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Abstract

This dissertation deals with the theory and design of various classes of lapped transforms. We
address problems of 1) the derivation of analytic solution of lapped transforms, 2) the design of
adaptive lapped transforms and their image coding applications, and 3) the theory of a class of
oversampled lapped transforms.

We introduce a biorthogonal lapped transform that consists of long and short basis functions
(VLLBT). The design criterion is formulated as an approximation problem. In order to solve
this, we provide the theory of the Karhunen-Loéve transform in a subspace (SKLT), and we
show that when the biorthogonal long basis functions of the VLLBT are given, the optimal short
basis functions in the energy compaction sense are found. Therefore, the degree of freedom for
the VLLBT isreduced to that for the long basis functions of the VLLBT.

By extendingthe VLLBT and the SKLT, we present the theory and design of two-dimensional
adaptive lapped biorthogonal transforms for image coding. The proposed transform is an natural
extension of the one-dimensional VLLBT. The adaptation is performed by making the short basis
functions variable. Those short basis functions are derived by the SKLT. We show an orientation
adaptive example, where each adaptive transform is characterized by the angle of edgesin image
blocks. Moreover, we illustrate image coding applications for several transforms proposed in
this dissertation. Comparisons among the proposed transforms and the existing transforms are
carried out. To be fair, we adopt the same techniques in the coding step. Specifically, transform
coefficients are uniformly quantized and encoded with the run-length/Huffman tables used in the
baseline JPEG. Through comparison, we illustrate benefit of the present transforms.

In this next step, we present aminimal lattice structure for a special class of N-channel over-
sampled linear-phase perfect reconstruction filter banks, which is called the generalized lapped
pseudo-biorthogonal transform (GLPBT). The GLPBT isageneralization of avery large class of
lapped transforms. Moreover, we provide an alternative lattice which includes a building block
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suppressing noise added in the transform domain. We also show several design examples and

simulations.
Finally, we state our contribution, and clarify open problems and directions for future re-

search.



Acknowledgments

| wish to express my appreciation and gratitude to my advisor, Prof. Yukihiko YAMASHITA.
His support and guidance have make the completion of this thesis possible. He has provided an
environment conducive to learning and quality research. He has introduced me to the field of
research on signal and image processing from a mathematical point of view.

| also thank Prof. Hidemitsu OGAWA. He has not directly advised me on my study. However,
his attitude and philosophy toward research influenced me. His class on pseudo-biorthogonal
bases inspired me to study oversampled filter banks. | am grateful to Prof. Itsuo KUMAZAWA.
He gave me some pieces of useful advice for not only research also entering the doctoral course.
| would like to express my gratitude to Prof. Akinori NISHIHARA. He has participated in the
Wavelet seminar which | organized as an advisor since it started. He also gave me useful advice
and nice support on |EEE student activities as the Branch Counselor during | am the Chair of
the IEEE Student Branch at TITech. | wish to thank Prof. Isso YAMADA and Prof. Toshiyuki
YOSHIDA. | enjoyed discussion on signal and image processing with them.

| would like to thank Dr. Takayuki NAGAI of the University of Electro-Communicationsfor
a helpful advice on thefilter design. | also thank Dr. Ricardo De Queiroz of Xerox Corporation
for giving me useful information about lapped transforms.

| am also grateful to Prof. Sung-Jea Ko of Korea University for allowing me to work on
wavel et-based image coding during my stay in Korea University from September 1997 to August
1998 as a visiting graduate student. He and his students have greatly influenced my attitude to
research.

| am grateful to my friend Dr. Masashi SUGIYAMA. Hisfield of research is not exactly the
same as mine, but we have sometimes exciting and useful discussions. | al'so would like to thank
my colleagues supervised by Prof. Yamashita, Prof. Ogawa, and Prof. Kumazawafor having nice
days together. Finally, | would like to acknowledge the support of my parents.



ACKNOWLEDGMENTS

Thiswork is partialy supported in part by JSPS Grant-in-Aid for JSPS Fellows 1210283.



Contents

Abstract [
Acknowledgments i
1 Introduction 1
1.1 Background . . . . . . ... 1
12 BriefHistory . . . . . . . 2
121 Generdizationon Length of BasisFunctions . . . . .. ... ... ... 3
1.2.2 Biorthogonalization . . . .. .. ... ... . ... ... ... 3
1.2.3 Extensionto Overcomplete Representation . . . . . . . ... ... ... 4
124 Adaptation . . . . . . . ... 5
1.3 God of ThisDissertation . . . . . . . . . . .. . ... 6
1.3.1 Theoretical Parameter Reduction in Design of Variable-Length Lapped
Transforms . . . . . . .. 6
1.3.2 Formulation and Design of Adaptive Lapped Transforms . . . . . . . . . 7
1.3.3 Parameterization of Overcomplete Lapped Transforms . . . . . . . . .. 7
1.4 Organizationof ThisDissertation. . . . . . . . ... ... ... ... ...... 8
2 Preliminaries 13
21 Notation . . . . . . e e e 13
2.2 Orthogona Transforms . . . . . . . . . . .. 15
2.2.1 Karhunen-Loeve Transform (KLT) . . . . . . . . . .. ... ... .. .. 15
2.2.2 DiscreteCosine Transfoom(DCT) . . . . . . . . . . oo oo o v oo .. 17
2.3 Filter Banksand Subband Transforms . . . . . . . .. .. ... ... ... ... 18
231 Down/Up-Sampling . . ... .. ... .. . ... 18



Vi

4

24

A Lapped Transform with Non-Overlapping Functions

31
3.2

3.3
34
3.5

3.6
3.7

Adaptive Lapped Transformsfor Image Coding

41
4.2

4.3

4.4

4.5

2.3.2 Perfect Reconstruction Filter Banks
2.3.3 Polyphase Representation
234 Lapped Transforms

Image Coding

24.1 Transform Coding System
25 Summary and References

Introduction . . . ... ..........
Variable-Length Lapped Transforms
3.2.1 Biorthogonalization
Subspace Karhunen-Loeve Transform
Application of the SKLT in VLLBT

Design Method

3.7.1 Proof of Lemmal
3.7.2 Proof of Lemma3

Introduction . . . . ... .........
Lapped Biorthogonal Transforms with Overlapping Basis Functions
4.2.1 Formulation
Derivation of Short Basis Functions viathe SKLT
4.3.1 DesignAlgorithm
Orientation Adaptation
441 Extension to 2-D transform
4.4.2 Orientation Adaptive Lapped Transforms
Design Examples
451 Type-E OALBT
452 Type-O OALBT

CONTENTS



CONTENTS vii

4.6 SUMMAY . . . o o ot e e e 61
A7 ProofsS . . . . . e e 62
471 Proof of Proposition2 . . . . . . ... ... 62
4.7.2 Proof of Proposition3 . . . . . . ... 63
5 Image Coding Applications and Evaluation 65
51 Introduction . . . . . . . . .. e 65
52 ImageCoding Algorithms . . . . . . . . . . . . . .. 65
521 VLLBT . . . . e e 67
522 TypeEOALBT . . . . . . 67
523 TypeOOALBT . . . . .\ttt 72
5.3 ImageCoding Resultsand Comparisons . . . . . . . . .. ... ... ... ... 73
531 VLLBT: Orthogonal vsBiorthogonal . . . . ... ... ......... 73
532 OALBT: Non-AdaptivevsAdaptive . . . . . . .. ... .. ... .... 75
5.3.3 Compariton of Type-O OALBT with Other Existing Lapped Transforms . 82
54 SUMMAY . . . . . 83
6 An Oversampled Lapped Transform 89
6.1 Introduction . . . . . . . . ... 89
6.1.1 LPandPR Conditionsfor OversampledFBs . . . ... ... ... ... 90
6.2 Generalized Lapped Pseudo-Biorthogonal Transform . . . . . . ... ... ... 91
6.21 Even-Channel GLPBT . . .. .. . . . . .. .. .. ... ... ..... 91
6.2.2 Parameterizationof EachBlock . . . .. .. ... ... ... ...... 93
6.23 InvertibleMatrices . . . . . . .. 93
6.24 Left-InvertibleMatrices . . . . . ... ... L 9
6.25 Straightforward Choice for the Left-lnverse . . . . . . ... . ... ... 95
6.2.6 Odd-Channel GLPBT . . . . .. ... ... . ... . 97
6.2.7 Relationto the Conventional Lapped Transforms . . . . . . ... .. .. 99
6.3 NoiseRobust GLPBT . . . . . . . . . . . . e 99
6.4 DesignExamples . . . . . . .. .. 103
6.4.1 GLPBT withthe Noise Robust BuildingBlock . . ... ......... 106

6.5 Summary . . ... e e 107



CONTENTS

viii
7 Conclusions 113
7.1 Introduction . . . . . .. 113
7.2 SUMMAIY . . . o e e e 113
7.3 OpenProblems . . . . . . . . . . . 114
7.3.1 Analytic Solutionsfor Lapped Transforms. . . . . . . . .. ... .. .. 115
7.3.2 AdaptiveLongBasisFunctions . . ... ... ... ... ... ... 115
7.3.3 Sef-Organized Classification for Adaptive Lapped Transform Coding . . 115
7.3.4 Classification Criteriafor Adaptive Lapped Transforms . . . . . . . . . . 115
7.3.5 CompleteLatticefor Oversampled LPPRFBs . . . . . . .. .. ... .. 115
7.3.6  Synthesis Polyphase Matrix for Oversampled LPPRFBs . . . . . . . .. 116



List of Figures

11
1.2

1.3
14

21
22
2.3
24
2.5

31
3.2
3.3
34

3.5

4.1
4.2
4.3
4.4
45

Blockingartifacts . . . . . . . . . ... .
Difference of decoded images with the DCT (left) and the lapped transform
(right): the decoded image with the lapped transform contains ringing artifacts
around edges caused by long basisfunctions . . . . ... ... ... ...
The effect of the orientation adaptation . . . . . . . ... ... .. ... ....
Therelation among chaptersin thisdissertation . . . . . . ... ... ... ...

An N-channel filter bank with downsampling by theinteger factorM . . . . . .
Matrices for blockwise transformsand filterbanks . . . . . . . .. ... .. ..
Thelapped orthogonal transform . . . . . .. . ... ... ... ... ......
The two-dimensional lapped orthogonal transform . . . . . .. . .. ... .. ..
Atransformcodingsystem . . . . . ...

Factorized structure of lapped transforms . . . . . . . .. ... ... ... ...
VLLOT factorized structure: aprojection matrix P isgivenasin(3.6). . .. ..
The case the subspaces S; and S, are not orthogonal . . . . . . . ... ... ..
A design example VLLBT26 where all paremeters are optimized for coding gain:

M=8N_=2(Codinggain=9.325dB) . ....................
A design example VLLBT26 via SKLT with low DC leakage: M = 8, N_. = 2

(Codinggain=9.320dB) . . . ... .. . . . .

Images for transform matricesof Type-Eand Type-O . . . . . . . . ... . ...
Support of regions of long and short basis functionsinthe2-Dcase . .. .. ..
Thefirst four short basis functionswhen=#/15. . . . . . .. .. ... .. ..
The block partition and short basis functions with respect to each block . . . . .
Theresulting long basisfunctions . . . . ... ... ... ... .........



4.6

5.1
5.2
5.3
54
5.5
5.6
5.7

5.8

5.9
5.10

5.11
5.12
5.13
5.14
5.15

5.16

5.17

6.1
6.2
6.3
6.4
6.5
6.6

LIST OF FIGURES

First eight short basis functions of the OALBT for § = 27/15 (the correlation

coefficientsaresetthat « = 0.95andf=050) . ... .. ... ... ... ... 61
The structure of the non-adaptiveencoder . . . . . . ... ... .. ... .... 66
The structure of theadaptiveencoder . . . . . . . .. ... ... ... ...... 66
The four subsets Si(i, j) that the set of coefficients S(i, j) aredividedinto . . . . 70
Block reorganizing . . . . . . . ... 71
Comparison of the decoded images at rate0.25bpp . . . . . . . . . . . ... .. 76
Themagnifiedimagesof Fig. 55 . . . . . . .. ... ... ... .. ....... 77
Classification map of “Barbara’ in the Type-E coder: Each white line indicates
theangleof thedirectiona block. . . . . . ... ... ... ... .. ....... 78
Comparison of original and encode versions (0.25 bpp) of the 512 x 512 grey-
scale“Barbara” . . . . .. 79
The magnifiedimagesof Fig. 58 . . . . . ... ... ... ... .. ....... 79
Classification map in the Type-O coder: Each white line segment indicates the
angleof thedirectional block. . . .. .. ... ... ... ... ..., ..., 81
Comparison of the decoded “Barbara’ images at rate0.25bpp . . . . . . . . .. 82
Magnified imagesinFig. 511 . . . . .. . .. . ... ... ... 83
Comparison of the decoded “Pepper” images at rate0.25bpp . . . . . . . . . .. 84
Magnified imagesinFig. 513 . . . . .. .. . ... ... . 85
Comparison of PSNR (dB) resultsfor 512x512 “Barbara,” “Lena,” and “ Pepper”
images at different bitrates(bpp) . . . . . . . . .o 86
The decoded “Barbara’ and “Pepper” images with the LOT and the LBT at rate
0.25bpp . . . . e 87
Magnifiedimagesin Fig. 5.11 . . . . . . . . . . .. . ... 88
Polyphaserepresentation. . . . . . . . . . . . . . .. 90
Theinitial block whenbothM andN areeven . . . . . . .. ... ... .... 96
Theinitial block when M isoddandNiseven . . . ... ... ... ...... 96
The lattice structure of the even-channel GLPBT forevenM . . . . . .. .. .. 97
Theinitial block whenbothM andN areodd . . . . ... ... ... ...... 98
Theinitial block when M isevenandNisodd . .. ... ... .. ....... 99



LIST OF FIGURES

6.7
6.8

6.9
6.10

6.11
6.12
6.13

The relation between the GLPBT and other lapped transforms . . . . . . . . ..
The noise robust GLPBT in subspaces: When noise added in the transform do-
main is white, the MP pseudoinverse may not optimally suppress the noise.

An oversampled LPPRFB organized by the parallel connection of two GLBTSs
Design example for M = 4,N = 8,L = 16, which is optimized for stopband
attenuation . . . . . L e
Design examplefor M = 4,N = 8, L = 16, which is optimized for coding gain
Design examplefor M = 3,N = 4,L = 12, which is optimized for coding gain
Design examplefor M = 7,N = 8,L = 21, which is optimized for coding gain

. 100
. 105

109

. 110
111
. 112






List of Tables

1.1 Generaizations of the LOT in terms of the filter length and the biorthogonaliza-
N . . e

1.2 Generalizations of the variable-length LOT in terms of the adaptivity and the
biorthogonalization . . . . . . . . .. .. ...

1.3 A summary of previous worksfor aminimal complete lattice structure of an N-
channel LPPRFB with decimation factor M: E(2) and R(2) denote the polyphase
matrices of the analysis bank and the synthesis bank, respectively. . . . . . . ..

2.1 Notationsused throughout thisdissertation . . . . . ... ... ... ......

3.1 Comparison of thedegreesof freedom . . . . . ... .. .. ... ... .....
3.2 Comparison of coding gain in dB for AR(1) with p = 0.95: We choose M = 8
forall cases. . . . . . . . .

4.1 The short basis functions for boundary blocks: OPM and # of SBF denote the 2-
D orthogonal projection matrix and the number of the 2-D short basis functions,
respectively. . . . . . L

5.1 Huffman codebook for run-length on the non-directional class to encode side
infformation . . . . ... e e
5.2 Comparison of PSNR (dB) results for 512 x 512 “Barbara,” 512 x 512 “Lena,”
and 512 x 512 “Pepper” images at different bitrates(bpp) . . . . . . .. .. ..
5.3 Theamount of overhead and the percentage of directional regionsfor the Type-E
OALBT coder . . . . . . . e
5.4 Theamount of overhead and the percentage of directional regionsfor the Type-O
OALBT coder . . . . . . . e



Xiv LIST OF TABLES

6.1 Comparison of coding gains of various transforms: (M, N, L) indicates the dec-
imation factor, the number of channels, and the length of filters, respectively.
“p-GLBT” denotesthe parallel connection of two GLBTSs of coding gain 8.85 dB. 105

6.2 Comparison of coding gains of the pseudo-orthogonal case (oversampled LP-
PUFBSs) and the pseudo-biorthogonal case (oversampled LPPRFBs) . . . . . .. 106

6.3 Differencein SNR (dB) between the noise robust GLPBT and the GLPBT . . . . 107



Chapter 1

| ntroduction

1.1 Background

Image transformation is an well-used technique for image processing such as coding, restoration,
recognition, and so on. When we transform a signal with large number of samples, we usually
segment the signal into blocks with smaller number of samples. Thisblock isdealt asafinitesig-
nal and processed independently. The block-based processing has advantages in the reductions
of computational complexity and processing non-stational signals. However, the independent
processing causes an artificial discontinuity between adjacent blocks. Inimage compression, for
example, this discontinuity is called a blocking artifact, which appears in a decoded image at a
low bit rate asillustrated in Fig. 1.1. Several studies on the reduction of blocking artifacts were
carried out. For example, an overlapping and afiltering methods has been discussed in[1]. Inthe
overlapping method, an extended block in which the boundary samples are overlapped is used.
As aresult, information which must be transmitted has redundancy. In the filtering method, a
low-pass filter is applied only to the boundary pixels. Therefore, this method can be regarded as
one of postprocessing techniques. A lot of excellent postprocessing methods for the reduction
of blocking have been proposed [2, 3, 4, 5, 6, 7]. However, these postprocessing methods would
lead to blurring at block boundaries.

In the context of reduction of the blocking effects, the lapped orthogonal transform (LOT)
developed by Malvar et al. [8, 9, 10] made an great impact on the signal processing community.
When the number of samplesin ablock is M, this new transform consists of M basis functions,
which are of length 2M. Hence, the transform generates M coefficients from 2M consecutive
samples. The total number of transformed coefficients is the same as that of original samples.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Blocking artifacts

Moreover, the LOT can achieve perfect reconstruction. This is a desirable property for image
coding, since there is no increase in the bit rate. The LOT was extended to more generalized
forms, and these variationsarereferred to as |apped transforms. Their applicationsdo not lie only
in the field of image coding but also in that of image and signal processing, video processing,
restoration, recognition, and adaptivefiltering[11, 12, 13]. Inthisdissertation, several extensions
and generalizations of the lapped transform are established for image coding and processing.

1.2 Brief History

The lapped transform was pioneered by Mavar and co-workers [8, 9]. The most elementary
form of lapped transforms is the LOT, which has been generalized from various perspectives.
We review in this section various types of generalization and improvements of |apped transforms
from three viewpoints. We also review adaptive transforms for image coding and their relation

to lapped transforms for further argument.
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1.2.1 Generalization on Length of Basis Functions

Theoriginal LOT consists of M basis functions of length 2M. The basis functions are orthogonal
to each other, and the overlapping parts are a'so orthogonal. As pointed out by Vetterli and
Le Gall [14], the LOT is equivalent to an M-channel maximally decimated linear phase (LP)
paraunitary (PU) filter bank (FB), whereall filtersare of length 2M. Queiroz et al. [15] devel oped
a class of lapped orthogonal transforms where all basis functions have length KM, which is an
integer multiple of M. Thisclass of lapped transformsis called a generalized |apped orthogonal
transform (GenL OT). In [15], afactorization and a lattice structure are also described. A similar
|attice was proposed in [16]. These generalized versions of the LOT can be regarded as a subclass
of M-channel maximally decimated L PPUFBs, and an investigation into complete and minimal
M-channel LP PU lattice structures have been reported in [17].

All lapped transforms described above have basis functions of the same length which is a
multiple of the number of channels. Although the overlapping basis functions can considerably
reduce the blocking effect, they tend to spread the quantization error or the noise over adja-
cent blocks as shown in Fig. 1.2. To avoid this effect, variable-length (unequal-length) lapped
transforms have been proposed [18, 19, 20]. In these lapped transforms (called VLLOTs [18] or
GULLOTs[20]), longer basis functions can reduce the blocking, whereas the shorter basis func-
tions can restrict the ringing within their supports. The VLLOT and the GULLOT are similar to
wavelet transforms[12, 13] in that they have basis functions of variable lengths. However, since
the VLLOT and the GULLOT are extensions of the GenL OT, they have efficient fast algorithms
based on lattice structures. A history of generalization on the filter lengths is summarized in
Table 1.1.

1.2.2 Biorthogonalization

Another generalization for the LOT is biorthogonalization. Chan replaced some orthogonal ma-
trices in [8] with cascades of invertible block diagonal matrices [21]. Malvar suggested the
lapped biorthogonal transform by introducing a V2 scaling of thefirst antisymmetric basis func-
tion of the DCT. However, these structures do not provide the general solution. Tran et al. have
shown that a lapped biorthogonal transform can be implemented as an M-channel LP perfect
reconstruction (PR) FB with minimal lattice structures [22]. This transform is referred to as the
generalized lapped biorthogonal transform (GLBT).
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Figure 1.2: Difference of decoded images with the DCT (left) and the lapped transform (right):
the decoded image with the lapped transform contains ringing artifacts around edges caused by
long basis functions

Also, the VLLOT has been extended to a biorthogonal transform called the VLGLBT [23].
This can be an extension of the GLBT. Moreover, fast algorithms for the VLGLBT have been
also developed [19].

1.2.3 Extension to Overcomplete Representation

Generalization for the number of basis functions or channels has been conducted [24]. In this
generalization, the number of basis functions is greater than the number of samples in a block
or a decimation factor. This lapped transform provides an overcomplete representation, and
is related to redundant signal expansions [25, 26, 27, 28]. The oversampled FBs have some
advantages such as their improved design freedom and noise immunity [29, 30]. However, these
oversampled systemsinvolveincreased computational complexity. Therefore, oversampled DFT
FBs[31, 12, 32, 33, 34] and oversampled cosine-modulated FBs [29, 35] have been developed
for a fast and efficient implementation by a factorization. These FBs belong to a category of
modul ated FBs. For application inimage processing, the linear-phase property is very significant.
From this point of view, recently, a complete factorization of oversampled paraunitary (pseudo-
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Table 1.1: Generalizations of the LOT in terms of the filter length and the biorthogonalization

| Filter Length | Orthogonal | Biorthogonal |
2M Malvar et al. [8, 9] (LOT) Chan [21] (GLT), Mavar [36]
(LBT)
KM Soman et al. [17], de Queiroz et al. | Tran et al. [22] (GLBT)
[15] (GenLOT)
KM +p Tran et al. [37]

Table 1.2: Generalizations of the variable-length LOT in terms of the adaptivity and the biorthog-
onalization

| Adaptivity | Orthogonal | Biorthogonal |
Nonadaptive | Tran et al. [18] (VLLOT), Nagai | Tran et al. [23] (VLGLBT), Chap-
and lkehara[38] (ULLOT), Nagai et | ter 3

al. [20] (GULLOT)
Adaptive Chapter 4 Chapter 4

orthogonal) FBs ! yielding L P filters has been proposed [24].

1.2.4 Adaptation

Image coding using multiple transforms is known as one of efficient coding methods. This
method is based on the notion that different blocks depend on different statistic models, respec-
tively. For example, the JPEG [39], the MPEG-x, and the H.26x [40] use the discrete cosine
transform (DCT) [41, 42] that is derived from one model, the first-order Markov model. How-

Table 1.3: A summary of previousworksfor aminimal complete | attice structure of an N-channel
LPPRFB with decimation factor M: E(z) and R(2) denote the polyphase matrices of the analysis
bank and the synthesis bank, respectively.

| | R@=E'(zY) |R(@#E'(zh) |
M = N || Paraunitary or Orthogonal [17] Biorthogonal [22]
M < N || Paraunitary or Pseudo-orthogonal [24] | Pseudo-biorthogonal (Chapter 6)

LIn the paper [24], the authors termed the proposed FBs paraunitary. The polyphase matrix for the synthesis FB
does not give such an inverse as defined for afull-rank square matrix but aleft-inverse, which will be defined later. In
order to distinguish those FBs from maximally decimated PU FBs, we will use the terminology pseudo-orthogonal
for such oversampled FBs.
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ever, the use of the DCT for fast varying blocks as well as plane blocks may be unreasonable.
Signals in those plain and texture regions must be different stochastic processes. It is therefore
quite natural that we use a transform derived from a suitable model for an input block. A coding
method based on this strategy is called adaptive transform or multiple transform. The adaptive
transform enables us to obtain a decoded image where edges and lines are well preserved at
low bit rates. Therefore, it may be relevant to use a transform depending on each block. This
has motivated severa studies on transform coding. Bjentegaard, who firstly suggested the use
of multiple transforms for image coding, introduced a priori classes which are characterized
by directionality such as edges [43]. Furthermore, Tanaka and Yamashita improved his adap-
tive transform using the so-called vector-embedded Karhunen-Loéve transform (VEKLT) [44].
Instead of the use of a priori classes, some self-organizing methods with training of input sig-
nals has been proposed [45, 46, 47]. Helsingius et al. discussed benefit of the use of multiple
transforms with image coding by empirical comparisons.

In the field of lapped transforms, de Queiroz et al. proposed the time-varying lapped trans-
form[48], in which the adaptation is accomplished by replacing orthogonal matricesin the lattice
structure to time-varying ones. Klausutis and Madisetti made length of basis functions adaptive
[49].

1.3 Goal of ThisDissertation

Asseen in the previous section, lapped transforms have been generalized to various forms. How-
ever, there exist several unsolved problems. In this dissertation, the following problems will be
addressed:

1.3.1 Theoretical Parameter Reductionin Design of Variable-L ength L apped
Transforms

Asdiscovered in [8, 17, 15, 22], al coefficients of |apped orthogonal transforms can be charac-
terized by Givens rotation angles [50] in lattice structures. (In the biorthogonal case, additional
positive values are required [22].) All existing design methods for design of those lapped trans-
forms find their parameters by minimizing some cost function with numerical search. This iter-
ative optimization requires much computation time to reach the solution. In most of the cases,
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moreover, cost functions are not convex and hence there is no guarantee of obtaining a global
minimum. Therefore, an explicit solution minimizing a cost function is desirable. Furthermore,
the initial building block in the lattice structure is assumed to be the DCT to reduce free pa-
rameters. Indeed, this assumption is reported to be effective in design. However, there is no
theoretical guarantee for the use of the DCT. The problem in this dissertation is to find an alter-
native method for parameter reduction in design of variable-length lapped transforms in terms of
signal approximation. For the purpose, an extension of the Karhunen-Loéve transform which is
called the subspace Karhunen-Loéve transform (SKLT) is proposed. The SKLT isformulated as
the KLT inagiven subspace. The formulation and the solution are presented. By using the SKLT
we show that the number of free parameters can be reduced in the sense of the mean square error.

1.3.2 Formulation and Design of Adaptive Lapped Transforms

Figure 1.3 shows the effect of the orientation adaptation in block-based image coding [44]. How-
ever, as seen in Table 1.2, despite of the effectiveness of the adaptation, this technique has not
been applied to the design of lapped transforms due to their strict constraints for perfect recon-
struction. We solve this problem in this dissertation by introducing a class of lapped transforms
consisting of overlapping and non-overlapping basis functions, which is indeed a subclass of
variable-length lapped transforms. The adaptation is applied to the non-overlapping basis func-
tions. The relationship between the conventional and the proposed transforms is listed in Table
1.2

1.3.3 Parameterization of Overcomplete L apped Transforms

L apped transform produces the same number of transform coefficients as that of input samplesin
terms of polyphase matrices. If this constraint is softened, those |apped transforms are regarded
as overcomplete systems. In the field of filter banks [11, 12, 13], they are interpreted as over-
sampled perfect reconstruction (PR) filter banks (FBs). The block size are called a decimation
factor, and the number of output samples are called a channel. If we limit our discussion to the
linear-phase (LP) case, which isindeed essential condition for image processing, factorizations
with lattice structures are of particular interest. We address this problem for oversampled LP
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(@) A decoded image with a block-based (b) A decoded image with an orientation
transform (the DCT) adapted transform (the VEKLT [44])

Figure 1.3: The effect of the orientation adaptation

PR FBs with filters 2 of length equal to an integer multiple of the block size or the decimation
factor. Table 1.3 shows a position of thiswork in the field of oversampled PR FBs. We provide
more generalized lattice structure which can cover avery wide range of oversampled L PPRFBs.
Moreover, we address the problem to find a lattice structure for the case where noise is added to
the transformed coefficients.

1.4 Organization of ThisDissertation

Thisdissertation isorganized asfollows. Animage of therelationship among chaptersis depicted
inFig. 1.4.

In Chapter 2, we define notations and review fundamental theories which are necessary to
understand this dissertation.

In Chapter 3, we present a new framework of design for a biorthogonal lapped transform
that consists of overlapping (long) and non-overlapping (short) basis functions (VLLBT). We

2In the overcomplete case, we can no longer use the term “basis function,” because those functions are linearly
dependent. Those functions (called filters usually) yields aframe [26, 28].
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formulate the VLLBT by extending conventional |apped transforms. Then, we provide a theory
of the Karhunen-L oéve transform in a subspace (SKLT). Using the theory of the SKLT, we show
that when the biorthogonal long basis functions of the VLLBT are given, the optimal short basis
functions in the energy compaction sense are derived by solving an eigenval ue problem without
iterative searching techniques. Thisimplies that the number of free parameter for the VLLBT to
be determined is reduced to that for the long basis functions of the VLLBT, although in general,
biorthogonalization leads to a large increase in the degree of freedom. We also provide design
examples. Theresulting VLLBT attains high coding gain comparing to other apped transforms.
These results suggest that the proposed VLLBT with the optimal short functionsis a promising
technique in the field of image coding.

In Chapter 4, we present the theory and design of an adaptive lapped biorthogonal transform
for image coding. The proposed transform consists of basis functions overlapping across adja-
cent blocks and non-overlapping basis functions. The overlapping basis functions have samples
whose number is an integer multiple of the traditional block size. We introduce two types of this
transform: Type-E and Type-O. The former type has overlapping basis functions whose length
is an even multiple of the traditional block size. In the latter type, overlapping basis functions
length is an odd multiple of the block size. Type-E requires specia care for the image boundary
to avoid the border distortion. In Type-O, on the other hand, basis functions' centers of symmetry
are aligned. Therefore, we can use the symmetric extension method at image boundaries when
we transform an input image. We next propose an adaptive lapped transform by extending the
1D VLLBT to a 2D transform. The adaptation is applied to non-overlapping basis functions,
which are 2D and non-separable. It is shown that their derivation is also enabled by the SKLT.
We further show an orientation adaptive example, where each adaptive transformis characterized
by the angle of edgesinimage blocks.

In Chapter 5, we illustrate image coding applications for several transforms developed in
Chapters 3 and 4. Comparisons among the proposed transforms and the existing transforms are
carried out. To be fair, we adopt the same techniques in the coding step. Specifically, transform
coefficients are uniformly quantized and encoded with the run-length/Huffman tables used in the
baseline JPEG [39]. Through comparison, we illustrate benefit of the proposed transforms.

In Chapter 6, we investigate a lattice structure for a special class of N-channel oversampled
linear-phase perfect reconstruction filter banks with a decimation factor M smaller than N. We
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deal with systems in which all analysis and synthesis filters have the same FIR length and share
the same center of symmetry. We provide the minimal |attice factorization of a polyphase matrix
of a particular class of these oversampled filter banks. All filter coefficients are parameterized
by rotation angles and positive values. The resulting lattice structure is able to provide fast
implementation and allows us to determine the filter coefficients by solving an unconstrained
optimization problem. We consider next the case where we give the GLPBT lattice structure
with specific parameters and we a priori know the correlation matrix of noise which is added
in the transform domain. In this case, we provide an alternative lattice structure which suppress
the noise. We show that the proposed systems with the lattice structure cover a wide range of
linear-phase perfect reconstruction filter banks. We also show several design examples and their
properties.

In Chapter 7, we conclude this work. We summarize contributions of this dissertation, and
clarify open problems and directions for future research.
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Figure 1.4: The relation among chapters in this dissertation






Chapter 2

Praiminaries

This chapter defines notation used throughout this dissertation, and reviews fundamental theories
to analysis lapped transforms and to understand image coding principles.

2.1 Notation

The conventions listed in Table 2.1 are adopted in terms of notation. Bold-faced characters are
used to denote vectors and matrices. We sometimes omit the subscript of these matrices if the
sizeis obvious.

As with the Euclidean norm of a vector, we introduce the Frobenius norm or the Schmidt
norm of amatrix as the following:

Definition 1 (The Frobenius norm [50]) Let A be amatrix of size M x N. The Frobenius norm

I|Allr of A isdefined as
M-1 N-1
1A = | D D 1aml, (2.1)
m=0 n=0

where a,,, denotes the (m, n) entry of A.
Then, the following important relation holds:
IAIIE = tr[ AAT]. (2.2)

We introduce the notion of a left-inverse related to overcompl ete representation.

13
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RN N-dimensiona Euclidean space
(f,0) inner product of two vectors f and g
[l Euclidean norm of f

f(i) i-th component of f

In n x n identity matrix

JIn N x n reversal matrix

On n x n null matrix

Omxn m x n null matrix

AT transposition of a matrix A

[Alij @i, J) element of A

tr[ A] trace of A

R(A) range of A

N(A) null space of A

rank(A)  rank of A

dim(-) dimension of alinear space

H(2 z-transform of a vector or a sequence h
H(2 polyphase matrix

|A(2)] determinant of A(2)

deg[A(2)] degreeof A(2)
(M) downsampling operator with M
(T ™M) upsampling operator with M

Table 2.1: Notations used throughout this dissertation

Definition 2 (L eft-inverses) A matrix A is called left-invertible if there exists a matrix X such
that

XA =1, (2.3)

The matrix X is denoted by A~ and called a left-inverse of A.

Keep in mind that given amatrix A, its left-inverse A~ is not uniquely determined. For any A™,
moreovey, it does not hold that AA™ = | ingenera. A left-inverseisincluded in a special class
of pseudo (generalized) inverses [51]. Let A be a left-invertible matrix of size n x m. Then, n
must be greater than or equal to m, i.e. n > m, and rank(A) = m.
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2.2 Orthogonal Transforms

2.2.1 Karhunen-Loeve Transform (KLT)

We start with the Karhunen-L oeve transform that packs most energy into the first k coefficients
among all orthogonal transforms.

We can remove correlations between pixels using an orthogonal linear transform called the
Karhunen-Loeve transform (KLT), al'so known as the Hotelling transform [52, 53, 54]. Suppose
we create N-dimensional vectors from a given image by taking blocks of N pixels. Let f =
[f(0),..., f(N—1)]" beavector of the original datasamplesinRN. The correlation matrix R f
with respect to f is given by

Ry =Ef[ffT], (2.9)

where we assume rank(R) = N. The matrix R¢ ¢ is real and symmetric, hence there exist
eigenvalues [55] 1p > A1 > -+ > An-1 > 0 and corresponding eigenvectors U, . . ., Uy-1 Such
that {u;}}!;* is an orthonormal basis of RN.

Definition 3 (The KLT [56]) The Karhunen-Loeve (KL) transform is defined as a matrix X
which minimizes

Jeer = EflIf = XfP? (2.9)
under the condition that the rank of X isequal tor, wherer < N.

Theorem 1 TheKLT X of rank r is given by

r—

X = Z uiul . (2.6)

1
i=0

Proof: Clearly, rank(X) = dim(R(X)) = r. Therefore, we seek the optimal approximation
in the subspace R(X). From the projection theorem [57], X should be an orthogonal projection
matrix. Hence, the criterion Jx. 1 yields

Jkir E¢llf — XfIP?,

E¢lIfI? - E¢lIXfI. (2.7)
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Since E¢ ||f||? is constant, the matrix X maximizing E ¢ ||X f|| gives the solution. We have

E¢IXTIP = Eg [t[(XF)(XF)T],
= tr[XRX]. (2.8)

With the eigenvalue decomposition of R, the above equation can be written
N-1

tr [X (Z /liUiUiT) X] ,
i=0

N-1

D AlIXulP. (29)

i=0

E¢lIXf|?

Because X is the orthogonal projection matrix such that rank(X) = M, the following is held:

0<|IXul? <1, (2.10)
N-1
D IXuil? = M. (2.11)
i=0
If we set
1 r-1
il ={ g 1252 N1 212
E¢[IX |2 is maximized. o

Various proofs of the KLT providing the best approximation in the mean square sense have
been shown. However, Ogawa has pointed out that those proofs are incomplete, and shown
the exact proof [58]. Generaly, the KLT is considered as an impractical transform because it
depends on input signals. Therefore, it is usual to use an appropriate correlation matrix such asa
first-order Markov model, that is,

[R¢lij =o', (2.13)

where p isthe correlation coefficient between adjacent pixels. The matrix R¢ ¢ leads to the fixed
suboptimal KLT. For typical natural images, each pixel is strongly correlated (0.9 < p < 1). It
has been shown that the KLT leads to the discrete cosine transform (DCT) asp — 1[41, 42, 59].
This fact will be reviewed in the next section. Moreover, an approach to the approximation of
KLT, that does not restrict itself to a specific class of stationary process (such as the Markov-1
family), has been presented in [60].
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2.2.2 DiscreteCosine Transform (DCT)
In 1974, Ahmed et al. has proposed the discrete cosine transform (DCT) [41].

Definition 4 (The DCT [41]) The transform kernel of the discrete cosine transform (DCT) is
defined as the form

= =0 k=0,...,N-1

ui(k) = /I\; 2k + D)i (2-14)
v/ .
NCOST i=1...,N-1 k—O,...,N—l.

This definition of the DCT is known as type-11 (DCT-11), which is the most widely used. Various
types of DCTs have been developed [42, 40].

The DCT has several advantages over the DFT. First, unlike the DFT, the DCT is a redl-
valued transform that generates real coefficients from real-valued data. Second, the ability of the
DCT and the DFT to pack signal energy into a small number of coefficients is a function of the
global smoothness of these signals. In the class of transforms with a known fast computational
algorithm, the DCT has a superior energy compaction property [41, 61, 42, 40].

The DCT has a close relationship with the KLT of which the correlation matrix is under the
Markov model. We will show that the DCT may be derived from the KLT in the limiting case as
the adjacent element correlation tends to unity [59].

The correlation matrix of the first-order Markov process R is given by

(Rik=p""ik=01...,N-1, (2.15)

where p is the intersample correlation coefficient. Ray and Driver [62] have given the following

12
Qn{wm

solution

Um(N) = [

(n+1) - N2+1 +(m+ 1)%} (2.16)

mn=0,1,...,N-1,

N + Am

where A,’sare N eigenvectors given as

(1-p7)
Am = . 2.17
M 1-2coswnm + p? (2.17)

wn istherea positive roots of the following
(1-p?)sinw

tan(Nw) = — .
(Nw) CoOSw — 2p + p? COSw

(2.18)
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In (2.16), (2.17), and (2.18), setting p — 1, we have tan(Nw) = 0. Then,
wk:%, for k=0,1,...,N-1. (2.19)

The eigenvalues are A, = 0 when wn, # 0. We have

N-1
Al = > Am (2.20)
m=0

Since[R f]lmm = 1, wehave 4o = N. Subgtituting these relationsin (2.16), we obtainthe DCT-I|
asfollows.

Uo(N)

Il
z|"‘

Um(N)

Il
—_—
ZI~N
~————
a.
>

(2.21)

|
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2.3 Filter Banksand Subband Transforms
2.3.1 Down/Up-Sampling

Let h = {h(i)} be asequence of real or complex values. The number of elements of h can be either
finite or infinite. Consider sampling rate changes in the discrete-time domain. Multirate signal
processing deals with discrete-time sequences taken at different rates, and has been investigated
well [11]. We herereview thistopic briefly. Further details appear in [11].

Let x(n) be an original sequence and let My be an integer. When a sequence y(n) is given by

y(n) = x(NMa), (2.22)

we call this processing downsampling or subsampling a sequence x(x) by Mgy. Inthe z-transform
domain, downsampling is written as

Mg—1
Y2 = Mid D X(Wi, 27M), (2.23)

k=0

where Wy, = exp(—j2r/My).
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The converse of downsampling is upsampling by an integer M. An upsampled sequence is
obtained by inserting M, — 1 zeros between consecutive samples of the input sequence. Specifi-
cally, the upsampled sequence y(n) iswritten as

x(n/My) n=kMy,keZ

y(n) = { 0 otherwise. (2.24)
The above equation is written in z-transform domain as
Y(2) = X(zM). (2.25)

2.3.2 Perfect Reconstruction Filter Banks

A filter bank (FB) is a set of filters, usually associated with downsamplers or decimators. An
N-channel filter bank with the decimation factor M is a system described in Fig. 2.1. FBs have
their applications in areas of signal processing such as speech and image compression, digital
watermarking, denoising, feature extraction, and so on.

If M = N thenitiscalled amaximally decimated or acritically sampled FB. We consider here
only the case where the factor M is an integer. This system consists of two mgjor parts: analysis
and synthesis parts. Each channel in the analysis part has a analysis filter H,(2) followed by the
downsampler (| M). In contrast, each channel in the synthesis part has the upsampler (T M)
followed by a synthesisfilter Fi(z). To decide the filters, the condition for perfect reconstruction
(PR) x(n) = X(n — 1) are mainly imposed. There are several excellent references on maximally
decimated PR FBs[11, 12, 13].

Transforms implemented by FBs as shown in Fig. 2.1 are called subband transforms. The
subband transform can be interpreted as a generalization of block-based transforms. Figure 2.2
shows matrices for a block-based transform and for a typical filter bank.

2.3.3 Polyphase Representation

Polyphase representation is useful to analyze FBs since one can a system by a vector-matrix
notation. The polyphase decomposition of the analysis filters H,(2) is described as

M-1
Ho@ = ) em(@Nz ™, (2.26)
m=0
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Figure 2.1: An N-channél filter bank with downsampling by the integer factor M

_(a) Block-based Transforms

(b) Subband Transforms

Figure 2.2: Matrices for blockwise transforms and filter banks
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with
K-1
(@ = ) M(Mk+ M = 1-m)z%, (2.27)
k=0
which is Type Il polyphase [11]. The N x M analysis polyphase matrix E(2) is defined as
[E(@]nm = enm(2). Similarly, the synthesis filters G,(z) can be decomposed as

M-1
Gn(2) = Z Fn(Z)Z™, (2.28)
m=0
with
K-1
(mn(@) = > ga(MK + M)z, (2.29)
k=0

which is Type | polyphase. The M x N synthesis polyphase matrix R(2) is defined as [R(2)]mn =
r'mn(2). The polyphase representation will be used for the analysis of oversampled FBsin Chapter
6.

2.34 Lapped Transforms
Lapped Orthogonal Transform

Lapped orthogonal transforms (LOTSs), which are developed by Malvar et al. [9, 8, 10], are a
subclass of M-channel LP PU FBs. The LOT has basis functions of the same length 2M. The
basis functions should be orthogonal, and the overlapping part of each basis function should aso
be orthogonal.

Let Ep and E; be matrices of size M x M. Then, the matrix defined as

E =[E; Eqg (2.30)
isof size M x 2M. We introduce a transform matrix which is double block-diagonal as follows:

Ei1 Eo O O--

Ta= 0 E E, 0. (2.31)



22 CHAPTER 2. PRELIMINARIES

OriginalSignaIlMlMlMlMlMlMlMI
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Figure 2.3: The lapped orthogonal transform

Consecutive two blocks are transformed and M transform coefficients are obtained as shown in

Figs. 2.3 and 2.4. If the matrix T is orthogonal, this is called the lapped orthogonal transform
(LOT). The orthogonal constraint T T, = | yields that

E;E1+E{Eo=lw, (2.32)

E1Ej = Ow, E]Eq = Ow. (2.33)

The second equation (2.33) is called orthogonality of tails. Let f; be the i-th block with M

samples of an input signal. Then, the transform vector f, containing transform coefficients is
given by

fi = Eof,_, + Exf,. (2.34)
Contrarily, the reconstructed signal f; is obtained by

It is clear that the LOT conditions (2.32) and (2.33) yields that f i = f,. The LOT reduces the
blocking effect because of its extended basis functions which overlap adjacent blocks * Malver
imposed the linear phase property on the above conditions, and obtained | attice structures[8, 10].

TheGenLOT

It is natural to establish the LOT which has length KM, where K is an positiveinteger and K = 2
for the LOT. Consider a matrix

E =[Ex - Eo. (2.36)

Indeed, even though the LOT is used for image compression, the blocking artifacts appear slightly, since the
L OTs basis functions do not smoothly decay to zero, generally. However, one can avoid this drawback by the use of
the modulated lapped transform (MLT) for speech processing or the lapped biorthogonal transform (LBT) for image
compression [36].
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Spatial domain Transform domain

Figure 2.4: The two-dimensional |apped orthogonal transform

Then, thismatrix is of size M x KM. The generalized LOT E of size LM x M has to satisfy the
following condition [13]:

K-1
Z EJEx = lw, (2.37)
k=0
K-1-s K-1-s K-1-s K-1-s
ExEcs= > EnEx=0u, > EEf = EvesEf = Oy, (2.38)
k=0 k=0 k=0 k=0

wheres = 1,...,K — 1. Equation (2.38) implies that the overlapping functions of neighboring
blocks must aso be orthogonal. In the field of linear-phase paraunitary filter banks, a design
method with the | attice factorization has been presented by Queiroz et al, and the resulting LOT
is called the GenLOT [15].

The linear-phase solution of the GenLOT is given as the polyphase matrix

E@) = Kk_1()Kk-2(2) -+ K1 (2)Cl, (2.39)
with
Ki(2) = %(I)iWA(z)W, (2.40)
where

W:[IM/Z I'my2 ],A(Z):[IM/Z 0 ]’(I)i:[%i

0
. 241
Impz —lwmy2 0 Zlwpe Vi] (241)
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The matrix C}, denotes the M-point DCT-11 matrix [42], the matrices U; and V; are M/2 x M/2
orthogonal matrices.

2.4 Image Coding

One of the most major applications of image transformsis image coding. For transmission and
storage of images, aenormous amount of memory is required. In the case of a squareimage with
512 x 512 pixels, for example, 5122 x 8 = 2,097, 152 bits are required! Video sequences are no
longer stored and transmitted without compression.

Image coding consists of mapping digital images to sequences of binary digits. A desirable
image coder is one that produces binary sequences whose lengths are on average much smaller
than the original canonical representation of the image. In many imaging applications, it is
not necessary to reproduce the image exactly. Therefore, one can perturb the image dlightly
to obtain a shorter representation. If this perturbation is much smaller than the blurring and
noise introduced in the formation of the image in the first place, it is not necessary to use the
more accurate representation. Such a coding strategy is called lossy coding. The goal of lossy
coding isto reproduce a given image with minimum distortion, given some constraint on the total
number of bitsin the coded representation.

We can gain reductions in coded image size by discretizing images more coarsely, a process
called quantization. By mapping visually indistinguishable images to the same code, we reduce
the number of code words needed to encode images, at the price of asmall amount of distortion.
It is possible to quantize each pixel separately, a process known as scalar quantization. Quan-
tizing a group of pixels together is known as vector gquantization (VQ). VQ can theoretically
capture the maximum compression. Although VQ is a very powerful theoretical paradigm, it
can achieve optimality only asymptotically as its dimensions increase. But, the computational
cost and delay grow exponentially with dimensionality, limiting the practicality of VQ. Due to
these difficulties, most practical coding procedures have turned to transform coding. Transform
coding is usually organized as three steps: linear transform, quantization, entropy coding. The
success of transform coding depends on how well the basis functions of the transform represent
the features of the signal.
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Figure 2.5: A transform coding system

24.1 Transform Coding System

Figure 2.5 shows a typica transform coding system. The decoder implements the inverse se-
guence of steps (with the exception of the quantization function) of the encoder, which performs
three straightforward operations: transformation, quantization, and coding. Transform coding
falls into two broad categories: block transform coding and subband transform coding. In the
former case, an N x N input image is first subdivided into subimages of size n x n, which are
then transformed. In the latter case, the N x N image is transformed by a block Toeplitz ma-
trix without being subdivided. Subband transforms are usually expressed as multi-rate systems
consisting of three elements: filters, interpolators, and decimators. However, this dissertation
sometimes deals with subband systems as linear transforms. Figure 2.2 illustrates matrices for
blockwise transforms and filter banks. The goal of the transformation process is to decorrelate
the pixels of each subimage, or to pack as much information as possible into the smallest number
of transform coefficients.

Transform coding systems based on the Karhunen-Loeve (KLT), discrete Fourier (DFT),
Walsh-Hadamard (WHT), discrete cosine (DCT), subband (ST), wavelet (WT), and various other
transforms have been constructed and/or studied extensively. The choice of aparticular transform
in a given application depends on the amount of reconstruction error that can be tolerated and
the computational resources available. Compression is achieved during the quantization of the
transformed coefficients (not during the transformation step).
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2.5 Summary and References

We have reviewed several important notions and theories which are necessary to understand
throughout this dissertation. Specifically, we have formulated the KLT and have reviewed the
DCT astypical orthogonal transforms. The polyphase representation has been reviewed. Thisis
a sophisticated way to understand filter banks. It allows us to treat filter banks as block-based
transforms. Finally, atypical algorithm of transform coding has been described.

For more details, the following literatures are helpful to understand out review. The first
description on the DCT appeared in [41]. Relation between the KLT and the DCT is firstly
analyzed by Clarke[59]. A good referencefor aDCT family is[42]. Other traditional transforms
for image coding such as Fourier [63, 64], Hadamard [65], and Slant [66, 67] transforms are well
studied in [68, 69].

Vaidyanathan [11] summarized the theory and design of filter banks. This book addresses a
very wide range of filter banks. Wavelets and filter banks are well established in [12, 13].

The coding step inatransform image coder iswell described and analyzed in [70]. Optimality
of the KLT with respect to coding gain is also discussed in this book and in [11]. To understand
the JPEG, [39] iswidely referred.



Chapter 3

A Lapped Transform with
Non-Overlapping Functions

3.1 Introduction

Although lapped transforms reduce the blocking effects, due to their long basis functions, the
quantization error is spread out over adjacent blocks. To avoid the spread of high frequency
noise, recently, the LOT with variable length functions (VLLOT) has been proposed [18, 38].
The VLLOT consists of overlapping (long) basis functions, which can reduce the blocking ar-
tifacts, and block-independent (short) basis functions, which can restrict the ringing artifacts in
the block. Its biorthogonal version has also been studied [19], and these |apped transforms with
variable length functions (VLLT) are based on lattice structures, where the initia building block
is assumed to be the DCT to reduce the degree of freedom for design. Thus, the short basis
functions are identical to higher DCT basis functions even in the biorthogonal case [19].

However, there is no theoretical reason that the DCT is adopted in the initial stage of the
VLLT. Itisused nothing but for fast implementation. In addition, it is very difficult to construct
2-D VLLTs within the conventional framework, since the degree of freedom greatly increasesin
the 2-D case. In this chapter, therefore, we provide a novel framework of lapped biorthogonal
transforms with non-overlapping short basis functions (VLLBT), and its design method based
on an eigenvalue problem. Using our proposed approach, the optimal short basis functions can
be found without numerical searches when the overlapping basis functions are given. The chap-
ter is organized as follows. In Section 3.2, we review the basic properties of |apped orthogonal
transforms and give their factorized structure. In Section 3.2.1, we formulate the VLLBT by

27
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biorthogonalizing the VLLOT. Then, we present theoretical preliminaries to derive the optimal
solution for the short non-overlapping basis functions of the VLLBT. More specifically, we de-
scribe the transform (SKLT) that provides the optimal approximation of an original signal in the
minimum mean square error (MSE) sense. In Section 3.4, using this transform, we show appli-
cation of the SKLT to the derivation for the short basis functions when the biorthogonal basis
functions are given. The optimal short functions can be derived as the solution to an eigenvalue
problem. In Section 3.5, design methodsfor the VLLBT are presented. Coding gain of the result-
ing transform is superior to that of the orthogonal version. Finally, in Section 3.6, we summarize
our proposed framework.

3.2 Variable-Length Lapped Transforms

We review herethe linear-phase LOT and the variable-length LOT, which consists of overlapping
and non-overlapping basis functions. Furthermore, we generalize it to the biorthogonal form. It
isdesirableinimage processing to inflict transform basis functions on symmetric, that is, linear-
phase property. Linear-phase lapped orthogonal transformswhere the basis functions have length
LM have been studied in [15, 16]. For smplicity, we will review the case L = 2 hereafter, but
generalization to length LM can be easily attained.

Let H be an orthogonal matrix of size M x M. When the rows of H are symmetric or
antisymmetric, the orthogonal matrix H has the form

-

where He and H, are M x M/ 2 matrices containing the even and the odd rows of H, respectively,

(3.1)

Uo Uopdwmpe
-Vo Vodwpe

and Up and V, are M/2 x M/2 orthogonal matrices. Let P be the Haar butterfly given as

P:} Imz =l ’ (3.2)
2 —Imz w2

which gives an orthogonal projection matrix. Let Z be the orthogonal matrix defined as

Ui Owm2
Z = , 3.3
[ Ovz Vi ] (33)

where both U; and V; are M/2 x M/2 orthogonal matrices. With the symmetric orthogonal
matrix H and the orthogonal projection matrix P, the general form of the linear-phase lapped
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fir— H 1P ’Q’Z—’fi

I

-P

Figure 3.1: Factorized structure of lapped transforms

orthogonal transform is given by

E

Z[PH (I - P)H] (3.9

_ } Ui(He—Ho) Ui(He—Ho)Im (3.5)
2| -Vi(He—Ho) Vi(He—Ho)Im | ’

The block diagram of the factorized LOT isillustrated in Fig. 3.1. It can be easily checked that
the LOT conditions (2.32) and (2.33) areimposed on E given asin (3.4). Malvar proposed afast
LOT where H corresponds to the DCT matrix [8, 71]. In thisfast LOT, the free parameters are
the orthogonal matrices U; and V;. In order to decrease the number of free parameters, Malvar
suggested that U; = I, and V; isthe product of plane rotations [8] or the product of DCT-I1 and
DST-IV [71].

The lapped orthogonal transform with variable length (VLLOT) [18, 38] has developed in
order to avoid the spread of high-frequency distortion into neighboring blocks. The most basic
VLLOT consists of N_ long and (M — N_) short basis functions of length 2M and M, respec-
tively. Inthe VLLOT, according to the necessary conditions for an existing linear phase perfect
reconstruction (LPPR) filter bank [13, 18], N. must be even. The VLLOT matrix can be aso
written by the factorized form as given asin (3.4). Then, the projection matrix for the VLLOT P

iswritten by
. I'ng /2 0 Iz O
=2l gL/Z 2l (M(SNL)/Z | N‘?/z 8 ’ (3.6)
0 0 0O O
and the orthogonal matrices of the last stage Z are given by
Us = [ Uy 0 ] (37)

0 Tm-ny2
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f TP 72 f
T H Even 1 i
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Odd

Figure 3.2: VLLOT factorized structure: a projection matrix P isgiven asin (3.6).

and

(3.8)

Vlzl'v1 0 ]

0 Tm-ny2

where U; and V; are N_ /2 x N_/2 orthogonal matrices. Substituting P, U;, and V; into (3.4),
we have

Us(He—Ho) Ui(He— Ho)Iw

1 2H. 0
E-z| . 2He 0 , 3.9
2| <Va(Fle— Flo) Va(Fle—Fo)du (39)
0 2H,

where H and H, are M x N /2 matrices and He and H, are M x (M — N.)/2 matrices such that

_ [ Re _ | Ho
He‘[He]a”dH"‘[Ho

long basis functions of size 2M. The block diagram of the factorized VLLOT is depicted in Fig.
3.2

. The above form implies that the N rows of H generates the N,

Let us consider the degree of freedom for the VLLOT. By the theory of linear algebra, Ug

. M/2
and V; each in thefirst stagehas( /

” ) degrees of freedom. Moreover, U, and V; each contains

NLZ/ 2 degrees of freedom. Therefore, the linear-phase VLLOT being of the generalized form
has 2(M2/2) + Z(NLZ/Z) degrees of freedom. In a fashion similar to the fast LOT, Nagai and

Ikehara proposed the fast VLLOT [38] where H is set to the DCT, U; = I'n. 2, and V, isthe
product of planerotations. Their proposed fast VLLOT reducesthe degree of freedomto N /2—1.
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3.2.1 Biorthogonalization

Biorthogonalization of orthogonal lapped transforms can be easily accomplished as follows. In
this case, E given asin (3.4) is used for the forward transformation. The inverse transformation
is defined as a matrix R = 22 in the same fashion as the definition of E. The condition
for perfect reconstruction is obtained by rewriting the orthogonal constraints (2.32) and (2.33).

Thus, the transform matrices E and R must satisfy the following:

RoEo + R1E1 = Iy, (3.10)
RiEo = RoE1 = Ou, R{ E§ = RGE] = Ou. (3.12)
Equation (3.10) implies biorthogonality of long basis functions, and (3.11) describes birothog-

onality of tails. In this case, the transform vector f; containing transform coefficients is given
by

fi=Elf_,+E]f. (3.12)

Contrarily, the reconstructed signal f i is obtained by

~ ~

f. = Rof; + Raf,,q. (3.13)
i i i+1

The general form of the linear-phase lapped biorthogonal transform can be achieved by re-
laxing orthogonality of the matrix H in (3.4). Assume that H given asin (3.1) is non-singular.
Moreover, we assume that Z given as in (3.3) is also non-singular, that is, both Uy and Vo in-
volved in H are non-singular. Then, forward and inverse transform matrices are given by

E =Z[PH (I - P)H] (3.14)
for the forward transform, and
R= [ G(IG_P P) ]z—l, (3.15)
for the inverse transform, where
G=H"1= %[ JULfgl 3&21 ] (3.16)

and,

_ Ut o
o[ %]
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When we choose P given asin (3.6), then E and R fulfill the requirementsfor perfect reconstruc-
tion described in (3.10) and (3.11). Let e and r; be the i-th columns of the transform matrices
E' and R, respectively. Then, apair of vector sets {e }, and {r;}M, satisfies both biorthogonality
and shift-biorthogonality. In the context of filter banks, e; and r; are called analysis and synthesis
filters of biorthogonal filter banks, respectively.

A lapped biorthogonal transform with variable length basis functions (VLLBT) can be de-
fined in the same manner as the VLLOT. The projection matrix P is givenin (3.6). In the last
stage, U7* and V1t included in Z™* are expressed as

. .

upt=Y% 0O (3.18)
[ 0 Tm-nyyz |

and

ot o

vit=| "1 , (3.19)

0 T2 |

Evidently, the degree of freedom of the VLLBT increases comparing to that of the VLLOT.
The degree of freedom of U and Vo eachis(M/2)2. Inthe next stage, U; and V; each has (N, /2)?

(M2 + N?)

degrees of freedom. In total, the linear-phase VLLBT has — degrees of freedom.

3.3 Subspace Karhunen-L oeve Transform

This section gives theoretical preliminaries to derive the optimal short basis functions of the
VLLBT. Let f be a vector of M consecutive samples of a real wide-sense stationary random
process. The well-known Karhunen-Loeve transform (KLT) provides the optimal approximation
of f [70, 12]. Moreover, among all block transforms, the KLT isindeed the best possible trans-
form for minimizing the overall distortion for a given bit allocation, that is, the KLT provides
the maximum coding gain [70]. Assume that the M-dimensional Euclidean space RM is adirect
sum of two spaces S; and S, that is, RM = S; @ S,. Notice that it is unnecessary that S; and
S, are orthogonal (see Fig. 3.3). Then, when the subspace S; is given, the transform that pro-
vides the optimal approximationin S, iscalled the subspace Karhunen-L oéve transform (SKLT),
which we propose in this chapter. This SKLT is defined as an extension of the vector-embedded
Karhunen-Loeve transform (VEKLT) proposed by Tanaka and Yamashita[72, 44]. Inthe SKLT,
orthogonality for S; and S, of the VEKLT is softened.

Let L bethe projection matrix onto S;. The projection matrix L is not necessarily orthogonal .
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Figure 3.3: The case the subspaces S; and S, are not orthogonal

Definition 5 When a projection matrix L whoserankisN_ < M isgiven, the subspace Karhunen-
Loeve transform (SKLT) X minimizes the functional

JX] = EflIf — (L + X)f|? (3.20)
under the condition rank(X) = N forany N < M — N.

When the subspace S; isgiven, the SKLT providesthe optimal approximationin S,. Sinceletting
L = Oleadsto the criterion for the KLT [56], the KLT isasubclass of SKLTSs.

Fortunately, the analytic solution of the above problem can be derived as will be shown. Let
R¢s = Ef[f f '] be the correlation matrix of the input vector f.

Lemma 1 Assume Rs ¢ hasfull rank. Then, there exist the (M — N.) non-zero eigenval ues of
Q=(I-L)Rgs(1 —L)T (3.21)
suchthat &, > - -+ > ém-n,-1 > 0, and the corresponding eigenvectors ¢y, . . ., ¢y _n, _1-

Lemma 2 ([55, 56]) Let A and B be m x n matrices of rank M and N, respectively, where
NL < M, and the singular value decomposition (SVD) of A isgiven as

-1
A=) digigl, (3.22)
i=0
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where Ag > - -+ > Aum-1, and {p;}M;* and {¢;}M* are orthonormal basesin RM. Then, a matrix B
minimizes a functional

Ji[B] =1IB - Allr (3.23)

subject to rank(B) < N, if and only if
N -1
B= ) Agigl. (3.24)
i=0

Theorem 2 Let ¢; be eigenvectors of Q with respect to non-zero eigenvalues. Assume that we

choose the eigenvectors ¢, such that {¢;}";"*~* forms an orthonormal system. Then, the func-

tional J[X] in (3.20) is minimized by

N-1
X=) ¢.8:. (3.25)
n=0
where
$n=(1-L)¢, (3.26)

Proof: Equation (3.20) can be rewritten as

J[X] Efll(I = L)f — Xf|?
tr[(l =L = X)E¢ (fFfT)(I =L - X)"]
tr[(l - L = X)Rss(l =L —X)']

I - L = X)RYZIE

I0 — L)RYS — XRYZIE, (3.27)

where RY2 is a positive semidefinite matrix such that RY2 RY2 = R ¢. Since the correlation
ff ffoff - Tff

matrix Ry ¢ is assumed to be non-singular, the rank of le/? is adlso M. Therefore, we have

rank((l — L)Rlﬁ) = M — N_. The matrix (I — L)Rlﬁ has singular value decomposition (SVD)

M-N_-1

(I-LRYE = ) wdwl, (3.28)

i=0



3.3. SUBSPACE KARHUNEN-L OEVE TRANSFORM 35

where ¢, and y,; satisfy the following equations:

(1 - L)R1/2

[(1-LRY2]' g,

pid, (3.29)
pith;. (3.30)

Since the rank of X is assumed to be N < M — N, we have rank(XRl/z) = N. According to
Lemma 2, the functional J[X] is minimized if and only if

XR{% = Zu.tﬁ vl (331)

Since leﬁ has full rank, there exists its inverse Rﬁz Therefore, (3.31) and (3.30) yield that

Z

-1
X = Hid; ‘pl R_l/z

o

pd
[u

¢|¢| [(I - L)Rl/z]R_l/z

M

o

pd
[u

Sl - L)

M

o

pd
e

= ), 64" (332)

i=0

On the other hand, pre-multiplying both sides of (3.30) by (I — L)Rlﬁ , we have

(1 - L)RYEI( - LRYE K

u(l = DR,
= i (3.33)

with using (3.29). Thisyields

(1= DR (1 - L)', = 174, (3:34)

which impliesthat ¢; and 12 are an eigenvector and an eigenvalue of the matrix (I — L)R¢ ¢ (I —
L)", respectively. This completes the proof. O
We shdll call this matrix X the subspace Karhunen-Loéve transform (SKLT) of rank N with
respectto L.
Next, we have the following result on biorthogonality of the SKLT.
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Lemma3 Fori=0,...,M — N_-1, the eigenvector ¢; of Qisinthenull space of L, that is,
Lo, =0. (3.35)
The vector sets {¢;}";"* " and {¢}*;"* have the fol lowing property.

Proposition 1 Vector sets {¢;}";"-"* and {¢;}";" " construct a biorthonormal system, that is,
(B, P7) = 6ij, (3.36)
fori,j=0,...,M=N_ -1

Proof: Since the eigenvectors of Q are orthogonal, (3.35) yields

<¢i7¢4j<> = <¢i7(| - L)T¢j> = <(| - L)¢i7¢j> = <¢i7¢j> = 5i,j- (3-37)

O
In the following sections, it will be shown that we can apply this SKLT to design of lapped
transform with variable length basis functions.

3.4 Application of the SKLT in VLLBT

Let h; and g; bei-th column functions of the matrices H " and G, respectively. In this subsection,
when the long basis functions of the VLLBT determined by {h;, g}, * are given, we discuss the
design method for short basis functions.

Let u; and u; be columnsof U} and U, respectively, and let vi and v* be columns of V| and
Vo', respectively. Assume that biorthogonal systems {ui, i}/ and {v;, vi} /> are given,
Then, we obtain abiorthogonal system {h;, g} * such that fori = 0,...,N./2 -1,

u | [ v
h2i = [ JU| | ’ h2l+1 - i —JV| ’ (338)
and
us | [ v
gZi = [ Jlil* ’ gZi+1 = _JIV* ]7 (339)

From the theory of the VLLBT, {hi)l;* and {g;};* produce the long basis functions for the
forward and the inverse transforms, respectively. With these functions h; and g;, let

N -1
L= ghl. (3.40)
i=0



3.4. APPLICATION OF THE SKLT IN VLLBT 37

When we apply the projection matrix L to Theorem 2, we obtain abiorthonormal system {¢;, ¢;'},_,
which leads to the SKLT. If hj = h{ and g = 29/, where h; = g, L gives an orthogo-
nal projection; otherwise, it gives an oblique projection. In the former case, we have ¢; = ¢;
fori =0,...,M - N_ - 1. Most of biorthogonal lapped transforms correspond to this case
[38, 22, 19]. The subspaces S; and S, are orthogonal.

To show that ¢; and ¢; are symmetric/antisymmetric vectors, we introduce the following

theorem. Below, [x] denotes the integer part of x.

Lemma4 ([73, 74]) Let A bea M x M persymmetric matrix, that is, JAJ = A. Let A have
distinct eigenvalues. Then, A has[(M + 1)/2] symmetric eigenvectors and [M/2] antisymmetric
eigenvectors that span the eigenspace of Q.

Theorem 3 Let {h;, g;}';* be a biorthogonal system, where N iseven. Let L = 3" gh!.
Assume that h; and g; are symmetric for even i, and antisymmetric for odd i. Assume also that
Rs ¢ isMxM persymmetric matrix, thatis, JR¢  J = R¢ ¢, and has distinct eigenvalues. Then,
the matrix

Q=(I-L)Rss(1 —L)" (3.41)
has (M — N.)/2 symmetric eigenvectors and (M — N )/2 antisymmetric eigenvectors.
Proof: Fori =0,...,N_ -1, h; isinthe null space of Q, since
N -1
(I - L)Rs ¢ (hi - > hjnghi)
j=0

(I - L)Ry ¢ (h — )
0. (3.42)

Qh

FromLemma 1, Q has (M — N.) non-zero eigenvalues. Let
N -1
S=Q+ ) hig'. (3.43)
i=0
Then, h; isan eigenvector of S and the corresponding eigenvalueis 1, since

Sh;

=
Qh; + Z h;gj h,
i=0

= hi. (3.44)

M-N_-1
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Therefore, S has M eigenvalues. Moreover, we can easily examinethat JSJ = S, so that Sis

a persymmetric matrix. From Lemma 4, S has N /2 symmetric eigenvectors containing h; for

even i, and also has N_ /2 antisymmetric eigenvectors containing h; for odd i. It follows that

(M — N_)/2 eigenvectors of Q are symmetric and the others are antisymmetric. O
Theorem 3 guaranteesthat in H and G, we can set that

hi = ¢\, (3.45)
and

g =®in- (3.46)

fori = N.,...,M —1. Then, {h;, g;};* gives a biorthonormal basis for RM. Keep in mind that
{hi, g Mt are uniquely determined by {h;, g} " and R¢ ¢. Substituting H and G into (3.14)
and (3.15), respectively, we obtain the transform matrices E and R.

By the use of the SKLT, the degree of freedom of the linear-phase VLLBT is significantly
decreased. In the first stage, since it is only necessary to find the N. lowest basis functions, the

: M2 — (M — N.)?
degree of freedom for {u;, ur /%" is (M/2)? = (M/2 — N /2)? = ( 2 )
: . MZ—(M=N)? N?
for {vi, i}/, Therefore, the VLLBT viathe SKLT contains (2 U” 7L = MN,

degree of freedom. Since the difference of the degree of freedom between the VLLBT and the
- . M2+ N (M =Ny
VLLBT viathe SKLT is > - MN, = ——

is more significant for larger M or smaller N, .

and so is that

, the reduction in the degree of freedom

In summary, we have clarified in this section that from a functional approximation of view,
which is the most fundamental concept in image compression, the degree of freedom of the
VLLBT can be reduced; we need not find al columns of H and G. As aresult, the short basis
functions are automatically derived from the long basis functions. Therefore, we should find only
the long ones. We compare the degrees of freedom of the VLLOT, the VLLBT, and the VLLBT
viathe SKLT in Table 3.1. This table also contains examples of the casethat M = 8, N, = 2
and the case that M = 8, N. = 4. To reduce free parameters, of course, alot of methods have
been proposed [18, 38, 19]. However, recal that al of those methods aim fast implementation.
Furthermore, the reduction of free parametershave been carried out empirically, not theoretically.
In contrast, the proposed design method with the SKLT ensures the reduction of the degree of
freedom in the sense of mean square error.
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Table 3.1: Comparison of the degrees of freedom

| | VLLOT | VLLBT | VLLBT viaSKLT |
[ 1] M? + N?
General case o|(M/2) (N2 L MN,
2 2 2
M=8N =2 12 34 16
M=8N =4 14 40 32

3.5 Design Method

Since the optimal short basis functions with respect to a given set of long basis functions have
been found, we only need to determine suitable long basis functions. For application in image
coding, we use coding gain as a cost function. Higher coding gain correlates most consistently
with higher PSNR. Coding gain for a biorthogonal transform is given by [75, 76]

0_2

M-1
02~Ilri||2)
1]

where 0'2f is the variance of the input signal and 0'2f~ is the variance of the i-th transform coef-

/M

ficient. Assume that the signal is the first-order Markov process with the correlation coefficient
p = 0.95 [59], which is widely used in image processing. The correlation matrix is given by
©)ij = O'pr“_”, fori,j =0,...,2M - 1. Thisyields the following expression for 0'2f~:

0'2f~ = E¢Ke, )’ = E¢[&] ffTe] = 0% (e, Ce). (3.48)

Therefore, the criterion Jeg in (3.47) iswritten as

~1/M

M-1
Joo = 10Ioglo(]—[<a, Ca>||ri||2) , (3.49)
i=0

whererecall that e and r; are givenin (3.14) and (3.15), respectively.

Low DC Leakage For image compression purpose, “low DC leakage” is an essentia require-
ment [13]. Assume that the input signal is a constant function, that is, a DC signal, and then
consider the case that only the lowest transform coefficient is kept and the rest is set to zero. If
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each transform coefficient except the lowest one is not zero, then the reconstructed signal is no
longer identical to the original one. Such basis functions cause the checkerboard artifact [13].
Therefore, the inner product of each basis function except the lowest one with the original signal
must be zero. In other words, let 1\ be a DC vector such that al components are one, that is,
1y = (&;})T. Then, fori=1,...,M - 1, g hasto satisfy that

N

(&,1m) =0. (3.50)

A cost function for the low DC leakage is defined as

M-1

Joc = ) ke, Lw)? (351)
i=1
Consequently, finding VLLBT is formulated as a non-linear optimization problem:

Minimize - Jcg + pJoc, (3.52)
(UVERVAVS I C U PRV
subject to (ui, u;) = 6ij and (vi,V;) = 6ij, fori,j = 0,...,N./2 - 1, which are biorthogonal
constraints. However, the objective function Jcg can involve the constraints if we regard those
constraint equations as linear equations with respect to u;(n) and v;(n) (or u;(n) and v;'(n)). For
example, a constraint (ug, u;) = 0 means that a component u;(0) is determined by the other
components, i.e, Up(0) = —[up(1)uj(1) + --- + up(M/2 — Nuj(M/2 — 1)]/u;(0). Therefore, this
optimization problem is reduced to an unconstrained optimization problem including free pa-
rameters of which number islisted in Table 3.1.
In every step of the optimization, the short basis functions are found via the SKLT with a
correlation matrix of the Markov model, as expressed in Section 4.3, and then the cost function
(3.52) into which E and R are substituted is evaluated.

3.5.1 A Design Example and Evaluation

Using these properties, for example, let us consider thecase M = 8and N. = 2. Thecase N, =
2 gives the minimum number of the long basis functions because of the existing condition as
mentioned previously. In this case, U; and V1 included in the last stage U, and V are expressed
as scalars, i.e, Uy = @ and V; = 8. Obviously, we have that U, = 1/a and V| = 1/5. As
a result, the last stages U; and V3 only multiply the first and the second long basis functions
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Table 3.2: Comparison of coding gainin dB for AR(1) with p = 0.95: We choose M = 8 for al
Cases.

| Transforms | Coding Gain | Figure |
DCT 8.826
KLT 8.846
LOT [10] 9.219
VLLOT26 with DCT [38] 8.954
VLLBT26 (all free parameters are optimized) 9.325 Fig. 3.4
VLLBT26 with DCT [23] 9.269
VLLBT26 viaSKLT 9.325
VLLBT26 viaSKLT (Low DC leakage) 9.320 Fig. 3.5

by a constant, respectively. Therefore, we fix the constants to 1, that is, « = 8 = 1. We use
the correlation matrix [Ry ¢]ij = o', fori,j = 0,...,M — 1 for Theorem 2 to find the short
basis functions. Figures 3.4(a) and 3.4(b) illustrate the resulting basis functions e and r; of
the forward and the inverse transforms, respectively. Interestingly, the samples of the inverse
long basis functions decay to zero at their ends, although we never impose any requirements
of decay on transforms. This is greatly effective to reduce blocking. If we design the VLLBT
(N = 2) without DC leakage, the unknown parameters are U, Ug, Vo, and v; where two of the
16 components are determined by the others. In this case, we can also rewrite (3.52) as the
unconstrained optimization in the same manner. Table 3.2 shows comparison of coding gain
of several transforms. In the table, “26” means that the transform matrix consistrs of two long
and six short basis functions. Note that coding gain of the VLLBT where all free parameters are
optimized isthe sameasthat of the VLLBT via SKLT. Therefore, the use of the SKLT iseffective
in decreasing parameters to be determined. The basis functions and their frequency responses
are depicted in Figs. 3.4 and 3.5. Moreover, the VLLBT via SKLT which is optimized only for
coding gain gains 0.056 dB over the VLLBT26 with DCT. Indeed, the use of the DCT can reduce
the number of parameters; however it leads to decline in coding gain.

3.6 Summary

This chapter has presented a new framework for biorthogonal lapped transforms that consist of
long and short basis functions called the VLLBT. Moreover, the transform that gives the optimal
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Figure 3.4: A design example VLLBT26 where all paremeters are optimized for coding gain:
M = 8,N. = 2 (Coding gain = 9.325 dB)
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Figure 3.5: A design example VLLBT26 via SKLT with low DC leakage: M
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approximation in a given subspace (SKLT) has been described. We have shown that when the
biorthogonal long basis functions of the VLLBT are given, the optimal short basis functionsin
the energy compaction sense is derived by solving an eigenvalue problem which is resulted in
the SKLT. Therefore, we can find the short basis functions uniquely without iterative searching,
once the long basis functions are determined.

We have also provided design and image coding examples of the VLLBT. Coding gain of the
VLLBT is higher than that of the VLLOT. Moreover, coding examples show that the proposed
VLLBT issuperior to other conventional transformsin terms of PSNR at high compression ratio.
Furthermore, it significantly reduces the annoying blocking artifects. These results may imply
that the proposed VLLBT isapromising techniquein the field of image coding.

The VLLBT designed by the method demonstrated in this chapter includes a potential for
image coding using 1-D or 2-D adaptive transforms[47, 77, 78], which would be constructed by
changing the correlation matrix R ¢ ¢ in (3.21), adaptively. This problem will be addressed in the
next chapter.

3.7 Proofs

3.7.1 Proof of Lemmal

For any x € RM, we have

% (I =L)Rg (1 =L)"x)
<R1/ (1-L)x, R1/2(| —L)"x)

(X, Qx)

1/2(| L)"x|? > 0. (3.53)

Thisimpliesthat the matrix Q is positive semidefinite. On the other hand, since therank of R
is assumed to be M, that of le/? isalso M. Then, we havetherank of | — L isM — N_, we have

rank(Q) = rank((l - L)R¢¢(1 —L)T)

= rank((1 - )RY3[(1 - LRYZT)

= rank((l —L)Rl/z)
= rank(l - L)
= M-N. (3.54)
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Thus, the matrix Q has (M — N_) non-zero eigenvalues and the corresponding eigenvectors. O

3.7.2 Proof of Lemma 3

Pre-multiplying both sides of (3.34) by (I — L) T, we obtain

(I =LYRg (1 = L)T¢ = uf(l = L)g. (3.55)
Since L isaprojection matrix, we have (I — L)? = | — L. Therefore,
(I -DRss(1-L)T¢ = wi(l -L)g,
= uid; — il (3.56)

which impliesthat L¢; = 0. ]






Chapter 4

Adaptive Lapped Transformsfor Image
Coding

4.1 Introduction

The use of adaptation has resulted in significant improvements in both compression ratio and vi-
sual quality around edges. However, as long as we use block-transform coding, decoded images
cannot be free from annoying blocking effects at low bit rates. By using wavelets or lapped trans-
forms[13, 10], we can obtain reconstructed images without the blocking artifacts; however, they
areusually blurred especially around edges. 1nthe wavelet case, moreover, the construction of |o-
cally adaptive basis functionsis very difficult since “ double-shift” orthogonality/biorthogonality
is required for perfect reconstruction. Also, lapped transforms (LT) are powerful tools for the
reduction of the blocking artifacts in image compression [8, 15, 16, 36, 22]. The blocking arti-
facts are reduced by overlapping basis functions of which size is larger than the block size. Itis
however difficult to construct a space-varying LT [78] since the LT has a strong constraint such
that the overlapping parts of the basis functions must be orthogonal or biorthogonal. Several
studies on a space-varying LT have been conducted [48, 49]. However, they are one-dimensional
transforms; therefore, difficulty in design of two-dimensional adaptive LTs such as orientation
adaptive ones remains, since the degree of freedom extensively increases in the 2D case.

In this chapter, we propose an adaptive lapped biorthogonal transform for image coding. In
Section 4.2, we formulate a general form of a one-dimensional lapped biorthogonal transform
with variable length basis functions (VLLBT) for two cases. 1) Length of overlapping basis
functions is an even-multiple of the block size; 2) the length is an odd-multiple. The former

a7



48 CHAPTER 4. ADAPTIVE LAPPED TRANSFORMS FOR IMAGE CODING

is a generalization of the VLLBT dealt with in Chapter 3. In the field of filter banks, a linear-
phase version of the VLLBT has been introduced [19], but we provide a vector-matrix form,
which is easily extended to a 2-D non-separable form and is not limited to linear-phase. The
SKLT introduced in Chapter 3 enables us to find the optimal non-overlapping basis functions
without numerical searching. In Section 4.4, we show an orientation adaptation example. We
construct a transform matrix of the VLLBT with respect to a class characterized by the angle
of edges. The resulting VLLBT is two-dimensional and will be called an orientation adaptive
lapped biorthogonal transform (OALBT). In Section 4.5, we show a method for designing the
long basis functions and construct the OALBT.

4.2 Lapped Biorthogonal Transformswith Overlapping Basis
Functions

Before derivation for the proposed adaptive lapped transform, we formulate in this section a
generalized form of alapped biorthogonal transform with overlapping and non-overlapping basis
functions. A vector-matrix form will be utilized for the formulation.

4.2.1 Formulation

Consider two matricesE = | Ej E] -+ Eg, ]T adR=| R} R --- RE, ]T of size
KM x M, which will be called aforward and an inverse transform matrices of alapped biorthog-
onal transform (LBT), respectively. Keepinmindthat fori =0,...,K-1, Ejand Ry are M x M
matrices. Columns of E and R are basis functions. Let f; be thei-th block with M samples of an
input signal. Then, the transform vector g; is obtained by

K
fi= > Elafikm (4.1)
k=1
and the reconstructed block f; is obtained by

K
fi= D Reafinc (4.2)
k=1
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For perfect reconstruction f; = f, the generalized LBT has to satisfy the following conditions
[13]:

K-1 K-1
RIExk= Y R¢E} =1y, (4.3)
k=0 k=0
K-1-s K-1-
Ry Ekss = RE[, ¢ = Ou, (4.4)
k=0 k=0

wheres = 1,...,K — 1. Equation (4.3) describes biorthogonality of basis functions, and (4.4)
means that the overlapping functions of neighboring blocks must also be biorthogonal .

Let usintroduce two matrices Ey and E, which contain thefirst N and the remaining (M—N,)
column vectors of Ey, respectively, that is,

A —

Ek:[Ek Ek], k=0,....,K -1 (4.5)

1. Type-E (K iseven)

Assume that K is even. Setting that Ey = Oy except for k = (K — 1)/2, E becomes

_ é_o E, --- Ex.
E—[ 2o B, (46)

where E, iswritten as E for simplicity. In this case, E isaforward transform such that N,
basi s functions have length KM and the remaining (M — N, ) functions have length M. The
former will be called the long basis functions, and the latter will be called the short basis
functions. In the same manner, we define an inverse transform as follows;

Ry, R
_| R Ou (4.7)
ﬁK—l OM

The columns of E and those of R correspond to the long basis functions of the forward and
the inverse transforms, respectively. Similarly, E and R contain the short basis

Note that in this structure, if all basis functions are symmetric or antisymmetric, then the
basis functions' center of symmetry are not aligned. This fact needs a special treatment at
image boundaries when the transform is applied.
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Type-E (K=2) Type-O (K=3)

Figure 4.1: Images for transform matrices of Type-E and Type-O

2. Type-O (K isodd)

Assume that K isodd. Setting that E, = Oy except for k = (K — 1)/2, E becomes

Eo --- E(K—l)/z S S
_ = 4.
e=| fo o Bege o B @9
where E_12 is written as E for simplicity. In the same manner, we define an inverse
transform as follows:

A

Ro  Ou |
R=| Rkyz R | (4.9)
éK—l Om |

Since K isodd, if all basis functions are symmetric or antisymmetric, then the basis func-
tions center of symmetry are aligned. Therefore, no special processing at image bound-
ariesis needed.

Figure 4.1 illustrates images of Type-E and Type-O.

In the context of linear-phase perfect reconstruction filter banks, this transform can be re-
garded as particular cases of the generalized |apped biorthogonal transform with variable length
functions [19]. We will use the term variable-length lapped transform (VLLT) to refer to the
proposed transform. Especiadly, if the basis functions are orthogonal, the transformiis called the
VLLOT, and if the basis functions are biorthogonal, the transform is called the VLLBT. (“O”
and “B” indicate orthogonal and biorthogonal, respectively.)



4.3. DERIVATION OF SHORT BASIS FUNCTIONS VIA THE SKLT 51

In the VLLT, the short basis functions never overlap across block boundaries, so that they
enable us to easily construct adaptive lapped transforms. For both Type-E and Type-O VLLTS,
inserting E and R into the LBT conditions (4.3) and (4.4), we obtain the following common

conditions;

Condition 1 The long basis functions of the VLLBT are required to be biorthogonal, and the
overlapping parts of the basis functions of neighboring blocks must also be biorthogonal:

= In, (4.10)

Ok, s=1,....,K -1 (4.12)

x~
¥
(%]
M
x
Il

Furthermore, the following condition for overlapping partsisrequired:

K-1-s o K-1-s . .
RiBies= > RsEk=0u, s=1...,K-1 (4.12)
k=0 k=0

Condition 2 For the short basis functions, biorthogonality is required:
R'E' =1lyn. (4.13)

The long and short basis functions must have the following relation:

K-1
D ReEi+RE =y, (4.14)
k=0

If long basis functions meet Condition 1, we say that they are feasible.

4.3 Derivation of Short Basis Functionsviathe SKLT

Once E and R satisfy Condition 1 ((4.10), (4.11), and (4.12)), the short functions that fulfill
Condition 2 ((4.13) and (4.14)) can be easily constructed by the SKLT introduced in Chapter 3.
Let E' and R be M x (M = N_) matrices whose columns correspond to short basis functions. The
following result leads to the optimal short basis functionsin the sense of minimizing the criterion
(3.20):

K-1

Proposition 2 Z R«Ex is a projection matrix of rank K.
k=0
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Proof appearsin Section 4.7.1.
Proposition 2 guarantees data compression ability of short basis functions if suitable long
basis functions are given. From Theorem 2, consequently, by setting that

K-1
L =) RE (4.15)
=0

in (3.21), we obtain a biorthogonal system {¢;, ¢ }-"-"*, which leads to the optimal short basis
functions. Let & and 1; be thei-th columns of E' and R.

Fy

Proposition 3 If we set that
& =¢i. (4.16)
and

m = d, (4.17)

the resulting VLLBT achieves perfect reconstruction, that is, E and R satisfies Condition 2.

Proof appearsin Section 4.7.2.

4.3.1 Design Algorithm
The steps to design the short basis functions can be summarized as follows:

1. Choose aset of the feasible long basis functions

and

2. Obtain the projection matrix L.
3. Obtain acorrelation matrix R¢ ¢ of the signal.

4. FromLemma 1, obtain (M — N_) eigenvectors such that the corresponding eigenvalues are

not zero.

5. Obtain the forward short basis functions from (4.16), and obtain the inverse short basis
functions from (4.17).
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4.4 Orientation Adaptation

441 Extensionto2-D transform

So far, it has been assumed that we are dealing with one-dimensional transforms. In the case
of real-valued transforms, however, orientation adaptive transforms have the two-dimensional
non-separable form. Fortunately, non-separable two-dimensional transforms can be easily con-
structed using the above algorithm when both a tensor product of the orthogonal projection ma-
trix generated by the long basis functions and a two-dimensional correlation matrix are given. In
the rest of this chapter, every M x M image block f is treated as an M? x 1 vector in the space
RM* by lexicographic ordering. In this case, asillustrated in Fig. 4.2, the “long” basis functions
have “length” of (KM)2. Similarly, the “short” ones have “length” of M?2. (We will use termsfor
the 1-D case such as “long,” “short,” and “length.”) Let

K-1 K-1
L = (Z ﬁk ék) ® (Z ﬁk ék) s (4.18)

k=0 k=0
where ® denotes the Kronecker’s tensor product [50]. It can then be easily checked that L is still
aprojection matrix of rank N2, and size M?x M2, By applying the result of Theorem 2, we obtain

the (M2 — N?) 2-D optimal short basis functions g and r; of size M2 fori = 0,...,M2 - N2 - 1.
Thesizeof E' and R is therefore M2 x (M2 — N2).

4.4.2 Orientation Adaptive Lapped Transforms

Since the short basis functions never overlap across block boundaries, they can easily generate
space-varying lapped transforms via the SKLT. Let 6 be a parameter with respect to the angle
of an edge in each block. To simplify matters, the variation 6 is discretized into J levels such
that 6, = -5+ 5jforj=0,...,J-1 Forj=0,...,J -1 we define the class C; which is
characterized by the corresponding parameter 6;. Image blocks are then classified into one of
the classes {C; }J.J:o. The class C; is introduced for image blocks which do not belong to C; for
j=0,...,J— 1. Wedefine the corresponding correlation matrix set {R(fj)f 1-1 where R(fj)f isan

j=0°
M2 x M? matrix of the “directional” Markov mode! [43] defined as

[R(fj)f]p+qM,p’+q’M = o/ g,

p’ p,7q9q,:Oa'-~9M_1’ (419)
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The region of support
M of long functions (2M x 2M)

~d square blocks of size M x M
(The region of support
of short functions)

(& Type-E

The region of support
M / of long functions (2M x 2M)

N

Square blocks of size M x M
(The region of support
of short functions)

(b) Type-O

Figure 4.2: Support of regions of long and short basis functionsin the 2-D case
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where « and g are the correlation coefficients and dy(6;) and d(6;) are defined as

dx(8;) | _|cosf; —siné; || p-p
[dy(ej) ~|sng; coso; ||g-q | (4.20)
The VLLT resulting from L and R(fj)f will be called the orientation adaptive lapped transform
(OALBT) for the direction 6;. We write the short basis functions of the OALBT by a pair of
M2 x (M2 — N2) matrices EV = [, ... ’é%)z_Ng_JT and RV = [7), F(IJI)Z—NE—l]' Similarly, we
introduce a non-directional correlation matrix R(f”f with respect to the class C; given by

(R({:])f)p+qM,p’+q’M — p\/m’
p.p.g.q=0,....M-1, (4.21)

where p is the correlation coefficient. It generates the non-adaptive 2D VLLT with the optimal
short basis functions (we will call this non-adaptive version just “VLLT” to distinguish from the

£9,R9)

OALBT in encoders). Its short functions are included in { as columns.

4.5 Design Examples

451 TypeE OALBT

We consider the case that the block sizeis 8 x 8 (M = 8) and the length of long functionsis
16 (L = 2). We use two long basis functions (N.; = N, = 2) such that the transform matrices
contain the most number of short functions. Therefore, the block signal f isin R%. This choice
leads to four 2-D long functions and sixty short functions.

We choose two long functions from the Malvar’s lapped biorthogonal transform (LBT) [36],
wherethe particular choices for ¢ generate synthesi s basis functions whose asymptotic end values
are exactly zero. The matrices containing the long functions are given as

~ 1[ dO@ = cg® d© — cg®
for analysis, and
A © _ 14 O _ 14D
R = 1[d o o ] (4.23)

— Cc C
2 d(O) + :::d(l) _(d(O) + %d(l))
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-

Figure 4.3: Thefirst four short basis functionswhen 6 = 7/15

for synthesis, where d© and d® are the first and the second basis functions of the M-point DCT,
respectively, and c is a positive constant (¢ = V2 is chosen in [36]). This matrix satisfies Condi-
tion 1. It is moreover verified that RoEq + R, E; isaorthogonal projection matrix. The resulting
2-D orthogonal projection matrix L has rank four. Note that these functions are symmetric or an-
tisymmetric, so that the resulting short functions are also symmetric or antisymmetric as shown
in Theorem 3. This choice of the long basis functions leads to the fact that R = ET, because
the orthogonality of RoEq + R1E; yieldsthe fact that ¢, = ¢ when deriving the SKLT. In other
words, although the long basis functions are biorthogonal, the short ones are orthogonal. This
specia choice is done to avoid complexity caused by special treatment at block boundaries as
will be stated later. Some of the resulting short basis functions for § = /15, areillustrated in

Fig. 4.3. The correlation coefficients of R(fj)f asin (4.19) is chosen to @ = 0.95 and 8 = 0.50.

Special Processing at Image Boundaries Note that to process finite length images, special
careisrequired for the image boundary to avoid the border distortion. Boundary functions have
length (M + M/2), that is, twelve in this case, and these are given as [8, 71]

~ (left) 1 2d© 2d©

= = E[ dO 4 cd® ~(d© - cd®) | (4.24)
for left boundaries, and

A (ri 1 O _ ~d® HO _ ~q@®

glion  _ [d cd® d@ —cd ] w2

2| 23,d9  -23,d9

for right boundaries. The function d contains the first DCT function as

e ] . (4.26)
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— (L) —(Up) —(Up) —(Up)
M/2
E, E, E, E,
—(Le) —2D —2D —2D
E, E, E, E, M
—(Le) —2D —2D —2D
E, E, E, E,
M/2 M

Figure 4.4: The block partition and short basis functions with respect to each block

We can also obtain R and R™™™ by replacing cd® with 1d®™ in (4.24) and (4.25). Then, the
orthogonal projection matrices L (W and L9 are given by

| (ef) ngO)dgo)T (4.27)
| (ighy  _ 2J4dgo)dgo)TJ4. (4.28)

This implies that the size of blocks at image boundaries is no longer 8 x 8 (see Fig. 4.4). For
instance, L(¥Y @ L (¥ generates the 15 short basis functions for the upper left block of size 4 x 4.
These are denoted by the matrix form E(OLJ_JL), where UL isinitials of “upper left”. Let us show
another examplein asimilar manner. The orthogonal projection matrix L "9 gL, whoserank is
two, yields Ej for the lower blocks of size 8x 4. The matrix Ey ® has size 32x 30 and contains
the 30 short basis functions. The relations between the 2-D orthogonal projection matrices and
the corresponding short basis functions are summarized in Table 4.1 in our case, thatis, L; = L,
and N_; = 2.
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Table 4.1: The short basis functions for boundary blocks: OPM and # of SBF denote the 2-D
orthogonal projection matrix and the number of the 2-D short basis functions, respectively.

[ BlockType | Sze |  OPM | Rank || #of SBF | Notation |
Inside (normal) | 8 x 8 L;®L;y 4 60 53?
Upper Left | 4x4 | L0 g (D 1 15 E_(oLjJL)
Upper Right | 4x 4 || L9 g | (e 1 15 E_(OLER)
Lower Left | 4x4 | LiMWgL0igm | 1 15 E_(ojL)
Lower Right | 4x 4 | L0190 g (o) | 1 15 E_(OI;R)
Upper 4x8 | LWL, 2 32 30
: ]

Lower  |4x8| LioWgp, | 2 32 Ep,”
Right 8x 4 L, ® LMo 2 32 Ig(oj.)

452 Type-O OALBT

Consider the case that the basis functions of the VLLBT are all symmetric/antisymmetric, that is,
linear-phase. In the Type-E, since K = 2 was chosen, the symmetric extension method [79, 80]
could not be used, and special care was required for the image boundary in order to avoid the
border distortion.

The long basis functions are produced by the method like the GenLOT [15]: Let h;, i =
0,...,K —1 belinear independent vectors of size M such that h; is symmetric if i is even, and
antisymmetric otherwise. Define

~ _ l:le o U| O
HO‘[HO]’A"[O Vi

1 {1k2 lkpe2
W= —— , 4.29
\2 [ Iz —lk2 (4.29)

where H and H, are K/2 x M matrices consisting of rows which are hiT for eveni and hiT for
odd i, respectively, and U; and V; are non-singular matrices of size K/2 x K/2. Then, E can be
found from the following recursion:
~ k2 Ok2 Ok2 Okj2 WHi_1  Okxm
H = AW X 4.30
' - [ Oki2 Okz Oz k2 Okxm  WHi4 (4.30
E = H_. (4.31)

The corresponding inverse long basis function matrix R can be obtained by substituting A; for
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A7t and Hg for G such that GoHo = I« in (4.30) and (4.31). Specifically, R iswritten as

A k2 Okp2
N Gi_1W  Ouxk Ok2 Okj2 -1
Gi — N WA , 432
[ OM><K Gi_1W] oK/Z oK/Z -1 ( )
Ok2 k2
R = éL—l- (4.33)

These E and R meet the conditions (4.10), (4.11), and (4.12). As aresult, the free parameters
which we should find are Ho, Go, and Ai(i = 0,...,K — 1).

For application in image coding, we use coding gain and low DC leackage as cost functions.
Finding the long basis functions is formulated as a non-linear optimization problem:

Minimize - Jcg + pdpe, (4.34)
Ho.Go UV,
subject to HoGg = I, Where i is aweight for the combination of two cost functions. In every
step of the optimization, the short basis functions are found via the SKLT with a correlation
matrix of the Markov model, as expressed in Section 4.3, and then the cost function (4.34) into
which E and R are substituted is evaluated.

In our test, we choose that M = 8, L = 3, and N. = 2; there are two sets of long basis
functions {&y, &} and {f, F1}, where each function has length of 24. The case N = 2 gives the
minimum number of the long basis functions because of the existing condition as described in
[18]. In other words, this case gives the maximum number of adaptive basis functions. This may
be a good choice for adaptive image coding purpose. In this case, U; and V; are scalars, and
both HZ and G, consist of two vectors of size M. This optimization problem can be reduced
to an unconstrained optimization problem as described in Chapter 3. The resulting long basis
functions are illustrated in Fig. 4.5. It is interesting that the inverse long basis functions decay
to zero at their ends, even though we never impose any constraints for decay on the long basis
functions. This property is effective to reduce the blocking effects.

Since the long basis functions have been aready obtained, the short basis functions are au-
tomatically found as described in Section 4.4. By using L given asin (4.18), we can obtain the
2-D short basis functions with respect to the angle ;. For the correlation coefficients of R(fj) RE
choose that = 0.95 and 8 = 0.50. As an example, the first eight short functions of the OALBT
with respect to the angle 8; = 2r/15 areillustrated in Fig. 4.6.
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(a) The long basis functions of the forward transform
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(b) The long basis functions of the inverse transform

Figure 4.5: The resulting long basis functions
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e

(@) Short basis functions of the forward transform

S D

(b) Short basis functions of the inverse transform

Figure 4.6: First eight short basis functions of the OALBT for 6 = 2/15 (the correlation coefi-
cients are set that o = 0.95 and 8 = 0.50)

46 Summary

A novel adaptivelapped biorthogonal transform and its application in orientation adaptive coding
have been proposed. The proposed transform consists of overlapping and non-overlapping basis
functions, where the basis functions' centers of symmetry are aligned, so that we can treat the
image boundaries without special processing. To construct non-overlapping basis functions, we
have also introduced a transform that provides the optimal approximation of an original signal in
agiven subspace. In the encoder, an image block is selectively transformed by one of orientation
adaptive transforms.

We have shown that the non-overlapping basis functions can be obtained from a correlation
matrix by solving the eigenval ue problem. Any conventional adaptation procedures based on the
Karhunen-Loéve transform can be applied to the proposed design method of Iapped transforms.
Therefore, the proposed framework is powerful for the design of adaptive transforms without the
blocking effect.
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4.7 Proofs

4.7.1 Proof of Proposition 2

Let us introduce the transform matrices given by

and

Before we prove Proposition 2, we show the following lemma:

Lemma5 The matrix P defined by

IS a projection matrix.

Proof: We have

since the columns of E and R are biorthogonal from (4.10). Therefore, Lemma 5 holds.

S
Il
—

P2 =7 FF = it = P,

Now, we shall show the proof of Proposition 2.
Proof of Proposition 2: From (4.11), we can rewrite P as

(4.35)

(4.36)

(4.37)

(4.38)

O
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= : (4.39)

whichimpliesthat P isablock diagonal matrix. It followsfromLemma5that L? = L. Therefore,
L isaprojection matrix.
Next, because L is a projection matrix, we have

rank(L) = tr(L), (4.40)
which can be rewritten as
rank(L) = tr(L)
L1 L-1 T AT
= tr(z R E|) =tr (Z R E ) = trIn] = Ni, (4.41)
1=0 1=0
since (4.10) holds. This completes the proof. |

4.7.2 Proof of Proposition 3

It is evident from Proposition 2 that E and R satisfy the condition (4.13).
The SKLT X of rank M — N, isidentical to RE, since

M-N_-1

X= > ¢ =RE. (4.42)

n=0
From the fact that ¢, is an eigenvector of Q, RE gives the projection into R(Q). Hence, we have
R(RE) c R(Q)

R((I - LRss(1 - L)")
- R(l -L), (4.43)

sincetherank of R¢ ¢ isfull. From Lemmal, rank(Q) = M — N_. Therefore, we have

R(RE) = R(I - L). (4.44)
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On the other hand, because REL = 0, we obtain N(RE) o R(L) = N(I — L). However, since the
rank of RE isM — N, , we have

N(RE) = N(I - L). (4.45)
From (4.44) and (4.45),
| - L = RE, (4.46)

which yields that (4.14) holds, O



Chapter 5

| mage Coding Applications and Evaluation

5.1 Introduction

We have so far constructed the various classes of lapped transforms. Those lapped transforms
have been designed for applications in image coding. In this chapter, we evaluate those per-
formance by image coding experiments. We use a simple algorithm to encode transform coef-
ficients. We describe details of coding methods, and show rate-distortion characteristics of the
coders. Moreover, we also compare subjective qualities of decoded images.

5.2 Image Coding Algorithms

The structures of the encoders used for comparison are illustrated in Fig. 5.1 and 5.2. The en-
coder shownin Fig. 5.1 has atypical structure as seen in Chapter 2. Thisisused for non-adaptive
transform coding. Recall that this dissertation does not address the “ coding step” but the “trans-
form step.” Therefore, we will use a ssmple and well-known algorithm to encode the transform
coefficients. If the transform corresponds to the DCT, Fig. 5.1 represents a block diagram for
the baseline-JPEG [39]. Figure 5.2 depicts the encoder structure when the adaptive transform is
used. In other words, we use this algorithm for the OALBT. For fair comparison, the bit assign-
ment parts (which is denoted by “VLC” in Figs. 5.1 and 5.2) in both the encoders are the same.
However, we must choose an appropriate transform out of a set of adaptive transforms. There-
fore, we need a classifier for input block signals. Moreover, short basis functions of adaptive
transforms are of an 2D non-separable form. In the following, the details of the encoders for the
VLLBT, the Type-E OALBT, and the Type-O OALBT areillustrated.

65
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Transformation E_DQ; é‘ %
---------------------------------------- EE) % =
Input g 3 g
imme : P> HT > VT + RTC j—>| V L C o =
f H .

HT: Horizonta transformation

VT: Vertical transformation
RTC: Zig-zag reordering and quantization of the transform coefficients

VLC: Variable length coding (Run-length/Huffman encoding)

Figure 5.1: The structure of the non-adaptive encoder

Transformation

......................................... : .
I HTL = VTL ) < ‘§
ot "] RTC VLC fm
T Ll T
CLA| i

Side Information

CLA: Classification the blocksinto (J +1) classes (J directional or one non-directional)
HTL: Horizontal transformation with the long basis functions

VTL: Vertica transformation with the long basis functions

ATS: Adaptive transformation with the short basis functions

RTC: Reordering and quantization of the transform coefficients

VLC: Variable length coding (Huffman encoding)

Figure 5.2: The structure of the adaptive encoder
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521 VLLBT

Inthe VLLBT case, to process finite length signals, special careis required at the image bound-
ary to avoid border distortion. Since the basis functions have different center of symmetry, the
symmetric extension method is unable to be used for the proposed VLLBT. However, this prob-
lem has already discussed in [8, 38]. Thus, we apply the method introduced in [38] to boundary
processing.

522 TypeE OALBT

The encoder consists of the following four steps
1. classification;
2. transformation;
3. reordering/quantization;
4. coding.

Aninput imageis partitioned into 8 x 8-blocks. The block is classified into one of the classes and
transformed by the corresponding adaptive transform. Sideinformation on the transform selected
in each block are coded by using the run-length and Huffman techniques. Due to boundary blocks
whose size is not 8 x 8, scan method of transform coefficients is dlightly tricky, The scanned
coefficients are uniform quantized with the same step size for each coefficient. In order to code
the transform coefficients, we use the same run-length/Huffman table as the baseline JPEG [39].
The details are described as follows.

Transfor mation

Aninput imageisfirstly transformed with the long basis functions. Transformation is performed
in horizontal and vertical directionsin the image as described in Fig. 4.4. When the input image
iswritten as a matrix form F, the matrix which contains the transform coefficients with respect
to the long basis functionsis obtained by

F=T1FT, (5.1)
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where

- (left)

-1
Il
M

(5.2)
E

O E(ri ght)

For example, when theimage F is of size 512 x 512, the transform matrix of Malvar’slong basis

functions given in (4.22) produces the coefficient matrix F of size 128 x 128.

On the other hand, the input image is partitioned into blocks as shown in Fig. 4.4. In this
experiment, the use of adaptive transform is applied to normal 8 x 8 blocks. At boundary blocks,
we assume that signals are the “non-directional” Markov process with the correlation matrix
given by (4.21). At normal blocks, the signal is classified into one of the class set {C; }J.J:0 and
transformed by the corresponding matrix E?,JD

Classification

In order to transform blocks with the short basis functions, the encoder has to classify blocks
into one of the classes Cj, j = 0,...,J — 1 for the OALBT and the class C, for the VLLBT.
Then, each block is transformed by the OALBT or the VLLBT derived from the corresponding
correlation matrix R(fj)f .

Let f be an input block. If the block is a part of smooth image regions, that is, the variance
of f is comparatively small, then it would not contain any strong edges. Therefore, it is natural
that f belongsto C;. Specifically, if the variance is below a certain threshold 7, then the input

signal is assigned to the “non-directiona” class Cy, i.€,
o-2f<T=>feCJ, (5.3)

where o2 denotes the variance of f. On the other hand, if the variance of f is comparatively

f
large, that is, 0% > 7, the block would contain strong edges or textures. In this case, we classify

the data f by the subspace method. The projection matrix with respect to the class C; is defined
as

pe)
.

Pi=p &, (54)

,
Il
o
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wherel < R < M — N_ — 1. In subspace methods, the projection matrix P; characterizes each
class C;. Hence, an input block f is assigned to the class such that the norm of its projection is
maximized, that is, fori, j =0,...,J,

IP I > IPfl? Vj#i= feC. (5.5)

Assumethatri,i =0,...,M — N_ — 1lisnormalized so that ||ri|| = 1. Then, the above expression
can be reduced to

R-1 R-1
KED, £ > Z|<é$i>, Y2 Vjzi= feC, (5.6)
r=0 r=0
since
PR = || > (@D, f)rth
r=0
R1R1 _ _ _
= > D UED, @D, (0, b))
r=0 s=0
R-1 _
= > KED, )y (5.7)

o

r=

by using the fact that inverse short basis functions r, are orthonormal because the matrix Q is
symmetric.

Bit Allocation for Side I nformation

For decoding, side information which indicates the class of each block should be transmitted or
stored. We build the Huffman codebook for run-length on the non-directional class. For a block
which does not belong to the non-directional class C;, five bits are allocated. When the rest of
the blocks in the image are the non-directional class blocks, the end-of-header (EOH) symbol is
used for efficient coding. The Huffman codes used for side information are listed in Table 5.1.
Consequently, the larger threshold r causes the shorter length of bitstream for side information,
since the more blocks are classified into the non-directional class C;. However, thisleads to less
coding performance. It is necessary to choose an appropriate threshold  empirically.

Scanning M ethods for Coefficients

The transform coefficients are coded by using the run-length and Huffman coder such as the
baseline JPEG [39]. Because afew blocks, say, boundary blocks have different sizes from what
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Figure 5.3: The four subsets Sy (i, j) that the set of coefficients S(i, j) are divided into

normal blocks have, it is necessary to use various run-length Huffman coders. However, by re-
organizing the transform coefficients, we can apply a single Huffman coder. Figures 5.3 and 5.4
visualizes the block reorganizing method for the transform coefficients. The transform coeffi-
cients produced by E(ZJJ_D arewritten as s, and they areillustrated as four kinds of marked circles,
as shown in Fig. 5.3. Let S(i, j) be the set of the transform coefficients s, of the normal block
(i, j). Inthis example, S(i, j) has 60 elements, that is, S(i, j) = {s2,- For m=0,1,2,3, let
Sm(i, ) be the subset of S(i, j) defined as Sy(i, j) = {sklk = 4n+ m, 0 < n < 11}. To simplify the
presentation, the elements of each subset Sy(i, j) are illustrated separately in Fig. 5.4 (b).

On the other hand, one can partition the transform coefficients matrix F produced by E, ',

and E"" into N_ X N_-blocks (see Fig. 5.4 (¢)). In this experiment, these blocks consist of one
“DC” component and three “AC” components, and the coefficient set of the (i, j) block iswritten
by L(i, j).

These sets organize the new coefficient set $(i, j) isgiven as
B(, j) ={L(>, ), So(i+ 1, ) +1),8:1(, j + 1), S2( + 1, j), Ss(i, )}, (5.8)

as shown in Fig. 5.4 (d). After the quantization, in each block $(i, j), the run-length coder scans
the coefficients of £ first, and those of 8 in ascending order with respect to k.
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Table 5.1: Huffman codebook for run-length on the non-directional class to encode side infor-
mation

| Run | Code Length | Code Word | Hex |
0 1 0 0000
1 2 10 0002
2 4 1100 000C
3 4 1101 000D
4 5 11100 001C
5 5 11110 001E
6 6 111110 003E
7 8 11111100 O0FC
8 8 11111101 OOFD
9 8 11111110 OOFE
10 9 111111110 O1FE
11 10 1111111110 O3FE
12 12 111111111100 | OFFC
13 12 111111111101 | OFFD
14 12 111111111110 | OFFE
15 13 1111111111110 | 1FFE
DRL 5 11101 001D
EOH 13 1111111111111 | 1FFF

52.3 Type-O OALBT

Because of the alignment property of basis functions of the Type-O OALBT, we need no special
processing at image boundaries as needed for the VLLBT and the Type-E OALBT.

Transform, Classification, and Scanning

Aninput imageisfirstly transformed with the long basis functions. Transformation is performed
in horizontal and vertical directionsin theimage. At image boundaries, the symmetric extension
method [79, 80, 15] is employed. As aresult, we obtain N? coefficients per block. Next, each
block is classified into J + 1 classes by using the classification algorithm described in Section
5.2.2. Then, the block belonging to a class C; is transformed with the short basis functions EV,
The short basis functions generate (M2 — N2) transform coefficients at each block. Therefore,
the total number of coefficients is the same as the size of the input image. Note that thereis no

redundancy.
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For transform coefficients, in thistest, we adopt a uniform scalar quantizer and the same run-
length/Huffman codebook as the baseline JPEG [39]. However, zig-zag scanning is applied only
to the coefficients produced by the long basis functions since the short basis functions have 2-D
non-separable form.

5.3 Image Coding Resultsand Comparisons

The images used for the experiments are Barbara, Lena, and Pepper, which are standard, well-
known 512 x 512 8-bit gray-scale test images. Table 5.2 shows comparison of PSNR (peak
signal-to-noise ratio) in dB for the standard images at different bit rates in bit per pixel (bpp).
Transformslisted in Table 5.2 are:

DCT thediscrete cosine transform (DCT);
VLLOT26 the VLLOT (N, = 2) designed in Chapter 3;
VLLBT26 the VLLBT (N = 2) designed in Chapter 3;

Type-E VLLBT the Type-E VLLBT (N. = 2, K = 2) with 2D non-separable short basis func-
tions designed in Chapter 4;

Type-E OALBT the Type-E OALBT (N = 2, K = 2) designed in Chapter 4 (Adaptive Coding
for 32 orientations);

Type-O VLLBT the 2D separable Type-O VLLBT (N_ = 2, K = 3);

Type-O OALBT the Type-O OALBT (K = 2, L = 3) designed in Chapter 4 (Adaptive Coding
for 32 orientations).

In the following, we describe arguments on each proposed transform.

5.3.1 VLLBT: Orthogonal vsBiorthogonal

The original and the decoded imagesfor Barbaraat 0.25 bpp are shownin Figs. 5.5and 5.6. Table
5.2 shows that at 1.00 bpp and 0.50 bpp, comparatively higher bit rates, the coding performance
of the DCT based method is superior to that of the other methods. At bit rates lower than 0.50
bpp, the VLLOT and the VLLBT work well, and the proposed VLLBT outperformsthe VLLOT
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Table 5.2: Comparison of PSNR (dB) results for 512 x 512 “Barbara,” 512 x 512 “Lena,” and
512 x 512 “Pepper” images at different bit rates (bpp)

[ Bit Rate [1.00 [ 050 | 0.25 [ 0.20 |
512 x 512 “Barbara’

DCT [34.90 | 29.00 | 2449 | 23.14

VLLOT26 33.75 | 28.67 | 2450 | 23.28

VLLBT26 33.38 | 28.40 | 24.68 | 23.86

TypeE OALBT | 34.02 | 29.44 | 25.80 | 24.01
TypeEVLLBT | 33.43 | 28.02 | 24.45 | 23.48

Type-O OALBT | 35.84 | 30.10 | 25.76 | 23.85
Type-O VLLBT | 34.70 | 29.06 | 24.74 | 23.66

512 x 512 “Lena’

DCT | 3852 | 34.99 | 30.73 | 29.18
VLLOT26 38.25[ 34.74] 30.65 | 29.24
VLLBT26 38.01 | 34.85 | 31.13 | 29.81

Type-E OALBT | 38.16 | 34.69 | 30.96 | 29.21
Type-EVLLBT | 38.07 | 34.39 | 30.51 | 29.13

Type-O OALBT | 38.35 | 35.28 | 31.32 | 29.39
Type-OVLLBT | 3847 | 35.17 | 31.17 | 29.72

512 x 512 “Pepper”

DCT [36.00 | 33.88 | 30.49 | 28.95
VLLOT26 35.58 | 33.57 | 30.37 | 28.89
VLLBT26 35.76 | 33.86 | 3115 | 29.91

Type-E OALBT | 35.97 | 33.97 | 30.83 | 20.14
TypeEVLLBT | 35.81 | 33.61 | 30.53 | 29.29
Type-O OALBT | 35.84 | 34.08 | 31.21 | 29.48
TypeO VLLBT | 35.83 | 34.00 | 31.17 | 29.84
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in PSNR. It should be noted that the blocking artifacts of the VLLBT-decoded image are much
less visible than those of the DCT- and the VLLOT-decoded images. This property is caused by
the fact that end values of each long basis functions of the inverse transform r; are amost zero
asillustrated in Fig. 3.4(b).

5.3.2 OALBT: Non-Adaptive vs Adaptive

The correlation coefficient of R(f”f for design of the VLLBT is set to 0.95 (p = 0.95). In the
classifier, eight short basis functions are used (R = 8). The threshold is set to = 300 for the
Type-E and v = 200 for the Type-O. The total number of classesis 33 (J = 32), where the classes

Cj,j=0,...,32denote 32 “directional” blocks and Cz, denotes one non-directional block.

Type-E

Figure 5.7 shows the resulting class map of the test image “Barbara.”. In Fig. 5.7, four kinds
of white lines indicate directional blocks and its direction of the angle, where 32 directions are
quantized into four directionsto be seen easily.

The amount of sideinformation and the percentage of directional blocksin the OALBT coder
areshownin Table 5.3. It can be observed in Table 5.2 that the OALBT consistently outperforms
the VLLBT although there exists side information for the OALBT. This fact indicates that more
sophisticated scheme to encode side information than ours may lead to better performance. The
OALBT has a higher coding gain than the DCT at rates below 0.5 bpp. For “Barbara” at 0.25
bpp, the OALBT gains about 1.39 dB over the DCT.

Figure 5.8 illustrates the decoded images 512 x 512 “Barbara’ at 0.25 bpp, and Fig. 5.9
shows their magnified versions. Both the VLLBT and the OALBT have no blocking artifacts.
However, it should be noted that the OALBT reduces ringing and blurring around strong edges
and therefore provides clearer edges and lines than the other coders. Consequently, performance
of adaptive transforms gains an advantage over that of non-adaptive transforms even though side
information is needed.

Type-O

The amount of side information and the percentage of directional blocks (corresponding to
classes Cj, j = 0,...,31) in the OALBT coder are shown in Table 5.4. Figure 5.10 shows
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(@) Theorigina “Barbara”

(c) The VLLOT (PSNR = 24.50 dB) (d) The VLLBT (PSNR = 24.68 dB)

Figure 5.5: Comparison of the decoded images at rate 0.25 bpp
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(c) The VLLOT (PSNR = 24.50 dB) (d) The VLLBT (PSNR = 24.68 dB)

Figure 5.6: The magnified images of Fig. 5.5
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Table 5.3: The amount of overhead and the percentage of directional regions for the Type-E
OALBT coder

Barbara Lena Pepper
Overheadinbpp | 0.0439 0.0272 0.0251
Directional region | 388% 204% 17.2%

Figure 5.7: Classification map of “Barbara” in the Type-E coder: Each white line indicates the
angle of the directional block.
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(3) The VLLBT (PSNR = 24.45[dB]) (b) The Type-E OALBT (PSNR = 25.80dB)

Figure 5.8: Comparison of original and encode versions (0.25 bpp) of the 512 x 512 grey-scale
“Barbara’

(3) The VLLBT (PSNR = 24.45[dB]) (b) The Type-E OALBT (PSNR = 25.80dB)

Figure 5.9: The magnified images of Fig. 5.8
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Table 5.4: The amount of overhead and the percentage of directional regions for the Type-O
OALBT coder

Barbara Pepper Lena
Overhead inbpp | 0.0445 0.0276 0.0281
Directional region | 39.1% 193% 20.2%

the resulting map of the test images “Barbara” and “Pepper.” In Fig. 5.10, four kinds of white
line segments indicate directional blocks and its direction of the angle, where 32 directions are
classified into four directions to be seen simply. In “Barbara,” some blocks containing striped
pattern are classified into directional classes, and others are not. Those blocks are judged to be
plane regions by the encoder with (5.3). This decision depends on the threshold 7. For smaller
threshold, they would be classified into directional regions. However, the smaller threshold re-
sults in the longer length of overhead and can lead to lower coding efficiency. The empirical
discussion for the threshold in orientation adaptive coding is shown in [44].

Coding results and comparisons at different rates are illustrated in Table 5.2. In “Barbara,”
OALBT consistently outperforms both DCT and VLLBT in the PSNR sense, even though there
existssideinformation. For example, at 0.25 bpp, OALBT gains1.27 dB over DCT. Inall images,
at lower bit rates, both VLLBT and OALBT show higher PSNRs than DCT. However, PSNRs in
“Pepper,” “Lena,” with OALBT are dlightly lower than those with VLLBT. At around 0.20 bpp,
OALBT results in lower performance than VLLBT. This can be explained by the existence of
side information. For example, at the PSNR 30.00 dB, the bit rate (including side information)
in OALBT is0.2139 bpp, and that in VLLBT is0.2049 bpp for “Pepper.” Thus, VLLBT requires
fewer bits than OALBT only by 0.0090 bits per pixel. In spite of this, 0.0276 bits are used for
side information for “Pepper.” Thisfact impliesthat a more sophisticated scheme to encode side
information than ours may lead to better performance.

Figures5.12 and 5.13 illustrate the original and the decoded images 512 x 512 “Barbara” and
“Pepper” at 0.25 bpp, respectively. We can observe that OALBT provides better subjective qual-
ity of the decoded image compared to the other methods. It seems that OALBT reduces ringing
and blurring around strong edges and therefore provides clearer edges and lines. These results
may indicate the use of adaptive basis functionsin the VLLBT can improve coding efficiency
despite the fact that side information is required for decoding.
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Figure5.10: Classification map in the Type-O coder: Each white line segment indicatesthe angle

of the directional block.
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(3) The VLLBT (PSNR = 24.74 dB) (b) The OALBT (PSNR = 25.76 dB)

Figure 5.11: Comparison of the decoded “Barbara’ images at rate 0.25 bpp

5.3.3 Compariton of Type-O OALBT with Other Existing Lapped Trans-
forms

As seen in the previous sections, the Type-O OALBT gives the most promising result among the
proposed transforms. In this section, we compare it with the conventional LOT and LBT. The
LBT used for comparison is Malvar’s LBT [36]. Rate-distortion characteristics for three coders
and the DCT coder are plotted in Fig. 5.15. The Type-O OALBT consistently outperforms the
DCT at rates lower than 0.70 bpp. Moreover, it provides higher PSNRs for the “ Pepper” image
at rates lower than approximately 0.60 bpp. However, the LBT consistently outperforms the
OALBT. It provides better performance in the rate-distortion sense than the OALBT.

So, how is subjective quality? The answer is shown in Figs. 5.16 and 5.17. The decoded
images with the LBT suffer from annoying ringing around edges compared to the ones with the
OALBT as shown in Figs. 5.11, 5.12, 5.13, and 5.14. It is evident from those figures that the
OALBT preserve edges and lines more clearly.
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(3) The VLLBT (PSNR = 24.74 dB) (b) The OALBT (PSNR = 25.76 dB)

Figure 5.12: Magnified imagesin Fig. 5.11

5.4 Summary

We have presented image coding examples and their comparison. From the comparative study in
this chapter, we can summarize those results as follows:

¢ Biorthogonal transforms provide better coding efficiency than orthogonal ones do.

e The orientation adaptation improves decoded images not only in preserving edges and
lines, but also in PSNRs at low bit rates.

e Type-O OALBT outperforms Type-E OALBT in coding efficiency and coder complexity.

In addition, despite of the existence of side information accompanied by the adaptation, the
OALBT provides high PSNRs and good visua quality. Therefore, the Type-O OALBT may be
apromising transform in the field of image coding.
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(c) The Type-O VLLBT (PSNR = 31.17 dB) (d) The Type-O OALBT (PSNR = 31.21 dB)

Figure 5.13: Comparison of the decoded “Pepper” images at rate 0.25 bpp
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(c) The Type-O VLLBT (PSNR = 31.17 dB) (d) The Type-O OALBT (PSNR = 31.21 dB)

Figure 5.14: Magnified imagesin Fig. 5.13
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Figure 5.15: Comparison of PSNR (dB) results for 512 x 512 “Barbara,” “Lena,” and “ Pepper”
images at different bit rates (bpp)
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(3) The LOT (PSNR = 25.70 dB) (b) The LBT (PSNR = 26.11 dB)

(c) The LOT (PSNR = 30.94 dB) (d) The LBT (PSNR = 31.76 dB)

Figure 5.16: The decoded “Barbara’” and “Pepper” images with the LOT and the LBT at rate
0.25 bpp
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(c) The LOT (PSNR = 30.94 dB) (d) The LBT (PSNR = 31.76 dB)

Figure 5.17: Magnified imagesin Fig. 5.11



Chapter 6

An Oversampled Lapped Transform

6.1 Introduction

In all LPPRFBs with the lattice structure in the literature, the number of channels is equal to
the decimation factor. On the other hand, FBs with a smaller decimation factor M than the
number of channels N are called oversampled FBs. In this chapter, we make an attempt to
construct N-channel (N > M) LPPRFBs based on the lattice structure. The oversampled FBs
have some advantages such as their improved design freedom and noise immunity [29, 30].
In this chpter, our goa is to establish lattice structures which can even represent the existing
GenLOT and GLBT. After preliminaries, aclass of oversampled L PPRFBsis proposed in Section
6.2. From the lapped transform perspective, we call these FBs the generalized lapped pseudo-
biorthogonal transform (GLPBT). This fundamental factorization is further parameterized by
applying the singular value decomposition (SVD) in Section 6.2.2. The SVD enables us to
characterize al filters by rotation angles and positive real numbers. For odd N, the factorization
can be established in a similar fashion as shown in Section 6.2.6. The relation between the
GLPBT and the conventional lapped transforms are discussed in Section 6.2.7. We also consider
in Section 6.3 the noise robust GLPBT which has the final block in the lattice supressing noise
added in the transform domain. We present some design examples in Section 6.4 and conclude
thiswork in Section 6.5. This work can be regarded as a consequence of a generalization of [22]
and [24], and can cover awide range of possible LPPRFBs, as summarized in Table 1.3.

89
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E(2 7 R(2

==

Analysisx” © T17Synthesis FB

Figure 6.1: Polyphase representation.

6.1.1 LPand PR Conditionsfor Oversampled FBs

When the channel number N is greater than the decimation factor M, that is, N > M, such a
FB is called an oversampled FB. Throughout this chapter, the polyphase matrices with respect to
the analysis and the synthesis banks are written by E(z) and R(2), respectively. The polyphase
matrix E(z) isof size N x M, and R(2) is of size M x N. Figure 2.1 illustrates the oversampled
N-channel FB that is dealt with throughout this chapter. This FB can be represented in terms of
the corresponding polyphase matrices as shown in Fig. 6.1.

A FB system provides PR (with zero delay) if and only if

RE® = I w. (6.1)

If R(2) isthe paraconjugate of E(2), i.e., R(2) = E'(z'%), we call this system pseudo-orthogonal;
otherwise we call it pseudo-biorthogonal. The special case where M = N gives paraunitary or
orthogonal FBsif it holds that R(2) = E"(z'%), and gives biorthogonal FBs otherwise. It should
be noted that the notion of pseudo-biorthogonality spans a very large space of PR FBs.

Let us consider an expression for the PR condition in the time domain, which is sometimes
useful for understanding in a vector space. Let

K-1
E@=) EZ', (6.2)
i=0
where E; isamatrix with no delay whose size isthe same as E(2). Similarly, let

K-1
R@ =) RZ, (6.3)
i=0
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where R; is also amatrix with no delay. Substituting (6.2) and (6.3) into the PR condition (6.1),
we obtain the equivalent condition in the time domain as follows [13]:

K-1-s K-1-s
Z REi,s = Z RissEi = dslm, S=0,...,K -1, (6.4)
i=0 i=0

whereés = 1if s= 0; 65 = 0 otherwise.
In order that E(2) and R(2) has the LP property, it is required that
E(2 = z®YDE(zY)J,
R(2 = Z“YIR(EZHD, (6.5)

where D is the diagonal matrix whose entry is +1 when the corresponding filter is symmetric
and —1 when the corresponding filter is antisymmetric.

6.2 Generalized Lapped Pseudo-Biorthogonal Transform

6.2.1 Even-Channel GLPBT

The generalized lapped pseudo-biorthogonal transform (GLPBT) is a class of oversampled LP-
PRFBs and a natural extension of the existing lapped transforms with lattice structure as summa-
rized in Table 1.3.

Define the following matrix:

G() = %(I)WA(Z)W, 6.6)
where
u o Inz  Ing2 Inz  Ong2
® = W= A@D) = : 6.7
[O V]’ [IN/Z —|N/2]’ @ [ON/z TllN/z (6.7)

where U and V are N x N nonsingular matrices; therefore, G(2) is FIR invertible. Moreover,
notice that

G(2) = 7% YDG(z 1) D. (6.8)

Definition 6 The even-channel GLPBT is an oversampled LPPRFB defined by the N x M anal-
ysisand the M x N synthesis polyphase matrices with the factorization given as
E(2) = E@Q®,S,
R(2) = S'®;R(2), (6.9)
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respectively, where E(2) and R(2) are given by

1
E@ =[] G@

i=K-1
~ K-1
R@=[|c@. (6.10)
i=1
where @, and S are defined as follows:
e if M iseven,
Uo O%X% 1 |% J%
oo o Ot | so k] 2] 611

where both Uy and Vg are left-invertible matrices of size N/2 x M/2;

2

e if M isodd,
[m1 Owma NJVE]
U Onoma 1 z o Z
q>o=[0 0 jx_],S:— 0 V2 0 |, (6.12)
Sl 0 ‘Vz | M1 OM4X1 —Jua

where both Uy and Vg are left-invertible matrices of sizes of N/2 x (M + 1)/2 and N/2 x
(M —1)/2, respectively.

The GLPBT has the following properties:

1. all analysis and synthesis filters are FIR with the same length L = KM and have the same
center of symmetry;

2. it consists of N/2 symmetricfiltersand N/2 antisymmetric filtersif N is even.

Remarks

e Theterminology pseudo-biorthogona comes from a theory of pseudo-biorthogonal bases
[25, 27], which is a particular class of frames [26, 28]. It can be shown that the filters of
the analysis bank and the synthesis bank generate aframe or a pseudo-biorthogonal basis.

¢ Inthe maximally decimated case, i.e.,, M = N, the second restriction on symmetric filters
is the unique solution for the number of filtersin LPPRFBs [81, 37]. In the overcomplete
case, however, the assumption does not cover all oversampled LPPRFBs [24]. Therefore,
afactorization for another class of oversampled LPPRFBs is an open problem.
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A structure is said to be minimal if the number of delays used is equal to the degree of the
transfer function [17]. The following theorem guarantees that the factorization is minimal.

Theorem 4 The factorization in (6.9) gives a minimal realization, i.e., the number of delays
required for itsimplementation is minimal.

Proof. From Definition 6, since ®,S has no delay, we have deg[E(2)] = deg[E(2)]. It has been
verified in [82] that for acausal square polyphase matrix having an anticausal inverse, the degree
of the system is equal to the degree of its determinant. Therefore, we have

deg[G(2)] = deg[|E(2)]
= deg[z N |D||E(z ) D]
= N(K - 1) - deg[E(2)], (6.13)

where we used (6.8). It follows that deg[E(2)] = N(K — 1)/2. This degree is equal to the total
number of delays employed in the structure. Therefore, the factorization is minimal. |

6.2.2 Parameterization of Each Block

In this section, we parameterize U; and V; in each building block G;(2) with the lattice structure,
leading fast implementation. The key technique to parameterization is the well-known singular
value decomposition (SVD). By means of the SVD, any invertible matrix can be decomposed
into two orthogona matrices and one diagonal matrix consisting of positive parameters. Since
an orthogonal matrix of size nis completely characterized by 2 rotation angles, the invertible
matrix is parameterized by rotation angles and positive multipliers [22]. The complete param-
eterization by the SVD enables us to obtain al filter coefficients by solving an unconstrained
optimization problem.

However, the initial block ® is not invertible but left-invertible. As seen, a left-invertible
matrix does not have the unique left-inverse. (This is a different point from what an invertible
matrix has the uniqueinverse.) In the following, we provide a solution to this problem. The key
technique is aso the SVD parameterization.

6.2.3 InvertibleMatrices

Parameterization of invertible matrices with the SVD has been used in [22]. Fori > 1, the SVD
decomposes every invertible matrix as U; = U I U;o, where Ujp and Uj; are orthogonal matrices
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and I'; isadiagonal matrix consisting of positive values [50]. Similarly, the invertible V; can be
written asthe product of orthogonal matricesV o and Vi, and adiagonal matrix A;: Vi = Vi1AiVio.
Their inverses Ut and V;* are represented as the following factorized forms: Ut = U ItU]
and Vit = VA7V Consequently, ®;,i = 1,...,K — 1 can be further factorized [22] as

Us O[T, 0l[Us O
q’i:[ 0 vil][o AiH 0 vio]’ (6.14)

where all of the orthogonal matrices Ujo, Ui1, Vio, and Vi, are of size N/2 x N/2; and therefore
each matrix can be characterized by N2/2 = M rotations. The diagonal matrices I'; and
A; are parameterized by N/2 positive parameters each. Hence, the matrix ®; is parameterized
by N2/2 free parameters, which indeed agrees with the sum of the degrees of freedom of two

N/2 x N/2 invertible (nonsingular) matrices.

6.2.4 Left-Invertible Matrices

As mentioned above, an invertible matrix can be easily parameterized. However, the problem
here is whether or not every left-invertible matrix can be parameterized. The key to solve the
problemisthe SVD.

Let us consider the left-invertible matrix U of size n x m, where n > m in the oversampled
case. Since the rank of the left-invertible matrix U is m, rank(UTU) = rank(UUT) = m. This
implies that both UTU and UUT have the same m positive eigenvalues 4; > 0, i = 0,...,m— 1.
Let U, be an n x m matrix such that ith column is an eigenvector of UUT with respect to A;.
Similarly, let U, be an mx mmatrix such that ith row is an eigenvector of UTU with respect to A;.
Sinceboth UTU and UUT are real symmetric, we can choose columns of U, and rows of U, such
that U U, = | and UpU] = 1, respectively. If UTU and UUT have m distinct eigenvalues, the
above orthogonal property holds automatically. Applying the SVD to U, we have the following
decomposed form:

U = U,TUy, (6.15)

where I is a diagonal matrix with positive parameters +/4;. Since the columns of U, form an
n—m) ~m2n-m-1)

lane rotations.
2 2 P

orthonormal system, U, can be parameterized by (2) - (

. . . -1 :
The orthogonal matrix Uy, is characterized by (rzn) = % rotations.
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6.2.5 Straightforward Choicefor the L eft-Inverse

In order to parameterize a left-inverse, we adopt the product U] T*U] as a |eft-inverse matrix.
It is easily confirmed that the product belongs to the collection of |eft-inverse matrices of U,. To
specify that it isa special element of the set of |eft-inverse matrices, we writeit by Ug, that is,

Us = Ui tu;, (6.16)

which is indeed referred to as the Moore-Penrose (MP) pseudoinverse [51], which is uniquely
determined with respect to a given matrix. Using this left-inverse, we can further factorize the
N x M matrix @, asin (6.11) and (6.12):

_ UOl 0 Fo 0 Uoo 0
SO | | 61

and the corresponding MP pseudoinverseis given by

+ _ Ugo 0 F61 0 Ugl 0
ol s el el 619

whereif M is even,

e Uy and Voo: M/2 x M/2 orthogonal matrices;

e I'y and Ag: M/2 x M/2 diagonal matrices;

e Ugy and Voi: N/2 x M/2 matrices of which columns are orthonormal,
andif M isodd,

e Uypand Voo: (M +1)/2%x (M +1)/2and (M — 1)/2 x (M — 1)/2 orthogonal matrices,
respectively;

o I'pandAp: (M+1)/2x(M+1)/2and (M-1)/2x (M —1)/2 diagonal matrices, respectively;

e Up and Vor: N/2x (M + 1)/2 and N/2 x (M — 1)/2 matrices of which columns are
orthonormal, respectively.

Both for even M and for odd M, the number of free parametersfor ®, is MN/2. Details of the
initial building block are illustrated in Figs. 6.2 and 6.3.
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1 N/2
/2 M/2 M/2
eveHV'O \/z» > U oo o = U1
B ><
—4J P2, oV oos| Ao Vs
odd ;2 - My2L—my2 >

Figure 6.2: Theinitial block when both M and N are even

w5 ua e N2
7 >
Mev:enl j >>< > U=t o~ Uos
1
dde:r AEN >V oorgtp{ Ao ey Vo
0dd ~5= - o L 155 7

Figure 6.3: Theinitial block when M isodd and N is even
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M2 1 Nj2 1
g Ga(2) Gk-1(Z
odd ) Vo L LA LN >
M/ V2 Nj2 7
S @g Gi(2)

Figure 6.4: The lattice structure of the even-channel GLPBT for even M

Now, we have obtained a special synthesis polyphase matrix which gives an aternative form
asfollows:

K-1
R(2) = ST®; (ﬂ Gi‘l(z)) . (6.19)
i=1

This factorization for even M is depicted in Fig. 6.4. Actually, the MP pseudoinverse belongs to
a subclass of the collection of left-inverses. For practical purpose, however, it may be effective
and sufficient to adopt the MP pseudoinverse @] as aleft-inverse, because it can be expressed by
the lattice structure and can suppress the noise added in the transform domain.

6.2.6 0Odd-Channe GLPBT

The decomposition can be easily established in the case that the number of filters N is odd. We
provide only the results here.

1
where
U 0] Q 0 O In2 O Inp
(I)i = [ OI V 7‘I’i = O q0 O ’ WO = O \/z O )
' 0 0 R Inz O —=Inpg2
[Inz2 O Ong2 In2 O Onp2
Ao(@=| 0 1 0 ,A(29=| O 71! 0 , (6.21)
_ON/Z 0 Z_llN/z ON/Z 0 Z_1|N/2

e Vi, Q, and R;: 22 x =2 nonsingular matrices;

o U;: a x N nonsingular matrix;
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N-1
M_1 1 M+1 Ml 5
even 2 2 2
M — T* \/Et\ » U oot Lo =4a-Uo1
1
g Pl Vod gl Ao el Vor
2 2 2 ===

Figure 6.5: Theinitial block when both M and N are odd

e (o ascaa.

A polyphase matrix E(2) of an N-channel GLPBT with (N + 1)/2 symmetric and (N — 1)/2
antisymmetric filters can be factored as

E(Z) = GK_z(Z)GK_4 s Gg(Z)Gl(Z)(I)os, (622)

where K must be odd [22].

For Even M

Ug OMX% 1 |% J%
ool el AL e
where Uy and V, are left-invertible matrices of size (N + 1)/2 x M/2 and (N — 1)/2 x M/2,
respectively.

For Odd M
[ M1 Owmas J M1
Ug Ons1, M1 1 7 T z
®, = 2 X ,S=— 2 , 6.24
PO Vo ] x/él oy 0 ‘ (629

|% O%xl —J M

where both Uy and V, are left-invertible matrices of sizes of (N + 1)/2x (M + 1)/2 and (N —
1)/2x (M — 1)/2, respectively. Details of theinitial building block are depicted in Figs. 6.5 and
6.6.

It may be shown in a manner similar to that for even N, that non-singular matrices ®; and ¥;
can be parameterized with the SVD.
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N-1
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1
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2

Figure 6.6: Theinitial block when M iseven and N is odd

GLPBT

M < N
GLBT

T 1
@ ieELgl')’

R =E"(z*

Figure 6.7: The relation between the GLPBT and other lapped transforms

6.2.7 Relation tothe Conventional L apped Transforms

As seen previously, the GLPBT can represent a very large class of LPPRFBs. If M = N, the
GLPBT isidentical tothe GLBT [22]. If M < N and R(2) = ET(z'%), the GLPBT represents the
lattice structure of LP PU (pseudo-orthogonal) FBs proposed by Labeau et al. [24]. If M = N
and R(2) = E"(z1), the GLPBT can represent the GenL OT [15, 16] and the lattice for LPPUFBs
introduced by Soman et al. [17] Such arelationisillustrated in Fig. 6.7

6.3 Noise Robust GLPBT

Recall here that a benefit of the overcomplete representation is noise suppressing properties due
to increased design freedom. Unfortunately, the lattice structures developed in [24] and in the
above disregard the effect of noise added to the transformed signal. The use of the MP pseu-
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Signal Space E@)

c) Minimize o

the noise a) Noiseis assumed
component to be white.

on average

R(Z

b) The transformed
component
is not always white.

Figure 6.8: The noise robust GLPBT in subspaces: When noise added in the transform domain
is white, the M P pseudoinverse may not optimally suppress the noise.

doinverse ®;, which corresponds to the use of a transposition ®; in the pseudo-orthogonal
(paraunitary) case [24], seems to reduce the effect of additive noise because of its minimal norm
and least square properties. However, this use provides the optimal noise suppression only if the
noise component transformed with R(2) is white. Generally, this is not white, even although the
noise added to a signal transformed with E(2) is white as depicted in Fig. 6.8. We consider in
this section the case where we give the GLPBT lattice structure with specific parameters and we
apriori know the correlation matrix of noise which is added in the transform domain.

The problem here is to find the appropriate synthesis polyphase matrix X(z) that reduces
noise for agiven analysisbank E(2). Let f, € RM and n; € RN be time series of random vectors,
wherei € Z. This f, is transformed by E(2). Keep in mind that since z ¥ is the delay operator
defined by z"f; = f,_,, wehave E(9f; = Y14 Exfi. Thesignal E(2)f will be degraded by
additive noise n; in the precess of transmission or storage. Therefore, the receiver or the observer
obtains

g = E@f, +n. (6.25)
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Note that E(2) provides overcompl ete representation, and therefore there exist infinite number of
synthesis polyphase matrices achieving PR. Let X(2) be determined by the submatrices X;, that
is, X(2) = 2K XiZ. Moreover, let X = [Xo --- Xk_1]. Then, the reconstructed signal f, is
obtained as

—h,
Il

i X(2)g;
fi+X@n;. (6.26)

The approximation problem to be solved is to minimize
Enlif; - fl? (6.27)

under the PR condition X(2E(2) = | v, where En is the ensemble average on ni,.. ., Nik_1.
Letn=[n" --- n', ,]7, and let Q be the correlation matrix of n. Then, minimizing (6.27) is
equivalent to minimizing the functional

MSE[X] = EnlX@niP
N; 2
= En(X
Nitk-1
= t[XQXT, (6.28)
under the PR condition

K-1-s K-1-s
Z XiEiss = Z XissEi =0slm, $=0,...,K—1. (6.29)
i=0 i=0

We should use an iterative optimization technique to obtain the solution. Moreover, it is not
guaranteed that the synthesis polyphase matrix X*(z) corresponding to the minimizer X* can
be factored into a lattice structure, although the analysis bank E(2) is organized as the lattice
structure. This may lead to difficulty in implementation.

Therefore, let us consider here the following alternative problem. Assume that in afashion
similar to R(2), a synthesis polyphase matrix X(2) is given by the form

X(2) = STER(2), (6.30)
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Ey O
0 Ey
X(2) attains PR. Then, the cost functional becomes

where E = ] and Ey and Ey are left-inverses of Ug and Vo, respectively. Obviously,

MSE[Ey,Ev] = EnlX@ni?
= EnlISTER@Ni|
= EnllE[Ro -+ R nl?

—

R

EU O ﬁu
A~ n

% =l7]

~ ~T ~ AT
= t[EyROQR,E]] + t{EVRQR, EV], (6.31)

2

En

4]

where R(2) = YK RZ and R = [ Fé“ ] It is easily verified that the PR condition is reduced to
|
uUo

= Evvo =1 M/2- (632)

Since Ey and Ey are determined independently, we can divide the above problem into two
independent problems. Therefore, the minimization problem for Ey results in the following:

. ~ ~T
Minimize  tr[EyR.QR,E]],

SUb]eCt to ZuUg =1 M/2-
Similarly, the minimization problem for Zy is as follows:

Minimize  t[EvROQR/ E7],

SUb]eCt to EvVo = | M/2-

It is noted that the solution of the above problem is equivalent to the BLUE (best linear
unbiased estimator) [83]. Therefore, we obtain the solutions

* > AT+ + - ST+

=y = (Ug(RWQR,)"Uo) 'Ug (RiQR,)",

* 5 AP+ + 5 AB\+
2y = (Vo (RQR; )"Vo)*Vo(RQR; ). (6.33)

In most cases, we can assume that Q is nonsingular, and therefore (R,QR)* and (RIQR/ )* can
be replaced by (R,QR})™ and (RIQR, )L, respectively.
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In the general case, if white noise is added, the solution of the BLUE is provided by the MP
pseudoinverse. We show however that in the GLPBT case, the choice of the MP pseudoinverseis
generally incorrect. Assumethat Q = 02| y where o2 is the variance of the noise. The minimizer
=y yields

4]

CcC *

A AT ~ AT
[Ug (0?RuR,) U] *Ug (0?RyR,)*
[(R;Uo)" R, Uo]* (R Uo) R,
(RyUo)*R, . (6.34)

where we used the fact that A* = (ATA)*AT. Therefore, the minimizer is not equal to U
in general. In the pseudo-orthogonal (paraunitary) case, the PR condition implies that R =
[ - Eg_,], whichyields that

K-1
RR' = Y B Ei=lu. (6.35)
k=0
Hence, we have
Z =Ug =UQ, By =V{=V,. (6.36)

However, keep in mind that this straightforward solution does not always hold when Q # o2l
even in the pseudo-orthogonal case.

6.4 Design Examples

Some design examples are provided in this section. A cost function to design a filter bank will
depend on its application. We use here the combination of normalized coding gain and stopband
attenuation. The normalized coding gain is used to avoid a trivial solution such that all filter
coefficients are zero, which leads to an infinite coding gain. In the maximally decimated case,
this undesirable solution is never obtained because of the biorthogonal condition ER = I y.
However, this constraint is not imposed on the overcomplete case. Therefore, normalization of
coding gainisneeded. Let C be a correlation matrix of aninput signal f. The normalized coding
gain for oversampled filter banksis given as

Zl-

N-1

M 2
Jes = 10l0g,, [1—[ (m) <hn,Chn>||9n||2] , (6.37)

n=0
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where h,, and g, are the impulse responses of the nth analysis and synthesis filters, respectively.
If the filter bank is maximally decimated, that is, M = N and ¢h,, g,,) = 1, then the normalized
coding gain is equivalent to the conventional one. We assume that the input signal is the first-
order Markov process (AR(1) process) with the correlation coefficient p = 0.95. The stopband
attenuation cost is frequently used for filter design. Minimization of this cost makes each filter a
bandpass filter. The stopband attenuation costs for the analysis and the synthesis filter banks are

respectively given as
N-1 .
n=d f Wi (@)l Ho(€) P, (6.39)
n=0 WEQgopband
N-1 .
k=Y f We(0)[Gn(6) 2w, (6.39)
n=0 WEQgopband

where H,(el“) and G,(e!“) are the frequency responses of the nth analysis filter and the nth
synthesis filter, respectively, and W;(w) and Ws(w) are weighting functions. The cost function to
be used for design is defined as a linear combination of these three costs:

J= a/lJCG + apda + a’3Js. (640)

All design examples here were obtained by unconstrained nonlinear optimization, where we
used the routines provided by MATLAB ! version 6.1. To obtain oversample PR FBs with
bandpass filters, we should choose M and N such that N is an integer multiple of M due to the
mechanism of alias cancellation. Figure 6.10 shows the filter coefficients and the corresponding
frequency responses of an eight-channel GLPBT in which a decimation factor is four and all
filters have length 16, i.e., L = 16,M = 4, and N = 8. These filters are optimized for stopband
attenuation to design bandpassfilters. Theinitial valuesfor the optimization are given at random.
The analysis and the synthesis filters seem almost the same, since the combination coefficients
a; are chosen so that @1 = 0 and a» = as.

The filters obtained by maximizing the normalized coding gain are illustrated in Fig. 6.11.
Thefilters obtained in Fig. 6.10 are used as theinitial values. All filtersin Fig. 6.11 are normal-
ized such that ¢h,, g,) = M/N and ||g,|| = 1. Inthis case, the GLPBT achieves an impressive
coding gain of 18.32 dB. This implies that the overcomplete representation of signals is robust
against quantization. We show comparison of coding gains for various transformsin Table 6.1.

IMATLAB isatrademark of The Math Works Inc.



6.4. DESIGN EXAMPLES 105

A

GLBT

) b2,

GLBT

Figure 6.9: An oversampled LPPRFB organized by the parallel connection of two GLBTs

Table 6.1: Comparison of coding gains of varioustransforms: (M, N, L) indicates the decimation
factor, the number of channels, and the length of filters, respectively. “p-GLBT” denotes the
parallel connection of two GLBTSs of coding gain 8.85 dB.

Transforms DCT | LOT[8 | LBT[22] | GLBT | p-GLBT | GLPBT
(M,N, L) (8.8,8) | (8,8,16) | (8,8,16) | (4,4,16) | (4,8,16) | (4,8,16)
[CodingGain(dB) | 883 | 922 | 963 | 88 | 1036 | 1832 |

In order to evaluate the effect of the optimization, let us consider the eight-channel oversampled
LPPRFB in which two four-channel GLBTs (M = N = 4) optimized for coding gain are con-
nected in parallel asillustrated in Fig. 6.9. Each GLBT attains coding gain of 8.85 dB as listed
inTable 6.1. Let Jog[ GLBT] be coding gain of the GLBT. Similarly, let Jog[p-GLBT] be coding
gain of the parallel connection of two GLBTSs. Then, given a GLBT, we have the following:

2
JCG[p-GL BT] = JCG[GLBT] + WO IOglO 2. (641)

Since the GLBT attains coding gain of 8.85 dB, the above equation says that Jog[p-GLBT] =~
10.36dB, which is much lower than that of the GLPBT (M, N,L) = (4,8,16) optimized for
coding gain. It should be noted that although by the parallel connection, we can obtain higher
coding gain compared to the maximally decimated case, it is much more effective to optimize
free parametersin the GLPBT lattice structure.

Figures 6.12 and 6.13 illustrate a four-channel GLPBT (M, N, L) = (3,4,12), and an eight-
channel GLPBT (M, N, L) = (7,8,21). All filters depicted in Figs. 6.12 and 6.13 are designed
by optimizing the normalized coding gain with initial values which are optimized by minimizing
stopband attenuation. As seen in these figures, the filters provide poor frequency selectivity
compared to the FB shown in Fig. 6.10, since N is not an integer multiple of M. Coding gains
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Table 6.2: Comparison of coding gains of the pseudo-orthogonal case (oversampled LPPUFBS)
and the pseudo-biorthogonal case (oversampled L PPRFBS)

| (M,N, L) [(3.4,12) [ (7.8,21) [ (4,8,16) |
Pseudo-orthogonal 11.93 11.15 17.93
Pseudo-biorthogonal 12.47 11.45 18.32

attained in the pseudo-orthogonal (paraunitary) [24] and in the pseudo-biorthogonal cases are
compared in Table 6.2. In all examples, the GLPBT achieves higher coding gain than the psudo-
orthogonal transform. Thisis due to the increase of design freedom.

6.4.1 GLPBT with the Noise Robust Building Block

We confirm the effect of the noise robust GLPBT when the building block @ in the GLPBT
isreplaced by E*. For comparison, we use two GLPBTs designed in the above subsection. All
filter banks consist of filtersof length 16 (L = 16), have eight channels (N = 8), and downsample
the filtered signal by four (M = 4). One is a bandpass filter bank which is optimized for the
stopband attenuation cost (GLPBT 1) as shownin Fig. 6.10. Thisis aimost a pseudo-orthogonal
(paraunitary) filter bank. The other is optimized for coding gain (GLPBT 2) as shown in Fig.
6.11. Thisis pseudo-biorthogonal.
We consider here two kinds of noise.

Case 1 The noise has the same correlation among channels. The noise is characterized by a
block-diagonal matrix with the same entry, that is,

Q= diagl@..... 0], (6.42)
K
where
(O] ={ 2 : ;:t j (6.43)

We used {s} = {10, 20, 30, 40, 40, 30, 20, 10} and ¢ = 3 in thistest.

Case 2 All output coefficients are transmitted through one channel. The correlation function of
the noise has exponential decay, that is,

[Qlij = e (6.44)
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Table 6.3: Difference in SNR (dB) between the noise robust GLPBT and the GLPBT
White | Casel | Case2(1=0.1) | (1 =0.5)
GLPBT 1 0 0.2177 45324 0.5161
GLPBT 2 | 0.2374 | 0.3868 2.6215 0.3193

We set that 1 = 0.1 and 0.5 in this test.

For each case, we compare the minimal error produced by the noise robust GLPBT MSE[E*
with the error produced by the GLPBT MSE[®(]. Table 6.3 shows the differencein SNR (dB),
that is,

-10(log,, MSE[E"] - log,, MSE[®{]). (6.45)

The system can achieve PR, and therefore we can compute the difference of SNR in average on
noise for any input. The table says that the differencesin Case 2 (1 = 0.1) are greater than those
in the other cases. This may be due to the fact the correlation matrix of Case 2 approaches to the
identity matrix when A increases.

The table says that the differences in Case 2 (1 = 0.1) are greater than those in the other
cases. This may be due to the fact the correlation matrix of Case 2 approaches to the identity
matrix when A increases.

6.5 Summary

We have introduced the complete and minimal factorization of aspecial class of N-channel over-
sampled linear-phase perfect reconstruction filter banks (LPPRFBs). The analysis and synthesis
filters yield a frame or a pseudo-biorthogonal basis; and therefore this filter bank is called the
generalized lapped pseudo-biorthogonal transform (GLPBT) from the lapped transform perspec-
tive. The factorized filter banks are characterized by elementary rotation angles and scalar mul-
tiplications. Therefore, the lattice structure can provide fast implementation and enables us to
determine the filter coefficients by solving an unconstrained optimization problem. Furthermore,
we have considered the lattice structure of the GLPBT in presence of noise. We have also shown
some design examples where coding gain and stopband attenuation are used as cost functions.
To avoid atrivial solution, we have formulated the normalized coding gain. The characteristics
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of the resulting filters are improved in the sense of coding gain because of increase in the degree
of freedom. In the noisy case, given an analysis bank of the GLPBT and a correlation matrix of
noise, the proposed synthesis bank suppresses the noise added in the transform domain. Experi-
mental results show that this class of filter bank is more effective in the presence of colored noise
than white or almost white noise.

It should be noted that the theory in this chapter covers a very large class of LPPRFBs. A
lot of conventional works can be regarded as a subclass of the proposed filter banks with the
lattice structure. For future research, it is necessary to develop the factorization for all possible
N-channel oversampled L PPRFBs.
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Chapter 7

Conclusions

7.1 Introduction

We have given solutionsfor the problemsthat are stated in Chapter 1. In this chapter, we conclude
our worksin this dissertation and describe open problems which have been clarified throughout
this dissertation.

7.2 Summary

In Chapter 2, we define notations and review fundamental theorieswhich are necessary to under-
stand this dissertation.

In Chapter 3, we have introduced a biorthogonal Iapped transform that consists of overlap-
ping and non-overlapping basis functions (VLLBT). We have defined the VLLBT by extend-
ing conventional lapped transforms. Furthermore, we have provides a theory of the subspace
Karhunen-Loeve transform (SKLT). From the theory, when the biorthogonal long basis func-
tions of the VLLBT are given, the optimal short basis functions in the energy compaction sense
are derived by solving an eigenvalue problem without iterative searching techniques. Thisyields
that the degree of freedom for the VLLBT is reduced to that for the long basis functions of
the VLLBT, athough in general, biorthogonalization leads to a large increase in the degree of
freedom. It has been shown by comparison that the degree of freedom of the VLLBT with the
SKLT islower than that of the VLLBT without the SKLT. We a so provide design examples. The
resulting VLLBT attains high coding gain comparing to other lapped transforms.

In Chapter 4, we have presented the theory and design of an adaptive lapped biorthogonal

113
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transform for image coding. The proposed transform is based on the extension of the VLLBT
formulated in Chapter 3 on length of the basis functions. The overlapping basis functions have
samples whose number is an integer multiple of the traditional block size. We have introduced
two types of this transform: Type-E and Type-O. The Type-E requires special care for theimage
boundary to avoid the border distortion. In the Type-O, on the other hand, basis functions

centers of symmetry are aligned. Because of the alignment, we can use the symmetric extension
method at image boundaries when we transform an input image. We show an orientation adaptive
example, where each adaptive transform is characterized by the angle of edges in image blocks.

In Chapter 5, we have illustrated image coding applications for the transforms developed in
Chapters 3 and 4. Comparisons among the proposed transforms and the existing transforms have
been carried out. Through comparison, we have shown benefit of the proposed transforms.

In Chapter 6, we have developed a lattice structure for a special class of N-channel over-
sampled linear-phase perfect reconstruction filter banks with a desimation factor M smaller than
N. We dea with systems in which al analysis and synthesis filters have the same FIR length
and share the same center of symmetry. This class of LPPRFBs s called the generalized lapped
pseudo-biorthogonal transform (GLPBT), since the present filter banks are generalizations of
conventiona lapped transforms. We provide the genera lattice factorization of a polyphase
matrix of the GLPBT. The lattice structure is based on the signular value decomposition for
non-square matrices. The resulting lattice structure is able to provide fast implementation and
allows us to determine the filter coefficients by solving an unconstrained optimization problem.
Moreover, we have considered the case where we give the GLPBT lattice structure with specific
parameters and we a priori know the correlation matrix of noise. We have shown that the present
systems with the lattice structure cover a wide range of linear-phase perfect reconstruction filter
banks. We have also shown design examples.

7.3 Open Problems

Sofar, we have addressed several problems, and have shown solutions of those problemsthrough-
out this dissertation. However, several new problems have arisen. We would summarize those
open problemsin this section, and suggest some possible directions for future work.
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7.3.1 Analytic Solutionsfor Lapped Transforms

In Chapter 3, we have shown an analytic solution of the VLLBT when feasible long basis func-
tions are given. However, we should find the long basis functions by numerical computation.
Finding an analytic solution for al basis functionsis still an open problem. Furthermore, it is
more desirable to find analytic solutions for various classes of lapped transforms.

7.3.2 Adaptive Long Basis Functions

In this dissertation, the adaptation is applied only to short basis functions. However, constructing
2D non-separable long basis functions adapted for a 2D characteristic such as orientation would
be very meaningful.

7.3.3 Sdf-Organized Classification for Adaptive Lapped Transform Cod-
ing

In this dissertation, we have shown only the orientation adaptation example. However, since the
non-overlapping basis functions can be obtained from a correlation matrix by solving the eigen-
value problem, any conventional adaptation procedures based on the Karhunen-L oeve transform
can be applied to the proposed design method of lapped transforms. For instance, we can con-
struct various classes of adaptive lapped transforms by training correlation matrices of a source
of input signals. This self-organizing approach has been studied in the block transform cases
[46, 47]. However, it may be more effective that this strategy is applied to our framework.

7.3.4 Classification Criteriafor Adaptive Lapped Transforms

We choose the best transform out of a set of OALBTSs by the subspace method in Chapter 5.
However, this criterion never involve the amount of bits. Inimage coding applications, we should
choose a transform which gives the best approximation for afixed rate. Such a optimizationis
called the rate-distortion optimization [12]. This strategy would improve coding efficiency.

7.3.5 CompleteLatticefor Oversampled L PPRFBs

The GLPBT defined in Chapter 6 is indeed a subclass of oversampled LPPRFBs. We have
developed in this dissertation the complete lattice factorizaton for the GLPBT. However, The
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development of acomplete lattice structureis still an open problem.

7.3.6 Synthesis Polyphase Matrix for Oversampled L PPRFBs

In Chapter 6, we have introduced the final building block which can suppress noise. This choise
seems the most practical and appropriate to fast implementation. However, this solutionis not the
global optimum of synthesis polyphase matrix. Therefore, we should find the optimal solution
and construct its lattice structure for fast implementation if possible. Moreover, we can remove
the PR condition to decide the synthesis FB. For example, using stastic knowledge on input
signal, we can choose a synthesis FB which can provide the best approximation to the original

signal such as the Wiener filter.
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