
論文 / 著書情報
Article / Book Information

題目(和文) メニーコアの協調キャッシュに関する研究

Title(English) Research on many-core cooperative caching

著者(和文) 藤枝直輝

Author(English) Naoki Fujieda

出典(和文) 学位:博士(工学),
 学位授与機関:東京工業大学,
 報告番号:甲第9190号,
 授与年月日:2013年3月26日,
 学位の種別:課程博士,
 審査員:吉瀬 謙二

Citation(English) Degree:Doctor (Engineering),
 Conferring organization: Tokyo Institute of Technology,
 Report number:甲第9190号,
 Conferred date:2013/3/26,
 Degree Type:Course doctor,
 Examiner:

学位種別(和文) 博士論文

Type(English) Doctoral Thesis

Powered by T2R2 (Tokyo Institute Research Repository)

http://t2r2.star.titech.ac.jp/

Tokyo Institute of Technology
Department of Computer Science

Research on Many-core Cooperative Caching

（メニーコアの協調キャッシュに関する研究）

A dissertation submitted in partial fulfillment of
the requirements for the degree of Doctor of Engineering

Naoki Fujieda

March 2013

Graduate School of Information Science and Engineering
Department of Computer Science

Tokyo Institute of Technology

i

Abstract

The trend of progress in processor architectures has changed to increasing the number of processor

cores in a single chip. The past fashion was improving the working frequency and/or the average

number of instruction per cycle (IPC) they can execute, that is, the single-thread performance. However,

this strategy does not match with the hardware cost and the power consumption any more. Multicore

processors are now the majority of processors even for cell phones and handheld game consoles. If this

trend continues, the era of many-core processors that have tens or hundreds of cores in a chip will come

in the near future.

In the many-core era, there are increasing demands for efficient memory systems to realize high-

performance processors. They usually have multiple levels of cache memories and each level has

different function. The primary or L1 caches are the fastest and the smallest caches and thus supply

the most common data as quickly as possible. On the other hand, the last level caches (LLCs) are the

largest caches and expected to provide as many data from there, rather than from the main memory, as

they can. Furthermore, they are not so sensitive to latency as the higher caches. Therefore, they can be

complex and smart to meet the demand.

Recently, for the LLCs, the cooperative caching (CC) has been proposed. In the CC, each core keeps

accessed data mainly in its own cache like private caches. The difference is that the CC allows cores

transferring (or spilling) a part of their evicted cache lines to other cores. As a result, cores that are short

of cache space can dynamically borrow some cache lines from other cores leaving most of their caches

unused. However, to maximize the advantage of the CC, optimized methods of spilling are essential.

Hence, there are a number of previous studies on them.

In this thesis, I propose a brand-new approach named ASCEND (Adaptive Spill Control with extra

ENtries of Directory) for optimizing the CC. Not to mention high efficiency, high scalability — capa-

bility to apply the method to tens of cores — is also required for many-core processors. There were no

past researches to achieve both of them; ASCEND is the first one.

The target architecture of my approach is the Distributed Cooperative Caching (DCC), a scalable

variation of the CC. It has distributed organizations called Distributed Coherence Engines (DCEs) to

keep shared cache lines coherent. An important discovery in my proposal is that they need some extra

entries for preventing performance degradation. I find that the currently unused hardware that was

Abstract ii

invalidated is useful for analyzing characteristics of cores in detail, for it has the information of the

cache lines that were recently removed from the chip. ASCEND extracts them by two kinds of units

named Spiller Selectors and Receiver Selectors and control the spilling adaptively.

The contributions of this thesis are threefold. One of the secondary contributions is the classification

of various recent studies to improve cache performance. I divide them into some categories by their

targets or features. Since there are many studies on this field, it may be hard to hit upon a new idea when

we persist on only one category. Instead, mixing knowledge of more than one category can become a

hint of it. I believe my classification provides a wide view of cache optimization schemes and a clue of

a novel approach for them.

The other secondary contribution is implementation of a useful infrastructure for research on many-

core processors with shared memory. To evaluate the methods in the many-core environment, I am

developing a simulator of many-core processors with the CCs named SimMccc. It utilizes SimMips, a

simple and practical MIPS system simulator, and inherits the characteristics from this. Hence, it can be

utilized as a great infrastructure of the CCs.

The most important contribution of this thesis is to show an efficient and scalable method for the

CCs to spill effectively, through the proposal and the evaluation of ASCEND. It is expected to play an

important role in the future many-core era. I evaluate various methods in both multicore and many-core

environments. The results showed that my method was more efficient than an existing efficient but non-

scalable method in the multicore environment. They also showed that it outperformed a scalable but

not-so-efficient method in the many-core environment. That is to say, the evaluation of two confirmed

that it is an efficient and scalable method.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contribution . 4
1.3 Outline of this thesis . 5

2 Background 6
2.1 Cache Optimization mainly for Single Thread . 7

2.1.1 Dead Block Prediction . 7
2.1.2 Replacement Algorithm . 10
2.1.3 Improving Associativity . 13

2.2 Cache Optimization focusing on Multithread . 15
2.2.1 Thread-aware Replacement Algorithm . 15
2.2.2 Cache Partitioning . 16

2.3 Toward Many-core Caching . 19
2.3.1 Non-uniform Cache Architecture (NUCA) 19
2.3.2 Scalable Coherence Control . 21

2.4 Cooperative Caches and their Optimization . 22
2.4.1 Overview of Cooperative Caches . 22
2.4.2 Distributed Cooperative Caching . 23
2.4.3 Optimization of Spilling . 25

2.5 Summary . 28

3 Proposal of Useful Simulation Infrastructure 29
3.1 Target Architectures . 30

3.1.1 Modeling Modern Multicore . 30
3.1.2 Modeling Future Many-core . 31

3.2 Simulation Infrastructure . 32
3.2.1 SimMips: MIPS System Simulator . 32
3.2.2 SimMccc: Simulator of Many-core Cooperative Caching 34

3.3 Comparison with other infrastructures . 40
3.4 Experimental methodology for Multicore Environment 41
3.5 Experimental methodology for Many-core Environment 45

Contents iv

3.6 Evaluation Results for Existing Cache Architectures 48
3.7 Summary . 50

4 Proposal of ASCEND Architecture for Cooperative Caching 56
4.1 Necessity of Extra Entries of Directory . 57

4.1.1 Avoiding Replacement in directories . 57
4.1.2 Probabilistic Analysis . 60
4.1.3 Preliminary Experiment . 64

4.2 New Concept of Utilizing Extra Directory Entries 65
4.2.1 Dealing with Invalidated Entries . 65
4.2.2 Example of Two Kinds of I-Reference . 67

4.3 Architectural Organization of ASCEND . 69
4.4 Original Method . 71

4.4.1 Spiller Selector . 71
4.4.2 Receiver Selector . 72

4.5 Highly-Precise Method . 76
4.5.1 Spiller Selector . 76
4.5.2 Receiver Selector . 77
4.5.3 Weak Receiving — An Optional Extension of Receiver Selector 80

4.6 Difference with other spilling optimizations . 82
4.7 Summary . 83

5 Evaluation of ASCEND 84
5.1 Evaluation Results for Multicore Environment . 84
5.2 Evaluation Results for Many-core Environment . 88
5.3 Hardware Overhead . 90
5.4 Discussion . 91

5.4.1 How did ASCEND classify the demands in capacity? 91
5.4.2 Should we consider the distance between cores? 93

5.5 Summary . 95

6 Conclusions 96
6.1 Concluding Remarks . 96
6.2 Open Research Areas . 97

Acknowledgements 99

Bibliography 100

List of Publications 108

v

List of Figures

1.1 The change of processor improvement and its details. 1

1.2 A conceptual model of many-core processors. 2

1.3 Cooperative LLCs that try to take advantage of both private LLCs and shared LLC. . 3

2.1 Differences between trace-based dead block predictor with and without sampler . . . 8

2.2 Organization of a typical time-based dead block predictor. 9

2.3 Examples of some replacement algorithms. 11

2.4 An example of a 3-way Skewed-associative Cache. 13

2.5 An example of a quest for candidates for eviction in the ZCache. 14

2.6 An organization of the utility-based cache partitioning. 16

2.7 An organization of the cache-partitioning aware replacement policy. 17

2.8 Different NUCA organizations in multicore processors. 20

2.9 The organization and working examples of the Distributed Cooperative Caching. . . . 24

2.10 Organization and virtual cache hierarchy of the ElasticCC. 26

2.11 Samplings of sets in the DSR. 27

3.1 The architectural model for the multicore environment. 30

3.2 The architectural model for the many-core environment. 31

3.3 Four types of node on the target many-core. 31

3.4 Flow of the evaluation in the multicore environment. 32

3.5 A part of the Mips::drive method that executes an instruction if possible. 34

3.6 Flow of the evaluation in the many-core environment. 35

3.7 Multiple layers of communication in SimMccc. 36

3.8 Typical relationship of each class between available cache size and performance. . . . 43

3.9 The barometer of spill necessity of the applications. 44

3.10 The barometer of pollution sensitivity of the applications. 44

3.11 Effects of cache size on benchmarks for evaluation. 47

3.12 Performance and QoS of various methods in the multicore environment. 48

3.13 Performance and QoS of various methods in the many-core environment. 49

List of Figures vi

4.1 The review of the organization and the undesirable working example of the DCC. . . 57

4.2 Cache lines and replicas of their tags in the centralized Coherence Engine. 59

4.3 Cache lines in cores and directory entries in the DCEs. 60

4.4 The first assumption of set mapping. 61

4.5 Directory cache size vs. probability of having sufficient entries (in the first assump-

tion, N=4). 62

4.6 The second assumption of set mapping. 63

4.7 Directory cache size vs. probability of having sufficient entries (in the second assump-

tion). 63

4.8 Directory cache size vs. performance and invalidation frequency. 64

4.9 Transition of tags when invalidated tags are removed. 67

4.10 Transition of tags when invalidated tags are preserved. 68

4.11 Organization of the DCC with ASCEND. 70

4.12 Detailed organization of Spiller Selector in the original method. 72

4.13 Detailed organization of Receiver Selector in the original method. 74

4.14 Example of update process of receive probability registers. 75

4.15 Detailed organization of Spiller Selector in the highly-precise method. 76

4.16 Restriction and prohibition of receiving evicted lines. 78

4.17 Detailed organization of Receiver Selector in the highly-precise method. 79

4.18 Pollution rate vs. percentage of cache lines that are kept local and relative performance. 81

5.1 Comparison of performance and QoS of ASCEND with the other methods in the

multicore environment. 85

5.2 Relative IPC distribution in the multicore environment. 86

5.3 Throughput variation with adopting options of ASCEND. 87

5.4 Comparison of performance and QoS of ASCEND with the other methods in the

many-core environment. 88

5.5 Performance in the many-core environment. Workloads are grouped by included ap-

plication. 89

5.6 Throughput in the multicore environment. Workloads are grouped by improvement

uniformity. 91

5.7 The percentage of being spiller and that of being receiver in DSR. 92

5.8 The percentage of being spiller and the average receive probability in ASCEND-H. . 92

5.9 An example of the difference in latency by the distance between the requester and the

holder. 93

5.10 Throughput of distance-aware ASCEND. 94

vii

List of Tables

3.1 Transition of L1 caches. 38

3.2 Source code organization of SimMccc Version 0.9.8. 39

3.3 Architectural parameters of the multicore environment. 41

3.4 The list of applications and their classes. 42

3.5 The classification of applications for the multicore workload. 43

3.6 The combinational patterns of classes for workload selection. 45

3.7 Evaluation parameters for the many-core environment. 46

3.8 Benchmarks to evaluate many-core environment. 47

3.9 Transition of L2 caches. 52

3.10 Transition of directory caches. 55

4.1 The contrast between access frequency of caches and that of directories. 58

1

Chapter 1

Introduction

1.1 Motivation
The rapid improvement in processor performance from the late 1980s to 2003 mainly came from the

rise in operating frequency. Figure 1.1 shows the improvement in processor performance and its details.

In addition to frequency, various architectural techniques improved the performance per clock cycle.

These techniques include pipelining, branch prediction, and the theme of this thesis — efficient use of

cache memories.

The trend of progress in processor technology has changed to increasing the number of processor

cores in a single chip. In 2003, the rapid rise in frequency ended due to increasing power consumption

and wire delay. Since the late 2000s, multicore processors that integrate multiple cores in a single

chip have been widely used. If the trend continues, the era of many-core processors that have tens or

hundreds of cores in a chip will come in the near future.

�

��

���

����

�����

������

���� ���� ���� ���� ���� ���� ���� ���� ����

�
�
��
�
��
�
�	
�

��

�
�
�
�

���������	
���

	
�������

��
��
���

������

	
�����
�����
�����
�

Figure 1.1 The change of processor improvement and its details. All values are relative to VAX-
11/780 in 1978. Each point represents the performance of a specific processor that was shipped in
the corresponding year. The data are quoted from [1]

Chapter 1 Introduction 2

���

���� ���� ���� ����

���� ���� ���� ����

���� ���� ���� ����

� �

� �

� �

� �

� � � �

��� ��� ���

��� ��� ��� ���

��� ��� ��� ���

���	

� ���
���������������

Figure 1.2 A conceptual model of many-core processors.

Figure 1.2 shows a typical conceptual model of many-core chip. In many-core, tens or hundreds

of processor cores are connected in a two-dimensional mesh in a single chip. Each core is connected

to a router (R in the figure) via a network interface controller (NIC). The memory controller is also

connected to its corresponding router. My target many-core architecture assumes that each core has

multiple levels of caches.

The problem with such progress in processor at all times is the increase of the gap of improvement

between processors and main memories, or so-called memory wall. It turns memory bandwidth into

more precious resources.

As a result, it is inevitable for high-performance processors to supply as many data from on-chip

cache memories to save precious memory bandwidth. The best way to achieve it is to improve the

performance of last level caches (LLCs) that are the largest caches and the closest to the main memory.

There are a number of approaches for improving LLCs [2] [3] [4].

In multicore and many-core, an important design point is the organization of LLCs. Figure 1.3

shows three kinds of LLCs that have different organizations. The traditional cache organizations are

private caches shown as (a) and a shared cache shown as (b). To exploit the advantage of both the

organizations, cooperative caches [5] [6] shown as (c) are proposed. I explain their respective features

below.

(a) in the figure shows the private LLCs. Each core stores data in its own small cache. Since the

region to which a core refers is small, they keep the latency low. However, it is not flexible about

capacity. That is, even if a core that is short of cache space is running with another core leaving most

Chapter 1 Introduction 3

���������	
���� ��������
����� ��������
��	��
����

�� �� �� ��

�� �� �� ��

���� ���� ���� ����

�� �� �� ��

���������	

�� �� �� ��

�� �� �� ��

���� ���� ���� ����

���������	

�� �� �� ��

�� �� �� ��

���� ���� ���� ����

�� �� �� ��

���������	

����	
����
����

����	
����
����

����	
����
����
���	����

����

Figure 1.3 Cooperative LLCs that try to take advantage of both private LLCs and shared LLC.

of its caches unused, the former core cannot use the unused cache region of the latter core.

(b) in the figure represents the shared LLC. All the cores access a single, large, and shared cache

(shown in Shared L2). Though it is highly flexible about capacity, the average latency is longer than

private caches, for all the cores must refer to the entire cache that is bigger and slower than private

caches. To make matters worse, a harmful application may occupy most of the cache and contaminate

the cache space for the other cores.

I now explain the cooperative caches shown as (c). The recently studied cooperative caches look like

private caches, but they also permit the cores to store their own data to other cores. It is realized by

allowing a part of cache lines evicted from one core forwarding (or spilling) to another core. Spilling

overcomes the weakness of private caches and improves the overall performance by letting cores that

require a large amount of frequently reused data borrow some cache lines from unused cache regions of

other cores. Moreover, thanks to temporal locality, most cache references are done in local and thus the

average latency is still small. However, adaptive spilling is essential for taking advantage of cooperative

caches. In recent years, many of such spilling techniques [7] [8] [9] [10] have been proposed.

In this thesis, I propose a highly efficient and scalable approach named ASCEND (Adaptive Spill

Control with extra ENtries of Directory) to control spilling. In addition to high efficiency, high

scalability, or capability to apply the method to tens of cores, is also required for the future many-core

era. Achieving both the properties is challenging, and ASCEND is the first method to realize it.

While existent methods use one kind of units to analyze the characteristics of applications, the

method examines them in detail using two kinds of units with different criteria. Spiller selectors decide

which cores should spill their evicted lines. Receiver selectors choose the destination of the spilled

lines. These units analyze the characteristics precisely and forward lines adaptively. In addition, they

are distributed in the chip and each unit makes a decision independently. It prevents concentration of

Chapter 1 Introduction 4

load and thus achieves high scalability.

I verify the effectiveness of ASCEND through evaluation using cycle-level simulation. In the eval-

uation, cores execute multiple applications that are different in demands on cache capacity at the same

time. My approach detects the difference correctly and improves the performance by spilling cache

lines from cores which want to borrow lines to those which have unused regions. Through the verifica-

tion, I clarify a spilling method that achieves both high efficiency and scalability.

1.2 Contribution
The contributions of this thesis are as follows:

1. to classify recent methods for cache optimization and show a direction to researches on this area;

2. to show the implementation of a useful simulation infrastructure for research on many-core

processor with shared memory; and

3. to show a highly-efficient and scalable spilling to make use of the scheme of cooperative caches.

I refer to respective contributions below.

As one of the secondary contribution, I explain the aims and the features of a number of recent

researches for improving caches and classify them. They include various topics and are not limited

to cooperative caches and their optimization. Therefore, it is useful for researchers to get a wide

perspective as an introduction to cache optimization. I also show a future direction of research on this

area based on my classification.

The other secondary contribution is implementation of an infrastructure for research on many-core

processors with shared memory. I make use of SimMips [11], a MIPS system simulator that we have

developed, as a part of the infrastructure. Moreover, I am developing a new SimMips-based simulator

named SimMccc (Simulator of Many-Core Cooperative Caching) *1 to evaluate the target many-core.

It can be utilized as a great infrastructure of cooperative caches.

The primary contribution is to show an efficient and scalable method for the cooperative caches

through the proposal and evaluation of ASCEND. Some existing methods are not so efficient due to

their insufficient analysis of demands on capacity. Others are not scalable with frequent broadcasts for

the analysis. My proposal is distinctively different from them. It achieves almost the same efficiency

as an existing high-performance method, without losing scalability. It is expected to play an important

role in the future many-core era.

*1 It is pronounced as Sim-M-C-Three.

Chapter 1 Introduction 5

1.3 Outline of this thesis
The outline of the subsequent chapters is as follows.

In Chapter 2, I explain various existing methods for efficient use of caches. As the trend of processors

changed from single-core to multicore, optimization techniques began to need to be aware of multiple

threads running in parallel. Moreover, scalability is becoming an important problem in anticipation of

the many-core era. From these circumstances, I explain the methods for single-core, multicore, and

many-core in order. Afterward, I refer to the target architecture, the Distributed Cooperative Caching

(DCC), and its optimizations.

In Chapter 3, I propose a useful simulation infrastructure that centers on SimMips. To verify both

efficiency and scalability, I define two respective simulation environments and describe how to simulate

them with the proposed infrastructure. By comparison with other infrastructures, I clarify the advantage

of ours. Afterward, I quantitatively show the problem of the existing optimizations for the DCC.

In Chapter 4, I propose ASCEND as an efficient and scalable optimization for the DCC. I first

describe an important characteristic of the DCC, or that it needs some extra hardware being reserved. I

then explain how my approach utilizes it by taking some examples. Afterward, I show the architectural

organization of the DCC with ASCEND, two different ways to describe the additional units or the

Spiller Selectors and the Receiver Selectors, and an optional extension named Weak Receiving.

In Chapter 5, I show the results of the evaluation of ASCEND and have some discussions from them.

I also calculate the amount of the additional hardware after showing the results of the simulation.

I conclude this thesis in Chapter 6.

6

Chapter 2

Background

In this chapter, I mention various recent prior researches to make caches efficient. In the actual cache

organization, it is natural to use a combination of methods across multiple categories rather than to rely

on a single one. In addition, because some categories have been fairly researched, it may be difficult

to propose a new idea focusing only on a single category. Instead, mixing up knowledge of other

categories can be a hint of making cache management more efficient. For these reasons, I categorize

related methods by their targets and features.

The primary classification in this chapter is based on the points that the methods focus on. They can

be divided into three: characteristics of single-thread execution, interaction among multiple cores, or

scalability for applying the methods to many-core. Each category has some subcategories of different

features.

In Section 2.1, I refer to methods that exploit characteristics of single-thread execution. They consist

of dead block prediction, replacement algorithm, and improving the efficiency of associativity.

In Section 2.2, I mention multicore-aware methods that consider the interaction among multiple

cores that executes various applications. They are composed of thread-aware replacement algorithm

and cache partitioning.

In Section 2.3, I state endeavors for future many-core processors. They need scalability or properties

that their performance is not limited by the increase of the core count. They include Non-uniform

Cache Architecture (NUCA) and improving directory-based coherence managements.

The Distributed Cooperative Caching (DCC) is a variation of cooperative caches that my approach

is based on. Since it tries to improving scalability by distributing its organization over a chip, it can

be included in the third category. However, its features and behavior is important for discussions in

following chapters. Therefore, I devote Section 2.4 to cooperative caches and the DCC.

My approach ASCEND is an original method to control spilling in cooperative caches. Methods that

focus on the difference in demands on capacity between cores and that manage spilling are considered

as a form of cache partitioning, which is included in the second category. However, since they strongly

depend on the scheme of cooperative caches and I have to discuss the features and the problem of

Chapter 2 Background 7

existing methods for spilling, I mention them later in Section 2.4.

2.1 Cache Optimization mainly for Single Thread
2.1.1 Dead Block Prediction

Lai et al. [12] first introduced the concept of dead block prediction. In the context of dead block

prediction, if a cache line will be accessed again before it is evicted, then it is considered as live. In

contrast, if it is no longer reused, it is considered as dead.

If we identify dead lines before the eviction, we benefit from them by invalidating, turning off, or

replacing them, for they are no longer needed to be kept. To get this advantage, dead block predictors

predict whether a line is live or dead, based on the information gathered on past access.

What kind of information predictors gather and how it is utilized vary greatly with methods. They

can be divided into trace-based and time-based. I explain below how each kind of predictors make use

of past information.

Trace-based Prediction

Trace-based predictors use traces of instructions, that is, the program counter (PC) of the instruction

accessing a line or a set of PCs. When multiple lines are accessed by the same sequence of instructions,

whether they are reused or not usually match each other. Many predictors aiming for performance

adopt this strategy.

The first approach by Lai et al. [12] can be used for computer systems with symmetric multipro-

cessing (SMP). They added a trace-based predictor to a method, called Self-Invalidation [13], which

a processor invalidated or wrote back cache lines voluntarily and earlier. Since wrong invalidation of

lines that would be reused harmed the performance, they predicted dead lines and invalidate them in

advance. Thus, they succeeded in reducing the latency on insertion without harmful effects.

A later proposal by Lai et al. [14] added the idea of dead block prediction to a prefetcher. Their

predictor keeps not only traces when lines become dead but also the address of the lines that will be

requested just before the dead lines are evicted. It enables the prefetcher to decide the prefetching

address and its destination at the same time.

In contrast to these two methods, Virtual Victim Cache [15] does not consider the lines being ex-

pected to be dead as the immediate targets of invalidation. Instead, they are just marked as dead. When

an inserted line causes an eviction afterwards, the cache searches for a line that is invalid or marked as

dead in the secondary set of the evicted line. If such a line is found, the cache uses it as a shelter of the

evicted line.

Bypassing the LLC or placing inserted lines only in the higher levels of caches is also possible.

Sampling Dead Block Prediction (SDBP) [2] is a method that applies bypassing. In the SDBP, if the

Chapter 2 Background 8

��������

	
�����

���������

�����

����

�����	��
�������������

�����������

�����	��
��������

�������

���������	��
��

(a)

��������

	
�����

���������

�����

����

�������� 	�
�
���

������	�
	� ��
������

��������
	�
������

��������
���
������	��

������

��������	�

��������	�
�����

(b)
Figure 2.1 Differences between trace-based dead block predictor with and without sampler

LLC does not have a spare line and a newly inserted line is predicted dead, it is placed only in the

higher caches. This bypassing exploits the fact that the lines whose temporal locality can completely

extracted by the higher caches have no necessity to be kept in the LLC.

A distinct organization of this method is a small tag array as a sampler dedicated to dead block

prediction. Not the main cache but the sampler is used for prediction. It greatly reduces the addi-

tional hardware and the power consumption. I show the difference between a conventional dead block

prediction and the SDBP in Figure 2.1.

In a typical dead block predictor shown in Figure 2.1 (a), if a line misses in the L2 cache, the address

of the line and the miss-causing PC are given to the predictor. The predictor sends the outcome based on

the past information to the LLC. The miss-causing PCs are also sent to the LLC and stored in their tag

array. When the missed line hits in the LLC, the predictor learns that the PC stored in the corresponding

tag is likely to produce live lines, and then it updates the stored PC. Conversely, when a line is evicted

from the LLC, the predictor learns that the stored PC is likely to cause dead lines.

In the SDBP shown in Figure 2.1 (b), on the other hand, the predictor traces the PCs of a small

fraction of L2 misses using the sampler and updates the predictor table with the result. The reference

to the table is done on every L2 miss. In addition, the tag array in the sampler can be different in the

number of sets, the number of ways, replacement algorithm, etc. from that in the main cache. These

features contribute to improving the accuracy of prediction.

Time-based Prediction

Time-based predictors utilize the elapsed time from the last access of each cache line. The predictors

decide a threshold based on the past interval between accesses. If the elapsed time reaches the threshold,

the line becomes predicted as dead.

Figure 2.2 shows an organization of a typical time-based predictor. Other than the predictor itself,

following per-line fields of additional metadata in the LLC are essential for time-based prediction:

Chapter 2 Background 9

���������

����������	
����	���	
����	�����

���������	

����

����

����

�������

����
��������������

���������	��	�

�	������	�����������

����	�	���	��������	

�������

�	������

����������	������

Figure 2.2 Organization of a typical time-based dead block predictor.

• Prediction Valid that shows whether lines are treated differently by the prediction,

• Decay Time or the threshold of the elapsed time that is provided by the predictor,

• Elapsed Time that indicates the time from the last access, and

• Maximum Interval that shows the longest interval between accesses since the insertion of the

line.

Other metadata are also added depending on the method.

The predictor expects the decay time (and whether the prediction is valid in some methods) and stores

it into the cache line. The elapsed time is set to zero every time the line is accessed and incremented

in method-specific conditions. If the prediction is valid and the elapsed time exceeds the decay time,

the line is considered as dead. Besides, on every cache hit, the maximum interval is compared with the

elapsed time and updated if needed. This field is sent to the predictor on eviction and used for training.

I explain methods using time-based predictors. IATAC [16] uses one to find which lines should be

turned off to reduce leakage current. The predictor of IATAC uses the number of cycle as elapsed time

and the prediction is based on the number of hits of the line since the insertion. Thanks to dynamic

modification of the threshold, it shows high accuracy and thus succeeds in reducing leakage by turning

off a large part of caches with a small penalty.

Counter-based predictors, such as one that was proposed by Kharbutli and Solihin [17], are some-

times classified differently from time-based predictors. However, I consider that these two kinds of

predictors are essentially identical. Their predictor uses the number of scans through the set that a line

belongs to as elapsed time. The prediction on insertion is based on the address of the line and the

accessing PC. The result is valid only when the past two maximum intervals match. As done in many

trace-based predictors, lines being predicted dead become the prior targets of replacement.

All the dead block predictors I have mentioned above use either one reference to the cache or passage

of specific time from it as a trigger of prediction. However, more than one reference can be treated as a

Chapter 2 Background 10

single trigger. One of such ideas is called Cache Burst [18]. It treats a series of access to MRU (Most

Recently Used) line, or a burst, as a trigger of prediction. This modification enables a prefetcher in

the L1 cache to be precise and power-efficient. Unfortunately, it has less advantage in the L2 or lower

caches because such extreme locality is filtered out in the L1 cache.

2.1.2 Replacement Algorithm

When there are no invalid lines in the same set as an inserted line, which line the cache selects for

a victim of replacement has a significant influence on the cache performance. Figure 2.3 shows the

behavior of some replacement algorithm that I mention in this section. In the figure, time-varying

behavior of a 3-way cache (expressed in three blocks) given an access pattern of repetition of A, B, A,

B, C, and D is shown. If the cache hits, the corresponding way is shown in red.

An LRU (Least Recently Used) replacement algorithm of choosing the line whose last access is

the farthest from now and its approximation (called pseudo-LRU) are often used, for they are easy to

implement and their average performance is not bad. However, the LRU performs poorly with some

access patterns. One of the typical worst cases is repeatedly accessing a region slightly larger than the

cache size. In this case, the victim lines are always what the processor will use next. As a result, the

cache never gets hits.

In the leftmost column of Figure 2.3, the LRU is expressed as an algorithm placing an inserted line

in the leftmost or most prioritized block. When D is inserted in the fourth row, the least prioritized line,

A, is evicted, though it will be reused next. In similar, when A is inserted again in the fifth row, B, which

is supposed to be reused in the sixth row, is removed. As a result, the LRU cache get only two hits per

iteration (from sixth to eighth rows). In this section, I mention some methods to solve this problem and

to aim for higher hit rates.

Belady found out the theoretically optimal replacement [19]. It is often called Belady’s OPT algo-

rithm. If the cache knew the complete sequence of future cache access, the optimal target for replace-

ment would be the least imminent line or the line whose next access would be the farthest from now.

The second column from the left in Figure 2.3 shows the optimal replacement. When D is inserted in

the fourth row, for A, B, and C are reused earlier than D, D itself is the least imminent. Therefore, D is

not stored in the cache. Consequently, the other lines receive hits and thus the hit count per iteration is

five.

Unfortunately, this algorithm uses future information and thus is practically impossible to imple-

ment, even though we can get its outcomes a posteriori. For this reason, a number of near-optimal,

implementable algorithms have been proposed in the recent years. Some of them try to emulate the

optimal replacement, and others exploit the characteristics of processors or access patterns or both.

Chapter 2 Background 11

�������� � � � � � � � � � �

�������� � � � � � � � 	 � 	

�
��� � � � � � � � � � � 	 � 	 � �

���� � � � � � � � � � � � �

����� � � � � � � � � 	 � � �

����� � � � � � � � � 	 � 	 �

�������� � � � � � � � � 	 � 	 �

����� � � � � � � � � � � � � � � �

���� � � � � � � � � � � � �

������������������������ !!"�� #�$��%����&'())�$*'+����(&

��������������� !!"��

��� �����	
���� ��� �����������
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

Figure 2.3 Examples of some replacement algorithms.

Emulating the optimal replacement

Shepherd Cache [20] tries to emulate Belady’s OPT algorithm. It uses a FIFO (First-in First-out)

cache called a Shepherd Cache along with the main cache. The Shepherd Cache temporarily suspends

replacement of the main cache while inserted data are kept there. This allows the main cache artificially

reproducing the ideal algorithm.

Keramidas et al. [21] proposed another approach to find the least imminent line. They got what

time the block would be accessed next through prediction. Although I categorize it into a replacement

algorithm, the idea is similar to trace-based dead block prediction.

Focusing on the characteristics of processors and/or cache access

MLP-aware Cache Replacement [22] notes that the effect of cache misses is not uniform in out-of-order

processors because of memory-level parallelism (MLP). It prioritizes lines that have low MLP or have

long latency on miss.

Bimodal Insertion Policy (BIP) [23] places most of the newly inserted lines on the LRU position,

while a fraction of them are placed on the MRU position. If a line receives a hit, it is moved to the

MRU. It is effective with the worst case of the LRU that I have mentioned above.

In the third column from left of Figure 2.3, all the inserted lines are placed on the LRU (the rightmost

block) in BIP for ease of explanation. In the example, frequently used A and B tend to have higher

priorities, but C and D do not. Since A and B hit twice, the number of hits per iteration is four. Practically,

it sometimes places C and D on the MRU and thus the average number of hits is slightly smaller than

four.

Chapter 2 Background 12

In both algorithms, they greatly outperform the LRU if access patterns match the method. However,

if not, they can be less effective than the LRU. To deal with the shortcomings, some methods including

them make use of tournaments with a small part of sets, called Set-Dueling. Set-Dueling fixes the

replacement policy of tens of sets to the LRU and that of other tens of sets to the proposed scheme. The

other sets follow one of the policies that cause fewer misses in the sampling sets. The methods with

the Set-Dueling are named Sampling Based Adaptive Replacement (SBAR) for the MLP-aware Cache

Replacement and Dynamic Insertion Policy (DIP) for the BIP.

To achieve higher efficiency with smaller hardware than the LRU, Re-Reference Interval Prediction

(RRIP) [3] was proposed. It assumes a pattern of repeatedly accessing a small region while scanning

a large region as a weakness of the LRU. It prioritizes frequently reused lines and slows the decline of

priority to prevent the scan of the large region from evicting the small region. As a result, the cache

gets a large number of hits despite existence of scans.

RRIP needs a priority counter of some bits called Re-Reference Prediction Value (RRPV) per cache

line. Lines with small number of the counter have high priority and likely to be kept. Following

explanation assumes 2-bit counters; the value of the counter with the lowest priority is 3. In Static RRIP

(SRRIP), newly inserted blocks have the priorities of the second lowest or 2. They do not become the

highest or 0 until the corresponding blocks are reused. Candidates for replacement are the lines with

the priorities of 3. If there are no such lines, all the counters in the set are incremented and scanned

again.

The rightmost column of Figure 2.3 shows an example of SRRIP. Numbers in the right of columns

stand for the priorities. When A and B are reused in the second row, their priorities become 0. In

contrast, C has the priority of 2, for it is not reused. Afterwards, on searching for a line to be replaced, it

looks for a line with the lowest priority once. Since no such lines exist, all the counters are incremented.

Now that the priority of C becomes the lowest, C is selected as the victim. As a result, A and B hits twice

and the cache gets four hits per iteration. In addition, although the priorities of A and B are incremented

twice in the second iteration (on the insertions of C and D), they are never evicted.

SRRIP has the same problem as the LRU on some access patterns. To cope with it, Bimodal RRIP

(BRRIP), where a fraction of inserted lines are given the different priority, and Dynamic RRIP (DR-

RIP), which compares SRRIP with BRRIP using Set-Dueling, are proposed. They correspond to the

BIP and the DIP for the LRU.

SHiP [24] is based on the SRRIP, reflecting the results of dead block prediction. When inserted lines

are predicted dead, they are given the lowest priority and soon will be removed.

Chapter 2 Background 13

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

����� ����� �����

���� �

�� �

�� 	

�
 �

�

�

�

�

	

�

�

Figure 2.4 An example of a 3-way Skewed-associative Cache.

2.1.3 Improving Associativity

An ideal full-associative cache, where a cache line can be placed in any block, is able to replace the least

prioritized line in the cache at all times. However, common set-associative caches limit the placement

of a line to the set (several blocks) according to its address It causes the inequity of usage and affects

the efficiency. If frequently used sets and rarely used ones are mixed, fresh lines (likely to be reused)

can be soon removed from the cache in one set, while stale lines (unlikely to be reused) stay there in

another set.

An obvious way to mitigate the imbalance is to increase the number of ways. However, it has

limitations of the rise of the latency and the power consumption, due to the increase of the number of

lines accessed at once.

The other, more preferable way is to select the least prioritized line close to globally with keeping

the number of ways small. I explain such designs to “improve associativity” [25].

One of the solutions to the inequity is to use a hash function that is randomized well. Considering

a tradeoff between the randomness and the latency, it requires both hardware simplicity and enough

randomness. It is possible design point to use bitwise XOR of multiple parts of the address rather than

its single part. In fact, some commercial processors can use this kind of hash function [26].

Multiple hash functions further improve the inequity. Column-associative Cache [27] is based on a

direct-mapped cache, where a cache line has only one candidate for placement, but each address has a

primary set and a secondary set calculated by different hash functions. The cache is checked twice if a

line is missed in its primary set.

Skewed-associative Cache [28] was proposed almost at the same time as the Column-associative

Cache. Each way has a different hash function, and a line has different placement of sets in each way.

Figure 2.4 shows a 3-way Skewed-associative Cache which consists of eight sets. The left of the figure

stands for the tag array. The characters shown in the array are assumption of the current placement.

Each letter represents a different line. The right of the figure shows output of the hash functions. When

we insert Y to this, the cache first calculates the set indexes in ways with their respective hash functions.

Chapter 2 Background 14

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

����� ����� �����

���� � � � �

�� � � � 	

�
 � 	 � �

�	 �
 � �

�

�

�

�

�

	

�

�

�� �

� � � � 	

�

�

�

�

�

�

�

�

	

�

�

�

�

�

�

�

�

�

�

�

�

�

����� ����� �����

���� � � � � � � � � � 	

�� � � � 	 �
 � 	 �

� � 	 � � � 	 � � � 	

�	 �
 � � � �

�

�

�

�

�

	

�

�

�� �

� � � � 	

� � � � � � � � � �

Figure 2.5 An example of a quest for candidates for eviction in the ZCache.

In the figure, hash functions H0, H1, and H2 correspond to way 0, way 1, and way 2, respectively. As

the hash values to Y are 5 for H0, 4 for H1, and 0 for H2, the lines being accessed and becoming the

candidates for replacement are set 5 in way 0, set 4 in way 1, and set 0 in way 2; that is, A, D, and M.

ZCache [25] extended this idea further. It determines the locations of blocks as the same way as the

Skewed-associative Cache, it adds the candidates for eviction and thus improves the associativity.

In the Skewed-associative Cache, each line in the candidates for placement of an inserted block

has different locations in the other sets than its current one. ZCache allows lines already stored being

relocated to the other set. This enables the lines in the candidates for relocation to be added to the

candidates for eviction.

Figure 2.5 shows how ZCache adds the candidates for eviction. The contents of the tag array and

the inserted line Y are the same as Figure 2.4. First, it calculates the candidates the same way as the

Skewed-associative Cache. As I have mentioned, they are A, D, and M. It then calculates their hash value

to find their alternative locations. For example, when the hash values to A are 2 for H1 and 1 for H2, it

may be relocated to either set 2 in way 1 or set 1 in way 2. This relocation leads to the eviction of K or

X. Conversely, K and X are also considered as the candidates for eviction. In similar, B, S; P, and Z are

added to the candidates.

Chapter 2 Background 15

Furthermore, by allowing multiple relocations and searching for candidates repeatedly, ZCache in-

creases the number of candidates greatly. It also calculates the indexes of the additional candidates and

adds the corresponding lines to the candidates for eviction, as shown in the lower of Figure 2.5. If a

3-way ZCache permits relocations up to twice at a time, the maximum number of candidates is 21. It

selects an evicting line from many candidates with a global replacement policy. Afterwards, it replaces

and relocates the lines as needed. Assume the evicted line is N, the third from the left in the bottom of

the candidates represented in the figure. X is moved where N was; A is located where X was; and then Y

is inserted where A was.

Although ZCache greatly improves the associativity with almost the same amount of hardware as

set-associative caches, it needs frequent access to the tag array and thus the controller becomes much

complex.

As another solution to the inequity, V-Way Cache [29] uses the dynamic cross-reference between

tags and data. While tags and data have predefined one-to-one mapping in usual caches, V-Way Cache

gives variable mapping with additional per-line storages keeping cross-reference.

The point is that the number of elements in tag array and data array are not necessarily the same.

Since an invalid tag does not need to reference data, the number of tags can be bigger than the number

of lines in the data array. Even if doing so, the amount of additional hardware is relatively small, for

the hardware cost per entry in the tag array is smaller than that in the data array. The idea of having

some additional tags is similar to the DCC, the target architecture.

Thanks to extra tags, the most common situation on insertion is that an invalid tag is found but the

data array is full. In this case, V-Way Cache can use a global replacement policy (which is different

from what I have mentioned in ZCache) to select a line to be evicted. After it decides the evicting line,

it invalidates the corresponding tag with reference to the tag array, and then stores the inserted line

where the evicted line was. As a result, it benefits from the global replacement, keeping the hit latency

low.

2.2 Cache Optimization focusing on Multithread
2.2.1 Thread-aware Replacement Algorithm

The DIP that I have mentioned in Section 2.1.2 cannot apply efficiently to multiple cores or threads as

it is. Applying either the LRU or the BIP to all the core implies that the performance of some cores

sacrifices for that of the other. On the other hand, permitting each core to choose one of them freely

means that the number of candidates for globally optimal policy increases to a power of 2. This makes

it impractical or even impossible to sample all the candidates.

Thread Aware DIP (TADIP) [30] presents the multiple ways to find a near-optimal policy by sam-

Chapter 2 Background 16

���������	
�����������

�
��
������
�������������

�
��
������
�������������

����������������
������� ���������

���������

Figure 2.6 An organization of the utility-based cache partitioning.

pling some of them. It reduces the number of sets needed for sampling to a proportional to the number

of cores.

Meanwhile, though most replacement algorithms only focus on the priorities of inserted lines, Pro-

motion/Insertion Pseudo Partitioning (PIPP) [31] also considers those of reused lines. It promotes

reused blocks a little, rather than give them the highest priority. It also gets the effect of cache parti-

tioning, which I mention next, with different priorities on insertion by the cores.

2.2.2 Cache Partitioning

Cache partitioning, or allocating shared resource of cache capacity among cores, can be considered as

a form of thread-aware replacement algorithms. However, this topic includes many related researches,

and so I consider it as a different category.

The points of design of cache partitioning are threefold: an estimation of cache performance, a

decision of requirements to be met, and a way to realize allocation.

How do they estimate the cache performance?

Dynamic modification to allocations is essential for efficient cache partitioning. The first step for

achieving it is to estimate cache performance by the size.

Suh et al. [32] [33] conducted the first such attempts. They estimated the performance by the size

with way-divided counters that are incremented on a hit in the corresponding way. A shortcoming

of their method is its low precision because using the shared main cache leads to interference of the

estimation of each other.

To overcome the flaw of their method, have per-core, independent tag arrays dedicated for estimation

can be used. Nevertheless, arrays to the whole cache is impractical in terms of hardware cost. To reduce

the cost, Utility-based Cache Partitioning (UCP) [4] and Cache-Partitioning Aware Replacement Policy

(CPARP) [34] were proposed. They limit the region of the cache that requires access to the additional

tag arrays in different ways.

Figure 2.6 and Figure 2.7 show organizations of the UCP and the CPARP, respectively. Tinted parts

Chapter 2 Background 17

������������	�

���������

����	����������������

�����������������

���������� ����������

��	��������������������������

Figure 2.7 An organization of the cache-partitioning aware replacement policy.

represent the portions of the cache used for estimation. Dark-colored parts stand for the additional tag

arrays.

The UCP, shown in Figure 2.6, adds tag arrays to a small part of the sets in the cache. The arrays are

called Utility Monitors. It reduces the cost of the conflict-free estimation. However, it requires either

large amount of hardware or a help by software to decide partitions from them.

On the other hand, the CPARP, shown in Figure 2.7, limits the ways rather than the sets. In other

words, it only estimates the performance of the caches when it increases or decreases the current al-

locations by one way. To estimate the performance on increased allocation, it makes additional tags

called Shadow Tags keep the tag of the last evicted line in each set and counts the number of hits in the

Shadow Tags. To estimate the performance on decreased allocation, it counts the number of hits in the

LRU way of the current allocation. Like the UCP, the CPARP also reduce the hardware cost. More-

over, it is easier to decide new allocations than the UCP. Nevertheless, it gives the wrong estimations

to applications that have non-convex relations between the capacity and the performance.

The use of such estimations is not limited to cache partitioning. CRUISE [35] is one of its examples.

It reflects the results of the estimation into thread scheduling. It divides the threads into some categories

by the estimation. If a pair of threads that harm each other is found, it prevents the threads from being

allocated at the same time to cores sharing cache.

What is the goal of the partitioning?

Once the cache performance is estimated, what the partitioning methods should consider next is to

decide which kind of requirements they aim for. The requirements include performance, fairness,

quality of service (QoS), and combinations of them.

Methods for performance try to maximize the total throughput, or typically, to minimize the sum

of the number of cache misses. A common barometer of improvement is the sum of the relative IPC

(Instruction Per Cycle). They are the mainstream of related work; all the three methods mentioned

Chapter 2 Background 18

above aim for performance.

Methods for fairness want the threads improved equally. Therefore, a typical barometer is the equal-

ity of the relative reduction of the number of cache misses. Fair Cache Sharing [36] is one of them. It

measures the barometer of performance of each core in a fixed period. If the difference of the barome-

ters between the highest and the lowest exceeds a threshold, a move of partition between them occurs.

It presents some different formulas as the barometers.

Some methods for QoS emphasize the elimination of cores that are heavily harmed. Hence, a com-

mon standard is the minimum of relative IPC. Some performance-oriented methods also present their

QoS-aware variations where cache misses by cores whose performance declines are penalized.

Cooperative Cache Partitioning [37] allows sacrificing temporal performance for average perfor-

mance. When there are several threads that benefit much from larger caches, it dares to bias the allo-

cations temporarily and rotate them periodically. Although it improves both performance and QoS on

average, it requires OS-based complex control.

The other methods for QoS look at its another aspect, that is, their goal is to make the behavior of

the caches close to that according to predefined priorities. Iyer proposed a framework named CQoS

[38] for caches considering this kind of QoS. It modifies the allocations of the cache according to per-

core priorities. He confirmed that his framework achieve the different behavior by priorities in some

scenarios.

Virtual Private Caches [39] present a way to control allocations of not only the capacity but also the

bandwidth of the cache according to priorities, after a method to guarantee QoS in a point of network

bandwidth.

Incidentally, an OS-based method that was proposed by Lin et al. [40] is applicable to any of these

purposes. It uses different algorithms and performance barometers by purpose. Hsu et al. [41] minutely

analyzed interaction of the purposes, and relation between the purposes and performance standards.

How do you enforce the assignment?

When the allocation of capacity of each core is determined, the last consideration is how to realize it.

The most common enforcement is to limit the number of ways where cores can place their line [42]

[43]. It is often called way-partitioning.

Rafique [44] proposed a method to limit the number of lines rather than ways. It counts the current

number of lines that belong to each core. When it exceeds the limit, lines in that core are replaced in

preference.

Liu et al. [45] proposed a partitioning in bank granularity. They assumed caches that were divided

into some banks. They limited banks that first responded to requests of each core so that it balanced

performance with power consumption.

Chapter 2 Background 19

The OS-based method by Lin et al. [40], which I have mentioned above, adapts the idea of Page

Coloring [46] that modifies mapping of logical address to physical address.

Vantage [47] is based on ZCache [25], which I have mentioned in Section 2.1.3. It divides the whole

cache into managed and unmanaged regions. Evicting lines are usually chosen from unmanaged lines.

It modifies the per-core threshold for demoting lines from the managed region to the unmanaged region

in order to enforce the allocations.

The last kind of enforcements I mention is pseudo enforcements. They do not require precise parti-

tions; they only need some criteria of allocations. Iyer’s CQoS [38] presents one of them with proba-

bilities of storing lines in addition to ordinary way-partitioning. PIPP [31] can be categorized here in

the point of changing the priorities of inserted lines.

Spilling managements of cooperative caches, which my approach belongs to and I introduce later in

this chapter, are also included in pseudo enforcements, though some of them combine way-partitioning.

2.3 Toward Many-core Caching
2.3.1 Non-uniform Cache Architecture (NUCA)

As caches get larger, increase of latency of a single large cache became a problem due to some lim-

itations like wire delay. Instead, to divide it into multiple tiled banks has an advantage in the aspect

of average latency, though latency of each access becomes different. These organizations are called

Non-uniform Cache Architectures (NUCAs) [48] [49].

In NUCAs, dynamic migrations, which are utilized in D-NUCA [48], NuRAPID [49], etc., further

reduces the average latency. It means that frequently accessed lines are relocated to banks that are close

to the core, that is, has lower latencies.

Although the target of the first proposal of NUCA is large caches in single-core processors, they

suit multicore or many-core processors with a large number of cores very well, because banked orga-

nizations prevent the concentration of loads. Therefore, most of the researches in this category adapt a

NUCA to multicore and many-core.

CMP-DNUCA [50] and NUCA Substrate [51] investigate dynamic migrations like D-NUCA in the

different organizations of cores and banked cache. Figure 2.8 shows their respective organizations.

Each Colored figure represents a bank or a group of banks in the cache.

In single-core processors, the only direction where frequently accessed lines are pulled is where

the core is. In contrast, frequently shared lines can be pulled from multiple directions in multicore

processors. As a result, such lines are placed in near the mean of locations of cores or close to the core

that accesses the lines the most frequently. However, such frequent migrations are wasteful and may

leads to inefficient placements.

Chapter 2 Background 20

���� �����
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���� ����

CMP-DNUCA

���� ���� ���� ����

���� ���� ���� ����

NUCA Substrate

Figure 2.8 Different NUCA organizations in multicore processors.

Migration-based NUCA, or M-NUCA [52], avoid the problem with frequent migrations. It first

detects frequently shared lines, and then counts the number of access from each core to them. Actual

migration is not occurred until the cache gathers sufficient information. Thus, it gets placements that

are more efficient, in addition to reducing the number of migration.

Victim Replication [53] reduces the average latency not by dynamic migrations but by dynamic

replications. When a line is evicted from an L1 cache and a proper placement is found in its local bank

of the shared L2 cache, a replica of the evicted line (note that the original have been stored in a remote

bank) is placed there. Replicas behave just like Victim Cache [54] of the L1. Since the other cores

believe that the L1 in that core still holds the evicted line, the other cores send a request of invalidation

or write-back in the usual way. Hence, it keeps coherency in the same way as conventional shared

caches, except a part of invalidation or write-back requires a search in the local bank of the L2.

CMP-NuRAPID [55] combines migration and replication. Just like V-Way Cache [29] in Section

2.1.3, it has dynamic cross-reference between tag and data arrays. The tag arrays are private while

the data arrays are banked and shared. The tag arrays have many entries for a situation a few cores

occupy most of the cache. Proper managements of cross-reference enable migrations and replications.

However, they make the coherency control much complex and difficult to implement. In addition, the

maximum capacity available to each core is limited by the number of entries in the tag array.

Reactive NUCA [56] applies different strategies of locations by access tendencies with a help of

software. It classifies data into instruction, private data, and shared data.

The key ideas of multicore or many-core NUCAs, that is, distributing loads with banked organiza-

tion and improving the average latency by frequently used data close to the core are similar to those of

ccNUMA (Cache Coherent Non-Uniform Memory Architecture) [57] and COMA (Cache-Only Mem-

ory Architecture) [58], which used to be studied actively in parallel computers with distributed shared

Chapter 2 Background 21

memory. They allow non-uniform latencies between the memory in a local node and those in the re-

mote nodes. Since each node accesses to its local memory independently, the whole memories in the

system are considered to be divided into many banks. Besides, in ccNUMA, a part of local memory is

used as a cache to remote memory and thus it improves the average latency. COMA extends this idea.

It does not specify the home node of a line: the entire local memory is treated as a cache to remote

memory (even if there is only one node in the system that keeps a line). This reduces the number of

replicas and thus improves the efficiency.

The difference between NUCAs and ccNUMA or COMA is the target of the ideas: ccNUMA and

COMA apply them to main memories of multiprocessors; NUCAs apply them to on-chip caches of

multicore or many-core processors. It connects to an important architectural choice. NUCAs hold

caches to the main memory that in the slow off-chip location and on-chip caches are more costly

resources than node memories. For these reasons, NUCAs have more serious necessity of efficient use

of capacity than ccNUMA and COMA. Moreover, in multicore or many-core NUCAs, cores and/or

banks of caches are connected via quite fast on-chip communications. Hence, they have a large room

for improving the efficiency in capacity and reducing the latency with on-chip communications, like

the dynamic migration techniques as I have mentioned.

2.3.2 Scalable Coherence Control

When caches are shared among multiple cores, cache coherency is an important problem. Once a core

writes something to a memory address, all the cores must read the written value from that address. In

addition, when multiple cores write to the same address, the order of access observed from each core

must be identical.

The two major ways to guarantee coherence are snoop-based and directory-based. In a snoop-based

coherence scheme, all the caches watch for write operations broadcasted to a bus. If a cache finds a

write operation whose address is the same as one of its own lines, it invalidates the stored line because

it no longer keeps the latest data. In a directory-based scheme, an additional organization called a

directory dedicates itself to coherence. All the cores beg permission from the directory before newly

accessing the cache. The directory sends requests of invalidation or write-back to the corresponding

cores if needed. After that, it gives permission to the requesting core.

While snoop-based schemes are preferred by processors with a small number of cores, directory-

based schemes are favored by those with a large number of cores. Although snooping is good at

latency, frequent broadcasts limit the scalability. In consequence, they suit a small core count. On the

other hand, directories hardly harm the scalability but make the best-case latency longer, for all the

requests must be done through the directories.

As cooperative caches seek the advantages of both private and shared caches, Token Coherence [59]

Chapter 2 Background 22

tried to achieve the advantages of both snoop-based and directory-based schemes. There coherency

is controlled by a number of tokens managed by address. Permissions of read or write operations

are given when the core has at least one token or all of the tokens, respectively. It is applicable to

some interconnections where snooping is impossible or impractical. However, its properties are means

between snoop-based and directory-based with the same interconnections, that is, it is not so good at

either latency or scalability.

Most directory-based coherence schemes for multicore and many-core use directory caches, which

store the directories corresponding only to the cached region in the memory. Some recent methods for

directory caches try to reduce their hardware amount in anticipation of the future many-core era.

SPACE [60] regards it as a problem that each entry in conventional directory caches has a vector of

the same bits as the number of cores, which represents the cores sharing the corresponding line. Since

the number of typical sharing patterns is much smaller than that of possible patterns, it compresses the

vector to reduce the length of the entry.

WAYPOINT [61] reduces the performance loss when directory caches are filled. To balance hard-

ware cost with performance overhead, it enables information of directory caches to be stored to the

regular caches too. My approach also has interest in conflicts in the directory caches. The difference of

strategies between WAYPOINT and mine is described in Chapter 4 in detail.

Cuesta et al. [62] proposed an OS-based method that achieved both the reduced number of entries

of directory caches and the improved performance by limiting the region managed by the directory

caches. TLB (Translation Lookaside Buffer) keeps which pages have been shared. If the page that a

requested line belongs to has been not shared, the cache can directly send a request of the line to the

main memory. However, when such a page starts being shared, all the cached lines in the page must

be managed by the directory caches through gathering information about them from the whole cache,

or simply be discarded from the cache. After that, the lines start to be under the management of the

directory caches as usual. This method works well especially if the private memory region of cores

are divided in a unit larger than a page. Nevertheless, it does not suit the methods with replications or

migrations, which I have mentioned in Section 2.3.1.

2.4 Cooperative Caches and their Optimization
2.4.1 Overview of Cooperative Caches

NUCAs for multicore or many-core processors, which I have explained in Section 2.3.1, are regarded

as methods that enable shared caches to benefit from an advantage of low latency of private caches.

In contrast, cooperative caches add an advantage of shared caches or flexibility on capacity to private

caches.

Chapter 2 Background 23

Chang et al. proposed the Cooperative Caching [5], the first organization of cooperative caches. The

term Cooperative Caching itself is invented in a context of caching of file systems [63], rather than that

of processors. In this context, when a piece of cached information is about to be removed, the node

transfers it to another node up to fixed times if no nodes have its replica. This enables file systems to

store much unique data and to serve frequently used data quickly to the users. Chang et al. extend this

idea to caching of processors. Namely, when a cache line is about to be evicted from the chip, the cache

allows it being migrated (or spilled) to another cache if no other caches have its duplicate.

The Cooperative Caching has a single centralized organization called Coherence Engine, which

stores duplicate tags of all the cache line in the chip. However, concentration of access to the cen-

tralized unit limits the scalability.

The Distributed Cooperative Caching (DCC) [6] divides the unit into a number of Distributed Co-

herence Engines (DCEs) and distributes them over the chip. Each DCE is partial directory cache, that

is, it manages coherency of an interleaved part in the address space.

In the rest of this thesis, I often call a directory cache just ‘a directory’ to avoid the confusion with

the regular caches. In addition, I use a term ‘a line’ or ‘a cache line’ for a block in the regular caches; I

use ‘an entry’ or ‘a directory entry’ for an element in the directory caches (or the DCEs).

Although the CC and the DCC suppose directory-based coherence, the idea of spilling is also ap-

plicable to snooping, which is usually used for a small number of cores. Therefore, some methods to

optimize spilling, which I mention in the next section, depend on snooping.

2.4.2 Distributed Cooperative Caching

Figure 2.9 (a) shows the organization of the DCC, where L2 caches are the last level. Each core has a

PE (Processing Element), L1 caches, and an L2 cache. DCEs are distributed over the chip. Although

the number of cores and that of DCEs are not necessarily the same, both of them are 4 in Figure 2.9 for

ease of the figure. The cores, the DCEs, and a main memory are connected via some interconnects.

I explain typical behavior of the DCC with from (b) to (e) in Figure 2.9.

First of all, I assume a situation that both an empty line in a cache and an empty entry in a DCE

are found. Example (b) shows the behavior when a core misses in its own L2 and no other cores have

the requested line. The core sends a request to one of the DCEs specified by the line address. The

requested DCE searches for a valid entry corresponding to the line. However, it does not have such

an entry. Therefore, it writes the tag and some supplementary information to an empty entry while it

forwards the request to the main memory. The main memory supplies the required data to the core.

On the other hand, if the requested line hits in one of the remote core, that is, it has already been kept

by another core (other cores), the behavior is like Example (c). The requested DCE checks its directory

cache in the same way as Example (b). Since a valid entry is found this time, the request is forwarded

Chapter 2 Background 24

���������	

���������������

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

� � � �

�� �� �� ��

���� ���� ���� ����

�� �� �� ��

���������������

(a)

���������	

���������������

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

� � � �

�� �� �� ��

���� ���� ���� ����

�� �� �� ��

���������������

����

���� ����

(b)

���������	

���������������

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

� � � �

�� �� �� ��

���� ���� ���� ����

�� �� �� ��

���������������

����

�
�
�
�
�
��

����

(c)

���������	

���������������

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

� � � �

�� �� �� ��

���� ���� ���� ����

�� �� �� ��

���������������

����

�������� ���� ��������

(d)

���������	

���������������

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

� � � �

�� �� �� ��

���� ���� ���� ����

�� �� �� ��

���������������

����

���� ����

��������

(e)

Figure 2.9 The organization and working examples of the Distributed Cooperative Caching.

to one of the sharer rather than the main memory. It modifies the entry so that the requester is added to

the sharer. When the core receives the forwarded request, it transfers its own line to the requesting core

via cache-to-cache interconnection. In this case, the cooperative caches avoid the access to the main

memory, and thus reduce the latency.

Secondly, I assume that there is an empty directory entry but no empty cache lines are found. Exam-

ple (d) shows the behavior in such a situation. To store the requested line, one of the lines in the same

set as the requested line is chosen and evicted. The most important feature of the cooperative caches is

to allow the evicted line spilled to another core. When doing so, the core forwards the line to one of the

other cores of its choice and notifies the occurrence of spilling to the corresponding DCE . The DCE

properly modifies the sharer stored in the entry.

When the core receives a spilled line, if it has no empty lines in the set where the spilled line is going

to be kept, one of the lines is also evicted. To avoid ripple effects, the hereby evicted line is prohibited

from spilling: the line is just evicted from the chip.

Moreover, the DCC limits the number of continuous spilling of a single line to up to one, that is,

when a spilled line is evicted from a cache without being reused, it is removed from the chip. To see

whether lines are spilled from the other cores or not, each line has an additional bit. This bit is set when

Chapter 2 Background 25

the corresponding line is spilled and cleared when it is accessed by cores. If the bit is set on eviction,

the line will not be spilled. In addition to already spilled lines, lines that are currently shared are also

refused to be spilled, because the number of unique lines in the chip is not declined though they are

just discarded. In this thesis, I define lines that are not either spilled after their last access or shared at

present as movable lines.

Lastly, I explain a situation that no empty directory entries are found using Example (e). Like Ex-

ample (b), the requested DCE searches for the entry corresponding to the required line. Unfortunately,

it does not find either the corresponding entry or an empty entry for new directory. In this case, one of

the entries is selected for a replacement and is invalidated. It results in sending requests of invalidation

or write-back to all the sharers of the corresponding line. The new directory is stored in the invalidated

entry.

2.4.3 Optimization of Spilling

A typical case where cooperative caches benefit is that cores that require a large cache borrow some

cache lines from unused cache regions of other cores. Since most cache references are done in local,

the average latency is small. Moreover, they improve the performance of cores that needs additional

capacity without degrading the other cores.

On the other hand, bad situations for the cooperative caches also exist. One of them is that cores

that hardly have unused regions and thus are sensitive to pollution are running with harmful cores that

spill many lines. In this case, the improvement of the latter cores can be offset by the loss of the former

cores.

Therefore, it is desirable to spill lines preferentially to cores with unused cache regions, instead of

cores sensitive to pollution. Alternatively, when there are no cores with most of their caches unused,

it might be wise to prohibit all the cores from spilling. Hence, an important way to improve the

cooperative caches is to estimate the demand on capacity of each core precisely in order to spill lines

properly. I mention such methods in this section.

Adaptive Selective Replication [7] has an organization to decide whether the spilling is allowed or

not with a probability. The probability of each core is adaptively modified with some performance

counters. However, it does not consider the destination of spilled lines, and thus has a limited effect.

Elastic Cooperative Caching (ElasticCC) [9] extends a method of cache partitioning, which is called

ASP-NUCA [64], to the DCC. Figure 2.10 shows its organization and virtual hierarchy. Each last level

cache is virtually partitioned to private region and shared region: The private region only stores cache

lines accessed by its own core; the shared region accepts the spilled lines. In other words, each private

region is considered as virtual private L2 cache and the whole of shared regions are regarded as virtual

shared L3 cache. The virtual partitions are modified periodically. For load balancing, the destinations

Chapter 2 Background 26

�� �� �� ��

�� �� ��

���� ���� ���� ����

���������	

����	
����
����

����	
����
����

��

�	�

�����

��

�	�

�����

��

�	�

�����

��

�	�

�����

�� �� �� ��

�

�

�

�

�

�

�

�

��
�

�
�

�

� �
�

�

��������	��
������

�����������������

Figure 2.10 Organization and virtual cache hierarchy of the ElasticCC.

of spilled lines are selected in proportion to the size of the shared regions. Since this method rarely

requires broadcasts for spilling management, it has high scalability. Nevertheless, it has two kinds of

shortcomings. One is limited independency of performance. This is because it requires at least one

way per core for the shared region. The other is that it does not suit some replacement algorithms, for

it is based on way-partitioning.

Focusing on high scalability of the ElasticCC, we previously proposed HFC (Hit Frequency Coun-

ters) Partitioning [65] based on the ElasticCC as a spilling method appropriate to many-core. It tries to

improve the precision of repartitioning.

Adaptive Variable-Granularity Cooperative Caching (AVGCC) [10] focuses on a situation that the

demands on capacity vary with sets. While most methods manage spilling in core granularity, the

AVGCC does it in granularity of a set or a group of sets. This finer granularity improves efficiency in

some applications. However, the other applications do not benefit from this method. When it is used

with hash functions that I have mentioned in Section 2.1.3, the number of applications favoring the

AVGCC may even get small. Moreover, too fine granularity can harm the precision of the performance

estimation.

Dynamic Spill-Receive (DSR) [8] has particularly high efficiency among such spilling managements.

It categorizes the cores into spillers that can forward their evicted lines and receivers that accept the

spilled lines.

Figure 2.11 shows how the DSR classifies cores. It devotes around 32 sets per core (only two sets

Chapter 2 Background 27

����

��

�

����

����
�

�

�

�

�����	
 �����	� �����	�

����

�

����

�

���
�����

�����

�����

��������

���������	��

���	���	��	

���	���	����

Figure 2.11 Samplings of sets in the DSR.

in them are shown in the figure for ease) to sampling sets where the evicted lines are always permitted

to spill. In similar, it devotes the same number of other sets to another group of sampling sets where

the corresponding core is always a receiver. Afterwards, it counts the number of misses in each group

of the sampling sets in each core with per-core counters called PSELs. A miss in ‘always spiller’ sets

decrements the corresponding counter; a miss in ‘always receiver’ sets increments it. The majority of

the remaining sets follow the most significant bit (MSB) of the counter. The MSB of 0 means that

the number of misses on being receiver is less than that on being spiller, therefore they choose to be

receiver. In contrast, they choose to be spiller when the MSB is 1. This sampling-based prediction

shows high precision and makes the spilling management efficient in the most cases.

Nevertheless, the DSR have a shortcoming of lack of scalability. Since it must share information of

all the cache misses among cores, it requires a snooping-based coherency scheme or frequent broad-

casts. Besides, while they need about 64 sets per core for the sampling for precise estimation, the

caches will not have such a large number of sets if the number of cores increases. This results in the

decline in the number of sampling sets per core, that is, the prediction accuracy. Therefore, the lack of

scalability of DSR spoils the efficiency in many-core.

The conclusion of this section is that, as far as I know, there are no existing methods to manage

spilling that achieve both high efficiency and scalability. I propose the first method to meet both of

them in Chapter 4.

Chapter 2 Background 28

2.5 Summary
In this chapter, I explained many related researches in some categories. I first divided them into three

classifications: mainly for a single core, considering multicore, and scalability-oriented for many-core.

The first classification consists of dead block prediction, replacement algorithm, and improving the

efficiency of associativity. The second is composed of thread-aware replacement algorithm and cache

partitioning. The last includes improvement of NUCA and coherence managements.

Based on these backgrounds, I referred to the DCC, a scalable approach to add an advantage of shared

caches to private caches, as the target architecture of my proposal. It manages coherence separately with

directory caches called DCEs. A core that misses in its portion of the LLC sends a request to one of the

DCEs. If there is a hit in the DCE, one of the sharers of the line rather than the main memory supplies

the data.

To benefit from flexibility on capacity, the DCC allows some evicted lines being spilled to other

cores. However, some combinations of application harm the efficiency of spilling. To avoid this requires

a proper method to manage the spilling. There are a number of such previous methods. Unfortunately, I

found that there were no methods that achieved both efficiency and scalability. This is what I am going

to solve.

29

Chapter 3

Proposal of Useful Simulation
Infrastructure

In this chapter, I propose a useful simulation infrastructure to evaluate methods for multicore and many-

core processors with shared memory. To confirm both efficiency and scalability, I evaluate them in two

different environments. One models modern multicore processors. The other is under assumption of

future many-core processors. I use respective in-house simulators of them that center a MIPS simulator

named SimMips[11], which we have developed.

In the multicore environment, while I use a trace-based simulator written in Ruby to get the eval-

uation results for the simplicity of description, SimMips is utilized as a useful and powerful tool to

obtain traces. Though outputting the traces requires some modification to the simulator, the design of

SimMips makes the modification easy.

For the many-core environment, I am developing an execution-based, cycle-accurate simulator

named SimMccc (Simulator of Many-Core Cooperative Caching), where a part of SimMips embedded

as a component. It has practical simulation speed even though it simulates caches, directories, and a

network in detail.

Later in this chapter, I mention the evaluation of the existing methods to optimize spilling in coopera-

tive caches to show the usability of the infrastructure. As I have explained in the previous chapter, none

of the existing methods have both efficiency and scalability. I quantitatively confirm the fact through

the evaluation with the proposed infrastructure.

In Section 3.1, I define the organization of the environments. I mention the simulation infrastructures

based on SimMips in Section 3.2 and the comparison with other infrastructures in Section 3.3. I then

explain the details of the multicore and many-core environments in Section 3.4 and Section 3.5, respec-

tively. Both consist of the parameters, the selection of benchmark applications, and the construction of

workloads. In Section 3.6, I show the evaluation results of the existing cache architectures, including

cooperative caches with some spilling optimizations.

Chapter 3 Proposal of Useful Simulation Infrastructure 30

���������	

��	�

�

��	��

��������

�����

��������

��������

����������������

���� �	

�	������	

��!�

��	�

�

��	�

"

����	����������

Figure 3.1 The architectural model for the multicore environment.

3.1 Target Architectures
3.1.1 Modeling Modern Multicore

Figure 3.1 shows the architectural model of the target multicore processor. The Processing Element

(PE) supports high-performance out-of-order (OoO) execution. It has a memory hierarchy that consists

of L1 instruction caches, L1 data caches, L2 private caches and L3 cooperative caches, and main

memory. In the L3, some evicted lines are spilled to other cores. This model does not specify coherency

scheme or interconnection.

The L3 adapts the Sampling Dead Block Prediction (SDBP) [2] as a dead block prediction method

and the Re-Reference Interval Prediction (RRIP) [3] as a replacement algorithm. They urge hardly

reused lines to be removed from the chip. According to the results of preliminary evaluation for the

selection of architectures, although applying either of them improves efficiency to some extent, using

them together has further effect. Therefore, the target architecture adapts both of them.

On adapting the SDBP, I prefer that each core has a sampler and a predictor, which is independent

from the other cores, than all the cores share the units like the original proposal [2]. While the target of

the original is a shared cache, cooperative caches are more close to private caches than shared caches.

Hence, it is natural to have private units as well as caches.

Cache lines predicted dead by the SDBP on insertion do not bypass the L3, but are given the lowest

priority in the same way as the SHiP [24]. They are also excluded from targets of spilling. The

prediction tables of the SDBP are composed of 3-bit saturating counters, which are also inspired by the

SHiP, rather than 2-bit skewed counters [2].

Chapter 3 Proposal of Useful Simulation Infrastructure 31

� �

� �

� �

� �

� �

� �

� �

� �

� � � �

�

�

�

�

�

� � � � �

�

���

� � � � �

� � � � �

� � � � �

� � � � �

�

�

�

�

	

�

�

���

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

Figure 3.2 The architectural model for the many-core environment.

��������	
�	�

�����

�������

��������

��������	����

���������	

��������	
�	�

�����

�������

��������

��������	����

���������	

���

��������������
�

������

�������������

����	�������
�

�����

 ���

 ���	!

��������	����

���������	

 ���	!���
�

� ���

���������	

�������
�

Figure 3.3 Four types of node on the target many-core.

3.1.2 Modeling Future Many-core

Figure 3.2 shows the model of the target architecture in the many-core environment. It consists of some

kinds of nodes. The most important feature of this environment is a network-on-chip (NoC) [66] as an

interconnection among nodes. Each node has an on-chip router (R in the figure), which is connected

to up to four adjacent routers. They enable communication between any pair of nodes by transferring

packets sent from elements of nodes. In the target architecture, 45 nodes of 5 columns and 9 rows

constitute a single chip.

The target architecture classifies nodes into four types shown in Figure 3.3. A blue node is a com-

putation node (Comp). It includes an in-order Processing Element (PE), an L1 instruction cache, an

L1 data cache, an L2 cooperative cache, and an NoC interface for sending/receiving packets to/from

Chapter 3 Proposal of Useful Simulation Infrastructure 32

�

���������	�

�
��
�
�����

���
���

���

���

������
��

�����

�������
���

�����

����������	

�����

�
�������

�
���
��

��������������������	
��

 ������

�!"

����������

Figure 3.4 Flow of the evaluation in the multicore environment.

the NoC. A green node is a computation and coherence node (C&C) that has a DCE or a directory for

maintaining coherence in addition to elements of the computation node. A red node is a memory node

(Mem), including a (controller of) main memory and an NoC interface. A white path node only has an

NoC router. It is used for relaying packets generated in the other types of nodes.

Tiling 24 computation nodes, 8 C&C nodes, 1 memory node, and 12 path nodes as shown in Figure

3.2 constitutes a single many-core processor with 32 (24 + 8) cores and 8 directories. The ratio between

the numbers of computation nodes and C&C nodes is selected in consideration of load balancing.

In this environment, I do not apply the SDBP and the RRIP. Therefore, the caches treat all the lines

as live and decide lines to be replaced under the LRU.

3.2 Simulation Infrastructure
3.2.1 SimMips: MIPS System Simulator

The key element of the simulation infrastructure is a MIPS system simulator called SimMips [11],

which we have developed and released as free software. It is written in plain c++ code and its structure

is easily modified and extended. Moreover, it has a practical simulation speed of about 10 million

instructions per second. These features make prototyping of a new architecture easy and thus increase

the availability in research.

SimMips offers two modes, OS-Mode and App-Mode. The App-Mode stands for the application

mode where statically linked user program runs. The OS-Mode read an OS kernel as an executable file.

I use the App-Mode here, that is, system calls are emulated by the simulator and the mapping between

logical and physical addresses is fixed.

Figure 3.4 depicts the flow of the evaluation in the multicore environment using SimMips. Blue

Chapter 3 Proposal of Useful Simulation Infrastructure 33

box represents a tool that I developed or modified for my infrastructure. Since detailed simulation is

much slower than real machines, it is impractical to simulate the whole benchmark. Instead, we usually

simulate a part of the execution that represents the benchmark. We can use SimPoint [67] to detect the

most typical part. I utilize it to decide where to start detailed simulation.

I give SimMips read an ELF executable file and obtain an execution trace that includes the location

and number of branch instructions executed for each period of cycles. When we give this trace to

SimPoint, it clusters periods similar to each other and outputs in which period the most typical part of

the benchmark is executed.

The main evaluation to get the evaluation result is done by a trace-based cache simulator that reads

traces of cache misses. SimMips is used again to obtain them. This time it simulates the benchmark

as usual before the execution reaches the starting point obtained by SimPoint. After that, it switches to

the detailed simulation and begin to output the target address, the location, etc. of each instruction that

missed the L1 cache.

I extend SimMips for obtaining traces I have explained above. The extensions include the implemen-

tation of emulation of some system calls, adding L1 caches and write buffer, and the logging functions

of branch instructions and cache misses.

SimMips is a functional-level simulator: adopting a model that a processor executes a single instruc-

tion in a cycle. In the design of SimMips, execution of an instruction is divided into eight methods

with consideration of typical pipeline stages of processors (instruction fetch, decode, etc.) and done by

calling them in order. This design makes it easy to make a prospect of additional features.

Take as an example the addition of L1 caches and write buffer. Figure 3.5 represents a part of the

description in the modified version of SimMips. I show the Mips::drive method that corresponds to

the execution of an instruction by a MIPS processor core. In the original SimMips, as I have mentioned,

calling the corresponding methods to pipeline stages in order, such as fetch() and decode(), forms

the execution of a single instruction.

After modification, it checks if the core can continue executing the instruction with methods such as

fetch_ok() and decode_ok(). In these methods, the core sees if the fetched instruction is kept in

the instruction cache, the instruction requires memory access, and so on. If the core cannot continue

running, it memorizes from which stage it resumes and then goes into a stall. From the next cycle,

as described in the block from the 4th through the 13th line, it checks whether it comes to be able to

resume, and if so, it resume the execution from the memorized stage.

After adding L1 caches and write buffer, the main reasons of the stall is as follows:

• the core misses the instruction cache and fails to supply the instruction to the decode stage (line

4 through 6, 18 and 19),

Chapter 3 Proposal of Useful Simulation Infrastructure 34

1 void Mips::drive()
2 {
3 wb.drive();
4 if (state == CPU_DECODE)
5 if (! cache->read(L1Cache::IC, ca))
6 return;
7 if (state == CPU_EXECUTE && wb.running())
8 return;
9 if (state == CPU_MEMSEND && !wb.writable(inst->paddr))
10 return;
11 if (state == CPU_MEMRECV)
12 if (! cache->read(L1Cache::DC, ca))
13 return;
14
15 switch (state) { // NOTE: This is fall through
16 case CPU_FETCH:
17 fetch();
18 if (!decode_ok())
19 break;
20 case CPU_DECODE:
21 decode();
22 regfetch();
23 if (!execute_ok())
24 break;
25 case CPU_EXECUTE:
26 execute();
27 ...

Figure 3.5 A part of the Mips::drive method that executes an instruction if possible.

• it fails to write at the memory store instructions due to the full write buffer (line 9 and 10), and

• it misses the data cache at the memory load instructions (line 11 through 13).

The corresponding methods to these stages are decode(), memsend(), and memreceive(), respec-

tively. Therefore, I put the additional methods right before the corresponding methods.

Incidentally, another check is added before the execute stage (execute()) in order to guarantee that

the write buffer stores all the data to the cache before emulating a system call.

Such ease of prospects with the design and description of SimMips is important in shortening the

time required for expansion and making us concentrate on the essential part of the research.

3.2.2 SimMccc: Simulator of Many-core Cooperative Caching

SimMc [68] is a simulator for many-core processors where SimMips is embedded as a computation

core. It simulates M-Core Architecture [68] or a many-core architecture with distributed memory:

Chapter 3 Proposal of Useful Simulation Infrastructure 35

�

�������

���		

���
����

��

���������

�

����������� ������

�

���
�������������

��	���	�����
	

Figure 3.6 Flow of the evaluation in the many-core environment.

each node has an independent node memory and exchanges data with other node explicitly using direct

memory access (DMA).

I am developing SimMccc that simulates many-core processors with shared memory by extending

SimMc. In the many-core environment, the time for inter-node communication via an NoC heavily

contributes the latencies of remote cache hits or cache misses. Thanks to SimMc’s detailed simulation

of an NoC, SimMccc precisely measures the latencies. This is important for the validity of the evalu-

ation. The detailed NoC simulation also enables to do interesting experiments like that I will show in

Section 5.4.2.

Figure 3.6 shows the flow of the evaluation with SimMccc. Applications for the target many-core

processors are written in C/C++. Their ELF executables are obtained by a cross compiler with a library

called Mc3Lib that provides atomic memory operations, synchronization, timers, and so on. In addition

to one or more ELF executable files, SimMccc requires a chip setting file that specifies the configuration

of simulated many-core, such as the placement of nodes and applications, the sizes of caches, etc. The

evaluation results are obtained through the simulation.

The embedded component of SimMips (shown as the tinted box in Figure 3.6) is responsible for

the execution of MIPS instructions. It executes instructions only when the required data are accessible

in the local primary caches. When it misses, the memory hierarchy presented by SimMccc, which is

composed of the caches, the directories, and the main memory, eventually supplies the data.

Communication among nodes in the SimMccc is formed by multiple layers as shown in Figure 3.7.

Units in different nodes on the same layer communicate via paths below that layer. Interfaces between

layers are appropriately designed so that the units can communicate without regard to the detail of the

lower layers. This is important in point of ease of description and improvement, because this makes it

easy to reuse the codes and isolate the problem.

I explain each layer in order. The lowest layer is a network-on-chip layer (NoC Layer). NoC routers

and NoC interface (called INCC or Inter-Node Communication Controller in SimMc and SimMccc)

communicate each other via this layer. Their message is called a packet that consists of one or more

Chapter 3 Proposal of Useful Simulation Infrastructure 36

���������	

���

��	��
����
�

������

��

���������	

���

��	��
����
�

������

��

���������	

���������

�������������

�����������

���

���������

�������������

�����������

������ ���
��������	

��������	

������������� ����	

���������	��������	

Figure 3.7 Multiple layers of communication in SimMccc.

flits (flow control digits). NoC routers see the destination of each packet and select the proper route.

The second layer is a direct memory access layer (DMA Layer). NoC interfaces accept a DMA

command as an external input. It includes a destination node, source and destination addresses, and so

on. NoC interfaces generate one or more packets from the information in the command and, if needed,

the data being read from the source address. Sending these packets to the NoC layer enables DMA

communication.

Original SimMc only offers these two layers: data sharing among the cores is realized by their direct

issuance of DMA commands. SimMccc offers additional two layers above them.

The first additional layer or the third layer is a cache request layer. A cache request consists of a

request type, a destination unit, a target address, and (on some types) data or additional information.

Caches, directories, and a main memory controller send cache requests to each other in order to realize

cache sharing. For example, an L1 cache miss on read generates a read cache request for the L2 cache.

As another example, when a directory receives a write request to a shared line, it sends requests of

cache-to-cache transfer or invalidation to the caches sharing the line. If a unit on this layer sends a

cache request to another unit in other node, the request needs to be passed via the lower layers. In

SimMccc, this is enabled by an interface unit between cache request layer and DMA layer, called

Core/INCC interface (Core/INCC I/F). It interconverts between a cache request and a DMA command.

The other additional layer or the highest layer is a cache sharing layer. Cores use this layer rather

than DMA layer in SimMccc. L1 caches offer memory access as an interface to cores. If an L1 cache

misses, related units eventually provide the appropriate line in the L1 and then it is accessible from the

core.

An interface for atomic memory operations are also prepared for this layer. Most RISC processors

realize an atomic operation with a pair of special memory instructions called load linked and store

conditional [1]. In my implementation, the read access of load-linked returns the same result as normal

read access; however, it requires not permission for read but permission for write. the write access of

store-conditional checks if the cache still keeps the permission that load-linked access requests. The

Chapter 3 Proposal of Useful Simulation Infrastructure 37

access succeeds if the permission remains; if the permission has been lost, the cache notifies failure of

the access to the core immediately without propagating the cache miss.

Cores realize atomic operations by executing them consecutively. Synchronization such as lock and

barrier is provided by library functions of Mc3Lib. Application programmers can describe synchro-

nization easily by just calling these functions.

I mention cache sharing in SimMccc more in detail. The key to correct execution in processors with

shared memory is an appropriate design of a coherence protocol. If the protocol has a fault, the caches

may give wrong results to the cores or, even worse, they may even cause deadlock. Therefore, the

protocol needs to be considered and tested well.

Since caches and directories receive a cache request as an input as I have mentioned, the problem of

coherence protocols is regarded as the design of tables that give the operations and the next state of the

line/entry according to the request type and the current state of the line/entry. Examples of tables with

the simple MSI protocol are shown in [1]. However, the protocol that I consider here is much more

complex for the following reasons:

• L1 and L2 caches are treated as separate units. For example, when an L2 invalidates a line that

exists in the L1, the L2 needs to wait for invalidation or write-back of the L1.

• Instead of the MSI protocol, the MOESI protocol is used. Thanks to additional states of the

MOESI, the caches distinguish movable lines in the DCC.

• Some evicted lines from one cache are spilled to another cache. An important feature of the

DCC complicates the protocol.

• In addition to the caches, the directories invalidate cache lines due to conflicts of directory

entries. It is also a feature of the DCC. In particular, when spilling from a cache and invalidation

from a directory occur almost at the same time, the protocol requires additional transient states.

As a result, the protocol gets much more complex.

To mitigate the complexity of the protocol, I make the following assumptions:

• The protocol forbids instruction and data caches in the same core to keep a line at the same time.

This requires only a few modifications on the linker script so that a line cannot contain both

instruction and data regions.

• Point-to-point order of requests is preserved: cache requests from unit A to unit B must arrive in

order. The directory-based protocol shown in [1] is also having this assumption. It constrains the

routing from a sender to a receiver. This constraint is general in NoCs of many-core processors.

• Replaced lines are kept in small buffer until they are completely invalidated in the unit. This en-

ables invalidation (or write-back) and insertion to proceed simultaneously. As a result, situations

Chapter 3 Proposal of Useful Simulation Infrastructure 38

Table 3.1 Transition of L1 caches.

Request

State

M Readable Readable Writable

S Readable Readable WRITE to L2 IM

I READ to L2 IS WRITE to L2 ISM WRITE to L2 IM

IM

ISM

IS

IMI

ISI

Request

State

M PUTM to L2 I
PUTM to L2

ACK to L2
I

S INV_L1 to L2 I ACK to L2 I

I ACK to L2

IM Fill and Write M ACK to L2 IMI

ISM Fill and Read M ACK to L2 ISI

IS Fill and Read S ACK to L2 ISI

IMI
Fill and Write

PUTM to L2
I ACK to L2

ISI Fill and Read I ACK to L2

MCR_INVALID

Read Read(Linked) Write

Replace Data Invalidate

MCR_READ MCR_READP MCR_WRITE

MCR_DATA

of suspended transaction are reduced and thus the protocol is simplified.

Despite such simplifications, the actual protocol has considerable complexity. Table 3.1, Table 3.9,

and Table 3.10 show the transition of L1 caches, L2 caches, and directories, respectively. Note that

Table 3.9 is divided into multiple pages. For the convenience of the layout, Table 3.9 and Table 3.10

are at the end of the chapter.

Each column represents a type of cache request. Each row stands for the state of the corresponding

line/entry. Each cell is divided into right and left.

The left of a cell represents the operations that the unit should perform. A Cell with a light gray

background means that the cache request is suspended until the transient state is dissolved by other

requests. A Cell with a dark gray background stands for an unreachable situation under normal cir-

cumstances; it is reported as an error. Red strings in a column or a cell in Table 3.9 means the request

should be sent from the L1 caches. Blue strings stands for requests from the other units. For simplicity

of notation, sending request A to unit B is expressed as “A to B” and the requester core is abbreviated to

Reqer. In addition, a table to memorize the cores that have sent requests is described as RT (Requester

Table). This table is used when the unit must respond to the requests later (e.g. data is not ready).

The right of a cell represents the next state of the line/entry. If more than one state is written, the

next state depends on the outcome of the conditions written in the left of a cell.

For instance, when a cache line in an L2 cache is under the M (Modified) state, and another core

sends a GetS or a read request to the line to the cache through a directory, the corresponding cell has

Chapter 3 Proposal of Useful Simulation Infrastructure 39

Table 3.2 Source code organization of SimMccc Version 0.9.8.

Name # of lines feature
(top directory) 22 main function
env 1,699 simulation environment
core 6,051 processor core and system call emulation
cache 2,473 cache controller
dir 947 DCE (directory cache)
memory 1,303 memory controller and Core-INCC I/F
network 1,434 NoC router and INCC
partition 243 cache repartitioning of ElasticCC
spill 790 spilling management
common 842 utilities, constants, etc.
(Total) 15,804

the following expression:

if L1_valid:
INV to L1 MO

Add Reqer to RT /

otherwise: O
DATA to Reqer

In this case, the request is handled differently depending on whether the data remains in the L1

caches. If so, since one of the L1 caches only may hold the latest data, the L2 cannot send the data

immediately. Instead, the L2 sends an invalidation (INV) request to the L1s *1 in order to have them

write back the latest data if needed. In addition, the L2 records the sender to the RT in the line and sets

the state of the line to MO (Modified to Owned). The reply is sent after receiving Acks (acknowledge-

ments) from L1 caches (See the transition of the LastAck request to the MO state).

If the data do not remain in L1 caches, the L2 cache can reply to the requester immediately. The

state of the line becomes O (Owned).

I mention the source code and the execution speed of SimMccc. Table 3.2 summarizes the organiza-

tion of source code of the latest SimMccc. The leftmost column represents the name of subdirectories.

The source code is divided into multiple subdirectories by purpose.

The total number of lines of the source code is more than 15,000. However, most files in core

directory are taken from the modified version of SimMips and all the descriptions in network directory

come from SimMc. When excluding them and common descriptions of processor simulators such as a

program loader, newly implemented part is about 7,500 lines.

Since SimMips itself executes 10M instructions per second. Assuming no overhead, SimMccc would

*1 Since a request of invalidation always requires an Ack from both L1 caches, incrementing AckCount or the number of
Acks to be sent by two is included in the process of sending INV to the L1s. Such implicit operations are omitted for
simplicity of the tables.

Chapter 3 Proposal of Useful Simulation Infrastructure 40

simulate about 300k cycles of a 32-core processor per second. However, the actual speed is limited for

the simulation of caches, directories, and an NoC. In particular, detailed NoC simulation takes much

time. The simulation speed depends on the network usage i.e. the frequency of misses in the LLCs.

When I simulated some 32-core workloads on a computer where SimMips ran at 10M instructions

per second, the actual simulation speed varied from 5k to 15k cycles per second. The result means that

its slowdown is 20-60 times more than that proportional to the number of cores. Nevertheless, it also

means SimMccc can complete 100M cycles of simulation within 6 hours. I think that if the time an

execution takes is less than 8 hours, that is, if a simulation that was started late at night is finished by the

next morning, the slowness of simulators is acceptable. Therefore, this simulation speed is acceptable.

3.3 Comparison with other infrastructures
As I have mentioned above, my infrastructure that centers SimMips offers a trace-based simulator for

the multicore environment and an execution-based simulator (SimMccc) for the many-core environ-

ment.

Which type of simulation should we use depends on target architectures. Trace-based simulation

is simple and fast because the computation unrelated to what to simulate is reduced. However, it is

difficult to deal with multithreaded applications, and what is worse, traces may require huge amount

of disk space. On the other hand, since execution-based simulation generates necessary information

on the fly, it can simulate multithreaded applications precisely. Nevertheless, it sometimes gets too

complex and slow to use the simulator as a practical infrastructure.

My infrastructure offers both types of simulation. Moreover, the simulators are carefully imple-

mented so that the disadvantages of simulation may not lose their practicalities.

Of course, there are a number of infrastructures to evaluate memory systems for multicore and many-

core processors. Though most of them are in-house and closed (CMP$im [69] for example), several

infrastructures are available for research.

In particular, GEMS [70] is sometimes utilized by multicore and many-core cache researchers. The

most important element of GEMS is a memory system simulator called Ruby, which is driven by an

execution-based functional simulator. As a driver, a full-system functional simulator Simics [71] had

been used for long; however, recently the M5 simulator [72], an open-source full-system simulator, has

merged with GEMS. The new simulator that combined the M5 and GEMS is called gem5 [73].

Both SimMccc and gem5 have features of detailed memory system simulation. Though gem5 has

a lot of functions that SimMccc does not have, only SimMccc supports cooperative caches. As I have

mentioned in the previous section, the design of a coherence protocol for cooperative caches has some

difficulties and takes much time. Therefore, my ready-to-use cooperative cache simulation will be

useful for research on caches of future multicore and many-core processors.

Chapter 3 Proposal of Useful Simulation Infrastructure 41

Table 3.3 Architectural parameters of the multicore environment.

Element Parameter Value
Processor # of Cores 4

Model 4-issue OoO, 128-entry ROB
ISA MIPS32

Memory Line Size 64B
L1 I/D 32KB, 4-way, 1 cycle
L2 private 256KB, 8-way, LRU, 10 cycles
L3 (if private) 2MB, 16-way, 3-bit SRRIP,

30 cycles (local), 50 cycles (remote)
L3 (if shared) 8MB, 16-way, 40 cycles
Main Memory 250 cycles

DBP Predictor SDBP, 8K 3-bit counters
Sampler Samples 32 out of 4096 sets,

12-way, LRU
ASCEND Additional Tags 65536-entry, 8-way, FIFO

SimMc [68], our existing simulator that SimMccc is based on is also one of open infrastructures.

There are several components common to SimMc and SimMccc such as processor cores (i.e. SimMips)

and on-chip routers. The main difference between them is the memory model. While SimMc expects

distributed memory, SimMccc relies on shared memory where all the cores share a single address space

and cores implicitly exchange data by accessing the same address. Choosing either distributed or shared

memory is one of important design points for many-core processors; however, I do not discuss it here.

3.4 Experimental methodology for Multicore Environment
I mention the detail of the experiment with the multicore environment whose architectural model was

defined in Section 3.1.1. I use the trace-based simulator written in Ruby. It is given traces where the

type and the number of executed instructions of all the L1 misses, and the memory address and the

instruction PC of all the L2 misses is recorded. The trace files are obtained with an extended version of

SimMips.

Table 3.3 shows the architectural parameter. All the latencies shown in the table are expressed as

round-trip time: instructions that miss the L1 caches are available after the passage of one of the time

shown in the table. The parameters of caches are determined by reference to the simulator used in the

Cache Replacement Championship [74] that is held in 2010. The parameters of dead block predictors

(DBP) are set in consideration of the existence of spilling. Although the number of sets in the sampler

before sampling is different from that of the L3 cache (2048 for private or 8192 for shared), it is not

problematic with the SDBP.

It simulates 4-core multiprogrammed workloads using traces of 1G instructions of 12 SPEC

Chapter 3 Proposal of Useful Simulation Infrastructure 42

Table 3.4 The list of applications and their classes.

Class Application Skip BaseIPC BaseMPKI
445.gobmk 4.5B 3.112 0.067

A 458.sjeng 2.5B 3.358 0.291
433.milc 6.0B 0.818 15.024

435.gromacs 2.5B 2.994 0.593
B 447.dealII 2.0B 3.817 0.088

482.sphinx3 6.0B 1.146 6.136
401.bzip2 2.0B 3.004 0.714

C 450.soplex 7.0B 2.011 5.052
464.h264ref 25.0B 3.410 0.358

436.cactusADM 2.0B 2.953 2.096
D 471.omnetpp 32.0B 1.387 7.340

473.astar 13.5B 1.702 3.084

CPU2006 benchmarks shown in Table 3.4. The benchmarks are selected in consideration of the

characteristics of memory access and classified into 4 groups. The selection and classification of the

benchmarks are explained later. The column skip means how many instructions from the beginning are

skipped. The column BaseIPC and BaseMPKI represent the baseline IPC and MPKI (Miss per Kilo

Instruction) obtained with a 2MB private cache.

I determine the number of skipped instructions with SimPoint. I obtain the execution traces of 50G

instructions from the beginning and give them to SimPoint. As the most typical part of execution of

each application is identified, I decide the number of skipped instructions in order that the detailed

simulation includes it.

The simulation continues until all the cores complete executing 500M instructions and the IPC (in-

structions per cycle) of each core in the first 500M instructions is recorded. If a core runs out the whole

trace, then it reads from the beginning of the trace again. I calculate the performance and the QoS by

comparing the obtained IPCs with the baseline IPCs. I use the average and the minimum of relative

IPCs as standards of performance and QoS, respectively.

I evaluate the following 6 settings in this chapter:

Private has private caches that are used as the baseline. It is the same as the DCC without spilling.

Shared has shared cache. Its latency is a little longer than that of local hit in the private caches.

DCC means the Distributed Cooperative Caching [6]. Since there is no spilling management, it spills

all the evicted lines that are movable. Remote hits have longer latency than local hits.

ElasticCC stands for the Elastic Cooperative Caching [9]. It used not SRRIP but the LRU as a

replacement algorithm, because way-partitioning and its repartitioning method strongly depend

on the LRU.

Chapter 3 Proposal of Useful Simulation Infrastructure 43

Table 3.5 The classification of applications for the multicore workload.

Spilling Necessity
- +

Pollution - A D
Sensitivity + B C

���������	
��
����
���

�
�
��
��
�
�
�	
�

��

�
�
�
�

�

�����������
��
���

���������	
��
����
���

�
�
��
��
�
�
�	
�

��

�
�
�
�

�

�����������
��
���

���������	
��
����
���

�
�
��
��
�
�
�	
�

��

�
�
�
�

�

�����������
��
���

���������	
��
����
���

�
�
��
��
�
�
�	
�

��

�
�
�
�

�

�����������
��
���

��
����

��
��� ��
����

��
����

Figure 3.8 Typical relationship of each class between available cache size and performance.

DSR stands for the Dynamic Spill-Receive [8]. Although it is not so scalable, it performs well in the

fewer number of cores.

DSR-QoS represents QoS-aware DSR. A variation of the DSR that penalize slowing cores.

For the selection of benchmarks, I define two axes that represent the characteristics of capacity. One

axis is spilling necessity, the degree of improvement of a core with spilling. The other axis is pollution

sensitivity, the degree of degradation of a core with receiving.

The benchmarks are divided by these two axes into 4 classes as shown in Table 3.5. I select the

applications from all the SPEC CPU2006 benchmarks so that each class can contain three applications.

To measure the indexes of the axes, I execute an application alone in almost the same environment

as the multicore environment. When I survey indexes of spilling necessity, the size of the local cache

is fixed to 2MB and the size of the available remote cache is varied from 0B to 2MB. When I survey

indexes of pollution sensitivity, the local cache accepts dummy lines in a fixed rate in order to emulate

pollution and the remote cache is unavailable (i.e. spilling is prohibited). Except no pollution, the rate

varies from 0.1 lines to 10 lines per 1,000 instructions, increasing exponentially. I measure the relative

IPCs of applications with different sizes of the remote caches or different rates of pollution.

Chapter 3 Proposal of Useful Simulation Infrastructure 44

��

��

���

���

���

���

�� ���� ���� ��	� ���
� ��	�� ����� ����� ��
	�

�
�
��
��
�
�
�	
�

�
�

�
�
��
��

�

�
�
�

�
�
�

����������	�
����������
��

������

�	�����

������

���������

�������

	��������

��� ���

��������

�
���
��!

�����"#�$%&

������"��

����"��

Figure 3.9 The barometer of spill necessity of the applications.

���

��

��

���

���

���

���

���

���

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
�	
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

�
��
�

	
��
�

�
��
�

�
��
�

�
��
�

�
�
��
�

�
�
��
��
�
�
�	
�

��

�
�
�
�
��
�
�
�

����������	
�������������������

���	
���

���	����

���	���

���	
�����

���	������

���	�������

���	�����

���	������

� �	�� ���!

�� 	���"#�$%&

���	���"��

���	��"��

Figure 3.10 The barometer of pollution sensitivity of the applications.

Figure 3.9 and Figure 3.10 show the results of measurement for the indexes of spill necessity and

pollution sensitivity, respectively. The x-axis is the size of the remote caches (Figure 3.9) or the pol-

lution rate (Figure 3.10). The y-axis is the improvement or the degradation of the performance. Lines

drawn in upper part of the graph mean high indexes of the corresponding axis. Each line represents the

separated application and is colored according to its class. I assign blue, red, green, and purple to Class

A, B, C and D, respectively. Note that green and purple lines (Class C and D) are drawn in upper part

of Figure 3.9 and red and green lines (Class B and C) are shown in upper of Figure 3.10.

4-core multiprogrammed workloads are formed by combining 4 different applications from them.

When we choose 4 applications from 12, the number of combination is as many as
(

12
4

)
= 495. It is

unrealistic to simulate them all. Instead, I simulate 48 out of 495 workloads selected in the following

way and calculate the average performance and QoS with weighted arithmetic mean.

Chapter 3 Proposal of Useful Simulation Infrastructure 45

Table 3.6 The combinational patterns of classes for workload selection.

⃝ ⃝ ⃝ ⃝
⃝ ⃝ ⃝ △
⃝ △ △ □

Pattern △ △ □ × Total
Combination of Classes 12 6 12 1 31

Selected Workloads 12 6 24 6 48
Total Workloads 36 54 324 81 495
Weight of Pattern 3 9 13.5 13.5

First, suppose we choose 4 applications from 4 classes, allowing duplications of up to three. The

number of multicombination is
(

4+4−1
4

)
− 4 = 35 − 4 = 31. Note that we exclude combinations that are

composed of a single class, because each class has only three benchmarks. Each combination belongs

to one of the patterns shown in Table 3.6. The number of workloads obtained from a combination of

classes in each pattern is 3, 9, 27, or 81. For example, a combination of Class A, A, A, and B belongs

to the pattern ⃝⃝⃝△. The corresponding workloads to this combination are formed by all the three

applications in class A and one of the applications in class B. Hence, the number of the corresponding

workloads is 3.

For each combination of classes, I choose 1, 2, or 6 (according to the pattern) of the corresponding

workloads randomly; but the number of times that each application is selected must be the same. As

a result, I obtain 48 out of 495 workloads. The weights for weighted mean are obtained by dividing

the number of the corresponding workloads to the combination of classes by the number of selected

workloads from them. For example, when the A-A-A-B workload I have shown above is the only

workload chosen from the corresponding workloads, the weight of this workload is 3/1 = 3.

3.5 Experimental methodology for Many-core Environment
I next refer to the detail of the experiment with the many-core environment defined in Section 3.1.2. I

use SimMccc for the evaluation.

Table 3.7 is the list of major architectural parameter. To determine the set in caches and directories,

tabulation hash functions [75] are used. They are realized with an around-10-input XOR gate per bit.

They are used to avoid extremely unfair usage of sets that may occur when we run replicas of the same

application.

Depending on the type of the destination unit, different virtual channels of the NoC are used. This

usage of virtual channels improves the efficiency of the network while keeping the requirement of the

point-to-point ordering.

Transferring a flit to one of the adjacent routers usually takes 3 cycles; however, it may take more

Chapter 3 Proposal of Useful Simulation Infrastructure 46

Table 3.7 Evaluation parameters for the many-core environment.

Element Parameter Value
Processor # of Cores 32

Model In-order, IPC = 1 if L1 hits
ISA MIPS32

Memory Line Size 64B
L1 I/D 8KB, 2-way, 1 cycle
L2 private 256KB, 8-way, LRU

10 cycles, inclusive
DCE 8 DCEs, 24576 entries/DCE, 12-way
Main Memory 250 cycles

Network Topology 2D mesh
Router 5-in 5-out, 2 VCs,

X-Y dimentional order routing
Latency 3 cycles/hop
Bandwidth 16B/cycle

when the network is crowded. An inter-node request is not accepted until all of the flits in the cor-

responding packet are arrived at the destination node. When the memory node is asked for data, the

requested data become ready for being sent to the network 250 cycles after the acceptance of the re-

quest.

In the evaluation, I run four 8-thread applications with 32 cores. The simulation continues until all

the cores complete predefined tasks and the number of cycles of each application elapsed for the task.

I exclude the time for preparing data in the memory and warming-up of placing a part of them to the

caches. After all the cores have finished the warming-up, they start executing their task together. By

comparing the reciprocal of the number of cycles (i.e. throughput) obtained *2 with the baseline, I

calculate the performance and QoS.

I evaluate 4 settings here: Private, DCC, ElasticCC, and DSR. Private, DCC, and ElasticCC are

similar to those in the multicore environment. The DSR is difficult to be realized effectively in many-

core processors due to the requirement of sharing the information of all the LLC misses among the

cores. In the evaluation, I assume the existence of dedicated communication channel where the cores

can broadcast the information of misses without latency. Therefore, it shows the theoretical maximum

performance with the DSR.

Table 3.8 shows the five benchmarks used in this evaluation. They all are 8-thread parallel appli-

cations. The characteristics of caches in the benchmarks are shown in Figure 3.11. The x-axis is the

size of L2 private caches per core. The y-axis is the hit rate of the L2 caches (the left graph) or the

*2 It corresponds to the IPC in the multicore environment. In parallel applications, since busy loops for synchronization may
occur, IPCs are not appropriate as standards of performance evaluation.

Chapter 3 Proposal of Useful Simulation Infrastructure 47

Table 3.8 Benchmarks to evaluate many-core environment.

Initial Name Description Parameter Paralellization
D dijkstra shortest path finder 128 nodes task
E equation equation solver kernel [76] 1,024 elements square data
H himeno Himeno benchmark [77] XS size data
L lu LU decomposition 448 elements square data
Q qsort quick sort 448ki elements data

�

��

��

��

��

���

�� ��� ��� ��� 	�� 	�� ��� ���

��
�
��
��
��
�
�	
�

�
�

�����������	��
�����
�����

 � � �

L2 hit rate

���

���

���

���

���

���

���

���

���

���

�� ��� ��� �	�
��
�� ��� 	��
�
�
��
�
��
�
�	
�

��

�
�
�
�

�����������	��
�����
�����

� �

� �

����

Performance
Figure 3.11 Effects of cache size on benchmarks for evaluation.

performance relative to with 256KB per core caches (the right graph).

I summarize the characteristic of each application.

dijkstra Since the size of the working set is much smaller than that of L2s, the cores can easily accept

the spilled lines from others.

equation For the working set is much larger than the size of L2s, hit rate and performance seldom

improve with larger caches. If the cores spill evicted lines to others, they may cause terrible

performance loss of others. Hence, they should be prohibited from spilling.

himeno The working set is larger than the size of L2s and it benefits very much from additional cache

size. The cores running it should spill their evicted lines.

lu Since the size of the working set is almost the same as that of L2s, the performance drops with

smaller caches. It is desirable to prohibit or restrict their acceptance of spilled lines. However,

because the working set gets small as execution proceeds, the chance of accepting lines without

performance degradation may exist.

qsort Although the working set is as large as L2s like lu, the rate of performance drop is smaller

than lu. In addition, the variation of access pattern by core and time is relatively large. The

performance can be improved with applying different policies to the cores running it.

In the many-core evaluation, a workload consists of 4 applications where overlapping are allowed.

Chapter 3 Proposal of Useful Simulation Infrastructure 48

��

��

��

��

��

�������������

�
�
��
�
�
�
�
�
�

���������	
��
���	�����

	
��� ���

��������� �	�

�	����	

Figure 3.12 Performance and QoS of various methods in the multicore environment.

When we choose 4 applications from 5 without regard to order, allowing replications, the number of

combination is
(

5+4−1
4

)
= 70. This time I simulate all the 70 workloads.

The name of workload is made up from the initials of selected applications. However, multiple

candidates of names with different order are possible. For example, LLLH, LLHL, LHLL, and HLLL

consist of the same combination of applications: himeno and three replicas of lu. I select one of the

candidates as the name of workload with the following rules: the names of applications with more

replicas precede; the applications with the same numbers of replicas are arranged in alphabetical order.

For instance, the workload that consists of himeno, qsort, and two replicas of lu is named LLHQ.

The placement of applications in the chip is decided based on the name of the workload. I divide

32 cores by x-axis and y-axis into 4 groups: upper-left 8 cores, upper-right 8 cores, lower-left 8 cores,

and lower-right 8 cores. I then assign the applications corresponding to the first, second, third, and last

characters to the groups, respectively. Taking the example of LLHQ, I assign lu to the upper-left group,

another lu to the upper-right, himeno to the lower-left, and qsort to the lower-right.

3.6 Evaluation Results for Existing Cache Architectures
Figure 3.12 shows the evaluation results for the multicore environment. The y-axis is the weighted

mean of the arithmetic mean of relative IPCs. The x-axis is the weighted mean of losses in the relative

IPC of the most slowed application. These are standards of performance and QoS, respectively. A

method whose average relative IPC is higher is better. If the average relative IPCs are almost the same,

a method whose maximum IPC loss is lower is better. In short, the more close to the upper right corner

the point is, the better method is.

Chapter 3 Proposal of Useful Simulation Infrastructure 49

��

��

��

��

��

������������

�
�
��
�
�
�
�
�
�

���������	
��
���	�����

�		
�����		 ���

Figure 3.13 Performance and QoS of various methods in the many-core environment.

In this evaluation, Shared had better average relative IPC than the baseline (Private); however, its

maximum IPC loss was as much as 10% because of some applications that were harmed seriously.

DCC performed better than Shared in both performance and QoS, though it did not limit spilling.

The average relative IPC was 1.9% and the maximum IPC loss was 4.7%, on average. This result

implies that the DCC alone achieves the advantage of both private and shared caches such as low

latency, independence of performance, and flexibility on capacity to some extent. Nevertheless, the

achievement is still limited.

ElasticCC performed worse than DCC in both despite its intention of high efficiency. The IPC

improved by an average of 1.6% and the average of the maximum IPC loss was 6.7%. The degradation

of the relative IPC may be due to the replacement algorithm. According to an advance evaluation with a

single core, the average performance degradation with the LRU is about 0.5%. However, the maximum

IPC loss became much worse. The possible reason is that ElasticCC requires virtual shared region of

at least one way for each core or it expands the shared regions more than necessary.

DSR limits spilling by dividing the cores into spiller cores that only spill their evicted lines and

receiver cores that only accept the lines from the spiller cores. This limitation worked well in the

evaluation. The improvement of the IPC was 3.3% and the maximum IPC loss was 2.9%, on average,

which were much better than DCC.

For DSR-QoS, a variation of DSR for QoS improvement, improved the QoS by the sacrifice of the

performance. The IPC improvement was 2.9% and the maximum IPC loss was 2.5%, on average.

Figure 3.13 shows the evaluation results for the many-core environment. The way to read the graph

Chapter 3 Proposal of Useful Simulation Infrastructure 50

is the same as Figure 3.12: the more close to the upper right corner, the better.

Like the result in the multicore environment, DCC improved the performance but degrades the QoS.

The improvement of throughput of DCC over Private was 2.5% and the maximum throughput loss was

3.7%, on average. ElasticCC this time outperformed DCC in both performance and QoS. The average

throughput improvement was 3.0% and the average of the maximum throughput loss was 2.3%.

However, DSR had less performance than DCC despite the assumption of the ideal communication

channel for sharing the information of misses, though its QoS was better than DCC. The throughput

improvement was 1.7% and the maximum throughput loss was 3.2%, on average. In the many-core

environment, each cache has just 512 sets and thus the number of sets available for sampling to each

core is only 16 (8 for spilling, 8 for receiving). This reduces the precision of performance estimation.

What is worse, since parallel applications often requires synchronization, if any of cores is given wrong

prediction, its negative effect may spread to the whole application. Such circumstances that are specific

to many-core work against DSR.

Through these evaluation results, I quantitatively confirmed that the existing methods for the op-

timized spilling do not meet both efficiency and scalability. DSR performed well in the multicore

environment; however, it had poor performance in the many-core environment where scalability is im-

portant. Conversely, ElasticCC worked well in the many-core but did not in the multicore. I explain

and confirm the efficiency and the scalability of my proposal in the following chapters.

3.7 Summary
In this chapter, I mentioned the two different simulation environments and proposed the simulation

infrastructure for them to evaluate methods. The multicore environment corresponds to the modern

multicore processors with powerful cores and a few LLCs of 2MB per core; the many-core environment

corresponds to the future many-core processors with simple cores and many LLCs of 256KB per core.

For each environment, I gave tens of workloads that have various sharing patterns to the LLCs.

I described a useful simulation infrastructure that centers SimMips in detail. The flow of simulating

the multicore environment requires two kinds of traces. I obtain them with a modified version of

SimMips. I developed a many-core processor simulator SimMccc, which utilize SimMips as processor

cores and SimMc as network-on-chip, to evaluate the many-core environment. In addition to two

communication layers of NoC and DMA that SimMc offers, it has two more layers of cache request

and cache sharing. They improve the simplicity and reusability of the description. Besides, I referred

to the design of coherence protocol in consideration of the features of the DCC, that is, spilling evicted

cache lines and conflict of directory entries.

In the last of this chapter, I evaluated some existing cache architectures with the proposed infrastruc-

ture. The results showed that the existing spilling optimizations, DSR and ElasticCC, did not achieve

Chapter 3 Proposal of Useful Simulation Infrastructure 51

both efficiency and scalability.

Chapter 3 Proposal of Useful Simulation Infrastructure 52

Table 3.9 Transition of L2 caches.
Request

State

M DATA to L1 DATA to L1

if L1_valid:

INV to L1

otherwise:

PUTP to Dir

MP

/

SI

if L1_valid:

INV to L1

otherwise:

PUTM to Dir

MSI

/

SI

if L1_valid:

INV to L1

otherwise:

PUTM to Dir

MSI

/

SI

O DATA to L1
GETM to Dir

clear L1_valid
OM

(if L1_valid:

INV to L1)

PUTP to Dir

SI

(if L1_valid:

INV to L1)

PUTM to Dir

SI

(if L1_valid:

INV to L1)

PUTM to Dir

SI

E DATA to L1
GETM to Dir

clear L1_valid
SM

(if L1_valid:

INV to L1)

PUTP to Dir

SI

(if L1_valid:

INV to L1)

INV to Dir

SI

(if L1_valid:

INV to L1)

INV to Dir

SI

S DATA to L1
GETM to Dir

clear L1_valid
SM

(if L1_valid:

INV to L1)

PUTP to Dir

SI

(if L1_valid:

INV to L1)

INV to Dir

SI

(if L1_valid:

INV to L1)

INV to Dir

SI

I GETS to Dir IE GETM to Dir IM -

P
DATA to L1

HITP to Dir
E GETM to Dir SM INV to Dir SI INV to Dir SI INV to Dir SI

MO MSI MSI

MSI

MI

MP MSI MSI

OM OMI PUTM to Dir

OMI PUTM to Dir

SM SMI INV to Dir

SMI INV to Dir

SI

IM IMIr IMIr

IE ISIr ISIr

IS ISIr ISIr

IMO IMIr IMIr

IMI IMIr IMIr

IMIr

ISI ISIr ISIr

ISIr

PE PSI INV to Dir

PS PSI INV to Dir

PSI INV to Dir

MCR_READ MCR_WRITE

Read Write Replace(Read/Write)

MCR_INV_DIR

Replace (PutP) Invalidate (from Dir)

Chapter 3 Proposal of Useful Simulation Infrastructure 53

Table. 3.9 Transition of L2 caches (Continued).
Request MCR_GETM

State GetM

M
Fill

clear L1_valid
clear L1_valid

if L1_valid:

INV to L1

Add Reqer to RT

otherwise:

DATA to Reqer

MO

/

O

if L1_valid:

INV to L1

Add Reqer to RT

otherwise:

DATA to Reqer

MI

/

I

O clear L1_valid DATA to Reqer O

DATA to Reqer

(if L1_valid:

INV to L1)

SI/I

E clear L1_valid DATA to Reqer S

DATA to Reqer

(if L1_valid:

INV to L1)

SI/I

S clear L1_valid

ACK to Reqer

if L1_valid:

INV to L1

SI/I DATA to Reqer

DATA to Reqer

(if L1_valid:

INV to L1)

SI/I

I ACK to Reqer

P DATA to Reqer S

DATA to Reqer

(if L1_valid:

INV to L1)

SI/I

MO
Fill

clear L1_valid
- Add Reqer to RT Add Reqer to RT MI

MSI Fill - Add Reqer to RT Add Reqer to RT MI

MI Fill - Add Reqer to RT Add Reqer to RT

MP Fill - Add Reqer to RT MSI Add Reqer to RT MI

OM - DATA to Reqer

If Reqer is self:

Add AckCount

otherwise:

Add Reqer to RT

IM

OMI - DATA to Reqer

If Reqer is self:

Add AckCount

otherwise:

Add Reqer to RT

IMIr

SM - ACK to Reqer�1 IM DATA to Reqer

If Reqer is self:

Add AckCount

otherwise:

Add Reqer to RT

IM

SMI - ACK to Reqer�1 IMIr DATA to Reqer

If Reqer is self:

Add AckCount

otherwise:

Add Reqer to RT

IMIr

SI - ACK to Reqer�1 DATA to Reqer DATA to Reqer

IM ACK to Reqer�1 Add Reqer to RT IMO Add Reqer to RT IMI

IE ACK to Reqer ISI Add Reqer to RT IS Add Reqer to RT ISI

IS ACK to Reqer ISI Add Reqer to RT Add Reqer to RT ISI

IMO ACK to Reqer�1 IMI Add Reqer to RT Add Reqer to RT IMI

IMI ACK to Reqer�1

IMIr - ACK to Reqer�1 Add Reqer to RT Add Reqer to RT

ISI ACK to Reqer�1 Add Reqer to RT

ISIr ACK to Reqer�1 Add Reqer to RT

PE

if Reqer is self:

DATA to L1

otherwise:

DATA to Reqer

E

/

PS

DATA to Reqer IE

PS ACK to Reqer�1 IS

if Reqer is self:

DATA to L1

otherwise:

DATA to Reqer

S

/

PS

DATA to Reqer IS

PSI ACK to Reqer�1 ISIr

if Reqer is self:

DATA to L1

INV to L1

INV to Dir

otherwise:

DATA to Reqer

SI

/

PSI

DATA to Reqer ISI

PutM Invalidate

MCR_PUTM MCR_INV_L1

�1: Dec AckCount if

 Reqer is self

MCR_INVALID

Invalidate(other core)

MCR_GETS

GetS

Chapter 3 Proposal of Useful Simulation Infrastructure 54

Table. 3.9 Transition of L2 caches (Continued).
Request

State

M

O

E

S

I Fill P

P

MO Dec AckCount DATA to Reqers O

MSI Dec AckCount
PUTM to Dir

DATA to Reqers
SI

MI Dec AckCount DATA to Reqers I

MP Dec AckCount
PUTP to Dir

DATA to Reqers
SI

OM
Fill

Add AckCount
Dec AckCount IM

OMI
Fill

Add AckCount
Dec AckCount IMI

SM
Fill

Add AckCount
Dec AckCount IM

SMI
Fill

Add AckCount
Dec AckCount IMI

SI Dec AckCount I

IM
Fill

Add AckCount
Dec AckCount DATA to L1 M Fill SM

IE

Fill

DATA to L1

DATA to Reqers

E/S

�2
Fill PE

IS
Fill

DATA to L1
S

IMO
Fill

Add AckCount
Dec AckCount

DATA to L1

INV to L1
MO

IMI
Fill

Add AckCount
Dec AckCount

DATA to L1

INV to L1
MI

IMIr
Fill

Add AckCount
Dec AckCount

DATA to L1

INV to L1
MSI

ISI

Fill

DATA to L1

INV to L1

DATA to Reqers

SI

ISIr

Fill

DATA to L1

INV to L1

DATA to Reqers

INV to Dir

SI

PE Dec AckCount IE

PS Dec AckCount IS

PSI Dec AckCount ISI

�2: E if Sender is

 Main Memory

Data Ack(from L1/Dir) LastAck (if AckCount==0) PutP

MCR_DATA MCR_ACK MCR_LASTACK MCR_PUTP

Chapter 3 Proposal of Useful Simulation Infrastructure 55

Table 3.10 Transition of directory caches.

Request

State

M
GETS to Owner

Add Reqer to Sharer
O

GETM to Owner

Set Reqer as Owner
M INV_DIR to Owner xI

ACK to Reqer

PUTM to Memory

Clear Owner

Set Reqer as LastHolder

I

O/Os
GETS to Owner

Add Reqer to Sharer
O

GETM to Owner

INVALID to Sharer(s)

Clear Sharer

Set Reqer as Owner

M
INV_DIR to Owner

INV_DIR to Sharer(s)
xI

ACK to Reqer

PUTM to Memory

Clear Owner

if no Sharers:

Set Reqer as LastHolder

if 1 Sharer:

I

/

Es

/

S

E/Es
GETS to Sharer

Add Reqer to Sharer
S

GETM to Sharer

Clear Sharer

Set Reqer as Owner

M INV_DIR to Sharer xI

S
GETS to one of Sharers

Add Reqer to Sharer
S

GETM to one of Sharers

INVALID to other Sharers

Clear Sharer

Set Reqer as Owner

M INV_DIR to Sharers xI

I
GETS to Memory

Add Reqer to Sharer
E

GETM to Memory

Set Reqer as Owner
M

P

GETS to Sharer

Clear Spiller

if Reqer != Sharer:

Add Reqer to Sharer

S

/

E

GETM to Sharer

Clear Sharer and Spiller

Set Reqer as Owner

M
INV_DIR to Sharer

Clear Spiller
xI

xI

ACK to Reqer

PUTM to Memory

Clear Owner

xI/I

Request MCR_PUTP �1 if Owner changed, ACK only

State PutP �3

M ACK to Reqer �2

ACK to Reqer

PUTP to Destination

PUTM to Memory

Set Reqer as Spiller

Set Destination as Sharer

P -

O/Os

ACK to Reqer

Erase Reqer from Sharer(s)

If no Sharers:

Os

/

O

ACK to Reqer

PUTP to Destination

PUTM to Memory

Set Reqer as Spiller

Set Destination as Sharer

P -

E/Es

ACK to Reqer

Clear Sharer

Set Reqer as LastHolder

I

ACK to Reqer

PUTP to Destination

Set Reqer as Spiller

Set Destination as Sharer

P -

S

ACK to Reqer

Erase Reqer from Sharer(s)

If 1 Sharer:

Es

/

S

-

I

P

ACK to Reqer

Set Spiller as LastHolder

Clear Sharer and Spiller

I Clear Spiller Es

xI

ACK to Reqer

Erase Reqer from Sharer(s)

If no Sharers:

xI

/

I

(spilling will not be allowed) -

�2 Reqer should be former sharer. �3 If spilling is not allowed,

 treat it as PUTM (if Reqer == Owner), or INVALID (otherwise)

MCR_PUTM

PutM �1

MCR_INVALID

Invalidate

MCR_GETS

GetS

MCR_GETM

GetM Replace

MCR_HITP

Hit on Spilled Line

56

Chapter 4

Proposal of ASCEND Architecture for
Cooperative Caching

In this chapter, I propose the concept and the architecture of ASCEND (Adaptive Spill Control with

extra ENtries of Directory) as a highly-efficient and scalable method for cooperative caches.

I focus on the directory caches in the Distributed Cooperative Caching (DCC). As I am going to

mention, they inevitably have a number of extra entries in the directories for avoiding the performance

degradation. If they keep the information of the entries instead of discarding it, they can store the tags

of lines that were recently removed from the chip. ASCEND makes use of them to estimate the demand

on capacity of each core so that the cores can spill evicted lines properly.

ASCEND integrates two units, called Spiller Selector and Receiver Selector, to each directory cache.

They detect the difference in demands on capacity of the cores through the two kinds of special refer-

ences to the directories, or I-Reference and Extruded I-Reference, and then manage spilling evicted

lines and receiving the spilled lines. To maximize the efficiency of the spilling mechanism of coopera-

tive caches and be applicable to many-core processors, ASCEND is designed for both high efficiency

and scalability. In addition, the selectors are designed to be small hardware resource enough for the

validity of the architecture.

I describe two different methods of ASCEND architecture. One is an original method that was

proposed in [78]; the other is a highly-precise method for better efficiency. I also propose a method

named Weak Receiving as an option of ASCEND for achieving better efficiency. I explain its feature,

the validity of the idea, and the incorporation into ASCEND later in this chapter.

In Section 4.1, I first verify the adequacy of giving a larger number of directory entries than the

number of cache lines. I have two kinds of discussions about estimating the necessary number of

entries: probabilistic analysis and simulation-based preliminary evaluation. I decide the appropriate

number of entries from these results.

In Section 4.2, I mention treatment of invalidated entries and reference to them, which I call I-

Reference and Extruded I-Reference. I take an example of how these two kinds of I-Reference improve

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 57

���������	

���������������

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

� � � �

�� �� �� ��

���� ���� ���� ����

�� �� �� ��

���������������

Organization

���������	

���������������

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

� � � �

�� �� �� ��

���� ���� ���� ����

�� �� �� ��

���������������

����

���� ����

��������

Example of a full directory cache

Figure 4.1 The review of the organization and the undesirable working example of the DCC.

the efficiency of caches later in the section.

In Section 4.3, I propose ASCEND and describe the architectural organization applying ASCEND. I

then explain two different methods of ASCEND architecture, the original method [78] and the highly-

precise method, in Section 4.4 and Section 4.5, respectively. Each explanation includes the policies of

utilizing the special references, and the architectural models of Spiller and Receiver Selectors. I also

explain the Weak Receiving, an option for the highly-precise method of ASCEND, later in Section 4.5.

I qualitatively compare ASCEND with other methods for optimizing spilling in Section 4.6.

4.1 Necessity of Extra Entries of Directory
4.1.1 Avoiding Replacement in directories

Although I explained the target architecture or the DCC in Chapter 2, first I review its organization and

behavior that I focus on in this chapter.

The left of Figure 4.1 shows the organization of the DCC. The core consists of a PE (Processing

Element), L1 caches, and an L2 cache. The DCEs (Distributed Coherence Engines) have directory

caches. A valid directory entry is mapped to a cache line or lines being kept in the chip. These two

kinds of units and the main memory are connected via some interconnects. Note that the number of

cores and that of DCEs sometimes differ.

The right of the figure shows the working example that has shown in Figure 2.9 (e). When a core

misses in its own L2, the core sends a request to one of the DCEs determined by the computation

with the line address. The requested DCE looks for either a valid entry corresponding to the line or an

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 58

Table 4.1 The contrast between access frequency of caches and that of directories.

Cache Access Frequency Type of Cache Accesses Directory Access Frequency
Low Any Low

Moderate Any High
High Shared Read/Write High
High Not Shared or Read only Low

empty entry for making new directory to the requested line; regrettably, neither of them is found. In this

undesirable case, one of the entries is selected for a victim and is invalidated. It leads to invalidation or

written-back of all the sharers of the corresponding line, and may harm the cache performance.

If the invalidated lines are not frequently used, the effect of such undesired invalidation is small.

Replacement algorithms for caches actually take advantage of this. However, the access frequency to

directories and that to caches are not always similar. Therefore, replacement algorithms for directories

can give wrong estimation about the access frequency of caches, that is, the entries corresponding to

lines that are frequently accessed are also discarded.

I explain this problem by dividing the cores by frequency and type of its cache. Table 4.1 shows

the relations between the frequency or type of cache access and the frequency of directory access. I

only regard requests for read or write as access in the table for ease of explanation— requests for

invalidation, write-back, spilling, etc. are not considered.

First of all, if a region is rarely accessed by the caches, cores make requests for it to the caches and

the directory only few times before its removal. Therefore, the access frequency to the directory is low.

Secondly, if it has intermediate frequency of cache access, a part of cache access is filtered as local

cache hit and thus some requests to the directory are omitted. However, it is sometimes evicted from

its local cache and spilled to a remote cache (unless it is currently shared). When it is requested next,

it hits in the remote cache. Such a hit produces a reuse of the directory entry. Hence, the frequency of

directory access is high.

Thirdly, if it has high frequency of cache access and it is shared and written by cores, most requests

to the directory are filtered out by the local caches. However, when one of the cores wants to write to

it, the replicas in the other caches are invalidated or updated in order to keep coherency. This results in

a recall of the directory entry. Therefore, this case also has high frequency of directory access.

Lastly, if it is repeatedly accessed by only one core or it is frequently read but not written from cores,

a problem occurs. In this case, most requests to the directory are omitted like the third case. What

is worse, directory access along with invalidation or update does not happen. As a result, the access

frequency to the directory remains low and the directory cannot distinguish this case from the first case.

This indistinctiveness may cause replacement of directory entries corresponding to the repeatedly

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 59

�����
�����

�������

�	
����

�����
�����

�������

�	
����

�����

�����

�����
�����

�������

������
��������

�����

Figure 4.2 Cache lines and replicas of their tags in the centralized Coherence Engine.

accessed lines, that is, invalidation of frequently reused data. In consequence, the existence of the last

case causes performance reduction of the DCC.

In the DCC, the numbers of entries and ways in the directories are independent from the number of

lines and ways in the caches. Using this feature, we can apply one of the following two ways in order

to avoid the competition in the directories that is connected to the undesirable invalidation.

The ideal way is to equalize the numbers of entries and lines, and to set the associativity of directories

to the product of the associativity of caches and the number of cores. It means that the directories can

store the replicas of all the tags in the caches, and thus it essentially eliminates the replacement in the

directories. It is similar to the approach used in the Cooperative Caching [5]. Nevertheless, the huge

associativity proportional to the number of cores lacks the feasibility.

As shown in Figure 4.2, the Cooperative Caching has the centralized Coherence Engine (CE) that

stores the replicas of the tags. Though the number of sets in the CE is the same as that in each cache,

the number of ways, or the number of blocks that the CE must access at once on finding lines, is

proportional to the number of cores and thus it can be impractically large in many-core processors.

The practical way is to set the number of directory entries, the number of sets or the number of ways,

or both, bigger than that of cache lines. The original DCC applies this: it sets the number of entries

twice as many as the number of lines [6].

An important point with the latter way is to choose the proper number of directory entries. Since the

reduction of performance loss is limited, we cannot benefit from too many entries. Furthermore, mas-

sive directories may make the performance worse due to long latency. Hence, it requires an appropriate

tradeoff between the performance and the hardware cost.

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 60

������ ����	

��������	�������

��	�
��	�

��	���

�����	�

��	�
��	�

��	���

�����	�

���	�

��	�

��	�

���	�

��	�
��	�

��	���

��	�
��	�

��	���

��	�

��	�

�	������	�������

��������	�����

��	�
��	�

��	���

��	���
��	���

��	����

��	�

��	��

Figure 4.3 Cache lines in cores and directory entries in the DCEs. The whole DCEs are regarded
as a single virtual directory cache.

4.1.2 Probabilistic Analysis

In this section, I estimate the sufficient number of directory entries using a probabilistic analysis.

Before the analysis, I mention the mapping from the directories to the caches. Figure 4.3 shows the

placement of cache lines and directory entries when the numbers of lines and entries are equivalent.

In the figure, I assume that both the number of the caches and the directories are 2 and they have S

2-way sets. Colored rectangles and parallelograms stand for valid cache lines and directory entries,

respectively. Uncolored parallelograms mean invalid directory entries. Lines kept by only Cache 1 and

their corresponding entries are shown in blue; private lines of Cache 2 and their equivalent entries are

green; and lines and entries shared by both cores are colored orange. A valid directory entry is mapped

to one or more identical (with the same address) cache line(s) in the chip.

It is notable here that the whole DCEs (directories) are considered as a single virtual directory caches.

Each DCE manages the coherence of an address-interleaved part of the memory space. The same can

be said for each set in DCEs. In consequence, when we assume a single large directory cache, each

DCE is a part of it divided by a group of sets. Conversely, the whole DCEs are regarded as a large

directory that has the same number of ways as each DCE and the number of sets equivalent to the

product of the number of sets in each DCE and the number of DCEs.

From this virtual view, the number of sets in the virtual directory differs from that in each cache.

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 61

������ ����	
��������	�������

��	�
��	�

��	���

�����	�

��	�
��	�

��	���

�����	�

��	�
��	�

��	���

���	�

��
�����	�

��	�

��	�

��	�
��
�����	���

��	�
��	�

��	���

���	�

��
�����	�����

��	�
��
�����	�

Figure 4.4 The first assumption of set mapping. There is one-to-one mapping between sets of the
caches and set groups of the directory caches.

Therefore, even though a pair of lines are stored in the same sets of the caches, their corresponding

entries can be located in different sets of the directories. Note that equalizing the numbers of sets in

each cache and that in the virtual directory means that the number of ways in the directory becomes the

product of the number of ways in each core and the number of cores; in other words, it just means the

ideal way to eliminate the competition (see Figure 4.2).

This different mapping due to the difference in the numbers of sets is the fundamental problem. As

a result, the numbers of valid directory entries in sets becomes unequal. Even if entries are assigned

randomly enough (with a hash function as I have mentioned in Section 2.1.3, for example), we cannot

remove this inequality. This is why the practical way to reduce the competition requires some extra

directory entries.

I then estimate the number of directory entries sufficient to remove the most of competition. I make

two different assumptions about the assignment of set in the directories. Under each assumption, I

calculate the probability that a set in the directories can store all the entries that it should keep.

In the following discussions, N and S stand for the number of cores and that of sets in each cache,

respectively. I assume that the total numbers of sets in caches and directories are the same, and so the

ratio between the numbers of ways in caches and directories is the same as that between the number of

lines and entries.

The first assumption is that if and only if a pair of cache lines belong to the same set in the caches,

the corresponding entries belong to the same group of sets in the directories. In other words, I assume

one-to-one mapping between a set in the caches and a set group in the directories. From the assumption

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 62

���

���

���

���

���

���

���

��	

��

���

���

� � � � � � 	
 � �� �� �� �� �� �� ��

�
�
��
��
��
�
�
�
�
��
	
�
�
�

�
�
��
��
�
�
��

�

�
�
�
�
��
�
��
�
��
	
�
�

�������������	
����������

��

��

��

�	

�

����

����

����

����

����

����

����

���	

���

����

����

� � � � � � 	
 � �� �� �� �� �� �� ��

�������������	
����������

Figure 4.5 Directory cache size vs. probability of having sufficient entries (in the first assumption, N=4).

of the total number of sets, the number of sets in a set group is the same as the number of cores, or N.

Figure 4.4 depicts the relationship between a set in the caches and a set group in the directories. Two

sets in the directories form a set group. The set groups are numbered serially from 1 to S . A directory

entry corresponding to a cache line in Set k will be stored in one of the sets (specified by its address) in

the Set Group k.

I calculate the probability that the number of valid directory entries in a set do not exceed W or the

number of ways. Let kN be the total number of valid entries in a set group. Although the coefficient k

varies according to the number of valid lines and the sharing degree in the caches, the maximum k is

equivalent to W (when all the lines are valid and not shared). Since the probability that an entry belong

to the specific set in the set group is 1/N, the distribution of the number of entries that a set should keep

follows a binominal distribution B(kN, 1/N). Therefore, the probability that the number is not more

than W is the cumulative distribution function of it, calculated as follows:

W∑
w=0

(
kN
w

) (
1
N

)w (
1 − 1

N

)kN−w

Figure 4.5 shows the relations between W (X-axis) and the probability (Y-axis) with some k. The

number of cores, N, is set to 4 in the figure. The right graph is a partial enlargement of the left graph.

When there are a lot of invalid or shared lines, k becomes small. On k = 4, or there are half as many

valid entries as total lines, even though the numbers of lines and entries are the same, over 99% of sets

do not occur the competition. However, on k = 8 or the maximum k, the probability is dropped to about

60%. When W is increased to 12, that is, the number of directory entries is 1.5 times more than that of

cache lines, about 96% of sets have the sufficient entries at last.

The second assumption eliminates the limitation of the first assumption. In other words, the assign-

ments of sets in the caches and the directories are completely different. Figure 4.6 depicts the mapping

between lines and entries in this assumption. The concept of set groups in the first assumption does not

exist anymore: the indexes of the sets in the caches and the directories are totally unrelated.

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 63

������ ����	
��������	�������

��	�
��	�

��	���

�����	�

��	�
��	�

��	���

�����	�

��	�
��	�

��	���

���	�

��	�

��	�

��	�

��	�
��	�

��	���

���	�

��	�

Figure 4.6 The second assumption of set mapping. The set indexes in the caches and the directory
caches are completely different.

����

����

����

����

����

����

���	

���

����

����

����

� � � � � 	
 � � �� �� �� �� �� �� �	

�
�
��
��
��
�
�
�
�
��
	
�
�
�

�
�
��
��
�
�
��

�

�
�
�
�
��
�
��
�
��
	
�
�

�������������	
����������

��

��

�	

�

��

Figure 4.7 Directory cache size vs. probability of having sufficient entries (in the second assumption).

Like the first assumption, the total number of sets in the directories is set to S N, the product of the

number of sets in each cache and the number of cores. Let kS N be the total number of valid entries in

the directories. Since the probability that an entry belong to the specific set is 1/S N, the distribution

of the number of entries that a set should keep follows a binominal distribution B(kS N, 1/S N). As

S N is regarded as large enough, the distribution can be approximate by a Poisson distribution Po(k).

Therefore, the probability that the number is not more than W is calculated as follows:

W∑
w=0

kwe−k

w!

Figure 4.7 shows the relations between W and the probability with some k in the second assumption.

Note that this time I only show a partial enlargement. In comparison with Figure 4.5, every graph

slightly shifts to the right, in other words, the number of sets with conflict in the directories is increased

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 64

����

����

����

����

����

����

����

����

	
 �� ��� ��� ��
 ��� �
� ��� �	

�
�
��
�
��
�
�	
�

��

�
�
�
�

���������	
�����	�����
�������������	������������

� �

� �

�����

(a)

�

�

��

��

��

��

��

�� �� ��� ��� ��� ��� ��� ��� ���

�
��
��
��
�
�
	

�
�
�

�
�
�
�
��

�
�
��
�
��
�

�
�
�
	�
��
�
�
�
��
��
�
�
�
�
��
�
�	
�

���������	
�����	�����
�������������	������������

	
 �

�

(b)
Figure 4.8 Directory cache size vs. performance and invalidation frequency.

a bit. This is caused by the increase of inequity. With 8-way caches and 12-way directories, the rate

of sets with the sufficient number of entries is about 94% (recall that this was about 96% in the first

assumption).

The probabilities are slightly improved when I assume the larger number of ways. For 16-way

caches, 22-way directories (this means that the number of entries is 37.5% larger than that of lines)

have almost the same probabilities as I have shown above.

Of course, how many lines are used and shared, and how many times of invalidation the competing

sets can occur depend on the behavior of applications. Nevertheless, the probabilistic analysis I have

shown in this section implies that the directories require 1.5 times as many entries as the lines.

4.1.3 Preliminary Experiment

As another way to estimate the sufficient number of directory entries, I make a preliminary evaluation

with some applications. I evaluate the varied numbers of entries in the many-core environment that I

have mentioned in Chapter 3. Since I run only one application at a time, the number of valid core is 8.

I measure the number of invalidation and the performance (inverse of the execution time).

The results of the preliminary evaluation are shown in Figure 4.8. The x-axis is the ratio of the num-

ber of ways in the directories to that in the caches. The y-axis of graph (a) is the performance relative

to having 175% of ways; the y-axis of graph (b) is the number of invalidation due to the replacement

of directory entries per 1000 cycles. Each line stands for an individual application (See Section 5.4.2).

As shown in graph (b), having 175% of ways almost eliminates the undesired invalidation. Therefore,

the performance baseline in graph (a) is almost the same as having the infinite number of directories.

Sections of 75% and 88%, where the number of entries is smaller than that of lines, have some

invalidation in all the applications, though the degrees are varied with application. The performance in

some applications is seriously decreased. Though in sections from 100% to 138%, where the directories

have the same or a bit more entries than the number of cache lines, the imbalance of sets causes the

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 65

invalidation in applications E and H. The performance is still decreased in application H. When having

150% of ways, the performance loss in application H becomes less than 0.2% at last. This result

implies, just as the probabilistic analysis, that the directories require 150% as many entries as the lines.

4.2 New Concept of Utilizing Extra Directory Entries
4.2.1 Dealing with Invalidated Entries

The both results of estimations are that 1.5 times as many entries are required and sufficient to avoid

the performance loss. I now consider how much additional hardware the extra entries require.

The size of a directory entry is much smaller than that of a cache line. Though it depends on the

width of the physical address, the number of cores, etc., the typical size of a directory entry is from

50 to 100 bits. On the other hand, a cache line uses 512 or 1,024 bits just for the data. Therefore, a

directory entry only consume less than a fifth or tenth of a cache lines. Although the directories have

1.5 times as many entries as the lines, the hardware amount of the extra entries is 10% at a maximum,

or typically less than 5% of that of the caches; It is acceptable in most cases.

This is an explanation of why it is a reasonable choice that the number of entries is set to 1.5 times

as many as that of lines.

However, if we make this choice, at least a third of entries (or half as many entries as the cache lines)

remains unused. My approach to control the spilling, named ASCEND (Adaptive Spill Control with

extra ENtries of Directory), uses this unused region efficiently as a basic strategy.

When a cache line is invalidated and evicted from the chip, the corresponding directory entry is also

invalidated. In general, the information in such an entry is just removed. In ASCEND, although the

state of the entry becomes invalid as usual, its tag is kept along with the situation when it was invali-

dated. As a result, the tags of invalidated entries are regarded as an assembly of the tags corresponding

to recently evicted cache lines.

If the directories detect and count hits in the invalidated entries, they can predict the benefit of spilling

evicted lines and detect the negative impact of accepting the spilled lines. From this information, they

can grant rights of spilling to cores that are considered to benefit from spilling their lines, and prohibit

cores that are considered to be harmed by the spilled lines from receiving them. I think that they should

improve the efficiency of caches and the performance of the processor. This is the basic policy of

ASCEND.

The idea of utilizing commonly unused hardware is similar to the Cached Load/Store Queue [79].

Like the directory in the DCC, while a load/store queue sometimes requires many entries, most of them

are usually invalidated. The Cached Load/Store Queue keeps the information in entries of the load/store

queue invalidated due to the completion of data access. When the core requires the data stored in the

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 66

invalidated entries, not the cache but the load/store queue supplies the data to reduce the number of

cache access. This method uses the kept information directly; however, ASCEND uses the invalidated

tags indirectly — for the performance estimation on changing policies on spilling.

I now think back about the WAYPOINT [61], which I have mentioned in Chapter 2. The WAY-

POINT avoids the undesired invalidation not by preparing extra directory entries but by borrowing the

insufficient capacity from the main caches. This method also essentially eliminates the invalidation.

Moreover, it enables the directories to have even the smaller number of entries than cache lines without

undesired invalidation.

However, this method has capacity overhead because the insufficient entries are stored in the caches

with some metadata such as pointers. Of course, it also has latency overhead because of the additional

searches for the insufficient entries. Therefore, whether we adapt the architecture of the WAYPOINT

or not, it is a consistent fact that we must apply the proper number of directory entries in consideration

of overhead.

In addition, as I have mentioned, how many entries the directories require, or how many entries

remain unused, relies on applications. Hence, even though the number of directory entries is reduced

by the WAYPOINT, the benefit of ASCEND is unlikely to be eliminated. Rather, aggressively mixing

both of them may become the best balance between the efficiency and the overhead.

I then explain how utilizing the extra entries change the treatment of the directories. When a directory

with ASCEND receive a request of read or write, it searches for the corresponding entry not only from

valid entries but also from invalidated entries in the set. If it is found, regardless of its state, it is

selected. If not, it then looks for invalid entries and selects one of them in some way (e.g. first-in first-

out). If neither the corresponding entry nor an invalidated entry is found, the undesired replacement of

a directory entry occurs.

What ASCEND focuses on after one of the entries is selected is a situation that the corresponding

entry is found but it is invalidated. In this thesis, I define such hits in the invalidated entries as I-

References (after invalid references) of the requesting core. Cores that get the I-References frequently

are likely to reuse the data removed from the chip right after their eviction. Hence, the frequency of the

I-References can be used for the selection of cores that should be allowed spilling.

ASCEND also detects cores that will be harmed by spilled lines. If it does not consider them, the

uneven improvement that some applications are boosted but other applications become heavily slow

may occur. This behavior is usually regarded as unwanted.

To estimate the negative impact, I focus on evicted lines from the chip due directly to receiving

spilled lines. Even though they are movable and they would be spilled to other cores on the regular

evictions, they are prohibited from spilling in order to avoid the chain reaction. Therefore, it implies

the negative impact on the performance that they are reused right after their evictions.

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 67

��

��

��

��

���

�

�

��

��

��

�

�

�

�	
��� �	
��� ���� ����

���
���

��

��

��

��

���

�

�

��

��

��

�

�

�

��

��

���

�

�

��

��

���

��

��

��

��
���

�	
��� �	
���

��

��

��

��

��

��

��

�

�

�

��

��

���

�

�

��

�� ��

��

��

��

��

��

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��
���

��

��

��

��

��

��

��

��

��

��
���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

��

��

�

�

�

���� ����

��

��

�

�

�

��

��

�

�

�

��

��

�

�

�

��

��

��

��

�

�

�

��

��

�

�

�

��

��

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

��

��

�

�

�

�

�

�

�

Figure 4.9 Transition of tags when invalidated tags are removed.

In ASCEND, if an evicted line due directly to accepting a spilled line is movable and is removed from

the chip (i.e. no other cores have its replica), the directory keeps the evicting core on its invalidation.

Afterwards, if such an entry is referenced again, it is detected as an Extruded I-Reference of the

evicting core, in addition to an I-Reference of the requesting core. The number of the Extruded I-

References can be used for the selection of cores that should not accept spilled lines.

4.2.2 Example of Two Kinds of I-Reference

Figure 4.9 and Figure 4.10 show an example of keeping the tag of invalidated entries and detecting the

I-References and the Extruded I-References. For ease of explanation, each core has two lines and each

directory has three entries. Each rows in the tables in the gray rectangles stands for an individual line

or entry. Elements are arranged so that a recently used one comes to upper. A tag is expressed as a

combination of an alphabet and an Arabic figure. Lines with an odd number in the tag are mapped to

DCE 1; Lines with an even number are managed by DCE2. The leftmost field of the entry means the

state of the directory: E (Exclusive) is the state that only one core has the corresponding line; I (Invalid)

is the state that the entry is not in use.

The center field stands for the sharers of the corresponding line. Although it is normally expressed

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 68

��

��

��

��

���

�

�

��

��

��

�

�

�

�	
��� �	
��� ���� ����

���
���

��

��

��

��

��

��

�

�

�

��

��

��

�

�

�

��

��

���

�

�

��

��

���

��

��

��

��
���

�	
��� �	
���

��

��

��

��

��

��

��

�

�

�

��

��

���

�

�

��

�� ��

��

��

��

��

��

�

�

�

��

��

��

��

��

��

��

��

��

��

��

��
���

��

��

��

��

��

��

��

��

��

��
���

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

��

��

�

�

�

���� ����

��

��

�

�

�

��

��

��

�

�

�

��

��

�

�

�

��

��

��

��

�

�

�

��

��

�

�

�

��

��

��

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�

��

��

��

�

�

�

�

�

�

�

��

������
����� ���
����

������
�����

Figure 4.10 Transition of tags when invalidated tags are preserved.

as a bit vector, it is shown as the core ID, because the number of cores sharing a line is up to one in this

example. The requesting line is represented by white letters on a black background. Some other fields

that are unnecessary for the explanation, such as the state of the cache line, are omitted from the figure.

Let (a) the initial situation. Core 1 has A1 and A2; Core 2 has B2 and B4. A1 is managed by DCE

1 and A2, B2, and B4 are controlled by DCE 2. Both of cores are prohibited from spilling to the other

core at this time.

Figure 4.9 depicts the behavior of the conventional DCC. It discards the invalidated tags in the DCEs.

Assume that Core 1 requests A3 after the situation (a). A3 is read from the main memory and A1 is

evicted from Core 1 and then removed from the chip. It results in the situation (b). When Core 1 then

demands A1, A1 is inserted and A2 is invalidated, thereby the situation becomes (c). In consequence,

when Core 1 requests A4 and somehow it is allowed spilling, A4 is inserted, A3 is evicted from Core

1 and spilled to Core 2, and then B2 is evicted from the chip. As a result, the present situation is as

shown as (d) Lastly, when Core 2 requires B2, B2 is read from the main memory and B4 is removed.

The final situation is shown as (e).

Meanwhile, the behavior of the DCC with ASCEND is shown in Figure 4.10. A1 is evicted from the

chip between the situations (a) and (b). However, the invalidated tag now remains in DCE 1, that is,

DCE 1 has the information about the removal of A1. When Core 1 then sends a request of A1 to DCE

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 69

1, the invalidated entry is selected there. This is an I-Reference. ASCEND detects it as an I-Reference

of Core 1. If Core 1 frequently gets such I-References, it will be allowed spilling to the other core.

Afterwards, Core 2 accepts A3, a spilled line from Core 1 between the situations (c) and (d). B2 is

then evicted and removed from the chip. Note that it is invalidated due directly to receiving a spilled

line and there are no replicas in the chip. In ASCEND, the entry corresponding to such a line is marked

and the ID of the evicting core is kept in the center field. When Core 2 then demands B2 from DCE 2,

the invalidated and marked entry is selected there. This is an Extruded I-Reference. ASCEND detects

it as an Extruded I-Reference, in addition to an I-Reference, of Core 2. If Core 2 has the large number

of such Extruded I-References, it will be prohibited from receiving spilled lines.

In this example, the evicting core and the requesting core afterward is the same. If they are different,

they are detected separately as an I-Reference of the requesting core and an Extruded I-Reference of

the evicting core.

It is seen when comparing with Figure 4.9 that ASCEND only modifies the invalidated part of the

directories and has no effects on the valid entries.

4.3 Architectural Organization of ASCEND
Figure 4.11 shows the architectural organization of ASCEND. It is based on the Distributed Cooperative

Caching (DCC), a scalable variation of cooperative caches that I have explained in Chapter 2. The chip

consists of cores, DCEs (Distributed Coherence Engines) or directories, a (controller of) main memory,

and some interconnections among them. Each core has multiple levels of caches and its last level cache

(L2 in the figure) can forward its evicted lines to the last level caches in the other core. It assumes the

most likely model of many-core processors as an extension of the current trends in processor. Therefore,

although it does not require specific interconnections, they are needed to be fast enough in order not to

be performance bottleneck.

The proposal only modifies the directories: in addition to the array of directory cache and the coher-

ence controller, it includes a Spiller Selector and a Receiver Controller in each of the directories as its

controllers. The Spiller Selectors grant rights of spilling to cores predicted to benefit more from remote

caches than the others, using the number of the I-References of each core. The Receiver Selectors

restrict or prohibit the acceptance of spilled lines by cores predicted to be damaged by the reduction of

local caches with the numbers of the Extruded I-References. Both of them are designed to be realized

with addition of small hardware in order that the additional hardware cost may not negatively affect the

validity of the proposal. I will evaluate their hardware amount quantitatively in Chapter 5.

I propose two different methods of ASCEND architecture in Section 4.4 and Section 4.5. While they

differ in the detailed organizations of the Spiller Selectors and the Receiver Selectors, the concept and

the basic organization are common between them.

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 70

���

���������

	
���

���
�

�������	�
����������

�������

������	�

�������

������	�

����
�
����
������

����
������

���������������

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

	
�

	���

�����

� � � �

�� �� �� ��

���� ���� ���� ����

� � � �

���������������

�����������

��������

�����������

Figure 4.11 Organization of the DCC with ASCEND.

Note that the units in one directory work independently from those in the other directories. They

only count the number of I-References and Extruded I-References detected in its own directory, and

then generate the individual results from them. They do not either sum up the values of counters with

other units or synchronize each other. Although this design reduces the precision of estimation due to

the decline in the number of samples, it is important in terms of scalability.

However, when we assume too many directories, the decrease in the precision may be a problem.

In this case, we have to increase the number of samples by some ways such as partial synchronization

among a group of directories. I do not mention the detail of such methods.

In the DCC, if an evicted line is movable, the core determines the destination, forwards the line to it

via cache-to-cache communication, and sends a notification of spilling to the directory. If not, the core

sends a notification of invalidation or a request of write-back.

In ASCEND, unlike the DCC, the destination of spilled lines are determined by the Receiver Se-

lectors in the directories. This changes a part of series of communications as follows. When a core

evicts a line that may be movable, it sends a request of spilling along with the data of the line to the

corresponding directory (just like a request of write-back in the DCC). The controllers of ASCEND

decide whether the line is to be spilled or not. If the line is to be spilled, the directory forwards the line

to the destination specified by the Receiver Selector. If not, the line is just invalidated or written back.

This modification replaces a notification of invalidating a line that is not movable with a request of

spilling. In short, some messages without data become those with data. As a result, such communica-

tions have a bit longer latencies than the original. However, since they are not latency-critical, this has

little effect on the performance.

In addition, coherence controllers in the directories are also modified in order to change the treatment

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 71

of invalidated lines for the detection of I-References and Extruded I-References. Although it makes the

controllers slightly complex, it does not require additional capacity in the controllers and the directory

arrays.

4.4 Original Method
4.4.1 Spiller Selector

ASCEND uses the number of I-References of each core to decide which cores should spill their lines.

Cores with the large number of I-References are likely to use invalidated data right after they are

removed, and thus suitable for allowing their spilling. In contrast, cores with the small number of I-

References are considered as running applications whose working set is less than or quite more than the

local cache size. Even if the directories allow them spilling their lines, they will not only fail to improve

their performance, but they will have a negative impact on the other cores. Therefore, the directories

should prohibit them from spilling.

Based on the observation above, I formulate the permission of spilling. The Spiller Selectors count

the number of I-References occurred in their own directory. They test the counters in a period of fixed

cycles. If the number is more than or equal to a certain threshold at this time, the corresponding core is

permitted to spill for the next period.

I define the threshold as (
∑N

i=1 Ii)/N×k+1, where the numbers of I-References of Core 1, 2, ...,N are

I1, I2, ..., IN , respectively, and k is a constant. In short, it is the average number of I-References times k

plus 1. k is set in order that N/k is an integer. From the threshold, the condition that Core a is permitted

to spill represents Ia ≥ (
∑N

i=1 Ii)/N × k + 1 . By transforming this, we get the following inequality:

(N/k − 1) × Ia −
(
(
∑N

i=1 Ii) − Ia

)
≥ N/k (4.1)

Substituting X = N/k − 1 and Io = (
∑N

i=1 Ii) − Ia into Inequality (4.1), we obtain X × Ia − Io ≥ X + 1.

Since both sides are integers, it can be transformed into the following:

X × Ia − Io > X (4.2)

Inequality (4.2) is also the condition of spilling of Core a. From Inequality (4.2), the decision can be

done with Ia of the number of I-References in Core a, Io of that in the other cores, and a constant X.

For instance, assume that we substitute N = 8 and k = 4/5, and that the total number of I-References

is 1,000. In this case, the threshold is 1000/8× (4/5)+ 1 = 101. Since X = N/k − 1 = 9, Inequity (4.2)

or the condition that Core a is allowed spilling becomes 9Ia − Io > 9. When we assign the threshold of

101 to Ia, for the left member becomes 9Ia − Io = 9 × 101 − (1000 − 101) = 10, we can confirm the

inequality is satisfied.

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 72

�������������	
�

�����������	
������

������ ������

�	

�
�

�����������

�
�������������������

�
�������������������

����������������

�������

�	

�
�

�	�	

�����	

����������	

�����

!���"#�������������

�
������������������

�����$�%�������&�'

�

Figure 4.12 Detailed organization of Spiller Selector in the original method.

From the formulation above, I define the detail of Spiller Selectors. Figure 4.12 shows the orga-

nization of a Spiller Selector. It consists of the same number of I-Reference counters and the same

bits of spill permission vector as the number of cores. The I-Reference counters represent the current

likelihood that the corresponding cores benefit from spilling.

When an I-Reference occurs, the I-Reference counter of the causing core is incremented by the

constant X; that of the other cores are decremented by 1. At the end of a period, the values of the

counters are compared with X. If they are more than X, corresponding bits of the spill permission

vector are set to 1.

When a directory receives a spilling request, it references the corresponding bit of the spill permis-

sion vector. If the bit is 1, it accepts the request and makes the Receiver Selector decide the destination.

If the bit is 0, it declines the request. The request is treated just as a notification of invalidation or a

request of write-back. In both cases, the directory updates the corresponding entry properly.

4.4.2 Receiver Selector

The selection rates of the destination core are determined mainly with the number of Extruded I-

References. Cores with the large number of Extruded I-References are likely to be harmed by accepting

spilled lines.

In the original method, the Receiver Selector checks whether a core is exposed to heavy performance

degradation by the spilled lines or not. If the core is regarded to be harmed, it decreases the probability

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 73

that the core is selected as the destination of a spilled line. If not, it increases the probability. I define a

threshold for the decision as a ratio of the number of Extruded I-References to the number of off-chip

accesses that occur in the core.

I also consider the case that the negative effect of receiving lines is covered by the positive effect of

spilling lines. To estimate the positive effect, the Receiver Selector also detects and counts cache hits

on spilled lines. Fortunately, the directory caches do not require an additional state for the detection,

because the states of the caches and the directories have already included the information whether the

accessed line have been spilled or not after the last reference.

I formulate the decision of the performance degradation. Let E the number of Extruded I-References

of a core, H the number of cache hits on spilled lines, and O the number of off-chip accesses that occur

in the core. The selector considers the core to be harmed when the following inequality is met:

E − H × l > O × t (4.3)

where l is a coefficient and t is the threshold.

By transforming this and substituting X = l/t and Y = 1/t, we obtain the following inequality:

−X × H − O + Y × E > 0 (4.4)

At this time, l and t are properly decided in order that both X and Y can be integers. From Inequality

(4.4), we can make a decision about the performance degradation only with integer arithmetic using

E,H,O, X, and Y .

I now define the detailed organization of Receiver Selectors from the formulation. Figure 4.13 de-

picts the detail of a Receiver Selector. It is composed of fairness counters, receive probability registers,

a probability updater, and a weighted round-robin selector.

The fairness counter is decremented on a cache hit on a spilled line by X, decremented on an off-chip

access by 1, and incremented on an Extruded I-Reference by Y . At the end of a period, the value of the

counter is compared with 0. If it is more than 0, the selector increases the corresponding probability. If it

is non-positive, the selector decreases the probability. The way to increase and decrease the probability

is described later.

The receive probability register is assigned to each core. The probability updater has a register that

keeps the probability that the selector does not spill the evicted line to any destination. In the original

method, the sum of the values of the registers is constant: an increment of one register is accompanied

by a decrement of another register.

Important policies on updating the registers are twofold. One is that a register with a large value

should have a wide variation range, because the effect of variation is proportional to the current value.

The other is that cores that are prohibited from spilling should be prioritized over other cores when

both the types of cores ask for increase in their values.

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 74

�����������	��
��

�������

���	
	����

��������

��������	�� ������ ������ ����	
���

��������������	
��������������������	
�����������������

����������	
������

���������

�������

�
���������������

������ ������

��

��

�

���������

!������	
����"���

#�����
�$�����

%&�������'�(��������

	������	���������

�������

)*
+���,
��������(����

-����������������

�����-�&���'����.��

�/

��

��

��/

)*

Figure 4.13 Detailed organization of Receiver Selector in the original method.

Considering the policies, I define the process of update as the following steps. The term acquire n

means incrementing the register corresponding to the core by n and decrementing the not spill register

by n. Conversely, the term release n stands for decrementing the corresponding register by n and

incrementing the not spill register by n. If the value of the register to be decremented is less than n, the

variation of the values is limited to it.

1. All the cores release the current value /8.

2. Cores with positive fairness counters release the current value /8 + 1.

3. Cores that have non-positive fairness counters and that are prohibited from spilling acquire the

current value /4 + 1.

4. Cores that have non-positive fairness counters and that are allowed spilling acquire the current

value /4 + 1.

When more than one core asks for acquisition in the third or fourth steps, the priority among them is

randomly decided. The results of all the division are rounded down. In the initial state, all the registers

corresponding to the cores are set to 0 and the not spill register is set to the maximum value for its bit

width.

Figure 4.14 shows an example of the process of update. The number of cores is set to 4. All the

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 75

���������	�

���

�����

��������������

������ ������ ������ ������

��

��

��

���

��

��

���

��

�� � � �

�����������

�������

�

�������

�������

�������

�������

�� ! � � "

�# # # � �

�� # � � #

�# # # � �

��������$�%��&�������������

��'��$�%��&�������������

(���������)������ ������ ������ ������

Figure 4.14 Example of update process of receive probability registers.

registers are 5-bit wide and thus the sum of the values is always 31. The respective values of the per-

core registers before the update are 13, 8, 4, and 3. The value of the not spill register is 3. Core 4 is the

only spiller in this period. At the end of the period, the value of fairness counter of Core 2 is positive

and those of Core 1, 3, and 4 are negative.

In the first step, all the cores release 1, 1, 0, and 0, respectively. In the second step, Core 2, which

has positive fairness counter, releases 1. In the third step, Core 1 and 3, which do not have permission

to spill, acquire 4 and 2, respectively. In the last step, though Core 4 asks for acquisition, the corre-

sponding register is not incremented, for the not spill register has already become 0. Consequently, the

respective values of the per-core register after the update are 16, 6, 6, and 3. Note that Core 1, which

had a large value before the update, has a wide range of variation and that the registers corresponding

to Core 1 and 3, which are prohibited from spilling, are preferentially incremented when Core 1, 3, and

4 ask for acquisition. This example shows that the process of update meets both of the policies that I

have mentioned.

Based on the updated probabilities, individual destinations of spilled lines are chosen by a selector of

weighted round-robin [80]. In the weighted round-robin, the number of times each element is selected

in a period is determined from the selection ratio assigned to it. For example, when elements A, B, and

C has a selection ratio of 5:3:2, the selector sets a period to 5 + 3 + 2 = 10 rounds of selections and

chooses elements so that A, B, and C can be selected 5 times, 3 times, and twice during the period,

respectively.

The weighted round-robin selector has internal counters initialized with corresponding receive prob-

abilities. When a line is allowed to be spilled by the Spiller Selector, which I have explained in the

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 76

�������������	
�

�����������	
������

������ ������

�	

�
�

�����������

�
�������������������

�
�������������������

����������������

�������

�	

�
�

�	�	

�����	

����������	

��������

!���"#�������������

�
������������������

�����$�%�������&�'

(

�����	����������	�����

� �

)

)

Figure 4.15 Detailed organization of Spiller Selector in the highly-precise method.

previous section, the selector chooses one of the counters that has the biggest number among them and

the corresponding core is not the spiller itself. If it chooses a counter except not spill, it decides the

corresponding core as the destination; if it chooses not spill, the evicted line is just removed from chip.

Afterwards, the chosen counter is decremented. When all the internal counters become zero in this

time, they are reset to the value of the receive probability registers.

4.5 Highly-Precise Method
4.5.1 Spiller Selector

The strategy to choose cores suitable for spilling is almost the same between the original method and

the highly-precise method. The only difference between them in choosing spillers is how long the cores

corresponding to the counters that exceed the threshold will be permitted to spilling lines.

Even though some cores frequently refer to recently evicted lines, the number of their detected I-

References in a period may be accidentally less than the threshold, and as a result, they are sometimes

prohibited from spilling. This loses their potential performance gain in some cases.

In order to avoid such opportunity loss, once the number of I-Reference exceeds the threshold, the

corresponding core is permitted to spill for the next few periods, rather than for the next period. It

requires small modification to the generation of the spill permission vector.

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 77

Figure 4.15 depicts the detailed organization of a Spiller Selector in the highly-precise method.

Instead of the spill permission vector, it has spill permission register for each core. The register stands

for the number of remaining periods to be allowed spilling. The spill permission vector is obtained by

arranging the results of the test of whether the registers are non-zero.

The I-Reference counters are updated and compared with the threshold X in the same way as the

original method. If they are more than X, corresponding spill permission registers are set to a predefined

number (3 in the figure), If not, the registers are decremented (unless they are zero).

4.5.2 Receiver Selector

In the highly-precise method, the approach to estimate the negative impacts of spilled lines is widely

different from the original method. I estimate the performance degradation from the number of Ex-

truded I-References, and then restrict or prohibit the acceptance of spilled lines from the estimated

degradation. The numbers of cache hits on spilled lines and that of off-chip accesses, which are used

in the original method, is not considered at this time.

I mention the estimation of the performance degradation by receiving spilled lines. Let T the number

of cycles in a period of update, E the number of Extruded I-References, k the capture rate of Extruded

I-References or how much of the increase of misses are detected by Extruded I-References, and L the

average number of stall cycles. The estimated degradation is as follows:

1 − (cycles with pollution)
(cycles without pollution)

= 1 − T/(T − EL
k

)

=
EL
k
/(T − EL

k
)

= E/(
Tk
L
− E) (4.5)

If E is small, the degradation can be approximated as E/ Tk
L . Although k and L depend on architec-

tures and applications, when we assign their typical values to them, we can now replace the denominator

with a constant. Hence, E or the number of Extruded I-References itself can be used as an index of

performance degradation.

In order to realize the restriction and the prohibition of receiving, I introduce Tp a primary threshold

and Ts a secondary threshold. If the estimated degradation exceeds Tp, the core is prohibited from

receiving spilled lines. If it is between Tp and Ts, the probability that the core is selected as the

destination is gradually reduced in order that the directories can restrict receiving of the cores. Figure

4.16 depicts the relationship between the estimated degradation and the relative probability, where Pmax

is the default (maximum) probability.

I also propose a complementary barometer of relative probability of receiving: a ratio of inactive

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 78

�
�

�
�

�
���

�������	
���	�������	����

�
�
��
��
�
��
�	

�

��
�
�

�

�	������

�	�	�����

�������

�	�	�������
���

(a)

�
�

�
�

�
���

�������	
���	�������	����

�
�
��
��
�
��
�	

�

��
�
�

�

�	������

�	�	�����

�������

�	�	�����

��
���

(b)
Figure 4.16 Restriction and prohibition of receiving evicted lines.

(not quite frequently reused) lines to those accessed by the core itself in the local cache of a core. If

the ratio is small, that is, most of the cache is frequently reused, the potential of spilled lines to degrade

the performance of that core is high. Therefore, the selector decreases Ts or the secondary threshold

for that core so that its probability of being selected as the destination can be reduced easily. Graph (a)

and (b) in Figure 4.16 shows the difference between the case with high inactivity and low inactivity,

respectively. In fact, I modify not the secondary threshold but the slope of the graph (expressed as C in

the figure), with consideration for the ease of implementation.

We can get the ratio in some replacement algorithms. For instance, when we use the RRIP[3], we

can define an active cache line as a line with higher priority than on insertion. If we have the numbers

of active lines and lines accessed by its own core, the ratio is calculated as follows:

1 − the number of active lines
the number of lines accessed by its own core

The numbers can be obtained with small counters.

Each core calculates the ratio with a precision of about 6 bits, and then multicast it to the directories

before they update the probabilities. Although using multicasts is not always a good way in terms

of scalability, since their frequency is very low, the effect on the performance and the scalability is

considered small enough. Furthermore, if needed, we can start the communication sufficiently long

before update and give it lower priority than usual in the interconnections in order to further reduce the

effect. As a result, the effect can be negligibly small.

If we are not able to obtain the ratio, or the cost of multicasts is still critical, we can use the fixed

number among all the cores instead. The ASCEND is still effective in this case. We can understand the

demands of capacity more precisely with this barometer, though.

I now formulate the update of relative probabilities. Let Ea the number of Extruded I-References by

Core a, Tp the primary threshold, I the ratio of inactive lines, and Pmax the maximum probability. The

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 79

�����������	��
��

���������	
���������

�������

������ �������	
��	�

��������	�

���	���

�������

�����������

��������

����
���� ������ ������ ���������

��
��	����	����������	����	��

��������������
�
�������

����������	
������

�	
��	��

���	���

������	���������������

������ ������

�	
��	�������

�	�����������

Figure 4.17 Detailed organization of Receiver Selector in the highly-precise method.

relative probability of Core a, or Pa, is calculated as follows:

Pa =

Pmax (E ≤ (1 − 1/Ic)Tp)

Ic
Tp−E

Tp

Pmax ((1 − 1/Ic)Tp < E ≤ Tp)

0 (E > Tp)

(4.6)

When low probabilities are set to all the cores, the practical possibility of receiving may become

high. This may make the restriction of the acceptance meaningless. To avoid this situation, I add a

choice that corresponds to not spilling the evicted line to any destination. The probability of selecting

such a not spill option, say Pno, is defined as follows:

Pno =

1 (max(P) = 0)
Pmax−max(P)

max(P)
ΣP (0 < max(P) < Pmax)

0 (max(P) = Pmax)

(4.7)

where max(P) is the maximum of probabilities of the cores and ΣP is the sum of them.

Incidentally, Pno is less than NPmax. For a max(P), the maximum of ΣP is N × max(p) (when

P1 = P2 = ... = Pn > 0). Substitute this into Equation (4.7), we obtain the intended inequality:

Pno = N(Pmax −max(P)) < NPmax.

I design the architectural model of Receiver Selector from the formulation. Figure 4.17 shows the

organization of a Receiver Selector. It includes the same number of Extruded I-Reference counters and

cache inactivity factors as the number of cores to calculate the probability. The Extruded I-Reference

counters are unsigned saturating counters incremented on an Extruded I-Reference of the corresponding

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 80

cores. Cache inactivity factors are ratios of inactive lines to those accessed by the corresponding cores.

They are interpreted as fixed-point numbers of about 6 bits.

The probability updater calculates the relative probability of each core with these two values and

Equation (4.6) and stores the result to a register. The results are truncated and expressed as integers.

Unlike the original method, the sum of the values of the registers is not fixed. Since Pno < NPmax, the

register corresponding to Pno is ⌈log2N⌉ bits larger than the others, where ⌈n⌉ represents the smallest

integer that is more than or equal to n.

After calculating the relative probabilities, the way to choose individual destinations of spilled lines

is the same as the original method (i.e. the weighted round-robin selector).

4.5.3 Weak Receiving — An Optional Extension of Receiver Selector

In this section, I propose an optional extension of ASCEND, named Weak Receiving, for achieving

further efficiency. The bases of idea are some modern replacement algorithms — the RRIP[3] and the

SHiP[24], which I have mentioned in Section 2.1.2.

The SHiP applies a technique of dead block prediction to the RRIP. It predicts whether inserted lines

are reused in the future. If the lines are predicted dead (or unlikely to be reused), it gives the lowest

priority to them. Therefore, they soon become the targets of replacement.

Like the SHiP, we can differentiate between two separate kinds of lines by changing the priority

on insertion in the RRIP. Applying this idea to the lines used by its own core and those spilled from

other cores, the former lines can be kept in preference to the latter lines by just following the normal

procedure of RRIP after the insertion. As a result, when the core receives evicted lines frequently, it

can avoid its own cache lines being lost rapidly.

I call the technique that gives lower priority to spilled lines Weak Receiving. The target of the Weak

Receiving is a little large RRIP that requires 3 or more bits for the priority of each line. In a 2-bit RRIP,

the priority of the preferential lines is too close to that of reused lines. It may spoil the advantage of the

RRIP because reused lines are unlikely to remain for long enough.

I consider applying this technique to a 3-bit RRIP, where the highest and lowest priorities are 0 and

7, respectively. In the conventional RRIP, the priority of an inserted line is always 6. In the RRIP with

the Weak Receiving, the priority of an inserted line accessed by its own core is 5; that of a spilled line

accepted from other core is 6.

Of course, giving the same priority can use the cache more efficiently in some cases. Therefore, it is

desirable to prepare a way to use either spilling dynamically. For dynamic modification on the policy, I

fix the priority of one kind of lines and change that of the other kind of lines depending on the situation.

According to my preliminary evaluation, it is slightly better to fix the priority of spilled lines than to

fix that of its own lines.

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 81

���

���

���

���

���

���

��	

��

���

� ��� ���� ���� ���� ���� ���	 � ��� ��� ��� ��� ��	

�
�
��
��
��
��
	
�

�
�
�
�
�
�
�
��
��
�
	

����������	
���������������������

����������������

�������������

����������������

�������������

(a) Ratio of its own lines

����

����

����

����

����

����

����

����

����

� ��� ���� ��		 ��
	 ���� ���� � ��� 	�	
�	 ��� ���

�
�
��
�
��
�
�	

�

����������	
���������������������

����������������

�������������

��������	�������

��������	����

(b) Relative performance

Figure 4.18 Pollution rate vs. percentage of cache lines that are kept local and relative performance.

I now mention the incorporation of the Weak Receiving into the main proposal. Since this technique

focuses on the feature of the RRIP, it is applicable if we also adapt the RRIP as a replacement algorithm.

The point is what index is used for dynamic modification. A feasible index is the receive probability

in the Receiver Selector. If it is less than a certain threshold, the Weak Receiving is considered the

better choice in order to suppress negative impacts of receiving.

Nevertheless, the probabilities are decided independently in each Receiver Selector and the cores do

not know them. We can use one of the following two ways to cope with this: one way is that each core

asks all the directories for the corresponding probability and then sums them up; the other way is that

directories send a flag whether using the Weak Receiving or not along with the forwarded line.

The former way might have a problem of scalability, just as the discussion on multicasts in the Re-

ceiver Selectors, however, it is usually negligible with a careful use. The latter way has a disadvantage

that it is not applicable if we fix the priority of spilled lines. Therefore, I use the former way to switch

two kinds of receiving.

To verify the validity of the Weak Receiving, I confirm that it actually reduces the effect of pollution

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 82

through a preliminary evaluation. I use the multicore environment that I have mentioned in Chapter 3.

Since I run a single application, the number of cores is 1; instead, to emulate the pollution from other

cores, I insert dummy lines in a predefined rate. The target applications are 401.bzip2 and 447.dealII

that are especially sensitive to the pollution. I evaluate varied pollution rates, and measure the ratio of

lines kept local and the reduction in relative performance.

I use a 3-bit RRIP as a replacement algorithm and the priority of its own lines on insertion is set to 5.

I define Normal as the case the priority of spilled lines on insertion is also set to 5 and Weak as the case

it is set to 6. Note that I fix the priority of its own lines in this case in order to equalize the performance

without pollution.

The size of local cache is set to 2MB. The core is not allowed to spill but receives dummy lines in

a fixed rate. The rates vary from 0.1 lines to 6.8 lines per 1,000 instructions, increasing exponentially.

The other parameters are the same as in Chapter 5.

The results of the evaluation are shown in Figure 4.18. The x-axis represents the pollution rate (the

number of inserted lines per 1,000 instructions), and the y-axis represents the ratio of keeping its own

lines (the upper graph) or the relative IPC (the lower graph).

As the pollution rate increases, the number of lines available for its own core is decreased. When it

comes to fail to keep the frequently reused lines, the relative IPC is dropped rapidly. In the rate where

the performance drop begins, Weak is 1.5 to 2 times more than Normal. Moreover, focusing on the

section that is before the drop begins, the ratios of keeping its own lines are almost the same. In other

words, the chance for other cores to find the required lines here is seldom damaged.

From this evaluation, the Weak Receiving was confirmed as an efficient method to accepting more

spilled lines without performance degradation.

4.6 Difference with other spilling optimizations
As I have shown qualitatively in Chapter 2 and quantitatively in Chapter 3, the problem of the existing

methods to manage spilling is that they do not meet both high efficiency and high scalability. In this

section, I describe how ASCEND solves the problem by showing the difference between it and the

existing methods.

The most important difference with the other methods in terms of efficiency is that ASCEND uses

two kinds of units that apply different criteria to analyze the demands of applications on cache capacity.

The DSR (Dynamic Spill-Receive) [8] predicts which spilling or receiving is more suitable by com-

paring the numbers of cache misses in the sampling sets. Similarly, ElasticCC (Elastic Cooperative

Caching) [9] compares the numbers of cache hits on the LRU sets of virtual private region and virtual

shared region. Each core chooses either expanding its private region, expanding its shared region, or

doing nothing, based on the result of the comparison. Both of them use a single criterion for estimating

Chapter 4 Proposal of ASCEND Architecture for Cooperative Caching 83

the demands. ASCEND, on the other hand, utilizes the number of I-References for the estimation of

performance gain and that of Extruded I-References for the detection of performance loss. These two

axes of prediction are useful for precise analysis.

With respect to scalability, the main difference with the DSR, which has poor scalability, is the

elimination of frequent broadcast. The DSR requires that all the core share information of cache misses.

This design looks appropriate for multicore processors where bus-based interconnects and a snooping-

based coherence are common. However, it is not feasible for many-core processors where a network-

on-chip and a directory-based coherence are usually used, because it needs too much communication

for sharing the information. In contrast, ASCEND only requires a minimal number of broadcasts by

having selectors in one directory work independently from those in the others. This keeps ASCEND

scalable and suitable for many-core processors.

4.7 Summary
In this chapter, I mentioned the concept and the architecture of the proposed ASCEND, including the

way to utilize unused entries in the directories, the overall organization, the details of the components,

and its optional extension. In explanation of each unit, I mentioned the principle and the formulation

and then showed the detailed architectural model that followed the formulas and the decision about

spilling and receiving with it.

I also proposed the Weak Receiving as an optional extension of ASCEND. It was based on a feature

of a modern cache replacement algorithm. I referred to the idea, the application, and the validity of it.

84

Chapter 5

Evaluation of ASCEND

In this chapter, I mention the results of the evaluation of ASCEND that are proposed in the previous

chapter, and some discussions based on the results. I first show the evaluation results for the multicore

and many-core environments in Section 5.1 and Section 5.2, respectively. Secondly, I calculate the

amount of the additional hardware in both the environments. Lastly, I have some discussions with the

results and additional data.

5.1 Evaluation Results for Multicore Environment
In this section, I evaluate the proposal in the multicore environment. I add the following 4 settings to

what I have evaluated in Chapter 3:

ASCEND-O stands for the original method of ASCEND that I have defined in Section 4.4.

ASCEND-H represents the highly-precise method of ASCEND that I have defined in Section 4.5.

ASCEND-H w/o WR means the highly-precise method of ASCEND without applying the Weak Re-

ceiving.

ASCEND-H fixed-CIF means the highly-precise method of ASCEND where the cache inactivity

factors are fixed to 1.

I evaluate ASCEND-H w/o WR and ASCEND-H fixed-CIF for inspection of the change of efficiency

by the Weak Receiving and the cache inefficiency factor, respectively.

In all of them, as the corresponding part to extra directory entries, I add a tag array with a half as

many elements as the number of cache lines to the controllers of ASCEND. The tags of evicted lines

that were marked as live by the dead block predictors are recorded in the array. The array is referenced

on L3 miss. If the requested tag is found in the array, it is detected as an I-Reference (and an Extruded

I-Reference).

I mention the parameters of ASCEND. For the Spiller Selectors, I set the period for update to 250k

cycles, the parameter k to 4/5, and the number of successive periods for which spilling is granted (in

ASCEND-H) to 3. For the Receiver Selectors in the original method, I set the period to 250k cycles,

Chapter 5 Evaluation of ASCEND 85

��

��

��

��

��

�������������

�
�
��
�
�
�
�
�
�

���������	
��
���	�����

	
��� ��� ���������
�	� �	����	 �	������
�	�������� ��!� �	�������"�#���$% �	�����&

Figure 5.1 Comparison of performance and QoS of ASCEND with the other methods in the mul-
ticore environment.

the same as the Spiller Selectors, and the parameters l and t to 3/4 and 1/16, respectively. For the

Receiver Selectors in the highly-precise method, I set the period to 1M cycles, the threshold Tp to 256,

the maximum relative probability Pmax to 15, and the coefficient c to 2.

These parameters take effects on the activeness of spilling, the activeness of receiving, and the hard-

ware amount. For small k, the threshold for spilling permission gets small and thus the activeness of

spilling is increased. Larger l makes the importance of hits on the spilled lines greater, and larger t

makes the threshold for decreasing the probability to receive evicted lines larger. Both of them result

in the increased activeness of receiving. Similarly, when Tp or c get large, the threshold for restriction

or prohibition of receiving also gets large and thus the activeness of receiving is increased.

There is appropriate balance of the activeness. If they are too small, the controllers may miss the

chance of improvement with spilling. On the other hand, if they are too large, some cores are harmed by

spilled lines and thus the QoS is degraded. In addition, Tp also depends on the average number of stall

cycles in the adopted architecture. I set the appropriate parameters above with preliminary evaluations.

For the length of the counters, I use 8-bit I-Reference counters, 10-bit fairness counters or Extruded

I-Reference counters, and 6-bit cache inactivity factors. In the original method, all of the probability

registers are set to 6-bit. In the highly-precise method, the probability registers for the cores are 4-bit

and that for Not Spill is 6-bit. They are the minimal sufficient lengths to make almost the same decision

as setting the lengths to infinite.

Chapter 5 Evaluation of ASCEND 86

����

����

����

����

����

����

����

����

����

� �� 		
� �� �� �� ��	 ��� �
� ��� ���

�
�
��
�
��
�
�	

�

��������

�

���

�������

�������

�������

Figure 5.2 Relative IPC distribution in the multicore environment.

Figure 5.1 shows the result. ASCEND-O did not have better throughput than DSR, although it had

almost the same maximum IPC loss as DSR. The relative IPC improvement was 2.3% and the maximum

IPC loss was 2.7% on average. To the contrary, ASCEND-H had almost the same performance as DSR

and better QoS than not only DSR but also DSR-QoS. The improvement of average relative IPC was

3.3% (looking more closely, DSR performed just 0.04% better than ASCEND-H), and the average of

the maximum IPC loss was 1.8%. This result means that ASCEND-H has better efficiency than DSR.

ASCEND-H w/o WR, or not applying the Weak Receiving, mainly affected performance. The aver-

age improvement of relative IPC was 2.8% and the average of the maximum IPC loss was 1.9%. On the

other hand, ASCEND-H fixed-CIF, or using the fixed cache inactivity factor, had an influence chiefly

on QoS. The relative IPC gain was 3.2% and the maximum IPC loss was 2.5%, on average.

I now analyze the difference among DCC, DSR, DSR-QoS, ASCEND-O, and ASCEND-H. Figure

5.2 shows the graph plotting the distribution of relative IPCs of all the workloads that are sorted from

lowest to highest. The x-axis represents individual applications. Since there are 48 workloads each of

which consists of 4 applications, each line consists of 192 points. The y-axis is relative IPC.

DCC (with no limitation on spilling) has remarkable difference from DSR, DSR-QoS and ASCEND-

H from 1st point through 48th and from 97th through 144th. This implies that unregulated spilling not

only degrades the performance of cores that are sensitive to reduction in cache size, but also limits the

improvement of cores that essentially benefit from spilling.

ASCEND-O did not perform well from 97th point through 144th, although it had similar perfor-

mance to DSR and DSR-QoS on the others. It means that ASCEND-O failed to obtain the possible

improvement of some applications. This seems to come from misprediction on their demands on cache

capacity. However, judging from the performance of the slowed applications (in the left half of the

Chapter 5 Evaluation of ASCEND 87

��

��

��

��

��

��

��	
� ��	
� ��	
� ��	
� ��	
� ������

�
�
�
��
�
�
�
�
	
�

�
�
��

�
�
�

�
�
��
�
��

����������	
	����

���	�� ����
��� ���� !
"

(a)

��

��

��

��

��

��

��

	�
�� 	�
�� 	�
�� 	�
�� 	�
�� ������

�
�
�
��
�
�
�
�
	
�

�
�
��

�
�
�

�
�
��
�
��

����������	
��������

���
�� ��������� ��� !"�#

(b)
Figure 5.3 Throughput variation with adopting options of ASCEND.

graph), the limitation of receiving evicted lines of them itself works well.

Comparing ASCEND-H with DSR and DSR-QoS, it outperformed them from 1st through 32nd,

performed similarly to DSR-QoS from 33rd through 144th, and worked similarly to DSR from 145th

through 192nd. The intension of suppressing the performance drop of sensitive cores by the sacrifice

of the improvement of some cores is common to DSR-QoS and ASCEND-H, however, the effects

differed. DSR-QoS penalizes misses from slowing cores. Nevertheless, it might change the penalties

too late because the time required for precise decision was long. In contrast, ASCEND-H succeeded in

estimating the negative impact precisely with shorter interval of time than DSR-QoS.

Lastly, I mention the effect of the Weak Receiving and the cache inactivity factor. Figure 5.3 shows

the average relative IPC of ASCEND-H w/o WR, ASCEND-H fixed-CIF, and ASCEND-H with respect

to each division of workloads. I divide the workloads by the number of applications that have high

spilling necessity (in graph (a)) or high pollution sensitivity (in graph (b)). The x-axis represents each

division. A bar with the label “+A -B” stands for the weighted mean of workloads that is made up from

A applications with high indexes and B applications with low indexes. A bar with the label Overall

means the weighted mean of all the workloads.

In both the graphs, if a workload included a large number of applications with high indexes, the

difference of ASCEND-H w/o WR with ASCEND-H got higher. In particular, it had remarkable ten-

dency for spilling necessity. When the workload includes a number of applications with high spilling

necessity, the number of spilling becomes large. This can became easy for the Weak Receiving to exert

its effect of accepting many lines without degradation.

Comparing ASCEND-H fixed-CIF with ASCEND-H in graph (a), when there were three or more

spilling-necessary applications, the variable cache inactivity factors took a negative effect on perfor-

mance. However, when up to one application had high spilling necessity, they took a positive effect.

The use of the variable factors reduces the relative receive probability of some applications and, as a

result, the chance of spilling. Even though it becomes some overhead in the former case, it avoids the

Chapter 5 Evaluation of ASCEND 88

��

��

��

��

��

������������

�
�
��
�
�
�
�
�
�

���������	
��
���	�����

�		
�����		 ���

��	
���� ��	
����

Figure 5.4 Comparison of performance and QoS of ASCEND with the other methods in the many-
core environment.

serious performance loss of some cores in the latter case. Thus, it improves mostly the QoS.

5.2 Evaluation Results for Many-core Environment
I then evaluate ASCEND in the many-core environment. In addition to what I have evaluated in Chapter

3, I also evaluate ASCEND-O and ASCEND-H.

Unlike the multicore environment, ASCEND-H does not apply the Weak Receiving and the variable

cache inactivity factors, because the base architecture does not adapt either dead block prediction or

the RRIP.

Most of the parameters of ASCEND-O remain unchanged. However, the length of the probability

registers is set to 8 bits in order to keep the average number of them almost the same as that in the

multicore environment.

I use the same parameters of ASCEND-H as those shown in the previous section, except the threshold

of the Receiver Selectors, or Tp, of 16. The reasons for the change are twofold: one is that the average

number of detected Extruded I-Reference in a period is divided by the number of directories; the other is

that the influence of a cache miss in out-of-order processors, where the latency of a miss is sometimes

hidden, is smaller than that in out-of-order processors. Along with this, I modify the length of the

Extruded I-Reference counters to 6 bits.

Figure 5.4 shows the results in the many-core environment. ASCEND-O showed a little better per-

formance than ElasticCC and the best QoS among all the methods. The average throughput gain was

3.4% and the average of the maximum performance loss was 1.5%. ASCEND-H worked the best in

Chapter 5 Evaluation of ASCEND 89

���

���

��

��

��

��

��

��

	�

�

� � � � �������

���������	�

��	�������

�����

���������	
�������	����
����	���
�����

��� ��������� ���

������� ��������

Figure 5.5 Performance in the many-core environment. Workloads are grouped by included application.

performance among these methods, though its QoS is a little lower than ElasticCC. The throughput

improvement was an average of 3.9% and the maximum throughput loss was an average of 2.5%.

I now analyze the result in detail. Figure 5.5 shows the improvement of the average throughput with

respect to each division of workloads. Each group of bars other than Overall represents the arithmetic

mean of average throughput of workloads that includes the corresponding application to the label. The

number of workloads including a specific application is 35 (out of 70). Overall means the average of

all the 70 workloads.

ASCEND-H performed the best other than workloads including L (lu), where ASCEND-O showed

the best performance. In particular, for workloads that comprise E (equation) that tends to pollute other

caches, only both ASCEND showed the better performance than Private do.

The pollution of caches by the spilled lines that are unlikely to be reused might be removed with

dead block prediction, just as I did in the multicore environment. However, the problem is that it is

not sure whether it matches its hardware cost. Although the hardware amount of per-line traces is

proportional to the cache size, the size of per-trace predictors (typically several kilobytes) does not

depend on the cache size. As a result, the cost of predictors gets large for small caches. It discourages

us from applying dead block prediction.

ASCEND prevents harmful cores from spilling their lines. According to Figure 5.5, this enables

the caches to reduce the negative effect by unused spilled lines without dead block prediction, and

contributes to the improvement of the other cores.

Based on the comparison between the two methods of ASCEND, workloads including an applica-

tion that can benefit from spilling (H or Q) had a large difference in performance. Nevertheless, they

performed almost the same in workloads containing an application that can negatively affect the others

Chapter 5 Evaluation of ASCEND 90

(E) or that can be badly affected (L). These results imply that the original method is essentially more

conservative than the highly-precise method.

5.3 Hardware Overhead
In this section, I evaluate the hardware overhead of ASCEND from its parameters in each environment.

First of all, I calculate the overhead of ASCEND-H in the multicore environment. The total amount

of registers per core that the two selectors require is 34 bits. The “not spill” registers in the receiver

selector demand 12 bits. Therefore, the total memories in the selectors is 34 × 4 + 12 = 148 bits. In

addition, each cache requires two 16-bit counters (the number of lines can be expressed in 16 bits) to

calculate the cache inactivity factor and a 6-bit counter for the Weak Receiving. After all, the total

amount of required memory is 148 + (16 × 2 + 6) × 4 = 300 bits.

Secondly, I compute the overhead of ASCEND-H in the many-core environment. Since the per-core

registers in the selectors need 24 bits and the “not spill” registers require 16 bits, additional memory

per directory is 24×32+16 = 784 bits. By multiplying it by the number of directories, the total amount

of required memory becomes 784 × 8 = 6, 272 bits.

In the same manner, the hardware overhead of ASCEND-O is calculated at 31× 4+ 12 = 136 bits in

the multicore and (35 × 32 + 16) × 8 = 9, 088 bits in the many-core.

I also calculate the overhead of other methods. ElasticCC requires three kinds of hardware to each

core: a register for the current number of virtual private ways, a counter for the decision of reparti-

tioning, and a Spilled Block Allocator that decides the destination of spilled lines in proportion to the

number of virtual shared ways. The register is 3-bit (for 8-way caches) or 4-bit (for 16-way). Though

the length of the counter is not mentioned in [9], an 8-bit counter is sufficient as far as I know. The

Spilled Block Allocator requires the number of ways minus one bit per core (note that at least one

way is always virtually private). The sum of these is (4 + 8 + 4 × 15) × 4 = 288 bits in the multicore

environment, or (3 + 8 + 32 × 7) × 32 = 7, 520 bits in the many-core environment.

Finally, for DSR, the only additional hardware is a 10-bit counter (called PSEL) per core for judging

strategy of the corresponding core. If all the cores can access a single group of common counters,

the total overhead is 40 bits in the multicore environment or 320 bits in the many-core environment.

However, it can be impractical to read the shared counters every time spilling is needed. Instead, if

each core has a group of counters independently, and synchronizes them when needed, the overhead is

multiplied by the number of cores. As a result, the required memory becomes 160 bits in the multicore

environment or 10,240 bits in the many-core environment.

From these results, ASCEND has almost the same hardware overhead as other methods. Even in

absolute terms, the amount of about 1KB is very small. Hence, the additional hardware amount is not

likely to affect the validity of ASCEND negatively.

Chapter 5 Evaluation of ASCEND 91

���

��

��

��

��

��

��

	�

����
����
����
����
���� ������

�
�
�
��
�
�
�
�
	
�

�
�
��

�
�
�

�
�
��
�
��

����������	
�������	�

���

���

��������

Figure 5.6 Throughput in the multicore environment. Workloads are grouped by improvement uniformity.

5.4 Discussion
5.4.1 How did ASCEND classify the demands in capacity?

I discuss the difference between DSR and ASCEND-H from another perspective. In the benchmark

selection, I have divided the applications by the two axes, that is, the spilling necessity and the pollution

sensitivity. If the heights of these standards match, the tendency of performance loss according to the

reduction of cache size and that of performance gain according to the additional cache also match. In

short, such application has uniform improvement.

I define it as a new axis, which is named improvement uniformity, whether the heights of the two

indexes match. Applications in Class A and C are considered to have high improvement uniformity;

Class B and D are regarded to have low improvement uniformity (see also Figure 3.8). I divide the

workloads by the number of applications with high improvement uniformity, and compare the average

performance for each division.

Figure 5.6 shows the average relative IPC of DCC, DSR and ASCEND-H with respect to each

division of workloads. Just like Figure 5.3, the label “+A -B” means workloads that are composed of A

applications with high uniformity and B applications with low uniformity.

According to the figure, while ASCEND-H worked worse than DSR in workloads including two

or more applications with high uniformity, ASCEND-H outperformed DSR in those including zero or

one application with high uniformity. For most applications that have uniform improvement, it is the

most suitable strategy to only spill evicted lines (if performance will be improved) or to only receive

Chapter 5 Evaluation of ASCEND 92

�

��

��

��

��

���

�
�
��
�
�
��
�
�
	

�	
�
�
�
�
	�
�
�
��
�

����������	

(a)

�

��

��

��

��

���

�
�
��
�
�
��
�
�
	

�	
�
�
�
�
	�
�
��
�
�
�

����������	

(b)
Figure 5.7 The percentage of being spiller and that of being receiver in DSR.

�

��

��

��

��

���

�
�
��
�
�
��
�
�
	

�	
�
�
�
�
	�
�
�
��
�

����������	

(a)

�

�

�

�

��

��

�
�
�
��
�
�
��
�
	�

�
�
��
��

�

�

�
�

����������	

(b)
Figure 5.8 The percentage of being spiller and the average receive probability in ASCEND-H.

the spilled lines (if not). These applications suit DSR. On the other hand, some applications that have

non-uniform improvement may require other strategies than those that DSR offers. ASCEND-H can

benefit from such applications.

Figure 5.7 and 5.8 describe what strategy DSR and ASCEND-H actually employed on each applica-

tion, respectively. The x-axis represents individual applications. Applications that belong to the same

class are shown in bars colored the same color. The y-axis in Figure 5.7 (a) and Figure 5.8 (a) is the

rate of time that the core is permitted to spill. The y-axis is Figure 5.7 (b) is the rate of time that the

core is permitted to receive. The y-axis is Figure 5.8 (b) is the average of the relative probability that

the core is chosen as the receiver. In short, a bar in graph (a) means aggressiveness of spilling and that

in graph (b) stands for activeness of receiving. Note that the sum of (a) and (b) in Figure 5.7 always

equals to 100%, because DSR necessarily permits either spilling or receiving.

For 9 applications other than dealII, sphinx3, and astar, the tendencies of the graphs are similar.

However, for applications in Class A and C, DSR chose the strategy more extremely than ASCEND-H.

This fluctuation of judgment in ASCEND-H is considered a reason why my method performs worse

than theirs in some applications.

For dealII and sphinx3, ASCEND-H was reluctant to both spilling and receiving, that is, it predicted

Chapter 5 Evaluation of ASCEND 93

� � �

�

�

� �

� �

� � �

�

�

�

�

� � � �

� � � �

� � � �

� � � �

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

���	�
�

�����

����

���

�

�

�

�

�

	

�

� � � �

(a)

� � �

�

�

� �

� �

� � �

�

�

�

�

� � � �

� � � �

� � � �

� � � �

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

��� ����

���� ����

���	�
�

�����

����

���

�

�

�

�

�

	

�

� � � �

(b)
Figure 5.9 An example of the difference in latency by the distance between the requester and the holder.

that it was the best strategy to refrain from both of them. This implies that the division of DSR of

spillers and receivers is not sufficient. One of the reasons why ASCEND-H outperformed DSR in some

workloads is the proper treatment of such applications. The existence of applications like dealII and

sphinx3 and its importance have already been noted [10]. As a variation of DSR, DSR with three states

(DSR-3S) that divided cores into spillers, receivers, and neutral was studied in [10].

In ASCEND-H, astar shows the different tendency from the others: it estimates that applying both

spilling and receiving is the best strategy. This implies the potential for the fourth strategy. The other

reason of the improvement of ASCEND-H is such a judgment on astar.

Nevertheless, the existence of applications such as astar is against intuition, If the core has borrowing

region and lending region at the same time, it is natural to use the lending region by the core itself. I am

not sure what behavior of astar causes such a judgment. If we analyze its behavior more closely, we

may make a new discovery about the demands on capacity of caches and thus improve the efficiency of

caches more.

5.4.2 Should we consider the distance between cores?

In the many-core environment, if a requested cache line is found in a remote cache, its latency varies

according to positional relation among the requesting core, the corresponding directory, and the core

holding the data. Figure 5.9 shows examples of such variation. In the explanation below, I express a

core and a directory located at a coordinate (x, y) as Core (x, y) and Directory (x, y), respectively.

In both cases, Core (1, 8) sends a request to Directory (3, 5). I assume the requested line is found

in a remote core that is different between the examples: Core (2, 7) in example (a) and Core (4, 1) in

example (b).

A series of communication is shown by the arrows of Request, Forward, and Data. The total numbers

Chapter 5 Evaluation of ASCEND 94

���

��

��

��

���

���

���

	
 � � �������

���������	�

��	�������

�����

���������	�
�������

���
�	�� 	��� 	���

Figure 5.10 Throughput of distance-aware ASCEND.

of hops required are 10 in (a) and 20 in (b). When I assume communication latency of 3 cycles per hop,

the difference in latency between the examples is as long as 30 cycles.

This difference in latency reminds us that it may be needed to consider the distance between cores

on spilling. In fact, a previous study [81] tried to improve the performance and reduce the power

consumption of network by limiting the destination of spilled line to the nearby cores.

For this reason, I now define a variation of ASCEND, named DA-ASCEND (Distance-Aware AS-

CEND), and explore it. Since just limiting the destination does not suit ASCEND, I realize distance-

awareness by giving priority in the selection of the destination.

I modify the Weighted Round-robin in the Receiver Selector for DA-ASCEND. In the original AS-

CEND, if multiple candidates for the destination are found, that is, multiple counters have the same

highest value, the destination is selected by a fixed priority. In DA-ASCEND, at this time, when a

nearby core is included in the candidates, it is preferentially chosen as the destination. This prioritiza-

tion is realized by an additional bit to the LSB of each counter. The bit is set when the corresponding

core is near the requesting core. Since I can predefine whether a pair of cores are near, it requires a

ROM of the number of bits up to the square of the number of cores.

I evaluate the performance of DA-ASCEND. The environment and parameters are the same as the

many-core evaluation. In addition to the highly-precise method of ASCEND (ASCEND-H) that is used

as a baseline, I measure the throughputs of two kinds of DA-ASCEND: DA-1 represents DA-ASCEND

that regards the cores within 1 hop from, that is, the left, right, top and bottom of the requesting core as

nearby cores; DA-2 stands for DA-ASCEND that considers the cores within 2 hops from the requesting

cores as nearby cores. The numbers of cores that is near a specific core in DA-1 and DA-2 is 2-4 and

5-11, respectively.

Chapter 5 Evaluation of ASCEND 95

Figure 5.10 shows the result of evaluation for DA-ASCEND. Each group of bars except Overall rep-

resents the average throughput improvement of the corresponding application (not workloads including

the corresponding application) over Private. Overall means the average of all the 70 workloads. Not

being shown in the figure, the probabilities that the selectors got different destination by prioritizing

nearby cores in DA-1 and DA-2 were 20% and 31%, respectively.

In respect of the overall performance, both DA-1 and DA-2 performed slightly worse than the base-

line. The improvements of average throughput of the baseline ASCEND, DA-1, and DA-2 over Private

were 3.9%, 3.8%, and 3.7%, respectively.

In particular, the performance was decreased in H (himeno). When I analyzed the time waiting

for the data for each core, it was decreased in the cores near the center; however, it was equal to or

increased in the cores near the corner. If the nearby cores are restricted to receiving, spiller cores do

not benefit from distance-awareness. This may become the performance bottleneck.

On the other hand, DA-ASCEND showed better performance in Q (qsort). Since Q has different

access pattern by core and time, distance-aware receiving often occur. As a result, it become easy to

benefit from distance-awareness.

What this result implies is that the merit of distance-awareness on spilling is small at present.

Whether distance-awareness perform well or not depends on the distribution of the demands on ca-

pacity. That is to say, it is possible that placing cores that run the same application in a mass perform

worse than daring to distribute them. However, this is a kind of problems of task placement and should

be studied in another time.

5.5 Summary
I showed the evaluation result for confirming the validity of ASCEND in this chapter. Comparing with

DSR and ElasticCC that has either performance or scalability, ASCEND showed higher efficiency of

caches than both of them. It is the proof of the achievement by ASCEND of both performance and

scalability. In addition, I calculated the hardware overhead and clarified its small amount of additional

hardware.

Also in this chapter, I make some discussion based on the results. The especially interesting dis-

covery is the existence of applications that are suitable for spilling and receiving at the same time.

Analyzing the behavior of such applications in detail may become a help to further improve the effi-

ciency of caches.

96

Chapter 6

Conclusions

6.1 Concluding Remarks
The importance of the efficient management of the last level caches (LLCs) is increased for the future

many-core era. I focused on the Distributed Cooperative Caching (DCC), which could achieve low

latency, independence of performance, flexibility on capacity, and high scalability. For efficient use of

the DCC, optimizing one of its features, spilling, is required. However, there were no previous methods

that achieved both high efficiency and high scalability.

The contributions that this thesis provided were threefold:

• to classify recent methods for cache optimization and show a direction to researches on this area;

• to show the implementation of a useful simulation infrastructure for research on many-core

processor with shared memory; and

• to show a highly-efficient and scalable spilling to make use of the scheme of cooperative caches.

As one of the secondary contribution, I classified many recent researches for improving caches from

its focus and intention. Some of them utilized the technique and the knowledge in not only their

own category but also other categories. I believe that such mixture becomes hints of efficient cache

management. I would be glad if my classification become a clue of a novel approach.

As the other secondary contribution, I showed the implementation of an infrastructure for research

on many-core processors with shared memory. Its literal core is a MIPS system simulator SimMips. In

this thesis, I showed that the simulators were described carefully for usability and it could evaluate a

32-core many-core in practical time. The developed infrastructure will be published as free software,

after arrangement and review of the source code.

The primary contribution was to show methods for the cooperative caches that achieved both high

efficiency and high scalability. The proposed architecture, ASCEND, was one of them. ASCEND

utilize the extra entries in the directories, which is also a feature of the DCC, as hints for analyzing

the demands on capacity of the caches. Its controllers are called the Spiller Selector and the Receiver

Chapter 6 Conclusions 97

Selector. It achieves the efficiency by estimating the behavior of caches more precisely with these two

controllers. In addition, distributing the units in the chip and analyzing independently with each unit

improves the scalability. I evaluated the efficiency in 4-core and 32-core environments. In the 4-core,

my method was more efficient than an existing efficient but non-scalable method. In the 32-core, it

outperformed a scalable but not-so-efficient method. From these results, I confirmed that ASCEND

was good at both performance and scalability.

6.2 Open Research Areas
There are several directions of future researches in this area. The following are some of them:

• to relieve the limitations,

• to analyze the fourth category of applications in more detail,

• to combine with future interconnections, and

• to examine the feasibility with hardware prototyping.

I refer to respective directions below.

First of all, we should relieve the limitations of ASCEND. As we have seen in the evaluation, al-

though ASCEND shows high performance and QoS, it still has some limitations. A relief from them

obviously remains as future work for more efficient and scalable methods.

One of the limitations is that the fluctuation of judgment may reduce the performance gain for appli-

cations that are obviously suitable for just spilling or just receiving. This caused the performance loss

over the DSR in some combinations of applications in the multicore environment. We should analyze

the reason and give more precise standards for judgment.

Another limitation is that we can apply some additional techniques to ASCEND only with a specific

cache replacement algorithm. ASCEND has a mechanism of cache inactivity that enhance the restric-

tion of receiving according to the degree of cache reuse. However, this mechanism assumes a specific

replacement algorithm and not applicable to the LRU, the most typical algorithm. The same holds true

for the Weak Receiving. These might affect some application negatively in the many-core environment.

We can modify them to be applicable to various replacement algorithms.

Secondly, the fourth category of applications that are found by ASCEND, that is, applications where

spilling their lines and receiving lines of others at the same time contribute to the performance are

worth being analyzed. The characteristics of the first and the second categories are extracted by the

DSR. The importance of the third category where neither spilling nor receiving is appropriate has

already been pointed out. However, the fourth category that I revealed has not yet been inspected.

Finding other applications in this category and considering what kind of demand on capacity generates

it are remained as future work.

Chapter 6 Conclusions 98

Thirdly, I used just common organization and parameters in the interconnection among the cores.

However, for future network-on-chips, lots of methods and architectures have been proposed in recent

years. For example, a photonic network-on-chip [82] is said to achieve much higher bandwidth and

lower power consumption than conventional electrical NoC. Such alternative interconnections can even

change the concept of scalability. Hence, we should keep an eye on the trend and consider methods of

cache optimization with the future interconnections.

Lastly, I used software simulators for the evaluations in this thesis. Even though I designed the

proposed architecture in consideration of the feasibility in hardware, and confirmed its behavior by a

cycle-level software simulator, more precise verification in feasibility requires hardware prototyping.

As a hardware infrastructure of many-core prototyping, we have proposed ScalableCore System [83],

which has been corresponding to SimMc. If we extend ScalableCore so that cooperative caches can

work on it, and verify the feasibility of ASCEND, its availability will be further increased.

99

Acknowledgements

I would like to express my deep gratitude to Associate Prof. Kenji Kise. He has been my supervisor and

has supported me for 6 years from a bachelor student to a doctoral student in Tokyo Tech. His constant

support, guidance, and encouragement has been essential for me to complete my thesis. In addition, he

provided me with a comfortable research environment in Kise Laboratory. I also would like to thank all

the members at Kise Laboratory, particularly Mr. Shimpei Sato and Mr. Shinya Takamaeda–Yamazaki,

for active discussions and helpful advice.

I would like to sincerely thank Prof. Haruo Yokota, Associate Prof. Suguru Saito, Associate Prof.

Takuo Watanabe, and Lecturer Haruhiko Kaneko for careful review and fruitful suggestion as members

of the thesis committee.

A part of the development of SimMips, the core of the simulation infrastructures, was supported by

Core Research for Evolutional Science and Technology (CREST), JST.

While I have studied as a master and doctoral student, I had worked as a president of MieruPC

Inc., a venture company based on MieruPC or a research accomplished in Kise Laboratory, for two

years. I would like to deeply thank all the people who gave me some helpful feedback about it, in

particular Associate Prof. Hironori Nakajo at Tokyo University of Agriculture and Technology and

Lecturer Ryotaro Kobayashi at Toyohashi University of Technology. I would like to thank Ms. Makiko

Kawabata at Tokyo Electron Device Ltd. for support in sale and spread of MieruPC. I’m also thankful

to Mr. Ryosuke Sasakawa for taking over the operation of the company.

In addition, I would like to deeply thank stage managers at Chor Kleines. Working there taught me

not only how to manage concerts but also a way for self-management.

Finally, I am deeply grateful to my parents for a wide variety of support during the years of my

studies.

100

Bibliography

[1] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach Fifth

Edition. Morgan Kaufmann, 2011.

[2] Samira Manabi Khan, Yingying Tian, and Daniel A. Jimenez. Sampling Dead Block Predic-

tion for Last-Level Caches. In Proceedings of the 2010 43rd Annual IEEE/ACM International

Symposium on Microarchitecture, pp. 175–186, 2010.

[3] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel Emer. High performance cache

replacement using re-reference interval prediction (RRIP). In Proceedings of the 37th annual

international symposium on Computer architecture, pp. 60–71, 2010.

[4] Moinuddin K. Qureshi and Yale N. Patt. Utility-Based Cache Partitioning: A Low-Overhead,

High-Performance, Runtime Mechanism to Partition Shared Caches. In Proceedings of the 39th

Annual IEEE/ACM International Symposium on Microarchitecture, pp. 423–432, 2006.

[5] Jichuan Chang and Gurindar S. Sohi. Cooperative Caching for Chip Multiprocessors. In Pro-

ceedings of the 33rd annual international symposium on Computer Architecture, pp. 264–276,

2006.

[6] Enric Herrero, José González, and Ramon Canal. Distributed cooperative caching. In Proceedings

of the 17th international conference on Parallel architectures and compilation techniques, pp.

134–143, 2008.

[7] Bradford M. Beckmann, Michael R. Marty, and David A. Wood. ASR: Adaptive Selective Repli-

cation for CMP Caches. In Proceedings of the 39th Annual IEEE/ACM International Symposium

on Microarchitecture, pp. 443–454, 2006.

[8] M.K. Qureshi. Adaptive Spill-Receive for robust high-performance caching in CMPs. In Proceed-

ings of the 15th IEEE International Symposium on High Performance Computer Architecture, pp.

45–54, 2009.

[9] Enric Herrero, José González, and Ramon Canal. Elastic cooperative caching: an autonomous

dynamically adaptive memory hierarchy for chip multiprocessors. In Proceedings of the 37th

annual international symposium on Computer architecture, pp. 419–428, 2010.

[10] Dyer Rolan, Basilio B. Fraguela, and Ramon Doallo. Adaptive Set-Granular Cooperative

Caching. In Proceedings of the 18th IEEE International Symposium on High-Performance Com-

Bibliography 101

puter Architecture, pp. 1–12, 2012.

[11] Naoki Fujieda, Shimpei Watanabe, and Kenji Kise. A MIPS System Simulator SimMips for

Education and Research of Computer Science. IPSJ Journal, Vol. 50, No. 11, pp. 2665–2676,

2009.

[12] An-Chow Lai and B. Falsafi. Selective, accurate, and timely self-invalidation using last-touch

prediction. In Proceedings of the 27th annual international symposium on Computer architecture,

pp. 139–148, 2000.

[13] Alvin R. Lebeck and David A. Wood. Dynamic self-invalidation: reducing coherence overhead

in shared-memory multiprocessors. In Proceedings of the 22nd annual international symposium

on Computer architecture, pp. 48–59, 1995.

[14] An-Chow Lai, C. Fide, and B. Falsafi. Dead-block prediction & dead-block correlating prefetch-

ers. In Proceedings of the 28th annual international symposium on Computer architecture, pp.

144–154, 2001.

[15] Samira M. Khan, Daniel A. Jiménez, Doug Burger, and Babak Falsafi. Using dead blocks as a

virtual victim cache. In Proceedings of the 19th international conference on Parallel architectures

and compilation techniques, pp. 489–500, 2010.

[16] Jaume Abella, Antonio González, Xavier Vera, and Michael F. P. O’Boyle. IATAC: a smart

predictor to turn-off L2 cache lines. ACM Transactions on Architecture and Code Optimization,

Vol. 2, No. 1, pp. 55–77, 2005.

[17] M. Kharbutli and Yan Solihin. Counter-Based Cache Replacement and Bypassing Algorithms.

IEEE Transactions on Computers, Vol. 57, No. 4, pp. 433–447, 2008.

[18] Haiming Liu, Michael Ferdman, Jaehyuk Huh, and Doug Burger. Cache bursts: A new approach

for eliminating dead blocks and increasing cache efficiency. In Proceedings of the 41st annual

IEEE/ACM International Symposium on Microarchitecture, pp. 222–233, 2008.

[19] L. A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM Systems

Journal, Vol. 5, No. 2, pp. 78–101, 1966.

[20] Kaushik Rajan and Govindarajan Ramaswamy. Emulating Optimal Replacement with a Shepherd

Cache. In Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchi-

tecture, pp. 445–454, 2007.

[21] G. Keramidas, P. Petoumenos, and S. Kaxiras. Cache replacement based on reuse-distance predic-

tion. In Proceedings of 25th IEEE International Conference on Computer Design, pp. 245–250,

2007.

[22] Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and Yale N. Patt. A Case for MLP-Aware

Cache Replacement. In Proceedings of the 33rd annual international symposium on Computer

Architecture, pp. 167–178, 2006.

Bibliography 102

[23] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel Emer. Adaptive

insertion policies for high performance caching. In Proceedings of the 34th annual international

symposium on Computer architecture, pp. 381–391, 2007.

[24] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh, Margaret Martonosi, Simon C. Steely, Jr., and

Joel Emer. SHiP: signature-based hit predictor for high performance caching. In Proceedings of

the 44th Annual IEEE/ACM International Symposium on Microarchitecture, pp. 430–441, 2011.

[25] Daniel Sanchez and Christos Kozyrakis. The ZCache: Decoupling Ways and Associativity. In

Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 187–198, 2010.

[26] Sun Microsystems. UltraSPARC T2 supplement to the UltraSPARC architecture 2007, 2007.

[27] Anant Agarwal and Stephen D. Pudar. Column-associative caches: a technique for reducing the

miss rate of direct-mapped caches. In Proceedings of the 20th annual international symposium

on computer architecture, pp. 179–190, 1993.

[28] André Seznec. A case for two-way skewed-associative caches. In Proceedings of the 20th annual

international symposium on computer architecture, pp. 169–178, 1993.

[29] Moinuddin K. Qureshi, David Thompson, and Yale N. Patt. The V-Way Cache: Demand Based

Associativity via Global Replacement. In Proceedings of the 32nd annual international sympo-

sium on Computer Architecture, pp. 544–555, 2005.

[30] Aamer Jaleel, William Hasenplaugh, Moinuddin Qureshi, Julien Sebot, Simon Steely, Jr., and Joel

Emer. Adaptive insertion policies for managing shared caches. In Proceedings of the 17th inter-

national conference on Parallel architectures and compilation techniques, pp. 208–219, 2008.

[31] Yuejian Xie and Gabriel H. Loh. PIPP: promotion/insertion pseudo-partitioning of multi-core

shared caches. In Proceedings of the 36th annual international symposium on Computer archi-

tecture, pp. 174–183, 2009.

[32] G.E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring scheme for memory-aware

scheduling and partitioning. In Proceedings of the 8th IEEE International Symposium on High-

Performance Computer Architecture, pp. 117–128, 2002.

[33] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic Partitioning of Shared Cache Memory. Journal

of Supercomputing, Vol. 28, No. 1, pp. 7–26, 2004.

[34] Haakon Dybdahl, Per Stenström, and Lasse Natvig. A cache-partitioning aware replacement

policy for chip multiprocessors. In Proceedings of the 13th international conference on High

Performance Computing, pp. 22–34, 2006.

[35] Aamer Jaleel, Hashem H. Najaf-abadi, Samantika Subramaniam, Simon C. Steely, and Joel Emer.

CRUISE: cache replacement and utility-aware scheduling. In Proceedings of the seventeenth

international conference on Architectural Support for Programming Languages and Operating

Bibliography 103

Systems, pp. 249–260, 2012.

[36] Seongbeom Kim, Dhruba Chandra, and Yan Solihin. Fair Cache Sharing and Partitioning in

a Chip Multiprocessor Architecture. In Proceedings of the 13th International Conference on

Parallel Architectures and Compilation Techniques, pp. 111–122, 2004.

[37] Jichuan Chang and Gurindar S. Sohi. Cooperative cache partitioning for chip multiprocessors. In

Proceedings of the 21st annual international conference on Supercomputing, pp. 242–252, 2007.

[38] Ravi Iyer. CQoS: a framework for enabling QoS in shared caches of CMP platforms. In Proceed-

ings of the 18th annual international conference on Supercomputing, pp. 257–266, 2004.

[39] Kyle J. Nesbit, James Laudon, and James E. Smith. Virtual private caches. SIGARCH Comput.

Archit. News, Vol. 35, No. 2, pp. 57–68, 2007.

[40] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang, and P. Sadayappan. Gaining

insights into multicore cache partitioning: Bridging the gap between simulation and real systems.

In Proceedings of the 14th IEEE International Symposium on High-Performance Computer Ar-

chitecture, pp. 367–378, 2008.

[41] Lisa R. Hsu, Steven K. Reinhardt, Ravishankar Iyer, and Srihari Makineni. Communist, utilitar-

ian, and capitalist cache policies on CMPs: caches as a shared resource. In Proceedings of the

15th international conference on Parallel architectures and compilation techniques, pp. 13–22,

2006.

[42] Derek Chiou, Larry Rudolph, Srinivas Devadas, and Boon S. Ang. Dynamic Cache Partitioning

via Columnization. Technical Report 430, MIT Laboratory for Computer Science Computation

Structures Group, 2000.

[43] Parthasarathy Ranganathan, Sarita Adve, and Norman P. Jouppi. Reconfigurable caches and their

application to media processing. In Proceedings of the 27th annual international symposium on

Computer architecture, pp. 214–224, 2000.

[44] Nauman Rafique, Won-Taek Lim, and Mithuna Thottethodi. Architectural support for operating

system-driven CMP cache management. In Proceedings of the 15th international conference on

Parallel architectures and compilation techniques, pp. 2–12, 2006.

[45] Chun Liu, Anand Sivasubramaniam, and Mahmut Kandemir. Organizing the Last Line of Defense

before Hitting the Memory Wall for CMPs. In Proceedings of the 10th International Symposium

on High Performance Computer Architecture, pp. 176–185, 2004.

[46] Edouard Bugnion, Jennifer M. Anderson, Todd C. Mowry, Mendel Rosenblum, and Monica S.

Lam. Compiler-directed page coloring for multiprocessors. In Proceedings of the seventh inter-

national conference on Architectural support for programming languages and operating systems,

pp. 244–255, 1996.

[47] Daniel Sanchez and Christos Kozyrakis. Vantage: Scalable and Efficient Fine-Grain Cache Par-

Bibliography 104

titioning. In Proceedings of the 38th annual international symposium on Computer architecture,

pp. 57–68, 2011.

[48] Changkyu Kim, Doug Burger, and Stephen W. Keckler. An adaptive, non-uniform cache structure

for wire-delay dominated on-chip caches. In Proceedings of the 10th international conference on

Architectural support for programming languages and operating systems, pp. 211–222, 2002.

[49] Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Distance Associativity for High-

Performance Energy-Efficient Non-Uniform Cache Architectures. In Proceedings of the 36th

annual IEEE/ACM International Symposium on Microarchitecture, pp. 55–, 2003.

[50] B.M. Beckmann and D.A. Wood. Managing Wire Delay in Large Chip-Multiprocessor Caches.

In Proceedings of the 37th annual IEEE/ACM International Symposium on Microarchitecture, pp.

319–330, 2004.

[51] Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, Doug Burger, and Stephen W. Keckler.

A NUCA substrate for flexible CMP cache sharing. In Proceedings of the 19th annual interna-

tional conference on Supercomputing, pp. 31–40, 2005.

[52] Mahmut Kandemir, Feihui Li, Mary Jane Irwin, and Seung Woo Son. A novel migration-based

NUCA design for chip multiprocessors. In Proceedings of the 2008 ACM/IEEE conference on

Supercomputing, pp. 28:1–28:12, 2008.

[53] Michael Zhang and Krste Asanovic. Victim Replication: Maximizing Capacity while Hiding Wire

Delay in Tiled Chip Multiprocessors. In Proceedings of the 32nd annual international symposium

on Computer Architecture, pp. 336–345, 2005.

[54] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a small fully-

associative cache and prefetch buffers. In Proceedings of the 17th annual international symposium

on Computer Architecture, pp. 364–373, 1990.

[55] Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. Optimizing Replication, Commu-

nication, and Capacity Allocation in CMPs. In Proceedings of the 32nd annual international

symposium on Computer Architecture, pp. 357–368, 2005.

[56] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. Reactive NUCA:

near-optimal block placement and replication in distributed caches. In Proceedings of the 36th

annual international symposium on Computer architecture, pp. 184–195, 2009.

[57] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Wolf-Dietrich Weber, Anoop Gupta, John

Hennessy, Mark Horowitz, and Monica S. Lam. The Stanford Dash Multiprocessor. IEEE Com-

puter, Vol. 25, No. 3, pp. 63–79, 1992.

[58] E. Hagersten, A. Landin, and S. Haridi. DDM - a cache-only memory architecture. IEEE Com-

puter, Vol. 25, No. 9, pp. 44–54, 1992.

[59] Milo M. K. Martin, Mark D. Hill, and David A. Wood. Token coherence: decoupling perfor-

Bibliography 105

mance and correctness. In Proceedings of the 30th annual international symposium on Computer

architecture, pp. 182–193, 2003.

[60] Hongzhou Zhao, Arrvindh Shriraman, and Sandhya Dwarkadas. SPACE: sharing pattern-based

directory coherence for multicore scalability. In Proceedings of the 19th international conference

on Parallel architectures and compilation techniques, pp. 135–146, 2010.

[61] John H. Kelm, Matthew R. Johnson, Steven S. Lumettta, and Sanjay J. Patel. WAYPOINT: scaling

coherence to thousand-core architectures. In Proceedings of the 19th international conference on

Parallel architectures and compilation techniques, pp. 99–110, 2010.

[62] Blas A. Cuesta, Alberto Ros, María E. Gómez, Antonio Robles, and José F. Duato. Increasing

the effectiveness of directory caches by deactivating coherence for private memory blocks. In

Proceedings of the 38th annual international symposium on Computer architecture, pp. 93–104,

2011.

[63] Michael D. Dahlin, Randolph Y. Wang, Thomas E. Anderson, and David A. Patterson. Coopera-

tive caching: using remote client memory to improve file system performance. In Proceedings of

the 1st USENIX conference on Operating Systems Design and Implementation, 1994.

[64] Haakon Dybdahl and Per Stenstrom. An Adaptive Shared/Private NUCA Cache Partitioning

Scheme for Chip Multiprocessors. In Proceedings of the 2007 IEEE 13th International Sym-

posium on High Performance Computer Architecture, pp. 2–12, 2007.

[65] Naoki Fujieda and Kenji Kise. A Partitioning Method of Cooperative Caching with Hit Frequency

Counters for Many-Core Processors. In Proceedings of the 3rd Workshop on Ultra Performance

and Dependable Acceleration Systems held in conjunction with ICNC’11, pp. 160–165, 2011.

[66] William J. Dally and Brian Towles. Route packets, not wires: on-chip inteconnection networks.

In Proceedings of the 38th annual Design Automation Conference, pp. 684–689, 2001.

[67] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and Brad Calder.

Using SimPoint for accurate and efficient simulation. In Proceedings of the 2003 ACM SIGMET-

RICS international conference on Measurement and modeling of computer systems, pp. 318–319,

2003.

[68] Koh Uehara, Shimpei Sato, and Kenji Kise. A Practical Infrastructure for Researches and Edu-

cation of Many-Core Processors. IEICE Transactions on Information and Systems, Vol. J93-D,

No. 10, pp. 2042–2057, 2010.

[69] Aamer Jaleel, Robert S. Cohn, Chi-Keung Luk, and Bruce Jacob. CMP$im: A Pin-Based On-

The-Fly Multi-Core Cache Simulator. In Proceedings of the 4th Annual Workshop on Modeling,

Benchmarking, and Simulation, 2008.

[70] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty, Min Xu,

Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood. Multifacet’s general

Bibliography 106

execution-driven multiprocessor simulator (GEMS) toolset. SIGARCH Computer Architecture

News, Vol. 33, No. 4, pp. 92–99, 2005.

[71] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren, Gustav Hallberg,

Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt Werner. Simics: A Full System

Simulation Platform. IEEE Computer, Vol. 35, No. 2, pp. 50–58, 2002.

[72] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G. Saidi, and Steven K.

Reinhardt. The M5 Simulator: Modeling Networked Systems. IEEE Micro, Vol. 26, pp. 52–60,

2006.

[73] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava

Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey

Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator.

SIGARCH Computer Architecture News, Vol. 39, No. 2, pp. 1–7, 2011.

[74] Alaa R. Alameldeen, Aamer Jaleel, Moinuddin Qureshi, and Joel Emer. 1st JILP Work-

shop on Computer Architecture Competitions (JWAC-1) Cache Replacement Championship.

http://www.jilp.org/jwac-1/.

[75] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions (Extended Ab-

stract). In Proceedings of the ninth annual ACM symposium on Theory of computing, pp. 106–112,

1977.

[76] D. E. Culler, A. Gupta, and J. P. Singh. Parallel Computer Architecture: A Hardware/Software

Approach. Morgan Kaufmann, 1999.

[77] Advanced Center for Computing and Communication, RIKEN. Himeno benchmark.

http://accc.riken.jp/2444.htm.

[78] Naoki Fujieda and Kenji Kise. A Method for Efficient Use of CMP Cooperative Caching with

Extra Entries of Directory. IPSJ Transaction on Advanced Computing Systems, Vol. 5, No. 3, pp.

86–100, 2012.

[79] Dan Nicolaescu, Alex Veidenbaum, and Alex Nicolau. Reducing data cache energy consumption

via cached load/store queue. In Proceedings of the 2003 international symposium on Low power

electronics and design, pp. 252–257, 2003.

[80] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. Weighted round-robin cell multiplexing in a

general-purpose ATM switch chip. Selected Areas in Communications, IEEE Journal on, Vol. 9,

No. 8, pp. 1265 –1279, 1991.

[81] Enric Herrero, José González, and Ramon Canal. Power-Efficient Spilling Techniques for Chip

Multiprocessors. In International European Conference on Parallel and Distributed Computing,

pp. 256–267, 2010.

[82] Assaf Shacham, Keren Bergman, and Luca P. Carloni. On the Design of a Photonic Network-

Bibliography 107

on-Chip. In Proceedings of the First International Symposium on Networks-on-Chip, pp. 53–64,

2007.

[83] Shinya Takamaeda, Shimpei Sato, Naoki Fujieda, Takefumi Miyoshi, and Kenji Kise. Scal-

ableCore System: Hardware Environment for Many-core Architectures Evaluation. IPSJ Trans-

action on Advanced Computing Systems, Vol. 4, No. 1, pp. 24–42, 2011.

108

List of Publications

Journal Papers
1. Naoki Fujieda, and Kenji Kise: A Method for Efficient Use of CMP Cooperative Caching with

Extra Entries of Directory, IPSJ Transaction on Advanced Computing Systems, Vol.5, No.3,

pp.86-100 (2012) (In Japanese).

2. Naoki Fujieda, Shimpei Watanabe, and Kenji Kise: A MIPS System Simulator SimMips for Ed-

ucation and Research of Computer Science, IPSJ Journal, Vol.50, No.11, pp.2665-2676 (2009)

(In Japanese).

3. Shinya Takamaeda, Shimpei Sato, Naoki Fujieda, Takefumi Miyoshi, and Kenji Kise: Scal-

ableCore System: Hardware Environment for Many-core Architectures Evaluation, IPSJ Trans-

action on Advanced Computing Systems, Vol.4, No.1, pp. 24-42 (2011) (In Japanese).

4. Shimpei Sato, Naoki Fujieda, Akira Moriya, and Kenji Kise: SimCell: A Processor Simulator

for Multi-Core Architecture Research, IPSJ Transactions on Advanced Computing Systems,

Vol.2, No.1, pp. 146-157 (2009), IPSJ論文船井若手奨励賞.

International Conference Papers
5. Naoki Fujieda and Kenji Kise: A Partitioning Method of Cooperative Caching with Hit Fre-

quency Counters for Many-Core Processors, Proc. 3rd Workshop on Ultra Performance and

Dependable Acceleration Systems held in conjunction with ICNC’11, pp.160-165 (2011).

6. Naoki Fujieda, Takefumi Miyoshi, and Kenji Kise: SimMips: A MIPS System Simulator, Proc.

Workshop on Computer Architecture Education(WCAE) held in conjunction with MICRO-42,

pp. 32-39 (2009).

7. Takakazu Ikeda, Shinya Takamaeda-Yamazaki, Naoki Fujieda, Shimpei Sato, and Kenji Kise:

Request Dentity Aware Fair Memory Scheduling, Proc. 3rd JILP Workshop on Computer Archi-

tecture Competitions: Memory Scheduling Championship in conjunction with ISCA-39, Avali-

able at http://www.cs.utah.edu/ rajeev/jwac12/ (2012), Performance Track Award.

8. Shinya Takamaeda, Shintaro Sano, Yoshito Sakaguchi, Naoki Fujieda, and Kenji Kise: Scal-

ableCore System: A Scalable Many-core Simulator by Employing Over 100 FPGA, Proc. 8th

List of Publications 109

International Symposium on Applied Reconfigurable Computing (ARC2011), Lecture Notes in

Computer Science, Vol.7199/2012, pp.138-150 (2012).

9. Mochamad Asri, Naoki Fujieda, and Kenji Kise: Rethinking Processor Instruction Fetch:

Inefficiencies-Cracking Mechanism, Proc. 2011 International SoC Design Conference

(ISOCC2011), pp.207-210 (2011).

10. Yuhta Wakasugi, Naoki Fujieda, Shinya Takamaeda, and Kenji Kise: MipsCoreDuo: A Multi-

function Dual-core Processor, Proc. International Symposium on Intelligent Signal Processing

and Communication Systems (ISPACS), pp. 587-590 (2009).

11. Shimpei Sato, Naoki Fujieda, Akira Moriya, and Kenji Kise: Processor Simulator SimCell to

Accelerate Research on Many-core Processor Architectures, Proc. Workshop on Cell Systems

and Applications (WCSA 2008) held in conjunction with the ISCA-2008, pp. 119-127 (2008).

Domestic Conference Papers and Technical Reports
12. Naoki Fujieda and Kenji Kise: The cache partitioning method for CMP cooperative caching,

IPSJ SIG Technical Reports 2011-ARC-196, pp. 1-8 (2011) (In Japanese).

13. Naoki Fujieda and Kenji Kise: Implementation and Evaluation of a Fast and Handy LCD

Module Using an FPGA, IEICE Technical Reports RECONF2010-82, pp. 193-198 (2011) (In

Japanese).

14. Naoki Fujieda, Shimpei Watanabe, and Kenji Kise: SimMips: A 5000-line MIPS System Sim-

ulator that Runs Linux for Education and Research of Computer Science, Proc. 20th Computer

System Symposium (ComSys2008), pp. 143-150 (2008) (In Japanese).

15. Shinya Takamaeda, Shimpei Watanabe, Ken Kyou, Koh Uehara, Naoki Fujieda, Takefumi

Miyoshi, and Kenji Kise: Development of ScalableCore System to Evaluate Many-core

Architectures, Proc. 8th Symposium on Advanced Computing Systems and Infrastractures

(SACSIS2010), pp.287-294 (2010) (In Japanese).

16. Shinya Takamaeda, Shimpei Watanabe, Ken Kyou, Naoki Fujieda, Koh Uehara, Takefumi

Miyoshi, and Kenji Kise: ScalableCore system: Scalable HW Evaluation Environment for

Many-core Architecture Researches, IPSJ SIG Technical Reports 2009-ARC-185, pp. 1-10

(2009) (In Japanese).

17. Yuhta Wakasugi, Shimpei Sato, Koh Uehara, Naoki Fujieda, Shimpei Watanabe, Shinya

Takamaeda, Yosuke Mori, and Kenji Kise: Development of Low-Cost Verification Scheme for

VDEC-assisted Prototype Chip and its Application, IPSJ SIG Technical Reports 2009-ARC-183,

pp. 1-8 (2009) (In Japanese).

18. Yuhta Wakasugi, Naoki Fujieda, and Kenji Kise: アーキテクチャ研究をサポートする低コ

List of Publications 110

ストで効率的な VDEC チップ試作・検証システムの開発と応用, Proc. 7th Symposium on

Advanced Computing Systems and Infrastractures (SACSIS2009), Poster Session, pp. 134-135,

(2009) (In Japanese), Most Interesting Poster Award.

19. Yosuke Mori, Akira Moriya, Naoki Fujieda, and Kenji Kise: The Cache-Core optimization on

Multi-Core Processors considering several overheads, IPSJ SIG Technical Reports 2009-ARC-

181, pp.105-110 (2009) (In Japanese).

20. Kenji Kise, Shimpei Sato, Akira Moriya, Naoki Fujieda, Yuhta Wakasugi, Shimpei Watan-

abe, Koh Uehara, Yosuke Mori, Shinya Takamaeda, Tomohide Takahashi, Tomonari Muneoka,

Yusuke Yamada, Katsuhiko Gondow, Ryotaro Kobayashi, Takefumi Miyoshi, and Hironori

Nakajo: MieruPCプロジェクト: 中身が見える計算機システムを構築する研究・教育プロジェ

クト, 20th Computer System Symposium (ComSys2008), Poster Session (2008) (In Japanese),

Best Poster Award.

21. Shimpei Watanabe, Naoki Fujieda, Yuhta Wakasugi, Shinya Takamaeda, Yosuke Mori, and

Kenji Kise: Development of Simple Embedded System with MIPS System Simulator SimMips,

IPSJ SIG Technical Reports 2008-EMB-10, pp. 23-28 (2008) (In Japanese).

22. Koh Uehara, Shimpei Sato, Akira Moriya, Naoki Fujieda, Shinya Takamaeda, Shimpei Watan-

abe, Takefumi Miyoshi, Ryotaro Kobayashi, and Kenji Kise: Development of Simple and Ef-

fective Many-Core Architecture, IPSJ SIG Technical Reports 2008-ARC-180, pp. 39-44 (2008)

(In Japanese).

23. Akira Moriya, Naoki Fujieda, Shimpei Sato, and Kenji Kise: The multi-function cache core ar-

chitecture to enhance the memory performance on many-core processors, Proc. 6th Symposium

on Advanced Computing Systems and Infrastractures (SACSIS2008), pp. 421-430 (2008) (In

Japanese).

