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Abstract

In this paper, we propose dynamic portfolio management schemes for deriving the

optimal portfolio under incomplete information which assures the log-utility investors of

maximizing their expected utility, at any finite terminal-time. One of the above schemes

is the sample path-wise optimal portfolio (SPOP), which is consistent with the back-test

framework used in the actual investment. It is proven that, at any finite terminal-time,

this SPOP is asymptotically optimal among all the portfolios which is predictable under

investors’ incomplete information. The optimality is guaranteed by the continuous Bayesian

updating scheme with the prior distribution for unknown drift parameters being endowed

with asymptotically infinite differential entropy. Another scheme is the universal portfolio

(UP). Although more relaxed constraints for portfolio weights are required, the UP is again

optimal among all the portfolios which is predictable for the incomplete information. Also,

as we extend the investor’s utility class to the general power-utility, we show the above

schemes guarantee its convergence to the optimal portfolio which is predictable for complete

information. After proposing algorithms for the two schemes, we provide an empirical

analysis which verifies the above schemes, and compensates for what the schemes lacks.
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Chapter 1

Introduction

Modern portfolio theory has been developed with the models which maximize expected

value of von Neumann-Morgenstern utility. Among these utilities, the log-utility and power-

utility we are to treat in this paper can be used for reinvesting investors’ wealth, and financial

literature has shown its important properties. One of those properties is that the degree of

Arrow-Pratt’s relative risk aversion is constant, and the optimal portfolio policy for power-

utility investors is constant through their i.i.d. investment horizons, and it is proven that

this property holds if and only if the utility belongs to this class[3, 40]. Concerning the

log-utility which is included in the power-utility, maximizing the terminal expected log-

utility coincides with the growth maximization criterion, which is also known as the Kelly

criterion, and several authors showed its favorable properties[32, 4, 44, and 1]. On the other

hand, several authors paid attention to the problem of how to apply these portfolio theories

in the practical market where only the incomplete information can be obtained. In the

past, there are two approaches to treat this problem. In the first approach, the continuous

estimation problem for the asset price process is considered[12, 10, 18, 11, 29, 17, 35, 36,

37, and 30]. In the analysis of [12, 10, 18, 11, 17, and 37], the same continuous Bayesian

updating scheme of Liptser-Shiryayev is employed[38]. Then by using different techniques,

the optimal portfolio under incomplete information is derived. The second approach for
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deriving optimal portfolios is different from the first one in that the estimation of asset

distribution and the portfolio optimization are jointly executed. Recently, several authors

propose this scheme, called universal portfolios. Given the information of observed asset

prices alone, the universal portfolio converges to the portfolio which maximize the expected

log-utility. In this area, Cover pioneered the universal portfolio and got an asymptotic

result on general discrete time series[7], and Cover-Ordentlich extended that result with

side information taken into consideration[8]. Also Jamshidian provided the same results

in a continuous time framework[25]. Shirakawa-Ishijima extended the result into the finite

time framework and showed that it provides better expected log-utility compared to the

portfolio using estimated mean and covariance from the past[42].

Our motivation is quite similar to these two approaches, and our treatment resembles

the latter approach. But our approach to treat this problem is different in that we are to

build a theoretical framework directly applicable to actual investments. Practically, when

investors decide their portfolio positions for the next investment period t+1, they carry out

so-called back-test from past observations of asset returns. That is, any joint observation of

asset returns, in each period from t − L + 1 to t, is presumed to be uniformly distributed,

with probability 1/L of occurring in period t + 1[19, 20, 21, and 22]. Then investors adopt

the portfolio which maximize the expected value of their utility using the above probability

distribution. Our question is whether this portfolio is really optimal among all the portfolios

which are predictable for the available information set. The objective of this paper is to

give the answer for this question. That is, as we restrict the power-utility class only to the

log-utility, we show the optimality which assures log-utility investors of maximizing their

expected utility, at any finite terminal-time. Another objective is to show these schemes

almost surely learn the ideal portfolio asymptotically which maximize the terminal expected

value of investors’ utility under complete information. That is, we provide the schemes

which can derive the optimal portfolios within the shorter incomplete information set, and

also assure their convergence to the ideal optimal portfolio within the longest complete
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information set, without contradiction.

After proposing the algorithms for the above schemes, we empirically verify the schemes

and make up for what they lacks in theoretical aspects, at the practical US stock market.

Concerning the preceding empirical works on the asset management for power-utility in-

vestors, several authors published on this theme [19, 20, 21, and 22]. In these papers, the

portfolio composition and the ex post geometric mean and variance are examined by varying

risk attitude, i.e. the Arrow-Pratt relative risk aversion. But these empirical analyses were

not based on a scheme for how to apply the Expected Utility Maximization Theorem of von

Neumann-Morgenstern in the practical market, where asset prices are observed only once.

In this paper, using the several schemes described above, we verify if these schemes can

provide the maximal ex post power-utility in the settings of the practical US stock market.

This paper is organized as follows. In chapter 2, the continuous model of asset prices

is defined. After defining the complete information given to power-utility investors, we

derive the optimal constant portfolio (the ExPow portfolio) applying the Expected Utility

Maximization Theorem of von Neumann-Morgenstern.

In chapter 3, we restrict the power-utility class only to the log-utility, or equivalently

restrict the degree of Arrow-Pratt’s relative risk aversion α only to one. After defining the

incomplete information given to investors, we address the expected utility maximization

problem whose expectation is taken under the sequence of probability measure P (k). Then

we propose the portfolio, called the SPOP. The SPOP maximize the sample path-wise value

of the constant portfolio. The asymptotic optimality of the SPOP at any finite terminal-

time, among all the portfolio which is predictable for the incomplete information, is proved

by introducing the optimal portfolio based on the continuous Bayesian updating formula

(referred to as the CBOP) of Liptser-Shiryayev[38].

In chapter 4, we propose another scheme called the universal portfolio (UP). As the

SPOP, the UP is also optimal among the portfolios which is predictable for the incomplete

information. But more relaxed constraints for portfolio weights are required to show its
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optimality. Moreover, we evaluate the gap in the expected log-utility base, at any finite

terminal-time, among both the SPOP and UP with incomplete information, and the ideal

ExLog portfolio with complete information. We also establish the advantage of both the

SPOP and UP compared to the portfolio which uses the unbiased estimators for the drift

and diffusion parameters in asset price processes. Furthermore, the peformance of unbiased

estimator approach converges to that of both the SPOP and UP, as the number of observed

asset prices increases.

In chapter 5, as we extend the utility class from the log-utility to the general power-utility,

we propose two schemes which almost surely learn the ExPow portfolio asymptotically. One

is the α-scaled sample path-wise optimal portfolio (αSPOP) which is the generalization of

the SPOP. The other is the α-scaled universal portfolio (αUP) which is the generalization

of the UP. It shown that both the αSPOP and αUP with incomplete information almost

surely converge or learn the ExPow portfolio which is predictable for complete information.

In chapter 6, we propose algorithms to search for the αSPOP, and for the αUP.

In chapter 7, we provide an empirical analysis which verify our theory in the continuous-

time framework, and make up for what the theory lacks. The target of this analysis is the

entire NYSE/AMEX stock market. Our analysis is rather new in that we take the exact

transaction costs into account, whenever we evaluate the ex post power-utility. And in

chapter 8, the conclusion and the direction of our future research are stated.
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Chapter 2

The Optimal Portfolio under

Complete Information

Under the complete information given to the power-utility investors, we derive the ideal

optimal portfolio, among all the portfolios which are predictable for the complete informa-

tion. That is, with complete information about how asset prices are stochastically generated,

and with the assumption of optimal portfolio constancy, we derive the optimal constant port-

folio for the power-utility investor. Then we verify the optimality of the constant portfolio.

2.1 The Model of Asset Prices and Investor’s Objec-

tive

We consider a security market with m assets which prices Sit (i = 1, . . . ,m) follow geo-

metric Brownian motion as follows:

dSit

Sit

= µidt +
m∑

j=1

σijdWjt (i = 1, . . . ,m) ,

or (diag(St))
−1dSt = µdt + ΣdWt , (2.1)
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where diag(St) is a diagonal matrix whose element is St. Here Wt = (W1t, . . . ,Wmt)
′

denotes an m-dimensional standard Brownian motion and the filtration Ft is generated by

σ (Wu; 0 ≤ u ≤ t) and F0. We assume that µ = (µ1, . . . , µm)′ is an F0-measurable random

vector following multivariate normal distribution and Σ = (σij)1≤i,j≤m is a constant diffusion

parameter. It is supposed that {Wt; t ≥ 0} and µ are independent and investors have the

following class of information:

Information 1

Complete information: With the F0-measurable drift parameter µ being known, asset

prices follow the stochastic differential equation (s.d.e) (2.1).

We assume the investors’ utility is expressed as a power-utility function, such that

u (x)
�
=

1

1 − α
x1−α (α ≥ 0) , (2.2)

where α is the degree of Arrow-Pratt’s relative risk aversion, i.e. α
�
=−xu′′(x)/u′(x). When

α = 1, the investors’ utility is logarithmic one.

Then the investors having the power-utility continuously select their optimal portfolios

within all the Ft-predictable portfolios. And the portfolio selection is made within the

following simplex D:1

D
�
= {b ∈ Rm | b′1 = 1, b ≥ 0} . (2.3)

The instantaneous return of the portfolio value process is given by

dVt(b•)
Vt

= b′
t(diag(St))

−1dSt.

1Though we can incorporate the general convex constraints, Ab ≤ c, as the study in [23], we assume

investors are allowed to select their portfolios in the simplex (2.3). The reason for this is that we do not

consider them in the following empirical analysis (chapter 7), and we make our theory consistent with it.

This reason applies to the treatment of the simplex D′ in chapter 4.
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Provided that the investor’s initial wealth is V0 = 1, we can easily check that the portfolio

value at time T is given by

VT (b•) = exp

[
−1

2

∫ T

0
b′

uΣΣ′budu +
∫ T

0
b′

u(diag(Su))
−1dSu

]
. (2.4)

Under these conditions, with terminal-time T provided, the objective problem for the power-

utility investors is to maximize the terminal value of their expected utility as follows:

P0

∣∣∣∣∣∣∣∣∣∣∣
maximize

b•
E[u( VT (b•) )]

subject to bt ∈ D ,

bt is Ft−predictable process ,

where 1 is a vector of ones.

2.2 The Optimal Constant Portfolio b∗

The outline of the following analysis is as follows. First, we assume the portfolio maximiz-

ing the expected power-utility among all the Ft-predictable portfolios is constant through

time and drive the optimal constant portfolio. And then we verify its optimality among all

the admissible portfolios. If the portfolio at t is constant, i.e. bt = b = const., the portfolio

value at time T is reduced to be simply

VT (b) = exp
[(

b′µ − 1

2
b′ΣΣ′b

)
T + b′ΣW t

]
.

And its expectation at terminal-time T , under Information 1, is

E[u(VT (b))] =
1

1 − α
E
[
exp

[
(1 − α)

{(
b′µ − 1

2
b′ΣΣ′b

)
T + b′ΣW T

}]]
=

1

1 − α
exp

[
(1 − α)b′µT − 1

2
(1 − α)αb′ΣΣ′bT

]
. (2.5)

Then the terminal expected power-utility maximization problem for the investor holding

constant portfolio is then stated as

P1

∣∣∣∣∣∣∣
maximize

b
E[u(VT (b))]

subject to b ∈ D .
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Utilizing Eq. (2.5), this problem is equivalent to

P′
1

∣∣∣∣∣∣∣∣
minimize

{b}
1
2
αb′ΣΣ′b − b′µ

subject to b ∈ D .

From the Karush-Kuhn-Tucker (KKT) condition[31, 34], the optimal constant portfolio for

the problem P′
1 is (b∗, η∗,ν∗) satisfying the following equations.

αΣΣ′b∗ + η∗1 − ν∗ = µ,

b∗′1 = 1, ν∗′b∗ = 0, ν∗ ≥ 0,
(2.6)

where η∗ and ν∗ are Lagrange multipliers. Then the optimality of the constant portfolio b∗,

among all the Ft-predictable portfolios, is guaranteed by the following theorem.

Theorem 1 (Optimality of constant portfolio b∗)

Under Information 1, the expected power-utility is maximized by constant portfolio b∗ at

any finite terminal-time T . That is

( {∀Ft−predictable bt ∈ D ; 0 ≤ t ≤ T } ) ( E[u( VT (b•) )] ≤ E[u( VT (b∗) )] ) .

Proof. Since u(x) is strictly concave, we have

E[u(VT (b•))] ≤ E[u(VT (b∗
•))] +

{
E[VT (b∗

•)
−α · VT (b•)] − E[VT (b∗

•)
1−α]

}
Then, it is necessary and sufficient to prove E[VT (b∗

•)
−α · VT (b•)] − E[VT (b∗

•)
1−α] ≤ 0. We

can easily see that

VT (b∗
•)

1−α = exp

[
(1 − α)

{∫ T

0

(
b∗′

t µ − 1

2
b∗′

t ΣΣ′b∗
t

)
dt +

∫ T

0
b∗′

t ΣdW t

}]
= A · B ,

where

A = exp

[
(1 − α)

∫ T

0
b∗′

t µdt − 1

2
α(1 − α)

∫ T

0
b∗′

t ΣΣ′b∗
tdt

]
,

B = exp

[
−1

2
(1 − α)2

∫ T

0
b∗′

t ΣΣ′b∗
t dt + (1 − α)

∫ T

0
b∗

tΣdWt

]
.
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Also,

VT (b∗
•)

−α · VT (b•)

= exp

[∫ T

0

{
(bt − αb∗

t )
′ µ − 1

2

(
b′

tΣΣ′bt − αb∗′
t ΣΣ′b∗

t

)}
dt +

∫ T

0
(bt − αb∗

t )
′ ΣdWt

]

= A ·C exp

[∫ T

0
(bt − b∗

t )
′ (µ − αΣΣ′b∗

t ) dt

]
, (2.7)

where

C = exp

[
−1

2

∫ T

0
(bt − αb∗

t )
′ ΣΣ′ (bt − αb∗

t ) dt +
∫ T

0
(bt − αb∗

t )
′ ΣdWt

]
.

The last term of (2.7) is

exp

[∫ T

0
(bt − b∗

t )
′ (µ − αΣΣ′b∗

t ) dt

]
= exp

[∫ T

0
(bt − b∗

t )
′ {µ − (µ − η∗

t 1 + ν∗
t )} dt

]

= exp

[
−
∫ T

0
b′

tν
∗
t dt

]
≤ 1 . (2.8)

The second equality follows from the constraint b′
t1 = b∗′

t 1 = 1, and the KKT condition

b∗′
t ν∗

t = 0 in Eq. (2.6). And the inequality follows from bt ≥ 0 and ν∗
t ≥ 0. Then we can

rewrite (2.7) as

VT (b∗
•)

−α · VT (b•) ≤ A · C.

Since b∗
t is uniformly bounded, we can show E[B] = 1. From this together with A ≥ 0 and

E[C] ≤ 1, we have

E[VT (b∗
•)

−αVT (b•)] − E[VT (b∗
•)

1−α] ≤ AE[C] − AE[B]

≤ A − A = 0 .

�

This theorem asserts that the constant portfolio b∗ is the solution of P0. In other words, b∗

is the portfolio maximizing the expected power-utility at any finite terminal-time, among

all the Ft-predictable portfolios. Hereafter we call b∗ the ExPow portfolio, or the ExLog

portfolio especially for the α = 1(log) investors.
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Chapter 3

The Sample Path-Wise Optimal

Portfolio

In this chapter, as we restrict the degree of Arrow-Pratt’s relative risk aversion α only

to one, i.e. the log-utility investor, we propose a scheme of how to derive the optimal

portfolio, among all the portfolios which are predictable for the incomplete information.

The optimality is proved by utilizing the continuous Bayesian updating formula of [38]. On

the other hand, the above optimal portfolio almost surely learns the ExPow portfolio in the

long run, but we leave this asymptotic analysis in Chapter 5.

3.1 Addressing the Problem under the Incomplete

Information

As in the previous chapter, we consider the security market with m assets. We suppose,

however, that investors are allowed to observe a realization of asset price process (2.1), only

once. In other words, they are provided with the following class of information which is

reasonable for the practical market environment.

11



Information 2

Incomplete information: Investors have no prior distribution information for the drift pa-

rameter µ. That is, the differential entropy of the prior distribution for the drift parameter is

asymptotically infinite. And they are only provided with the information Gt ⊂ Ft generated

by a realized asset price process of Eq. (2.1) as follows:

Gt
�
=σ (Su; 0 ≤ u ≤ t) . (3.1)

Remark 1

The information Gt is enough to derive ΣΣ′ exactly, since the Doob-Meyer decomposition

of the quadratic process (dSt/St)(dSt/St)
′ yields the finite process ΣΣ′t.

Remark 2

It is well known that if µ follows the multivariate normal distribution N(m,Γ), its dif-

ferential entropy is given by 1/2 log(2πe)m|Γ| [Th.9.4.1, 6]. Since we aim to treat the

prior distribution for µ with infinite differential entropy being endowed, we consider the

sequence of the probability measure P (k) on (F0,Ω), such that each prior distribution

for µ is N
(
m

(k)
0 ,Γ

(k)
0

) �
= N (m0, kΓ0). Then we can guarantee that the differential en-

tropy of the prior distribution for µ is asymptotically infinite, since 1/2 log(2πe)m|Γ(k)
0 | =

k/2 log(2πe)m|Γ0| → ∞ as k → ∞.

We assume the investors’ utility is expressed as the log-utility function

u (x)
�
= log x (x > 0) . (3.2)

Then the investors having the log-utility continuously select the optimal portfolios within

all the Gt-predictable portfolios. And the portfolio selection is made within the simplex D

defined by (2.3). The instantaneous return of the portfolio value process is given by

dVt(b•)
Vt

= b′
t(diag(St))

−1dSt.

12



Without loss of generality, we assume that the investor’s initial wealth is V0 = 1. Then we

can easily check that the portfolio value at terminal-time T is given by

VT (b•) = exp

[
−1

2

∫ T

0
b′

uΣΣ′budu +
∫ T

0
b′

u(diag(Su))
−1dSu

]
. (3.3)

The problem we are to treat in this chapter emerges, because, under weak Information 2, we

cannot observe the realization of µ. Then the terminal expected log-utility maximization

problem we treat is:

P2

∣∣∣∣∣∣∣∣∣∣∣
maximize

b•
limk→∞ E(k)[u( VT (b•) )]

subject to bt ∈ D ,

bt is Gt−predictable process ,

where E(k)[·] is the expectation under the probability measure P (k), and 1 is a vector of

ones. In the following discussion, we propose a scheme of how to derive the optimal portfolio

for P2 within the Gt-predictable portfolios.

3.2 Deriving the Sample Path-Wise Optimal Portfolio

b∗∗
t

Under the limited Information 2 given to the log-utility investor, we propose a method

to derive the optimal portfolio among all the Gt-predictable portfolios. Under Information

2, the log-utility investors cannot use the filtration Ft. Then they can only maximize their

log-utility along this sample path-wise information Gt, using Gt-predictable portfolios b•.

First we sketch the framework of back-test which is frequently employed in the actual

investment. Divide [0, t] into N , then the time interval is ∆
�
= t/N and the price observations

are {∆Si ; i = 1, . . . , N}. The back-test framework assumes that the next increment ∆S

during [t, t + ∆] is uniformly distributed as the historical data, i.e.,

(diag (S))−1 · ∆S = (diag (Si))
−1 · ∆Si , w.p.

1

N
, 1 ≤ i ≤ N .

13



Then we can easily see that

E

[
log

(
Vt+∆(b•)
Vt(b•)

)∣∣∣∣∣Gt

]
∼= 1

N

N∑
i=1

log
(
1 + b′

t (diag (Si))
−1 · ∆Si

)
. (3.4)

If we maximize the left-hand side of (3.4) continuously, we can optimize P2 for any realization

of the drift parameter µ. From the Ito’s lemma, if we take the limit N → ∞,

1

N

N∑
i=1

log
(
1 + b′

t (diag (Si))
−1 · ∆Si

)
→ −1

2
b′

tΣΣ′btt +
∫ t

0
b′

t (diag (Su))
−1 · dSu .

Then the back-test framework of the portfolio optimization results in the following para-

metric problem with respect to t:

P2(t)

∣∣∣∣∣∣∣
maximize

b
Vt(b) = exp

[(
b′µ − 1

2
b′ΣΣ′b

)
t + b′ΣWt

]
subject to b ∈ D .

Hereafter, we call the optimal solution of P2(t), based on the back-test framework, the

sample path-wise optimal portfolio (SPOP). P2(t) is equivalent to the following problem.

P′
2(t)

∣∣∣∣∣∣∣
minimize

b

1
2
b′ΣΣ′b − b′µ̃t

subject to b ∈ D ,

where µ̃t
�
= µ + 1/tΣWt. Since

µ̃t =
1

t

∫ t

0
(diag(Su))

−1dSu , (3.5)

this problem is well-defined under Information 2. Also note that we admit the SPOP is

Gt-predictable, since it seeks the constant portfolio which maximizes the sample path-wise

portfolio value at time t, according to one sample path {Su; 0 ≤ u ≤ t}. Then, at time

t ( > 0 ), the KKT condition for the problem P′
2(t) is (b∗∗

t , η∗∗
t ,ν∗∗

t ) satisfying
ΣΣ′b∗∗

t + η∗∗
t 1 − ν∗∗

t = µ̃t ,

b∗∗′
t 1 = 1 ,

ν∗∗′
t b∗∗

t = 0 ,ν∗∗
t ≥ 0 ,

(3.6)

where η∗∗
t and ν∗∗

t are Lagrange multipliers at t. Hereafter, b∗∗
t denotes the SPOP.
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3.3 The Asymptotic Optimality of the SPOP

via Continuous Bayesian Updating Schemes

In this section, we shall prove the asymptotic optimality of the SPOP among all the

Gt-predictable portfolios, through the continuous Bayesian updating scheme. The portfolio

selection problem under incomplete information, which is quite similar to our model, is

considered by several authors [12, 10, 18, 11, 17, and 37]. Let us consider the portfolio

learning scheme of Gennotte[18], based on the continuous Bayesian updating formula of

Liptser-Shiryayev[38].

We suppose the investors only have Information 2. Then as we described in Remark 1,

they know the diffusion parameter ΣΣ′ exactly, but do not know the F0-measurable drift

parameter µ. Hereafter, as noted in Remark 2, we consider the probability measure P (k)

on (F0,Ω), where the prior distribution for µ follows N
(
m

(k)
0 ,Γ

(k)
0

) �
=N (m0, kΓ0). Then

we can study the infinite differential entropy behavior by taking the limit k → ∞. Utilizing

the information Gt, the investors estimate the F0-measurable µ as follows:

m
(k)
t

�
= E(k) [µ | Gt] ,

Γ
(k)
t

�
= E(k)

[(
µ − m

(k)
t

) (
µ − m

(k)
t

)′ ∣∣∣∣ Gt

]
,

where m
(k)
t is the estimation for µ, and Γ

(k)
t is its estimation error, under P (k). Using in-

finitesimal observations dSt, we can improve the estimation by the continuous Bayesian

updating formula of [38], to obtain the improvement dm
(k)
t . By assumption, we have

E(k)[|µ|4] = E(k) [ |µ|4| G0] < ∞. According to Theorem 12.8 in [38], the estimation of

µ conditioned on Gt is given by

m
(k)
t =

[
I + Γ

(k)
0 (ΣΣ′)−1

t
]−1 ·

[
m

(k)
0 + Γ

(k)
0 (ΣΣ′)−1

∫ t

0
(diag(Su))

−1 dSu

]
(3.7)

=
[
1

k
Γ−1

0 + (ΣΣ′)−1
t
]−1

·
[
1

k
Γ−1

0 m0 + (ΣΣ′)−1
∫ t

0
(diag(Su))

−1 dSu

]
where I is an identity matrix. Since we aim to analyze the infinite differential entropy case,
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we should take the limit k → ∞. Then the estimator m
(k)
t converges to

mt
�
= lim

k→∞
m

(k)
t =

1

t

∫ t

0
(diag(Su))

−1 dSu = µ̃t , (3.8)

where µ̃t is given by Eq. (3.5). Next transform Eq. (2.1) into entirely observable s.d.e. :

(diag(St))
−1

dSt = m
(k)
t dt + ΣdW̃

(k)
t , (3.9)

where

W̃
(k)
t

�
=Σ−1

[∫ t

0
(diag(Su))

−1 dSu −
∫ t

0
m(k)

u du
]

= Σ−1
∫ t

0
(µ − m(k)

u )du + Wt .

Then W̃
(k)
t is Gt-measurable, and

E(k)
[
W̃

(k)
t − W̃(k)

s

∣∣∣Gs

]
= E(k)

[
Σ−1

∫ t

s
(µ − m(k)

u )du

∣∣∣∣Gs

]
= 0 .

Furthermore,
〈
W̃(k)

〉
t
= 〈W〉t = t. Hence W̃

(k)
t is Gt standard Brownian motion owing to

Lévy’s theorem under the probability measure P (k). Then the portfolio value at terminal-

time T , using the Gt-predictable drift m
(k)
t and portfolios b•, is given by

VT (b•) = exp

[
−1

2

∫ T

0
b′

uΣΣ′budu +
∫ T

0
b′

u

(
m(k)

u du + ΣdW̃(k)
u

)]
, k ≥ 1 . (3.10)

Let b
†(k)
t be the optimal portfolio under P (k) for the problem P2, which is based on the

continuous Bayesian formula (referred to as the CBOP) under the finite uniform distribution.

Then b
†(k)
t satisfies the KKT condition (3.6) in which m

(k)
t is substituted for µ̃t. That is

(b
†(k)
t , η

†(k)
t ,ν

†(k)
t ) satisfying

ΣΣ′b†(k)
t + η

†(k)
t 1 − ν

†(k)
t = m

(k)
t ,

b
†(k)′
t 1 = 1 ,

ν
†(k)′
t b

†(k)
t = 0, ν

†(k)
t ≥ 0 ,

(3.11)

where η
†(k)
t and ν

†(k)
t are Lagrange multipliers associated with m

(k)
t . From (3.8), m

(k)
t → mt

in the limit. Then (b
†(k)
t , η

†(k)
t ,ν

†(k)
t ) converges to the solution of (3.11) in which mt is

16



substituted for m
(k)
t . That is (b†

t , η
†
t ,ν

†
t) satisfying

ΣΣ′b†
t + η†

t1 − ν†
t = mt ,

b†′
t 1 = 1 ,

ν†′
t b†

t = 0, ν†
t ≥ 0 ,

(3.12)

where η†
t , and ν†

t are Lagrange multipliers associated with mt. And b†
t is the asymptotic

form of the optimal portfolio based on the continuous Bayesian formula (referred to as the

ACBOP).

The problem P2 without convex constraints for the portfolio weights is explicitly solved

by Lakner[36, 37]. In Lakner’s approach, the filtering techniques are introduced to treat P2,

i.e. the optional projection of the Radon-Nikodym derivative to Gt is considered, and an

explicit solution of P2 is derived. Also in the complete market with complete information Ft,

explicit solutions without convex constraints are obtained in [28] and with convex constraints

are obtained in [9]. And recently, under incomplete information, explicit solutions are also

obtained in [30], using both martingale and partial differential equation methodologies.

Here we emphasize that the optimal solution of P2 can be also obtained by the SPOP.

The advantage of the SPOP is that the optimal portfolio under incomplete information can

be obtained by just maximizing the sample path-wise value, and then it can be directly

applicable in actual investments. In the following theorem, among all the Gt-predictable

portfolios, we prove the optimality of both the CBOP b
†(k)
t , and ACBOP b†

t which is the

asymptotic form of CBOP.

Theorem 2 (Optimality of b†
t)

Under Information 2 and with the observable s.d.e. (3.9), the asymptotic optimal portfolio

is given by the ACBOP, b†
•, for any finite terminal-time T . That is

( {∀Gt−predictable bt ∈ D ; 0 ≤ t ≤ T } )
(

E(k)[u( VT (b•) )] ≤ E(k)[u( VT (b†(k)
• ) )]

)
,

and

lim
k→∞

E(k)[u( VT (b†
•) )] = lim

k→∞
E(k)[u( VT (b†(k)

• ) )] .

17



Proof. Since log(·) is strictly concave, we have

E(k)[log(VT (b•))] ≤ E(k)[log(VT (b†(k)
• ))] + E(k)

[
VT (b•)

VT (b†(k)
• )

]
− 1

Then, it is necessary and sufficient to prove E(k)

[
VT (b•)

VT (b†(k)

• )

]
≤ 1. We can easily see that

VT (b•)

VT (b†(k)
• )

= exp

[∫ T

0

{(
bt − b

†(k)
t

)′
m

(k)
t − 1

2

(
b′

tΣΣ′bt − b
†(k)′
t ΣΣ′b†(k)

t

)}
dt

+
∫ T

0

(
bt − b

†(k)
t

)′
ΣdW̃

(k)
t

]

= A · exp

[∫ T

0

(
bt − b

†(k)
t

)′ (
m

(k)
t −ΣΣ′b†(k)

t

)
dt

]
, (3.13)

where

A
�
= exp

[
−1

2

∫ T

0

(
bt − b

†(k)
t

)′
ΣΣ′ (bt − b

†(k)
t

)
dt +

∫ T

0

(
bt − b

†(k)
t

)′
ΣdW̃

(k)
t

]
.

The last term of (3.13) is

exp

[∫ T

0

(
bt − b

†(k)
t

)′ (
m

(k)
t − ΣΣ′b†(k)

t

)
dt

]

= exp

[∫ T

0

(
bt − b

†(k)
t

)′ {
m

(k)
t −

(
m

(k)
t − η

†(k)
t 1 + ν

†(k)
t

)}
dt

]

= exp

[
−
∫ T

0
b′

tν
†(k)
t dt

]
≤ 1 . (3.14)

The second equality follows from the constraint b′
t1 = b

†(k)′
t 1 = 1, and the KKT condition

b
†(k)′
t ν

†(k)
t = 0 in Eq. (3.11). And the inequality follows from the constraint bt ≥ 0, and the

KKT condition ν
†(k)
t ≥ 0. Then we can rewrite (3.13) as

VT (b•)

VT (b†(k)
• )

≤ A.

Since bt − b
†(k)
t is uniformly bounded, we can show E(k)[A] = 1. Then we have

E(k)

[
VT (b•)

VT (b†(k)
• )

]
≤ 1 .
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Since limk→∞ b
†(k)
t = b†

t for all t, we can easily see that

lim
k→∞

∣∣∣E(k)[u( VT (b†
•) )] − E(k)[u( VT (b†(k)

• ) )]
∣∣∣ = 0 .

�

This result asserts that both the CBOP and ACBOP maximize the expected log-utility

under P (k). Furthermore, recalling mt = µ̃t from (3.5), (3.8), and also b∗∗
t = b†

t from

(3.6), (3.12), we obtain that b
†(k)
t coincides with b∗∗

t asymptotically, if we choose the prior

distribution for µ which has infinite differential entropy. Since the prior distribution with

infinite differential entropy means no prior information, we can conclude that the SPOP is

asymptotically optimal solution for P2.
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Chapter 4

The Universal Portfolio

In this chapter, as we restrict the investors’ utility class only to the log-utility, we

introduce another scheme, called universal portfolios, which is optimal among all the Gt-

predictable portfolios. To prove its optimality, however, we require more relaxed constraints

for portfolio weights, than the simplex D defined in (2.3). Also, the universal portfolio

almost surely learns the ExPow portfolio over the long run, but we leave this asymptotic

analysis to Chapter 5.

4.1 The Optimality of the Universal Portfolio

As in the foregoing discussion, we consider the market with m assets. And again,

we suppose investors are allowed to observe a realization of asset price process Eq. (2.1),

only once. That is, they are provided with Information 2. Then the investors, having the

log-utility of (3.2), continuously select the optimal portfolios within all the Gt-predictable

portfolios. However, the portfolio selection is made within more relaxed constraints for

portfolio weights than the simplex D of (2.3). In this chapter, the simplex is defined,
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without the non-negativity requirement for portfolio weights, as follows: 1

D′ �= {b | b ∈ Rm } . (4.1)

Under the settings above, we introduce the universal portfolio, which is optimal among all

the Gt-predictable portfolios. Hereafter, we abbreviate the universal portfolio to the UP.

Define the UP at time t as

b�
t

�
=
∫
b∈D′

bft(b)db (t > 0) , (4.2)

where

ft(b)
�
=

Vt(b)∫
b∈D′ Vt(b)db

(4.3)

is the weighting density function of constant portfolios, and where Vt(b) is given in the

objective function of the problem P2(t). The following theorem asserts that the UP can

be used as one of the schemes which can derive the optimal portfolio among all the Gt-

predictable portfolios.

Theorem 3

Under incomplete Information 2 and D′, the UP coincides with the SPOP.

b�
t ≡ b∗∗

t (t > 0) .

Hence the ACBOP, b†
•, is given by the UP. That is,

( {∀Gt−predictable bt ∈ D′ ; 0 ≤ t ≤ T } )
(

E[u( VT (b•) )] ≤ E[u( VT (b�
•) )]

)
.

Proof. From (4.3) and Vt(b) which is given as the objective function of the problem

P2(t), the weighting density function is

ft(b)
1Dropping off the budget constraint b′

t1 = 1 in D of (2.3) seems a singular leap of discussion. But note

that one can incorporate this constraint by introducing a safety asset which does not include stochastic

terms and can be lent or borrowed in the market. The reason for this leap of discussion is that we do not

treat a safety asset in the following empirical analysis, and we make our theory consistent with it.
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= CVt(b)

= C exp
[(

b′µ − 1

2
b′ΣΣ�b

)
t + b′ΣW t

]
= C ′ exp

[
−1

2

{
b − (ΣΣ′)−1

µ̃t

}′
(ΣΣ′t)

{
b − (ΣΣ′)−1

µ̃t

}]
,

where µ̃t
�
=µ +

1

t
ΣW t of (3.5). And where C and C ′ are constants. This means that b

follows a multivariate normal distribution :

N
(
(ΣΣ�)−1 µ̃t,

1

t
(ΣΣ�)−1

)
.

Hence the universal portfolio b�
t is given by the mean, that is

b�
t =

∫
D′

bft(b)db = (ΣΣ�)−1µ̃t .

Whilst, the KKT condition of the SPOP under D′ is given by (3.6), with ν∗∗
t and η∗∗

t being

dropped off. Hence the SPOP is given by the UP:

b∗∗
t = b�

t .

Moreover, Theorem 2 still holds under D′. Then we have

b†
t = b∗∗

t = b�
t .

This completes the proof. �

Remark 3

For the notational convenience, b∗∗
t stands for both the SPOP and UP, in the rest of this

chapter. And log V ∗∗
T represents the logarithm of the portfolio value given by both portfolios,

at T .
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4.2 Evaluating the Expected Log-Utility Gap among

the SPOP, UP, and ExLog Portfolio

In this section, we evaluate the expected log-utility gap among the SPOP, the UP, and

the ExLog portfolio, at finite terminal-time T . To do this, we need a certain number of

periods in which all the investors have the same constant portfolio bL, regardless of their

portfolio criteria. We call such a period the learning period and it is denoted by [0, L], where

0 < L ≤ T . With learning periods and by (2.6) with η∗ and ν∗ being eliminated, the ExLog

(α = 1) portfolio {b∗ ; 0 ≤ t} is given by:

b∗
t =


bL, 0 ≤ t ≤ L,

(ΣΣ′)−1µ, L ≤ t,
.

And at T ( ≥ L), the expected value of the log-utility using the ExLog portfolio is given by:

E[log V ∗
T ] =

(
bL′

µ − 1

2
bL′

ΣΣ′bL
)

L +
1

2
µ�(ΣΣ�)−1µ(T − L) . (4.4)

Also by Theorem 3, the SPOP {b∗∗ ; 0 ≤ t} is given by:

b∗∗
t =

 bL, 0 ≤ t ≤ L,

(ΣΣ′)−1µ̃t, L ≤ t,
.

Then we have the following theorem concerning the expected log gap.

Theorem 4

For T ≥ L, the expected log-utility using the SPOP or the UP is given by:

E[log V ∗∗
T ] =

(
bL′

µ − 1

2
bL′

ΣΣ′bL
)

L +
1

2
µ�(ΣΣ�)−1µ(T − L) − m

2
(log T − log L). (4.5)

Hence the expected log-utility gap between the Ft-predictable ExPow portfolio, and the

Gt-predictable SPOP or the UP is given by :

E[log V ∗
T ] − E[log V ∗∗

T ] =
m

2
(log T − log L), T ≥ L. (4.6)
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Proof. We can easily see that

E[b∗∗
u ] = (ΣΣ�)−1µ,

E[b∗∗′
u ΣΣ′b∗∗

u ] = E
[(

µ� +
1

u
W

′
uΣ

′
)

(ΣΣ′)−1ΣΣ′(ΣΣ′)−1
(
µ +

1

u
ΣW u

)]
= µ′(ΣΣ′)−1µ +

m

u
.

Then by utilizing the above, we obtain

E[log V ∗∗
T ] = E

[(
bL′

µ − 1

2
bL′

ΣΣ′bL
)

L + bL′
ΣWL

+
∫ T

L

(
b∗∗′

u µ − 1

2
b∗∗′

u ΣΣ′b∗∗
u

)
du +

∫ T

L
b∗∗′

u ΣdWu

]

= E[log V ∗
T ] − m

2
(log T − log L) .

�

Remark 4

If L → 0, then E[log V ∗∗
t ] → −∞. This means that we need the strict positive learning

periods to get the finite expected log-utility with b∗∗
• .

4.3 The Unbiased Estimator Approach

As in the previous chapter, by restricting the degree of Arrow-Pratt’s relative risk

aversion only to α = 1, we show the superiority of both the SPOP and UP from another

aspect. That is, we study the standard unbiased estimator for the optimal portfolio process

and compare the performance with both the SPOP and UP. We shall discretize the time

interval [0, T ] into N units dt = T
N

and approximate the return process by :

∆S
(N)
i,n

S
(N)
i,n

= µi
T

N
+

∑
1≤j≤m

σi,j

(
Wj, T

N
n − Wj, T

N
(n−1)

)
. (4.7)

Then the discretized return process
∆S

(N)
i,n

S
(N)
i,n

follows the normal distribution N(µ T
N

, ΣΣ′ T
N

).

It is easy to see that the discretized price process {S(N)

[ tN
T

]
; 0 ≤ t ≤ T} converges to the
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continuous price process of Eq. (2.1). Thus, under Incomplete Information 2, we can

construct the unbiased estimator for the mean vector µ T
N

and the variance-covariance matrix

ΣΣ′ T
N

by

µ̂
(N)
i,n =

1

n

n∑
l=1

∆S
(N)
i,l

S
(N)
i,l

, 1 ≤ i ≤ m,

σ̂
(N)
i,j,n =

1

n − 1

n∑
l=1

∆S
(N)
i,l

S
(N)
i,l

− µ̂
(N)
i,l

∆S
(N)
j,l

S
(N)
j,l

− µ̂
(N)
j,l

 , 1 ≤ i, j ≤ m.

The following properties are well-known for these estimators (e.g., see [2, 26, and 43]).

Lemma 1

µ̂(N)
n and Σ̂

(N)

n are mutually independent, and each follows

µ̂(N)
n ∼ N

(
T

N
µ,

T

nN
ΣΣ′

)
,

Σ̂
(N)

n =
T

(n − 1)N
W

(N)
m,n−1, W (N)

m,n ∼ W m (n,ΣΣ′) ,

where Wm(n, A) denotes the Wishart distribution with dimension m, degree of freedom n

and variance-covariance matrix A. �

Lemma 2

Let X ∼ Wm(n, A). Then

E[X ] = nA,

E[X−1] =
1

n − m − 1
A−1.

�

Lemma 3

Let X ∼ Wm(n, A) and C is m×m nonsingular matrix. Then Y = C ′XC ∼ Wm(n, C ′AC).

�

Before we proceed to derive the unbiased optimal portfolio estimator, we quote the some

results without proof which are easy to prove.
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Lemma 4

Let b be n dimensional arbitrary given vector and A be a square matrix. Then the function

f(A) = b�A�Ab is convex with respect to A. �

Lemma 5

Let A be a symmetric matrix and X be a random vector such that

 µ = E[X],

Σ = E[(X − µ)′(X − µ)].

Then the mean of quadratic form Y = X ′AX is given by

E[Y ] = µ′Aµ + trace[AΣ].

�

From Lemma 1 through 5, we can evaluate the mean and the quadratic form of the estimated

optimal control process : (Σ̂
(N)

n )−1µ̂(N)
n .

Theorem 5

1) E

[(
Σ̂

(N)

n

)−1

µ̂(N)
n

]
=

n − 1

n − m − 2
(ΣΣ′)−1

µ, (4.8)

2) E

[
µ̂(N)′

n

(
Σ̂

(N)

n

)−1

ΣΣ′
(
Σ̂

(N)

n

)−1

µ̂(N)
n

]

≥
(

n − 1

n − m − 2

)2 [
µ′ (ΣΣ′)−1

µ +
mN

nT

]
. (4.9)

Expecially if m = 1, then

E


 µ̂

(N)
1,n σ11

σ̂
2(N)
11,n

2
 =

(n − 1)2

(n − 3)(n − 5)

(
µ2

1

σ2
11

+
N

nT

)
. (4.10)

Proof. 1) From Lemma 2,

E[(Σ̂
(N)

n )−1µ̂(N)
n ] = E[(Σ̂

(N)

n )−1]E[µ̂(N)
n ]
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=
(n − 1)T

N
E[(W

(N)
m,n−1)

−1]µ

=
n − 1

n − m − 2
(ΣΣ′)−1µ.

2) Let

Z =
T

(n− 1)N
Σ′(Σ̂

(N)

n )−1Σ,

M = µ̂(N)′
n (Σ̂

(N)

n )−1ΣΣ′(Σ̂
(N)

n )−1µ̂(N)
n

=
((n − 1)N)2

T 2
‖ZΣ−1µ̂(N)

n ‖2.

Then from Lemma 1,

E[M ] =
((n − 1)N)2

T 2
E[‖ZΣ−1µ̂(N)

n ‖2]

=
((n − 1)N)2

T 2
E[E[‖ZΣ−1µ̂(N)

n ‖2 | µ̂(N)
n ]]

≥ ((n − 1)N)2

T 2
E[‖E[ZΣ−1µ̂(N)

n |µ̂(N)
n ]‖2]

=
((n − 1)N)2

T 2
E[‖E[Z]Σ−1µ̂(N)

n ‖2].

Here the inequality follows from Lemma 4 and the Jensen’s inequality. Furthermore from

Lemma 3, Z follows the m dimensional Inverted Wishart distribution W−1
m (n−1, I). Hence

from Lemma 2,

E[Z] =
1

n − m − 2
I.

This together with Lemma 5 yields

E[M ] ≥ ((n − 1)N)2

((n − m − 2)T )2
E[µ̂(N)′

n (ΣΣ′)−1µ̂(N)
n ]

=
((n − 1)N)2

((n − m − 2)T )2

{
T 2

N2
µ′(ΣΣ′)−1µ +

T

nN
trace(I)

}

=
(n − 1)2

(n − m − 2)2

{
µ′ (ΣΣ′)−1

µ +
mN

nT

}
.
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Especially when m=1, Z−1 follows W1(n− 1, 1), that is Chi-square distribution with n − 1

degree of freedom. Therefore

E[Z2] = E

[
1

χ4

]
=

1

(n − 3)(n − 5)
.

Thus

E[M ] =
((n − 1)N)2

T 2
E[‖ZΣ−1µ̂(N)

n ‖2|µ̂(N)
n ]

=
((n − 1)N)2

T 2
E[Z2]E

( µ̂(N)
n

σ11

)2


=
(n − 1)2

(n − 3)(n − 5)

(
µ2

1

σ2
11

+
N

nT

)
.

�

Using Theorem 5, we can construct the unbiased optimal portfolio estimator by

b̂
(N)

n =

 bL, 0 ≤ n < nL,

n−m−2
n−1

(Σ̂
(N)

n )−1µ̂(N)
n , nL ≤ n ≤ N − 1.

Then the log-utility under this unbiased estimator results in

log V̂
(N)
T =


(
bL′

µ − 1
2
bL′

ΣΣ′bL
)

L

+
∑

nL≤n≤N−1


(
b̂

(N)′

n µ − 1
2
b̂

(N)′

n ΣΣ′b̂
(N)

n

)
T
N

+b̂
(N)′

n

(
W T

N
(n+1) − W T

N
n

)


 , (4.11)

where nL = min{n ∈ Z;n ≥ LN
T
}. Now we can show the superiority of both the SPOP and

UP, compared to the unbiased estimator approach.

Theorem 6

The expected log-utility for the portfolio value process attained by unbiased estimator is

bounded from above by the SPOP or the UP. That is,

E
[
log V̂

(N)
T

]
≤

(
bL′

µ − 1

2
bL′

ΣΣ′bL
)

L +
1

2
µ� (ΣΣ�)−1 µ(T − L) − m

2
(log T − log L) (4.12)

= E [log V ∗∗
T ] .
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Hence the expected log-utility gap between the ExPow portfolio and the unbiased estimator

portfolio is bounded from above by

E[log V̂
(N)
T ] − E[log V ∗

T ] ≤ −m

2
(log T − log L) = E[log V ∗∗

T ] − E[log V ∗
T ]. (4.13)

Proof. Note that

E[b̂
(N)′

n (W T
N

(n+1) − W T
N

n)|F T
N

n] = 0.

Then from (4.11),

E
[
log V̂

(N)
T

]
=
(
bL′

µ − 1

2
bL′

ΣΣ′bL
)

L +
N−1∑
n=nL

{
E
[
b̂

(N)

n

]′
µ − 1

2
E
[
b̂

(N)′

n ΣΣ′b̂
(N)

n

]}
T

N
.

Substituting (4.8) and (4.9) into the above equation, we get

E
[
log V̂

(N)
T

]
=

(
bL′

µ − 1

2
bL′

ΣΣ′bL
)

L +
N−1∑
n=nL

{
n − m − 2

n − 1
E

[(
Σ̂

(N)

n

)−1

µ̂(N)
n

]′
µ

− 1

2

(
n − m − 2

n − 1

)2

E

[
µ̂(N)′

n

(
Σ̂

(N)

n

)−1

ΣΣ′
(
Σ̂

(N)

n

)−1

µ̂(N)
n

]}
T

N

≤
(
bL′

µ − 1

2
bL′

ΣΣ′bL
)

L + µ′ (ΣΣ′)−1
µ

N−1∑
n=nL

T

N
− 1

2

N−1∑
n=nL

{
µ′ (ΣΣ′)−1

µ
T

N
+

m

l

}

≤
(
bL′

µ − 1

2
bL′

ΣΣ′bL
)

L + µ′ (ΣΣ′)−1
µ
∫ T

L
d� − 1

2

∫ T

L

{
µ′ (ΣΣ′)−1

µ +
m

�

}
d�

=
(
bL′

µ − 1

2
bL′

ΣΣ′bL
)

L +
1

2
µ� (ΣΣ�)−1 µ(T − L) − m

2
(log T − log L).

�

Finally, we establish the asymptotic attainability of the SPOP or the UP, as the number of

observation increases for the two securities market model, i.e., m = 1.

Theorem 7

Let us assume m = 1. Then the expected log-utility for the portfolio value process attained

by the unbiased estimator converges to that of the SPOP or the UP. That is,

lim
N→∞

E
[
log V̂

(N)
T

]
= E[log V ∗∗

T ]. (4.14)
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Proof. From (4.8), (4.10) and (4.11),

E
[
log V̂

(N)
T

]
=

(
bL
1 µ1 − 1

2
(σ11b

L
1 )2
)

L +
N−1∑
n=nL

n − 3

n − 1
E

 µ̂
(N)
1

σ̂
(N)
11

µ1 − 1

2

(
n − 3

n − 1

)2

E


σ11µ̂

(N)
1

σ̂
(N)
11

2

 T

N

=
(
bL
1 µ1 − 1

2
(σ11b

L
1 )2
)

L +
µ2

1

σ2
11

(
T − nLT

N

)
− 1

2

N−1∑
n=nL

n − 3

n − 5

(
µ2

1

σ2
11

+
N

nT

)
T

N
.

Since

lim
N→∞

nL

N
=

L

T
,

and

lim
N→∞

N−1∑
n=nL

n − 3

n − 5

(
µ2

1

σ2
11

+
N

nT

)
T

N

=
∫ T

L

(
µ2

1

σ2
11

+
1

�

)
d�

=
µ2

1

σ2
11

(T − L) + log T − log L,

we get

E
[
log V̂

(N)
T

]
=

(
bL
1 µ1 − 1

2
(σ11b

L
1 )2
)

L +
µ2

1

2σ2
11

(T − L) − 1

2
(log T − log L)

= E[log V ∗∗
T ].

�
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Chapter 5

The Asymptotic Convergence to the

ExPow Portfolio

In this chapter, as we extend the utility class from the log-utility to the general power-

utility, we propose two schemes under the incomplete Information 2. One is the α-scaled

sample path-wise optimal portfolio (αSPOP) which is the generalization of the SPOP. The

other is the α-scaled universal portfolio (αUP) which is the generalization of the UP. It is

shown that both the αSPOP and αUP, which are Gt-predictable portfolios, converge to the

Ft-predictable ExPow portfolio, asymptotically. The outline in this chapter is as follows.

First, under the complete Information 1, we represent the Ft-predictable ExPow portfolio as

the basic solution of the problem P′
1. Second, we introduce the αSPOP under the incomplete

Information 2. And we represent the αSPOP in the basic solution form. Then, by showing

the optimal base of the αSPOP converges to that of the ExPow portfolio, we prove the

αSPOP converges to the ExPow portfolio. Third, also under the incomplete Information 2,

we propose the αUP. By showing the weighting density function converges to the Dirac’s

delta function, we prove the αUP converges to the ExPow portfolio.

The consistent settings through this chapter is as follows. As in the foregoing analysis,

we consider the market with m assets. And the investors, having the power-utility of (2.2),
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select their portfolios within the simplex D of (2.3), not within D′ of (4.1).

5.1 The Basic ExPow Portfolio

In this section, we suppose the power-utility investors are provided with the complete

Information 1. Then the KKT condition for the problem P′
1, which is treated in chapter 2,

is given by (2.6). From (2.6), we consider the basic solution for the problem P′
1. Define the

set for the basic index for the problem P′
1 as B = {i1, . . . , iB} ∈ I = {1, . . . ,m}, and B �= φ.

Also, N = I \ B. Using this definition, the basic solution of the problem is stated asb =

 bB

bN

 , ηB, ν =

 νB

νN


 .

So, the active basic solution for P′
1 is

UB

 bB

ηN

 = vB,

where UB =

 AB 1B

1′
B 0

 and where AB = α (ΣΣ′)B, and vB =

 µB

1

.
For the assurance of a unique solution, we need the following lemma.

Lemma 6 (Non-singularity)

If Σ is non-singular, then UB is non-singular.

Proof. Let A = ΣΣ′. Since Σ is non-singular and strictly positive definite, so A is. Let

the eigen values and the eigen vectors of A be λi and ξi respectively, and for i = 1, . . . ,m,

λi > 0, ξiξj = 1 (if i = j), and ξiξj = 0 (if i �= j). Then we apply the spectral decomposition

to A, A =
∑m

i=1 λiξiξ
′
i. So we have AB =

∑m
i=1 λiξB,iξ

′
B,i, and AB is strictly positive definite

and hence non-singular.

Suppose (∃x, υ) s.t. UB

 x

υ

 =

 0

0

. Then, ABx = −υ1B, and 1′
Bx = 0. Since

34



AB is non-singular, x = −υAB
−11B, then 1′

Bx = −υ1′
BAB

−11B = 0. Furthermore,

since AB is positive definite, so AB
−1 is. Then 1′

BAB
−11B > 0, meaning υ = 0 and

x = −υAB
−11B = 0. Hence UB is non-singular for B ⊂ I, B �= φ. �

From Lemma 6, there always exists a unique solution for P′
1. The basic solution for P′

1 is

bB∗ = A−1
B∗ (µB∗ − ηB∗1B∗) ,

where B∗ is the optimal base for the problem P′
1. Since

1′
B∗bB∗ = 1′

B∗A−1
B∗µB∗ − ηB∗1′

B∗A−1
B∗1B∗ = 1 ,

then

ηB∗ =
1′

B∗A−1
B∗µB∗ − 1

1′
B∗A−1

B∗1B∗
=

1′
B∗(ΣΣ′)−1

B∗µB∗ − α

1′
B∗(ΣΣ′)−1

B∗1B∗
.

Thus, the basic portfolio is

bB∗ = A−1
B∗µB∗ − ηB∗A−1

B∗1B∗

=
1

α
(ΣΣ′)−1

B∗µB∗ − ηB∗

α
(ΣΣ′)−1

B∗1B∗, (5.1)

νN∗ = α(ΣΣ′)N∗bB∗ + ηB∗1N∗ − µN∗ ,

where N∗ = I \ B∗. Summarizing above results, if νN∗ ≥ 0 holds, the problem P′
1 has the

optimal solution as follows.

α(ΣΣ′)

 bB∗

0

+ ηB∗1 −
 0

νN∗

 = µ,

1′

 bB∗

0

 = 1, (0′,ν ′
N∗)

 bB∗

0

 = 0,

 0

νN∗

 ≥ 0.

And the optimal portfolio for the problem P′
1 is

b∗ =

 bB∗

0

 , (5.2)

where bB∗ is given in Eq. (5.1). And the existence of the optimal base B∗ for P′
1 is assumed

in the following discussion.
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5.2 The α-scaled Sample Path-Wise Optimal Portfolio

and its Convergence

In this section, we suppose the power-utility investors are provided with the incomplete

Information 2. And we introduce one scheme which can learn the Ft-predictable ExPow

portfolio in the long run. By analogy with the discussion in section 3.2, we first assume

the power-utility investors use constant portfolios bt = b as the Gt-predictable portfolios

and derive the portfolio which maximize the sample path-wise value Vt(b). Moreover, as we

prove later, to assure this sample path-wise portfolio converges to the Ft-predictable ExPow

portfolio for all the power-utility investors, the constant portfolio b must be scaled by the

relative risk aversion coefficient α. We call such a portfolio the α-scaled sample path-wise

optimal portfolio (hereafter, referred to as the αSPOP, especially when α = 1, just the

SPOP). Then the optimal αSPOP is obtained by the following problem.

P3(t)

∣∣∣∣∣∣∣
maximize

b
Vt(αb) = exp

[(
αb′µ − 1

2
α2b′ΣΣ′b

)
t + αb′ΣWt

]
subject to b ∈ D .

This is equivalent to the following problem.

P′
3(t)

∣∣∣∣∣∣∣
minimize

b

α
2
b′ΣΣ′b − b′µ̃t

subject to b ∈ D ,

where µ̃t
�
= µ + 1/tΣWt of (3.5). Note that

µ̃t = µ +
1

t
ΣWt =

1

t

∫ t

0
(diag(Su))

−1dSu .

Hence this problem is well-defined under Information 2. Also note that we admit the optimal

αSPOP is Gt-predictable, since it seeks the constant portfolio which maximizes the sample

path-wise portfolio value at time t, according to one sample path {Su; 0 ≤ u ≤ t}. Then,
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at time t ( > 0 ), the KKT condition for the problem P′
3(t) is (b∗∗

t , η∗∗
t ,ν∗∗

t ) satisfying

αΣΣ′b∗∗
t + η∗∗

t 1 − ν∗∗
t = µ̃t ,

b∗∗′
t 1 = 1 ,

ν∗∗′
t b∗∗

t = 0 ,

ν∗∗
t ≥ 0 ,

(5.3)

where η∗∗
t and ν∗∗

t are Lagrange multipliers at t. Hereafter, b∗∗
t represent the αSPOP

including the SPOP. Then, for the base

Bt = {i1,t, . . . , im′,t} ⊂ I = {1, . . . ,m} , Bt �= φ ,

and Nt = I \ Bt, the basic solution of the problem is stated asbt =

 bBt

bNt

 , ηBt, νt =

 νBt

νNt


 .

And the active basic solution above in matrix form is described as follows.

UB

 bBt

ηBt

 = vBt,

where UB =

 α (ΣΣ′)B 1B

1′
B 0

, and vBt =

 µB + 1
t
(ΣWt)B

1

.
Using Lemma 6, we have the basic solution of the problem P′

3(t) as follows.

ηB∗∗
t

=
1′

B∗∗(ΣΣ′)−1
B∗∗

{
µB∗∗ + 1

t
(ΣWt)B∗∗

t

}
− α

1′
B∗∗(ΣΣ′)−1

B∗∗1B∗∗
= ηB∗ + ∆ηB∗∗

t
,

bB��

�
=

1

α
(ΣΣ′)−1

B∗∗

{
µB∗∗ +

1

t
(ΣWt)B∗∗

t

}
− ηB∗∗

t

α
(ΣΣ′)−1

B∗∗1B∗∗ = bB� + ∆bB��

�
,

νN∗∗
t

= α(ΣΣ′)N∗∗bB∗∗
t

+ ηB∗∗
t
1N∗∗ −

{
µN∗∗ +

1

t
(ΣWt)B∗∗

t

}
= νN∗ + ∆νN∗∗

t
,

where B∗∗
t is the optimal base, N∗∗

t = I \ B∗∗
t , and

∆ηB∗∗
t

=
1′

B∗∗(ΣΣ′)−1(Σ 1
t
Wt)B∗∗

t

1′
B∗∗(ΣΣ′)−11B∗∗

,

∆bB��

�
=

1

α
(ΣΣ′)−1

B∗∗(Σ
1

t
Wt)B∗∗

t
− ∆ηB∗∗

t

α
(ΣΣ′)−1

B∗∗1B∗∗,

∆νN∗∗
t

= α(ΣΣ′)−1
N∗∗∆bB��

�
+ ∆ηB∗∗

t
1N∗∗ − (Σ

1

t
Wt)B∗∗

t
.
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If t is large enough, the optimal base of the αSPOP congerges to that of the ExPow portfolio.

As t → ∞, ∆1
t
Wt → 0 a.s. ([27], p.104). Hence

∆ηB∗∗
t
→ 0, ∆bB∗∗

t
→ 0, ∆νB∗∗

t
→ 0.

Then,

ηB∗∗
t
→ ηB∗ , bB∗∗

t
→ bB∗ , νB∗∗

t
→ νB∗ .

Summarizing above results, if νN∗∗ ≥ 0, the problem P′
3(t) has the basic solution as follows:

α(ΣΣ′)

 bB∗∗
t

0

+ ηB∗∗
t
1 −

 0

νN∗∗
t

 = µ +
1

t
ΣWt,

1′

 bB∗∗
t

0

 = 1,
(
0′,ν ′

N∗∗
t

) bB∗∗
t

0

 = 0,

 0

νN,t∗∗

 ≥ 0.

Hence b∗∗
t =

 bB∗∗
t

0

 is the basic αSPOP. And the existence of the optimal base B∗∗
t for

P′
3(t) is assumed in the following discussion.

The following theorem assures that the αSPOP converges to the ExPow portfolio. That

is, under Information 2, it is a good portfolio which can learn the ExPow portfolio asymp-

totically.

Theorem 8 (Convergence of the αSPOP b∗∗
• )

Under Information 2, the αSPOP b∗∗
• converges to the ExPow portfolio b∗. That is

lim
t→∞b∗∗

t = b∗, w.p. 1.

Proof. Let B∗∗
t be the optimal basic set for the problem P′

3(t).

From the convergence νN∗∗
t

→ νN∗ and the assumption (∃B∗)(s.t. νN∗ ≥ 0, N∗ = I\B∗),

lim
t→∞B∗

t = B∗. Hence,

lim
t→∞ b∗∗

Bt,t
= lim

t→∞ bB∗∗
t ,t = lim

t→∞ bB∗,t = bB∗ = b∗
B

lim
t→∞ b∗∗

Nt,t
= lim

t→∞ bN∗∗
t ,t = lim

t→∞ bN∗,t = bN∗ = b∗
N.
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Then,

lim
t→∞ b∗∗

t = b∗ .

�

Moreover, the growth rate of b∗∗
• converges to the ideal optimal one.

Theorem 9 (Convergence of the growth rate for b∗∗
• )

Under Information 2, the αSPOP b∗∗
• has the same growth rate as the ideal ExPow portfolio,

asymptotically. That is

lim
T→∞

1

T
log VT (b∗∗

• ) = lim
T→∞

1

T
log VT (b∗) = b∗′µ − 1

2
b∗′ΣΣ′b∗ .

Proof. First,

lim
T→∞

1

T
log VT (b∗∗

• ) = lim
T→∞

{(
1

T

∫ T

0
b∗∗

t dt

)′
µ − 1

2

(
1

T

∫ T

0
b∗∗′

t ΣΣ′b∗∗
t dt

)
+

1

T

∫ T

0
b∗∗′

t ΣdWt

}
.

Using the result lim
T→∞

b∗∗
t = b∗ of Theorem 8,

lim
T→∞

1

T

∫ T

0
b∗∗

t dt = b∗ ,

lim
T→∞

1

T

∫ T

0
b∗∗′

t ΣΣ′b∗∗
t dt = b∗′ΣΣ′b∗ .

And taking the time change into consideration, we get
∫ T

0
b∗∗′

t ΣdWt = ŴτT
a.s., where

Ŵt is standard Brownian motion, and τT =
∫ T

0
b∗∗′

t ΣΣ′b∗∗
t dt. Also from lim

T→∞
b∗∗

t = b∗ �= 0,

lim
T→∞

τT = +∞ a.s.. Then

lim
T→∞

1

T

∫ T

0
b∗∗′

t ΣdWt = lim
T→∞

τT

T
· 1

τT

ŴτT
= lim

T→∞
τT

T
lim

T ′→∞
1

T ′ŴT ′ = b∗′ΣΣ′b∗0 = 0 .

Hence,

lim
T→∞

1

T
log VT (b∗∗

• ) = b∗′µ − 1

2
b∗′ΣΣ′b∗ .
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On the other hand, the second term of this theorem statement is

lim
T→∞

1

T
log VT (b∗) = lim

T→∞
1

T

{(
b∗′µ − 1

2
b∗′ΣΣ′b∗

)
T + b∗ΣWT

}
= b∗′µ − 1

2
b∗′ΣΣ′b∗ + lim

T→∞
b∗′ 1

T
ΣWT

= b∗′µ − 1

2
b∗′ΣΣ′b∗ .

This completes the proof. �

Remark 5

From Theorem 9 and Corollary 1, both the αSPOP and αUP (which is treated in the next

section) converge to the ideal optimal one, i.e. the ExPow portfolio. But it is difficult to

evaluate the gap in the expected power-utility base among those three portfolios. So instead

of comparing in the utility base, we evaluated the asymptotic growth rate among the three.

5.3 The α-scaled Universal Portfolio and

its Convergence

In this section, we suppose the power-utility investors are provided with the incomplete

Information 2 as in the previous section. And we propose another scheme which can learn

the Ft-predictable ExPow portfolio in the long run. It is the α-scaled universal portfolio (

αUP, and especially when α = 1, just the UP ).

Define the αUP at time t ( > 0 ) as

b�
t

�
=
∫
b∈D

bfα,t(b)db , (5.4)

where

fα,t(b)
�
=

Vt(αb)∫
b∈D

Vt(αb)db
(5.5)
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is the weighting density function of constant portfolio, and where Vt(αb) is given in the

objective function of the problem P3(t). The original universal portfolio proposed by Cover

is defined as α = 1 in the weighting density function[7]. The assumptions required to

prove the theorems in this section is completely the same as the previous section. Under

the above settings, the following theorem asserts that the αUP provides one of the most

superior scheme to learn the ExPow portfolio asymptotically.

Theorem 10 (Convergence of the αUP b�
•)

Under Information 2, the αUP converges to the ideal ExPow portfolio over the long run.

That is

lim
t→∞ b�

t = b∗, a.s. .

Proof. Let b, b̃ ∈ D and b �= b̃. Then,

lim
t→∞

(
Vt(αb)

Vt(αb̃)

)
= lim

t→∞ expα
[
b′µ − 1

2
αb′ΣΣ′b −

(
b̃
′
µ − 1

2
αb̃

′
ΣΣ′b̃

)
+
(
b − b̃

)′
Σ

1

t
Wt

]
t

= lim
t→∞ expα

[
b′µ − 1

2
αb′ΣΣ′b −

(
b̃
′
µ − 1

2
αb̃

′
ΣΣ′b̃

)]
t

=

 +∞, if b′µ − 1
2
αb′ΣΣ′b > b̃

′
µ − 1

2
αb̃

′
ΣΣ′b̃

0, if b′µ − 1
2
αb′ΣΣ′b < b̃

′
µ − 1

2
αb̃

′
ΣΣ′b̃ .

Hence, the weighting density function of constant portfolio is

fα,t(b̃) = lim
t→∞

1∫
b∈D

(
Vt(αb)

Vt(α
˜b)

)
db

= lim
t→∞

1∫
b∈D(

˜b)

(
Vt(αb)

Vt(α
˜b)

)
db

=


+∞, if L(D(b̃)) = 0

0, if L(D(b̃)) > 0 ,

where D(b̃) =
{

b ∈ D| if b′µ − 1

2
αb′ΣΣ′b > b̃

′
µ − 1

2
αb̃

′
ΣΣ′b̃

}
, and L(D) is the Lebesgue

measure for the area D. Noticing L(D(b̃)) = 0 if b̃ = b∗ and L(D(b̃)) > 0 if b̃ �= b∗. Then,

lim
t→∞ fα,t(b̃) =

 +∞, if b̃ = b∗

0, if b̃ �= b∗

= δ(b, b∗) .
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where δ(•) is the Dirac delta function. So we have

lim
t→∞ b�

t = lim
t→∞

∫
b∈D

bfα,t(b)db = b∗ .

�

Also the universal portfolio b�
• has the following property.

Corollary 1 (Convergence of the growth rate for b�
•)

Under Information 2, the αUP has the same growth rate as the ideal ExPow portfolio,

asymptotically. That is

lim
T→∞

1

T
log VT (b�

•) = lim
T→∞

1

T
log VT (b∗) = b∗′µ − 1

2
b∗′ΣΣ′b∗ a.s.

Proof. By similar argument to Theorem 9. �
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Chapter 6

Algorithms for the αSPOP and the

αUP

The continuous model enables us to derive the asymptotically optimal portfolio among

all the Gt-predictable portfolios. It is the SPOP within the simplex D, and it is the SPOP or

UP within D′. Moreover, the Gt-predictable αSPOP and αUP can learn the Ft-predictable

ExPow portfolio in the long run. Our next interest is focused on the algorithms for searching

these portfolios in discrete time framework. The difficulty here is that since asset prices in

practical markets are observed only once in a discrete time interval, the portfolio maximizing

the expected concave utility cannot be directly obtained from these observations, and we

cannot make assumptions on asset prices other than as to their non-negativity. To address

these limitations, we utilize the results in a continuous model and we derive the algorithms

for the αSPOP and the αUP.

We consider the market with m assets, and let the price-relative vector of assets be

Xt = (X1,t, . . . , Xm,t)
′. It is assumed that the prices of each security Si,t are observed at

the market in discrete time t = 0, 1, . . . , and so its price-relatives Xi,t
�
=

Si,t

Si,t−1

. And the

power-utility investors select their portfolios within the simplex D of (2.3).
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6.1 An Algorithm for the αSPOP at Discrete Time

Intervals

According to the continuous theory discussed in chapter 3, if investors’ utility belongs

to the log-utility class, their optimal portfolios are the SPOP at any finite terminal-time.

And by the discussion in chapter 5, the Gt-predictable αSPOP assures the general power-

utility investor of learning the Ft-predictable ExPow portfolio asymptotically. Hence, at

any time t > 0, the power-utility investors’ optimal policy is stated as

P4

∣∣∣∣∣∣∣
maximize

b
Vt(αb) =

∏t
u=1 (1 + αb′(Xu − 1)) =

∏t
u=1 b′Y u

subject to b ∈ D ,

where Y u
�
=αXu + (1 − α)1. And this is equivalent to the following problem:

P′
4

∣∣∣∣∣∣∣
maximize

b
g(b) = 1

t

∑t
u=1 log b′Y u

subject to b ∈ D .

If we assume Y u > 0, which is generally held, we can utilize the algorithm for the expected

log-utility maximization proposed by Cover [5]. And note that if the investor’s relative risk

aversion α is particularly high, no feasible solution may be gotten, for there is no assurance

of Y u > 0.

Hereafter we abbreviate the operation 1
t

∑t
u=1 to E. The solution of P′

4 is given by the

following iterative algorithm.

(Algorithm for the αSPOP)

The iteration b(n) is defined as :∣∣∣∣∣∣∣
b
(n+1)
i = b

(n)
i E

[
Yi

b
(n)′

Y

]
,

b
(0)
i = 1

m
, i = 1, . . . ,m .

(6.1)

Remark 6

The sequence of the algorithm is always satisfying the constraints. For b
(n+1)
i is positive,

and b(n+1)′1 =
∑m

i=1 b
(n)
i E

[
Yi

b(n)′
Y

]
= 1.
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The KKT condition for P′
4 is

E
[

Yi

b∗′
Y

]
= 1 if b∗i > 0 ,

E
[

Yi

b∗′
Y

]
≤ 1 if b∗i = 0 .

(6.2)

Here we have the following two theorems for the iterative algorithm which are similar to the

argument shown by Cover[5].

Theorem 11 (Monotonicity)

The algorithm improves the objective function of P′
4 monotonically. That is

g(b(n+1)) ≥ g(b(n)) .

Proof.

g(b(n+1)) − g(b(n)) = E
[
log b(n+1)′Y

]
− E

[
log b(n)′Y

]
= E

[
log

b(n+1)′Y

b(n)′Y

]
= E

[
log

m∑
i=1

b
(n+1)
i

Yi

b(n)′Y

]

= E

log
m∑

i=1

 b
(n)
i Yi

b(n)′Y
E
[

Yi

b(n)′Y

]
≥ E

 m∑
i=1

b
(n)
i Yi

b(n)′Y
log E

[
Yi

b(n)′Y

] (6.3)

=
m∑

i=1

b
(n)
i E

[
Yi

b(n)′Y

]
log

b
(n+1)
i

b
(n)
i


=

m∑
i=1

b
(n+1)
i log

b
(n+1)
i

b
(n)
i

 = D
(
b(n+1)‖b(n)

)
≥ 0 . (6.4)

(6.3) is from the Jensen’s inequality, and D
(
b(n+1)‖b(n)

)
is the Kullback-Leibler information

number. And (6.4) is from

D
(
b(n+1)‖b(n)

)
=

m∑
i=1

b
(n+1)
i log

b
(n+1)
i

b
(n)
i

 = −
m∑

i=1

b
(n+1)
i log

 b
(n)
i

b
(n+1)
i


≥ − log

 m∑
i=1

b
(n+1)
i

b
(n)
i

b
(n+1)
i

 = 0 .

45



This completes the proof. �

Theorem 12 (Convergence)

The algorithm converges to the optimal solution. That is

lim
n→∞ b(n) = b∗ .

Proof. Let ∆(b(n)) = g(b(n+1)) − g(b(n)), and ∆(b(n)) ≥ 0 from Theorem 11. From the

Bolzano-Weierstrass theorem and g(b) is strictly concave, the algorithm sequence
{
b(n)

}
has

only one accumulate point b̃ in the area D = {b|b′1 = 1, b ≥ 0}. So ∆(b̃) → 0.

∆(b̃) = 0 is reached only when

b̃
(N+1)
i = b̃

(N)
i = b̃

(N)
i E

[
Yi

b̃
(N)′

Y

]

b̃
(N)
i

(
E

[
Yi

b̃
(N)′

Y

]
− 1

)
= 0.

(i)Case E

[
Yi

˜b
(N)′

Y

]
= 1. Clearly, b̃i satisfies the KKT condition (6.2).

(ii)Case b̃
(N)
i = 0. Assume that E

[
Yi

˜b
(N)′

Y

]
≥ 1. From this and the definition of the

algorithm, b̃
(N)
i = 1

m
limN→∞

∏N−1
k=0 E

[
Yi

b(k)′
Y

]
�= 0. This is contradiction. Then E

[
Yi

˜b
(N)′

Y

]
<

1, and this satisfies the KKT condition.

From (i) and (ii), the accumulate point b̃ satisties the KKT condition, and b̃ = b∗. �

6.2 An Algorithm for the αUP

Next, an algorithm for the αUP is dealt with. Discrete sampling expression of the αUP

b�
t at time t > 0 is stated as

b�
i,t

�
=

N∑
k=1

b
(k)
i fα,t(b) =

N∑
k=1

b
(k)
i

∏t
u=1 b(k)′Y u∑N

k=1

(∏t
u=1 b(k)′Y u

) (i = 1, . . . ,m) , (6.5)

where N is the number of samplings for constant portfolios, b(k) is the k-th sampled constant

portfolio, and Y u is the scaled price-relative vector introduded in the previous subsection.
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The algorithm of the αUP only depends on how to sample constant portfolio b efficiently.

If we are to sample the constant portfolio b uniformly with precision n, the number of sam-

pling cases depends upon how you allocate n indiscriminate balls with the size 1
n

(portfolio

weights) into m discriminated box (assets), with the redundancy allowed. Hence this is

(m + n − 1)!

n!(m − 1)!
cases . (6.6)

If the investor is faced with a middle sized portfolio problem, for example, one constituted

of 100 securities, the number of cases is about 2.455 × 1022, with precision n = 20. But

here we propose the most rough (m + 1)-sampling, i.e. b =
{
b(1), . . . , b(k), . . . , b(m+1)

}
={

(1, 0, . . . , 0)′, (0, 1, 0, . . . , 0)′, . . . , (0, . . . , 0, 1)′, ( 1
m

, . . . , 1
m

)′
}

. Using above constant portfo-

lio sampling, an algorithm for the αUP is given as follows.

(Algorithm for the αUP)

The αUP b�
t at time t is :

(At t = 0) Define b�
i,0 = 1

m
(i = 1, . . . ,m).

(At t > 0) Calculate b�
i,t (i = 1, . . . ,m) of (6.5) using sampling b =

{
b(1), . . . , b(m+1)

}
.
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Chapter 7

The Empirical Analysis

In this chapter, we provide an empirical analysis which verify our theory in the continuous-

time framework, and compensate for what the theory lacks. The target of this analysis is

the entire NYSE/AMEX stock market.

We previously constructed two schemes for the power-utility investors, called the αSPOP

and the αUP. For the general power-utility investors, they are proved to learn the Ft-

predictable ExPow portfolio asymptotically. Also by restricting the investors’ utility class

to the log-utility, the two schemes are proved to be asymptotically optimal among the

Gt-predictable portfolios. However, we couldn’t prove theoretically that the two schemes

are optimal for the general power-utility investors under Gt, at any finite terminal-time.

Furthermore, the favorable properties of both the αSPOP and αUP, which are guaranteed

in the continuous-time framework, may not hold in the general discrete-time framework as

in the practical market environment. Besides the validity of the assumptions required for

our theory, several parameters are required when we try to apply our theory to the actual

investment. These parameters, such as the length of learning (estimating) periods, the

number of securities, and even the degree of Arrow-Pratt’s relative risk aversion, cannot be

determined theoretically.

Hence our empirical analysis is executed using a sensitivity analysis-like method. That
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is, by varying one specified parameter with all the other parameters fixed, we examine the

sensitivity of the object, the ex post power-utility, for each scheme. Then we are able

to evaluate simultaneously which scheme provides the best posterior power-utility, which

scheme is robust in parameters, and which information set Gt provide the best posterior

power-utility.

Also, we regard the several properties, which the ExPow portfolio is supposed to have,

as portfolio performance measures. Then by observing these performance measures, we

examine whether two schemes can learn the ExPow portfolio over the long run.

And these analysis is carried out with transaction costs taken into account as these are

present in the practical market environment. Our treatment for transaction costs is rather

new in that costs are incurred for each asset’s rebalance level.

7.1 The Model

First we define the objective of the power-utility investors. We consider the market

with m assets. Their prices Si,t (i = 1, . . . ,m) are observed in the market, in discrete time

t = 0, 1, . . .. And we let the price-relative vector of assets be Xt = (X1,t, . . . , Xm,t)
′, where

Xi,t
�
=

Si,t

Si,t−1

, and superscript ′ stands for transpose. Suppose that the investors rebalance

their portfolios in discrete time intervals, within the simplex D of (2.3). If the log-utility

investors continuously observe asset prices as a realization of the s.d.e. (2.1), the optimal

portfolio among all the Gt-predictable portfolios is given by the SPOP. This is shown in

chapter 3. Moreover, by utilizing the αSPOP, the general power-utility investors with Gt

can attain the Ft-predictable ExPow portfolio asymptotically. This is proved in chapter

5. The αSPOP states that the portfolio providing such favorable properties for the power-

utility investors is given by some constant portfolio using the information Gt. Also, to

assure all the power-utility investors of holding such properties, we must scale the constant

portfolio by the relative risk aversion α. Since asset prices can be observed only once in
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discrete-time intervals, investors need some number of periods in which to learn, letting L.

With V0 = 1 provided, the αSPOP at time t ≥ L, in the discrete-time framework, is the

solution of the following problem.

P5

∣∣∣∣∣∣∣
maximize

b
Vt(αb) =

∏t
u=t−L+1 (1 + αb′(Xu − 1)) =

∏t
u=t−L+1 (b′Y )

subject to b ∈ D ,

where Y u
�
=αXu + (1 − α)1. Note that this discrete-time version of the αSPOP may not

be optimal among all the Gt-predictable portfolio, even for the log-utility investors, since

asset prices are not observed continuously as a realization of Eq. (2.1). Also note that the

operation product for portfolio value Vt should start from u = 1 to be accommodated by

the theory. However, the reason why u = t − L + 1 is used instead of u = 1 is from the

same reason which will be described at the third item Information, in subsection 7.2.1. Also

note that we admit the αSPOP is Gt-predictable, since it seeks the constant portfolio which

maximize the sample path-wise portfolio value at time t, according to one sample path

{Su ; u = 0, . . . , t }. The important point is that, as in the continuous-time framework,

we may expect the αSPOP given by the problem P5 assures the log-utility investors of the

optimality under Gt, and assures the general power-utility investors of attaining the ExPow

portfolio over the long run. Problem P5 is equivalent to the following:

P′
5

∣∣∣∣∣∣∣∣∣∣∣
maximize

b
g(b) = 1

L

∑t
u=t−L+1 log b′Y u

subject to Y u = αXu + (1 − α)1 ( u = t − L + 1, . . . , t ) ,

b ∈ D .

Another scheme we can expect, in the discrete-time framework, to assure the power-utility

investors of having the portfolio with the properties described above, is the αUP. With

learning periods L and V0 = 1 provided, the αUP at time t ≥ L is defined as

b�
i,t

�
=

N∑
k=1

b
(k)
i fα,t(b) =

N∑
k=1

b
(k)
i

∏t
u=t−L+1 b(k)′Y u∑N

k=1

(∏t
u=t−L+1 b(k)′Y u

) (i = 1, . . . ,m) , (7.1)
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where N is the number of samplings for constant portfolios, b(k) is the k-th sampled constant

portfolio, and Y u is the scaled price-relative vector.

The above two schemes are valid in the continuous-time framework. So we empirically

verify these schemes are valid again in the setting of the practical stock market.

7.2 Method of Empirical Analysis

In this section, we describe the investment rules which are employed in our analysis,

the parameters which are necessary to answer our questions by a sensitivity analysis-like

method, and the portfolio performance measures which can judge if our schemes has the

favorable properties as in the continuous-time framework.

7.2.1 Investment Rules

It is supposed that investors are specified by the relative risk aversion coefficient α.

And we suppose 20 types, ranging from near the risk-neutral investor α = 0.1, to the log

investor α = 1 who wants to maximize the growth rate, and on to the risk-averse investor

α = 10.

These investors reinvest their wealth only in the NYSE and AMEX stock markets ac-

cording to the following rules.

1. Rebalancing monthly: Investors decide their optimal portfolios at the beginning of

each month.

2. Three portfolios: Investors have three schemes to determine their portfolios which are

expected to maximize their power-utility. These are the αSPOP, the αUP and the

equally weighted portfolio (EP) as benchmark.

3. Information: Investors only have the information of rates of return plus one. These

stock returns are obtained from the CRSP CD-ROM, so every stock price and dividend

52



are adjusted at each period. Since the information can be obtained in discrete-time

intervals, investors require certain positive periods in which to derive or learn the

portfolios by their criteria. We call such periods the learning periods and denoted by

L. Hence at decision point t, the price-relatives’ information from L months past to the

last month of t, i.e., {Xt−L+1, . . . ,X t} is available for investors. If the power-utility

investors are to learn the ExPow portfolio, possibly longest learning periods are the

most relevant ones. But investors do not necessarily use very long learning periods,

when they are to derive the Gt-predictable portfolio. In such cases, investors may be

able to extract the worthwhile information from the shorter Gt. For our purposes, the

entire universe of the market is composed of 749 stocks, whose rates of return have

been observed in full from January 1971 up to December 1995, i.e. 300 months.

4. Initial portfolio: Investors have the same EP at the beginning of the performance

measurement horizon, regardless of their decision criteria.

5. Transaction costs, divisibility, and budget constraints: Investors incur costs for every

rebalance. If their optimal portfolios change their weights drastically, their utility

may decrease drastically. And we assume investors’ wealth is infinitely divisible. Also

investments are made within the investors’ own wealth, with short-selling not allowed,

i.e. with the constraints b′
t1 = 1, bt ≥ 0.

7.2.2 Parameters

When investors reinvest their wealth in the stock market, a few more elements may

affect the ex post mean of their power utility besides the choice of portfolios. Those elements

are viewed as parameters and listed below.

1. Learning periods L : As we described earlier, investors can use the possibly longest

L to learn the ExPow portfolio. While they have alternative choices to use shorter L
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to extract the worthwhile information which may be involved in shorter Gt. We set L

as L = 3, 12, 36, 60, 120 months, and as all the available learning months at portfolio

decision point t.

2. Number of securities m : From the mathematical viewpoint, the larger the investment

universe gets, the higher investors can expect their objectives to increase. But asset

choice may have an affect. So we vary the data-set in several cases. Ordering from

small to large, we prepare the 27 securities composing the DJIA, the 74 securities

composing the S & P 100, the 274 securities composing the S & P 500, and the 749

securities of the entire market universe 1.

3. Transaction costs γ : Transaction costs are not taken into account in our analysis in

the continuous-time framework. But in the practical market, costs are incurred every

time investors rebalance. If investors allocate their wealth Vt−1 via the portfolio bt−1

at the beginning of the period t, the wealth becomes Vt = Vt−1b
′
t−1Xt, without costs.

But with costs γ, the wealth becomes

Vt = Vt−1

∑m
i=1

bi,t−1Xi,t

1−γζi,t∑m
j=1

bj,t

1−γζj,t

. (7.2)

where ζi,t
�
= 1

(
if bi,t ≥ κtb

−
i,t

)
, ζi,t

�
=−1

(
if bi,t < κtb

−
i,t

)
, bi,t is the portfolio at the

beginning of the period t + 1, and b−i,t is the weight (ratio) of the i-th asset value

relative to the value of portfolio at the end of the period t, i.e. b−i,t = bi,t−1Xi,t

b′
t−1X t

. And

the adjustment coefficient κt is the fixed point obtained from the following equation.

κt =

∑m
i=1 bi,t−1Xi,t ·∑m

j=1
bj,t

1−γζj,t∑m
l=1

bl,t−1Xl,t

1−γζl,t

. (7.3)

The derivation of above formulae (7.2) (7.3) is given in section 7.5. We set costs as

γ = 0, 1, 2 (%) in the analysis.

1Note that the list of securities which comprise each index were obtained from 1995, so we have had to

eliminate some securities which have lost data at any point during the learning or the measurement periods.
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7.2.3 Portfolio Performance Measures

Under above rules and parameters, we measure the performance of three portfolios. We

set the measurement horizon from January 1993 to December 1995. At January 1993, the

initial point in the measurement horizon, every investor has the EP. Then at February 1993,

which is the first decision point for investors, maximally 265 returns for each of the 749

stocks are available for investors. And the measures we use in the analysis are as follows.

1. Ex post mean of investors’ power-utility: Except the log-utility, the gap in expected

power-utility base is not shown in our theory (see Theorem 4 and Remark 5), among

the ExPow portfolio, the αSPOP, and the αUP, then it is of interest to juxtapose

these numerically and empirically.

2. Ex post logarithm mean of portfolio wealth-relatives: Since it is proved, by Theorem

8, 10, 9, and Corollary 1, that the αSPOP and the αUP converge to the ExPow

portfolio and so their asymptotic growth rates, i.e. limT→∞ 1
T
log(VT ) are the same,

we investigate the log mean empirically at finite measurement periods of the portfolio

performance. So we compare these for each investor identified by the relative risk

aversion coefficient α.

3. Turnover: This is the measure revealing how much the portfolio changes its weights.

This is defined as the ratio of the amounts of rebalances being summed up for all

securities in absolute value relative to the entire portfolio value before rebalancing.

Derivation and details are placed in section 7.5.

4. The Kullback-Leibler distance: The Kullback-Leibler distance (KL distance) measures

how divergent any portfolio is from the EP in our analysis. This is an information

number and satisfies the axioms of distance. The KL distance from the EP bm =
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(
1
m

, . . . , 1
m

)′
to any portfolio b is defined as follows.

D(b‖bm) =
m∑

i=1

bi log
bi

bm
i

=
m∑

i=1

bi(log m + log bi) = log m − H(b)

where H(b) =
∑m

i=1 bi(− log bi) is entropy, and so, is non-negative. One reason for using

this distance is that this number is bounded by log m. I.e., 0 ≤ D(b‖bm) ≤ log m.

And note that b = bm reaches the lower bound. And the upper bound is given by the

portfolio investing in only one stock.

Now we proceed to the results.

7.3 Results in the U.S. Stock Market

7.3.1 Varying Learning Periods L

First, fix the relative risk aversion, the number of stocks, and the transaction costs to be

α = 1.0 (the ExLog investor), m = 74 (composing the S & P 100), and γ = 1%, respectively.

The results for varying the learning periods are given in Table 7.1, and Figure 7.1. The

result here represents the main finding and the implication of this empirical analysis, and

subsequent results are given to support these.

Generally, both the SPOP and the UP cannot exceed the EP in the ex post mean of

the power-utility, with any leaning periods. The shape of ex post utility measured against

the learning periods L is U-shape, for both the SPOP and the UP. But a distinct difference

between the two is the robustness in learning periods. As we can see in the turnover in Table

7.1, the SPOP is not able to learn long-living portfolios consistently, except L = ALL. Then

it changes its weights frequently. To make matters worse, the ex post utility of the SPOP

varies among learning periods. From the KL distance given in Table 7.1, the UP is to learn

the portfolio near the EP, regardless of learning periods. So from a viewpoint of learning

periods, the UP is a better learning scheme than the SPOP.
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To consider the U-shape of the ex post utility, let us pay attention to the shortest and

the longest learning periods. Slight as it is, the excess ex post utility compared to the EP

can be seen for both the SPOP and the UP with the longest learning periods (L = ALL).

With the shortest learning periods (L = 3), the ex post utility is at the same level. These

two similar results imply quite different meanings.

With L = ALL, the KL distance, which is bounded by the natural logarithm of the

number of stocks m and about 4.3 in this case, shows both the SPOP and the UP are near

to the EP. This means that after long enough learning periods, both the SPOP and the UP

get nearer to the portfolio which is close to the EP. And both the SPOP and the UP with

longest learning periods keep their turnover low compared to the other learning periods

(Table 7.1). This is because these portfolios don’t have to change their weights drastically,

for the chosen portfolios will be good ones as they were in the past. Then, we can say that

both the SPOP and the UP with enough learning are roughly constant as the ideal ExPow

portfolio is supposed to be. This finding implies that the two portfolios, after long enough

learning periods, converge to the portfolios which duplicate the ExPow portfolio. Also,

these duplicated portfolios are near the EP in the KL distance sense and achieve almost the

same highest ex post utility as the EP does. Furthermore, the results in the continuous-

time framework, given in chapter 3 and 4, asserts that both the SPOP and the UP are the

optimal Gt-predictable portfolios for the log-utility investors, under incomplete Information

2. Then, for the α = 1 (log-utility) investor in this case, these observations imply that the

EP can be roughly regarded as the market portfolio for the log-utility investors. That’s why

most fund managers rarely outperform the EP in the practical market where transaction

costs exist, recalling that the log-utility investor aims for growth maximization.

Then turning to the result with L = 3, the SPOP is quite different from the EP in

the KL distance sense. This is because the concave optimization is executed with few

states of returns relative to the number of stocks, and its optimal portfolio is composed
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of only a few stocks having positive weights 2. But the UP is quite close to the EP. This

is from the modestly adaptive property of the UP. Since the UP starting from the EP is

intended to become the “winning horse”, it requires longer price-relative sequences. So with

shorter learning periods such as three months, the additional information from the EP is

not incorporated into the UP. Since the EP is near the ExPow portfolio according to the

result with L = ALL, the consequence that both the EP and the UP achieve the same

utility is acceptable. While the SPOP is quite different from the EP and UP, it does yield

the same performance. This is because extracting a portfolio in maximal growth from some

information batch and changing the portfolio weights from time to time to get prominent

utility falls victim to transaction costs. This is exhibited in the turnover in Table 7.1.

In the SPOP, the turnover is relatively high compared to the other portfolios, except the

SPOP with the longest learning periods. Hence the SPOP with shorter learning periods

has a potential to provide a prominent utility compared to the duplicated ExPow portfolios,

which are equivalent to the SPOP and the UP with all the available information, which,

in turn, are near the EP. But that potential heavily depends on the batch of price-relative

vectors, judged from Figure 7.1 and the first column of Table 7.1. The SPOP with shorter

learning periods has a possibility to achieve the same or higher utility only when the investor

composes the SPOP using a batch of price-relative vectors which affect the next holding

period’s realization sufficiently enough to reverse the disadvantage in transaction costs.

According to the above results with shortest and longest learning periods, we can say

that the general character of the U.S. stock market is such that extremely short or long

sequences of returns in the past reflect worthwhile information for the log-utility investor

and affect the ex post portfolio performance. That is, short term investors who are investing

in the portfolios as if they were concentrating on a series of short term play-offs, and longer

2Strictly speaking from the mathematical programming, the number is bounded by the number of states

plus the number of the budget constraint. So the number of stocks having positive weights in our analysis

is (L + 1), at most.
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term investors who are equally allocating their wealth to stocks which have been blue chips

for a long time, both get rational utility provided by the market EP. These findings can

be linked with the concept, which is used in explaining stock price behavior, called “mean

reversion”[15, 41]. There seems to exist permanent and worthwhile information in stock

prices for the log-utility investor, but some fads or swaying information (temporary infor-

mation) may be added and overwhelm it. Investors can directly observe prices only, and

are unable to directly observe this mixture of information that make up these prices. Thus,

they are unable to directly pick up worthwhile information. Reviewing our results given

this point of view, longest learning periods enable the log-utility investors to pick up the

permanent components. Extra ex post utility with shortest L is provided by the transitory

components.
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Table 7.1: Portfolio performance measured against the learning months L. All the other
parameters are set as α = 1.0, m = 74, and γ = 1%. First column title “u(x;α = 1.0)”

shows the ex post mean of the power-utility in percentage, the second shows the turnover in

percentage for each portfolio, and the third column title “KL Distance” shows the Kullback-
Leibler distance from the EP, which is bounded by 4.3.

u(x;α = 1.0)(%) TurnOver (%) KL Distance
L smpl. univ. Eq. smpl. univ. Eq. smpl. univ. Eq.
3 1.457124 1.487579 1.484813 98.579833 4.569605 4.585246 3.298277 0.0056 0
12 -0.659788 1.473479 1.484813 65.862496 5.047974 4.585246 2.624977 0.019664 0
36 0.729961 1.39445 1.484813 38.581654 6.132685 4.585246 2.24419 0.072564 0
60 0.491328 1.340188 1.484813 26.683572 5.370208 4.585246 1.309914 0.082795 0
120 1.139812 1.352259 1.484813 17.223358 6.128498 4.585246 0.843155 0.178007 0
ALL 1.50841 1.520991 1.484813 4.330022 2.016586 4.585246 0.362633 0.355289 0
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Figure 7.1: Ex post mean of the power-utility measured against the learning months L.

This is a visualization of the first column at Table 7.1. The legend “Smpl. Prtfo” shows
the αSPOP, “Univ. Prtfo” shows the αUP, and “EqWeight” shows the EP. These legends

are also used in the subsequent Figures 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7.
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7.3.2 Varying the Relative Risk Aversion α

The results for varying the relative risk aversion α, with all the other parameters fixed

except learning periods L, are given in this subsection. As we remarked in the previous

subsection, all the available learning periods L = ALL and the shortest learning periods

L = 3 have special meaning in the U.S. stock market. Then we will juxtapose these results

simultaneously and the subsequent results will be shown in this way. The result with

L = ALL is given in Tables 7.2, 7.3, and Figure 7.2. The result with L = 3 is in Tables 7.4,

7.5, and Figure 7.3.

Almost the same result as the previous subsection is obtained for a wide variety of α.

When we visualize the ex post utility in Figures 7.2 and 7.3, these seem to provide the

same results. That is the ex post utility for both the αSPOP and the αUP is bounded by

the same ex post utility as the EP, and this holds at any degree of α. Moreover, for any

fixed α, the ex post utility with L = ALL and one with L = 3 are at the same level. But

as described in the results obtained by varying L, these two results imply quite different

meanings.

Let us begin with L = ALL. From the KL distance in the second column in Table 7.3,

if relative risk aversion α is less than or equal to unit, both the αSPOP and the αUP with

enough learning stay near the EP. But as the investor gets more risk averse than unit, the

αSPOP and the αUP get more divergent from the EP. The difference is that the former is

not monotonic divergence, but the latter is monotonic divergence. It is conjectured that as

we ruled out safer assets from investors’ choices, the high α investors search for and choose

more modest stocks from time to time. As a result, their optimal portfolios are composed of

a few stocks, far from the EP. The relatively high turnover in the first column of Table 7.3

support this. And the different tendencies in divergence for two portfolios are a result of the

different learning algorithms and different techniques to eliminate α-scaled price-relatives

in negative value that are used.
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These tendencies are also seen to support this conjecture in the log mean (the second

column in Table 7.2). Since we proved theoretically that both the αSPOP and the αUP

converge to the ExPow portfolio, and so the expected growth rate, it is expected that this

property holds empirically. From the result, when α is equal to or less than 2, the difference

of log mean among the three portfolios is within 10 %. But when α is more than 2, the

differences increase to about 35 %.

Another point of view for the ex post log mean is whether the phenomenon, to coin a

phrase, “ExLog-reversion”, really occurs. That is, the ex post log mean is really maximized

when the investor has α of one or the log-utility investor. Since we observed that batches

of stock price processes are not uniform concerning whether they contain worthwhile infor-

mation for the log-utility investors, we are apt to conjecture that the stock market involves

undulation, and so a winning horse often turns into a losing one. Then we attempt to think

that it may occur that some α other than α = 1 provides the best log mean in the practical

market. Such ExLog-reversion, however, was not obtained in our analysis. Within the 0.15

% error allowed for the αUP, the best ex post log mean is obtained by α = 1 investor with

all the available learning periods. And this holds for both the αSPOP and the αUP. I.e.,

we can conclude the log-utility investor captures the best log mean.

Then L = 3 is dealt with. Surprising enough, though the KL distance in the second

column at Table 7.5 is quite different, the three portfolios are at the same ex post utility level

for any α. It is understandable that since the αUP with shortest learning doesn’t incorporate

additional information from the EP, it performs as well as the EP. The reason why the

αSPOP is also good is conjectured as follows. As we described earlier, the permanent and

worthwhile information for the power-utility investor, as well as the log-utility investor, can

be extracted with sufficiently long learning periods. And with all the other shorter learning

periods, they fail to pick up the valuable information due to transitory components in stock

prices. But the shortest learning periods, such as three months, have special meaning in the

U.S. market. The U.S. market is likely to respond to “news” rapidly, and decide its position
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in haste. So, transitory as it is, the valuable information and the possibility to catch a

favorable short term move in the market by taking advantage of short term information

seems to exist.

For the end of this subsection, we comment on the EP. From the above results with

L = ALL and L = 3, the EP cannot always be regarded as portfolios duplicating ExPow

portfolios, but it surely serves as an index or benchmark for any power-utility investor,

under the existence of transaction costs.

Table 7.2: Portfolio performance measured against the relative risk aversion α, with all the
learning months, part 1.

u(x;α) log(x) (%)
α smpl. univ. Eq. smpl. univ. Eq.
0.1 1.126326 1.126428 1.126326 1.484853 1.495246 1.484813
0.2 1.265174 1.265364 1.265173 1.48489 1.50419 1.484813
0.3 1.443705 1.443967 1.443704 1.484925 1.511457 1.484813
0.4 1.68176 1.682075 1.681758 1.484956 1.516901 1.484813
0.5 2.015053 2.015404 2.015051 1.484985 1.520516 1.484813
0.6 2.514912 2.515383 2.51501 1.475037 1.522511 1.484813
0.7 3.348343 3.348683 3.348303 1.489066 1.52318 1.484813
0.8 5.015077 5.015307 5.014929 1.49976 1.522874 1.484813
0.9 10.015108 10.01526 10.014889 1.506762 1.522079 1.484813
1 0.015084 0.01521 0.014848 1.50841 1.520991 1.484813

1.1 -9.98611 -9.984906 -9.985192 1.394915 1.513298 1.484813
1.2 -4.985947 -4.985033 -4.985232 1.417199 1.504443 1.484813
1.3 -3.319126 -3.318495 -3.318606 1.438279 1.495508 1.484813
1.4 -2.48567 -2.485295 -2.485313 1.456114 1.486063 1.484813
1.5 -1.985573 -1.985437 -1.985353 1.471193 1.47573 1.484813
2 -0.987057 -0.986421 -0.985552 1.345792 1.396693 1.484813

2.5 -0.653051 -0.654594 -0.652416 1.43868 1.264007 1.484813
5 -0.241311 -0.240647 -0.236709 1.005266 1.161833 1.484813

7.5 -0.145522 -0.148104 -0.141476 1.060512 0.9645 1.484813
10 -0.101741 -0.104782 -0.099626 1.300862 1.156834 1.484813
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Table 7.3: Portfolio performance measured against the relative risk aversion α, with all the
available learning months, part 2.

TurnOver (%) KL Distance
α smpl. univ. Eq. smpl. univ. Eq.
0.1 4.583858 4.295813 4.585246 0 0.005316 0
0.2 4.582467 4.052833 4.585246 0 0.020612 0
0.3 4.581073 3.815362 4.585246 0.000001 0.04458 0
0.4 4.579676 3.568026 4.585246 0.000001 0.075693 0
0.5 4.578275 3.310423 4.585246 0.000002 0.112493 0
0.6 5.957042 3.043942 4.585246 0.008831 0.153833 0
0.7 5.240757 2.776918 4.585246 0.07005 0.198998 0
0.8 4.7758 2.518529 4.585246 0.163392 0.247677 0
0.9 4.468189 2.261662 4.585246 0.265749 0.299799 0
1 4.330022 2.016586 4.585246 0.362633 0.355289 0

1.1 11.999 2.422605 4.585246 3.052692 0.413813 0
1.2 11.974684 2.932496 4.585246 3.00145 0.474615 0
1.3 11.890004 3.414844 4.585246 2.964329 0.536499 0
1.4 11.755959 3.87537 4.585246 2.937174 0.597961 0
1.5 11.640188 4.308086 4.585246 2.916774 0.657436 0
2 21.842174 6.173865 4.585246 2.724796 0.893774 0

2.5 12.173995 7.667517 4.585246 2.44517 1.075259 0
5 16.389422 6.646638 4.585246 1.853065 3.963973 0

7.5 11.173294 8.225325 4.585246 2.035929 4.156608 0
10 12.828976 6.10599 4.585246 2.47477 4.255995 0
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Figure 7.2: Ex post mean of the power-utility measured against the relative risk aversion
α, with all the available learning months.
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Table 7.4: Portfolio performance measured against the relative risk aversion α, with three

learning months, part 1. The results for αSPOPs of α = 7.5 and 10 are not listed, since no
feasible solutions are obtained.

u(x;α) log(x) (%)
α smpl. univ. Eq. smpl. univ. Eq.
0.1 1.125977 1.126372 1.126326 1.441137 1.489451 1.484813
0.2 1.2653 1.265258 1.265173 1.460891 1.493361 1.484813
0.3 1.443842 1.443819 1.443704 1.44927 1.496387 1.484813
0.4 1.681865 1.681894 1.681758 1.442701 1.498483 1.484813
0.5 2.015115 2.015194 2.015051 1.440835 1.499296 1.484813
0.6 2.515055 2.515149 2.51501 1.444914 1.498839 1.484813
0.7 3.348289 3.348426 3.348303 1.447756 1.497274 1.484813
0.8 5.014827 5.015027 5.014929 1.449586 1.494789 1.484813
0.9 10.014725 10.014955 10.014889 1.455346 1.491527 1.484813
1 0.014571 0.014876 0.014848 1.457124 1.487579 1.484813

1.1 -9.985837 -9.985207 -9.985192 1.436656 1.483212 1.484813
1.2 -4.985991 -4.985293 -4.985232 1.441911 1.47854 1.484813
1.3 -3.319504 -3.318713 -3.318606 1.444988 1.47367 1.484813
1.4 -2.486371 -2.485468 -2.485313 1.446278 1.468663 1.484813
1.5 -1.986549 -1.985557 -1.985353 1.449872 1.463501 1.484813
2 -0.987623 -0.986006 -0.985552 1.450348 1.436754 1.484813

2.5 -0.65534 -0.65312 -0.652416 1.453682 1.409322 1.484813
5 -0.244256 -0.23858 -0.236709 1.410812 1.272905 1.484813

7.5 - -0.144305 -0.141476 - 1.151672 1.484813
10 - -0.103428 -0.099626 - 1.033669 1.484813
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Table 7.5: Portfolio performance measured against the relative risk aversion α, with three

learning months, part 2. The results for αSPOPs of α = 7.5 and 10 are not listed, since no
feasible solutions are obtained.

TurnOver (%) KL Distance
α smpl. univ. Eq. smpl. univ. Eq.
0.1 65.441217 4.142574 4.585246 0.89973 0.000057 0
0.2 84.604299 3.773677 4.585246 1.918163 0.000228 0
0.3 90.252877 3.494295 4.585246 2.397556 0.000512 0
0.4 93.089367 3.309223 4.585246 2.679378 0.000907 0
0.5 94.800474 3.253532 4.585246 2.865959 0.001414 0
0.6 95.948008 3.325854 4.585246 2.999513 0.002032 0
0.7 96.796242 3.510219 4.585246 3.099743 0.00276 0
0.8 97.52226 3.787685 4.585246 3.180501 0.003597 0
0.9 98.082771 4.143887 4.585246 3.247029 0.004544 0
1 98.579833 4.569605 4.585246 3.298277 0.0056 0

1.1 100.458701 5.038305 4.585246 3.553638 0.006764 0
1.2 100.588142 5.538401 4.585246 3.577047 0.008036 0
1.3 100.752466 6.05933 4.585246 3.596629 0.009416 0
1.4 100.944397 6.594983 4.585246 3.615464 0.010904 0
1.5 101.120767 7.146903 4.585246 3.631083 0.012501 0
2 101.966795 10.013566 4.585246 3.694865 0.022121 0

2.5 102.558725 12.917971 4.585246 3.734717 0.034297 0
5 104.013557 26.665728 4.585246 3.818912 0.130009 0

7.5 - 38.886159 4.585246 - 0.277736 0
10 - 49.237352 4.585246 - 0.448784 0
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Figure 7.3: Ex post mean of the power-utility measured against the relative risk aversion
α, with three learning months.
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7.3.3 Varying Number of Stocks m

The results with L = ALL and L = 3 are given in Table 7.6, Figure 7.4, and Table 7.7,

Figure 7.5, respectively.

With L = ALL, from Table 7.6 and Figure 7.4: as the asset universe gets smaller, all

three portfolios increase their ex post utility, except when m = 295. This trend shows that

the effect of asset choice exists. That is, the EP composed of selected stocks in an elitism

course outperforms the EP of the entire market. In every asset universe except m = 74, the

EP performs best. And as the universe gets larger, the KL distance (third column in Table

7.6) of the SPOP and the UP gets larger; and the ex post utility becomes worse (Figure 7.4).

This trend is most striking in the SPOP, which is conjectured as follows. As we pointed out

in the result by varying learning periods, when the concave optimization is executed with

few states of returns relative to the number of stocks, its optimal portfolio is composed of

only a few stocks having positive weights. So even if investors use the full 299 months of

learning periods, the SPOP for the next (300th) holding period is at most composed of 300

stocks having positive weights. Then the larger the universe gets, the more divergent the

SPOP becomes from the EP. This reasoning can also be applied to the UP.

Then proceed to L = 3. From Figure 7.5, different results are obtained for the SPOP. As

asset universes get larger, the ex post utility of the SPOP portfolio increases, except when

m = 295. When m = 749, for the first time, a portfolio clearly outperforms the index EP in

ex post utility. Turnover above 100 % (Table 7.7) tell us too much transaction cost is being

incurred. As we stated earlier, it can be said that transitory but worthwhile information

exists sufficient to reverse the disadvantage in transaction costs. And to extract these most

successfully, the SPOP with the entire asset universe and three months learning should be

used, because the SPOP selects its optimal portfolio in the maximal growth. From the

mathematical programming viewpoint, the larger the universe gets, the more likely a bigger

objective can be found. But note that this SPOP is no longer a good duplication of the
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ExLog portfolio. Rather, this SPOP should be regarded as a transitory one which will

become stationary if given sufficient learning periods. Or as a counterexample, the U.S.

stock market is not efficient in the short term even if the market requires proper costs.
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Table 7.6: Portfolio performance measured against the number of stocks m, with all the

available learning months. The figures in parentheses in the third column show the maximal
KL distance from EP.

u(x;α = 1.0)(%) TurnOver (%) KL Distance
smpl. univ. Eq. smpl. univ. Eq. smpl. univ. Eq.

27 1.625279 1.607867 1.647735 3.298554 1.972046 3.838582 0.272942 0.330106 0 (3.295837)
74 1.50841 1.520991 1.484813 4.330022 2.016586 4.585246 0.362633 0.355289 0 (4.304065)
295 0.628351 0.936103 1.15648 5.134374 2.176637 4.593715 1.758318 0.528562 0 (5.686975)
749 0.652023 0.950024 1.165783 6.254216 2.249831 5.65667 2.162602 0.578509 0 (6.618739)
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Figure 7.4: Ex post mean of the power-utility measured against the number of stocks m,
with all the available learning months.
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Table 7.7: Portfolio performance measured against the number of stocks m, with three

learning months. The figures in parentheses in the third column show the maximal KL
distance from EP.

u(x;α = 1.0)(%) TurnOver (%) KL Distance
smpl. univ. Eq. smpl. univ. Eq. smpl. univ. Eq.

27 0.202003 1.642577 1.647735 98.949365 3.748113 3.838582 2.127756 0.003615 0 (3.295837)
74 1.457124 1.487579 1.484813 98.579833 4.569605 4.585246 3.298277 0.0056 0 (4.304065)
295 -0.855513 1.133832 1.15648 115.947728 4.591277 4.593715 4.738275 0.00532 0 (5.686975)
749 3.09197 1.171303 1.165783 108.998712 5.740708 5.65667 5.875138 0.010179 0 (6.618739)
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Figure 7.5: Ex post mean of the power-utility measured against the number of stocks m,
with three learning months.
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7.3.4 Varying Transaction Costs γ

The results with L = ALL and L = 3 are given in Table 7.8, Figure 7.6, and Table 7.9,

Figure 7.7, respectively.

With L = ALL, the order in ex post utility among the three portfolios basically does

not change, according to transaction costs. The differences among portfolios are within 5

%. This is because all the portfolios with L = ALL are in the duplicated ExLog portfolios

and are almost constant. These then, will not fall victim to transaction costs. Among

these, the UP is most robust in costs. The adaptive property of the UP to newly added

information has the advantages of not only attaining the ExLog portfolio but also reducing

the redundancy of a perfectly constant portfolio in the presence of costs. By adapting to

the winning portfolio as it was in the past, the UP with L = ALL will do well in the next

holding period, does not have to change its weights, and keeps the turnover low.

With L = 3, the SPOP is quite different from the index EP and changes its ex post utility

badly as cost requirements increase. As pointed out earlier, given no cost requirement, there

seems to exist a favorable portfolio to get prominent utility. But such a portfolio is likely to

change its weights excessively due to short-term information and be defeated by costs. From

Figure 7.7 and Figure 7.1, when market impact is put aside, it is rational for the market

to require 1 % cost to use shorter-term information which is highly correlated to the next

holding period.
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Table 7.8: Portfolio performance measured against the transaction costs γ, with all the

available learning months. Note that in this table and Table 7.9, the KL distance for both
the SPOP and UP is the same at any cost level. This is because transaction costs are not

taken into account in searching for the optimal solutions in either portfolio. Just using the
optimal portfolio sequence, each portfolio value process with transaction costs defined by

(7.2) is calculated to provide the results.

u(x;α = 1.0)(%) TurnOver (%) KL Distance
γ(%) smpl. univ. Eq. smpl. univ. Eq. smpl. univ. Eq.

0 1.552051 1.54123 1.531048 0 0 0 0.362633 0.355289 0
1 1.50841 1.520991 1.484813 4.330022 2.016586 4.585246 0.362633 0.355289 0
2 1.464772 1.500813 1.438561 4.296127 2.006244 4.548191 0.362633 0.355289 0
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Figure 7.6: Ex post mean of the power-utility measured against the transaction cost γ, with

all the available learning months.
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Table 7.9: Portfolio performance measured against the transaction costs γ, with three learn-
ing months.

u(x;α = 1.0)(%) TurnOver (%) KL Distance
γ(%) smpl. univ. Eq. smpl. univ. Eq. smpl. univ. Eq.

0 2.674708 1.533655 1.531048 0 0 0 3.298277 0.0056 0
1 1.457124 1.487579 1.484813 98.579833 4.569605 4.585246 3.298277 0.0056 0
2 0.239395 1.441493 1.438561 81.090473 4.532501 4.548191 3.298277 0.0056 0
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Figure 7.7: Ex post mean of the power-utility measured against the transaction cost γ, with
three learning months.
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7.4 Summary

The results of our continuous-time analysis hold to some extent in the practical stock

market. That is, after long enough learning, both the αSPOP and the αUP converge to the

portfolio duplicating the ideal ExPow portfolio if the α is less than or equal to one. The

reason for this conclusion is stated as follows.

1. With all the available learning periods, the ex post utility is obtained within the

highest range.

2. Two portfolios steadily learned the portfolios at the same distance from the EP in the

KL distance sense.

3. Two portfolios learned to be constant (myopic), as the ExPow portfolio is supposed

to be. This can be seen in their turnover which is kept as low as the EP.

4. Our theory given in the previous chapters asserts that both the SPOP and the UP are

asymptotically optimal for the log-utility investors under incomplete Information 2.

However, this conclusion should not be interpreted to mean power-utility investors could

use any learning portfolio to achieve the ExPow portfolio. Concerning the learning periods,

the αUP is very robust. Moreover, regarding transaction costs, the αUP is rarely defeated

by them. Even if compared to the EP of a perfectly constant one, the αUP is superior.

This is because the αUP is endowed by its definition with a modestly adaptive property to

newly added price-relatives. In this sense, the αUP has the possibility to learn the ExPow

portfolio most successfully.

For other α, however, it cannot be said that both the αSPOP and the αUP have learned

the portfolio duplicating the ExPow portfolio due to lack of evidence. For the two portfolios

are located in quite distinct points and these change their weights rather frequently. The

reason for this is there are no candidates to be selected steadily in the U.S. stock market

81



for highly risk averse investors. This is quite a natural consequence and so future empirical

analysis including safer assets needs to be conducted.

Besides the above results verifying our theory in the continuous-time framework, we have

shown some interesting findings regarding the U.S. stock market via this empirical analysis.

First, extremely short or long sequences of stock prices in the past include worthwhile

information for the power-utility investor and affect the ex post portfolio performance. This

implies that the permanent components essential for the power-utility investors surely exist,

and allows the investors to learn the ExPow portfolio. And the transitory components that

affect the holding period performance also exist. These are most successfully extracted by

using the αSPOP for the larger universe, and have the possibility to provide the prominent

utility. The αSPOP using these components, however, has to change its weights frequently,

and is defeated by transaction costs. Thus, it cannot duplicate the ExPow portfolio. So

batches of stock price sequences in the U.S. stock market are not uniform concerning whether

they contain worthwhile information for the power-utility investors. But judging from these

findings, one should not fall into the dogma that there exists ExLog-reversion. For it is not

observed that any α investor gets a higher ex post log mean than the α = 1 investor.

Second, for any power-utility investor, the ex post utility obtained by both the αSPOP

and αUP rarely exceed the one obtained by the EP, under the existence of transaction costs.

This result is quite surprising since these three portfolios are quite distinct ones, judging

from the KL distance. And limiting α to near unit, the ExPow portfolio is learned to be near

the EP in the KL sense. Taking the above findings into account, the EP can be regarded as

the index or benchmark portfolio for any power-utility investor. Moreover, especially when

investors have the utility near α = 1 (log-utility), the EP can be roughly regarded as the

market ExLog portfolio. Recalling that the α = 1 investor is the log-utility investor and

aims for growth maximization, it becomes clear why fund managers can rarely outperform

the EP in the market.
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Third, we can say that the U.S. stock market is efficient in the weak form for the power-

utility investors, given costs of 1 % [14, 16]. That is, stock returns reflect all the available

information which is wothwhile for them, and so any portfolio cannot provide extra ex post

utility beyond the index EP. Or viewing these from another aspect, the transaction costs

of 1 % are the rational requirement for the stock market to prevent any portfolio from

extracting transitory information which has close correlation to get the prominent ex post

utility.

7.5 Appendix for Chapter 7:

Derivation of Portfolio Value after Rebalancing

Here the portfolio value after rebalancing is derived. Let the portfolio and its value at

t − 1 be bt−1 and Vt−1 respectively. The investment on period t is carried out using this

portfolio. If the realized price-relative of assets is Xt, then the ratio of i-th asset value to

the portfolio value is b−i,t
�
=

bi,t−1Xi,t

b′
t−1Xt

. If we assume ∆i,t to be the rebalance amount of asset

i, then the i-th asset value after rebalancing at time t is

Vi,t = Vt−1bi,t−1Xi,t + ∆i,t (1 − γζi,t) , (7.4)

where ζi,t
�
=1

(
if bi,t ≥ κtb

−
i,t

)
, ζi,t

�
=−1

(
if bi,t < κtb

−
i,t

)
, and κt is the rebalance adjustment

coefficient. And the entire value of the portfolio after rebalancing is

Vt = Vt−1

m∑
i=1

bi,t−1Xi,t − γ
m∑

i=1

∆i,tζi,t . (7.5)

At time t, the ratio of i-th asset value to the entire portfolio value should be bi,t, so we

obtain

bi,t =
Vi,t

Vt

=
Vt−1bi,t−1Xi,t + ∆i,t (1 − γζi,t)

Vt−1
∑m

i=1 bi,t−1Xi,t − γ
∑m

i=1 ∆i,tζi,t

.

Expanding this equation, we get ρ not depending on i as follows.

ρ =
m∑

j=1

bj,t−1Xj,t − γ
m∑

k=1

∆̃k,tζk,t
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=
bi,t−1

bi,t

Xi,t + ∆̂i,t (1 − γζi,t) , (7.6)

where ∆̃i,t =
∆i,t

Vt−1
, ∆̂i,t =

∆̃i,t

bi,t
. And we solve the equation of ρ about ∆̂i,t, ∆̃i,t and ∆i,t,

then

∆̂i,t =
ρ − bi,t−1

bi,t
Xi,t

1 − γζi,t

,

∆̃i,t = bi,t∆̂i,t =
bi,tρ − bi,t−1Xi,t

1 − γζi,t

,

∆i,t = Vt−1∆̃i,t = Vt−1

bi,tρ − bi,t−1Xi,t

1 − γζi,t

. (7.7)

Assigning ∆̂i,t into (7.6), then

ρ =
m∑

j=1

bj,t−1Xj,t − γ
m∑

k=1

(bk,tρ − bk,t−1Xk,t) ζk,t

1 − γζk,t

=
m∑

j=1

bj,t−1Xj,t +
m∑

k=1

(
1 − 1

1 − γζk,t

)
· (bk,tρ − bk,t−1Xk,t) .

From above, ρ is

ρ =

∑m
i=1

bi,t−1Xi,t

1−γζi,t∑m
j=1

bj,t

1−γζj,t

.

Whilst, assigning ∆i,t into (7.5), the portfolio value after rebalancing at t becomes

Vt = Vt−1

(
m∑

i=1

bi,t−1Xi,t − γ
m∑

i=1

(bi,tρ − bi,t−1Xi,t) ζi,t

1 − γζi,t

)

= Vt−1

{
m∑

i=1

bi,t−1Xi,t +
m∑

i=1

(
1 − 1

1 − γζi,t

)
(bi,tρ − bi,t−1Xi,t)

}

= Vt−1 · ρ = Vt−1 ·
∑m

i=1
bi,t−1Xi,t

1−γζi,t∑m
j=1

bj,t

1−γζj,t

.

Next, taking care of the sign of the rebalance amount for i-th asset, the rebalance adjustment

coefficient κt defined at (7.4) is determined as

∆i,t = Vt−1

bi,tρ − bi,t−1Xi,t

1 − γζi,t

>

<
0

84



⇐⇒ b−i,t =
bi,t−1Xi,t∑m

j=1 bj,t−1Xj,t

>

<

bi,tρ∑m
j=1 bj,t−1Xj,t

⇐⇒ κt =

∑m
j=1 bj,t−1Xj,t

ρ

>

<

bi,t

b−i,t
.

Then the rebalance adjustment coefficient κt is

κt =

∑m
i=1

bi,t

1−γζi,t
·∑m

j=1 bj,t−1Xj,t∑m
k=1

bk,t−1Xk,t

1−γζk,t

.

Finally, since turn-over is defined as the ratio of the amount rebalanced being summed up

for all securities in absolute value relative to the entire portfolio value before rebalancing,

then

Turnover(%) = 100 ·
∑m

i=1 |∆i,t|
Vt−1

∑m
j=1 bj,t−1Xj,t

= 100 ·
∑m

i=1

∣∣∣ bi,tρ−bi,t−1Xi,t

1−γζi,t

∣∣∣∑m
j=1 bj,t−1Xj,t

( From (7.7)) .
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Chapter 8

Conclusion and the Direction of
Future Research

In this paper, we comprehensively treat the dynamic portfolio management for the

log-utility and power-utility investors, under incomplete information. As we restrict the

power-utility class only to the log-utility, we have shown that the optimal portfolio can be

obtained at any finite terminal-time by utilizing the SPOP and the UP. Concerning the

SPOP, we showed that the SPOP means the back-test framework of continuous portfolio

selection under incomplete information. And we verified the asymptotic optimality of the

SPOP by proposing the CBOP and its asymptotic form, the ACBOP, under the prior

distribution for µ being endowed with infinite differential entropy. Our question of how to

make the optimal portfolio among all the portfolios which are predictable for the incomplete

information emerges quite naturally when we try to put the Expected Utility Maximization

Theorem of von Neumann-Morgenstern into application. And we resolve this question to

some extent by proposing the SPOP and UP for the log-utility investors. Moreover, as we

extend the utility class to the general power-utility, we can show that both the αSPOP and

αUP almost surely learns the ExPow portfolio asymptotically, either in theory or by use of

algorithm.

Furthermore, the results of our analysis in the continuous-time framework hold to some
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extent in the practical stock market. That is, after long enough learning, the αSPOP and

αUP converge to the portfolio duplicating the ideal ExPow portfolio. Or in some cases, we

showed that both the αSPOP and αUP with shorter incomplete information can provide

the same ex post utility as that with long enough information.

However, we leave several open problems to our future research. First, we didn’t treat the

information other than asset price process. Since the practical economic market has several

states, for a simple example, the market is in good times or is in hard times. Investors

may actively change their investment policy according to the market states. Then our

interest emerges naturally. Admitting and incorporating the several economic states which

may precede or affect the generations of asset price process, our treatment for the dynamic

portfolio management is no longer optimal. Second, the algorithm for the αUP is not enough

established. In our future research, we solve the numerous calculation requirements for that

algorithm with the help of theories for the αUP. Third, our empirical analysis is rather poor

to derive our general results. That is, since the target of our analysis is only the entire US

stock market, then we have to support our results hold generally, by applying our schemes

to another markets.
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