
論文 / 著書情報
Article / Book Information

題目(和文) 重複変換および画像処理におけるその応用

Title(English) Lapped transforms and their applications in image processing

著者(和文) 田中聡久

Author(English)

出典(和文)  学位:博士(工学),
 学位授与機関:東京工業大学,
 報告番号:甲第5055号,
 授与年月日:2002年3月26日,
 学位の種別:課程博士,
 審査員:

Citation(English)  Degree:Doctor (Engineering),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第5055号,
 Conferred date:2002/3/26,
 Degree Type:Course doctor,
 Examiner:

学位種別(和文)  博士論文

Type(English)  Doctoral Thesis

Powered by T2R2 (Science Tokyo Research Repository)

http://t2r2.star.titech.ac.jp/


Lapped Transforms and Their Applications in Image
Processing

Toshihisa TANAKA

Department of International Development Engineering
Graduate School of Science and Engineering

Tokyo Institute of Technology

February 2002





Abstract

This dissertation deals with the theory and design of various classes of lapped transforms. We

address problems of 1) the derivation of analytic solution of lapped transforms, 2) the design of

adaptive lapped transforms and their image coding applications, and 3) the theory of a class of

oversampled lapped transforms.

We introduce a biorthogonal lapped transform that consists of long and short basis functions

(VLLBT). The design criterion is formulated as an approximation problem. In order to solve

this, we provide the theory of the Karhunen-Loève transform in a subspace (SKLT), and we

show that when the biorthogonal long basis functions of the VLLBT are given, the optimal short

basis functions in the energy compaction sense are found. Therefore, the degree of freedom for

the VLLBT is reduced to that for the long basis functions of the VLLBT.

By extending the VLLBT and the SKLT, we present the theory and design of two-dimensional

adaptive lapped biorthogonal transforms for image coding. The proposed transform is an natural

extension of the one-dimensional VLLBT. The adaptation is performed by making the short basis

functions variable. Those short basis functions are derived by the SKLT. We show an orientation

adaptive example, where each adaptive transform is characterized by the angle of edges in image

blocks. Moreover, we illustrate image coding applications for several transforms proposed in

this dissertation. Comparisons among the proposed transforms and the existing transforms are

carried out. To be fair, we adopt the same techniques in the coding step. Specifically, transform

coefficients are uniformly quantized and encoded with the run-length/Huffman tables used in the

baseline JPEG. Through comparison, we illustrate benefit of the present transforms.

In this next step, we present a minimal lattice structure for a special class of N-channel over-

sampled linear-phase perfect reconstruction filter banks, which is called the generalized lapped

pseudo-biorthogonal transform (GLPBT). The GLPBT is a generalization of a very large class of

lapped transforms. Moreover, we provide an alternative lattice which includes a building block
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suppressing noise added in the transform domain. We also show several design examples and

simulations.

Finally, we state our contribution, and clarify open problems and directions for future re-

search.
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Chapter 1

Introduction

1.1 Background

Image transformation is an well-used technique for image processing such as coding, restoration,

recognition, and so on. When we transform a signal with large number of samples, we usually

segment the signal into blocks with smaller number of samples. This block is dealt as a finite sig-

nal and processed independently. The block-based processing has advantages in the reductions

of computational complexity and processing non-stational signals. However, the independent

processing causes an artificial discontinuity between adjacent blocks. In image compression, for

example, this discontinuity is called a blocking artifact, which appears in a decoded image at a

low bit rate as illustrated in Fig. 1.1. Several studies on the reduction of blocking artifacts were

carried out. For example, an overlapping and a filtering methods has been discussed in [1]. In the

overlapping method, an extended block in which the boundary samples are overlapped is used.

As a result, information which must be transmitted has redundancy. In the filtering method, a

low-pass filter is applied only to the boundary pixels. Therefore, this method can be regarded as

one of postprocessing techniques. A lot of excellent postprocessing methods for the reduction

of blocking have been proposed [2, 3, 4, 5, 6, 7]. However, these postprocessing methods would

lead to blurring at block boundaries.

In the context of reduction of the blocking effects, the lapped orthogonal transform (LOT)

developed by Malvar et al. [8, 9, 10] made an great impact on the signal processing community.

When the number of samples in a block is M, this new transform consists of M basis functions,

which are of length 2M. Hence, the transform generates M coefficients from 2M consecutive

samples. The total number of transformed coefficients is the same as that of original samples.

1
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Figure 1.1: Blocking artifacts

Moreover, the LOT can achieve perfect reconstruction. This is a desirable property for image

coding, since there is no increase in the bit rate. The LOT was extended to more generalized

forms, and these variations are referred to as lapped transforms. Their applications do not lie only

in the field of image coding but also in that of image and signal processing, video processing,

restoration, recognition, and adaptive filtering [11, 12, 13]. In this dissertation, several extensions

and generalizations of the lapped transform are established for image coding and processing.

1.2 Brief History

The lapped transform was pioneered by Malvar and co-workers [8, 9]. The most elementary

form of lapped transforms is the LOT, which has been generalized from various perspectives.

We review in this section various types of generalization and improvements of lapped transforms

from three viewpoints. We also review adaptive transforms for image coding and their relation

to lapped transforms for further argument.
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1.2.1 Generalization on Length of Basis Functions

The original LOT consists of M basis functions of length 2M. The basis functions are orthogonal

to each other, and the overlapping parts are also orthogonal. As pointed out by Vetterli and

Le Gall [14], the LOT is equivalent to an M-channel maximally decimated linear phase (LP)

paraunitary (PU) filter bank (FB), where all filters are of length 2M. Queiroz et al. [15] developed

a class of lapped orthogonal transforms where all basis functions have length KM, which is an

integer multiple of M. This class of lapped transforms is called a generalized lapped orthogonal

transform (GenLOT). In [15], a factorization and a lattice structure are also described. A similar

lattice was proposed in [16]. These generalized versions of the LOT can be regarded as a subclass

of M-channel maximally decimated LPPUFBs, and an investigation into complete and minimal

M-channel LP PU lattice structures have been reported in [17].

All lapped transforms described above have basis functions of the same length which is a

multiple of the number of channels. Although the overlapping basis functions can considerably

reduce the blocking effect, they tend to spread the quantization error or the noise over adja-

cent blocks as shown in Fig. 1.2. To avoid this effect, variable-length (unequal-length) lapped

transforms have been proposed [18, 19, 20]. In these lapped transforms (called VLLOTs [18] or

GULLOTs [20]), longer basis functions can reduce the blocking, whereas the shorter basis func-

tions can restrict the ringing within their supports. The VLLOT and the GULLOT are similar to

wavelet transforms [12, 13] in that they have basis functions of variable lengths. However, since

the VLLOT and the GULLOT are extensions of the GenLOT, they have efficient fast algorithms

based on lattice structures. A history of generalization on the filter lengths is summarized in

Table 1.1.

1.2.2 Biorthogonalization

Another generalization for the LOT is biorthogonalization. Chan replaced some orthogonal ma-

trices in [8] with cascades of invertible block diagonal matrices [21]. Malvar suggested the

lapped biorthogonal transform by introducing a
√

2 scaling of the first antisymmetric basis func-

tion of the DCT. However, these structures do not provide the general solution. Tran et al. have

shown that a lapped biorthogonal transform can be implemented as an M-channel LP perfect

reconstruction (PR) FB with minimal lattice structures [22]. This transform is referred to as the

generalized lapped biorthogonal transform (GLBT).
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Figure 1.2: Difference of decoded images with the DCT (left) and the lapped transform (right):
the decoded image with the lapped transform contains ringing artifacts around edges caused by
long basis functions

Also, the VLLOT has been extended to a biorthogonal transform called the VLGLBT [23].

This can be an extension of the GLBT. Moreover, fast algorithms for the VLGLBT have been

also developed [19].

1.2.3 Extension to Overcomplete Representation

Generalization for the number of basis functions or channels has been conducted [24]. In this

generalization, the number of basis functions is greater than the number of samples in a block

or a decimation factor. This lapped transform provides an overcomplete representation, and

is related to redundant signal expansions [25, 26, 27, 28]. The oversampled FBs have some

advantages such as their improved design freedom and noise immunity [29, 30]. However, these

oversampled systems involve increased computational complexity. Therefore, oversampled DFT

FBs [31, 12, 32, 33, 34] and oversampled cosine-modulated FBs [29, 35] have been developed

for a fast and efficient implementation by a factorization. These FBs belong to a category of

modulated FBs. For application in image processing, the linear-phase property is very significant.

From this point of view, recently, a complete factorization of oversampled paraunitary (pseudo-
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Table 1.1: Generalizations of the LOT in terms of the filter length and the biorthogonalization
Filter Length Orthogonal Biorthogonal

2M Malvar et al. [8, 9] (LOT) Chan [21] (GLT), Malvar [36]
(LBT)

KM Soman et al. [17], de Queiroz et al.
[15] (GenLOT)

Tran et al. [22] (GLBT)

KM + β Tran et al. [37]

Table 1.2: Generalizations of the variable-length LOT in terms of the adaptivity and the biorthog-
onalization

Adaptivity Orthogonal Biorthogonal

Nonadaptive Tran et al. [18] (VLLOT), Nagai
and Ikehara [38] (ULLOT), Nagai et
al. [20] (GULLOT)

Tran et al. [23] (VLGLBT), Chap-
ter 3

Adaptive Chapter 4 Chapter 4

orthogonal) FBs 1 yielding LP filters has been proposed [24].

1.2.4 Adaptation

Image coding using multiple transforms is known as one of efficient coding methods. This

method is based on the notion that different blocks depend on different statistic models, respec-

tively. For example, the JPEG [39], the MPEG-x, and the H.26x [40] use the discrete cosine

transform (DCT) [41, 42] that is derived from one model, the first-order Markov model. How-

Table 1.3: A summary of previous works for a minimal complete lattice structure of an N-channel
LPPRFB with decimation factor M: E(z) and R(z) denote the polyphase matrices of the analysis
bank and the synthesis bank, respectively.

R(z) = ET (z−1) R(z) � ET (z−1)

M = N Paraunitary or Orthogonal [17] Biorthogonal [22]
M < N Paraunitary or Pseudo-orthogonal [24] Pseudo-biorthogonal (Chapter 6)

1In the paper [24], the authors termed the proposed FBs paraunitary. The polyphase matrix for the synthesis FB
does not give such an inverse as defined for a full-rank square matrix but a left-inverse, which will be defined later. In
order to distinguish those FBs from maximally decimated PU FBs, we will use the terminology pseudo-orthogonal
for such oversampled FBs.
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ever, the use of the DCT for fast varying blocks as well as plane blocks may be unreasonable.

Signals in those plain and texture regions must be different stochastic processes. It is therefore

quite natural that we use a transform derived from a suitable model for an input block. A coding

method based on this strategy is called adaptive transform or multiple transform. The adaptive

transform enables us to obtain a decoded image where edges and lines are well preserved at

low bit rates. Therefore, it may be relevant to use a transform depending on each block. This

has motivated several studies on transform coding. Bjøntegaard, who firstly suggested the use

of multiple transforms for image coding, introduced a priori classes which are characterized

by directionality such as edges [43]. Furthermore, Tanaka and Yamashita improved his adap-

tive transform using the so-called vector-embedded Karhunen-Loève transform (VEKLT) [44].

Instead of the use of a priori classes, some self-organizing methods with training of input sig-

nals has been proposed [45, 46, 47]. Helsingius et al. discussed benefit of the use of multiple

transforms with image coding by empirical comparisons.

In the field of lapped transforms, de Queiroz et al. proposed the time-varying lapped trans-

form [48], in which the adaptation is accomplished by replacing orthogonal matrices in the lattice

structure to time-varying ones. Klausutis and Madisetti made length of basis functions adaptive

[49].

1.3 Goal of This Dissertation

As seen in the previous section, lapped transforms have been generalized to various forms. How-

ever, there exist several unsolved problems. In this dissertation, the following problems will be

addressed:

1.3.1 Theoretical Parameter Reduction in Design of Variable-Length Lapped
Transforms

As discovered in [8, 17, 15, 22], all coefficients of lapped orthogonal transforms can be charac-

terized by Givens rotation angles [50] in lattice structures. (In the biorthogonal case, additional

positive values are required [22].) All existing design methods for design of those lapped trans-

forms find their parameters by minimizing some cost function with numerical search. This iter-

ative optimization requires much computation time to reach the solution. In most of the cases,
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moreover, cost functions are not convex and hence there is no guarantee of obtaining a global

minimum. Therefore, an explicit solution minimizing a cost function is desirable. Furthermore,

the initial building block in the lattice structure is assumed to be the DCT to reduce free pa-

rameters. Indeed, this assumption is reported to be effective in design. However, there is no

theoretical guarantee for the use of the DCT. The problem in this dissertation is to find an alter-

native method for parameter reduction in design of variable-length lapped transforms in terms of

signal approximation. For the purpose, an extension of the Karhunen-Loève transform which is

called the subspace Karhunen-Loève transform (SKLT) is proposed. The SKLT is formulated as

the KLT in a given subspace. The formulation and the solution are presented. By using the SKLT

we show that the number of free parameters can be reduced in the sense of the mean square error.

1.3.2 Formulation and Design of Adaptive Lapped Transforms

Figure 1.3 shows the effect of the orientation adaptation in block-based image coding [44]. How-

ever, as seen in Table 1.2, despite of the effectiveness of the adaptation, this technique has not

been applied to the design of lapped transforms due to their strict constraints for perfect recon-

struction. We solve this problem in this dissertation by introducing a class of lapped transforms

consisting of overlapping and non-overlapping basis functions, which is indeed a subclass of

variable-length lapped transforms. The adaptation is applied to the non-overlapping basis func-

tions. The relationship between the conventional and the proposed transforms is listed in Table

1.2.

1.3.3 Parameterization of Overcomplete Lapped Transforms

Lapped transform produces the same number of transform coefficients as that of input samples in

terms of polyphase matrices. If this constraint is softened, those lapped transforms are regarded

as overcomplete systems. In the field of filter banks [11, 12, 13], they are interpreted as over-

sampled perfect reconstruction (PR) filter banks (FBs). The block size are called a decimation

factor, and the number of output samples are called a channel. If we limit our discussion to the

linear-phase (LP) case, which is indeed essential condition for image processing, factorizations

with lattice structures are of particular interest. We address this problem for oversampled LP
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(a) A decoded image with a block-based
transform (the DCT)

(b) A decoded image with an orientation
adapted transform (the VEKLT [44])

Figure 1.3: The effect of the orientation adaptation

PR FBs with filters 2 of length equal to an integer multiple of the block size or the decimation

factor. Table 1.3 shows a position of this work in the field of oversampled PR FBs. We provide

more generalized lattice structure which can cover a very wide range of oversampled LPPRFBs.

Moreover, we address the problem to find a lattice structure for the case where noise is added to

the transformed coefficients.

1.4 Organization of This Dissertation

This dissertation is organized as follows. An image of the relationship among chapters is depicted

in Fig. 1.4.

In Chapter 2, we define notations and review fundamental theories which are necessary to

understand this dissertation.

In Chapter 3, we present a new framework of design for a biorthogonal lapped transform

that consists of overlapping (long) and non-overlapping (short) basis functions (VLLBT). We

2In the overcomplete case, we can no longer use the term “basis function,” because those functions are linearly
dependent. Those functions (called filters usually) yields a frame [26, 28].
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formulate the VLLBT by extending conventional lapped transforms. Then, we provide a theory

of the Karhunen-Loève transform in a subspace (SKLT). Using the theory of the SKLT, we show

that when the biorthogonal long basis functions of the VLLBT are given, the optimal short basis

functions in the energy compaction sense are derived by solving an eigenvalue problem without

iterative searching techniques. This implies that the number of free parameter for the VLLBT to

be determined is reduced to that for the long basis functions of the VLLBT, although in general,

biorthogonalization leads to a large increase in the degree of freedom. We also provide design

examples. The resulting VLLBT attains high coding gain comparing to other lapped transforms.

These results suggest that the proposed VLLBT with the optimal short functions is a promising

technique in the field of image coding.

In Chapter 4, we present the theory and design of an adaptive lapped biorthogonal transform

for image coding. The proposed transform consists of basis functions overlapping across adja-

cent blocks and non-overlapping basis functions. The overlapping basis functions have samples

whose number is an integer multiple of the traditional block size. We introduce two types of this

transform: Type-E and Type-O. The former type has overlapping basis functions whose length

is an even multiple of the traditional block size. In the latter type, overlapping basis functions’

length is an odd multiple of the block size. Type-E requires special care for the image boundary

to avoid the border distortion. In Type-O, on the other hand, basis functions’ centers of symmetry

are aligned. Therefore, we can use the symmetric extension method at image boundaries when

we transform an input image. We next propose an adaptive lapped transform by extending the

1D VLLBT to a 2D transform. The adaptation is applied to non-overlapping basis functions,

which are 2D and non-separable. It is shown that their derivation is also enabled by the SKLT.

We further show an orientation adaptive example, where each adaptive transform is characterized

by the angle of edges in image blocks.

In Chapter 5, we illustrate image coding applications for several transforms developed in

Chapters 3 and 4. Comparisons among the proposed transforms and the existing transforms are

carried out. To be fair, we adopt the same techniques in the coding step. Specifically, transform

coefficients are uniformly quantized and encoded with the run-length/Huffman tables used in the

baseline JPEG [39]. Through comparison, we illustrate benefit of the proposed transforms.

In Chapter 6, we investigate a lattice structure for a special class of N-channel oversampled

linear-phase perfect reconstruction filter banks with a decimation factor M smaller than N. We
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deal with systems in which all analysis and synthesis filters have the same FIR length and share

the same center of symmetry. We provide the minimal lattice factorization of a polyphase matrix

of a particular class of these oversampled filter banks. All filter coefficients are parameterized

by rotation angles and positive values. The resulting lattice structure is able to provide fast

implementation and allows us to determine the filter coefficients by solving an unconstrained

optimization problem. We consider next the case where we give the GLPBT lattice structure

with specific parameters and we a priori know the correlation matrix of noise which is added

in the transform domain. In this case, we provide an alternative lattice structure which suppress

the noise. We show that the proposed systems with the lattice structure cover a wide range of

linear-phase perfect reconstruction filter banks. We also show several design examples and their

properties.

In Chapter 7, we conclude this work. We summarize contributions of this dissertation, and

clarify open problems and directions for future research.
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Chapter 2:
Preliminaries

Chapter 3:
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Non-Overlapping Functions

Chapter 4:
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An Oversampled Lapped

Transform

Chapter 7:
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Figure 1.4: The relation among chapters in this dissertation





Chapter 2

Preliminaries

This chapter defines notation used throughout this dissertation, and reviews fundamental theories

to analysis lapped transforms and to understand image coding principles.

2.1 Notation

The conventions listed in Table 2.1 are adopted in terms of notation. Bold-faced characters are

used to denote vectors and matrices. We sometimes omit the subscript of these matrices if the

size is obvious.

As with the Euclidean norm of a vector, we introduce the Frobenius norm or the Schmidt

norm of a matrix as the following:

Definition 1 (The Frobenius norm [50]) Let A be a matrix of size M ×N. The Frobenius norm

‖A‖F of A is defined as

‖A‖F =
√√

M−1∑
m=0

N−1∑
n=0

|amn|2, (2.1)

where amn denotes the (m, n) entry of A.

Then, the following important relation holds:

‖A‖2F = tr[AAT ]. (2.2)

We introduce the notion of a left-inverse related to overcomplete representation.

13
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R
N N-dimensional Euclidean space
〈 f , g〉 inner product of two vectors f and g
‖ f‖ Euclidean norm of f
f (i) i-th component of f
In n × n identity matrix
Jn n × n reversal matrix
0n n × n null matrix
0m×n m × n null matrix
AT transposition of a matrix A
[A]i, j (i, j) element of A
tr[A] trace of A
R(A) range of A
N(A) null space of A
rank(A) rank of A
dim(·) dimension of a linear space
H(z) z-transform of a vector or a sequence h
H(z) polyphase matrix
|A(z)| determinant of A(z)
deg[A(z)] degree of A(z)
(↓ M) downsampling operator with M
(↑ M) upsampling operator with M

Table 2.1: Notations used throughout this dissertation

Definition 2 (Left-inverses) A matrix A is called left-invertible if there exists a matrix X such

that

X A = I. (2.3)

The matrix X is denoted by A− and called a left-inverse of A.

Keep in mind that given a matrix A, its left-inverse A− is not uniquely determined. For any A−,

moreover, it does not hold that AA− = I in general. A left-inverse is included in a special class

of pseudo (generalized) inverses [51]. Let A be a left-invertible matrix of size n × m. Then, n

must be greater than or equal to m, i.e. n ≥ m, and rank(A) = m.
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2.2 Orthogonal Transforms

2.2.1 Karhunen-Loève Transform (KLT)

We start with the Karhunen-Loève transform that packs most energy into the first k coefficients

among all orthogonal transforms.

We can remove correlations between pixels using an orthogonal linear transform called the

Karhunen-Loève transform (KLT), also known as the Hotelling transform [52, 53, 54]. Suppose

we create N-dimensional vectors from a given image by taking blocks of N pixels. Let f =

[ f (0), . . . , f (N − 1)]T be a vector of the original data samples in RN . The correlation matrix R f f
with respect to f is given by

R f f = E f [ f f T ], (2.4)

where we assume rank(R) = N. The matrix R f f is real and symmetric, hence there exist

eigenvalues [55] λ0 ≥ λ1 ≥ · · · ≥ λN−1 > 0 and corresponding eigenvectors u0, . . . ,uN−1 such

that {ui}N−1
i=0 is an orthonormal basis of RN .

Definition 3 (The KLT [56]) The Karhunen-Loève (KL) transform is defined as a matrix X

which minimizes

JKLT = E f ‖ f − X f ‖2 (2.5)

under the condition that the rank of X is equal to r, where r ≤ N.

Theorem 1 The KLT X of rank r is given by

X =
r−1∑
i=0

uiuT
i . (2.6)

Proof: Clearly, rank(X) = dim(R(X)) = r. Therefore, we seek the optimal approximation

in the subspace R(X). From the projection theorem [57], X should be an orthogonal projection

matrix. Hence, the criterion JKLT yields

JKLT = E f ‖ f − X f ‖2,
= E f ‖ f‖2 − E f ‖X f ‖2. (2.7)
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Since E f ‖ f‖2 is constant, the matrix X maximizing E f ‖X f ‖2 gives the solution. We have

E f ‖X f ‖2 = E f
[
tr[(X f )(X f )T ]

]
,

= tr[XRX]. (2.8)

With the eigenvalue decomposition of R, the above equation can be written

E f ‖X f ‖2 = tr

X
N−1∑

i=0

λiuiuT
i

 X

 ,
=

N−1∑
i=0

λi‖Xui‖2. (2.9)

Because X is the orthogonal projection matrix such that rank(X) = M, the following is held:

0 ≤ ‖Xui‖2 ≤ 1, (2.10)
N−1∑
i=0

‖Xui‖2 = M. (2.11)

If we set

‖Xui‖ =
{

1 i ≤ r − 1
0 r ≤ i ≤ N − 1

(2.12)

E f ‖X f ‖2 is maximized. �

Various proofs of the KLT providing the best approximation in the mean square sense have

been shown. However, Ogawa has pointed out that those proofs are incomplete, and shown

the exact proof [58]. Generally, the KLT is considered as an impractical transform because it

depends on input signals. Therefore, it is usual to use an appropriate correlation matrix such as a

first-order Markov model, that is,

[R f f ]i j = ρ
|i− j|, (2.13)

where ρ is the correlation coefficient between adjacent pixels. The matrix R f f leads to the fixed

suboptimal KLT. For typical natural images, each pixel is strongly correlated (0.9 < ρ < 1). It

has been shown that the KLT leads to the discrete cosine transform (DCT) as ρ→ 1 [41, 42, 59].

This fact will be reviewed in the next section. Moreover, an approach to the approximation of

KLT, that does not restrict itself to a specific class of stationary process (such as the Markov-1

family), has been presented in [60].
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2.2.2 Discrete Cosine Transform (DCT)

In 1974, Ahmed et al. has proposed the discrete cosine transform (DCT) [41].

Definition 4 (The DCT [41]) The transform kernel of the discrete cosine transform (DCT) is

defined as the form

ui(k) =


1√
N

i = 0 k = 0, . . . ,N − 1√
2
N

cos
π(2k + 1)i

2N
i = 1, . . . ,N − 1 k = 0, . . . ,N − 1.

(2.14)

This definition of the DCT is known as type-II (DCT-II), which is the most widely used. Various

types of DCTs have been developed [42, 40].

The DCT has several advantages over the DFT. First, unlike the DFT, the DCT is a real-

valued transform that generates real coefficients from real-valued data. Second, the ability of the

DCT and the DFT to pack signal energy into a small number of coefficients is a function of the

global smoothness of these signals. In the class of transforms with a known fast computational

algorithm, the DCT has a superior energy compaction property [41, 61, 42, 40].

The DCT has a close relationship with the KLT of which the correlation matrix is under the

Markov model. We will show that the DCT may be derived from the KLT in the limiting case as

the adjacent element correlation tends to unity [59].

The correlation matrix of the first-order Markov process R is given by

(R)i,k = ρ
|i−k| i, k = 0, 1, . . . ,N − 1, (2.15)

where ρ is the intersample correlation coefficient. Ray and Driver [62] have given the following

solution

um(n) =

[
2

N + λm

]1/2
sin

{
ωm

[
(n + 1) − N + 1

2

]
+ (m + 1)

π

2

}
(2.16)

m, n = 0, 1, . . . ,N − 1,

where λm’s are N eigenvectors given as

λm =
(1 − ρ2)

1 − 2 cosωm + ρ2
. (2.17)

ωm is the real positive roots of the following

tan(Nω) = − (1 − ρ2) sinω
cosω − 2ρ + ρ2 cosω

. (2.18)
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In (2.16), (2.17), and (2.18), setting ρ → 1, we have tan(Nω) = 0. Then,

ωk =
kπ
N
, for k = 0, 1, . . . ,N − 1. (2.19)

The eigenvalues are λm = 0 when ωm � 0. We have

tr[A] =
N−1∑
m=0

λm. (2.20)

Since [R f f ]m,m = 1, we have λ0 = N. Substituting these relations in (2.16), we obtain the DCT-II

as follows.

u0(n) =
1√
N
,

um(n) =

√(
2
N

)
sin

[
m

(
n +

1
2

)
π

N
+
π

2

]

=

√(
2
N

)
cos

[
m

(
n +

1
2

)
π

N

]
. (2.21)

2.3 Filter Banks and Subband Transforms

2.3.1 Down/Up-Sampling

Let h = {h(i)} be a sequence of real or complex values. The number of elements of h can be either

finite or infinite. Consider sampling rate changes in the discrete-time domain. Multirate signal

processing deals with discrete-time sequences taken at different rates, and has been investigated

well [11]. We here review this topic briefly. Further details appear in [11].

Let x(n) be an original sequence and let Md be an integer. When a sequence y(n) is given by

y(n) = x(nMd), (2.22)

we call this processing downsampling or subsampling a sequence x(x) by Md. In the z-transform

domain, downsampling is written as

Y(z) =
1

Md

Md−1∑
k=0

X(Wk
Md

z1/Md), (2.23)

where WMd = exp(− j2π/Md).
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The converse of downsampling is upsampling by an integer Mu. An upsampled sequence is

obtained by inserting Mu − 1 zeros between consecutive samples of the input sequence. Specifi-

cally, the upsampled sequence y(n) is written as

y(n) =

{
x(n/Mu) n = kMu, k ∈ Z
0 otherwise.

(2.24)

The above equation is written in z-transform domain as

Y(z) = X(zMu). (2.25)

2.3.2 Perfect Reconstruction Filter Banks

A filter bank (FB) is a set of filters, usually associated with downsamplers or decimators. An

N-channel filter bank with the decimation factor M is a system described in Fig. 2.1. FBs have

their applications in areas of signal processing such as speech and image compression, digital

watermarking, denoising, feature extraction, and so on.

If M = N then it is called a maximally decimated or a critically sampled FB. We consider here

only the case where the factor M is an integer. This system consists of two major parts: analysis

and synthesis parts. Each channel in the analysis part has a analysis filter Hn(z) followed by the

downsampler (↓ M). In contrast, each channel in the synthesis part has the upsampler (↑ M)

followed by a synthesis filter Fi(z). To decide the filters, the condition for perfect reconstruction

(PR) x(n) = x̂(n − l) are mainly imposed. There are several excellent references on maximally

decimated PR FBs [11, 12, 13].

Transforms implemented by FBs as shown in Fig. 2.1 are called subband transforms. The

subband transform can be interpreted as a generalization of block-based transforms. Figure 2.2

shows matrices for a block-based transform and for a typical filter bank.

2.3.3 Polyphase Representation

Polyphase representation is useful to analyze FBs since one can a system by a vector-matrix

notation. The polyphase decomposition of the analysis filters Hn(z) is described as

Hn(z) =
M−1∑
m=0

en,m(zM)z−(M−1−m), (2.26)
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H0(z)

H1(z)

HN−1(z)

M

M

M M

M

M G0(z)

G1(z)

GN−1(z)

x(n)

x̂(n)

Analysis FB Synthesis FB

Figure 2.1: An N-channel filter bank with downsampling by the integer factor M

T= T=

(a) Block-based Transforms (b) Subband Transforms

Figure 2.2: Matrices for blockwise transforms and filter banks
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with

en,m(z) =
K−1∑
k=0

hn(Mk + M − 1 − m)z−k, (2.27)

which is Type II polyphase [11]. The N × M analysis polyphase matrix E(z) is defined as

[E(z)]n,m = en,m(z). Similarly, the synthesis filters Gn(z) can be decomposed as

Gn(z) =
M−1∑
m=0

rm,n(zM)z−m, (2.28)

with

rm,n(z) =
K−1∑
k=0

gn(Mk + m)z−k, (2.29)

which is Type I polyphase. The M × N synthesis polyphase matrix R(z) is defined as [R(z)]m,n =

rm,n(z). The polyphase representation will be used for the analysis of oversampled FBs in Chapter

6.

2.3.4 Lapped Transforms

Lapped Orthogonal Transform

Lapped orthogonal transforms (LOTs), which are developed by Malvar et al. [9, 8, 10], are a

subclass of M-channel LP PU FBs. The LOT has basis functions of the same length 2M. The

basis functions should be orthogonal, and the overlapping part of each basis function should also

be orthogonal.

Let E0 and E1 be matrices of size M ×M. Then, the matrix defined as

E = [E1 E0] (2.30)

is of size M × 2M. We introduce a transform matrix which is double block-diagonal as follows:

Ta =


...
...
...

...

· · · E1 E0 0 0 · · ·
· · · 0 E1 E0 0 · · ·

...
...
...

...

 . (2.31)
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Figure 2.3: The lapped orthogonal transform

Consecutive two blocks are transformed and M transform coefficients are obtained as shown in

Figs. 2.3 and 2.4. If the matrix T is orthogonal, this is called the lapped orthogonal transform

(LOT). The orthogonal constraint TT
a Ta = I yields that

ET
1 E1 + ET

0 E0 = IM, (2.32)

E1ET
0 = 0M, ET

1 E0 = 0M. (2.33)

The second equation (2.33) is called orthogonality of tails. Let f i be the i-th block with M

samples of an input signal. Then, the transform vector f̃ i containing transform coefficients is

given by

f̃ i = E0 f i−1 + E1 f i. (2.34)

Contrarily, the reconstructed signal f̂ i is obtained by

f̂ i = ET
0 f̃ i + ET

1 f̃ i+1. (2.35)

It is clear that the LOT conditions (2.32) and (2.33) yields that f̂ i = f i. The LOT reduces the

blocking effect because of its extended basis functions which overlap adjacent blocks 1 Malver

imposed the linear phase property on the above conditions, and obtained lattice structures [8, 10].

The GenLOT

It is natural to establish the LOT which has length KM, where K is an positive integer and K = 2

for the LOT. Consider a matrix

E = [EK−1 · · · E0]. (2.36)
1Indeed, even though the LOT is used for image compression, the blocking artifacts appear slightly, since the

LOTs basis functions do not smoothly decay to zero, generally. However, one can avoid this drawback by the use of
the modulated lapped transform (MLT) for speech processing or the lapped biorthogonal transform (LBT) for image
compression [36].
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Figure 2.4: The two-dimensional lapped orthogonal transform

Then, this matrix is of size M × KM. The generalized LOT E of size LM × M has to satisfy the

following condition [13]:

K−1∑
k=0

ET
k Ek = IM, (2.37)

K−1−s∑
k=0

ET
k Ek+s =

K−1−s∑
k=0

ET
k+sEk = 0M,

K−1−s∑
k=0

EkET
k+s =

K−1−s∑
k=0

Ek+sET
k = 0M, (2.38)

where s = 1, . . . ,K − 1. Equation (2.38) implies that the overlapping functions of neighboring

blocks must also be orthogonal. In the field of linear-phase paraunitary filter banks, a design

method with the lattice factorization has been presented by Queiroz et al, and the resulting LOT

is called the GenLOT [15].

The linear-phase solution of the GenLOT is given as the polyphase matrix

E(z) = KK−1(z)KK−2(z) · · · K1(z)CII
M, (2.39)

with

Ki(z) =
1
2
ΦiWΛ(z)W, (2.40)

where

W =

[
IM/2 IM/2

IM/2 −IM/2

]
, Λ(z) =

[
IM/2 0

0 z−1IM/2

]
, Φi =

[
Ui 0
0 V i

]
. (2.41)
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The matrix CII
M denotes the M-point DCT-II matrix [42], the matrices U i and V i are M/2 × M/2

orthogonal matrices.

2.4 Image Coding

One of the most major applications of image transforms is image coding. For transmission and

storage of images, a enormous amount of memory is required. In the case of a square image with

512 × 512 pixels, for example, 5122 × 8 = 2, 097, 152 bits are required! Video sequences are no

longer stored and transmitted without compression.

Image coding consists of mapping digital images to sequences of binary digits. A desirable

image coder is one that produces binary sequences whose lengths are on average much smaller

than the original canonical representation of the image. In many imaging applications, it is

not necessary to reproduce the image exactly. Therefore, one can perturb the image slightly

to obtain a shorter representation. If this perturbation is much smaller than the blurring and

noise introduced in the formation of the image in the first place, it is not necessary to use the

more accurate representation. Such a coding strategy is called lossy coding. The goal of lossy

coding is to reproduce a given image with minimum distortion, given some constraint on the total

number of bits in the coded representation.

We can gain reductions in coded image size by discretizing images more coarsely, a process

called quantization. By mapping visually indistinguishable images to the same code, we reduce

the number of code words needed to encode images, at the price of a small amount of distortion.

It is possible to quantize each pixel separately, a process known as scalar quantization. Quan-

tizing a group of pixels together is known as vector quantization (VQ). VQ can theoretically

capture the maximum compression. Although VQ is a very powerful theoretical paradigm, it

can achieve optimality only asymptotically as its dimensions increase. But, the computational

cost and delay grow exponentially with dimensionality, limiting the practicality of VQ. Due to

these difficulties, most practical coding procedures have turned to transform coding. Transform

coding is usually organized as three steps: linear transform, quantization, entropy coding. The

success of transform coding depends on how well the basis functions of the transform represent

the features of the signal.
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Figure 2.5: A transform coding system

2.4.1 Transform Coding System

Figure 2.5 shows a typical transform coding system. The decoder implements the inverse se-

quence of steps (with the exception of the quantization function) of the encoder, which performs

three straightforward operations: transformation, quantization, and coding. Transform coding

falls into two broad categories: block transform coding and subband transform coding. In the

former case, an N × N input image is first subdivided into subimages of size n × n, which are

then transformed. In the latter case, the N × N image is transformed by a block Toeplitz ma-

trix without being subdivided. Subband transforms are usually expressed as multi-rate systems

consisting of three elements: filters, interpolators, and decimators. However, this dissertation

sometimes deals with subband systems as linear transforms. Figure 2.2 illustrates matrices for

blockwise transforms and filter banks. The goal of the transformation process is to decorrelate

the pixels of each subimage, or to pack as much information as possible into the smallest number

of transform coefficients.

Transform coding systems based on the Karhunen-Loève (KLT), discrete Fourier (DFT),

Walsh-Hadamard (WHT), discrete cosine (DCT), subband (ST), wavelet (WT), and various other

transforms have been constructed and/or studied extensively. The choice of a particular transform

in a given application depends on the amount of reconstruction error that can be tolerated and

the computational resources available. Compression is achieved during the quantization of the

transformed coefficients (not during the transformation step).
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2.5 Summary and References

We have reviewed several important notions and theories which are necessary to understand

throughout this dissertation. Specifically, we have formulated the KLT and have reviewed the

DCT as typical orthogonal transforms. The polyphase representation has been reviewed. This is

a sophisticated way to understand filter banks. It allows us to treat filter banks as block-based

transforms. Finally, a typical algorithm of transform coding has been described.

For more details, the following literatures are helpful to understand out review. The first

description on the DCT appeared in [41]. Relation between the KLT and the DCT is firstly

analyzed by Clarke [59]. A good reference for a DCT family is [42]. Other traditional transforms

for image coding such as Fourier [63, 64], Hadamard [65], and Slant [66, 67] transforms are well

studied in [68, 69].

Vaidyanathan [11] summarized the theory and design of filter banks. This book addresses a

very wide range of filter banks. Wavelets and filter banks are well established in [12, 13].

The coding step in a transform image coder is well described and analyzed in [70]. Optimality

of the KLT with respect to coding gain is also discussed in this book and in [11]. To understand

the JPEG, [39] is widely referred.



Chapter 3

A Lapped Transform with
Non-Overlapping Functions

3.1 Introduction

Although lapped transforms reduce the blocking effects, due to their long basis functions, the

quantization error is spread out over adjacent blocks. To avoid the spread of high frequency

noise, recently, the LOT with variable length functions (VLLOT) has been proposed [18, 38].

The VLLOT consists of overlapping (long) basis functions, which can reduce the blocking ar-

tifacts, and block-independent (short) basis functions, which can restrict the ringing artifacts in

the block. Its biorthogonal version has also been studied [19], and these lapped transforms with

variable length functions (VLLT) are based on lattice structures, where the initial building block

is assumed to be the DCT to reduce the degree of freedom for design. Thus, the short basis

functions are identical to higher DCT basis functions even in the biorthogonal case [19].

However, there is no theoretical reason that the DCT is adopted in the initial stage of the

VLLT. It is used nothing but for fast implementation. In addition, it is very difficult to construct

2-D VLLTs within the conventional framework, since the degree of freedom greatly increases in

the 2-D case. In this chapter, therefore, we provide a novel framework of lapped biorthogonal

transforms with non-overlapping short basis functions (VLLBT), and its design method based

on an eigenvalue problem. Using our proposed approach, the optimal short basis functions can

be found without numerical searches when the overlapping basis functions are given. The chap-

ter is organized as follows. In Section 3.2, we review the basic properties of lapped orthogonal

transforms and give their factorized structure. In Section 3.2.1, we formulate the VLLBT by

27
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biorthogonalizing the VLLOT. Then, we present theoretical preliminaries to derive the optimal

solution for the short non-overlapping basis functions of the VLLBT. More specifically, we de-

scribe the transform (SKLT) that provides the optimal approximation of an original signal in the

minimum mean square error (MSE) sense. In Section 3.4, using this transform, we show appli-

cation of the SKLT to the derivation for the short basis functions when the biorthogonal basis

functions are given. The optimal short functions can be derived as the solution to an eigenvalue

problem. In Section 3.5, design methods for the VLLBT are presented. Coding gain of the result-

ing transform is superior to that of the orthogonal version. Finally, in Section 3.6, we summarize

our proposed framework.

3.2 Variable-Length Lapped Transforms

We review here the linear-phase LOT and the variable-length LOT, which consists of overlapping

and non-overlapping basis functions. Furthermore, we generalize it to the biorthogonal form. It

is desirable in image processing to inflict transform basis functions on symmetric, that is, linear-

phase property. Linear-phase lapped orthogonal transforms where the basis functions have length

LM have been studied in [15, 16]. For simplicity, we will review the case L = 2 hereafter, but

generalization to length LM can be easily attained.

Let H be an orthogonal matrix of size M × M. When the rows of H are symmetric or

antisymmetric, the orthogonal matrix H has the form

H =
[

He

Ho

]
=

1√
2

[
U0 U0 J M/2

−V0 V0 JM/2

]
, (3.1)

where He and Ho are M×M/2 matrices containing the even and the odd rows of H, respectively,

and U0 and V0 are M/2 × M/2 orthogonal matrices. Let P be the Haar butterfly given as

P =
1
2

[
IM/2 −IM/2

−IM/2 IM/2

]
, (3.2)

which gives an orthogonal projection matrix. Let Z be the orthogonal matrix defined as

Z =

[
U1 0M/2

0M/2 V1

]
, (3.3)

where both U1 and V1 are M/2 × M/2 orthogonal matrices. With the symmetric orthogonal

matrix H and the orthogonal projection matrix P, the general form of the linear-phase lapped
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Figure 3.1: Factorized structure of lapped transforms

orthogonal transform is given by

E = Z[PH (I − P)H] (3.4)

=
1
2

[
U1(He − Ho) U1(He − Ho)J M

−V1(He − Ho) V1(He − Ho)JM

]
. (3.5)

The block diagram of the factorized LOT is illustrated in Fig. 3.1. It can be easily checked that

the LOT conditions (2.32) and (2.33) are imposed on E given as in (3.4). Malvar proposed a fast

LOT where H corresponds to the DCT matrix [8, 71]. In this fast LOT, the free parameters are

the orthogonal matrices U1 and V1. In order to decrease the number of free parameters, Malvar

suggested that U1 = I, and V1 is the product of plane rotations [8] or the product of DCT-II and

DST-IV [71].

The lapped orthogonal transform with variable length (VLLOT) [18, 38] has developed in

order to avoid the spread of high-frequency distortion into neighboring blocks. The most basic

VLLOT consists of NL long and (M − NL) short basis functions of length 2M and M, respec-

tively. In the VLLOT, according to the necessary conditions for an existing linear phase perfect

reconstruction (LPPR) filter bank [13, 18], NL must be even. The VLLOT matrix can be also

written by the factorized form as given as in (3.4). Then, the projection matrix for the VLLOT P

is written by

P =
1
2


INL/2 0 −INL/2 0

0 2I(M−NL)/2 0 0
−INL/2 0 INL/2 0

0 0 0 0

 , (3.6)

and the orthogonal matrices of the last stage Z are given by

U1 =

[
Û1 0
0 I(M−NL)/2

]
, (3.7)
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Figure 3.2: VLLOT factorized structure: a projection matrix P is given as in (3.6).

and

V1 =

[
V̂1 0
0 I(M−NL)/2

]
, (3.8)

where Û1 and V̂1 are NL/2 × NL/2 orthogonal matrices. Substituting P, U1, and V1 into (3.4),

we have

E =
1
2


Û1(Ĥe − Ĥo) Û1(Ĥe − Ĥo)J M

2H̄e 0
−V̂1(Ĥe − Ĥo) V̂1(Ĥe − Ĥo)J M

0 2H̄o

 , (3.9)

where Ĥe and Ĥo are M × NL/2 matrices and H̄e and H̄o are M × (M − NL)/2 matrices such that

He =

[
Ĥe

H̄e

]
and Ho =

[
Ĥo

H̄o

]
. The above form implies that the NL rows of H generates the NL

long basis functions of size 2M. The block diagram of the factorized VLLOT is depicted in Fig.

3.2.

Let us consider the degree of freedom for the VLLOT. By the theory of linear algebra, U0

and V1 each in the first stage has

(
M/2

2

)
degrees of freedom. Moreover, Û1 and V̂1 each contains(

NL/2
2

)
degrees of freedom. Therefore, the linear-phase VLLOT being of the generalized form

has 2

(
M/2

2

)
+ 2

(
NL/2

2

)
degrees of freedom. In a fashion similar to the fast LOT, Nagai and

Ikehara proposed the fast VLLOT [38] where H is set to the DCT, Û1 = INL/2, and V̂1 is the

product of plane rotations. Their proposed fast VLLOT reduces the degree of freedom to NL/2−1.
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3.2.1 Biorthogonalization

Biorthogonalization of orthogonal lapped transforms can be easily accomplished as follows. In

this case, E given as in (3.4) is used for the forward transformation. The inverse transformation

is defined as a matrix R =
[

R1

R0

]
in the same fashion as the definition of E. The condition

for perfect reconstruction is obtained by rewriting the orthogonal constraints (2.32) and (2.33).

Thus, the transform matrices E and R must satisfy the following:

R0E0 + R1E1 = IM, (3.10)

R1E0 = R0E1 = 0M, RT
1 ET

0 = RT
0 ET

1 = 0M. (3.11)

Equation (3.10) implies biorthogonality of long basis functions, and (3.11) describes birothog-

onality of tails. In this case, the transform vector f̃ i containing transform coefficients is given

by

f̃ i = ET
1 f i−1 + ET

1 f i. (3.12)

Contrarily, the reconstructed signal f̂ i is obtained by

f̂ i = R0 f̃ i + R1 f̃ i+1. (3.13)

The general form of the linear-phase lapped biorthogonal transform can be achieved by re-

laxing orthogonality of the matrix H in (3.4). Assume that H given as in (3.1) is non-singular.

Moreover, we assume that Z given as in (3.3) is also non-singular, that is, both U0 and V0 in-

volved in H are non-singular. Then, forward and inverse transform matrices are given by

E = Z[PH (I − P)H] (3.14)

for the forward transform, and

R =
[

GP
G(I − P)

]
Z−1, (3.15)

for the inverse transform, where

G = H−1 =
1√
2

[
U−1

0 −V−1
0

JU−1
0 JV−1

0

]
(3.16)

and,

Z−1 =

[
U−1

1 0M/2

0M/2 V−1
1

]
, (3.17)
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When we choose P given as in (3.6), then E and R fulfill the requirements for perfect reconstruc-

tion described in (3.10) and (3.11). Let ei and ri be the i-th columns of the transform matrices

ET and R, respectively. Then, a pair of vector sets {ei}Mi=0 and {ri}Mi=0 satisfies both biorthogonality

and shift-biorthogonality. In the context of filter banks, e i and ri are called analysis and synthesis

filters of biorthogonal filter banks, respectively.

A lapped biorthogonal transform with variable length basis functions (VLLBT) can be de-

fined in the same manner as the VLLOT. The projection matrix P is given in (3.6). In the last

stage, U−1
1 and V−1

1 included in Z−1 are expressed as

U−1
1 =

[
Û
−1
1 0
0 I(M−NL)/2

]
, (3.18)

and

V−1
1 =

[
V̂
−1
1 0
0 I(M−NL)/2

]
, (3.19)

Evidently, the degree of freedom of the VLLBT increases comparing to that of the VLLOT.

The degree of freedom of U0 and V0 each is (M/2)2. In the next stage, Û1 and V̂1 each has (NL/2)2

degrees of freedom. In total, the linear-phase VLLBT has
(M2 + N2

L)

2
degrees of freedom.

3.3 Subspace Karhunen-Loève Transform

This section gives theoretical preliminaries to derive the optimal short basis functions of the

VLLBT. Let f be a vector of M consecutive samples of a real wide-sense stationary random

process. The well-known Karhunen-Loève transform (KLT) provides the optimal approximation

of f [70, 12]. Moreover, among all block transforms, the KLT is indeed the best possible trans-

form for minimizing the overall distortion for a given bit allocation, that is, the KLT provides

the maximum coding gain [70]. Assume that the M-dimensional Euclidean space RM is a direct

sum of two spaces S1 and S2, that is, RM = S1 ⊕ S2. Notice that it is unnecessary that S1 and

S2 are orthogonal (see Fig. 3.3). Then, when the subspace S1 is given, the transform that pro-

vides the optimal approximation in S2 is called the subspace Karhunen-Loève transform (SKLT),

which we propose in this chapter. This SKLT is defined as an extension of the vector-embedded

Karhunen-Loève transform (VEKLT) proposed by Tanaka and Yamashita [72, 44]. In the SKLT,

orthogonality for S1 and S2 of the VEKLT is softened.

Let L be the projection matrix onto S1. The projection matrix L is not necessarily orthogonal.
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Definition 5 When a projection matrix L whose rank is NL < M is given, the subspace Karhunen-

Loève transform (SKLT) X minimizes the functional

J[X] = E f ‖ f − (L + X) f‖2 (3.20)

under the condition rank(X) = N for any N ≤ M − NL.

When the subspace S1 is given, the SKLT provides the optimal approximation in S2. Since letting

L = 0 leads to the criterion for the KLT [56], the KLT is a subclass of SKLTs.

Fortunately, the analytic solution of the above problem can be derived as will be shown. Let

R f f = E f [ f f T ] be the correlation matrix of the input vector f .

Lemma 1 Assume Rf f has full rank. Then, there exist the (M − NL) non-zero eigenvalues of

Q = (I − L)R f f (I − L)T (3.21)

such that ξ0 ≥ · · · ≥ ξM−NL−1 > 0, and the corresponding eigenvectors φ0, . . . ,φM−NL−1.

Lemma 2 ([55, 56]) Let A and B be m × n matrices of rank M and NL, respectively, where

NL ≤ M, and the singular value decomposition (SVD) of A is given as

A =
M−1∑
i=0

λiϕ
∗
iϕ

T
i , (3.22)
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where λ0 ≥ · · · ≥ λM−1, and {ϕi}M−1
i=0 and {ϕ∗i }M−1

i=0 are orthonormal bases in RM. Then, a matrix B

minimizes a functional

J1[B] = ‖B − A‖F (3.23)

subject to rank(B) ≤ NL if and only if

B =
NL−1∑
i=0

λiϕ
∗
iϕ

T
i . (3.24)

Theorem 2 Let φi be eigenvectors of Q with respect to non-zero eigenvalues. Assume that we

choose the eigenvectors φi such that {φi}M−NL−1
i=0 forms an orthonormal system. Then, the func-

tional J[X] in (3.20) is minimized by

X =
N−1∑
n=0

φnφ
∗
n

T , (3.25)

where

φ∗n = (I − L)Tφn. (3.26)

Proof: Equation (3.20) can be rewritten as

J[X] = E f ‖(I − L) f − X f‖2

= tr[(I − L − X)E f ( f f T )(I − L − X)T ]

= tr[(I − L − X)R f f (I − L − X)T ]

= ‖(I − L − X)R1/2

f f ‖
2
F

= ‖(I − L)R1/2

f f − XR1/2

f f ‖
2
F, (3.27)

where R1/2

f f is a positive semidefinite matrix such that R1/2

f f R1/2

f f = R f f . Since the correlation

matrix R f f is assumed to be non-singular, the rank of R1/2

f f is also M. Therefore, we have

rank((I − L)R1/2

f f ) = M − NL. The matrix (I − L)R1/2

f f has singular value decomposition (SVD)

(I − L)R1/2

f f =
M−NL−1∑

i=0

µiφiψ
T
i , (3.28)
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where φi and ψi satisfy the following equations:

(I − L)R1/2

f fψi = µiφi, (3.29)

[(I − L)R1/2

f f ]
T
φi = µiψi. (3.30)

Since the rank of X is assumed to be N ≤ M − NL, we have rank(XR1/2

f f ) = N. According to

Lemma 2, the functional J[X] is minimized if and only if

XR1/2

f f =
N−1∑
i=0

µiφiψ
T
i . (3.31)

Since R1/2

f f has full rank, there exists its inverse R−1/2

f f . Therefore, (3.31) and (3.30) yield that

X =

N−1∑
i=0

µiφiψ
T
i R−1/2

f f

=

N−1∑
i=0

φiφ
T
i [(I − L)R1/2

f f ]R−1/2

f f

=

N−1∑
i=0

φi[(I − L)Tφi]
T

=

N−1∑
i=0

φiφ
∗
i

T . (3.32)

On the other hand, pre-multiplying both sides of (3.30) by (I − L)R1/2

f f , we have

(I − L)R1/2

f f [(I − L)R1/2

f f ]
T
φi = µi(I − L)R1/2

f fψi

= µ2
iφi, (3.33)

with using (3.29). This yields

(I − L)R f f (I − L)Tφi = µ
2
iφi, (3.34)

which implies that φi and µ2
i are an eigenvector and an eigenvalue of the matrix (I − L)R f f (I −

L)T , respectively. This completes the proof. �

We shall call this matrix X the subspace Karhunen-Loève transform (SKLT) of rank N with

respect to L.

Next, we have the following result on biorthogonality of the SKLT.
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Lemma 3 For i = 0, . . . ,M − NL − 1, the eigenvector φi of Q is in the null space of L, that is,

Lφi = 0. (3.35)

The vector sets {φi}M−NL−1
i=0 and {φ∗i }M−NL−1

i=0 have the following property.

Proposition 1 Vector sets {φi}M−NL−1
i=0 and {φ∗i }M−NL−1

i=0 construct a biorthonormal system, that is,

〈φi,φ
∗
j〉 = δi, j, (3.36)

for i, j = 0, . . . ,M − NL − 1.

Proof: Since the eigenvectors of Q are orthogonal, (3.35) yields

〈φi,φ
∗
j〉 = 〈φi, (I − L)Tφ j〉 = 〈(I − L)φi,φ j〉 = 〈φi,φ j〉 = δi, j. (3.37)

�

In the following sections, it will be shown that we can apply this SKLT to design of lapped

transform with variable length basis functions.

3.4 Application of the SKLT in VLLBT

Let hi and gi be i-th column functions of the matrices HT and G, respectively. In this subsection,

when the long basis functions of the VLLBT determined by {hi, gi}NL−1
i=0 are given, we discuss the

design method for short basis functions.

Let ui and u∗i be columns of UT
0 and U−1

0 , respectively, and let vi and v∗i be columns of VT
0 and

V−1
0 , respectively. Assume that biorthogonal systems {ui,u∗i }NL/2−1

i=0 and {vi, v∗i }NL/2−1
i=0 are given.

Then, we obtain a biorthogonal system {hi, gi}NL−1
i=0 such that for i = 0, . . . ,NL/2 − 1,

h2i =

[
ui

Jui

]
, h2i+1 =

[
vi

−Jvi

]
, (3.38)

and

g2i =

[
u∗i

Ju∗i

]
, g2i+1 =

[
v∗i
−Jv∗i

]
, (3.39)

From the theory of the VLLBT, {hi}NL−1
i=0 and {gi}NL−1

i=0 produce the long basis functions for the

forward and the inverse transforms, respectively. With these functions h i and gi, let

L =
NL−1∑
i=0

gih
T
i . (3.40)
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When we apply the projection matrix L to Theorem 2, we obtain a biorthonormal system {φ i,φ
∗
i }M−NL−1

i=0 ,

which leads to the SKLT. If hi = εih
′
i and gi =

1
εi

g′i , where h′i = g′i , L gives an orthogo-

nal projection; otherwise, it gives an oblique projection. In the former case, we have φi = φ
∗
i

for i = 0, . . . ,M − NL − 1. Most of biorthogonal lapped transforms correspond to this case

[38, 22, 19]. The subspaces S1 and S2 are orthogonal.

To show that φi and φ∗i are symmetric/antisymmetric vectors, we introduce the following

theorem. Below, [x] denotes the integer part of x.

Lemma 4 ([73, 74]) Let A be a M × M persymmetric matrix, that is, J AJ = A. Let A have

distinct eigenvalues. Then, A has [(M + 1)/2] symmetric eigenvectors and [M/2] antisymmetric

eigenvectors that span the eigenspace of Q.

Theorem 3 Let {hi, gi}NL−1
i=0 be a biorthogonal system, where NL is even. Let L =

∑NL−1
i=0 gih

T
i .

Assume that hi and gi are symmetric for even i, and antisymmetric for odd i. Assume also that

R f f is M×M persymmetric matrix, that is, JRf f J = R f f , and has distinct eigenvalues. Then,

the matrix

Q = (I − L)R f f (I − L)T (3.41)

has (M − NL)/2 symmetric eigenvectors and (M − NL)/2 antisymmetric eigenvectors.

Proof: For i = 0, . . . ,NL − 1, hi is in the null space of Q, since

Qhi = (I − L)R f f

hi −
NL−1∑

j=0

h j gT
j hi


= (I − L)R f f (hi − hi)

= 0. (3.42)

From Lemma 1, Q has (M − NL) non-zero eigenvalues. Let

S = Q +
NL−1∑
i=0

hi gT
i . (3.43)

Then, hi is an eigenvector of S and the corresponding eigenvalue is 1, since

Shi = Qhi +

NL−1∑
j=0

h j gT
j hi,

= hi. (3.44)
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Therefore, S has M eigenvalues. Moreover, we can easily examine that JSJ = S, so that S is

a persymmetric matrix. From Lemma 4, S has NL/2 symmetric eigenvectors containing h i for

even i, and also has NL/2 antisymmetric eigenvectors containing hi for odd i. It follows that

(M − NL)/2 eigenvectors of Q are symmetric and the others are antisymmetric. �

Theorem 3 guarantees that in H and G, we can set that

hi = φ
∗
i−NL
, (3.45)

and

gi = φi−NL
, (3.46)

for i = NL, . . . ,M − 1. Then, {hi, gi}M−1
i=0 gives a biorthonormal basis for RM. Keep in mind that

{hi, gi}M−1
i=NL

are uniquely determined by {h i, gi}NL−1
i=0 and R f f . Substituting H and G into (3.14)

and (3.15), respectively, we obtain the transform matrices E and R.

By the use of the SKLT, the degree of freedom of the linear-phase VLLBT is significantly

decreased. In the first stage, since it is only necessary to find the NL lowest basis functions, the

degree of freedom for {ui,u∗i }NL/2−1
i=0 is (M/2)2 − (M/2 − NL/2)2 =

M2 − (M − NL)2

4
and so is that

for {vi, v∗i }NL/2−1
i=0 . Therefore, the VLLBT via the SKLT contains

M2 − (M − NL)2

2
+

N2
L

2
= MNL

degree of freedom. Since the difference of the degree of freedom between the VLLBT and the

VLLBT via the SKLT is
M2 + N2

L

2
− MNL =

(M − NL)2

2
, the reduction in the degree of freedom

is more significant for larger M or smaller NL.

In summary, we have clarified in this section that from a functional approximation of view,

which is the most fundamental concept in image compression, the degree of freedom of the

VLLBT can be reduced; we need not find all columns of H and G. As a result, the short basis

functions are automatically derived from the long basis functions. Therefore, we should find only

the long ones. We compare the degrees of freedom of the VLLOT, the VLLBT, and the VLLBT

via the SKLT in Table 3.1. This table also contains examples of the case that M = 8,NL = 2

and the case that M = 8,NL = 4. To reduce free parameters, of course, a lot of methods have

been proposed [18, 38, 19]. However, recall that all of those methods aim fast implementation.

Furthermore, the reduction of free parameters have been carried out empirically, not theoretically.

In contrast, the proposed design method with the SKLT ensures the reduction of the degree of

freedom in the sense of mean square error.
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Table 3.1: Comparison of the degrees of freedom
VLLOT VLLBT VLLBT via SKLT

General case 2

[(
M/2

2

)
+

(
NL/2

2

)]
M2 + N2

L

2
MNL

M = 8,NL = 2 12 34 16
M = 8,NL = 4 14 40 32

3.5 Design Method

Since the optimal short basis functions with respect to a given set of long basis functions have

been found, we only need to determine suitable long basis functions. For application in image

coding, we use coding gain as a cost function. Higher coding gain correlates most consistently

with higher PSNR. Coding gain for a biorthogonal transform is given by [75, 76]

JCG = 10 log10

σ2
fM−1∏

i=0

σ2

f̃ i

‖ri‖2


1/M
, (3.47)

where σ2
f is the variance of the input signal and σ2

f̃ i

is the variance of the i-th transform coef-

ficient. Assume that the signal is the first-order Markov process with the correlation coefficient

ρ = 0.95 [59], which is widely used in image processing. The correlation matrix is given by

(C)i, j = σ
2
f ρ
|i− j|, for i, j = 0, . . . , 2M − 1. This yields the following expression for σ2

f̃ i

:

σ2

f̃ i

= E f |〈ei, f 〉|2 = E f [eT
i f f T ei] = σ2

f 〈ei,Cei〉. (3.48)

Therefore, the criterion JCG in (3.47) is written as

JCG = 10 log10

M−1∏
i=0

〈ei,Cei〉‖ri‖2

−1/M

, (3.49)

where recall that ei and ri are given in (3.14) and (3.15), respectively.

Low DC Leakage For image compression purpose, “low DC leakage” is an essential require-

ment [13]. Assume that the input signal is a constant function, that is, a DC signal, and then

consider the case that only the lowest transform coefficient is kept and the rest is set to zero. If
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each transform coefficient except the lowest one is not zero, then the reconstructed signal is no

longer identical to the original one. Such basis functions cause the checkerboard artifact [13].

Therefore, the inner product of each basis function except the lowest one with the original signal

must be zero. In other words, let 1N be a DC vector such that all components are one, that is,

1N = (1, . . . , 1︸��︷︷��︸
N

)T . Then, for i = 1, . . . ,M − 1, ei has to satisfy that

〈ei, 12M〉 = 0. (3.50)

A cost function for the low DC leakage is defined as

JDC =

M−1∑
i=1

|〈ei, 12M〉|2. (3.51)

Consequently, finding VLLBT is formulated as a non-linear optimization problem:

Minimize
{ui,u∗i ,vi,v∗i }NL/2−1

i=0 ,Û1 ,V̂1

− JCG + µJDC , (3.52)

subject to 〈ui,u∗j〉 = δi, j and 〈vi, v∗j〉 = δi, j, for i, j = 0, . . . ,NL/2 − 1, which are biorthogonal

constraints. However, the objective function JCG can involve the constraints if we regard those

constraint equations as linear equations with respect to ui(n) and vi(n) (or u∗i (n) and v∗i (n)). For

example, a constraint 〈u0,u∗1〉 = 0 means that a component u1(0) is determined by the other

components, i.e, u0(0) = −[u0(1)u∗1(1) + · · · + u0(M/2 − 1)u∗1(M/2 − 1)]/u∗1(0). Therefore, this

optimization problem is reduced to an unconstrained optimization problem including free pa-

rameters of which number is listed in Table 3.1.

In every step of the optimization, the short basis functions are found via the SKLT with a

correlation matrix of the Markov model, as expressed in Section 4.3, and then the cost function

(3.52) into which E and R are substituted is evaluated.

3.5.1 A Design Example and Evaluation

Using these properties, for example, let us consider the case M = 8 and NL = 2. The case NL =

2 gives the minimum number of the long basis functions because of the existing condition as

mentioned previously. In this case, Û1 and V̂1 included in the last stage U1 and V1 are expressed

as scalars, i.e, Û1 = α and V̂1 = β. Obviously, we have that Û
−1
1 = 1/α and V̂

−1
1 = 1/β. As

a result, the last stages U1 and V1 only multiply the first and the second long basis functions
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Table 3.2: Comparison of coding gain in dB for AR(1) with ρ = 0.95: We choose M = 8 for all
cases.

Transforms Coding Gain Figure

DCT 8.826
KLT 8.846
LOT [10] 9.219
VLLOT26 with DCT [38] 8.954
VLLBT26 (all free parameters are optimized) 9.325 Fig. 3.4
VLLBT26 with DCT [23] 9.269
VLLBT26 via SKLT 9.325
VLLBT26 via SKLT (Low DC leakage) 9.320 Fig. 3.5

by a constant, respectively. Therefore, we fix the constants to 1, that is, α = β = 1. We use

the correlation matrix [R f f ]i, j = ρ
|i− j|, for i, j = 0, . . . ,M − 1 for Theorem 2 to find the short

basis functions. Figures 3.4(a) and 3.4(b) illustrate the resulting basis functions ei and ri of

the forward and the inverse transforms, respectively. Interestingly, the samples of the inverse

long basis functions decay to zero at their ends, although we never impose any requirements

of decay on transforms. This is greatly effective to reduce blocking. If we design the VLLBT

(NL = 2) without DC leakage, the unknown parameters are u0,u∗0, v0, and v∗0 where two of the

16 components are determined by the others. In this case, we can also rewrite (3.52) as the

unconstrained optimization in the same manner. Table 3.2 shows comparison of coding gain

of several transforms. In the table, “26” means that the transform matrix consistrs of two long

and six short basis functions. Note that coding gain of the VLLBT where all free parameters are

optimized is the same as that of the VLLBT via SKLT. Therefore, the use of the SKLT is effective

in decreasing parameters to be determined. The basis functions and their frequency responses

are depicted in Figs. 3.4 and 3.5. Moreover, the VLLBT via SKLT which is optimized only for

coding gain gains 0.056 dB over the VLLBT26 with DCT. Indeed, the use of the DCT can reduce

the number of parameters; however it leads to decline in coding gain.

3.6 Summary

This chapter has presented a new framework for biorthogonal lapped transforms that consist of

long and short basis functions called the VLLBT. Moreover, the transform that gives the optimal
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Figure 3.4: A design example VLLBT26 where all paremeters are optimized for coding gain:
M = 8,NL = 2 (Coding gain = 9.325 dB)
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Figure 3.5: A design example VLLBT26 via SKLT with low DC leakage: M = 8,NL = 2
(Coding gain = 9.320 dB)
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approximation in a given subspace (SKLT) has been described. We have shown that when the

biorthogonal long basis functions of the VLLBT are given, the optimal short basis functions in

the energy compaction sense is derived by solving an eigenvalue problem which is resulted in

the SKLT. Therefore, we can find the short basis functions uniquely without iterative searching,

once the long basis functions are determined.

We have also provided design and image coding examples of the VLLBT. Coding gain of the

VLLBT is higher than that of the VLLOT. Moreover, coding examples show that the proposed

VLLBT is superior to other conventional transforms in terms of PSNR at high compression ratio.

Furthermore, it significantly reduces the annoying blocking artifacts. These results may imply

that the proposed VLLBT is a promising technique in the field of image coding.

The VLLBT designed by the method demonstrated in this chapter includes a potential for

image coding using 1-D or 2-D adaptive transforms [47, 77, 78], which would be constructed by

changing the correlation matrix R f f in (3.21), adaptively. This problem will be addressed in the

next chapter.

3.7 Proofs

3.7.1 Proof of Lemma 1

For any x ∈ RM, we have

〈x,Qx〉 = 〈x, (I − L)R f f (I − L)T x〉
= 〈R1/2

f f (I − L)T x, R1/2

f f (I − L)T x〉
= ‖R1/2

f f (I − L)T x‖2 ≥ 0. (3.53)

This implies that the matrix Q is positive semidefinite. On the other hand, since the rank of R f f
is assumed to be M, that of R1/2

f f is also M. Then, we have the rank of I − L is M − NL, we have

rank(Q) = rank((I − L)R f f (I − L)T )

= rank((I − L)R1/2

f f [(I − L)R1/2

f f ]T )

= rank((I − L)R1/2

f f )

= rank(I − L)

= M − NL. (3.54)
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Thus, the matrix Q has (M − NL) non-zero eigenvalues and the corresponding eigenvectors. �

3.7.2 Proof of Lemma 3

Pre-multiplying both sides of (3.34) by (I − L)T , we obtain

(I − L)2R f f (I − L)Tφi = µ
2
i (I − L)φi. (3.55)

Since L is a projection matrix, we have (I − L)2 = I − L. Therefore,

(I − L)R f f (I − L)Tφi = µ
2
i (I − L)φi

= µ2
iφi − µ2

i Lφi, (3.56)

which implies that Lφi = 0. �





Chapter 4

Adaptive Lapped Transforms for Image
Coding

4.1 Introduction

The use of adaptation has resulted in significant improvements in both compression ratio and vi-

sual quality around edges. However, as long as we use block-transform coding, decoded images

cannot be free from annoying blocking effects at low bit rates. By using wavelets or lapped trans-

forms [13, 10], we can obtain reconstructed images without the blocking artifacts; however, they

are usually blurred especially around edges. In the wavelet case, moreover, the construction of lo-

cally adaptive basis functions is very difficult since “double-shift” orthogonality/biorthogonality

is required for perfect reconstruction. Also, lapped transforms (LT) are powerful tools for the

reduction of the blocking artifacts in image compression [8, 15, 16, 36, 22]. The blocking arti-

facts are reduced by overlapping basis functions of which size is larger than the block size. It is

however difficult to construct a space-varying LT [78] since the LT has a strong constraint such

that the overlapping parts of the basis functions must be orthogonal or biorthogonal. Several

studies on a space-varying LT have been conducted [48, 49]. However, they are one-dimensional

transforms; therefore, difficulty in design of two-dimensional adaptive LTs such as orientation

adaptive ones remains, since the degree of freedom extensively increases in the 2D case.

In this chapter, we propose an adaptive lapped biorthogonal transform for image coding. In

Section 4.2, we formulate a general form of a one-dimensional lapped biorthogonal transform

with variable length basis functions (VLLBT) for two cases: 1) Length of overlapping basis

functions is an even-multiple of the block size; 2) the length is an odd-multiple. The former

47
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is a generalization of the VLLBT dealt with in Chapter 3. In the field of filter banks, a linear-

phase version of the VLLBT has been introduced [19], but we provide a vector-matrix form,

which is easily extended to a 2-D non-separable form and is not limited to linear-phase. The

SKLT introduced in Chapter 3 enables us to find the optimal non-overlapping basis functions

without numerical searching. In Section 4.4, we show an orientation adaptation example. We

construct a transform matrix of the VLLBT with respect to a class characterized by the angle

of edges. The resulting VLLBT is two-dimensional and will be called an orientation adaptive

lapped biorthogonal transform (OALBT). In Section 4.5, we show a method for designing the

long basis functions and construct the OALBT.

4.2 Lapped Biorthogonal Transforms with Overlapping Basis
Functions

Before derivation for the proposed adaptive lapped transform, we formulate in this section a

generalized form of a lapped biorthogonal transform with overlapping and non-overlapping basis

functions. A vector-matrix form will be utilized for the formulation.

4.2.1 Formulation

Consider two matrices E =
[

ET
0 ET

1 · · · ET
K−1

]T
and R =

[
RT

0 RT
1 · · · RT

K−1

]T
of size

KM ×M, which will be called a forward and an inverse transform matrices of a lapped biorthog-

onal transform (LBT), respectively. Keep in mind that for i = 0, . . . ,K − 1, Ei and Ri are M ×M

matrices. Columns of E and R are basis functions. Let f i be the i-th block with M samples of an

input signal. Then, the transform vector gi is obtained by

f̃ i =

K∑
k=1

ET
k−1 f i−K+k, (4.1)

and the reconstructed block f̂ i is obtained by

f̂ i =

K∑
k=1

Rk−1 f̃ i+K−k. (4.2)
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For perfect reconstruction f i = f̂ i, the generalized LBT has to satisfy the following conditions

[13]:

K−1∑
k=0

RT
k Ek =

K−1∑
k=0

RkET
k = IM, (4.3)

K−1−s∑
k=0

RT
k Ek+s =

K−1−s∑
k=0

Rk ET
k+s = 0M, (4.4)

where s = 1, . . . ,K − 1. Equation (4.3) describes biorthogonality of basis functions, and (4.4)

means that the overlapping functions of neighboring blocks must also be biorthogonal.

Let us introduce two matrices Êk and Ēk which contain the first NL and the remaining (M−NL)

column vectors of Ek, respectively, that is,

Ek =
[
Êk Ēk

]
, k = 0, . . . ,K − 1. (4.5)

1. Type-E (K is even)

Assume that K is even. Setting that Ēk = 0M except for k = (K − 1)/2, E becomes

E =
[

Ê0 Ê1 · · · ÊK−1

Ē 0M · · · 0M

]
, (4.6)

where Ē0 is written as Ē for simplicity. In this case, E is a forward transform such that NL

basis functions have length KM and the remaining (M−NL) functions have length M. The

former will be called the long basis functions, and the latter will be called the short basis

functions. In the same manner, we define an inverse transform as follows:

R =


R̂0 R̄
R̂1 0M
...

...

R̂K−1 0M

 . (4.7)

The columns of Ê and those of R̂ correspond to the long basis functions of the forward and

the inverse transforms, respectively. Similarly, Ē and R̄ contain the short basis

Note that in this structure, if all basis functions are symmetric or antisymmetric, then the

basis functions’ center of symmetry are not aligned. This fact needs a special treatment at

image boundaries when the transform is applied.
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Figure 4.1: Images for transform matrices of Type-E and Type-O

2. Type-O (K is odd)

Assume that K is odd. Setting that Ēk = 0M except for k = (K − 1)/2, E becomes

E =
[

Ê0 · · · Ê(K−1)/2 · · · ÊK−1

0M · · · Ē · · · 0M

]
, (4.8)

where Ē(K−1)/2 is written as Ē for simplicity. In the same manner, we define an inverse

transform as follows:

R =



R̂0 0M
...

...

R̂(K−1)/2 R̄
...

...

R̂K−1 0M


. (4.9)

Since K is odd, if all basis functions are symmetric or antisymmetric, then the basis func-

tions’ center of symmetry are aligned. Therefore, no special processing at image bound-

aries is needed.

Figure 4.1 illustrates images of Type-E and Type-O.

In the context of linear-phase perfect reconstruction filter banks, this transform can be re-

garded as particular cases of the generalized lapped biorthogonal transform with variable length

functions [19]. We will use the term variable-length lapped transform (VLLT) to refer to the

proposed transform. Especially, if the basis functions are orthogonal, the transform is called the

VLLOT, and if the basis functions are biorthogonal, the transform is called the VLLBT. (“O”

and “B” indicate orthogonal and biorthogonal, respectively.)
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In the VLLT, the short basis functions never overlap across block boundaries, so that they

enable us to easily construct adaptive lapped transforms. For both Type-E and Type-O VLLTs,

inserting E and R into the LBT conditions (4.3) and (4.4), we obtain the following common

conditions:

Condition 1 The long basis functions of the VLLBT are required to be biorthogonal, and the

overlapping parts of the basis functions of neighboring blocks must also be biorthogonal:

K−1∑
k=0

R̂
T
k Ê

T
k = INL, (4.10)

K−1−s∑
k=0

R̂
T
k Ê

T
k+s =

K−1−s∑
k=0

R̂
T
k+sÊ

T
k = 0K , s = 1, . . . ,K − 1. (4.11)

Furthermore, the following condition for overlapping parts is required:

K−1−s∑
k=0

R̂k Êk+s =

K−1−s∑
k=0

R̂k+sÊk = 0M, s = 1, . . . ,K − 1. (4.12)

Condition 2 For the short basis functions, biorthogonality is required:

R̄
T

Ē
T
= IM−NL. (4.13)

The long and short basis functions must have the following relation:

K−1∑
k=0

R̂k Êk + R̄Ē = IM. (4.14)

If long basis functions meet Condition 1, we say that they are feasible.

4.3 Derivation of Short Basis Functions via the SKLT

Once Ê and R̂ satisfy Condition 1 ((4.10), (4.11), and (4.12)), the short functions that fulfill

Condition 2 ((4.13) and (4.14)) can be easily constructed by the SKLT introduced in Chapter 3.

Let Ē
T

and R̄ be M × (M−NL) matrices whose columns correspond to short basis functions. The

following result leads to the optimal short basis functions in the sense of minimizing the criterion

(3.20):

Proposition 2
K−1∑
k=0

R̂kÊk is a projection matrix of rank K.
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Proof appears in Section 4.7.1.

Proposition 2 guarantees data compression ability of short basis functions if suitable long

basis functions are given. From Theorem 2, consequently, by setting that

L =
K−1∑
k=0

R̂kÊk (4.15)

in (3.21), we obtain a biorthogonal system {φi,φ
∗
i }M−NL−1

i=0 , which leads to the optimal short basis

functions. Let ēi and r̄i be the i-th columns of Ē
T

and R̄.

Proposition 3 If we set that

ēi = φ
∗
i , (4.16)

and

r̄i = φi, (4.17)

the resulting VLLBT achieves perfect reconstruction, that is, Ē and R̄ satisfies Condition 2.

Proof appears in Section 4.7.2.

4.3.1 Design Algorithm

The steps to design the short basis functions can be summarized as follows:

1. Choose a set of the feasible long basis functions

Ê =
[

Ê0 · · · ÊNL−1

]
and

R̂ =
[

R̂
T
0 · · · R̂

T
NL−1

]T
.

2. Obtain the projection matrix L.

3. Obtain a correlation matrix R f f of the signal.

4. From Lemma 1, obtain (M −NL) eigenvectors such that the corresponding eigenvalues are

not zero.

5. Obtain the forward short basis functions from (4.16), and obtain the inverse short basis

functions from (4.17).
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4.4 Orientation Adaptation

4.4.1 Extension to 2-D transform

So far, it has been assumed that we are dealing with one-dimensional transforms. In the case

of real-valued transforms, however, orientation adaptive transforms have the two-dimensional

non-separable form. Fortunately, non-separable two-dimensional transforms can be easily con-

structed using the above algorithm when both a tensor product of the orthogonal projection ma-

trix generated by the long basis functions and a two-dimensional correlation matrix are given. In

the rest of this chapter, every M × M image block f is treated as an M2 × 1 vector in the space

R
M2

by lexicographic ordering. In this case, as illustrated in Fig. 4.2, the “long” basis functions

have “length” of (KM)2. Similarly, the “short” ones have “length” of M2. (We will use terms for

the 1-D case such as “long,” “short,” and “length.”) Let

L =

K−1∑
k=0

R̂k Êk

 ⊗
K−1∑

k=0

R̂k Êk

 , (4.18)

where ⊗ denotes the Kronecker’s tensor product [50]. It can then be easily checked that L is still

a projection matrix of rank N 2
L, and size M2×M2. By applying the result of Theorem 2, we obtain

the (M2 − N2
L) 2-D optimal short basis functions ēi and r̄i of size M2 for i = 0, . . . ,M2 − N2

L − 1.

The size of Ē
T

and R̄ is therefore M2 × (M2 − N2
L).

4.4.2 Orientation Adaptive Lapped Transforms

Since the short basis functions never overlap across block boundaries, they can easily generate

space-varying lapped transforms via the SKLT. Let θ be a parameter with respect to the angle

of an edge in each block. To simplify matters, the variation θ is discretized into J levels such

that θ j = − π2 + πJ j for j = 0, . . . , J − 1. For j = 0, . . . , J − 1, we define the class Cj which is

characterized by the corresponding parameter θ j. Image blocks are then classified into one of

the classes {C j}Jj=0. The class CJ is introduced for image blocks which do not belong to C j for

j = 0, . . . , J − 1. We define the corresponding correlation matrix set {R( j)

f f }
J−1
j=0 , where R( j)

f f is an

M2 ×M2 matrix of the “directional” Markov model [43] defined as

[R( j)

f f ]p+qM,p′+q′M = α
|dx(θ j)| · β|dy(θ j)|,

p, p′, q, q′ = 0, . . . ,M − 1, (4.19)
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Figure 4.2: Support of regions of long and short basis functions in the 2-D case
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where α and β are the correlation coefficients and dx(θ j) and dy(θ j) are defined as[
dx(θ j)
dy(θ j)

]
=

[
cos θ j − sin θ j

sin θ j cos θ j

] [
p − p′

q − q′

]
. (4.20)

The VLLT resulting from L and R( j)

f f will be called the orientation adaptive lapped transform

(OALBT) for the direction θ j. We write the short basis functions of the OALBT by a pair of

M2 × (M2−N2
L) matrices Ē

( j)
= [ē( j)

0 , . . . , ē
( j)

M2−N2
L−1

]T and R̄
( j)
= [r̄( j)

0 , . . . , r̄
( j)

M2−N2
L−1

]. Similarly, we

introduce a non-directional correlation matrix R (J)

f f with respect to the class CJ given by

(R(J)

f f )p+qM,p′+q′M = ρ
√
|p−p′|2+|q−q′|2 ,

p, p′, q, q′ = 0, . . . ,M − 1, (4.21)

where ρ is the correlation coefficient. It generates the non-adaptive 2D VLLT with the optimal

short basis functions (we will call this non-adaptive version just “VLLT” to distinguish from the

OALBT in encoders). Its short functions are included in {Ē(J)
, R̄

(J)} as columns.

4.5 Design Examples

4.5.1 Type-E OALBT

We consider the case that the block size is 8 × 8 (M = 8) and the length of long functions is

16 (L = 2). We use two long basis functions (NL1 = NL2 = 2) such that the transform matrices

contain the most number of short functions. Therefore, the block signal f is in R64. This choice

leads to four 2-D long functions and sixty short functions.

We choose two long functions from the Malvar’s lapped biorthogonal transform (LBT) [36],

where the particular choices for c generate synthesis basis functions whose asymptotic end values

are exactly zero. The matrices containing the long functions are given as

Ê =
1
2

[
d(0) − cd(1) d(0) − cd(1)

d(0) + cd(1) −(d(0) + cd(1))

]
, (4.22)

for analysis, and

R̂ =
1
2

[
d(0) − 1

c d(1) d(0) − 1
c d(1)

d(0) + 1
c d(1) −(d(0) + 1

c d(1))

]
, (4.23)
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Figure 4.3: The first four short basis functions when θ = π/15

for synthesis, where d(0) and d(1) are the first and the second basis functions of the M-point DCT,

respectively, and c is a positive constant (c =
√

2 is chosen in [36]). This matrix satisfies Condi-

tion 1. It is moreover verified that R̂0Ê0 + R̂1Ê1 is a orthogonal projection matrix. The resulting

2-D orthogonal projection matrix L has rank four. Note that these functions are symmetric or an-

tisymmetric, so that the resulting short functions are also symmetric or antisymmetric as shown

in Theorem 3. This choice of the long basis functions leads to the fact that R = ET , because

the orthogonality of R̂0Ê0 + R̂1Ê1 yields the fact that φi = φ
∗
i when deriving the SKLT. In other

words, although the long basis functions are biorthogonal, the short ones are orthogonal. This

special choice is done to avoid complexity caused by special treatment at block boundaries as

will be stated later. Some of the resulting short basis functions for θ = π/15, are illustrated in

Fig. 4.3. The correlation coefficients of R( j)

f f as in (4.19) is chosen to α = 0.95 and β = 0.50.

Special Processing at Image Boundaries Note that to process finite length images, special

care is required for the image boundary to avoid the border distortion. Boundary functions have

length (M +M/2), that is, twelve in this case, and these are given as [8, 71]

Ê
(left)

=
1
2

[
2d(0)

e 2d(0)
e

d(0) + cd(1) −(d(0) + cd(1))

]
, (4.24)

for left boundaries, and

Ê
(right)

=
1
2

[
d(0) − cd(1) d(0) − cd(1)

2J4d(0)
e −2J4d(0)

e

]
, (4.25)

for right boundaries. The function d (0)
e contains the first DCT function as

d(0) =

[
d(0)

e

J4d(0)
e

]
. (4.26)
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Figure 4.4: The block partition and short basis functions with respect to each block

We can also obtain R̂
(left)

and R̂
(right)

by replacing cd(1) with 1
c d(1) in (4.24) and (4.25). Then, the

orthogonal projection matrices L(left) and L(right) are given by

L(left) = 2d(0)
e d(0)

e
T

(4.27)

L(right) = 2J4d(0)
e d(0)

e
T

J4. (4.28)

This implies that the size of blocks at image boundaries is no longer 8 × 8 (see Fig. 4.4). For

instance, L(left)⊗L(left) generates the 15 short basis functions for the upper left block of size 4×4.

These are denoted by the matrix form Ē
(UL)
0 j

, where UL is initials of “upper left”. Let us show

another example in a similar manner. The orthogonal projection matrix L (right)⊗L1, whose rank is

two, yields Ē
(Lo)
0 j

for the lower blocks of size 8×4. The matrix Ē
(Lo)
0 j

has size 32×30 and contains

the 30 short basis functions. The relations between the 2-D orthogonal projection matrices and

the corresponding short basis functions are summarized in Table 4.1 in our case, that is, L1 = L2

and NL1 = 2.
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Table 4.1: The short basis functions for boundary blocks: OPM and # of SBF denote the 2-D
orthogonal projection matrix and the number of the 2-D short basis functions, respectively.

Block Type Size OPM Rank # of SBF Notation

Inside (normal) 8 × 8 L1 ⊗ L1 4 60 Ē
2D
0 j

Upper Left 4 × 4 L(left) ⊗ L(left) 1 15 Ē
(UL)
0 j

Upper Right 4 × 4 L(right) ⊗ L(left) 1 15 Ē
(UR)
0 j

Lower Left 4 × 4 L(left) ⊗ L(right) 1 15 Ē
(LL)
0 j

Lower Right 4 × 4 L(right) ⊗ L(right) 1 15 Ē
(LR)
0 j

Upper 4 × 8 L(left) ⊗ L1 2 32 Ē
(Up)
0 j

Lower 4 × 8 L(right) ⊗ L1 2 32 Ē
(Lo)
0 j

Left 8 × 4 L1 ⊗ L(left) 2 32 Ē
(Le)
0 j

Right 8 × 4 L1 ⊗ L(right) 2 32 Ē
(Ri)
0 j

4.5.2 Type-O OALBT

Consider the case that the basis functions of the VLLBT are all symmetric/antisymmetric, that is,

linear-phase. In the Type-E, since K = 2 was chosen, the symmetric extension method [79, 80]

could not be used, and special care was required for the image boundary in order to avoid the

border distortion.

The long basis functions are produced by the method like the GenLOT [15]: Let hi, i =

0, . . . ,K − 1 be linear independent vectors of size M such that hi is symmetric if i is even, and

antisymmetric otherwise. Define

Ĥ0 =

[
Ĥe

Ĥo

]
,Λi =

[
Ui 0
0 V i

]
,W =

1√
2

[
IK/2 IK/2

IK/2 −IK/2

]
, (4.29)

where Ĥe and Ĥo are K/2 × M matrices consisting of rows which are hT
i for even i and hT

i for

odd i, respectively, and Ui and V i are non-singular matrices of size K/2 × K/2. Then, Ê can be

found from the following recursion:

Ĥi = Λi−1W

[
IK/2 0K/2 0K/2 0K/2

0K/2 0K/2 0K/2 IK/2

] [
WĤi−1 0K×M

0K×M WĤi−1

]
(4.30)

Ê = ĤL−1. (4.31)

The corresponding inverse long basis function matrix R̂ can be obtained by substituting Λi for
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Λ−1
i and Ĥ0 for Ĝ0 such that Ĝ0Ĥ0 = IK in (4.30) and (4.31). Specifically, R̂ is written as

Ĝi =

[
Ĝi−1W 0M×K

0M×K Ĝi−1W

] 
IK/2 0K/2

0K/2 0K/2

0K/2 0K/2

0K/2 IK/2

WΛ−1
i−1, (4.32)

R̂ = ĜL−1. (4.33)

These Ê and R̂ meet the conditions (4.10), (4.11), and (4.12). As a result, the free parameters

which we should find are Ĥ0, Ĝ0, and Λi(i = 0, . . . ,K − 1).

For application in image coding, we use coding gain and low DC leackage as cost functions.

Finding the long basis functions is formulated as a non-linear optimization problem:

Minimize
Ĥ0,Ĝ0,Ui,Vi

− JCG + µJDC , (4.34)

subject to Ĥ0Ĝ0 = INL, where µ is a weight for the combination of two cost functions. In every

step of the optimization, the short basis functions are found via the SKLT with a correlation

matrix of the Markov model, as expressed in Section 4.3, and then the cost function (4.34) into

which E and R are substituted is evaluated.

In our test, we choose that M = 8, L = 3, and NL = 2; there are two sets of long basis

functions {ê0, ê1} and {r̂0, r̂1}, where each function has length of 24. The case NL = 2 gives the

minimum number of the long basis functions because of the existing condition as described in

[18]. In other words, this case gives the maximum number of adaptive basis functions. This may

be a good choice for adaptive image coding purpose. In this case, Ui and V i are scalars, and

both Ĥ
T
0 and Ĝ0 consist of two vectors of size M. This optimization problem can be reduced

to an unconstrained optimization problem as described in Chapter 3. The resulting long basis

functions are illustrated in Fig. 4.5. It is interesting that the inverse long basis functions decay

to zero at their ends, even though we never impose any constraints for decay on the long basis

functions. This property is effective to reduce the blocking effects.

Since the long basis functions have been already obtained, the short basis functions are au-

tomatically found as described in Section 4.4. By using L given as in (4.18), we can obtain the

2-D short basis functions with respect to the angle θ j. For the correlation coefficients of R( j)

f f , we

choose that α = 0.95 and β = 0.50. As an example, the first eight short functions of the OALBT

with respect to the angle θ j = 2π/15 are illustrated in Fig. 4.6.
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Figure 4.5: The resulting long basis functions
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(a) Short basis functions of the forward transform

(b) Short basis functions of the inverse transform

Figure 4.6: First eight short basis functions of the OALBT for θ = 2π/15 (the correlation coeffi-
cients are set that α = 0.95 and β = 0.50)

4.6 Summary

A novel adaptive lapped biorthogonal transform and its application in orientation adaptive coding

have been proposed. The proposed transform consists of overlapping and non-overlapping basis

functions, where the basis functions’ centers of symmetry are aligned, so that we can treat the

image boundaries without special processing. To construct non-overlapping basis functions, we

have also introduced a transform that provides the optimal approximation of an original signal in

a given subspace. In the encoder, an image block is selectively transformed by one of orientation

adaptive transforms.

We have shown that the non-overlapping basis functions can be obtained from a correlation

matrix by solving the eigenvalue problem. Any conventional adaptation procedures based on the

Karhunen-Loève transform can be applied to the proposed design method of lapped transforms.

Therefore, the proposed framework is powerful for the design of adaptive transforms without the

blocking effect.
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4.7 Proofs

4.7.1 Proof of Proposition 2

Let us introduce the transform matrices given by

T̂ f =



. . . 0ÊL−1 ÊL−2 · · · Ê0

ÊL−1 · · · Ê1 Ê0

0 . . .


, (4.35)

and

T̂i =



. . . 0R̂L−1

R̂L−2 R̂L−1
...

...

R̂1 R̂1

R̂0

0 . . .


, (4.36)

Before we prove Proposition 2, we show the following lemma:

Lemma 5 The matrix P defined by

P = T̂iT̂ f (4.37)

is a projection matrix.

Proof: We have

P2 = T̂iT̂ f T̂iT̂ f = T̂iT̂ f = P, (4.38)

since the columns of Ê and R̂ are biorthogonal from (4.10). Therefore, Lemma 5 holds. �

Now, we shall show the proof of Proposition 2.

Proof of Proposition 2: From (4.11), we can rewrite P as

P =



. . . 0R̂L−1

R̂L−2 R̂L−1
...

...

R̂0 R̂1

R̂0

0 . . .





. . . 0ÊL−1 ÊL−2 · · · Ê0

ÊL−1 · · · Ê1 Ê0

0 . . .
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=



. . . 0∑L−1
l=0 R̂lÊl ∑L−1

l=0 R̂lÊl

0 . . .



=


. . . 0L

L

0 . . .

 , (4.39)

which implies that P is a block diagonal matrix. It follows from Lemma 5 that L2 = L. Therefore,

L is a projection matrix.

Next, because L is a projection matrix, we have

rank(L) = tr(L), (4.40)

which can be rewritten as

rank(L) = tr(L)

= tr

 L−1∑
l=0

R̂lÊl

 = tr

L−1∑
l=0

R̂
T
l Ê

T
l

 = tr[INL] = NL, (4.41)

since (4.10) holds. This completes the proof. �

4.7.2 Proof of Proposition 3

It is evident from Proposition 2 that Ē and R̄ satisfy the condition (4.13).

The SKLT X of rank M − NL is identical to R̄Ē, since

X =
M−NL−1∑

n=0

φnφ
∗
n

T = R̄Ē. (4.42)

From the fact that φi is an eigenvector of Q, R̄Ē gives the projection into R(Q). Hence, we have

R(R̄Ē) ⊂ R(Q)

= R((I − L)R f f (I − L)T )

= R(I − L), (4.43)

since the rank of R f f is full. From Lemma 1, rank(Q) = M − NL. Therefore, we have

R(R̄Ē) = R(I − L). (4.44)
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On the other hand, because R̄ĒL = 0, we obtain N(R̄Ē) ⊃ R(L) = N(I − L). However, since the

rank of R̄Ē is M − NL, we have

N(R̄Ē) = N(I − L). (4.45)

From (4.44) and (4.45),

I − L = R̄Ē, (4.46)

which yields that (4.14) holds. �



Chapter 5

Image Coding Applications and Evaluation

5.1 Introduction

We have so far constructed the various classes of lapped transforms. Those lapped transforms

have been designed for applications in image coding. In this chapter, we evaluate those per-

formance by image coding experiments. We use a simple algorithm to encode transform coef-

ficients. We describe details of coding methods, and show rate-distortion characteristics of the

coders. Moreover, we also compare subjective qualities of decoded images.

5.2 Image Coding Algorithms

The structures of the encoders used for comparison are illustrated in Fig. 5.1 and 5.2. The en-

coder shown in Fig. 5.1 has a typical structure as seen in Chapter 2. This is used for non-adaptive

transform coding. Recall that this dissertation does not address the “coding step” but the “trans-

form step.” Therefore, we will use a simple and well-known algorithm to encode the transform

coefficients. If the transform corresponds to the DCT, Fig. 5.1 represents a block diagram for

the baseline-JPEG [39]. Figure 5.2 depicts the encoder structure when the adaptive transform is

used. In other words, we use this algorithm for the OALBT. For fair comparison, the bit assign-

ment parts (which is denoted by “VLC” in Figs. 5.1 and 5.2) in both the encoders are the same.

However, we must choose an appropriate transform out of a set of adaptive transforms. There-

fore, we need a classifier for input block signals. Moreover, short basis functions of adaptive

transforms are of an 2D non-separable form. In the following, the details of the encoders for the

VLLBT, the Type-E OALBT, and the Type-O OALBT are illustrated.

65
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f
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coefficients
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itstream

Input
image HT VT RTC VLC

Transformation

HT:  Horizontal transformation
VT:  Vertical transformation
RTC:  Zig-zag reordering and quantization of the transform coefficients
VLC:  Variable length coding (Run-length/Huffman encoding)

Figure 5.1: The structure of the non-adaptive encoder
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Side Information
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ATS

VTL

RTC VLC

Transformation

CLA:  Classification the blocks into (J +1) classes (J directional or one non-directional)
HTL:  Horizontal transformation with the long basis functions
VTL:  Vertical transformation with the long basis functions
ATS:  Adaptive transformation with the short basis functions
RTC:  Reordering and quantization of the transform coefficients
VLC:  Variable length coding (Huffman encoding)

Figure 5.2: The structure of the adaptive encoder
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5.2.1 VLLBT

In the VLLBT case, to process finite length signals, special care is required at the image bound-

ary to avoid border distortion. Since the basis functions have different center of symmetry, the

symmetric extension method is unable to be used for the proposed VLLBT. However, this prob-

lem has already discussed in [8, 38]. Thus, we apply the method introduced in [38] to boundary

processing.

5.2.2 Type-E OALBT

The encoder consists of the following four steps

1. classification;

2. transformation;

3. reordering/quantization;

4. coding.

An input image is partitioned into 8×8-blocks. The block is classified into one of the classes and

transformed by the corresponding adaptive transform. Side information on the transform selected

in each block are coded by using the run-length and Huffman techniques. Due to boundary blocks

whose size is not 8 × 8, scan method of transform coefficients is slightly tricky, The scanned

coefficients are uniform quantized with the same step size for each coefficient. In order to code

the transform coefficients, we use the same run-length/Huffman table as the baseline JPEG [39].

The details are described as follows.

Transformation

An input image is firstly transformed with the long basis functions. Transformation is performed

in horizontal and vertical directions in the image as described in Fig. 4.4. When the input image

is written as a matrix form F, the matrix which contains the transform coefficients with respect

to the long basis functions is obtained by

F̂ = T̂
T

FT̂, (5.1)
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where

T̂ =



Ê
(left)

0Ê
. . .

Ê

0 Ê
(right)


. (5.2)

For example, when the image F is of size 512× 512, the transform matrix of Malvar’s long basis

functions given in (4.22) produces the coefficient matrix F̂ of size 128 × 128.

On the other hand, the input image is partitioned into blocks as shown in Fig. 4.4. In this

experiment, the use of adaptive transform is applied to normal 8× 8 blocks. At boundary blocks,

we assume that signals are the “non-directional” Markov process with the correlation matrix

given by (4.21). At normal blocks, the signal is classified into one of the class set {Cj}Jj=0 and

transformed by the corresponding matrix Ē
2D
0 j

.

Classification

In order to transform blocks with the short basis functions, the encoder has to classify blocks

into one of the classes Cj, j = 0, . . . , J − 1 for the OALBT and the class CJ for the VLLBT.

Then, each block is transformed by the OALBT or the VLLBT derived from the corresponding

correlation matrix R( j)

f f .

Let f be an input block. If the block is a part of smooth image regions, that is, the variance

of f is comparatively small, then it would not contain any strong edges. Therefore, it is natural

that f belongs to CJ . Specifically, if the variance is below a certain threshold τ, then the input

signal is assigned to the “non-directional” class CJ , i.e,

σ2
f < τ =⇒ f ∈ C J, (5.3)

where σ2
f denotes the variance of f . On the other hand, if the variance of f is comparatively

large, that is, σ2
f ≥ τ, the block would contain strong edges or textures. In this case, we classify

the data f by the subspace method. The projection matrix with respect to the class C j is defined

as

P j =

R−1∑
r=0

r̄( j)
r ē( j)

r
T
, (5.4)
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where 1 ≤ R ≤ M − NL − 1. In subspace methods, the projection matrix P j characterizes each

class Cj. Hence, an input block f is assigned to the class such that the norm of its projection is

maximized, that is, for i, j = 0, . . . , J ,

‖Pi f ‖2 > ‖P j f‖2 ∀ j � i =⇒ f ∈ Ci. (5.5)

Assume that r̄i, i = 0, . . . ,M − NL − 1 is normalized so that ‖r̄i‖ = 1. Then, the above expression

can be reduced to
R−1∑
r=0

|〈ē(i)
r , f 〉|2 >

R−1∑
r=0

|〈ē( j)
r , f 〉|2 ∀ j � i =⇒ f ∈ Ci , (5.6)

since

‖P j f ‖2 =
∥∥∥∥∥∥∥

R−1∑
r=0

〈ē( j)
r , f 〉r̄( j)

r

∥∥∥∥∥∥∥
2

=

R−1∑
r=0

R−1∑
s=0

〈ē( j)
r , f 〉〈ē( j)

s , f 〉〈r̄( j)
r , b̄

( j)
s 〉

=

R−1∑
r=0

|〈ē( j)
r , f 〉|2 (5.7)

by using the fact that inverse short basis functions r̄r are orthonormal because the matrix Q is

symmetric.

Bit Allocation for Side Information

For decoding, side information which indicates the class of each block should be transmitted or

stored. We build the Huffman codebook for run-length on the non-directional class. For a block

which does not belong to the non-directional class C J, five bits are allocated. When the rest of

the blocks in the image are the non-directional class blocks, the end-of-header (EOH) symbol is

used for efficient coding. The Huffman codes used for side information are listed in Table 5.1.

Consequently, the larger threshold τ causes the shorter length of bitstream for side information,

since the more blocks are classified into the non-directional class CJ . However, this leads to less

coding performance. It is necessary to choose an appropriate threshold τ empirically.

Scanning Methods for Coefficients

The transform coefficients are coded by using the run-length and Huffman coder such as the

baseline JPEG [39]. Because a few blocks, say, boundary blocks have different sizes from what



70 CHAPTER 5. IMAGE CODING APPLICATIONS AND EVALUATION

S0(i, j) = {s0, s4, . . . , s56}S1(i, j) = {s1, s5, . . . , s57}S2(i, j) = {s2, s6, . . . , s58}S3(i, j) = {s3, s7, . . . , s59}

s28s29

s20s21

s14s15

s0 s1 s2 s3

s8 s9 s10s11s4 s5 s6 s7

s16s17s18s19s12s13

s22s23s24s25s26s27

s36s37

s30s31s32s33s34s35

s38s39s40s41s42s43

s44s45s46s47s48s49s50s51

s52s53s54s55s56s57s58s59

Figure 5.3: The four subsets Sm(i, j) that the set of coefficients S(i, j) are divided into

normal blocks have, it is necessary to use various run-length Huffman coders. However, by re-

organizing the transform coefficients, we can apply a single Huffman coder. Figures 5.3 and 5.4

visualizes the block reorganizing method for the transform coefficients. The transform coeffi-

cients produced by Ê
2D
0 j

are written as sk, and they are illustrated as four kinds of marked circles,

as shown in Fig. 5.3. Let S(i, j) be the set of the transform coefficients sk of the normal block

(i, j). In this example, S(i, j) has 60 elements, that is, S(i, j) = {sk}59
k=0. For m = 0, 1, 2, 3, let

Sm(i, j) be the subset of S(i, j) defined as Sm(i, j) = {sk|k = 4n +m, 0 ≤ n ≤ 11}. To simplify the

presentation, the elements of each subset Sm(i, j) are illustrated separately in Fig. 5.4 (b).

On the other hand, one can partition the transform coefficients matrix F̂ produced by Ê, Ê
(left)

,

and Ê
(right)

into NL × NL-blocks (see Fig. 5.4 (c)). In this experiment, these blocks consist of one

“DC” component and three “AC” components, and the coefficient set of the (i, j) block is written

by L(i, j).

These sets organize the new coefficient set B(i, j) is given as

B(i, j) = {L(i, j),S0(i + 1, j + 1),S1(i, j + 1),S2(i + 1, j),S3(i, j)}, (5.8)

as shown in Fig. 5.4 (d). After the quantization, in each block B(i, j), the run-length coder scans

the coefficients of L first, and those of B in ascending order with respect to k.
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(a) Transform coefficients of each block
generated by the short basis functions

(c) Transform coefficients of each block
generated by the long basis functions

(b) Transform coefficients classified into
the four subsets

(d) The resulting blocks produced by
reorganizing transform coefficients

Encoding Process

Decoding Process

Figure 5.4: Block reorganizing
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Table 5.1: Huffman codebook for run-length on the non-directional class to encode side infor-
mation

Run Code Length Code Word Hex

0 1 0 0000
1 2 10 0002
2 4 1100 000C
3 4 1101 000D
4 5 11100 001C
5 5 11110 001E
6 6 111110 003E
7 8 11111100 00FC
8 8 11111101 00FD
9 8 11111110 00FE

10 9 111111110 01FE
11 10 1111111110 03FE
12 12 111111111100 0FFC
13 12 111111111101 0FFD
14 12 111111111110 0FFE
15 13 1111111111110 1FFE

DRL 5 11101 001D
EOH 13 1111111111111 1FFF

5.2.3 Type-O OALBT

Because of the alignment property of basis functions of the Type-O OALBT, we need no special

processing at image boundaries as needed for the VLLBT and the Type-E OALBT.

Transform, Classification, and Scanning

An input image is firstly transformed with the long basis functions. Transformation is performed

in horizontal and vertical directions in the image. At image boundaries, the symmetric extension

method [79, 80, 15] is employed. As a result, we obtain N2
L coefficients per block. Next, each

block is classified into J + 1 classes by using the classification algorithm described in Section

5.2.2. Then, the block belonging to a class Cj is transformed with the short basis functions Ē
( j)

.

The short basis functions generate (M2 − N2
L) transform coefficients at each block. Therefore,

the total number of coefficients is the same as the size of the input image. Note that there is no

redundancy.
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For transform coefficients, in this test, we adopt a uniform scalar quantizer and the same run-

length/Huffman codebook as the baseline JPEG [39]. However, zig-zag scanning is applied only

to the coefficients produced by the long basis functions since the short basis functions have 2-D

non-separable form.

5.3 Image Coding Results and Comparisons

The images used for the experiments are Barbara, Lena, and Pepper, which are standard, well-

known 512 × 512 8-bit gray-scale test images. Table 5.2 shows comparison of PSNR (peak

signal-to-noise ratio) in dB for the standard images at different bit rates in bit per pixel (bpp).

Transforms listed in Table 5.2 are:

DCT the discrete cosine transform (DCT);

VLLOT26 the VLLOT (NL = 2) designed in Chapter 3;

VLLBT26 the VLLBT (NL = 2) designed in Chapter 3;

Type-E VLLBT the Type-E VLLBT (NL = 2, K = 2) with 2D non-separable short basis func-

tions designed in Chapter 4;

Type-E OALBT the Type-E OALBT (NL = 2, K = 2) designed in Chapter 4 (Adaptive Coding

for 32 orientations);

Type-O VLLBT the 2D separable Type-O VLLBT (NL = 2, K = 3);

Type-O OALBT the Type-O OALBT (K = 2, L = 3) designed in Chapter 4 (Adaptive Coding

for 32 orientations).

In the following, we describe arguments on each proposed transform.

5.3.1 VLLBT: Orthogonal vs Biorthogonal

The original and the decoded images for Barbara at 0.25 bpp are shown in Figs. 5.5 and 5.6. Table

5.2 shows that at 1.00 bpp and 0.50 bpp, comparatively higher bit rates, the coding performance

of the DCT based method is superior to that of the other methods. At bit rates lower than 0.50

bpp, the VLLOT and the VLLBT work well, and the proposed VLLBT outperforms the VLLOT
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Table 5.2: Comparison of PSNR (dB) results for 512 × 512 “Barbara,” 512 × 512 “Lena,” and
512 × 512 “Pepper” images at different bit rates (bpp)

Bit Rate 1.00 0.50 0.25 0.20

512 × 512 “Barbara”
DCT 34.90 29.09 24.49 23.14

VLLOT26 33.75 28.67 24.50 23.28
VLLBT26 33.38 28.40 24.68 23.86

Type-E OALBT 34.02 29.44 25.80 24.01
Type-E VLLBT 33.43 28.02 24.45 23.48

Type-O OALBT 35.84 30.10 25.76 23.85
Type-O VLLBT 34.70 29.06 24.74 23.66

512 × 512 “Lena”
DCT 38.52 34.99 30.73 29.18

VLLOT26 38.25 34.74 30.65 29.24
VLLBT26 38.01 34.85 31.13 29.81

Type-E OALBT 38.16 34.69 30.96 29.21
Type-E VLLBT 38.07 34.39 30.51 29.13

Type-O OALBT 38.35 35.28 31.32 29.39
Type-O VLLBT 38.47 35.17 31.17 29.72

512 × 512 “Pepper”
DCT 36.00 33.88 30.49 28.95

VLLOT26 35.58 33.57 30.37 28.89
VLLBT26 35.76 33.86 31.15 29.91

Type-E OALBT 35.97 33.97 30.83 29.14
Type-E VLLBT 35.81 33.61 30.53 29.29

Type-O OALBT 35.84 34.08 31.21 29.48
Type-O VLLBT 35.83 34.00 31.17 29.84
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in PSNR. It should be noted that the blocking artifacts of the VLLBT-decoded image are much

less visible than those of the DCT- and the VLLOT-decoded images. This property is caused by

the fact that end values of each long basis functions of the inverse transform r i are almost zero

as illustrated in Fig. 3.4(b).

5.3.2 OALBT: Non-Adaptive vs Adaptive

The correlation coefficient of R(J)

f f for design of the VLLBT is set to 0.95 (ρ = 0.95). In the

classifier, eight short basis functions are used (R = 8). The threshold is set to τ = 300 for the

Type-E and τ = 200 for the Type-O. The total number of classes is 33 (J = 32), where the classes

Cj , j = 0, . . . , 32 denote 32 “directional” blocks and C32 denotes one non-directional block.

Type-E

Figure 5.7 shows the resulting class map of the test image “Barbara.”. In Fig. 5.7, four kinds

of white lines indicate directional blocks and its direction of the angle, where 32 directions are

quantized into four directions to be seen easily.

The amount of side information and the percentage of directional blocks in the OALBT coder

are shown in Table 5.3. It can be observed in Table 5.2 that the OALBT consistently outperforms

the VLLBT although there exists side information for the OALBT. This fact indicates that more

sophisticated scheme to encode side information than ours may lead to better performance. The

OALBT has a higher coding gain than the DCT at rates below 0.5 bpp. For “Barbara” at 0.25

bpp, the OALBT gains about 1.39 dB over the DCT.

Figure 5.8 illustrates the decoded images 512 × 512 “Barbara” at 0.25 bpp, and Fig. 5.9

shows their magnified versions. Both the VLLBT and the OALBT have no blocking artifacts.

However, it should be noted that the OALBT reduces ringing and blurring around strong edges

and therefore provides clearer edges and lines than the other coders. Consequently, performance

of adaptive transforms gains an advantage over that of non-adaptive transforms even though side

information is needed.

Type-O

The amount of side information and the percentage of directional blocks (corresponding to

classes C j, j = 0, . . . , 31) in the OALBT coder are shown in Table 5.4. Figure 5.10 shows
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(a) The original “Barbara” (b) The DCT (PSNR = 24.49 dB)

(c) The VLLOT (PSNR = 24.50 dB) (d) The VLLBT (PSNR = 24.68 dB)

Figure 5.5: Comparison of the decoded images at rate 0.25 bpp
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(a) The original “Barbara” (b) The DCT (PSNR = 24.49 dB)

(c) The VLLOT (PSNR = 24.50 dB) (d) The VLLBT (PSNR = 24.68 dB)

Figure 5.6: The magnified images of Fig. 5.5
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Table 5.3: The amount of overhead and the percentage of directional regions for the Type-E
OALBT coder

Barbara Lena Pepper
Overhead in bpp 0.0439 0.0272 0.0251

Directional region 38.8 % 20.4 % 17.2 %

Figure 5.7: Classification map of “Barbara” in the Type-E coder: Each white line indicates the
angle of the directional block.
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(a) The VLLBT (PSNR = 24.45[dB]) (b) The Type-E OALBT (PSNR = 25.80dB)

Figure 5.8: Comparison of original and encode versions (0.25 bpp) of the 512 × 512 grey-scale
“Barbara”

(a) The VLLBT (PSNR = 24.45[dB]) (b) The Type-E OALBT (PSNR = 25.80dB)

Figure 5.9: The magnified images of Fig. 5.8
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Table 5.4: The amount of overhead and the percentage of directional regions for the Type-O
OALBT coder

Barbara Pepper Lena
Overhead in bpp 0.0445 0.0276 0.0281

Directional region 39.1 % 19.3 % 20.2 %

the resulting map of the test images “Barbara” and “Pepper.” In Fig. 5.10, four kinds of white

line segments indicate directional blocks and its direction of the angle, where 32 directions are

classified into four directions to be seen simply. In “Barbara,” some blocks containing striped

pattern are classified into directional classes, and others are not. Those blocks are judged to be

plane regions by the encoder with (5.3). This decision depends on the threshold τ. For smaller

threshold, they would be classified into directional regions. However, the smaller threshold re-

sults in the longer length of overhead and can lead to lower coding efficiency. The empirical

discussion for the threshold in orientation adaptive coding is shown in [44].

Coding results and comparisons at different rates are illustrated in Table 5.2. In “Barbara,”

OALBT consistently outperforms both DCT and VLLBT in the PSNR sense, even though there

exists side information. For example, at 0.25 bpp, OALBT gains 1.27 dB over DCT. In all images,

at lower bit rates, both VLLBT and OALBT show higher PSNRs than DCT. However, PSNRs in

“Pepper,” “Lena,” with OALBT are slightly lower than those with VLLBT. At around 0.20 bpp,

OALBT results in lower performance than VLLBT. This can be explained by the existence of

side information. For example, at the PSNR 30.00 dB, the bit rate (including side information)

in OALBT is 0.2139 bpp, and that in VLLBT is 0.2049 bpp for “Pepper.” Thus, VLLBT requires

fewer bits than OALBT only by 0.0090 bits per pixel. In spite of this, 0.0276 bits are used for

side information for “Pepper.” This fact implies that a more sophisticated scheme to encode side

information than ours may lead to better performance.

Figures 5.12 and 5.13 illustrate the original and the decoded images 512×512 “Barbara” and

“Pepper” at 0.25 bpp, respectively. We can observe that OALBT provides better subjective qual-

ity of the decoded image compared to the other methods. It seems that OALBT reduces ringing

and blurring around strong edges and therefore provides clearer edges and lines. These results

may indicate the use of adaptive basis functions in the VLLBT can improve coding efficiency

despite the fact that side information is required for decoding.
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(a) “Barbara” (b) “Pepper”

Figure 5.10: Classification map in the Type-O coder: Each white line segment indicates the angle
of the directional block.
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(a) The VLLBT (PSNR = 24.74 dB) (b) The OALBT (PSNR = 25.76 dB)

Figure 5.11: Comparison of the decoded “Barbara” images at rate 0.25 bpp

5.3.3 Compariton of Type-O OALBT with Other Existing Lapped Trans-
forms

As seen in the previous sections, the Type-O OALBT gives the most promising result among the

proposed transforms. In this section, we compare it with the conventional LOT and LBT. The

LBT used for comparison is Malvar’s LBT [36]. Rate-distortion characteristics for three coders

and the DCT coder are plotted in Fig. 5.15. The Type-O OALBT consistently outperforms the

DCT at rates lower than 0.70 bpp. Moreover, it provides higher PSNRs for the “Pepper” image

at rates lower than approximately 0.60 bpp. However, the LBT consistently outperforms the

OALBT. It provides better performance in the rate-distortion sense than the OALBT.

So, how is subjective quality? The answer is shown in Figs. 5.16 and 5.17. The decoded

images with the LBT suffer from annoying ringing around edges compared to the ones with the

OALBT as shown in Figs. 5.11, 5.12, 5.13, and 5.14. It is evident from those figures that the

OALBT preserve edges and lines more clearly.
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(a) The VLLBT (PSNR = 24.74 dB) (b) The OALBT (PSNR = 25.76 dB)

Figure 5.12: Magnified images in Fig. 5.11

5.4 Summary

We have presented image coding examples and their comparison. From the comparative study in

this chapter, we can summarize those results as follows:

• Biorthogonal transforms provide better coding efficiency than orthogonal ones do.

• The orientation adaptation improves decoded images not only in preserving edges and

lines, but also in PSNRs at low bit rates.

• Type-O OALBT outperforms Type-E OALBT in coding efficiency and coder complexity.

In addition, despite of the existence of side information accompanied by the adaptation, the

OALBT provides high PSNRs and good visual quality. Therefore, the Type-O OALBT may be

a promising transform in the field of image coding.
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(a) The original “Pepper” (b) The DCT (PSNR = 30.49 dB)

(c) The Type-O VLLBT (PSNR = 31.17 dB) (d) The Type-O OALBT (PSNR = 31.21 dB)

Figure 5.13: Comparison of the decoded “Pepper” images at rate 0.25 bpp
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(a) The original “Pepper” (b) The DCT (PSNR = 30.49 dB)

(c) The Type-O VLLBT (PSNR = 31.17 dB) (d) The Type-O OALBT (PSNR = 31.21 dB)

Figure 5.14: Magnified images in Fig. 5.13
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(c) “Lena”

Figure 5.15: Comparison of PSNR (dB) results for 512 × 512 “Barbara,” “Lena,” and “Pepper”
images at different bit rates (bpp)
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(a) The LOT (PSNR = 25.70 dB) (b) The LBT (PSNR = 26.11 dB)

(c) The LOT (PSNR = 30.94 dB) (d) The LBT (PSNR = 31.76 dB)

Figure 5.16: The decoded “Barbara” and “Pepper” images with the LOT and the LBT at rate
0.25 bpp
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(a) The LOT (PSNR = 25.70 dB) (b) The LBT (PSNR = 26.11 dB)

(c) The LOT (PSNR = 30.94 dB) (d) The LBT (PSNR = 31.76 dB)

Figure 5.17: Magnified images in Fig. 5.11



Chapter 6

An Oversampled Lapped Transform

6.1 Introduction

In all LPPRFBs with the lattice structure in the literature, the number of channels is equal to

the decimation factor. On the other hand, FBs with a smaller decimation factor M than the

number of channels N are called oversampled FBs. In this chapter, we make an attempt to

construct N-channel (N > M) LPPRFBs based on the lattice structure. The oversampled FBs

have some advantages such as their improved design freedom and noise immunity [29, 30].

In this chpter, our goal is to establish lattice structures which can even represent the existing

GenLOT and GLBT. After preliminaries, a class of oversampled LPPRFBs is proposed in Section

6.2. From the lapped transform perspective, we call these FBs the generalized lapped pseudo-

biorthogonal transform (GLPBT). This fundamental factorization is further parameterized by

applying the singular value decomposition (SVD) in Section 6.2.2. The SVD enables us to

characterize all filters by rotation angles and positive real numbers. For odd N, the factorization

can be established in a similar fashion as shown in Section 6.2.6. The relation between the

GLPBT and the conventional lapped transforms are discussed in Section 6.2.7. We also consider

in Section 6.3 the noise robust GLPBT which has the final block in the lattice supressing noise

added in the transform domain. We present some design examples in Section 6.4 and conclude

this work in Section 6.5. This work can be regarded as a consequence of a generalization of [22]

and [24], and can cover a wide range of possible LPPRFBs, as summarized in Table 1.3.

89
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Figure 6.1: Polyphase representation.

6.1.1 LP and PR Conditions for Oversampled FBs

When the channel number N is greater than the decimation factor M, that is, N > M, such a

FB is called an oversampled FB. Throughout this chapter, the polyphase matrices with respect to

the analysis and the synthesis banks are written by E(z) and R(z), respectively. The polyphase

matrix E(z) is of size N × M, and R(z) is of size M × N. Figure 2.1 illustrates the oversampled

N-channel FB that is dealt with throughout this chapter. This FB can be represented in terms of

the corresponding polyphase matrices as shown in Fig. 6.1.

A FB system provides PR (with zero delay) if and only if

R(z)E(z) = IM. (6.1)

If R(z) is the paraconjugate of E(z), i.e., R(z) = ET (z−1), we call this system pseudo-orthogonal;

otherwise we call it pseudo-biorthogonal. The special case where M = N gives paraunitary or

orthogonal FBs if it holds that R(z) = ET (z−1), and gives biorthogonal FBs otherwise. It should

be noted that the notion of pseudo-biorthogonality spans a very large space of PR FBs.

Let us consider an expression for the PR condition in the time domain, which is sometimes

useful for understanding in a vector space. Let

E(z) =
K−1∑
i=0

Eiz
−i, (6.2)

where Ei is a matrix with no delay whose size is the same as E(z). Similarly, let

R(z) =
K−1∑
i=0

Riz
i, (6.3)



6.2. GENERALIZED LAPPED PSEUDO-BIORTHOGONAL TRANSFORM 91

where Ri is also a matrix with no delay. Substituting (6.2) and (6.3) into the PR condition (6.1),

we obtain the equivalent condition in the time domain as follows [13]:

K−1−s∑
i=0

RiEi+s =

K−1−s∑
i=0

Ri+sEi = δsIM, s = 0, . . . ,K − 1, (6.4)

where δs = 1 if s = 0; δs = 0 otherwise.

In order that E(z) and R(z) has the LP property, it is required that

E(z) = z−(K−1) DE(z−1)J,

R(z) = zK−1 JR(z−1)D, (6.5)

where D is the diagonal matrix whose entry is +1 when the corresponding filter is symmetric

and −1 when the corresponding filter is antisymmetric.

6.2 Generalized Lapped Pseudo-Biorthogonal Transform

6.2.1 Even-Channel GLPBT

The generalized lapped pseudo-biorthogonal transform (GLPBT) is a class of oversampled LP-

PRFBs and a natural extension of the existing lapped transforms with lattice structure as summa-

rized in Table 1.3.

Define the following matrix:

G(z) =
1
2
ΦWΛ(z)W, (6.6)

where

Φ =

[
U 0
0 V

]
, W =

[
IN/2 IN/2

IN/2 −IN/2

]
,Λ(z) =

[
IN/2 0N/2

0N/2 z−1IN/2

]
, (6.7)

where U and V are N × N nonsingular matrices; therefore, G(z) is FIR invertible. Moreover,

notice that

G(z) = z−(K−1) DG(z−1)D. (6.8)

Definition 6 The even-channel GLPBT is an oversampled LPPRFB defined by the N × M anal-

ysis and the M × N synthesis polyphase matrices with the factorization given as

E(z) = Ê(z)Φ0S,

R(z) = STΦ−0 R̂(z), (6.9)
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respectively, where Ê(z) and R̂(z) are given by

Ê(z) =
1∏

i=K−1

Gi(z),

R̂(z) =
K−1∏
i=1

G−1
i (z), (6.10)

where Φ0 and S are defined as follows:

• if M is even,

Φ0 =

[
U0 0 N

2 ×M
2

0 N
2 ×M

2
V0

]
, S =

1√
2

[
I M

2
J M

2

I M
2
−J M

2

]
, (6.11)

where both U0 and V0 are left-invertible matrices of size N/2 × M/2;

• if M is odd,

Φ0 =

[
U0 0 N

2 ×M−1
2

0 N
2 ×M+1

2
V0

]
, S =

1√
2


I M−1

2
0 M−1

2 ×1 J M−1
2

0
√

2 0
I M−1

2
0 M−1

2 ×1 −J M−1
2

 , (6.12)

where both U0 and V0 are left-invertible matrices of sizes of N/2 × (M + 1)/2 and N/2 ×
(M − 1)/2, respectively.

The GLPBT has the following properties:

1. all analysis and synthesis filters are FIR with the same length L = KM and have the same

center of symmetry;

2. it consists of N/2 symmetric filters and N/2 antisymmetric filters if N is even.

Remarks

• The terminology pseudo-biorthogonal comes from a theory of pseudo-biorthogonal bases

[25, 27], which is a particular class of frames [26, 28]. It can be shown that the filters of

the analysis bank and the synthesis bank generate a frame or a pseudo-biorthogonal basis.

• In the maximally decimated case, i.e., M = N, the second restriction on symmetric filters

is the unique solution for the number of filters in LPPRFBs [81, 37]. In the overcomplete

case, however, the assumption does not cover all oversampled LPPRFBs [24]. Therefore,

a factorization for another class of oversampled LPPRFBs is an open problem.
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A structure is said to be minimal if the number of delays used is equal to the degree of the

transfer function [17]. The following theorem guarantees that the factorization is minimal.

Theorem 4 The factorization in (6.9) gives a minimal realization, i.e., the number of delays

required for its implementation is minimal.

Proof. From Definition 6, since Φ0S has no delay, we have deg[E(z)] = deg[Ê(z)]. It has been

verified in [82] that for a causal square polyphase matrix having an anticausal inverse, the degree

of the system is equal to the degree of its determinant. Therefore, we have

deg[G(z)] = deg[|Ê(z)|]
= deg[z−N(K−1)|D| |Ê(z−1)| |D|]
= N(K − 1) − deg[Ê(z)], (6.13)

where we used (6.8). It follows that deg[Ê(z)] = N(K − 1)/2. This degree is equal to the total

number of delays employed in the structure. Therefore, the factorization is minimal. �

6.2.2 Parameterization of Each Block

In this section, we parameterize Ui and V i in each building block Gi(z) with the lattice structure,

leading fast implementation. The key technique to parameterization is the well-known singular

value decomposition (SVD). By means of the SVD, any invertible matrix can be decomposed

into two orthogonal matrices and one diagonal matrix consisting of positive parameters. Since

an orthogonal matrix of size n is completely characterized by

(
n
2

)
rotation angles, the invertible

matrix is parameterized by rotation angles and positive multipliers [22]. The complete param-

eterization by the SVD enables us to obtain all filter coefficients by solving an unconstrained

optimization problem.

However, the initial block Φ is not invertible but left-invertible. As seen, a left-invertible

matrix does not have the unique left-inverse. (This is a different point from what an invertible

matrix has the unique inverse.) In the following, we provide a solution to this problem. The key

technique is also the SVD parameterization.

6.2.3 Invertible Matrices

Parameterization of invertible matrices with the SVD has been used in [22]. For i ≥ 1, the SVD

decomposes every invertible matrix as Ui = Ui1ΓiUi0, where Ui0 and Ui1 are orthogonal matrices
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and Γi is a diagonal matrix consisting of positive values [50]. Similarly, the invertible V i can be

written as the product of orthogonal matrices V i0 and V i1 and a diagonal matrix∆i: V i = V i1∆iVi0.

Their inverses U−1
i and V−1

i are represented as the following factorized forms: U−1
i = UT

i0Γ
−1
i UT

i1

and V−1
i = VT

i0∆
−1
i VT

i1. Consequently, Φi, i = 1, . . . ,K − 1 can be further factorized [22] as

Φi =

[
Ui1 0
0 Vi1

] [
Γi 0
0 ∆i

] [
Ui0 0
0 Vi0

]
, (6.14)

where all of the orthogonal matrices U i0, Ui1, Vi0, and Vi1 are of size N/2 × N/2; and therefore

each matrix can be characterized by

(
N/2

2

)
=

N(N − 2)
8

rotations. The diagonal matrices Γi and

∆i are parameterized by N/2 positive parameters each. Hence, the matrix Φi is parameterized

by N2/2 free parameters, which indeed agrees with the sum of the degrees of freedom of two

N/2 × N/2 invertible (nonsingular) matrices.

6.2.4 Left-Invertible Matrices

As mentioned above, an invertible matrix can be easily parameterized. However, the problem

here is whether or not every left-invertible matrix can be parameterized. The key to solve the

problem is the SVD.

Let us consider the left-invertible matrix U of size n × m, where n > m in the oversampled

case. Since the rank of the left-invertible matrix U is m, rank(UT U) = rank(UUT ) = m. This

implies that both UT U and UUT have the same m positive eigenvalues λi > 0, i = 0, . . . ,m − 1.

Let Ua be an n × m matrix such that ith column is an eigenvector of UUT with respect to λi.

Similarly, let Ub be an m×m matrix such that ith row is an eigenvector of UT U with respect to λi.

Since both UT U and UUT are real symmetric, we can choose columns of Ua and rows of Ub such

that UT
a Ua = Im and UbUT

b = Im, respectively. If UT U and UUT have m distinct eigenvalues, the

above orthogonal property holds automatically. Applying the SVD to U, we have the following

decomposed form:

U = UaΓUb, (6.15)

where Γ is a diagonal matrix with positive parameters
√
λi. Since the columns of Ua form an

orthonormal system, Ua can be parameterized by

(
n
2

)
−
(
n − m

2

)
=

m(2n −m − 1)
2

plane rotations.

The orthogonal matrix Ub is characterized by

(
m
2

)
=

m(m − 1)
2

rotations.
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6.2.5 Straightforward Choice for the Left-Inverse

In order to parameterize a left-inverse, we adopt the product U T
bΓ
−1UT

a as a left-inverse matrix.

It is easily confirmed that the product belongs to the collection of left-inverse matrices of U 0. To

specify that it is a special element of the set of left-inverse matrices, we write it by U+0 , that is,

U+0 = UT
bΓ
−1UT

a , (6.16)

which is indeed referred to as the Moore-Penrose (MP) pseudoinverse [51], which is uniquely

determined with respect to a given matrix. Using this left-inverse, we can further factorize the

N ×M matrixΦ0 as in (6.11) and (6.12):

Φ0 =

[
U01 0
0 V01

] [
Γ0 0
0 ∆0

] [
U00 0
0 V00

]
, (6.17)

and the corresponding MP pseudoinverse is given by

Φ+0 =

[
UT

00 0
0 VT

00

] [
Γ−1

0 0
0 ∆−1

0

] [
UT

01 0
0 VT

01

]
, (6.18)

where if M is even,

• U00 and V00: M/2 × M/2 orthogonal matrices;

• Γ0 and ∆0: M/2 × M/2 diagonal matrices;

• U01 and V01: N/2 × M/2 matrices of which columns are orthonormal,

and if M is odd,

• U00 and V00: (M + 1)/2 × (M + 1)/2 and (M − 1)/2 × (M − 1)/2 orthogonal matrices,

respectively;

• Γ0 and ∆0: (M+1)/2×(M+1)/2 and (M−1)/2×(M−1)/2 diagonal matrices, respectively;

• U01 and V01: N/2 × (M + 1)/2 and N/2 × (M − 1)/2 matrices of which columns are

orthonormal, respectively.

Both for even M and for odd M, the number of free parameters for Φ 0 is MN/2. Details of the

initial building block are illustrated in Figs. 6.2 and 6.3.
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Figure 6.2: The initial block when both M and N are even
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Figure 6.3: The initial block when M is odd and N is even
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Figure 6.4: The lattice structure of the even-channel GLPBT for even M

Now, we have obtained a special synthesis polyphase matrix which gives an alternative form

as follows:

R(z) = STΦ+0

K−1∏
i=1

G−1
i (z)

 . (6.19)

This factorization for even M is depicted in Fig. 6.4. Actually, the MP pseudoinverse belongs to

a subclass of the collection of left-inverses. For practical purpose, however, it may be effective

and sufficient to adopt the MP pseudoinverseΦ+0 as a left-inverse, because it can be expressed by

the lattice structure and can suppress the noise added in the transform domain.

6.2.6 Odd-Channel GLPBT

The decomposition can be easily established in the case that the number of filters N is odd. We

provide only the results here.

Gi(z) =
1
4
ΦiWoΛ0(z)WoΨiWoΛ1(z)Wo, (6.20)

where

Φi =

[
Ui 0
0 V i

]
,Ψi =


Qi 0 0
0 q0 0
0 0 Ri

 , Wo =


IN/2 0 IN/2

0
√

2 0
IN/2 0 −IN/2

 ,
Λ0(z) =


IN/2 0 0N/2

0 1 0
0N/2 0 z−1IN/2

 ,Λ1(z) =


IN/2 0 0N/2

0 z−1 0
0N/2 0 z−1IN/2

 , (6.21)

• V i, Qi, and Ri: N−1
2 × N−1

2 nonsingular matrices;

• Ui: a N+1
2 × N+1

2 nonsingular matrix;
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Figure 6.5: The initial block when both M and N are odd

• q0: a scalar.

A polyphase matrix E(z) of an N-channel GLPBT with (N + 1)/2 symmetric and (N − 1)/2

antisymmetric filters can be factored as

E(z) = GK−2(z)GK−4 · · ·G3(z)G1(z)Φ0S, (6.22)

where K must be odd [22].

For Even M

Φ0 =

[
U0 0 N+1

2 ×M
2

0 N−1
2 ×M

2
V0

]
, S =

1√
2

[
I M

2
J M

2

I M
2
−J M

2

]
, (6.23)

where U0 and V0 are left-invertible matrices of size (N + 1)/2 × M/2 and (N − 1)/2 × M/2,

respectively.

For Odd M

Φ0 =

[
U0 0 N+1

2 ×M−1
2

0 N−1
2 ×M+1

2
V0

]
, S =

1√
2


I M−1

2
0 M−1

2 ×1 J M−1
2

0
√

2 0
I M−1

2
0 M−1

2 ×1 −J M−1
2

 , (6.24)

where both U0 and V0 are left-invertible matrices of sizes of (N + 1)/2 × (M + 1)/2 and (N −
1)/2 × (M − 1)/2, respectively. Details of the initial building block are depicted in Figs. 6.5 and

6.6.

It may be shown in a manner similar to that for even N, that non-singular matricesΦ i and Ψi

can be parameterized with the SVD.
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Figure 6.6: The initial block when M is even and N is odd
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Figure 6.7: The relation between the GLPBT and other lapped transforms

6.2.7 Relation to the Conventional Lapped Transforms

As seen previously, the GLPBT can represent a very large class of LPPRFBs. If M = N, the

GLPBT is identical to the GLBT [22]. If M < N and R(z) = ET (z−1), the GLPBT represents the

lattice structure of LP PU (pseudo-orthogonal) FBs proposed by Labeau et al. [24]. If M = N

and R(z) = ET (z−1), the GLPBT can represent the GenLOT [15, 16] and the lattice for LPPUFBs

introduced by Soman et al. [17] Such a relation is illustrated in Fig. 6.7

6.3 Noise Robust GLPBT

Recall here that a benefit of the overcomplete representation is noise suppressing properties due

to increased design freedom. Unfortunately, the lattice structures developed in [24] and in the

above disregard the effect of noise added to the transformed signal. The use of the MP pseu-
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R̂(z)n

a) Noise is assumed
to be white.

b) The transformed
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is not always white.

c) Minimize
the noise
component
on average

Signal Space

Figure 6.8: The noise robust GLPBT in subspaces: When noise added in the transform domain
is white, the MP pseudoinverse may not optimally suppress the noise.

doinverse Φ+0 , which corresponds to the use of a transposition ΦT
0 in the pseudo-orthogonal

(paraunitary) case [24], seems to reduce the effect of additive noise because of its minimal norm

and least square properties. However, this use provides the optimal noise suppression only if the

noise component transformed with R̂(z) is white. Generally, this is not white, even although the

noise added to a signal transformed with E(z) is white as depicted in Fig. 6.8. We consider in

this section the case where we give the GLPBT lattice structure with specific parameters and we

a priori know the correlation matrix of noise which is added in the transform domain.

The problem here is to find the appropriate synthesis polyphase matrix X(z) that reduces

noise for a given analysis bank E(z). Let f i ∈ RM and ni ∈ RN be time series of random vectors,

where i ∈ Z. This f i is transformed by E(z). Keep in mind that since z−k is the delay operator

defined by z−n f i = f i−n, we have E(z) f i =
∑K−1

k=0 Ek f i−k. The signal E(z) f will be degraded by

additive noise ni in the precess of transmission or storage. Therefore, the receiver or the observer

obtains

gi = E(z) f i + ni. (6.25)
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Note that E(z) provides overcomplete representation, and therefore there exist infinite number of

synthesis polyphase matrices achieving PR. Let X(z) be determined by the submatrices Xi, that

is, X(z) =
∑K−1

k=0 Xizk. Moreover, let X = [X0 · · · XK−1]. Then, the reconstructed signal f̂ i is

obtained as

f̂ i = X(z)gi

= f i + X(z)ni. (6.26)

The approximation problem to be solved is to minimize

En‖ f̂ i − f i‖2 (6.27)

under the PR condition X(z)E(z) = I M, where En is the ensemble average on ni, . . . , ni+K−1.

Let n = [nT
i · · · nT

i+K−1]T , and let Q be the correlation matrix of n. Then, minimizing (6.27) is

equivalent to minimizing the functional

MSE[X] = En‖X(z)ni‖2

= En

∥∥∥∥∥∥∥∥∥X


ni
...

ni+K−1


∥∥∥∥∥∥∥∥∥

2

= tr[XQXT ], (6.28)

under the PR condition

K−1−s∑
i=0

XiEi+s =

K−1−s∑
i=0

Xi+sEi = δsIM, s = 0, . . . ,K − 1. (6.29)

We should use an iterative optimization technique to obtain the solution. Moreover, it is not

guaranteed that the synthesis polyphase matrix X∗(z) corresponding to the minimizer X ∗ can

be factored into a lattice structure, although the analysis bank E(z) is organized as the lattice

structure. This may lead to difficulty in implementation.

Therefore, let us consider here the following alternative problem. Assume that in a fashion

similar to R(z), a synthesis polyphase matrix X(z) is given by the form

X(z) = STΞR̂(z), (6.30)
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where Ξ =

[
ΞU 0
0 ΞV

]
and ΞU and ΞV are left-inverses of U0 and V0, respectively. Obviously,

X(z) attains PR. Then, the cost functional becomes

MSE[ΞU ,ΞV] = En‖X(z)ni‖2

= En‖STΞR̂(z)ni‖2

= En‖Ξ [R̂0 · · · R̂K−1]︸�����������︷︷�����������︸
R̂

n‖2

= En

∥∥∥∥∥∥
[
ΞU 0
0 ΞV

] [
R̂u

R̂l

]
n

∥∥∥∥∥∥
2

= tr[ΞU R̂uQR̂
T
uΞ

T
U] + tr[ΞV R̂lQR̂

T
l Ξ

T
V], (6.31)

where R̂(z) =
∑K−1

k=0 R̂kzk and R̂ =

[
R̂u

R̂l

]
. It is easily verified that the PR condition is reduced to

ΞUU0 = ΞVV0 = IM/2. (6.32)

Since ΞU and ΞV are determined independently, we can divide the above problem into two

independent problems. Therefore, the minimization problem for ΞU results in the following:

Minimize tr[ΞU R̂uQR̂
T

uΞ
T
U ],

subject to ΞUU0 = IM/2.

Similarly, the minimization problem for ΞV is as follows:

Minimize tr[ΞV R̂lQR̂
T
l Ξ

T
V],

subject to ΞVV0 = IM/2.

It is noted that the solution of the above problem is equivalent to the BLUE (best linear

unbiased estimator) [83]. Therefore, we obtain the solutions

Ξ∗U = (UT
0 (R̂uQR̂

T
u )+U0)+UT

0 (R̂uQR̂
T
u )+,

Ξ∗V = (VT
0 (R̂lQR̂

T
l )+V0)+VT

0 (R̂lQR̂
T
l )+. (6.33)

In most cases, we can assume that Q is nonsingular, and therefore (R̂uQR̂
T
u )+ and (R̂lQR̂

T
l )+ can

be replaced by (R̂uQR̂
T
u )−1 and (R̂lQR̂

T
l )−1, respectively.
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In the general case, if white noise is added, the solution of the BLUE is provided by the MP

pseudoinverse. We show however that in the GLPBT case, the choice of the MP pseudoinverse is

generally incorrect. Assume that Q = σ2IN where σ2 is the variance of the noise. The minimizer

Ξ∗U yields

Ξ∗U = [UT
0 (σ2R̂uR̂

T

u )+U0]+UT
0 (σ2R̂uR̂

T

u )+

= [(R̂
+

u U0)T R̂
+

u U0]+(R̂
+

u U0)T R̂
+

u

= (R̂
+

u U0)+R̂
+

u , (6.34)

where we used the fact that A+ = (AT A)+AT . Therefore, the minimizer is not equal to U+0
in general. In the pseudo-orthogonal (paraunitary) case, the PR condition implies that R̂ =

[Ê
T
0 · · · Ê

T
K−1], which yields that

R̂R̂
T
=

K−1∑
k=0

Ê
T
k Êk = IM. (6.35)

Hence, we have

Ξ∗U = U+0 = UT
0 , Ξ

∗
V = V+0 = VT

0 . (6.36)

However, keep in mind that this straightforward solution does not always hold when Q � σ2IN

even in the pseudo-orthogonal case.

6.4 Design Examples

Some design examples are provided in this section. A cost function to design a filter bank will

depend on its application. We use here the combination of normalized coding gain and stopband

attenuation. The normalized coding gain is used to avoid a trivial solution such that all filter

coefficients are zero, which leads to an infinite coding gain. In the maximally decimated case,

this undesirable solution is never obtained because of the biorthogonal condition ER = I N .

However, this constraint is not imposed on the overcomplete case. Therefore, normalization of

coding gain is needed. Let C be a correlation matrix of an input signal f . The normalized coding

gain for oversampled filter banks is given as

JCG = 10 log10

N−1∏
n=0

(
M

〈hn, gn〉N
)2

〈hn,Chn〉‖gn‖2

− 1

N

, (6.37)
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where hn and gn are the impulse responses of the nth analysis and synthesis filters, respectively.

If the filter bank is maximally decimated, that is, M = N and 〈hn, gn〉 = 1, then the normalized

coding gain is equivalent to the conventional one. We assume that the input signal is the first-

order Markov process (AR(1) process) with the correlation coefficient ρ = 0.95. The stopband

attenuation cost is frequently used for filter design. Minimization of this cost makes each filter a

bandpass filter. The stopband attenuation costs for the analysis and the synthesis filter banks are

respectively given as

JA =

N−1∑
n=0

∫
ω∈Ωstopband

Wa(ω)|Hn(e jω)|2dω, (6.38)

JS =

N−1∑
n=0

∫
ω∈Ωstopband

Ws(ω)|Gn(e jω)|2dω, (6.39)

where Hn(e jω) and Gn(e jω) are the frequency responses of the nth analysis filter and the nth

synthesis filter, respectively, and Wa(ω) and Ws(ω) are weighting functions. The cost function to

be used for design is defined as a linear combination of these three costs:

J = α1JCG + α2JA + α3JS. (6.40)

All design examples here were obtained by unconstrained nonlinear optimization, where we

used the routines provided by MATLAB 1 version 6.1. To obtain oversample PR FBs with

bandpass filters, we should choose M and N such that N is an integer multiple of M due to the

mechanism of alias cancellation. Figure 6.10 shows the filter coefficients and the corresponding

frequency responses of an eight-channel GLPBT in which a decimation factor is four and all

filters have length 16, i.e., L = 16,M = 4, and N = 8. These filters are optimized for stopband

attenuation to design bandpass filters. The initial values for the optimization are given at random.

The analysis and the synthesis filters seem almost the same, since the combination coefficients

αi are chosen so that α1 = 0 and α2 = α3.

The filters obtained by maximizing the normalized coding gain are illustrated in Fig. 6.11.

The filters obtained in Fig. 6.10 are used as the initial values. All filters in Fig. 6.11 are normal-

ized such that 〈hn, gn〉 = M/N and ‖gn‖ = 1. In this case, the GLPBT achieves an impressive

coding gain of 18.32 dB. This implies that the overcomplete representation of signals is robust

against quantization. We show comparison of coding gains for various transforms in Table 6.1.
1MATLAB is a trademark of The Math Works Inc.
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GLBT

GLBT

1/2

Figure 6.9: An oversampled LPPRFB organized by the parallel connection of two GLBTs

Table 6.1: Comparison of coding gains of various transforms: (M, N, L) indicates the decimation
factor, the number of channels, and the length of filters, respectively. “p-GLBT” denotes the
parallel connection of two GLBTs of coding gain 8.85 dB.

Transforms DCT LOT [8] LBT [22] GLBT p-GLBT GLPBT
(M,N, L) (8, 8, 8) (8, 8, 16) (8, 8, 16) (4, 4, 16) (4, 8, 16) (4, 8, 16)

Coding Gain (dB) 8.83 9.22 9.63 8.85 10.36 18.32

In order to evaluate the effect of the optimization, let us consider the eight-channel oversampled

LPPRFB in which two four-channel GLBTs (M = N = 4) optimized for coding gain are con-

nected in parallel as illustrated in Fig. 6.9. Each GLBT attains coding gain of 8.85 dB as listed

in Table 6.1. Let JCG[GLBT] be coding gain of the GLBT. Similarly, let JCG[p-GLBT] be coding

gain of the parallel connection of two GLBTs. Then, given a GLBT, we have the following:

JCG[p-GLBT] = JCG[GLBT] +
20
N

log10 2. (6.41)

Since the GLBT attains coding gain of 8.85 dB, the above equation says that JCG[p-GLBT] �
10.36dB, which is much lower than that of the GLPBT (M,N, L) = (4, 8, 16) optimized for

coding gain. It should be noted that although by the parallel connection, we can obtain higher

coding gain compared to the maximally decimated case, it is much more effective to optimize

free parameters in the GLPBT lattice structure.

Figures 6.12 and 6.13 illustrate a four-channel GLPBT (M, N, L) = (3, 4, 12), and an eight-

channel GLPBT (M,N, L) = (7, 8, 21). All filters depicted in Figs. 6.12 and 6.13 are designed

by optimizing the normalized coding gain with initial values which are optimized by minimizing

stopband attenuation. As seen in these figures, the filters provide poor frequency selectivity

compared to the FB shown in Fig. 6.10, since N is not an integer multiple of M. Coding gains
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Table 6.2: Comparison of coding gains of the pseudo-orthogonal case (oversampled LPPUFBs)
and the pseudo-biorthogonal case (oversampled LPPRFBs)

(M,N, L) (3, 4, 12) (7, 8, 21) (4, 8, 16)

Pseudo-orthogonal 11.93 11.15 17.93
Pseudo-biorthogonal 12.47 11.45 18.32

attained in the pseudo-orthogonal (paraunitary) [24] and in the pseudo-biorthogonal cases are

compared in Table 6.2. In all examples, the GLPBT achieves higher coding gain than the psudo-

orthogonal transform. This is due to the increase of design freedom.

6.4.1 GLPBT with the Noise Robust Building Block

We confirm the effect of the noise robust GLPBT when the building block Φ+0 in the GLPBT

is replaced by Ξ∗. For comparison, we use two GLPBTs designed in the above subsection. All

filter banks consist of filters of length 16 (L = 16), have eight channels (N = 8), and downsample

the filtered signal by four (M = 4). One is a bandpass filter bank which is optimized for the

stopband attenuation cost (GLPBT 1) as shown in Fig. 6.10. This is almost a pseudo-orthogonal

(paraunitary) filter bank. The other is optimized for coding gain (GLPBT 2) as shown in Fig.

6.11. This is pseudo-biorthogonal.

We consider here two kinds of noise.

Case 1 The noise has the same correlation among channels. The noise is characterized by a

block-diagonal matrix with the same entry, that is,

Q = diag[Θ, . . . ,Θ︸����︷︷����︸
K

], (6.42)

where

[Θ]i, j =

{
si i = j
c i � j

(6.43)

We used {si} = {10, 20, 30, 40, 40, 30, 20, 10} and c = 3 in this test.

Case 2 All output coefficients are transmitted through one channel. The correlation function of

the noise has exponential decay, that is,

[Q]i, j = e−λ|i− j|. (6.44)
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Table 6.3: Difference in SNR (dB) between the noise robust GLPBT and the GLPBT
White Case 1 Case 2 (λ = 0.1) (λ = 0.5)

GLPBT 1 0 0.2177 4.5324 0.5161
GLPBT 2 0.2374 0.3868 2.6215 0.3193

We set that λ = 0.1 and 0.5 in this test.

For each case, we compare the minimal error produced by the noise robust GLPBT MSE[Ξ∗]

with the error produced by the GLPBT MSE[Φ+0 ]. Table 6.3 shows the difference in SNR (dB),

that is,

−10(log10 MSE[Ξ∗] − log10 MSE[Φ+0 ]). (6.45)

The system can achieve PR, and therefore we can compute the difference of SNR in average on

noise for any input. The table says that the differences in Case 2 (λ = 0.1) are greater than those

in the other cases. This may be due to the fact the correlation matrix of Case 2 approaches to the

identity matrix when λ increases.

The table says that the differences in Case 2 (λ = 0.1) are greater than those in the other

cases. This may be due to the fact the correlation matrix of Case 2 approaches to the identity

matrix when λ increases.

6.5 Summary

We have introduced the complete and minimal factorization of a special class of N-channel over-

sampled linear-phase perfect reconstruction filter banks (LPPRFBs). The analysis and synthesis

filters yield a frame or a pseudo-biorthogonal basis; and therefore this filter bank is called the

generalized lapped pseudo-biorthogonal transform (GLPBT) from the lapped transform perspec-

tive. The factorized filter banks are characterized by elementary rotation angles and scalar mul-

tiplications. Therefore, the lattice structure can provide fast implementation and enables us to

determine the filter coefficients by solving an unconstrained optimization problem. Furthermore,

we have considered the lattice structure of the GLPBT in presence of noise. We have also shown

some design examples where coding gain and stopband attenuation are used as cost functions.

To avoid a trivial solution, we have formulated the normalized coding gain. The characteristics
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of the resulting filters are improved in the sense of coding gain because of increase in the degree

of freedom. In the noisy case, given an analysis bank of the GLPBT and a correlation matrix of

noise, the proposed synthesis bank suppresses the noise added in the transform domain. Experi-

mental results show that this class of filter bank is more effective in the presence of colored noise

than white or almost white noise.

It should be noted that the theory in this chapter covers a very large class of LPPRFBs. A

lot of conventional works can be regarded as a subclass of the proposed filter banks with the

lattice structure. For future research, it is necessary to develop the factorization for all possible

N-channel oversampled LPPRFBs.
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Figure 6.10: Design example for M = 4,N = 8, L = 16, which is optimized for stopband
attenuation
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Figure 6.11: Design example for M = 4,N = 8, L = 16, which is optimized for coding gain



6.5. SUMMARY 111

0 5 10

−2

−1

0

1

2

No. 0

0 5 10

−2

−1

0

1

2

No. 1

0 5 10

−2

−1

0

1

2

No. 2

0 5 10

−2

−1

0

1

2

No. 3

(a) Impulse responses of the analysis filters

0 5 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

No. 0

0 5 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

No. 1

0 5 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

No. 2

0 5 10

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

No. 3

(b) Impulse responses of the synthesis filters

0 0.2 0.4 0.6 0.8 1
−40

−30

−20

−10

0

No. 0

M
ag

ni
tu

de
 [d

B
]

0 0.2 0.4 0.6 0.8 1
−40

−30

−20

−10

0

No. 1

M
ag

ni
tu

de
 [d

B
]

0 0.2 0.4 0.6 0.8 1
−40

−30

−20

−10

0

No. 2

M
ag

ni
tu

de
 [d

B
]

Normalized Frequency
0 0.2 0.4 0.6 0.8 1

−40

−30

−20

−10

0

No. 3

M
ag

ni
tu

de
 [d

B
]

Normalized Frequency

(c) Magnitude responses of the analysis filters

0 0.2 0.4 0.6 0.8 1
−40

−30

−20

−10

0

No. 0

M
ag

ni
tu

de
 [d

B
]

0 0.2 0.4 0.6 0.8 1
−40

−30

−20

−10

0

No. 1

M
ag

ni
tu

de
 [d

B
]

0 0.2 0.4 0.6 0.8 1
−40

−30

−20

−10

0

No. 2

M
ag

ni
tu

de
 [d

B
]

Normalized Frequency
0 0.2 0.4 0.6 0.8 1

−40

−30

−20

−10

0

No. 3

M
ag

ni
tu

de
 [d

B
]

Normalized Frequency

(d) Magnitude responses of the synthesis fil-
ters

Figure 6.12: Design example for M = 3,N = 4, L = 12, which is optimized for coding gain
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Figure 6.13: Design example for M = 7,N = 8, L = 21, which is optimized for coding gain



Chapter 7

Conclusions

7.1 Introduction

We have given solutions for the problems that are stated in Chapter 1. In this chapter, we conclude

our works in this dissertation and describe open problems which have been clarified throughout

this dissertation.

7.2 Summary

In Chapter 2, we define notations and review fundamental theories which are necessary to under-

stand this dissertation.

In Chapter 3, we have introduced a biorthogonal lapped transform that consists of overlap-

ping and non-overlapping basis functions (VLLBT). We have defined the VLLBT by extend-

ing conventional lapped transforms. Furthermore, we have provides a theory of the subspace

Karhunen-Loève transform (SKLT). From the theory, when the biorthogonal long basis func-

tions of the VLLBT are given, the optimal short basis functions in the energy compaction sense

are derived by solving an eigenvalue problem without iterative searching techniques. This yields

that the degree of freedom for the VLLBT is reduced to that for the long basis functions of

the VLLBT, although in general, biorthogonalization leads to a large increase in the degree of

freedom. It has been shown by comparison that the degree of freedom of the VLLBT with the

SKLT is lower than that of the VLLBT without the SKLT. We also provide design examples. The

resulting VLLBT attains high coding gain comparing to other lapped transforms.

In Chapter 4, we have presented the theory and design of an adaptive lapped biorthogonal

113
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transform for image coding. The proposed transform is based on the extension of the VLLBT

formulated in Chapter 3 on length of the basis functions. The overlapping basis functions have

samples whose number is an integer multiple of the traditional block size. We have introduced

two types of this transform: Type-E and Type-O. The Type-E requires special care for the image

boundary to avoid the border distortion. In the Type-O, on the other hand, basis functions’

centers of symmetry are aligned. Because of the alignment, we can use the symmetric extension

method at image boundaries when we transform an input image. We show an orientation adaptive

example, where each adaptive transform is characterized by the angle of edges in image blocks.

In Chapter 5, we have illustrated image coding applications for the transforms developed in

Chapters 3 and 4. Comparisons among the proposed transforms and the existing transforms have

been carried out. Through comparison, we have shown benefit of the proposed transforms.

In Chapter 6, we have developed a lattice structure for a special class of N-channel over-

sampled linear-phase perfect reconstruction filter banks with a desimation factor M smaller than

N. We deal with systems in which all analysis and synthesis filters have the same FIR length

and share the same center of symmetry. This class of LPPRFBs is called the generalized lapped

pseudo-biorthogonal transform (GLPBT), since the present filter banks are generalizations of

conventional lapped transforms. We provide the general lattice factorization of a polyphase

matrix of the GLPBT. The lattice structure is based on the signular value decomposition for

non-square matrices. The resulting lattice structure is able to provide fast implementation and

allows us to determine the filter coefficients by solving an unconstrained optimization problem.

Moreover, we have considered the case where we give the GLPBT lattice structure with specific

parameters and we a priori know the correlation matrix of noise. We have shown that the present

systems with the lattice structure cover a wide range of linear-phase perfect reconstruction filter

banks. We have also shown design examples.

7.3 Open Problems

So far, we have addressed several problems, and have shown solutions of those problems through-

out this dissertation. However, several new problems have arisen. We would summarize those

open problems in this section, and suggest some possible directions for future work.
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7.3.1 Analytic Solutions for Lapped Transforms

In Chapter 3, we have shown an analytic solution of the VLLBT when feasible long basis func-

tions are given. However, we should find the long basis functions by numerical computation.

Finding an analytic solution for all basis functions is still an open problem. Furthermore, it is

more desirable to find analytic solutions for various classes of lapped transforms.

7.3.2 Adaptive Long Basis Functions

In this dissertation, the adaptation is applied only to short basis functions. However, constructing

2D non-separable long basis functions adapted for a 2D characteristic such as orientation would

be very meaningful.

7.3.3 Self-Organized Classification for Adaptive Lapped Transform Cod-
ing

In this dissertation, we have shown only the orientation adaptation example. However, since the

non-overlapping basis functions can be obtained from a correlation matrix by solving the eigen-

value problem, any conventional adaptation procedures based on the Karhunen-Loève transform

can be applied to the proposed design method of lapped transforms. For instance, we can con-

struct various classes of adaptive lapped transforms by training correlation matrices of a source

of input signals. This self-organizing approach has been studied in the block transform cases

[46, 47]. However, it may be more effective that this strategy is applied to our framework.

7.3.4 Classification Criteria for Adaptive Lapped Transforms

We choose the best transform out of a set of OALBTs by the subspace method in Chapter 5.

However, this criterion never involve the amount of bits. In image coding applications, we should

choose a transform which gives the best approximation for a fixed rate. Such a optimization is

called the rate-distortion optimization [12]. This strategy would improve coding efficiency.

7.3.5 Complete Lattice for Oversampled LPPRFBs

The GLPBT defined in Chapter 6 is indeed a subclass of oversampled LPPRFBs. We have

developed in this dissertation the complete lattice factorizaton for the GLPBT. However, The
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development of a complete lattice structure is still an open problem.

7.3.6 Synthesis Polyphase Matrix for Oversampled LPPRFBs

In Chapter 6, we have introduced the final building block which can suppress noise. This choise

seems the most practical and appropriate to fast implementation. However, this solution is not the

global optimum of synthesis polyphase matrix. Therefore, we should find the optimal solution

and construct its lattice structure for fast implementation if possible. Moreover, we can remove

the PR condition to decide the synthesis FB. For example, using stastic knowledge on input

signal, we can choose a synthesis FB which can provide the best approximation to the original

signal such as the Wiener filter.
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