as approx-

imation accuracy for true distribution, remain unclear, recently the asymp-

totic variational free energy has been studied in case of mixture of the expo-

nential families. It was reported that its upper and lower bounds are given

by the non-smooth function of the hyperparameter of mixing ratio. This

result indicates the existence of phase transition phenomenon [Watanabe &

2



CHAPTER 1. INTRODUCTION

Watanabe(2006a, b), (2007)]. On the other hand, it was also reported that

the variational Bayes generalization error do not have a direct mathemati-

cal relationship with the variational free energy in three-layer linear neural

networks [Nakajima & Watanabe (2007)].

1.2 Purpose of Research

The purpose of this thesis is to clarify the relation between the variational

Bayes free energy and the hyperparameters and to give the guideline for

the design method of the hyperparameters. For this purpose, we introduce

the notion of ”deterministic components” which generate fixed data. Then

we theoretically derive the asymptotic expansion of the variational Bayes

free energy using the deterministic components in Bernoulli mixture. The

phase transition phenomenon of the variational Bayes posterior depending on

the hyperparameters of mixing ratio and Bernoulli distributions is directly

derived from this asymptotic expansion [Kaji et al. (2010)].

In the second half of this thesis, we experimentally investigate the optimal

hyperparameter design method from the following two viewpoints:

• Prediction : inference of the probability of datum x.

• Clustering : analysis of the data structure.

We first show that the behavior of the generalization error is similar to one

of the variational Bayes free energy; hence the optimization of the hyperpa-

rameter by the minimization of the variational Bayes free energy is useful for

the prediction. Next we apply the variational Bayes method to the clustering

problem and show the hyperparameter design method for extraction of the

”minority” and the ”general tendency of the data”. These experimental re-

sults demonstrate that the optimal hyperparameter for the different purposes

are different from each other[Kaji & Watanabe (2009)].

Finally, we discuss the significance of the asymptotic expansion of the

variational Bayes free energy on the learning theory. The asymptotic ex-

pansion gives the estimation for the asymptotic generalization error of the

variational Bayes method in Bernoulli mixture. Furthermore we consider

3



CHAPTER 1. INTRODUCTION

the influence that the phase transition phenomenon gives to the clustering

results.

1.3 Outline of Thesis

This thesis is organized as follows:

• Chapter 2 : We review the framework of statistical learning theory and

the Bayes learning.

• Chapter 3 : We introduce the Bernoulli mixture model and its appli-

cations. The problem of clustering by maximum likelihood estimation

is also discussed.

• Chapter 4 : We outline the variational Bayes learning. The variational

Bayes free energy is defined.

• Chapter 5 : We derive the asymptotic expansion of the variational

Bayes free energy. The phase diagram and the existence of the phase

transition phenomenon are shown.

• Chapter 6 : We present the experimental results on the optimal hyper-

parameter setting using artificial data and practical data.

• Chapter 7 : We discuss the significance of our results from the both

viewpoints of the learning theory and the optimal hyperparameter de-

sign.

• Chapter 8 : We summarize the results and concludes of this thesis.

4



Chapter 2

Baysian Learning Theory

Machine learning system is composed of a model and a learning algorithm.

This thesis examine the variational Bayes learning introduced as an approx-

imation method of Bayesian learning. In this chapter, we review Baysian

learning theory. We start by explaining the framework of learning theory.

Then we give the definition of Baysian learning and some recent results. The

variational Bayes learning will be given in Chapter 4.

2.1 Learning from Data

Let X = {x1, · · · , xN} be the data set. The learning model or the statistical

model is defined by a conditional density function p(x|θ) of x ∈ Rd, where

θ ∈ Θ is a parameter and Θ is the set of all parameters. Then the statistical

learning by the learning model is to estimate the parameter θ from the data

set X, the following three learning algorithms are basic and representative:

• maximum likelihood estimator (MLE)

• maximum a posteriori estimator (MAP estimator)

• Bayes estimator

MLE θmle and MAP estimator θmap are defined as follows:

5



CHAPTER 2. BAYSIAN LEARNING THEORY

MLE

θmle = arg max
θ

{
1

N

N∑
n=1

log p(xn|θ)

}
,

where
∑N

n=1 log p(xn|θ) is called log likelihood of data set X.

The MLE is determined by only the model and the data. In contrast, the

prior distribution φ(θ) on parameter θ is given in the MAP estimation. Then

the MAP estimator is defined as follows:

MAP estimator

θmap = arg max
θ

{
1

N

N∑
n=1

log p(xn|θ) +
1

N
log φ(θ)

}
.

Some optimization methods, such as the steepest descent method, are applied

to calculate the above estimators. We see from 1
N

log φ(θ) → 0 (N → ∞)

that the MAP estimator gets closed to the MLE in N → ∞. However, when

the data size is small, the MAP estimator can avoid overfitting by the term
1
N

log φ(θ) acting as the regularization term. Both algorithms determine the

optimal parameter, hence the predictive distributions are given by p(x|θmle)

and p(x|θmap).

On the other hand, in the framework of Bayes estimation, the posterior distri-

bution p(θ|X) is given by the data set X. Then the predictive distribution

is calculated by taking average on the parameter θ. We will describe the

definition of the Bayes estimator and its properties in the next section.

2.2 Bayesian Learning

Let p(x|θ) be a learning model which has parameter θ and φ(θ) is a prior

distribution of θ. In Bayesian learning, the following posterior distribution

p(θ|X) is computed from the given data set X = {x1, · · · ,xN},

p(θ|X) =
1

Z
φ(θ)

N∏
n=1

p(xn|θ),

6



CHAPTER 2. BAYSIAN LEARNING THEORY

where Z = Z(X) is the normalization constant that is also known as the

marginal likelihood or the Bayesian evidence of the data set X. The Bayesian

predictive distribution p(x|X) is given by averaging the model over the pos-

terior distribution as follows:

p(x|X) =

∫
p(x|θ)p(θ|X)dθ.

And in general the generalization error can be measured by the Kullback

Leibler divergence

KL(p∗(x)∥p(x|X)) =

∫
p∗(x) log

p∗(x)

p(x|X)
dx,

where p∗(x) is the true distribution. The free energy, the minus log likelihood

or the Bayesian stochastic complexity F (X) is defined by

F (X) = − log Z(X),

which is important in data modeling problems, because it is equal to the like-

lihood of a statistical model. Therefore it is used as a criterion by which the

learning model is selected and the hyperparameters in the prior are optimized

[Akaike (1980)]. The Bayesian posterior can be rewritten as

p(θ|X) =
1

Z0(X)
exp(−NH(θ))φ(θ),

where H(θ) is the empirical Kullback Leibler divergence,

H(θ) =
1

N

N∑
n=1

log
p∗(xn)

p(xn|θ)
,

and Z0(X) is the normalization constant. By using the empirical entropy

S(X) = − 1

N

N∑
n=1

log p∗(xn),

the normalized free energy F0(X) is defined by

F0(X) = − log Z0(X) = F (X) − NS(X). (2.1)

7



CHAPTER 2. BAYSIAN LEARNING THEORY

It is noted that the empirical entropy S(X) does not depend on the model

p(x|θ) and the prior distribution φ(θ). Therefore minimization of F (X) is

equivalent to that of F0(X). Let EX [·] denote the expectation over all data

sets. Then it follows from Eq.(2.1) that

EX [F (X) − F0(X)] = NS,

where S = −
∫

p∗(x) log p∗(x)dx is the entropy. There is the following rela-

tionship between the average free energy and the average generalization error

[Levin et al. (1990)],

EX [KL(p∗(x)||p(x|X))] = EX+1 [F (X+1)] − EX [F (X)] − S

= EX+1 [F0(X
+1)] − EX [F0(X)], (2.2)

where X+1 = {x1, · · · ,xN ,xN+1}. Recently, in Bayesian learning, an ad-

vanced mathematical method for analyzing non-regular models was estab-

lished [Watanabe (2001)], which enables us to clarify the asymptotic behavior

of the free energy of non-regular models. More specifically, by using concepts

in algebraic analysis, it was proved that the average normalized Bayesian

stochastic complexity defined by EX [F0(X)] has the following asymptotic

form

EX [F0(X)] = λ log N − (m − 1) log log N + O(1), (2.3)

where λ and m are the rational number and the natural number respectively

which are determined by the singularities of the true parameter. In regu-

lar statistical models, 2λ is equal to the number of parameters and m = 1,

whereas in non-regular models such as Gaussian mixture models, 2λ is not

larger than the number of parameters and m ≥ 1. This means non-regular

models have an advantage in Bayesian learning. From Eq.(2.2), if the asymp-

totic form of the average normalized Bayesian stochastic complexity is given

by Eq.(2.3), the average generalization error is given by

EX [KL(p∗(x)∥p(x|X))] ≃ λ

N
+ o

(
1

N

)
.

Since the coefficient λ is proportional to the average generalization error,

Bayesian learning is more suitable for non-regular models than the maxi-

8



CHAPTER 2. BAYSIAN LEARNING THEORY

mum likelihood method. However the free energy and the predictive distri-

bution can not be given analytically in general and it is also typically hard

to compute them by integrating over the posterior distribution.

9



Chapter 3

Bernoulli Mixture Model

Bernoulli mixture model is widely applied in image processing and text min-

ing as a clustering tool of binary data. In this chapter, we first give the def-

inition of the mixture model and the Bernoulli mixture, then we discuss the

problem of the clustering using the Bernoulli mixture by the MLE method.

3.1 Mixture Model

The mixture model, which is a linear combination of the probabilistic distri-

butions, is given by following equation:

p(x|π,θ) =
K∑

k=1

πkp(x|θk),

where p(x|θk) is a probabilistic distribution parameterized by θk and πk is

a mixing ratio satisfying
∑K

k=1 πk = 1 for πk ≥ 0 (∀k). Hereafter, we call

p(x|θk) k-th component. This linear combination of the probabilistic distri-

bution makes it possible not only to express more complicated probabilistic

distribution but to give the information of component by which the data are

generated. That is, when p(k) and p(k|x) are given by

πk = p(k), p(x|k) = p(x|θk),

11



CHAPTER 3. BERNOULLI MIXTURE MODEL

we can obtain the conditional distribution of k given x by the following

equation:

p(k|x) =
p(k)p(x|k)∑

l p(l)p(x|l)

=
πkp(x|θk)∑

l πlp(x|θl)
.

This notion leads to the expression of the mixture model using the hidden

variables. Let z = (z1, z2, · · · , zK) be the K-dimensional competitive prob-

abilistic variables over CK = {(1, 0, · · · , 0︸ ︷︷ ︸
K

), (0, 1, 0, · · · , 0), · · · , (0, · · · , 0, 1)}

and the probability of zk = 1 is given by

p(zk = 1) = πk,

then p(z) can be expressed by

p(z) =
K∏

k=1

πzk
k .

Similarly, the conditional probability distribution p(x|z) is given by

p(x|z) =
K∏

k=1

p(x|θk)
zk .

Therefore we obtain the expression of the mixture model using the latent

variable as follows:

p(x) =
∑
z

p(x,z) =
∑
z

p(z)p(x|z),

where
∑

z means
∑

z∈CK . As a result, we have a discussion using the joint

probability p(x,z). This makes it possible to derive the EM(expectation-

maximization) algorithm (See Appendix A.1 ) and the variational Bayes al-

gorithm. In Chapter 4, we will derive the Variational Bayes algorithm.

12



CHAPTER 3. BERNOULLI MIXTURE MODEL

Figure 3.1: Graphical expression of mixture model

3.2 Bernoulli Mixture

In this section, we introduce a Bernoulli mixture and its prior distribution.

Let x = (x1, · · · , xM)T be an M dimensional binary datum, xi = 0, 1, and

µ = (µ1, · · · , µM)T be a parameter which satisfies 0 ≤ µi ≤ 1. The (multi-

variate) Bernoulli distribution is defined by

B(x|µ) =
M∏
i=1

µxi
i (1 − µi)

1−xi ,

which shows the probability of xi = 0, 1 is given by µi, 1 − µi respectively.

The Bernoulli mixture is defined by

p(x|π, µ) =
K∑

k=1

πkB(x|µk), (3.1)

where π = (π1, π2, ..., πK),µk = (µk1, µk2, ..., µkM) denote the mixing ratio of

{B(x|µk)} and the parameter of the k-th Bernoulli distribution respectively

and K is the number of components. Hence, using the hidden variables

z = (z1, z2, ..., zK), the simultaneous distribution of (x, z) is

p(x,z|π, µ) =
K∏

k=1

(
πkB(x|µk)

)zk

which satisfies
∑

z p(x,z|π, µ) = p(x|π, µ). In variational Bayes learning,

the conjugate prior distributions1 are employed for the prior distributions.

1See Appendix A.2

13



CHAPTER 3. BERNOULLI MIXTURE MODEL

In case of the Bernoulli mixture, the conjugate prior distributions are given

by the Dirichlet and Beta distributions. They are defined by

Dir(π|a)=
Γ

(∑K
k=1 ak

)
∏K

k=1 Γ(ak)

K∏
k=1

πak−1
k ,

Beta(µ|b)=

(
Γ(b1 + b2)

Γ(b1)Γ(b2)
µb1−1(1 − µ)b2−1

)
,

where a = (a1, a2, ..., aK) and b = (b1, b2) are sets of constants. In this paper,

we study the case when the prior distributions of π and µ are prepared

respectively by

p(π) = Dir(π|a, a, ..., a), p(µ) =
K∏

k=1

M∏
m=1

Beta(µkm|b, b), (3.2)

where a > 0 and b > 0 are hyperparameters. Let N be the number of data

and X = {x1, · · · , xN} be the data set. The set of all corresponding hidden

variables is denoted by Z = {z1, · · · , zN}. Then the distribution of X and

Z for given parameters π and µ is given by

p(X,Z|π,µ) =
N∏

n=1

K∏
k=1

(
πk

M∏
m=1

µxnm
km (1 − µkm)1−xnm

)znk

.

3.3 Clustering using Bernoulli Mixture

The Bernoulli mixture model is widely used in many applications as a clus-

tering tool of binary data. For example, the binary image analysis is one

of the important application field of the Bernoulli mixture [Juan & Vi-

dal(2001),(2004)] Here we consider the mechanism of the clustering using

the Bernoulli mixture by the MLE. The learning result is influenced by the

property of non-regular model as described below. Suppose that N (> 0)

is multiples of 10 and the samples x = (x1, x2, x3) = (1, 1, 0) and (0, 1, 1)

are given with size 0.5N respectively. When the learner p(xn|θ) has two

14



CHAPTER 3. BERNOULLI MIXTURE MODEL

components, then the likelihood function

Lmle(θ) =
N∑

n=1

log p(xn|θ)

takes maximum value if and only if

(π1, π2) = (0.5, 0.5), (µ11, µ12, µ13) = (1, 1, 0), (µ21, µ22, µ23) = (0, 1, 1)

or

(π1, π2) = (0.5, 0.5), (µ11, µ12, µ13) = (0, 1, 1), (µ21, µ22, µ23) = (1, 1, 0).

In this case, above two mixture models give same clustering results.

On the other hand, let us suppose that the samples (1, 1, 0), (0, 1, 1) and

(0, 1, 0) are given with size 0.4N, 0.4N, 0.2N respectively and the learner has

three components. Then, for example, the following parameters give the

maximum value of the likelihood function Lmle(θ) (See Figure.3.2),

π = (0.4, 0.4, 0.2), µ = (1, 1, 0, 0, 1, 1, 0, 1, 0), (3.3)

where π = (π1, π2, π3) and µ = (µ11, µ12, µ13, µ21, µ22, µ23, µ31, µ32, µ33).

Figure 3.2: Clustering result 1

In contrast, the following parameters also give the maximum value of the

likelihood function Lmle(θ) (See Figure.3.3),

π = (0.6, 0.4, 0.0),µ = (2/3, 1, 0, 0, 1, 1, 0, 0, 0). (3.4)

15



CHAPTER 3. BERNOULLI MIXTURE MODEL

Figure 3.3: Clustering result 2

More generally,

π = (0.5(1 − t), 0.5(1 − t), t), µ =

(
0.4

0.5(1 − t)
, 1, 0, 0, 1,

0.4

0.5(1 − t)
, 0, 1, 0

)
(0 ≤ t ≤ 1) also give the maximum value. It follows from these results that

the MLE does not have any mechanism to determine the model uniquely in

the above case. However the results of (3.3) and (3.4) give different inter-

pretations of the data in the context of clustering analysis. That is, (3.3)

extracts following features:

• Data are separated into 3 types.

• The first component and the second component take place with same

probability.

On the other hand, (3.4) gives the following features:

• Data are separated into 2 types.

• The first component takes place easier than the second component.

Next we see the case of MAP estimator. The likelihood function of MAP

estimator is given by

Lmap(θ) =
N∑

n=1

log p(xn|θ) + log φ(θ) = Lmle(θ) + log φ(θ),
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where φ(θ) is the prior distribution. When both θ1 and θ2 give the maximum

value of Lmle, then the inequality relation of Lmap depends on the value of

log φ(θ). As a result, the prior distribution determines the structure of the

mixture model in this case.

How does the variational Bayes learning determine the clustering struc-

ture of mixture model? We discuss this problem in Chapter 5.

17



Chapter 4

Variational Bayes Learning

This chapter starts with an outline of the variational Bayes learning theory,

then we give the concrete algorithm of the variational Bayes learning in the

Bernoulli mixture. We also describe the model selection using the variational

Bayes free energy in Section 4.2.

4.1 Variational Bayes Algorithm

In this section, we explain the well-known variational Bayes learning as the

approximation of the Bayes Learning. Let θ = (π, µ) be the set of param-

eters. For an arbitrary probability distribution q(Z,θ), the functional is

defined by

F̄ [q(Z, θ)] =
∑
Z

∫
q(Z,θ) log

q(Z, θ)

p(X,Z,θ)
dθ, (4.1)

where p(X,Z,θ) = p(X, Z|θ)p(θ) and p(θ) is given by

p(θ) = p(π)p(µ)

using p(π) and p(µ) defined in (3.2). It follows that

F̄ [q(Z,θ)] = F (X) + KL(q(Z,θ)∥p(Z,θ|X)).

Since F (X) does not depend on q(Z,θ), the minimization of F̄ [q(Z,θ)] is

equivalent to that of KL(q(Z, θ)∥p(Z, θ|X)). In variational Bayes approxi-

mation, the method of the mean field approximation is applied to solving this
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minimization problem. Namely, the trial distribution q(Z, θ) is optimized by

the minimization of F̄ [q(Z, θ)] under the condition that

q(Z,θ) = q1(Z)q2(θ). (4.2)

By using variational method, it is derived that the optimal distributions

satisfy

log q1(Z) = Eq2 [log p(X,Z, θ)] + C1,

log q2(θ) = Eq1 [log p(X, Z,θ)] + C2,

where C1, C2 are the normalization constants. Also, for the Bernoulli mixture

model, it is shown that the optimal distribution q2(θ) can be parameterized

by α = {αk} and {ηkm, η′
km},

q2(θ) = Dir(π|α)
K∏

k=1

M∏
m=1

Beta(µkm|ηkm, η′
km),

and that α and {ηkm, η′
km} are optimized by the following recursive proce-

dures,

VB e-step

log ρnk = ψ(αk) − ψ

(
K∑
k

αk

)

+
M∑

m=1

(xnmψ(ηkm) − xnmψ(η′
km) + ψ(η′

km) − ψ(ηkm + η′
km)) ,

(4.3)

rnk =
ρnk∑K
k=1 ρnk

. (4.4)

VB m-step

Nk =
N∑

n=1

rnk, νkm =
N∑

n=1

rnkxnm, ν ′
km =

N∑
n=1

rnk(1 − xnm), (4.5)

αk = α + Nk, ηkm = b + νkm, η′
km = b + ν ′

km. (4.6)
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Here ψ denotes the digamma distribution ψ(t) ≡ Γ′(t)/Γ(t). According to

the information geometry, the mean field approximation can be regarded as

the e-projection to the e-flat submanifold [Amari et al. (2001)]. However the

interpretation of the variational Bayes method for mixture models using the

information geometry has not yet been completely clarified and it is expected

to explain the relation between the learning result and the hyperparameters

from the geometrical perspective. At last, the minimized functional

F̄ (X) ≡ min
q1,q2

F̄ [q(Z,θ)]

is called the variational Bayes free energy. It is a function of hyperparameters

(a, b). The numerical value of the variational Bayes free energy can be ob-

tained by the above recursive calculations, which is applied to the variational

model evaluation. However, its theoretical behavior has been left unknown.

We will describe the outline of the model evaluation by the variational Bayes

free energy in next section.
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4.2 Model Selection by Variational Bayes Free

Energy

In this section, we explain the model selection using the variational Bayes

free energy[Bishop (2006), Wang et al. (2003)]. Let m be the parameter

which means the probabilistic model. The number of components and the

hyperparameters are examples of m. When p(m) is a prior distribution of

m, then we can obtain the variational Bayes free energy by same discussion

in Section 4.1 as follows:

F̄ [q(Z,θ,m)] =
∑
m

∑
Z

∫
q(Z, θ, m) log

q(Z, θ,m)

p(X,Z,θ, m)
dθ

=
∑
m

q(m)

{∑
Z

∫
q(Z|m)q(θ|m) log

q(Z|m)

p(X, Z|m)
dθ

+
∑
Z

∫
q(Z|m)q(θ|m) log

q(θ|m)

p(θ|m)
dθ

+
∑
Z

∫
q(Z|m)q(θ|m) log

q(m)

p(m)
dθ

}

=
∑
m

q(m)

{∑
Z

∫
q(Z|m)q(θ|m) log

q(Z|m)

p(X, Z|m)
dθ

+

∫
q(θ|m) log

q(θ|m)

p(θ|m)
dθ + log

q(m)

p(m)

}
, (4.7)

where p(X,Z, θ,m) = p(X, Z|θ,m)p(θ)p(m). When the variational poste-

rior distributions are denoted by qvb(Z|m), qvb(θ|m), we obtain q̃(m), which

is the optimal distribution of q(m), by substituting qvb(Z|m) and qvb(θ|m)

in (4.7) and maximizing F̄ [q(Z,θ,m)] under the condition
∑

m q(m) = 1.
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That is, q̃(m) is given by

q̃(m) = − 1

C
p(m)

∑
Z

∫
qvb(Z|m)qvb(θ|m) log

qvb(Z|m)

p(X,Z|m)
dθ

+

∫
qvb(θ|m) log

qvb(θ|m)

p(θ|m)
dθ

}
, (4.8)

where C is the normalization constant. Therefore the optimal model is ob-

tained by m maximizing q̃(m). If we give the uniform distribution as the

prior distribution p(m), the maximization of Eq.(4.8) is equivalent to the

minimization of Eq.(4.1).
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Chapter 5

Phase Transition in Variational
Bayes Learning

In this chapter, we give the asymptotic expansion of the variational Bayes

free energy for the Bernoulli mixture in Theorem 5.1.1. This theorem derives

the phase diagram and the existence of the phase transition phenomenon

(Theorem 5.1.2). We also confirm the phase transition phenomenon by the

experiments using the artificial data.

5.1 Asymptotic Expansion of Variational Bayes

Free Energy

In this section, we show the theoretical behavior of the variational Bayes free

energy F̄ (X) of the Bernoulli mixture.

In practical applications, the true distribution is unknown, hence the appro-

priate number of components is also unknown. If the true distribution can

not be realized by the statistical model, then F̄ (X) is very large. Therefore,

in order to make a theoretical foundation for statistical model evaluation, we

have to study the case when the true distribution is realizable by a statisti-

cal model. However, the Bernoulli mixture is a nonidentifiable and singular

statistical model, resulting that its variational Bayes free energy has not

been clarified. To describe the main theorem, we need the assumption and

condition.
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Assumption (A). Let 0 ≤ K∗
1 ≤ K∗

0 ≤ K. The true distribution from

which training samples are taken is the model p(x|θ∗) represented by the

minimum number K∗
0 of components and the parameter is given by θ∗ =

{π∗,µ∗
1, · · · ,µ∗

K∗
0
}

p(x|θ∗) =

K∗
0∑

k=1

π∗
kB(x|µ∗

k), (5.1)

where

0 < µ∗
km < 1 (1 ≤ k ≤ K∗

1),

µ∗
km = 0 or 1 (K∗

1 + 1 ≤ k ≤ K∗
0).

In the following discussion, we will use the notation ∆K∗ = K∗
0 −K∗

1 . Since

the Bernoulli mixture is nonidentifiable, the mapping from the parameter

to the probability distribution is not one-to-one. We assume the following

condition that the estimated distribution converges to the true distribution

when N tends to infinity.

Consistency Condition (C). Let Θ0 be the set of true parameters

Θ0 = {θ ; p(x|θ) = p(x|θ∗)}.

The empirical probabilities are defined by using Eq.(4.5)

Pk ≡ Nk

N
, pkm ≡ νkm

N
, p′km ≡ ν ′

km

N
.

Then the distance between θ̂ ≡ {Pk, pkm, p′km} and Θ0 converges to zero in

probability.

In this paper, we adopt the assumption (A) and the condition (C), and prove

the following theorems.

Theorem 5.1.1 Assume (A) and (C). Let K0 be the number of components

which satisfy Pk > 0 and K1 the number of components which satisfy 0 <
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pkm, p′km < 1. Then

F̄ (X) − NS(X)

=

((
M + 1

2
− a

)
K1 +

(
1

2
− a + Mb

)
∆K + Ka− 1

2

)
log N+Op(1),

where ∆K = K0 − K1 and S(X) = − 1
N

∑N
n=1 log p(xn|θ∗).

In this theorem, K0 and K1 are random variables which are determined by the

minimization of the variational Bayes free energy. The components of K1 and

∆K are referred to as “nondeterministic (stochastic)” and “deterministic”,

respectively. We will give the proof of the above Theorem 5.1.1 in Section

5.2. The following theorem claims that they are essentially determined by

the hyperparameters.

Theorem 5.1.2 Assume (A) and (C). The random variables K0 and K1 are

determined as follows:

1. If M+1
2

− a > 0, 1
2
− a + Mb > 0. Then K1 = K∗

1 , ∆K = ∆K∗.

2. If M+1
2

− a > 0, 1
2
− a + Mb < 0. Then K1 = K∗

1 , ∆K = K − K∗
1 .

3. If M+1
2

− a < 0, 1
2
− a + Mb > 0. Then K1 = K − ∆K∗, ∆K = ∆K∗.

4. If M+1
2

− a < 0, 1
2
− a + Mb < 0. Then,

(a) If b > 1
2
. Then K1 = K − ∆K∗, ∆K = ∆K∗.

(b) If b < 1
2
. Then K1 = K∗

1 , ∆K = K − K∗
1 .

Proof. Based on Theorem 5.1.1, two random variables K0 and K1 are de-

termined by the minimization of the variational Bayes free energy and vary

depending on the hyperparameter (a, b).

Case 1 Both K1 and ∆K become small, therefore K1 = K∗
1 and ∆K =

∆K∗.

Case 2 K1 becomes small and ∆K becomes large, therefore K1 = K∗
1 and

∆K = K − K∗
1 .
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Case 3 K1 becomes large and ∆K becomes small, therefore K1 = K−∆K∗

and ∆K = ∆K∗.

Case 4 The behavior of K1 and ∆K depends on their coefficients.

Case (a) M+1
2

− a < 1
2
− a + Mb ⇔ b > 1

2
: K1 becomes large and

∆K becomes small, therefore K1 = K − ∆K∗ and ∆K = ∆K∗.

Case (b) M+1
2

− a > 1
2
− a + Mb ⇔ b < 1

2
: K1 becomes small and

∆K becomes large, therefore K1 = K∗
1 and ∆K = K − K∗

1 .

This completes the proof of Theorem 5.1.2. (Q.E.D.)

As a result, we obtain the following phase transition diagram about the

Bayes predictive distribution or the plug-in distribution of the mean param-

eter shown in Figure.5.1.

Figure 5.1: Phase transition diagram
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When we apply the Bayes method or the variational Bayes method, we al-

ways confront the problem how to decide the prior distribution. Figure 5.1,

which clarifies the asymptotic behavior of the variational Bayes method, is

thought to give the direction of the hyperparameter design. We will discuss

the meaning of the phase diagram on clustering analysis in Chapter 7.

By calculating the variational Bayes free energy using Eq.(5.2) for each

case in Theorem 5.1.2, we obtain the following Corollary 5.1.1.

Corollary 5.1.1 Assume (A) and (C), let f1(a) and f2(a, b) be given by

g1(a) =
(

M+1
2

− a
)

and g2(a, b) =
(

1
2
− a + Mb

)
respectively. Then the vari-

ational Bayes free energy is divided into the following 3 cases for hyperpa-

rameter (a, b).

Case 1 If a < M+1
2

and b > a
M

− 1
2
. Then,

F̄ (X) − NS(X)

=

(
g1(a)K∗

1 + g2(a, b)∆K∗+ Ka − 1

2

)
log N+Op(1).

Case 2 If a > M+1
2

and b > 1
2

. Then,

F̄ (X) − NS(X)

=

(
g1(a)(K − ∆K∗) + g2(a, b)∆K∗

1 + Ka − 1

2

)
log N+Op(1).

Case 3 If [a < M+1
2

and b < a
M

− 1
2
] or [a > M+1

2
and b < 1

2
]. Then,

F̄ (X) − NS(X)

=

(
g1(a)K∗

1 + g2(a, b)(K−∆K∗) + Ka − 1

2

)
log N+Op(1).

Figure.5.2 shows the coefficient of log N term in the variational Bayes free

energy for K∗
1 = 1, ∆K∗ = 1, K = 3 and M = 3.
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Figure 5.2: Variational Bayes free energy

5.2 Proof of Theorem 5.1.1

In this section, we give the proof of Theorem 5.1.1. The proof is divided into

four parts. We first describe the outline of the proof, and then we give some

supplements.

5.2.1 Calculation of Asymptotic Expansion

By using the assumption of the mean field approximation of the posterior

distribution q(Z,π,θ) = q(Z)q(π,θ), the variational Bayes free energy is
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given by

F̄ [q] =

∫
q(Z ′) log

q(Z ′)

p(X,Z ′)
dZ ′

=
∑
Z

∫ ∫
q(Z,π,µ) log

q(Z,π, µ)

p(X, Z,π, µ)
dπdµ

= −E
q(Z ,π,µ)

[log p(X|Z,µ)] − E
q(Z ,π,µ)

[log p(Z|π)]

−E
q(Z ,π,µ)

[log p(π)] − E
q(Z ,π,µ)

[log p(µ)]

+E
q(Z ,π,µ)

[log q(Z)] + E
q(Z ,π,µ)

[log q(π)]

+E
q(Z ,π,µ)

[log q(µ)], (5.2)

where p is the probabilistic model and Z ′ = (Z, π,µ) is the set of all unob-

servable variables introduced in Section 3.2. By rewriting the above equation

using the Bernoulli mixture, we obtain the following equation (we give the

details of the derivation in Section 5.2.2):

F̄ [q] =
5∑

i=1

Fi[q], (5.3)

where we define Fi[q] (i = 1, · · · , 5) by the following equations:

F1[q] = − log
Γ(Ka)

Γ(a)K
,

F2[q] = −
K∑

k=1

M∑
m=1

log
Γ(2b)

Γ(b)2
,

F3[q] = log
Γ(

∑K
k αk)∏K

k Γ(αk)
,

F4[q] =
K∑

k=1

M∑
m=1

log
Γ(ηkm + η′

km)

Γ(ηkm)Γ(η′
km)

,

F5[q] =
N∑

n=1

K∑
k=1

rnk log rnk.

Here a and b are the hyperparameters of mixing ratio and Bernoulli distribu-

tions in Eq.(3.2). By using the asymptotic forms of the log-gamma function
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log Γ(x) =
(
x − 1

2

)
log x − x + 1

2
log 2π + O

(
1
x

)
, we have

F3[q] = F31[q] + F32[q] + Op(1), F4[q] = F41[q] + F42[q] + F43[q] + Op(1),

where

F31[q] =

(
Ka + N − 1

2

)
log(Ka + N)

F32[q] = −
K∑

k=1

(
a + Nk −

1

2

)
log(a + Nk),

F41[q] =
K∑

k=1

M∑
m=1

(
2b + Nk −

1

2

)
log(2b + Nk)

F42[q] = −
K∑

k=1

M∑
m=1

(
b + νkm − 1

2

)
log(b + νkm)

F43[q] = −
K∑

k=1

M∑
m=1

(
b + ν ′

km − 1

2

)
log(b + ν ′

km).

Without losing generality, we can assume pkm ̸= 0 and p′km = 0 (1 ≤ m ≤
M, K1 ≤ k ≤ K0). Then we have the following equation:

F32[q] =
K∑

k=1

(
a + PkN − 1

2

)
log

{
N

( a

N
+ Pk

)}
+ Op(1)

=

K0∑
k=1

(
a + PkN − 1

2

){
log N+log

(
Pk+Op

(
1

N

))}

+
K∑

k=K0+1

(
a − 1

2

)
log(a) + Op(1),

=

K0∑
k=1

{
PkN log N + PkN log Pk +

(
a − 1

2

)
log N

}
+ Op(1).

(5.4)
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Similarly,

F31[q] =

(
Ka + N − 1

2

)
log N+Op(1),

(5.5)

F41[q] =
M∑

m=1

K0∑
k=1

{
PkN log N+PkN log Pk+

(
2b− 1

2

)
log N

}
+Op(1),

(5.6)

F42[q] =
M∑

m=1

K0∑
k=1

{
pkmN log N+pkmN log pkm+

(
b− 1

2

)
log N

}
+Op(1),

(5.7)

F43[q] =
M∑

m=1

K1∑
k=1

{
p′kmN log N+p′kmN log p′km+

(
b− 1

2

)
log N

}
+Op(1).

(5.8)

Note that the range of sum of F42[q] differs from that of F43[q] due to p′km =

0 (1 ≤ m ≤ M, K1 ≤ k ≤ K0). Since F1[q] and F2[q] are constant for N ,we

have the following equation by summing up Eq.(5.4)-Eq.(5.7):

F̄ [q] −
N∑

n=1

K∑
k=1

rnk log rnk

=
M∑

m=1

(
K0∑
k=1

(Pk log Pk − pkm log pkm) −
K1∑
k=1

(p′km log p′km)

)
N

−
K0∑
k=1

PkN log Pk +

(
Ka − 1

2

)
log N +

(
K0

2
− K0a

)
log N

+

(
(K0 − K1)Mb +

MK1

2

)
log N + Op(1), (5.9)

From Eq.(4.4) and
∑K

k=1 rnk = 1, we have

N∑
n=1

K∑
k=1

rnk log rnk =
N∑

n=1

K∑
k=1

rnk log ρnk −
N∑

n=1

log
K∑

k=1

ρnk. (5.10)

33



CHAPTER 5. PHASE TRANSITION IN VARIATIONAL BAYES
LEARNING

Using Eq.(4.3) and ψ(x) = log x + o (1),

N∑
n=1

K∑
k=1

rnk

{
ψ(αk)−ψ

(
K∑
k

αk

)}
=

K∑
k=1

Nk {ψ(a + Nk) − ψ (Ka + N)}

=

K0∑
k=1

Nk(log N + log Pk) −
K0∑
k=1

Nk log N + op(1)

=

K0∑
k=1

PkN log Pk + op(1),

N∑
n=1

K∑
k=1

rnk

{
M∑

m=1

(xnmψ(ηkm) − xnmψ(η′
km) + ψ(η′

km) − ψ(ηkm + η′
km))

}

=
K∑

k=1

M∑
m=1

{νmk log(ηkm) + ν ′
mk log(η′

km) − Nk log(ηkm + η′
km)} + op(1)

=
M∑

m=1

K0∑
k=1

{−Nk(log N + log Pk) + νmk(log N + log pkm)}

+

K1∑
k=1

M∑
m=1

{ν ′
mk(log N + log p′km)} + op(1)

=
M∑

m=1

K0∑
k=1

(−Nk log Pk + νmk log pkm) +
M∑

m=1

K1∑
k=1

ν ′
nm log p′km + op(1).

Hence, from Eq.(5.9), we have

F̄ [q] +
N∑

n=1

log
K∑

k=1

ρnk =

(
Ka − 1

2

)
log N +

(
K0

2
− K0a

)
log N

+

(
(K0 − K1)Mb +

MK1

2

)
log N + Op(1).

(5.11)

Finally, we apply the following lemmas to
∑N

n=1 log
∑K

k=1 ρnk. We give the

proof of these Lemmas in Section 5.2.3 and 5.2.4. Let the mean parameter

be given by θvb = {πvb, µvb} = {Eq(π)[π], Eq(µ)[µ]} (q(π), q(µ) are the

variational posterior distributions), then we have the following lemmas.
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Lemma 5.2.1 When θvb is the mean parameter of the posterior distribution,

then we have
N∑

n=1

log
K∑

k=1

ρnk =
N∑

n=1

log p(xn|θvb) + op(1). (5.12)

Lemma 5.2.2 When θvb is the mean parameter of the posterior distribution,

then we have

−
N∑

n=1

log p(xn|θvb) = NS(X) + Op(1). (5.13)

Consequently, we obtain the following equation:

F̄ (q) − NS(X) =

(
Ka − 1

2

)
log N +

(
K0

2
− K0a

)
log N (5.14)

+

(
(K0 − K1)Mb +

MK1

2

)
log N + Op(1)

=

{(
M + 1

2
− a

)
K1 +

(
1

2
− a + Mb

)
∆K + Ka − 1

2

}
log N + Op(1).

(Q.E.D.)

5.2.2 Derivation of Eq.(5.3)

Using

Eq(π)[log πk] = ψ(αk) − ψ

(
K∑
k

αk

)
,

Eq(µ) [log µkm] = ψ(ηkm) − ψ(ηkm + η′
km)

and

Eq(µ) [(1 − log µkm)] = ψ(η′
km) − ψ(ηkm + η′

km),

each term of Eq.(5.2) is given by

−E
q(Z ,π,µ)

[log p(X|Z,µ)] = −
N∑

n=1

K∑
k=1

M∑
m=1

[xnmrnk{ψ(ηkm)−ψ(ηkm+η′
km)}

+ (1 − xnm)rnk {ψ(η′
km)−ψ(ηkm + η′

km)}] ,
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−E
q(Z ,π,θ)

[log p(Z|π)] = −
N∑

n=1

K∑
k=1

rnk

(
ψ(αk) − ψ

(
K∑
k

αk

))
,

−E
q(Z ,π,θ)

[log p(π)] = − log
Γ(Ka)

Γ(a)K
− (a − 1)

K∑
k=1

(
ψ(αk) − ψ

(
K∑
k

αk

))
,

−E
q(Z ,π,θ)

[log p(θ)] = −
M∑

k=1

M∑
m=1

log
Γ(2b)

Γ(b)2

− ((b − 1)(ψ(ηkm) − ψ(ηkm + η′
km)) + (b − 1)(ψ(η′

km) − ψ(ηkm + η′
km))) ,

E
q(Z ,π,θ)

[log q(Z)] =
N∑

n=1

K∑
k=1

rnk log rnk,

E
q(Z ,π,θ)

[log q(π)] = log
Γ(

∑K
k αk)∏K

k=1 Γ(αk)
+

K∑
k

(αk − 1)

(
ψ(αk) − ψ

(
K∑
k

αk

))
,

E
q(Z ,π,θ)

[log q(θ)] =
K∑

k=1

M∑
m=1

log
Γ(ηkm + η′

km)

Γ(ηkm)Γ(η′
km)

+ ((ηkm − 1) (ψ(ηkm) − ψ(ηkm + η′
km)) + (η′

km − 1) (ψ(η′
km) − ψ(ηkm + η′

km))) .

By summing up above equations, we obtain Eq.(5.3).

5.2.3 Proof of Lemma 5.2.1

Lemma 5.2.1 When θvb is the mean parameter of the posterior distribution,

then we have

N∑
n=1

log
K∑

k=1

ρnk =
N∑

n=1

log p(xn|θvb) + op(1).
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Proof. Using Eq.(4.3) and ψ(x) < log x − 1
2x

,

N∑
n=1

log
K∑

k=1

ρnk

<
N∑

n=1

log
K∑

k=1

[
αk∑K
k=1 αk

M∏
m=1

(
ηkm

ηkm + η′
km

)xnm M∏
m=1

(
η′

km

ηkm + η′
km

)1−xnm

· exp
1

2

(
− 1

αk

+
1∑K

k=1 αk

−
M∑

m=1

(
xnm

ηkm

+
1 − xnm

η′
km

− 1

ηkm + η′
km

))]

=
N∑

n=1

log
K∑

k=1

[
a + PkN

Ka + N

M∏
m=1

(
b + pkmN

2b + PkN

)xnm M∏
m=1

(
b + p′kmN

2b + PkN

)1−xnm

· exp
1

2

(
−1

a + PkN
+

1

Ka + N
−

M∑
m=1

(
xnm

b+pkmN
+

1−xnm

b+p′kmN
− 1

2b+PkN

))]
.

From the supposition Pk ̸= 0 (k = 1, · · · , K0) and Pk = 0 (k = K0 +

1, · · · , K), we have

a + PkN

Ka + N

M∏
m=1

(
b + pkmN

2b + PkN

)xnm M∏
m=1

(
b + p′kmN

2b + PkN

)1−xnm

=

{
p(xn|zk,θvb), (k ≤ K0)

a
Ka+N

(
1
2

)M
, (K0 < k ≤ K),

where zk = (0, · · · ,
k

1, · · · , 0). Hence,

N∑
n=1

log
K∑

k=1

ρnk <

N∑
n=1

log

{
K0∑
k=1

p(xn|zk,θvb) exp
1

2

(
1

Ka + N
+

M

2b + PkN

)

+
K∑

k=K0+1

a

Ka + N

(
1

2

)M

exp
1

2

(
1

Ka + N
+

M

2b

)}
.

(5.15)
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Here we put A =
∑K0

k=1 p(xn|zk,θvb) exp 1
2

(
1

Ka+N
+ M

2b+PkN

)
, then,

log
K∑

k=1

ρnk ≤ log A + log

{
1 +

1

A

a(K − K0)

Ka + N

(
1

2

)M

exp
M

4b

}
+

1

2(Ka + N)
.

Since log(1 + x) = x + o
(

1
x2

)
, we have log

{
1 + 1

A
a(K−K0)
Ka+N

(
1
2

)M
exp M

4b

}
=

o
(

1
N

)
. Consequently, we have

log
K∑

k=1

ρnk < log

K0∑
k=1

p(xn|zk, θvb) +
1

2

(
1

Ka + N
+

M

2b + PkN

)
+ op

(
1

N

)
= log p(xn|θvb) + op

(
1

N

)
. (5.16)

On the other hand, we can obtain the following equation by using ψ(x) >

log x − 1
x
,

N∑
n=1

log
K∑

k=1

ρnk

>
N∑

n=1

log

[
K0∑
k=1

p(xn|k,θvb) exp

{
−1

a + PkN
−

M∑
m=1

(
xnm

b+pkmN
+

1−xnm

b+p′kmN

)}

+
K∑

k=K0+1

a

Ka + N

(
1

2

)M

exp

(
−1

a
− M

b

)]
.

By applying the same argument of Eq.(5.15) for replacing

A =
∑K0

k=1 p(xn|zk,θvb) exp
{

−1
a+PkN

−
∑M

m=1

(
xnm

b+pkmN
+ 1−xnm

b+p′kmN

)}
, we have

log
K∑

k=1

ρnk > log p(xn|θvb) + op

(
1

N

)
. (5.17)

From Eq.(5.16) and Eq.(5.17), we obtain

N∑
n=1

log
K∑

k=1

ρnk =
N∑

n=1

log p(xn|θvb) + op (1) .

(Q.E.D.)
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5.2.4 Proof of Lemma 5.2.2

Lemma 5.2.2 When θvb is the mean parameter of the posterior distribution,

then we have

−
N∑

n=1

log p(xn|θvb) = NS(X) + Op(1). (5.18)

Proof. We first give the following discrete probability distribution

p̃(x|θ̃) = f(x|θ̃1) ∗ · · · ∗ f(x|θ̃2M ),

where f(x|θ̃k) =

{
θ̃k,

∑M
m=1 xm2m−1 + 1 = k

1, other
. Then the set of Bernoulli

mixtures is included in the above discrete probability distribution models,

hence

−
N∑

n=1

log p(xn|θvb) − NS(X) ≥ −
N∑

n=1

log p(xn|θmle) − NS(X)

≥ −
N∑

n=1

log p̃(xn|θ̃mle) − NS(X),

where θmle and θ̃mle are the maximum likelihood estimators. Using the prop-

erty of the empirical Kullback-Leibler divergence H(θ) = 1
N

∑N
n=1 log p∗(xn)

p(xn|θ)

in non-singlar model,

H(θvb) ≥ H(θ̃mle) ≥
C

N
+ op

(
1

N

)
,

where C is a random value depending on sample data, but not depending on

the number of sample data N . Hence

−
N∑

n=1

log p(xn|θvb) − NS(X) ≥ Op(1). (5.19)

On the other hand, from Section 5.2 and Lemma 5.2.1, we have

F̄ = G(K1, ∆K) −
N∑

n=1

log p(xn|θvb) + Op(1),
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where

G(K1, ∆K) =

{(
M + 1

2
− a

)
K +

(
1

2
− a + Mb

)
∆K + Ka − 1

2

}
log N.

Here K1 and ∆K are variables determined by minimizing the variational

Bayes free energy. In what follows we will use K∗
1 , ∆K∗ and θ∗ as the pa-

rameters of the true distribution introduced in Assumption (A).

(i) Case of K1 ≥ K∗
1 and ∆K ≥ ∆K∗.

The given probabilistic model can compose the true distribution. In addition,

the variational Bayes free energy takes a minimum value at θvb. Therefore

we have the following inequation:

F̄ = G(K1, ∆K) −
N∑

n=1

log p(xn|θvb) + Op(1)

≤ G(K1, ∆K) −
N∑

n=1

log p(xn|θ∗) + Op(1).

Hence,

−
N∑

n=1

log p(xn|θvb) ≤ NS(X) + Op(1), (5.20)

using −
∑N

n=1 log p(xn|θ∗) = NS(X).

(ii) Case that K1 ≥ K∗
1 and ∆K ≥ ∆K∗ are not satisfied.

We have
N∑

n=1

log p(xn|θvb) −
N∑

n=1

log p(xn|θ∗) = Op(N)

from KL(p(xn|θ∗)∥p(xn|θvb)) > 0. Hence F̄ of Case (i) is smaller than that

of this case. As a result, K1 ≥ K∗
1 and ∆K ≥ ∆K∗ are always satisfied.

Eq.(5.18) is derived from Eq.(5.19) and Eq.(5.20).

(Q.E.D.)
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5.3 Experiments

To illustrate the influence of the phase transition phenomenon in actual

data, we experimentally investigated the relation between the composition of

the redundant components and hyperparameters. The true distribution was

given by the left of Figure.5.3, where white means the high probability and

the data dimension M = 4, the number of components K∗ = 2. The number

of components of learner was given by K = 3. The experimental process was

as follows:

1. Execute the learning for 100 times with different initial conditions.

2. Extract the component which has the minimum mixing ratio as the

redundant component.

3. Sort the redundant components in ascending order of F̄ .

The result is shown in the right of Figure.5.3.

Figure 5.3: Relation between redundant component and hyperparameters
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Although the learning results depended on the initial conditions, we can

see the following trends derived from Theorem 5.1.2.

• When a > M+1
2

= 2.5, the redundant components switched from

“deterministic component” to “nondeterministic component” around

b = 0.5.

• When a < M+1
2

= 2.5, the redundant components switched from “de-

terministic component” to “no redundant component” at a point less

than b = 0.5.

5.4 Discussion

In practical case, it is highly probable that the very small clusters are ob-

served as the deterministic components, because the sample size is finite and

the small cluster often has strong similarity among its elements. Actually, we

will give the example of the minority clusters extracted as the deterministic

component using a practical questionnaire in Section 6.2.
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Chapter 6

Optimal Hyperparameter
Design

In this chapter, we experimentally examine the optimal hyperparameter de-

sign method of the variational Bayes learning. The optimality is discussed

from the two viewpoints: generalized learning and knowledge discovery.

6.1 Two Design Method of Hyperparameter

Prediction and clustering are major applications of the mixture model. We

consider the hyperparameter design methods for both applications.

6.1.1 Hyperparameter for Generalized Learning

The variational predictive distribution is defined by

p(x|X) =

∫
p(x|θ)q2(θ)dθ,

where X is the set of training data and q2(θ) is the variational Bayes free

energy defined by Eq.(4.2). The variational Bays generalization error G is

defined by the Kullback-Leibler distance between the true distribution p∗(x)

and the variational predictive distribution,

G = E

[∫
p∗(x) log

p∗(x)

p(x|X)
dx

]
,
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where E[·] denotes the expectation value over all sets of training data X.

It is thought that the variational Bays generalization error measures the

prediction accuracy.

Both the variational Bayes free energy and the variational Bayes gener-

alization error depend on the choice of the hyper parameters (a, b). In the

real world problems, we do not know the true distribution, hence we can not

directly estimate the variational Bayes generalization error. On the other

hand, the variational free energy can be calculated using only the statistical

model for a given hyperparameters. As described in Chapter 4.2, the varia-

tional Bayes free energy is used for determining the hyperparameter and it is

sometimes proposed that the optimal hyperparameter for the minimum free

energy is appropriate for the minimum generalization error. In the experi-

ments, we study the effect of hyperparameter to the variational Bayes free

energy and the variational Bayes generalization error.

6.1.2 Hyperparameter for Knowledge Discovery

A mixture model such as a Bernoulli mixture is used for the unsupervised

clustering problem in application systems. In such cases, knowledge discovery

or data mining is more important than the minimum generalization error.

Sometimes it is recommended that, if one has some knowledge about the

object, then one had better use the such knowledge in the hyperparameter

setting. In contrast, it is often referred that, if one does not have any the prior

information, then a uniform distribution such as a = 1, b = 1 is appropriate.

However, usually we have a purpose for using statistical models, even when

we do not have any prior information.

For example, we have a requirement about the size of the clusters. In fact,

when we classify the data, we sometimes consider not only main clusters but

also small and minority clusters. Because small clusters which make the

generalization error be large may contain an important information about

data.

In a Bernoulli mixture, we propose that a small hyperparameter b is

useful for such minority cluster extraction. If b is set as small, then the

prior distribution generates 0 or 1 with high probability, resulting that the
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predictive distribution becomes adapted to a small cluster that generates a

number of specific terms. In addition, the Theorem 5.1.1 implies that the

combination of parameters a < M+1
2

and small b enables us to extract the

minority cluster without redundant components.

6.2 Experiments

In this section, we show the experimental results on the generalization error

and the clustering properties of the variational Bayes learning.

6.2.1 Variational Bayes Free Energy and Variational
Bayes Generalization Error

The true distribution was designed to have the parameter described in the

left-hand of Figure.6.1. It consists of 3 mixture components and each com-

ponent is a 5 dimensional Bernoulli distribution M = 5. A learning machine

was made of 10 components, K = 10. The stop condition of the recursive

procedure was set as ”maximum variation of all parameters < 10−3”.

We first investigated the behaviors of the variational Bayes free energy

and the variational Bayes generalization error. We used 1, 000 samples in

one trial and calculated the experimental expectation values over 100 trials.

The variational Bayes free energy is shown in Figure.6.1, where (a,b) is the

set of hyperparameters of the mixing ratio and the Bernoulli distribution.

The variational Bayes generalization error appears in Fig.6.2. Peaks in the

variational Bayes free energy appeared around (a, b) = (3, 0.5). This phe-

nomenon is thought to be related to the phase transition. In addition, Fig-

ure.6.2 shows a region of small a and the region around b = 1 was stable with

respect to the variational Bayes generalization error. Therefore, in order to

make the generalization error small, the hyperparameter (a, b) = (small, 1)

is recommended. The behaviors of the variational Bayes free energy was al-

most same as that of the variational Bayes generalization error, hence the

minimum free energy was an appropriate criterion for the optimization of the

hyperparameters.

45



CHAPTER 6. OPTIMAL HYPERPARAMETER DESIGN

Figure 6.1: (left)True distribution and (right)variational Bayes free
energy(a, b : log scale)

Figure 6.2: Variational Bayes generalization error (a, b : log scale)
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6.2.2 Knowledge Discovery

Next we investigated the effect of the hyperparameter to the clustering analy-

sis. We used the true distribution composed of three mixture components, in

which one component, as a minority cluster, has a mixing ratio of 0.01. The

predictive distribution by mean parameters is shown in Figure.6.3. When

both a and b were set large, the learner could not find small clusters. In

contrast to the combination of large a and small b, extracted several clusters.

Therefore, it is thought that the cluster size can be controlled by adjusting

the hyperparameter b. However this result contained the some redundant

components. On the other hand, when small a and b were chosen, the learner

simultaneously reduced the number of clusters and extracted a minority clus-

ter. Consequently, by changing b with small a, we could obtain the desired

cluster size without redundant components.

Figure 6.3: Effect of hyperparameter to clustering analysis
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6.2.3 Application to Category Classification

Finally we applied the proposed design methods to the practical data ob-

tained from the web site ”http://kiwitobes.com/clusters/zebo.txt” [Segaran (2007)].

The data was given as a matrix composed of 83 items and 1750 users, in which

elements are assigned a value of 1 if some users want (or own or love) the

item, and other elements are assigned a value of 0.

The result is illustrated in Table.6.1 and Table.6.2, where the second line

from the top is the mixing ratio of each category and the items are listed in

the decreasing order of the probability for each category.

We could obtain these 13 categories when the both hyperparameters a and b

were set small (Table.6.1). Here the category1 is a very large cluster which

has the mixing ratio about 45%, The members of this category love general

items like house, money, job, business. In contrast, the category11,12,13

were very small clusters, which have the mixing ratio of less than 1%. In this

case, the probability of each category was expressed as either high probability

or low probability, like 0.99997. These results suggest that these categories

contain the minority clusters that have very similar interests.

On the other hand, when (a, b) = (small, large) was set, two large cluster

were extracted as the general tendency (Table.6.2). The members of cate-

gory1 love conceptual items, like, money, love, friends, in contrast, the mem-

ber of category2 loves concrete items, like, laptop, ipod, shoes, and cloths.

Table 6.1: Clustering result for practical data (a = 0.0001, b = 0.0001)

category1 category2 · · · category11 category12 category13

0.45414 0.34500 · · · 0.00171 0.00102 0.00057

house 0.46400 laptop 0.19441 xbox 360 0.99997 plane 0.99994 cell phone 0.99990

money 0.19700 house 0.17127 ps3 0.99997 boat 0.99994 dog 0.99990

job 0.05883 ipod 0.15085 psp 0.99997 big house 0.55429 laptop 0.99990

business 0.05241 money 0.11379 ipod 0.99997 house 0.44571 cat 0.99990

clothes 0.05219 computer 0.08726 · · · mansion 0.33364 mansion 0.00006 big house 0.99990

shoes 0.05175 cell phone 0.07031 sports car 0.00003 sports car 0.00006 horse 0.99990

friends 0.04112 bike 0.04819 bike 0.00003 bike 0.00006 mp3 player 0.99990

big house 0.04047 friends 0.04379 clothes 0.00003 clothes 0.00006 mansion 0.00010
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Table 6.2: Clustering result for practical data (a = 0.0001, b = 1.0)

category1 category2

0.45414 0.34500

house 0.39667 laptop 0.26457

money 0.24632 ipod 0.18966

love 0.07036 house 0.17169

friends 0.06517 shoes 0.14718

job 0.06448 clothes 0.11781

business 0.03925 computer 0.08738

mansion 0.03796 money 0.08401

big house 0.03671 cellphone 0.06589

6.3 Discussion

From the experimental results, we can propose two design methods for hy-

perparameter optimization. The former method is to minimize the general-

ization error and the latter for knowledge discovery. The behaviors of the

variational Bayes free energy was almost same as that of the variational Bayes

generalization error, hence it is thought that the hyperparameters which min-

imize the variational Bayes free energy also minimize the variational Bayes

generalization error. Meanwhile it is possible to control the number of compo-

nents and the cluster size by adjusting the hyperparameters of mixture ratio

and Bernoulli distribution, respectively. We showed that these properties of

hyperparameters enable us to extract the general tendency and minority us-

ing the practical data. Experimental results demonstrated that the optimal

hyperparameters for the different purposes are different from each other.
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Discussion

In this chapter, we discuss the significance of our results from the two view-

points: the learning theory and the optimal design method of the hyperpa-

rameter.

7.1 Discussion from Learning Theory

In statistical physics, the equilibrium state is described by the Boltzmann

distribution

Pβ(S) =
1

Z(β)
e−βH(S),

where H is a Hamiltonian of the state variable S = (S1, · · · , SN), β is inverse

of the temperature T and Z(β) is normalization constant. Then the free

energy is defined by

F (β) = − log Z(β).

The free energy plays important roles in statistical physics because it is used

to estimation of the macroscopic equilibrium state of the physical system 1

and the mean field approximation is applied to its calculation.

In statistical learning, as we mentioned in Section 2, the Hamiltonian

1The free energy for the Hamiltonian H̄(S, h) = H(S) − h · S is called the Helmholtz
free energy. The derivation of the Helmholtz free energy gives the mean value for the
Boltzmann distribution of the Hamiltonian H(S).
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H̄(θ) is given by

H̄(θ) = H(θ) +
1

N
log φ(θ),

where H(θ) is the empirical Kullback Leibler divergence,

H(θ) =
1

N

N∑
n=1

log
p∗(xn)

p(xn|θ)
.

Then the posterior distribution is given as the Boltzmann distribution of

H̄(θ), that is,

p(θ|X) =
1

Z0(X)
exp(−NH̄(θ)).

The free energy for the normalization constant Z0(X) is called the normalized

free energy and satisfies the following equation,

F0(X) = − log Z0(X) = F (X) − NS(X).

This free energy also plays important roles in statistical learning, the follow-

ing asymptotic forms are shown in [Watanabe (2001)],

EX [F0(X)] = λ log N − (m − 1) log log N + O(1),

EX [KL(p∗(x)∥p(x|X))] ≃ λ

N
+ o

(
1

N

)
. (7.1)

On the other hand, the variational Bayes free energy is introduced as

the approximation of the free energy using the mean field approximation.

Therefore it is expected that the analysis of the variational Bayes free energy

gives the information of the asymptotic behavior of the predictive distribution
2 and the generalization error in the variational Bayes learning. We showed

the asymptotic behavior of the posterior distribution in Theorem 5.1.2. Here

let us discuss the generalization error of the variational Bayes learning.

When we have no information about the data, the uniform distributions

given by (a, b) = (1, 1) are often used as the prior distribution. From the

2In statistical physics, the first-order phase transition is defined as the discontinuous of
the first-order differential of the free energy and it can be explained from the degeneracy
of the Fisher matrix by the thermodynamic limit. Whereas in this case the asymptotic
behavior means limit for sample size.
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Theorem 5.1.2, the predictive distribution which corresponds to (a, b) = (1, 1)

belongs to the region of ”no redundant components” and its variational Bays

free energy is given in Case 1 of Corollary 5.1.1,

F̄0(X)

=

((
M + 1

2
− 1

)
K∗

1 +

(
1

2
− 1 + M

)
∆K∗+ K − 1

2

)
log n+Op(1),

where F̄0(X) is the normalized variational Bayes free energy F̄0(X) = F̄ (X)−
NS(X). Hence λV B which is the coefficient of log N term is given by

λV B =

((
M + 1

2
− 1

)
K∗

1 +

(
1

2
− 1 + M

)
∆K∗+ K − 1

2

)
=

MK∗
1

2
+ K − M∆K∗ − K∗

0

2
− 1

2
.

On the other hand, the following upper bound λ̄Bays on the coefficient λ in

Eq.(7.1) is known for the general mixture model [Yamazaki et al.(2003a,b)],

λ̄Bays = (K − K∗
0) +

MK∗
0 + K∗

0 − 1

2
(M ≥ 2). (7.2)

Therefore, using ∆K∗ = K∗
0 − K∗

1 , we can obtain

λ̄Bayes − λV B =
3

2
M∆K∗.

Accordingly, if the true distribution has no deterministic components (namely,

∆K∗ = 0), then λV B corresponds to the above upper bound. In addi-

tion, when the true distribution has deterministic components, we have

λ̄Bayes > λV B. This implies that the variational posterior is not so differ-

ent from the true Bayesian posterior.

Furthermore λ is equal to the number of parameters in regular statistical

models. Hence if the regular statistic model has the same number of pa-

rameters as the Bernoulli mixture model, λregular = KM + K − 1. Then we

have

λregular − λV B =
M

2
(K − K∗

1) +
K∗

0

2
+ M∆K∗ − K

2
≥ 0.

From this result, we can see that the variational Bayes learning is much more

effective than the regular statistic models in high-dimension data.
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CHAPTER 7. DISCUSSION

7.2 Discussion from Optimal Design of Hy-

perparameter

In this section, we would like to discuss the guideline of hyperparameter

design of the variational Bayes learning in the Bernoulli mixture. The exper-

imental results in Section 6.2.1 demonstrated that the minimization of the

variational Bayes free energy is one of the effective methods of the hyper-

parameter design for the predictive distribution. Therefore, here we focus

on the hyperparameter design for the clustering analysis. We obtained the

following properties on the hyperparameters from the experiments of Section

6.2.2:

• The hyperparameter a adjusts the number of components.

• The hyperparameter b adjusts the size of cluster.

However these adjustments are not independent of each other. Therefore the

hyperparameter a gives an effect to the size of cluster and the hyperparam-

eter b also gives an effect to the number of components.

Consider next the implications of the phase diagram for the clustering analy-

sis. In general, it is thought that the clustering result including the redundant

components is not desirable for clustering analysis. On the other hand, the

phase diagram suggests that :

• Redundant components tend to arise when the hyperparameter a is

large.

• Redundant components tend to arise for small hyperparameter b even

if the hyperparameter a is small.

In practical data analysis, the learning results depend strongly on the data.

However, from the above discussion, we can propose the following guidelines

of the hyperparameter design for the clustering analysis using the variational

Bayes learning in the Bernoulli mixture.

54



CHAPTER 7. DISCUSSION

Guideline of hyperparameter design for clustering

1. Adjust the size of the cluster by changing the hyperparameter b based

on the following directions:

• The hyperparameter b should be large to extract the general trend

of data.

• The hyperparameter b should be small to extract the information

of minority.

2. Adjust the number of components by changing the hyperparameter a

based on the following directions:

• In order to avoid the clustering with the redundant components,

the hyperparameter a less than M+1
2

(M : data dimension) is

recommended.

• In order to avoid the clustering with the redundant components,

the hyperparameter a should be set smaller as the hyperparameter

b becomes small.

3. Repeat the above steps as needed.
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Chapter 8

Conclusion

In this thesis, we clarified the asymptotic behavior of the variational Bayes

predictive distribution in the Bernoulli mixture model. In addition, we also

gave the design guide of the prior distribution based on both the theoretical

analysis of the variational Bayes free energy and the experimental results.

The main results of this study are summarized as follows:

• Asymptotic expansion of the variational Bayes free energy in Bernoulli

mixture was derived.

• Existence of the phase transition phenomenon depending on the hyper-

parameter of both the mixing ratio and the Bernoulli distribution was

shown by using the notion of the deterministic components.

• It was experimentally shown that the optimization of the hyperparam-

eter by minimizing the variational Bays free energy is useful in the

hyperparameter design for the prediction.

• Design guide of the hyperparameters for clustering taking into account

the purpose of data analysis was presented based on both the experi-

mental results and the asymptotic theory of the variational Bayes free

energy.
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Appendix

In the appendix, we give supplements on some terminologies appeared in this

thesis.

A.1 EM Algorithm of Bernoulli mixture

The EM(Expectation-Maximization) algorithm is well known as a calculation

method of MLE for data including missing data [Dempster et al. (1977)].

Let X = {x1, · · · , xN} denotes the data set and the probabilistic model with

parameter θ is given by

p(X|θ) =
∑
Z

p(X,Z|θ),

where Z is unobservable data such as the missing data or the hidden vari-

ables. Then we have the following decomposition on log p(X|θ),

log p(X|θ) = L(q, θ) + KL(q(Z)∥p(Z|X,θ)),

where L(q, θ) is given by

L(q, θ) =
∑
Z

q(Z) log

{
p(X, Z|θ)

q(Z)

}
.

EM algorithm gives the parameter θ which maximizes log p(X|θ) by the

following steps:

1. E-step: Maximize L(q, θ) by optimizing q under the fixed θ.

2. M-step: Maximize L(q, θ) by optimizing θ under the fixed q.
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q(Z|X,θold) denotes q(Z) which is optimized under the fixed parameter θold.

Then we have the following expression of L(q, θ).

L(q, θ) =
∑
Z

q(Z) log

{
p(X, Z|θ)

q(Z)

}
=

∑
Z

q(Z|X,θold) log p(X,Z|θ) −
∑
Z

q(Z|X,θold) log q(Z|X, θold)

= Q(θ, θold) + const,

where

Q(θ,θold) =
∑
Z

q(Z|X,θold) log p(X,Z|θ).

Therefore Q(θ, θold) is used for calculation of M-step in general. In practi-

cal use, we need to calculate the above E-step and M-step for the concrete

probabilistic model. For example, EM algorithm for the Bernoulli mixture

Eq.(3.1) is given as follows:

E-step

rnk =
πkp(xn|µk)∑K
k=1 πkp(xn|µk)

,

M-step

Nk =
N∑

n=1

rnk, x̄k =
1

Nk

N∑
n=1

rnkxn,

µk = x̄k, πk =
Nk

N
.
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A.2 Conjugate Prior

We introduced the Dirichlet distribution and the Beta distribution as the

conjugate distributions in Chapter 3. In this section, we explain the gen-

eral form of the conjugate prior [Bishop (2006)]. Let us start by giving the

definition of the exponential family. The exponential family on x is defined

by

p(x|η) = h(x)g(η) exp
[
tηu(x)

]
,

where η is a parameter called a natural parameter and u is an arbitrary func-

tion. This family includes a lot of important distributions such as Gaussian

distribution, Bernoulli distribution, multinomial distribution, and so on.

Example A.2.1 Gaussian distribution

p(x|µ, σ2) =
1

(2πσ2)
1
2

exp

{
− 1

2σ2
(x − µ)2

}

Let η1, η2 be given by

η1 =
µ

σ2
, η2 =

−1

2σ2
,

then p(x|µ, σ2) is rewritten as

p(x|µ, σ2) =
1

(2π)
1
2

· (−2η2)
1
2 exp

(
η2

1

4η2

)
exp

[
(η1, η2)

(
x
x2

)]
.

This means that the Gaussian distribution belongs to the exponential family.

If the posterior distribution is in the same family as the prior distribution,

the prior distribution is called the conjugate prior. This property is useful

to derive the variational Bayes posterior and the predictive distribution. It

is known that the conjugate prior of the exponential family is given by the

following equation:

p(η|χ, ν) = f(χ, ν)g(η)ν exp{ν
(

tηχ
)
},

where χ, ν are parameters and f(χ, ν) is normalization constant.
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A.3 Noninformative Prior and Jeffreys’ Prior

In this thesis, we gave the guidelines for the hyperparameter design method in

accordance with the purpose. Aside from this, there is a notion referred to as

noninformative prior which has less influence on the inference. The simplest

example of the noninformative prior is the uniform distribution. However the

integral of p(θ) = const. over θ diverges, hence it is impossible to normalize

this distribution. This prior is called improper prior and sometimes used,

when the posterior distribution becomes proper.

Next, let the prior of the parameter θ be given by

p(θ) = c (c : const.), θ ∈ [a, b].

When we give the parameter transform ξ = θ2, the probabilistic distribution

p(ξ) is given by

p(ξ) = p(θ)

∣∣∣∣dθ

dξ

∣∣∣∣ = c · 2ξ

and this is not the uniform distribution. Therefore the condition of uni-

formity depends on the parameterization. However the uniformity of the

distribution is preserved for the shift transform as follows.

Shift invariant prior

The condition that the probabilistic distribution p(θ) is invariant under the

transform η = θ + c (c : const.) is given by∫ B

A

p(θ)dθ =

∫ B−c

A−c

p(θ)dθ =

∫ B

A

p(θ − c)dθ

for any A,B (A < B). Hence p(θ) = p(θ − c) is satisfied for any c, p(θ) =

const. is derived. This prior does not depend on the position of the origin.

By developing this notion further, we can obtain the Jeffreys’ prior. The

Jeffreys’ prior is given by the same formula for any coordinate systems and

defined by using the Fisher information matrix

I(θ) = Iij(θ) =

∫
∂L(x, θ)

∂θi

∂L(x,θ)

∂θj

p(x|θ)dx,

where L(x, θ) = log p(x|θ).
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Definition A.3.1 Jeffreys’ prior A probability density function φ(θ) on

Rd is called Jeffreys’ prior on Θ if

φ(θ) =

{
1
Z

√
detI(θ), (θ ∈ Θ)

0, (otherwise),

where Z is normalization constant.

At a singularity, detI(θ) = 0, hence φ(θ) = 0. Let ξ = g(θ) be a diffeomor-

phism from an open set Θ ⊂ Rd to an open set Ξ ⊂ Rd. Then the Fisher

information matrix of p(x|g(θ)) is given by

Iij(ξ) =

∫
∂

∂θi

L(x, g(θ))
∂

∂θj

L(x, g(θ))p(x|g(θ))dx

=
∑

k

∑
l

∂ξk

∂θi

∂ξl

∂θj

∫
∂

∂ξk

L(x, ξ)
∂

∂ξl

L(x, ξ)p(x|ξ)dx.

Therefore,

detI(θ) = |g′(θ)|2detI(ξ).

From the above, we have the following equation for the Jeffreys’priors 1
Z

√
I(ξ)

and 1
Z

√
I(θ) on respective spaces.

1

Z

√
detI(ξ)dξ =

1

Z

√
detI(g(θ))|g′(θ)|dθ

=
1

Z

√
detI(θ)dθ

This means that Jeffreys’ prior is defined independently of coordinates. When

the Jeffreys’ prior is employed, it is known that the learning coefficient

λ and m given by the coefficient of Eq.(2.3) satisfies the following (1) or

(2)[Watanabe (2009)]:

(1) λ = d
2
, m = 1

(2) λ > d
2

This result shows that the Jeffreys’ prior is not appropriate for the statistical

estimation in general.
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Meanwhile the following experimental results on the model selection was

also shown using a 3-layer neural net [Nishiue & Watanabe (2001)].

The uniform distribution or the Jeffreys’ prior was employed as the prior

and the model was selected by minimization of the free energy in Bayesian

learning.

• If the true distribution was included in models, Jeffreys’ prior selected

the true distribution with higher probability than the uniform distri-

bution.

• If the true distribution is not included in models, the generalization

error of the uniform distribution is smaller than that of the Jeffreys’

prior.
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