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Abstract

First, an introduction about the motivation and the purpose of this research is given.
In the second chapter a general overview about the human motor learning is in-
troduced focused on both upper and lower limbs studies. In the third chapter the
measurement about the human reaction time related to visual and force feedback is
described and compared with the response time estimated from a continuous pursuit
control task. It was shown that the human acquired model depended on the machine
characteristics and the learned model was associated with the transfer function order.
When different sensorial information was available to the subjects, there were noted
small variations in the transfer function parameters representing the subject’s capa-
bility to adapt to different sensorial feedback information. The chapter 4 described
the EMG and ground reaction force (GRF) measurements in order to analyze the ef-
fects of toe movement during gait and running. All the subjects performed 4 different
trial modes. When a significant difference between the barefoot and shod walk/run
was observed, the EMG activity of shod walk/run was smaller. The toe movement
showed no statistical difference compared to normal walk/run in shod trials. The
human motor learning was represented by a statistical difference between the trial
modes and the motor adaptation occurred when no difference was verified. In the
walking and running experiment it was observed from the GRF profiles that the toe
movement showed to be a potential way of changing in an active manner the charac-
teristics of shock absorption. In the fifth chapter the two approaches chosen in this
study to analyze the motor learning and adaptation are discussed. Finally, this study
described quantitatively how to differentiate the human sensory motor learning and
adaptation related to pursuit control tasks and walk/run analysis in order to apply
it in the design and evaluation of sports gear and everyday life tools.
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Chapter 1

INTRODUCTION

In our daily life, we unconsciously move our body to accomplish a large variety of
motions. After the infant phase, usually a small amount of adaptation in each motion
is needed to deal with environmental changes like carrying different weights, drinking
using various shapes of bottle, walking on different floor types. Especially in sports
the need to adapt rapidly to various kinds of situations is required. In all these cases
the adaptation of the human motor sensory system is needed to deal with these small
changes. But before we become able to adapt to these small changes, we need to
learn new motion patterns like walking, running, reaching, catching. (Fig. 1-1)

In order to understand how humans learn and adapt to new situation, two different
modalities of experiments were conducted. One of the experiments deals with the
modeling of the human control characteristics during step response and continuous
task. This study will be explained in details in Chapter 3. In Chapter 4 experiments
about walking and running motion when using different shoe sole thickness were
conducted in order to analyze the EMG signals around the heel contact. In both
these experiments the research was focused on the learning and adaptation behaviour

of the subjects related to the motion and EMG signals.
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Figure 1-1: Example of daily life motions and experiment oriented tasks.
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1.1 Motivations for human motor sensory learning
and adaptation research

The author used to work on Master-Slave Endoscopic Surgery Robot, Bilateral Mi-
croteleoperation systems [27] [26] [25]. During this period the interest about how
the human learn new motor control strategies and adapt to small changes in the

environment become greater and greater.

1.2 Purpose

The purpose of this study is to measure, analyze and model the human motor sensory
learning and adaptation process in terms of control theory and EMG signals. Here, the
learning and adaptation terms will have different meaning and treatment. The aim of
the Chapter 3 will be the analysis of the human control characteristics in respect to the
visual, force and audio feedback information and build a human control model that
can also represent a control strategy based on multi-sensory feedback information. In
Chapter 4 the objective of the experiment will be to analyze the effects of different sole
thickness and the use of toe during walking and running. A total of 15 athletes of short
and medium distance were divided in two groups using different shoes with different
sole thickness. Finally, the results of the initial measurement will be described and
an evaluation method based on the ground reaction force and EMG signals will be

proposed.
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Chapter 2

MOTOR CONTROL LEARNING

2.1 Former Research

Since some decades ago, much research has been conducted focusing on how the hu-
man learn to move his/her own body despite the high degree of freedom and muscle
activation redundancy [37]. During the early stages of infant age it is noted some
flailing movements with the upper and lower limbs [34]. Also the motor speech
coordination is not improved yet, which will have also an important role in social
communication [38]. In most of the cases the motor learning is referred as the pro-
cess to acquire a whole new motor coordination required for standing, walking and
reaching motions, usually considering the infant. On the other hand, in some studies
the reaching motion performed in an artificially generated environment is referred as
learning and sometimes as adaptation. There are also many studies which proposed
some models to explain the human motor control but after the learning stage. Hogan
et al. [15] proposed a model to explain the quasi-straight hand trajectory model.
Studies with frogs were elaborated [14] [28] to explain the scheme of internal model
in terms of muscle activation and vector representation in the brain. In this chapter
some insights about these both terms will be describe in order to clarify the usage of

words learning and adaptation.
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2.1.1 Feedback-error Learning

One of the most well known model to explain the motor learning scheme was proposed
by Kawato et al.[19] [18] and it is based on feedback-error learning. In this model the
summation of the feedback motor command and the feedforward command generated
by the inverse model is fed to the controlled object. Then the feedback controller
transforms the trajectory error into the motor-command error. The inverse model is
trained using the difference between the desired trajectory and the actual trajectory.
The more the inverse model approaches to the characteristic of the controlled object

the error becomes smaller and the feedback controller input decreases. (Fig. 2-1)

2.1.2 Motor Control Adaptation

Shadmehr et al.[34] called motor adaptation as the recovery of performance within
the changed mechanical environment. The adaptation level to the new environment
was related to the aftereffects, which are the mirrored trajectories resulted from the
adjustments made to compensate the force field. Furthermore, according to [4] ” Adap-
tation refers to a process in which a system recovers previously learned skills after a
change in the operating environment.”

Investigations of Flash and Gurevich (1992) [7], Shadmehr and Mussa-Ivaldi (1994)
[34], Sainburg and Ghez (1995) [33], and Gandolfo et al. (1996) [11] have demon-
strated the presence of adaptive processes in the control of multijoint arm movements.
In the conducted experiments, the subjects were required to execute point-to-point
reaching movements while holding the handle of an instrumented manipulandum. In
addition to these studies many researchers [32] [10] [9] [8] [16] [38] [34] [29] dealt with
the issue of reaching tasks in the presence of force fields. Although, the majority
called the after effects as a resulting of adaptation of the force field, they still used

the term ”learn” to move the arm during the training phase.

15



A direct inverse modeling

estimated
motor

command

inverse mode| €

motorcommand

controlled
object

trajectory ~

B forward and inverse modeling

error in controlcommand error
e e e fOIWaId model _ 1. .
: e —— »| error-back-propagation [@=m=—wmm A :
i i i H
i i 1 H
1 1 1 i
i i 1 i
v : P
> inverse model : controlled L
desired | I motorcommand object realized +
trajectory trajectory
C feedback error learning
] feedforward
> inverse model motor
command
A
1
]
!

EMOTT™ feedback ! + .| controlled -
desired controller | feedback  motor | object realized
trajectory motor command trajectory

command

Figure 2-1: Three computational schemes for acquiring an inverse model through
learning. Broken lines show information used for training. A Direct inverse modeling

approach. B Forward and inverse modeling approach.

approach. Modified from [19].
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Chapter 3

HUMAN CONTROL MODEL
BASED ON SENSORY
FEEDBACK INFORMATION

3.1 Introduction

The human operator has the capability to learn, adapt and control various types of
machines. It is of a great interest to understand how the human operator analyzes
and processes different modalities of sensory feedback information in order to design
directly or remotely operated machines. The aim of this study is to analyze the human
control characteristics in respect to the visual, force and audio feedback information
and build a human control model that can also represent a control strategy based on
multi-sensory feedback (Fig.3-1). This model will be used to understand the learning
and adaptation mechanism of human control strategy. In this primary work the time
lag related to the human control model was measured using cognitive psychological
experiments as single reaction time and choice reaction time. This control model
would be useful to assist the design, simulation and evaluation of human-machine
systems like telerobots [35] and also computer assisted systems as power-assist and

drive-by-wire vehicles.
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Visual Feedback
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Audio Feedback

Hy(s)

Figure 3-1: Multimodal sensory feedback scheme
3.2 Human Control Model

Early researches have already shown that it is important to consider the human
dynamic characteristics when designing and evaluating man-machines systems. The
major part of the analytical theory on manual control of vehicles was developed in the
60’s. One of the important results was the Crossover Model proposed by McRuer et al.
[24], which showed that the human-machine dynamic characteristics presented a first
order lag near the crossover frequency (Fig.3-2). Another empirical result of McRuer
[23] works showed that the human operator can change his dynamic characteristics
according to the operated machine. A general model of the human control can be

represented as Equation (3.3).

d control action output
command ; error r———;{—;;—-l I—‘G(—S‘)——I P

sensory feedhack

Figure 3-2: Generic human-machine system

—T8

(where, w ~ w,) (3.1)

Here,

7 (0.1 - 0.4s) :Time lag due to human responses

18



we(0.5 - 0.8Hz) :Crossover frequency

In this primary work the time lag due to human responses was measured using

the single reaction time (SRT) and the choice reaction time (CRT).

3.3 Reaction Time Experiment

In order to identify the time lag due to human responses the single reaction time
(SRT) and the choice reaction time (CRT) was measured with 3 subjects. The exper-
iments were conducted using a master-slave type seesaw experimental device that was
developed in order to analyze the human sensory feedback properties separately. It
consists of a 1 DOF master haptic device with a force sensor that can be manipulated
by rotating a dial or by gripping a joystick. The slave is an actuated linear guide
that works as a seesaw with a sliding object over it. In the reaction time experiment
2 LEDs were used as visual cues, positioned at the left and right field of view of the
subject (Fig.3-3). In most cases the reaction time is defined as the time necessary
to the subject to turn the dial more than a pre-defined angle after the visual cue
is presented. Since the final goal of the proposed human control model is to obtain
an operator model of a continuous manipulation task, the reaction time was defined
as the movement onset time. In this case, the movement onset corresponds to the
time necessary to the dial’s angular velocity reach 20 deg/s after the visual cue is
presented. This velocity corresponds to about 1% of the maximum rotation velocity
achieved by the subjects. During this experiment the gaze movement, pupil diameter
and the pronator/supinator muscles EMG was also measured. The proposal for this
study was reviewed by the Institutional Committee for Ergonomic Experiments and

approved by the Director of Safety and Environmental Protection Department.

3.3.1 Single Reaction Time Experiment (SRT)

This experiment consists of moving the dial as fast as possible after the visual cue

is shown to the subject. In SRT experiment the subject does not need to decide

19



Figure 3-3: Experimental device and reaction time experiment overview

which direction to move, it is a reflexive visuomotor action. After the subject became
familiar with the experiment device 10 trials were made by each subject. The visual

cue was presented randomly.

3.3.2 Choice Reaction Time Experiment (CRT)

In this experiment the subject has to decide in which direction to move according
to the visual cue. If the right LED turns on the subject has to turn the dial in the
clockwise direction. If the left LED turns on the subject has to rotate the dial in the
counter clockwise direction. In this CRT experiment a computational load is added to
the subject due to the decision making about which direction to move. The visual cue
was shown randomly in time and direction. Here the reaction time was also defined

as the movement onset time. After some training each subject performed 20 trials.

3.3.3 SRT and CRT Movement Onset Time Results

The movement onset time results of SRT and CRT experiments are shown in Table 3.1
and Table 3.2. The difference between the fastest subject C (0.20s) and slowest subject
B (0.26s) subject was about 30% in SRT and more than 33% in CRT experiments.

It is interesting to notice that even though the SRT onset time of subjects A and

20



C are very close, the CRT onset time varied considerable. Further considerations
will be discussed together with the measurement results. Fig.3-4 and Fig.3-5 showed
typical angle and velocity profiles respectively. In both profiles a similarity can be
noticed between the subjects A and C. All the subjects showed a pre-programmed

target angle which is reached about 0.6s-0.8s after the movement onset. (Fig.3-4).

Table 3.1: SRT Experiment - EMG Activation and Onset Time

[Experimen’ci Subject A ‘ Subject B ‘ Subject C 1

Onset [s] | 0.21+0.03 | 0.26 £ 0.04 | 0.20 & 0.03
EMG-RT[s] | 0.19+0.04 | 0.21 £0.04 | 0.15 4 0.03
EMD [s] | 0.03£0.02 | 0.0540.01 | 0.05+0.01

Table 3.2: CRT Experiment - EMG Activation and Onset Time

{Experiment’ Subject A i Subject B l Subject C ‘

Onset [s] | 0.24+0.02 | 0.32£0.05 | 0.27 + 0.04
EMG-RT][s] | 0.19 £ 0.02 | 0.28 £0.04 | 0.20 & 0.04
EMD [s] | 0.04+0.01 | 0.04+0.02 | 0.06+0.03

SRT and CRT EMG Measurement Results

From Fig.3-6, Fig.3-7, Fig.3-8 and Fig.3-9 it can be noticed that the activation of
pronator and supinator muscles occurred before the actual movement started. The
time necessary to send the motor command after the visual information was acquired
varied from 0.15s to 0.19s in SRT experiments and 0.19s to 0.28s in CRT experiments.
This time includes the decision making time and motor command activation which
are difficult to identify separately. Thus it can be inferred that the time to make a
decision varied from nearly Os in Subject A to 0.07s in Subject B.

Due to the musculoskeletal and the haptic inertial properties another approxi-

mately 0.05s were necessary until the movement actually started. The time between
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Figure 3-4: CRT experiment.Angle profile os subjects A, B, C

Figure 3-5: CRT experiment. Velocity profile of subjects A, B, C
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the visual cue and the emergence of EMG is called ElectroMyoGraphical Reaction
Time: EMG-RT or PreMotor Time. ElectroMechanical Delay: EMD is defined as
the time between the EMG activation and the starting of the movement. In this case
the movement onset. It corresponds to the elctromechanical characteristics of the
muscles [20].

From the results of EMG-RT of SRT and CRT experiments it can be noticed that
subject A showed a very fast decision making response since there were no significant
‘difference between the two experiments. On the other hand, the EMD time was
relatively longer compared to subjects B and C. This short latency can be inferred
as a resultant of a more effective preactivation of motor patterns since the movement
is already known. See Fig.3-6 and Fig.3-7. In the case of subjects B and C, the
EMD time of SRT and CRT experiments were almost the same. Thus, there is a
possibility that the subjects were not in a "fight or flight” state. Even though the
SRT onset time of subjects A and C were similar, the considerable difference in CRT
experiments is presumed to be attributed to the proficiency of the decision making
loop. It can be noticed from a typical trial in Fig.3-7 that the motor activation of

subject A is faster than subject C showed in Fig.3-9.

SRT Experiment Subject A
T T

1400

T
" — — — Dial Velocity
1200 ~ 0.20s i x - Supinator EMG |4
Iy Pronator EMG
1000 (1

800 [ g

600 - 0.18s | |

400 F ‘, l l ]
200 I i 1
— bl W\mw ‘ ‘H‘VIL‘\M‘,A‘:W'\&J:«L}&-A{“"j}mlfﬂhbw‘JMLA

i
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Figure 3-6: SRT experiment - Subject A
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Figure 3-8: CRT experiment - Subject B
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Figure 3-9: CRT Experiment - Subject C

SRT and CRT Gaze Movement and Pupil Diameter

The significant difference between the decision time in subject A and B can probably
be related to the gaze movement, i.e. the strategy chosen by the subject to acquire
visual information. The fastest subject A used mainly the peripheral vision to cognize
which LED turned on because he had his eyes fixed in the middle of the right and
left LEDs (Fig.3-10). On the other hand the slowest subject B used his central
vision to identify which visual cue was presented moving his eyes from left to right
and vice-versa (Fig.3-11). Subject C also performed a similar strategy to subject A
(Fig.3-12). The thick vertical line indicates when the visual cue was presented to the
subject. The reaction time related to these different types of strategy became even
more accentuated when the gaze movement coincided with the visual cue presentation
like in trial of Fig.3-11. This contributed to a slow response action by the subject
B. The pupil diameter was also measured in these experiments (green dashed line
in Fig.3-10, Fig.3-11, Fig.3-12). The discontinuity is due to eye blinking. A slightly
retraction of pupil can be noticed when the visual cue is presented but it depended

on the trial, not being as prominent as expected.
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Figure 3-10: CRT experiment subject A (cue at 7.0s). The solid line represents gaze
movement and the dashed line pupil diameter variation. Use of peripheral vision.
The discontinuity is due to eye blinking.

CRT Gaze and Pupil - Sub B

400 T T T T 15
gaze 48
300 Sl
4.6
200
14
100 | .
1.2
E E
E  of 4 =
2 =
3 2
2 38 =
-100 o
P 3.6
=200 -
7 33
300 F Lo
400 . . ) . .
0 2 4 6 8 10
Time [s]

Figure 3-11: CRT experiment subject B. The solid line represents gaze movement
and the dashed line pupil diameter variation. Use of central vision.
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Figure 3-12: CRT experiment subject C. Gaze and pupil diameter.

3.3.4 Step Response Parameter Estimation

In order to model the human control characteristics, it is necessary to identify the
control parameters using system identification method. Here, a step response identifi-
cation using the reaction time experiment data was conducted to estimate the human
response time which corresponds to the time delay.

From Fig. 3-4 it can be noticed that the angle profiles of the subjects are similar
to a step response (Fig. 3-13). Based on Eq.3.2 the step response parameters were
identified using Matlab Identification Toolbox. The time delay estimated from step
response was compared to that one measured directly in the reaction time experiment.
It can be noticed that the estimated time delay were bigger than the measured move-
ment onset time. See Table 3.1, Table 3.2 and Table 3.3, Table 3.4. This difference
can be attributed to the limitation of the step response identification to express the
initial rising phase. Although there is a slightly discrepancy in the numerical value of

the time delay, the estimated function represents well the measured data (Fig. 3-14).

Kw,?
52 + 2Cwps + wy?

H(s) = e e (3.2)

Here,

K  :Gain, proportional to final value
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Figure 3-13: 4 Step Response Parameter Estimation

T4 :Time lag due to human responses
w, :Natural angular frequency

¢ :Damping ratio

Table 3.3: Estimation of time lag from step response - SRT

‘ Parameters ‘ Subject A | Subject B ’ Subject C ]
wy [rad/s] | 2742 15+5 20 + 2

¢ 0.34 £ 0.04] 0.48 4= 0.08| 0.50 4 0.03

74 [s] 0.24 £ 0.03| 0.29 4= 0.04| 0.26 &+ 0.03

Table 3.4: Estimation of time lag from step response - CRT

t Parameters [ Subject A ‘ Subject B 1 Subject C |
wy [rad/s] | 2742 18+ 6 18 42

¢ 0.46 +0.11| 0.40 4+ 0.01| 0.52 £ 0.06

74 [8] 0.28 £ 0.03| 0.36 +0.05| 0.31 £0.04
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Figure 3-14: SRT experiment measured and simulated angle profile. The thin lines
represents the measured 10 trials and the thick line the estimated output. Subject C.
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Figure 3-15: SRT experiment velocity profile. Subject C.
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Figure 3-16: SRT experiment acceleration profile. Subject C.

3.3.5 Discussion

First, the movement onset, EMG-RT and the EMD delay will be discussed. An
interesting fact was found during subject A reaction time measurement. A more
significant difference was expected between SRT and CRT EMG-RT, but there were
almost the same. On the other hand, the EMD delay differed and the onset time
increased as expected. From these facts some speculations about the formation of
a preplanned movement strategy can be inferred to explain different EMD delays.
But further EMG measurements should be conducted to clarify this hypothesis. An
increase of pupil diameter was also expected due to the concentration in the task,
but no significant changes were found nor there were a correlation between the pupil
diamater and the gaze movement.

Second, it was shown that there is a numerical discrepancy between the reaction
time obtained directly from measurement experiment and the time delay estimated
from step response identification. Nevertheless this should be treated as crucial de-
ficiency of a human control characteristics system identification. Actually, the esti-
mated time delay represents well the human response, since there were a small and
constant difference of 0.4s-0.6s between each subject’s onset time and the time delay.
In order to obtain a more precisely value about the reaction time, a directly mea-

surement is recommended, including also an EMG measurement. Otherwise the error
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of the estimated time delay should be considered during the system identification of
human control properties.

In the next section analysis about the relation between the EMG activation and the
identified parameters such as time delay, natural angular frequency and the damping
ratio will be conducted and also a comparative study with the psychophysiological

measurements of the human operator will be discussed.

3.3.6 Conclusions

This first part of the human control model research measured the reaction time and
the step respose characteristic represented as a transfer function. In order to identify
each control parameter, first the time lag was measured since SRT and CRT are
directly associated with the human responses. This work measured the human time
responses related to visual perception, motor command and decision making. The
onset time, EMG-RT and the EMD delay was measured and compared to the time
lag estimated from step response identification. Although a small discrepancy was
found between the directly measured time lag and the estimated one, the system
identification method showed a prominent and methodological approach to model

the human control system.

3.4 HUMAN CONTROL MODEL IN CONTINOUS
TASK

In the previous section the results about reaction time measurement and the human
model related to step response experiment were shown. Although, in order to simulate
the human control behaviour during a manipulation task it is necessary to measure
and analyze the human control characteristics in a continuous task. In this section the
measurement of the reaction time will be compared to the time delay identified during
a visual tracking task using only visual feedback and with force feedback information.

An experiment device capable of measuring the human control characteristics in the
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presence of different sensory feedback information was developed.

3.4.1 Visual Feedback

One result of McRuer [24] [23] works about the analytical theory on manual control
of vehicles was the Crossover Model. See Eq. 3.3 and Fig. 3-17. According to the
manipulated machine characteristics the human operator can modify his/her own
dynamic characteristics so as the open-loop transfer function remains a first order
system.

G(s) represents the machine dynamics.

(near w,) (3.3)

where, 7 (0.1 ~ 0.4s) represents the time lag due to human responses, w, (0.5 ~

0.8Hz) is the crossover frequency.

3.4.2 Force Feedback

The force feedback felt by the human operator is a result of a combination of tactile
sensors and proprioceptive feedback. Although the individuals properties of each
sensor have been studied, how the human operator uses those information and how
they affect the human control characteristics are still not well known. However, it is
of general agreement that the force feedback information is very important to identify

the controlled object dynamics properties.
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Figure 3-18: Multimodal sensory feedback scheme

3.4.3 Audio Feedback

A primary function of audio feedback is said to direct the eyes to the source of the
sound. More specifically in a tracking task the audio feedback provides information
about the localization and velocity of the moving target. Although the space discrim-
ination of auditory localization is not so accurate (about 15 degrees) compared to the

visual, it provides supplementary information to assist other sensory feedback.

3.4.4 Human Control Model based on Multimodal Sensory
Feedback

This work proposes a human control model based on multiple sensory feedback in-
formation. (See Fig. 3-18). The human control characteristics related to visual, force
and audio feedback information will be measured separately and then a combination
of different sensory feedback will be analyzed in order to understand how the human
operator uses these sensory feedback information to acquire an internal model of the
controlled machine. First, in this work, the analysis of the human control strategy
in the presence of visual, force and the combination of visual and force feedback

information was conducted.

3.4.5 Experiments

Two types of experiments were conducted. First, the human reaction time was mea-

sured. The second experiment is based on visual tracking in the absence and pres-
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Figure 3-19: SEesaw Experimental Device (SEED)

ence of force feedback. The proposal for this study was reviewed by the Institutional
Committee for Ergonomic Experiments and approved by the Director of Safety and

Environmental Protection Department.

3.4.6 Operator Control Characteristics Identification Exper-

iment

The method to model the human operator adopted in this study is based basically
in the system identification used in control theory. However, it is crucial to select a
task that can provide an analysis of the operator characteristics in a visual and force
control manipulation independently, i.e. a task that can be performed with only
one type of sensory feedback information. It is also preferable to be a continuous
task for system identification analysis in a wide frequency range. The peg-in-hole
task is widely used as an example of robot control, but it is very hard to decompose
the position and force control strategies. The inverted pendulum is also commonly
used to demonstrate different control methods. However, it is a task very difficult to
accomplish with the eyes closed. After considering many tasks performed by a human

operator, the control of a slider on a seesaw was chosen as a suitable task that can
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pull together all the necessary features to analyze and identify the human-machine
system related to visual, force and also audio feedback information independently.
To analyze the human control characteristics related to different sensory feedback
properties a master-slave type SEesaw Experimental Device (SEED) was developed.
The master haptic device consists of a dial with a force sensor and the slave is an
actuated linear guide that works as a seesaw bar with a slider over it. (See Fig. 3-19
and Fig. 3-20). After analyzing the control characteristics based on visual (H,(s)),
force (Hy(s)) sensory feedback information separately, the combination visual and

force feedback (H,¢(s)) was analyzed.

3.4.7 Visual Pursuit Tracking with a Normal Slider

In this first experiment to analyze the human visual feedback properties, the human
operator manipulates the master dial in order to make the slider, PD controlled, follow
a random reference signal displayed in a monitor. The machine characteristics is a first
order system. After 20 training trials, 10 trials were measured. Fig. 3-21 shows the
reference signal, the measured data and the output of the identified operator model.
The technique used to identify the human operator’s characteristics is common to all
the following two experiments. First, it was assumed that the human-machine open

loop transfer function has the generalized form of Eq. (3.4).

(1 -+ TLS)

)= M)

e’ (3.4)

where K represents proportional gain, e™™ : time delay due to human response,
(1+Tps) is the lead time constant (relative rate-to-displacement), (1 + T7s)~" is the
lag time constant.

Using the process model identification of Matlab toolbox the appropriate param-
eters were calculated by minimizing the error between the model output and the
measured data. By this search the most suitable form was selected and then the time
delay which corresponds to the smaller fitting error was explored. In all the cases a

priori knowledge about the controlled machine was used in order to obtain the oper-
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Figure 3-20: Seesaw and slider model

ator characteristics. After obtaining the parameters, they were averaged separately

and the results are shown in Table 3.5.

3.4.8 Visual Feedback using a Seesaw Task

Here the subject is instructed to follow the random reference signal as the previous
experiment. But this time the machine dynamics behaves as a slider over a seesaw,
ie. like Eq. (3.5). There is no force feedback. After some practice the subject is
able to execute successfully the task. To avoid the subject to notice that the slider
behavior corresponds to a seesaw task, the seesaw bar was maintained in horizontal

position.

(0~ 0= sinf, ~0,) G(s)=-2=2 (3.5)

where ¢ is the gravity, 05 is the seesaw bar inclination, z, is the slider position and s

is the Laplace operator

3.4.9 Visual and Force Feedback using a Seesaw Task

In this task the subject has to follow a random reference signal feeling the torque
caused by the dislocation of the slider over the seesaw. The proficiency in the task
execution was similar to the visual feedback solely, but the human modeling error

increased due to the need of extra operational force. (Fig. 3-26).
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Table 3.5: Identified Human Control Model

[ Experiment | Subject A | Subject B | Subject C |
Pursuit H,(s) _23_o-0.20s ZLL_e-027s 22022
Visual H,(s) 6————&3‘5‘256_0'243 4%6_0'318 10——113%236—0'213

Visual/Force Hyp(s) | 105aze 0% | 8742029 13____&3%256—0.223

3.4.10 Force Feedback using a Seesaw Task

In this task the subject has to maintain the slider at the centre using only the force
feedback information provided by the haptic dial. The slider is pertubated by a ran-
dom force with a cuttoff frequency of 0.2 Hz. This task is very difficult to accomplish

and requires much more trainning than the previous tasks.

3.4.11 Human Control Characteristics Experiment Results

The results of identified human control characteristics are shown in Table 3.5. The
human control model related to visual pursuit task showed a first order characteris-
tic. Comparing the three subjects it can be noticed that the lag time element 77 is
proportional to the correspondent time delay 7 . Fig. 3-21 shows the reference tar-
get, the measured data and the control model output of the identified mean human
model. The model output has the same behavior of the human operator except the
high frequency features.

In the case of seesaw task using visual feedback with or without the presence of
force feedback, all the subjects presented a lead time element T7. This lead time
element is responsible for the prediction of the slider’s behavior. Due to the high
acceleration of the gravity, a predictive element was necessary to make possible the
control by the human operator.

The presence of force feedback had the effect of decreasing the time constant and
increasing the gain element. The latter one can be attributed to the high stiffness of
the forearm because of the haptic feedback.

Human control model of Sub A in visual pursuit task.
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Figure 3-22: Visual pursuit experiment (Sub A).
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Figure 3-23: Visual pursuit experiment (Sub B).

Human control model of Sub B in visual pursuit task.

B _ i —0.27s
H=(g) = 2.1(14‘70-6)? (3.7)

Human control model of Sub A in visual feedback seesaw task.

20s+1
HA - 9 —0.5s 3.8
Human control model of Sub A in visual and force feedback seesaw task.
1+ 2s
Hip(s) = 10— ¢ 02 84
Human control model of Sub D in force feedback seesaw task.
1+ 4s
HD =6 —0.24s 3.10
F(s) (1+0.06)° (3-10)
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Figure 3-24: Seesaw task experiment using only visual feedback information.
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Figure 3-25: Seesaw task experiment using visual feedback information. (Sub A).
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Figure 3-26: Seesaw task experiment using visual and force feedback information.

Measired and simulated model output
T T T

Shder Position {m)

=
e,
-

\\J “’A"\u',,rgf\ /{ 1 |

021 ¥ 4
A
SV
03 -
4, 3. i L "
- 50 52 5 56 58 80

Time (5]

Figure 3-27: Seesaw task experiment using only force feedback information. (Sub D).
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3.4.12 Discussion

From Table 3.5, it can be noticed that according to the characteristics of the task
the time delay identified has different values. But the relation between subjects is
preserved as the subject B has the biggest time delay. Although the time delay
is different from the RT experiment results, the direct measurement of the human
response time presents a reasonable and practical method of identifying the time
delay reducing the number of parameters to be fitted. Further investigation about the
muscle activation time and neuromuscular dynamics should be conducted to achieve a
better estimation of the human response delay. The human control model represented
here as a transfer function was identified after each subject had performed many
training trials, because the parameter estimation had to be executed in a stable
condition. In this way, the estimated transfer function expresses the learned human
control model. Furthermore, the difference in the order of the transfer functions when
manipulating various machine characteristics represented the learned control model.
On the other side small variation in the parameters due to the presence of different

sensory information can be correlated to the subject’s capability of adaptation.

3.4.13 Conclusion

The direct measurement of the reaction time using also EMG signals gave insights
about the individual variation between subjects showing that the EMG-RT time was
responsible for such difference. This measured reaction time was also correlated to
the time delay estimated from continuous pursuit tracking task. It was shown that
the human acquired model depended on the machine characteristics and the learned
model was associated with the transfer function order. When different sensorial infor-
mation was available to the subjects, there were noted small variations in the transfer
function parameters representing the subjects capability to adapt to different sensorial
feedback information.

This section proposed an analytical method using the SEED to identify the hu-

man control characteristics related different sensory feedback information. The hu-
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man model related to visual feedback solely and visual/force feedback was identified
using the techniques of identification methods. It is important to notice that all the
experiments were performed without audio information. There still work to be done
in order to build a human sensory feedback integration model to represent the human
operator including also the audio feedback information. These sensorial feedback in-
formation are believed to play an important role in the acquisition of the internal

model of manipulated machines.
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Chapter 4

EFFECTS OF TOE MOVEMENT
DURING WALKING AND
RUNNING IN TERMS OF GRF
AND EMG SIGNALS

In order to analyze the motor learning and adaptation of a daily activity movement
the walking/running task was selected. However, to provide the subject a different
environment different shoes were chosen for these experiments. The objective of this
experiment is to analyze the effects of different sole thickness and the use of toe
during walking and running in terms of learning and adaptation of the motor control
strategy. A total of 15 athletes of short and medium distance were divided in two
groups using different shoes. From GRF and EMG results it can be inferred that the
toe movement inside a thick sole shoe does not affect the forces patterns between the
foot and the ground, making this kind of movement meaningless in terms of shock
absorption. The toe movement caused an ankle joint torque to increase about 20%
in the midstance phase compared to the normal barefoot gait. The results about
the effects of toe movement in barefoot and shod walking/running will be used to

establish an evaluation method to assess the performance of the two groups.
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KEY WORDS Gait Analysis, Ground Reaction Force, Ankle Joint Torque Esti-
mation, EMG signals, Shock Absorption

4.1 Introduction

In the ancient times before the development of footwear, the human gait required
all the foot and leg active and passive properties in order to walk on very different
ground surfaces. Especially the Plantaris muscle is believed to have an important role
in shock absorption because it can contribute to the formation of foot arch by flexing
the metatarsophalangeal joints (MTP) [5]. On the other hand the every day use of
thick sole and closed-toe shoe is pointed as one cause of flat foot among children
[31]. In order to avoid such problems and improve the natural human capability
of active shock absorption, measurements about gait and running motions wearing
various types of footwear was initiated. This is the first report of a 6 months long
term experiment which consists in 3 phases: before, during, after the use of specific
type of footwear. The objective of this long term experiment is to analyze the effects
of different sole thickness and the use of toe during walking and running. A total of
15 athletes of short and medium distance were divided in two groups using different
shoes with different sole thickness. Here the first results of the initial measurement
are described and an evaluation method based on the ground reaction force and EMG

signals is proposed.

4.2 Methods

4.2.1 Experiment Overview

First 5 male subjects (age average 19.2+1.0 years) participated in this primary stage.
Every subject had to perform 3 trials of walking and running motions in barefoot and
shod conditions. The walking velocity was defined as 5km/h and the running velocity
was 10km/h. The tolerance of velocity variation was 5% and it was measured in real

time and feedback to the subjects.
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Figure 4-1: Experiment overview and the kinematic/kinetic model built using Visual
3D
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Figure 4-2: Barefoot and Shod Walking Task

Figure 4-3: Barefoot and Shod Running Task
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4.2.2 Measurement

The gait and running motion were measured using a 3D motion capture Vicon system
with 10 cameras at a sampling frequency of 250Hz. A total of 53 reflective markers
were attached to the subject. The experimental overview, the motion captured model
and the model made by Visual 3D and used for kinematic and kinetic analysis are
shown in Fig. 4-1.In the case of shod walking/running the markers were attached to
the shoes. Six AMTTI Force Platforms were used to measure the ground reaction force
at a sampling frequency of 1000Hz. The plantar foot pressure was measured using
a F-Scan System during shod motions. In order to analyze the muscle activation
the surface EMG of the following 7 muscles of the right leg were measured: Vastus
Medialis (VM), Biceps Femoris (BF), Gastrocnemius Lateralis (GL), Gastrocnemius
Medialis (GM), Soleus (SO), Tibialis Anterior (TA) and Peroneus Tertius (PT) (Fig.
4-5). All the measured data were synchronized using the signal of a foot switch
attached to the right foot heel. Before dividing the groups all the 15 subjects had
their foot shape measured to check the arch height and avoid bias in the results (Fig.
4-7). All the subjects were confirmed as heel strike runners. The shoes used for shod
walking and running were a typical jogging shoe with relative thick sole (about 30mm
at the heel) and another with thin sole (about 20mm at the heel). Besides the normal
walking and running the subject was instructed to move his toe as he intended to
grab the ground with his toes. This motion using the toes is called here Toe Walk

and Toe Run respectively.

4.3 Results

4.3.1 Ground Reaction Force

From the data of the ground reaction force (GRF) it is clear to see the effect of shock
absorption during the heel contact (HC) represented by the first peak in the graphs
of Fig. 4-8, Fig. 4-9, Fig. 4-10, Fig. 4-11, Fig. 4-12, Fig. 4-13. In the case of

barefoot running, the first peak is very sharp but in the midstance phase there is a
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Figure 4-4: Types of shoes used in the experiment

slight difference caused probably by the toe movement which increased the plantar
stiffness and created a foot arch (Fig. 4-8 and Fig. 4-9). A similar phenomenon can
be observed when the sole is thin (Fig. 4-10 and Fig. 4-11), but this shock absorption
effect in the midstance phase is not observed when the sole is thicker (Fig. 4-12 and
Fig. 4-13). From these results it can be inferred that the toe movement inside a
thick sole shoe does not affect the forces between the foot and the ground, making
this kind of movement meaningless in terms of shock absorption. This could be one
cause of ligament laxity of the plantar area since the outputted motor command has

no significant feedback, it will eventually become degraded.
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6. Tibialis Anterior

7. Peroneus tertius 4. Gastrocnemius Medialis

5. Soleus

Figure 4-5: EMG electrode placement area
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Figure 4-6: EMG electrodes and reflective markers
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Figure 4-7: Foot shape measured by 3D foot scanner Infoot. High foot arch (Sub A,
left) and low foot arch (Sub B, right)
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Figure 4-8: Vertical GRF of normal barefoot run
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Figure 4-10: Vertical GRF of normal shod run (thin sole)
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Figure 4-11: Vertical GRF of toe shod run (thin sole)
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Figure 4-12: Vertical GRF of normal shod run (thick sole)
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Figure 4-14: GRF and EMG during normal barefoot gait (Sub A)
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Figure 4-15: GRF and EMG during toe barefoot gait (Sub A)
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Figure 4-17: GRF and EMG during toe shod gait (Sub A)
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4-18: Ankle angle and moment during normal barefoot gait (Sub A)
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Figure 4-19: Ankle angle and moment during toe barefoot gait (Sub A)
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4.3.2 IEMG

The integral of the EMG of each interval was calculated. The EMG signal was
rectified, filtered and integrated for each interval. The filter used was a second order
Butterworth with a cutoft frequency of 3Hz. The IEMG was calculated in three
different phases: Before Heel Contact, Around Heel Contact and After Heel Contact.
Different time intervals around and after heel contact were selected depending of the
walking /running velocity. The time interval before heel contact was maintained the
same because raw EMG signals showed similar initial activation independently of the

walking /running speed.

250ms
100ms <€ > 500ms
Walk < sle P
100ms
_ 100ms <——> 250ms
Run < >le >
Heel Contact (HC)

Figure 4-20: Calculation of IEMG of each interval

4.3.3 Dorsi and Plantar Flexion EMG

In order to analyze the toe movement and the motor control strategy the surface EMG
of the right leg was measured (See Fig. 4-5 for electrode location). The GRF and the
EMG during gait are shown in Fig. 4-14, Fig. 4-15, Fig. 4-16, Fig. 4-17. The 0s time
corresponds to the heel contact (HC) and the horizontal axis starts at 0.3s before HC
and ends at 0.7s after HC. The vertical axis of the GRF is represented in percentage
of body weight (BW).The GRF profile is similar to the previous section with an

attenuation of the first peak caused by the thick sole. The maximum voluntary
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contraction (MVC) was measured but here the EMG signals are shown in raw value
because it will be used in the future to estimate the ankle joint torque. This will be
explained in detail in the discussion session. The most prominent difference related
to the EMG when moving the toe is the preactivation of plantar flexion muscles (GL,
GM, SO) (Compare Fig. 4-14 and Fig. 4-15). When the subject intentionally moved
his toe during walking, there is a clear earlier activation in the GL, GM and SO
muscles compared to normal walking.

On the other hand, when the toe walking is conducted using thick sole shoe, this
preactivation is not so clear but the amplitude seems to increase (Fig. 4-16 and Fig.
4-17). This increase in the EMG amplitude may cause changes in the of ankle joint
torque. The change in the ankle joint torque can be verified comparing the graphs in
Fig. 4-18 and Fig. 4-19. The toe movement caused an ankle joint torque to increase
about 20% in the midstance phase compared to the normal gait. The kinematic and
kinetic information were computed using Visual 3D software. However like others 3D
motion modeling software it is not possible to compute the co-contraction situation
where agonist and antagonist muscles act simultaneously. In order to have more
detailed information about the ankle joint stiffness and torque, an estimation method

based on EMG signals will be used in this study.

4.3.4 IEMG Statistical Analysis

The statistical analysis results of 3 subjects are shown in Fig. 4-21, Fig. 4-23,Fig.
4-25. The IEMG t-test of walk and run trials related to barefoot and shod condition
were conducted in respect to 3 intervals (Before HC, Around HC and After HC).
The results showed different behavior depending on the subject. Here *p < 0.05 and
* % p < 0.01.

Sub01

Fig. 4-21 shows the result of Sub01 IEMG statistical analysis. According to Fig. 4-21

it can be noticed that only the Around HC interval indicated a statistical difference
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between the IEMGs. The only exception was the shod walk/run where no difference
was found between normal and toe trials. It means that during shod walk/run the
movement of the toes did not have much influence in the IEMG values. Only during
barefoot walk/run the movement of the toes was followed by a greater activity in the
muscles (Fig. 4-22). Because the IEMG of Around HC interval during shod walk /run
was smaller compared to barefoot walk/run, it can be inferred that the use of shoe

leads to a decrease in muscle activities.

L > A

Sub01 TBefore HC Around HC After HC

Barefoot r%lzgmal : j ] ::]* ]*: j e

Shod

WALK

Figure 4-21: Statistical analysis of IEMG of all trial mode (Sub 01)

Sub04

Fig. 4-23 shows the result of Sub04 IEMG statistical analysis. The use of shoe or
the movement of the toes did not have much influence over the muscles activities
of Sub04. The only statistical difference was found between barefoot and shod walk
using the toe during the After HC interval. In this case the shod walk showed a
smaller IEMG value compared to barefoot walk. (Fig. 4-24) It seems that the use of

shoe or moving the toe do not have much influence in the muscles activities of Sub04.

Subl4

Fig. 4-25 shows the result of Sub14 IEMG statistical analysis. During barefoot and

shod walk there was a significant difference between all the intervals (Before HC,
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Figure 4-22: IEMG during barefoot walking (Sub 01) #p < 0.05
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Figure 4-23: Statistical analysis of IEMG of all trial mode (Sub 04)
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Figure 4-24: IEMG during barefoot and shod toe walk (Sub 04) *p < 0.05

Around HC and After HC). On the other hand, during barefoot and shod running
using the toe, no difference was found in the IEMG. The only exception was during
barefoot running in Before HC and Around HC intervals when the use of toe had

influenced the muscles activities.

P > o

‘Sub14 Before HC Around HC After HC
x| Barefoot -?-9-'-"—"-91—*: B : j* : *
o e — R =" Ip
jNormal | #
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Barefoot
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Figure 4-25: Statistical analysis of IEMG of all trial mode (Sub 14)

64



Sub14 Barefoot Run and Toe Run

Z00.00

W Before MEAround MEAfter

180.00

160.00

140.00

120.00

100.00

80.00

1EMIG [%6 I C*s]

60.00
40.00

2000

000

BarefootRun BarefootToeRun

Figure 4-26: IEMG during barefoot normal and toe running (Sub 14) % % p < 0.01

Discussion

The 3 subjects analyzed showed different characteristics in respect to the muscles
activities during barefoot and walk/run using or not the toe. However, when statisti-
cal difference between barefoot and shod walk/run existed, all the subjects showed a
decrease in the muscle activity during shod walk/run (Fig. 4-27, Fig. 4-28, Fig. 4-29,
Fig. 4-29). Because Sub01 showed some statistical difference in muscle activity in
Around HC interval during shod walk/run or when using the toe, it can be inferred

that he was more concentrated in the heel contact instant.
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Figure 4-27: IEMG during barefoot and shod walking (Sub 01) #p < 0.05
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Figure 4-28: IEMG during barefoot and shod toe walking (Sub 01) *p < 0.05
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Figure 4-29: IEMG during normal barefoot and shod walking (Sub 14) % % p < 0.01
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Figure 4-30: IEMG during normal barefoot and shod running (Sub 14) % x p < 0.01
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4.4 Discussion

Previous study using GRF data to analyzed barefoot and shod walking/running was
conducted [3] [1] [22] [13], but not many discussion about the effects of toe movement
were covered. Although it is not easy to verify the toe movement inside the shoe,
the EMG signals offer valuable information about the muscle activity, which can
be used to infer about the toe movement. The available 3D motion modelling and
biomechanical anélysis software offers variety of information about the motion but to
understand the motion control strategy in more detail, additional information about
the joint stiffness and torque are also needed. Here, a method of estimating the joint
torque and stiffness from EMG signals will be applied to the ankle joint. It was
originally proposed to estimate upper limb torque and stiffness. The estimation of
the ankle joint torque by using the EMG offers the also possibility of measuring the
gait and running at more natural conditions like outside activities. If the ankle joint
angle can be measured with the EMG signals, the GRF can also be estimated. Next

the estimation method will be explained.

4.4.1 Mykin Muscle Model

This model was originally proposed to deal with arm model and also others arm
models have been proposed using two kinematic degrees of freedom in the horizontal
plane [21] [6] [17] [30]. In the Mykin model, the human arm is modeled as a two-
link manipulator with six monoarticular muscles and two biarticular muscles. Here
only the main feature will be described. See [36] for detailed information. Muscle
tension 7 is determined from muscle stiffness k(u) and the stretch length of a muscle

[lr(u) — ()] as follows.

T = k(u)[lx(u) — 1(9)]
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k(u) = ko + kyu

lp(4) = Lpjas — ALeg = Lpias = [Leg(0) = Leg(u)]
= Lpias T Lequ = lo + liu

1(9) = L(0) — L(F) = AT

(4.1)

see Eq.(4.1)

Here, the parameters ko and k; of the muscle stiffness k(u) are the intrinsic elastic-
ity and the elasticity, respectively. The muscle stiffness k(u) is represented by linear
functions of muscle activation w. [.(u) denotes the deviation of equilibrium length. It
is assumed that can be contracted by only the muscle activation u . Ly,s represents
a bias term and L., is the deviation of equilibrium length between the equilibrium
length L.,(0) and the current equilibrium length L., (u) . Lj,,, denotes a bias term
that is set so that [I.(u) — [(6)] is not negative. The constant parameter Iy is the
intrinsic rest length when u is zero. [(8) denotes the current muscle length with the
current joint angle . L(0) denotes the muscle length when the joint angle is 0 and
L(6) denotes the current muscle length at the current joint angle. It can be simplified
as arc (AT0) . The lengths value will be referred to previous studies. The others
model parameters will be calculated using measured joint angles, torques and EMG
signals. The validation of the model will be based on Visual3D output, GRF data
and other previous studies [2] [12]. The advantage of Mykin model usage is that it

can estimate also co-contraction activities.

4.5 Conclusion

The results of this primary measurement about the effects of toe movement in barefoot
and shod walking/running will be used to establish an evaluation method to assess
the performance of the two groups. It was observed that even in very short period of
time the subject is able to adapt his gait/run pattern to accomplish the determined
task. This fast adaptation can be observed by different GRF and EMG profiles. The

toe movement showed to be a potential way of changing in an active manner the
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characteristics of shock absorption. On the other hand from the results achieved
there is a great possibility that this toe movement is impaired by thick sole shoe. The
analysis of the ankle joint torque estimation is being conducted with the cooperation

of the Mykin model author and the results are expected to be reported in near future.
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Chapter 5

HUMAN MOTOR LEARNING
AND ADAPTATION

It was shown in chapter 3 and chapter 4, respectively, the results of the human
control model estimation and the walking/running motion with different shoes. It
was acceptable to postulate from these both studies, a scheme to differentiate learning
and adaptation related to continuous control task and walking/running motions.
The proposed scheme of learning/adaptation is explained in Fig. (5-1). During
our infant phase we learn how to move our body according to a designed goal and/or
trajectory. The improvement of our movements is based on continuous adjustment
of learned motions. After learning innumerous types of motions and obtained the
capability to adapt to new environment, it is not so difficult to perform new tasks. On
the other hand this adaptation capability varies from individual to individual, which
sometimes can expand to a new learning module. Per example, in the walking/running
motions with different shoes, the Sub 01 was able to formulate two different motion
patterns when using shoes and when he was in bare feet (Fig. 4-27, Fig. 4-28). In
the case of Sub 04, there was no significant difference between his walking/running

patterns in terms of EMG when in shod and in bare feet task.
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Figure 5-1: Learning and Adaptation Scheme

5.0.1 Human Control Model

In the human control model estimation experiments it was found that the human
operator is able to change his control characteristics in order to operate different
machines. Here, the training process resulted in different transfer function which
represented the learned control model. The parameter of this learned control model
differs from subject to subject but the order of the transfer function is assumed to be
the same. When the force feedback information was available to the subject, there
was a variation in the parameters but the transfer function order was kept the same.
So it can be inferred that the subject made some adjustment to deal with the different
sensory feedback information provided by the haptic device. Even though the transfer
function and also the parameters identified in these experiments are task specific, a
common tendency was found related to the subject * s characteristics. The subject B
showed the longest reaction time and also bigger compensation parameter compared

to others subjects.
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Learning= Different Transfer Function Order

Adaptation= Parameter Adjustment

Figure 5-2: Learning and Adaptation in Human Control Theory
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Figure 5-4: Human Transfer Function: adaptation case
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5.0.2 Walking and Running Analysis

The IEMG statistical analysis results of the walking and running experiments showed

that depending on the subject different muscle activation strategy was selected (Fig.

4-21, Fig. 4-23, Fig. 4-25). In the case of Sub0l not only the IEMG (Fig. 5-6)

showed a statistical difference but also the ground reaction force (GRF). The first

peak in Fig. 5-5 and Fig. 5-7 shows the ground reaction force between the heel

contact and the flat foot instant. In Fig. 5-5 a significant difference in the maximum

GRF between normal and toe barefoot running is shown (Sub01). From these results

it can be inferred that when a significant difference exists, the subject was able to

perform distinct muscle motor activation patterns.
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Figure 5-5: Walking/Running study: learning case
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Figure 5-6: IEMG during barefoot running (Sub 01) *p < 0.05

On the other hand, since no significant statistical difference was found between
the TEMG intervals (Fig. 5-8), it can be inferred that the subject was not capable
to perform different motion patterns. As it shown in Fig. 5-7 the similar behavior
of the Sub01 in terms ground reaction force also illustrated the same indifference of
muscle activation, represented by the IEMG of normal and toe run in shod condition.
Moreover in the case of Sub04, there was almost no difference between any combina-
tion of trials including the comparison barefoot/shod and normal/toe walk and run
experiments (Fig. 4-23).

From these two different characteristics it can be concluded that the use of shoes
in some way inhibited the learning of a new motor control strategy. This can be one
of the causes why the prolonged use of shoe changed how we strike the ground and

consequently caused the relaxation of the plantaris muscles [31].
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Figure 5-7: Walking/Running study:: adaptation case
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Figure 5-8: IEMG during shod running (Sub 01) *p < 0.05

i




Chapter 6

FINAL CHAPTER

6.1 DISCUSSION

The objective of this research was to represent in a quantitative way the difference
between the terms motor learning and adaptation. Two different approaches were
selected to deal with this problem. The first approach was based on human control
model identification during reaction time measurement task and pursuit tracking.
The human control model represented as a transfer function was identified and the
estimated transfer function expressed the learned human control model. The param-
eter of this learned control model differs from subject to subject but the order of the
transfer function is assumed to be the same. When the force feedback information
was available to the subject, there was a variation in the parameters but the transfer
function order was kept the same. So it can be inferred that the subject made some
adjustment to deal with the different sensory feedback information provided by the
haptic device. Furthermore, the difference in the order of the transfer functions when
manipulating various machine characteristics represented the learned control model.
On the other side small variation in the parameters due to the presence of different
sensory information can be correlated to the subject’s capability of adaptation. The
second approach was based on walking and running motion when using different shoe
sole thickness. The results of the walking and running analysis showed that depending

on the subject different muscle activation strategy was selected. When there was a
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significant difference between normal and toe barefoot running it can be inferred that
the subject was able to perform two distinct muscle motor activation. On the other
hand, when no significant difference difference between the IEMG of the normal and
toe run using shoes occurred it can be inferred that similar behaviour of the subject
in terms of muscle activation took place.

The two approaches, transfer function modeling and IEMG statistical analysis, adopted
here appears to have no relation with each other. But in fact, if the body dynamics
during walk/run task can be modeled using transfer function, the function order and

the parameters can also be used to explain the learning and adaptation strategies.

6.2 CONCLUSION

The two approaches chosen in this study to analyze the motor learning and adapta-
tion was shown to be promising way to understand how the learning and adaptation
occurs in various types of motions. The direct measurement of the reaction time
using also EMG signals gave insights about the individual variation between subjects
showing that the EMG-RT time was responsible for such difference. This measured
reaction time was also correlated to the time delay estimated from continuous pursuit
tracking task. It was shown that the human acquired model depended on the ma-
chine characteristics and the learned model was associated with the transfer function
order. When different sensorial information was available to the subjects, there were
noted small variations in the transfer function parameters representing the subjects
capability to adapt to different sensorial feedback information. In the walking and
running experiment it was observed that even in very short period of time the subject
was able to adapt his gait/run pattern to accomplish the determined task. This fast
adaptation can be observed by different GRF and EMG profiles. The toe movement
showed to be a potential way of changing in an active manner the characteristics of
shock absorption. On the other hand from the results achieved there is a great pos-
sibility that this toe movement is impaired by thick sole shoe. Because there were no

much change in the subject’s behaviour between normal and toe running when using
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shoe, it can be presumed that the use of shoes in some way inhibited the learning of
a new motor control strategy. This can be one of the causes why the prolonged use
of shoe changed how we strike the ground and consequently caused the relaxation of

the plantaris muscles.
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Appendix A

Tables

Table A.1: SRT Experiment - EMG Activation and Onset Time

‘Experimentl Subject A | Subject B I Subject C |

Onset [s] | 0.21£0.03 | 0.26 £ 0.04 | 0.20 + 0.03
EMG-RT[s] | 0.19 £0.04 | 0.21 £ 0.04 | 0.15+0.03
EMD [s] |0.0340.02 | 0.05+0.01 | 0.05£0.01

Table A.2: CRT Experiment - EMG Activation and Onset Time

tExperiment| Subject A | Subject B | Subject C |

Onset [s] | 0.244+0.02 | 0.324+0.05 | 0.27 + 0.04
EMG-RT[s] | 0.19 £ 0.02 | 0.28 £ 0.04 | 0.20 & 0.04
EMD [s] | 0.04£0.01 | 0.0440.02 | 0.06 + 0.03
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Table A.3: Estimation of time lag from step response - SRT

] Parameters 1 Subject A I Subject B ] Subject C ]

wy, [rad/s| 27+ 2 15+5 20+ 2
¢ 0.34 = 0.04] 0.48 £ 0.08| 0.50 £ 0.03
74 [8] 0.24 £0.03] 0.29 £ 0.04] 0.26 +0.03

Table A.4: Estimation of time lag from step response - CRT

* Parameters | Subject A ‘ Subject B | Subject C t

wy, [rad/s] 27+ 2 18+6 18+ 2
¢ 0.46 &= 0.11} 0.40 £ 0.01| 0.52 £ 0.06
74 [8] 0.28 £0.03) 0.36 £ 0.05 0.31 £ 0.04
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